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Abstract

This paper introduces a new approach that infers the individual stock return during

market crashes from the options market. The approach relies on the correlation between

the VIX and the prices of butterflies at different strikes. Applying it to the cross-section

of S&P 500 stocks yields a strategy that hedges the market downturn while earning an

annualized alpha of approximately 4%. The aggregation produces a measure for the

severity of market crashes, which is shown to be an important determinant of both the

equity risk premium and the survey-based expectation of return.
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1 Introduction

In recent years, researchers have made significant efforts to infer the distribution of the stock

market return from the index option prices. While the option prices contain forward-looking

information on the market return, it is necessary to impose restrictions on the stochastic

discount factor to recover the physical distribution. This often leads to significant measure-

ment errors.1 In this paper, we explore a new direction based on the simple idea that the

market return in each state is the weighted average of the returns of the constituents in the

same state. Therefore, we can start with a noisy measure in the cross-section of stocks, and

let the measurement errors cancel out themselves in the aggregate.

We apply this idea to examine the time-varying severity of a market crash, starting

with a noisy measure of individual stock returns in the crash. In this context, we propose

the following procedure to recover the latter from option prices: One input is the prices

of the butterfly options at different strikes. A butterfly pays off at expiration only if the

stock price falls into a particular range. Naturally, the price of the butterfly goes up when

investors consider this range to be more likely. The other input is a high-frequency variable

closely related to the probability of a market crash, and we adopt the Cboe Volatility Index

(VIX), or “fear index,” which rises as a market crash becomes more likely. For each stock,

we calculate the rolling correlation between changes in VIX and the prices of butterflies at

different strikes. The butterfly that co-moves most strongly with VIX reveals the expectation

of a stock’s return in a market crash, which equals the strike of this butterfly divided by the

current stock price, minus one. We refer to this return the butterfly implied return (BIR).

Using market capitalization as the weight, we can calculate the BIR of the market, named

BIRM, which describes the expectation of market return during a market crash. Although

our goal is to analyze BIRM, we start by exploring the information in the dispersion of BIR.

We present the following results.
1For example, Ross (2015) proposes a procedure by restricting the martingale component of the stochastic

discount factor to be a constant one (Borovička, Hansen, and Scheinkman, 2016). As a result, the inferred
distribution cannot predict the mean or variance of the return (Jackwerth and Menner, 2020).
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First, an easy way to hedge against a future crash is to short vulnerable stocks with low

BIR and long resilient stocks with high BIR. We call this cross-sectional strategy betting

with butterfly (BwB). The BwB time series demonstrates a clear pattern of profit during

a market crash, such as the dot-com crash or the Great Recession. In addition to hedging

against a market crash, BwB earns a statistically significant alpha, ranging from 0.28%

to 0.39% per month using common factor models. This may seem unexpected, given the

hedging benefit. A possible explanation for the positive alpha is that options prices reflect

information not incorporated into the stock price. However, we find it unlikely that the

expected return in a market crash is insider information. Nevertheless, we interact BIR

with variables that measure the relative informativeness of options and stock, such as a

higher option-to-stock volume ratio, which suggests more insider trading in the options

market. In Fama-MacBeth regressions, BIR itself is significant, with a t-value of around

three across different specifications. However, we find no evidence of stronger predictability

for the subsample of stocks with more insider activities in the options market.

After examining the pattern of BwB closely, it becomes clear that there is a rational

explanation: when the market turns around, BwB realizes a significant loss. This loss can

be attributable to stocks with a low BIR, which are hit the hardest by price drops but

potentially benefit the most when the market rebounds. BwB shorts these stocks, resulting

in a loss at the bottom of the crash. From the point of view of a representative investor, the

loss of BwB coincides with the point of highest marginal utility. For this reason, BwB earns

a positive alpha, which can be useful for investors with different consumption processes than

the representative investor.

Using the demand system approach, we investigate whether BIR affects the portfolio

choice of different types of investors. We focus on three relatively flexible investor types:

investment advisors (including hedge funds), mutual funds, and households. As BIR posi-

tively predicts future return, the weight of a stock in a profit-maximizing investor’s portfolio

should have a positive loading on BIR. This holds true for investment advisors, whose load-
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ing predicts the future 12-month return of BwB with high accuracy. For mutual funds, the

loading predicts the future BwB return before 2008. Since then, interestingly, mutual funds

have started taking the other side of the trade. Finally, the households seem to be on the

other side of BwB in most of the sample periods, as BwB is considered risky in the eyes of

a representative household.

Following the rational explanation that shows BwB is risky, one immediate implication is

that a stock that co-moves positively with BwB is also risky and thus requires compensation

in the form of a higher return. This implication allows us to expand our sample from

stocks with liquid options to all stocks. We estimate the beta to the return of BwB using

a rolling window, then test the pricing of BwB-beta with Fama-MacBeth regression. The

result suggests that a two-standard deviation difference in BwB-beta creates a return spread

of 3.9 percent per annum.

We then explore the implications of BIRM, which describes the expectation of market

return in the crash state. When investors fear a severe crash, indicated by a very negative

BIRM, the price of stocks decreases, and the risk premium increases. This means that

the equity risk premium loads negatively on BIRM, which we verify using the SVIX-based

measure of equity risk premium (Martin, 2017). Our empirical findings show that the loading

is approximately -0.07, a reasonable amount that reflects the difference between the physical

and risk-neutral probability of a market crash over the following twelve months. Across

various horizons, BIRM accounts for a significant portion of the mean and variations of the

equity risk premium, indicating that the severity of a market crash is an important factor in

determining the equity risk premium. On the other hand, we discover a strong and positive

empirical relationship between BIRM and survey-based expectation of return (Greenwood

and Shleifer, 2014). We argue that survey participants may answer questions about expected

return with a return that they consider likely. As a result, the survey-based expectation of

return is negatively correlated with the theory-based expected return. BIRM provides a

rational explanation for the differences between these two returns.
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The evidence also suggests that BIRM is a natural candidate for a state variable that

describes the investment opportunity. If the investment opportunity worsens, as indicated

by a low BIRM, stocks with positive BIRM exposure perform poorly, thus commanding a

higher expected return. To estimate the price of risk of BIRM, we use the GMM framework

and assume that the stochastic discount factor is linear in the market return and changes

in BIRM. The test assets include portfolios sorted by characteristics (such as size, book-

to-market ratio, and idiosyncratic volatility) and covariance (beta). As expected, we find a

positive and significant price of risk for both the market return and changes in BIRM. The

estimated price of risk for the market return in the second stage is 3.5, which is close to a

typical coefficient of relative risk aversion.

Related Literature

This paper adds to the existing literature on cross-sectional stock returns by exploring infor-

mation from the options market. Various methods, including differences in implied volatility,

risk-neutral skewness, and risk-neutral variance, have been used in previous works. For ex-

ample, Cremers and Weinbaum (2010) use the average difference in implied volatility across

put-call pairs; Xing, Zhang, and Zhao (2010) use the difference in implied volatility between

out-of-money puts and at-the-money calls; and An, Ang, Bali, and Cakici (2014) use changes

in the implied volatility of short maturity options. Stilger, Kostakis, and Poon (2017) use

risk-neutral skewness; Martin and Wagner (2019) derive a formula that expresses the ex-

pected return on a stock in terms of the risk-neutral variance of the market, the risk-neutral

variance of the individual stock, and the value-weighted average of the stocks’ risk-neutral

variance; and Kadan and Tang (2020) show that the risk-neutral variance predicts the future

return on a subset of stocks. This paper focuses on the expectation of return in a particular

future state, which makes the predictability found in this study robust to controlling for

existing measures.

Furthermore, this paper introduces a new aggregate variable called BIRM, which quan-
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tifies the market return during a crash. This variable marks a significant step towards

recovering the entire physical distribution of returns (Ross, 2015). The approach in this pa-

per does not require restrictions on the stochastic discount factor (Borovička, Hansen, and

Scheinkman, 2016; Schneider and Trojani, 2019) or a large number of assets with different

maturities (Jensen, Lando, and Pedersen, 2019). In this paper, we focus on market crashes

and use VIX as an input variable. However, any other series that is closely linked to a

specific state, such as digital options on the index prices (Breeden and Litzenberger, 1978)

or new CME event contracts, can be used in place of VIX.

Additionally, this paper finds a significant and positive price of risk for BIRM, making it

another option-based risk factor, adding to the list that includes the VIX as used by Ang, Ho-

drick, Xing, and Zhang (2006b) and risk-neutral skewness as used by Chang, Christoffersen,

and Jacobs (2013). Relatedly, Cremers, Halling, and Weinbaum (2015) mimic jump risk

using two at-the-money straddles with different maturities; Lu and Murray (2019) construct

a collar option that only pays off when market return falls below a threshold.

Finally, this paper contributes to the literature on survey-based subjective expectations

of return, offering a rational explanation for the negative correlation between subjective

expectation and theory-based expected returns (Greenwood and Shleifer, 2014). The severity

of the crash, as measured by BIRM, is shown to negatively affect the expected return, and

survey respondents may overemphasize the probability of a market crash, similar to the

distorted probability measure of unemployment and inflation used by Baqaee (2020) and

Bhandari, Borovička, and Ho (2022).

As the construction of BIRM depends on BIR, we first focus on the cross-sectional analysis

of BIR in Section 2, which includes the standard asset pricing tests and the effect of BIR

on the portfolio choices of different types of investors. Thereafter, we move on to the time

series analysis of BIRM in Section 3, which relates BIRM to both the survey-based return

expectation and the theory-based expected return. We conclude this paper in Section 4,

with updated results using data that became available after the circulation of the first draft.
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2 BIR and its pricing in the cross-section

In a typical jump-diffusion setting, the value of a put option can be attributable to both

the normal Brownian motion, which gradually moves the stock price below the strike, and

the possibility of crashes. The rationale behind our approach can be understood using the

simple case with just market crashes. In this case, a market crash occurs with probability

pM . The gross return of stock i conditional on a market crash is a point mass RM
i , which

is the target of this paper. If no crash occurs, the stock price follows a diffusion process

(everywhere continuous). Ignoring the time discount, the value of a put option puti,t (k)

with strike k (as a fraction of the stock price) can be approximately decomposed into

puti,t (k) = pMB−γ max
(
k −RM

i , 0
)
+
(
1− pM

)
bsi (k) . (1)

The first term is multiplied by B−γ > 1 to recognize that a market crash tends to happen

in bad times with higher marginal utility. bsi (k) represents the value from the diffusion

part. Gabaix (2012) shows that this simple structure is sufficient to quantitatively account

for the well-known puzzles in the derivatives market, such as the volatility skew and the

predictability of variance risk premium.

The presence of crash creates a kink (not twice-differentiable) around RM
i . Therefore,

as suggested by the title of this paper, we use a butterfly to approximate the Breeden and

Litzenberger (1978) approach, by buying the put at k − ϵ and the put at k + ϵ, and selling

two of the puts at k. The value of this butterfly is Bi,t (k) = puti,t (k − ϵ) + puti,t (k + ϵ) −

2× puti,t (k), which can be simplified to

Bi,t (k) = pMB−γΛ
(
k,RM

i

)
ϵ+

(
1− pM

)
bs

′′

i (k) ϵ
2 (2)

where bs′′
i (k) is the second derivative of bsi (k) with respect to k. Λ

(
k,RM

i

)
equals 1−|k−RM

i |
ϵ

for
∣∣k −RM

i

∣∣ ≤ ϵ, and 0 otherwise. The function Λ resembles the payoff of a butterfly around
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k, as “max
(
k −RM

i , 0
)
” describes the payoff of a put option with strike k. In other words,

the function Λ is Λ-shaped, reaching the maximal value of 1 when k = RM
i .

From this point on, we deviate from the recovery literature by focusing on the change,

rather than the level, of Bi,t (k). The reason is simple: suppose we find a proxy for pM ,

V
(
pM

)
, we would have

dBi,t (k)

dV
=

1

V ′

[
B−γΛ

(
k,RM

i

)
ϵ− bs

′′

i (k) ϵ
2
]
. (3)

For small ϵ such that ϵ ≫ ϵ2, dBi,t(k)

dV is maximized approximately when Λ
(
k,RM

i

)
is, i.e.,

when k = RM
i . Therefore, we can recover RM

i via

RM
i ≈ argmax

k

dBi,t (k)

dV
. (4)

The initial step in our implementation process involves selecting a variable, V , that is

positively related to the probability of a market crash. Then, for each stock, we look for the

moneyness of a butterfly spread whose price change is maximally sensitive to the changes in

V . The limitation is that this procedure requires high-quality options data, as the recovery

is biased if ϵ is large. Therefore, we focus on the S&P 500 constituents for the main analysis.

There are several additional decisions that need to be made, which we will outline in detail

below.

2.1 Implementation of the procedure

2.1.1 Choosing the variable V

The condition V ′ > 0 indicates that we look for an index that rises when a market crash

becomes more likely. Ideally, this index can be observed at high frequency to facilitate the

measurement of dBi,t(k)

dV . Therefore, we focus on indices constructed using equity or derivatives

prices rather than those based on surveys or valuation ratios. A direct measure of the crash
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probability would satisfy this condition. However, any measure of the varying probability of

rare events is inherently difficult to validate. Our approach is far less demanding and, as a

result, circumvents this issue.

Our choice is the VIX index, which is famously dubbed the “fear index.” Of course, VIX

contains compensation for diffusion, spike, and crash. Formally, VIX is calculated with a

basket of out-of-money options that are weighted by their strikes, or

VIXt→T = 2Rf,t→T

{∫ Ft,T

0

putt,T (K)

K2
dK +

∫ ∞

Ft,T

callt,T (K)

K2
dK

}
(5)

where Rf,t→T is the risk-free interest rate, Ft,T is the forward price, and K is the strike.

As the formula suggests, VIX overweights out-of-money put options with low strikes. A

decomposition by Bollerslev and Todorov (2011) finds that the compensation for the crash

in the left tail is several times that for the right tail. Therefore, although VIX is not a

direct measure of the crash probability, it rises as a market crash becomes more likely, which

satisfies the requirement of V ′ > 0.

We have considered several other candidates. Assuming that the marginal utility of the

investor is inversely proportional to the gross return of the market RT , Martin (2017) show

that the probability of a crash over the period from t to T can be calculated as

P̃ (RT < α) = α

[
put′t,T (αSt)−

putt,T (αSt)

αSt

]
(6)

where put′t,T is the first derivative of put option price with respect to the strike, which equals

to the price of a claim to $1 contingent on RT < α. Given that our theme is to recover without

a restriction on the stochastic discount factor, we do not adopt this measure. In addition,

as P̃ (RT < α) relies on the out-of-money put option prices, it is empirically correlated with

other measures based on the same prices. We do not have the series at a daily frequency.

However, using the monthly data, we find that the correlations amongst the probabilities

with different thresholds (i.e., α) and tenors (i.e., T ) are well above 0.8. The correlation
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between the computed crash probability and VIX of the same maturity is typically around

0.9. Therefore, despite its theoretical appeal as a measure of the level of the crash probability,

the variation of this measure does not buy us much.

Lu and Murray (2019) propose an “AD Bear” portfolio by taking a long position in a put

with a strike price K1 and a short position in a put with a strike price K2 and scaling both

positions by K1 −K2. It is easy to see that, when K1 and K2 are sufficiently close around

the point αSt, the price of the AD Bear portfolio is the put′t,T (αSt) term in Equation (6). In

other words, the price of this portfolio approximately measures P̃ (RT < α), except for the

bias from ignoring the −putt,T (αSt)

αSt
term. Therefore, we do not adopt this measure.

Finally, as stock price reacts to the fear of a crash, we may use a negative stock return

to indicate heightened crash risk. Empirically, stock return and VIX tend to move in the

opposite direction. Indeed, in the earlier stage of this work, we experimented with several

function forms of the stock return. However, the results are weaker than that obtained using

VIX. Stock prices move for reasons other than the varying crash probability, exacerbating

the measurement error issues.

Overall, the alternative measures we examined do not clearly dominate VIX. Following

the advice of John Maynard Keynes, when attractiveness is subjective, we settle for the most

popular choice.

2.1.2 Approximating the price of butterfly Bi,t (k)

We use the volatility surface of OptionMetrics to calculate the prices of the butterflies. Op-

tionMetrics calculates the implied volatilities for options on individual stocks with various

maturities at each delta from -0.1 to -0.9 at 0.05 intervals each day. The OptionMetrics

method interpolates using a kernel-smoothing technique to utilize all puts and calls with dif-

ferent deltas and maturities. Our results are similar with puts or calls of different maturities

because every point on the volatility surface aggregates all the information in the options

market of this stock. In this paper, we use the implied premium of put options with 30 days
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to maturity. Notice that the interpolation is not arbitrage-free and needs not to be, as we

only extract a signal from the options market to trade the stock.

The volatility surface is indexed by deltas instead of strikes. To avoid the heavy burden

of recreating the daily surface, we propose a workaround. We approximate the price of the

butterfly at each delta ∆ for stock i at time τ , B̃∆
i,τ , by buying the put at ∆− 0.05 and the

put at ∆+0.05, and selling two of the puts at ∆, all with 30-day maturity. For this to be a

butterfly, the implied strike K needs to satisfy Ki,τ (∆ + 0.05) = 2Ki,τ (∆)−Ki,τ (∆− 0.05).

In reality, this equality generally does not hold, which makes our butterfly "broken-winged".

Fortunately, the approach in this paper does not rely on the price of the butterfly per

se. Instead, it tracks the price changes. Specifically, we calculate the rolling six-month

correlation between the changes in B̃∆
i,τ and VIXτ , and pick the butterfly whose price is most

likely to move in the same direction as VIX over the rolling six-month window, or

∆∗
i,t = argmax

∆∈{−0.15, ...−0.85}

{
corrt−6M≤τ≤t

(
B̃∆
i,τ − B̃∆

i,τ−1, VIXτ − VIXτ−1

)}
. (7)

The implied strike at each delta changes daily. Therefore, having found the corresponding

∆∗
i,t, we use the average implied strike at this delta relative to the stock price over the six-

month estimation window, which is denoted as
Ki,τ(∆∗

i,t)
Pi,τ

. This workaround is unnecessary if

one starts with a volatility surface indexed by equal-interval strikes instead of deltas.

2.1.3 Calculating butterfly implied return BIRi,t

Finally, we define the butterfly implied return (BIR) for stock i at time t as

BIRi,t =
Ki,τ

(
∆∗

i,t

)
Pi,τ

− 1. (8)

BIR measures the return expectation of stock i in 30 days if a market crash occurs, i.e.,

RM
i − 1. In principle, we could have one BIR each day for each stock. However, as the

calculation is made on a rolling basis, the resulting BIR only changes gradually. Therefore,

11



we use BIR at the end of each month. Further, we require that the prices of the butterfly are

positive and that there are at least 60 valid daily observations in the six-month estimation

window. The result is a panel of BIR at a monthly frequency from June 1996 to December

2019, with on average 492 of the S&P 500 constituents appearing each month.

The measurement error exists due to (i) the ϵ2 term in Equation (3), which can be

alleviated with a more “dense” volatility surface, (ii) our choice of the proxy for the probability

of a market crash in Equation (4), which can be improved with new financial instruments,

e.g., event contacts offered by CME Group, (iii) the use of a rolling window in Equation (7),

which can be improved with a shorter window of tick-by-tick data, and (iv) the workaround

to transform delta to strike in Equation (8), which can be improved if one is willing to expend

resources to generate a volatility surface indexed by strikes.

2.1.4 What kind of crash does BIR measure?

One limitation of this procedure is that the crash’s nature and severity are ambiguous. As

VIX utilizes all the out-of-money put options, it responds to the possibility of crashes of any

type. Theoretically, the procedure can be improved by using a variable V related to a specific

kind of crash (for example, by changing the threshold α in Equation (6)). In practice, we are

constrained by the data quality. At daily or lower frequency, these measures tend to have a

high correlation among themselves, and with VIX.

It turns out that the procedure already allows us to identify the severity of the crash.

However, one more step is needed, as we explain in Section 3. The severity varies over time

and exhibits clear pro-cyclicality, with the median being approximately an annualized drop

of 30% in the index level, as seen from Figure 4. Therefore, BIR measures the performance

of individual stocks in relatively severe market crashes.
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2.2 Basic Statistics in Cross-Section

We start by examining what kind of stocks are picked by our BIR. Panel A of Table 1 reports

the time series statistics of the cross-sectional mean and dispersion of BIR. BIR is negative

on average, which is unsurprising as it is the supposed return during a crash. The monthly

first-order autocorrelation is 0.97, corresponding to a half-life of 22 months. Based on BIR,

we divide stocks into ten groups at the end of each month. The lowest-BIR group (Group 1)

of “vulnerable” stocks has a typical moneyness of -12%, while the highest-BIR group (Group

10) of “resilient” stocks each month has a typical moneyness of +8%. Although certain types

of stock hedge against market crashes, we think the positive moneyness is mainly attributable

to the measurement error in BIR, and the identified “vulnerable” stocks primarily drive the

cross-sectional results. Later, we have several pieces of evidence that support this view.

From now on, we will focus on these “vulnerable” stocks.

As these are constituents of the S&P 500 index, the difference in size across the groups

is limited. However, smaller firms are more likely to appear in the extreme portfolios. This

occurs because for smaller and thus more volatile firms, the implied strike at the end of

the volatility surface (∆ = −0.1 or − 0.9) tends to be far from the current stock price. A

similar logic applies to the average beta, which is larger for extreme portfolios. However,

the characteristics do not change smoothly between groups. Comparing Group 1 with the

neighboring Group 2, we see a significant gap in the CAPM beta. In addition, the firms

in Group 1 invest heavily with much lower profitability, suggesting they are likely to be

the hardest hit in a recession.2 This characterization is reminiscent of Fama and French

(2015), who mention the difficulty in capturing “the low average returns on small stocks

whose returns behave like those of firms that invest a lot despite low profitability.” Indeed,

a strategy based on BIR produces a positive alpha under the five-factor model of Fama and
2We use operating profit divided by book equity to measure profitability, as in Fama and French (2015).

The cash-based measure of profitability (Ball et al., 2015) actually declines smoothly from Group 1 (average
18.8%) to Group 10 (average 17.3%). While operating profitability is not significantly priced in the cross-
section of the S&P500 stock returns (Table 2), cash-based profitability is. Nevertheless, BIRi,t−1 is significant
with either one as the control.
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French (2015), as we show in Section 2.3.2.

Table 1: Basic Statistics

In each month t, we calculate the cross-sectional number of observations nt, mean µt, and
standard deviation σt of BIRi,t−1 across stocks. Panel A reports the time series statistics of
nt, µt, and σt. Based on BIRi,t−1, we divide the stocks into ten groups at the end of month
t and calculate the group means of the common stock characteristics. Panel B reports the
time series average of the group means for the following variables: CAPM beta (beta),
market equity (size), book-to-market equity (BMdec), investment (AssetGrowth), operat-
ing profitability (OperProf), and momentum (Mom12m), with the parentheses showing the
corresponding variable names used in Chen and Zimmermann (2022).

Panel A: Time Series Properties of the Cross-Sectional Moments

Avg nt (BIRi,t−1)
µt (BIRi,t−1) in % σt (BIRi,t−1) in %

Avg Std ac(1) Avg Std ac(1)
492 -2.401 2.289 0.969 5.854 1.936 0.978

Panel B: Time Series Average of Characteristics by Group
Group BIRi,t−1 in % CAPM Beta ME in $Bn B/M INV OP MOM in %

1 -11.85 1.11 20.89 0.49 0.21 0.24 12.10
2 -8.55 0.81 26.52 0.49 0.12 0.44 10.91
3 -6.55 0.73 30.73 0.47 0.11 0.34 10.86
4 -4.74 0.71 27.91 0.49 0.12 0.44 10.91
5 -3.12 0.67 29.23 0.49 0.11 0.42 11.10
6 -1.65 0.66 30.31 0.49 0.12 0.39 12.18
7 -0.21 0.65 28.09 0.47 0.11 0.43 11.66
8 1.28 0.68 27.27 0.47 0.10 0.42 12.93
9 3.12 0.73 26.08 0.48 0.13 0.27 12.27
10 8.23 0.92 19.85 0.53 0.13 0.26 12.75

The most important question is whether BIR is informative about individual stock returns

in a market crash. We formally answer this question in Section 2.3. Here, we illustrate by

forming ten value-weighted portfolios at the end of month t, based on BIRi,t−1, calculated

using daily data from months t − 6 to t − 1. The realized return of each portfolio r
(p)
t+1

is for month t + 1. Each portfolio’s value-weighted average BIRi,t−1 is coded BIR(p)
t with a

subscript t as the portfolio weight (the market capitalization at the end of month t) is known

in month t.

Figure 1 plots the time series average of realized return r
(p)
t+1 of each portfolio p against

the time series average of the implied return BIR(p)
t . In the full sample, the realized return
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broadly increases in the implied return, even though the relationship is not strictly mono-

tonic. When a market crash occurs, the realized returns align well with the implied return

amongst the vulnerable groups (i.e., p = 1, 2, 3). In contrast, the realized return is indistin-

guishable from the market return for the resilient groups. This is consistent with our view

that the positive BIR, as shown in last three rows of Table 1, primarily reflects measurement

errors. The strength of our procedure is that it identifies the worst performers in a market

downturn.
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Figure 1: The relationship between time series average BIR(p)
t and return r

(p)
t+1.

The horizontal axis plot BIR(p)
t , which is the average BIRi,t−1 of each portfolio in Panel B of

Table 1 weighted by market capitalization in month t. The vertical axis plots r
(p)
t+1, which is

the realized return of each portfolio in month t + 1. Both are value-weighted with month t
market capitalization. The right panel uses all months; the middle panel uses months with
a market (S&P 500) realized return below -3%; the right panel uses months with a market
realized return below -10%.

2.3 Results of the Standard Asset Pricing Tests

2.3.1 Fama and MacBeth (1973) regression

We now formally study the pricing of BIR, starting with the Fama and MacBeth (1973)

regression. In each month t + 1, we regress the realized return ri,t+1 on BIRi,t−1. As the

subscript indicates, we skip one month after obtaining BIRi,t−1, which is estimated with a

six-month rolling window. Table 10 in the Internet Appendix shows the robustness of the

results with different rolling windows and skipping periods. The main analysis uses the data
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from 1996 to 2019, which was the data available to us when we finish the first version of this

paper. In Tables 11 and 12 in the Internet Appendix, we extend the sample with data from

2020 and 2021, and conclusions remain unchanged.

Table 2 reports the Fama and MacBeth (1973) regression results, where most of the

control variables are based on Chen and Zimmermann (2022) except for the risk-neutral mo-

ments we calculate ourselves. Using the results in Column 1, the t-stat for βBIR
t+1 over the full

sample is 3.26, which approximately translates to an annual Sharpe ratio of 3.26√
2019−1996

= 0.68.

Although the Sharpe ratio is meaningful, a t-value of around three may seem statistically

low compared to figures reported in recent research on the cross-section of returns (Harvey,

Liu, and Zhu, 2016). However, our test uses only the most liquid stocks (constituents of

the S&P 500), with a much shorter data period (from 1996). A fairer comparison is with

the performance of the established characteristics using the same sample, which shows weak

cross-sectional predictability among the S&P 500 stocks (as found, for exmaple, by Nagel,

2005; Martin and Wagner, 2019). In all of the specifications of Table 2, the t-statistics for

βCAPM , SIZE, and BE/ME never exceed two and are not reported for brevity. Controlling

for investment INV and profitability OP does lower the significance level of BIR. However,

this is simply because the OP values are missing for one-third of the observations, which

are consequentially dropped from the regression. In Columns 4 - 7, we create a new variable

OP ∗ by replacing the missing OP values with zero, which restores the significance level of

BIR. In Columns 5 and 6, the result of BIR is consistent over time, albeit slightly better in

the past ten years. We think this is partly attributable to the low liquidity in the options

market in the early years of the sample. As we see later in Section 2.3.2, a strategy based

on BIR performs poorly in the first three years of the sample period, i.e., from 1996 to 1999.

In Column 7, we control for related covariance and characteristics identified in the litera-

ture, namely the volatility beta βV IX from Ang, Hodrick, Xing, and Zhang (2006b), and the

second and third risk-neutral moments RNV and RNS from Bakshi, Kapadia, and Madan

(2003). For these three variables, we use the values at the end of month t (rather than
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t − 1 as BIR) to give them the best chance of predicting future returns. We also control

for volatility spread and skew, the results of which are incorporated into Table 4. Finally,

given that BIR measures one kind of downside risk, we control for downside betas of Ang,

Chen, and Xing (2006a) and Kelly and Jiang (2014). For brevity, we do not report this set

of results as the downside betas are insignificant in the sample and period considered here,

and the coefficient of BIR is essentially unchanged.

The statistical significance remains stable across various specifications, indicating that

BIR contains information independent of the established predictors. Although bits and pieces

have appeared before, such as treating VIX as a state variable (Ang, Hodrick, Xing, and

Zhang, 2006b) or utilizing the moneyness dimension from the option prices (Xing, Zhang,

and Zhao, 2010), the procedure in this paper combines different elements and recovers the

return in a market downturn in a nearly “model-free” way, which is unique in the literature.

As for the economic significance, the coefficient for each month can be seen as a trading

strategy with a weight proportional to the normalized value of BIRi,t−1:

βBIR
t+1 =

cov (BIRi,t−1, ri,t+1)

var (BIRi,t−1)
= LBIR

t ×
∑
i

wBIR
i,t ri,t+1, (9)

where LBIR
t = 1

σ(BIRi,t−1)
is the leverage and wBIR

i,t =
BIRi,t−1−µ(BIRi,t−1)

σ(BIRi,t−1)
is the normalized signal

for stock i. This strategy trades almost all S&P500 stocks each month, and is leveraged by

a factor of LBIR
t , which is time-varying and scales down in bad times when the dispersion of

BIR is larger. Although the leverage is high (around 17, based on the average number from

Table 1), the t-stat of βBIR
t+1 , which is related to the Sharpe ratio of the strategy (around

0.68), is not affected by the leverage. The Sharpe ratio is comparable to the information

ratio of a tradable strategy based on BIR, as shown below.
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Table 2: Fama-MacBeth Regression

This table reports the time series average coefficients and standard errors of the
Fama-MacBeth regression of return ri,t+1 on a list of variables including BIRi,t−1, β, ME,
B/M , INV , OP , and MOM as in Table 1; OP ∗, which sets the missing values of OP to
zero; REV , which is the return in month t; βV IX , which is the volatility beta in Ang et al.
(2006b) estimated using daily data in month t; RNV and RNS, which are, respectively,
the second (not annualized, not in percentage form) and third risk-neutral moments in
Bakshi et al. (2003), constructed using 30-day maturity data from the volatility surface at
the end of month t. The standard errors in parenthesis are adjusted according to Newey
and West (1987), with six lags.

The dependent variable is ri,t+1 in percentage points
(1) (2) (3) (4) (5) (6) (7)
Full Full Full Full <=2009 >2009 Full

BIRi,t−1 2.35*** 1.87*** 1.33** 1.82*** 1.63* 2.08*** 1.51***
(0.72) (0.54) (0.64) (0.58) (0.87) (0.67) (0.56)

β, ME, B/M N Y Y Y Y Y Y

INV -0.09 -0.18* -0.16 -0.21 -0.22**
(0.10) (0.10) (0.11) (0.16) (0.09)

OP 0.02
(0.02)

OP ∗ 0.00 -0.01 0.01 0.00
(0.02) (0.04) (0.01) (0.02)

MOM -0.08 0.02 -0.13 0.22 0.09
(0.41) (0.42) (0.67) (0.38) (0.38)

REV -1.26* -1.37* -1.33 -1.43 -1.56**
(0.67) (0.70) (0.98) (0.95) (0.68)

βV IX -8.89
(11.32)

RNV -10.09
(11.12)

RNS 0.28***
(0.10)

2.3.2 Alpha from betting with butterfly (BwB)

We now construct an implementable strategy called “Betting with Butterfly” (BwB). Follow-

ing the convention of Fama and French (1993), we trade the top and bottom 30% of stocks.
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The return from BwB is

rBwB
t+1 =

r
(10)
t+1 + r

(9)
t+1 + r

(8)
t+1

3
−

r
(3)
t+1 + r

(2)
t+1 + r

(1)
t+1

3
. (10)

The subscript indicates that the portfolio formation takes place at the end of month t, which

is one month after determining BIRi,t−1. The return is realized in the following month, t+1.

From August 1996 to December 2019, the average monthly return of BwB is 0.26%. BwB

is a relatively low-risk investment, with a monthly volatility of 2.1%. BwB trades only the

liquid S&P 500 stocks, and it has low turnover due to the signal being estimated over a

rolling window. As a result, BwB is highly practical and easy to implement.

Table 3 reports the result from the time series regressions of BwB return on the common

risk factors. The relatively short period puts BwB at a disadvantage from a statistical point

of view. Nevertheless, the alpha ranges from 0.28% to 0.39% monthly, and all are significant

at the conventional levels. The annualized information ratio with respect to the three-factor

model is
0.39
0.12√

2019−1996
= 0.66, which is comparable to the Sharpe ratio reported in Section 2.3.1.

BwB is a long-short strategy, and the long and short legs of BwB share many character-

istics, as presented in Table 10 in the Internet Appendix. For example, under the five-factor

model of Hou, Mo, Xue, and Zhang (2020), both legs have a significant negative loading on

the size factor and a positive loading on the investment factor. However, the alpha primar-

ily comes from the short leg (i.e., Groups 1, 2, and 3). In unreported results, we find the

alpha with just the short leg is more significant than the alpha of the long-short strategy.

As previously noted, the procedure in this paper is more successful in identifying the worst

performers, which BwB shorts to hedge the crash. This allows BwB to benefit from a market

downturn, leading to a negative loading on the market factor. However, BwB suffers a heavy

loss when (and if) the market rebounds as the short leg consists of stocks that suffer most

from a market crash and thus potentially benefit most from a market rebound.

BwB negatively correlates with the value factor HML, which performs poorly in extreme
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Table 3: Regressing rBwB
t on the Common Risk Factors

The dependent variable is the return from BwB in percentage points. The common risk
factors comprise (1) FF3: the three stock factors of Fama and French (1993), (2) FF5: the
five factors of Fama and French (2015), (3) M4: the four factors of Stambaugh and Yuan
(2017), and (4) Q5: the five factors of Hou, Mo, Xue, and Zhang (2020).

FF3 FF5 M4 Q5

Alpha
0.39*** 0.28**

Alpha
0.32**

Alpha
0.34**

(0.12) (0.12) (0.14) (0.13)

MktRf
-0.16*** -0.10***

MktRf
-0.08**

R_MKT
-0.13***

(0.03) (0.03) (0.04) (0.03)

SMB
-0.03 -0.02

SMB
-0.04

R_ME
-0.02

(0.04) (0.04) (0.04) (0.04)

HML
-0.10** -0.24***

MGMT
-0.02

R_IA
0.02

(0.04) (0.05) (0.05) (0.06)

CMA
0.28***

PERF
0.14***

R_ROE
0.06

(0.08) (0.03) (0.06)

RMW
0.08

R_EG
-0.02

(0.06) (0.07)

#Obs 281 281 245 281

events. For example, Koijen, Lustig, and van Nieuwerburgh (2017) document that value

stocks substantially reduce cash dividend payments during a recession. The loadings on the

rest of the factors are low, except in Column 2, where both HML and CMA appear on the

right-hand side. If HML is omitted, the loading on the Fama-French investment factor CMA

drops essentially to zero, similar to the loading on the Hou et al. (2020) investment factor

R_IA in Column 4. With the five-factor model of Hou et al. (2020), the only two significant

coefficients are the negative loading on the market factor and the positive intercept.

The loss from a market rebound is similar to that of the momentum strategy (Daniel

and Moskowitz, 2016). However, the momentum strategy gains when market conditions go

from bad to worse, while BwB profits at the beginning of the crash. Although the above

models do not include momentum due to the high turnover, we show in Table 2 that MOM
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has essentially no effect on the pricing of BIR. In unreported results, we find that adding

the momentum factor to FF3 and FF5 slightly (but non-significantly) increases the alpha of

BwB.
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Figure 2: Cumulative excess returns of BwB and the market, both of which are
scaled to have an ex post annual volatility of 16%.

We also experiment with alternative methods to construct tradable strategies. Among

different strategies, the alpha of BwB in Table 3 is an approximate representation of the

lower bound. In our experiments, the highest alpha is achieved, perhaps unsurprisingly, by

longing the equal-weighted bottom decile while shorting the equal-weighted top decile, which

generates a positive alpha between 0.47% (relative to FF5, t=2.8) and 0.61% (relative to Q5,

t=3.1). Given the academic focus of this paper, we do not report the full results. Instead,

we turn to a more intriguing question: if BwB hedges market downturns, why does it have

a positive alpha?
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2.4 Channels for the Positive Alpha

2.4.1 A mispricing explanation

A possible explanation for the positive alpha is that the participants in the option market

have superior information that becomes slowly incorporated into the stock prices. This

explanation dates back to Black (1975) that options embed leverage. It also assumes that

the consequences of trading options (implied volatility and volume) are ignored by stock

traders, which is plausible over short windows before earnings announcements (Jin, Livnat,

and Zhang, 2012), takeover announcements (Augustin, Brenner, and Subrahmanyam, 2019),

or analyst recommendation revisions (Hayunga and Lung, 2014). However, there is also an

argument that the evidence reflects the carry cost of shorting (Muravyev, Pearson, and Pollet,

2022) or short-lived price pressure (Goncalves-Pinto, Grundy, Hameed, van der Heijden, and

Zhu, 2020).

The information in the context of this paper, which is the relative performance in the

event of a market crash, differs from the type of insider information in the abovementioned

literature. Nevertheless, we perform tests using variables that relate to the relative informa-

tiveness of options and the stock market: (1) the option-to-stock volume ratio, as we expect

that relatively active trading reflects an information advantage on the options side (Roll,

Schwartz, and Subrahmanyam, 2010); (2) change in the option-to-stock volume ratio; (3)

percentage change in options volume; (4) negative percentage change in stock volume; (5-6)

call minus put volatility spread (Bali and Hovakimian, 2009); and (7-8) at-the-money call

minus out-of-the-money put volatility skew (Xing, Zhang, and Zhao, 2010). Table 4 reports

the results after interacting the six variables with BIR. Under the mispricing explanation,

the interaction terms between BIR and the measures of option information advantage should

be positive. However, we fail to obtain a significant positive coefficient for any of the inter-

actions, suggesting that the predictability of BIR is similar for all stocks, regardless of the

relative informativeness between option and stock.3

3For volatility spread and skew, we use the month t value. Both the coefficients on the variables and
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Table 4: Interacting BIR with Measures of Relative Informativeness

In this Fama-MacBeth regression, the variable RIi corresponds to (1) the option-to-stock
volume ratio, (2) change in the option-to-stock volume ratio, (3) percentage change in
options volume, (4) (negative) percentage change in stock volume, (5-6) volatility spread
from call minus put, and (7-8) volatility skew from at-the-money call minus
out-of-the-money put. The control variables comprise βCAPM , ME, B/M , INV , OP ,
MOM , and REV . The standard errors in parentheses are adjusted according to Newey
and West (1987), with six lags.

The dependent variable is ri,t+1 in percentage points
(1) (2) (3) (4) (5) (6) (7) (8)

RIi= O/S ∆O/S ∆O −∆S C-P Spread A-O Skew

BIRi,t−1

2.16*** 1.90*** 1.71*** 1.30* 1.80*** 1.61*** 1.59*** 1.15
(0.70) (0.59) (0.62) (0.73) (0.57) (0.59) (0.55) (0.89)

BIRi,t−1 × RIi
-3.02 -7.82 0.04 1.92 -8.23 -2.36
(4.28) (8.90) (0.48) (1.51) (27.85) (8.70)

RIi
0.28 0.70 -0.03 0.21* 4.46*** 3.26* 2.29*** 1.84**

(0.49) (0.60) (0.02) (0.11) (1.27) (1.68) (0.85) (0.78)

Controls βCAPM , ME, B/M , INV , OP ∗, MOM , and REV

We have two additional reasons to downplay the possibility of a mispricing channel.

First, the sample in this paper comprises the most liquid and carefully analyzed stocks, i.e.,

the constituents of the S&P 500 composite index. Second, although the alpha might be

consistent with mispricing, the loss incurred by BwB when the market rebounds is difficult

to explain. Therefore, mispricing is unlikely the main driver of the return of BwB.

2.4.2 A rational explanation

The alpha of BwB has a rational explanation consistent with its loading on the market

factor. From the point of view of a representative household, BwB loses money at the most

inopportune time: the bottom of the crash when investors’ marginal utility is at its highest.

the interaction terms are non-significant with the month t − 1 value. The coefficient on BIR becomes non-
significant only if we include the interaction term with the month t volatility skew, as shown in the last
column of Table 4. We do not believe that the pricing of BIR is due to its correlation with volatility skew,
because if we omit the interaction term, they are both significant, as we see in Column 7 of Table 4.
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As a result, BwB requires compensation in the form of a positive alpha over the full sample.

For investors whose consumption process differs from that of the representative household,

it is possible to benefit from investing in BwB.

To investigate this rational explanation, we incorporate BIR into the list of character-

istics of the demand system proposed by Koijen and Yogo (2019). The demand system

models investor j’s portfolio weight in asset i, ωjt (i), as an exponentially affine function of

characteristics {xkt (n)},

logωjt (i) = ait +
K∑
k=0

βk,jtxkt (i) + βBIR,jtBIRi,t + log ϵjt (i)

where the constant ait absorbs the choice of outside assets. We use the same list of charac-

teristics {xkt (n)} as Koijen and Yogo (2019), which includes market and book equities (both

in log), profitability, investment, dividend, and market beta. For the investors, we focus on

three types of investors who are relatively flexible: investment advisors, mutual funds, and

households. For the first two types, we calculate the AUM-weighted average loading βBIR,jt

across the same type of investor, which is βBIR,t. The time series of βBIR,t thus reflects the

average tendency of each type of investor to pursue the BwB strategy.

We make three changes to the estimation procedure. First, to ensure that the charac-

teristics are available to investors when they are making decisions, Koijen and Yogo (2019)

match the stockholding data at the end of a quarter (let us call it month t) with the CAPM

beta at the end of month t − 1, and other accounting-related characteristics at the end of

month t − 6, assuming a 6-month gap for accounting information release. For the newly

added BIR, to be conservative about the timing, we use the end-of-month t− 1 value, which

is the same as the timing of the CAPM beta. Second, the definition of outside assets is

different. In Koijen and Yogo (2019), the inside assets comprise common stocks with valid

stock characteristics {xkt (n)} and returns. When BIR is added, the inside assets need to

have non-missing values of BIR, which restricts the inside assets to S&P 500 stocks. All

other assets become outside assets, which are absorbed by the constant ait. Koijen and
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Yogo (2019) individually estimate the coefficients for investors with enough number of inside

assets, and assign the other investors into groups. We adopt the same grouping as Koijen

and Yogo (2019). Luckily, we do not encounter convergence issues even though the number

of assets is at most 500 in our case. Finally, in Koijen and Yogo (2019), the stock character-

istics are winsorized at 2.5% and 97.5% by month (for dividend to book equity, they impose

non-negativity and winsorize only at the 97.5% level). However, as BIR is a return without

extreme values, we winsorize BIR at 0.5% and 99.5% levels by month.
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Figure 3: Time series of βBIR,t and future BwB return. The blue lines show the future
12-month returns of BwB, which use the primary axis. The dashed orange lines are βBIR,t,
which is the average portfolio weight’s loading on BIR shown separately for investment
advisors, mutual funds, and households.

As recommended by Koijen and Yogo (2019), we use the nonlinear GMM estimation

method. The time series of estimated loading βBIR,t of each investor type is plotted in Figure

3 alongside the future 12-month return of BwB. We find that investment advisors (which
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include hedge fund managers) are good at timing BwB. Throughout the sample period,

investment advisors skillfully time the market downturns by increasing their weights on the

resilient stocks (or exiting stocks whose prices are about to fall dramatically), thus benefiting

from the high BwB return when the market crashes, consistent with their behavior in the

technology bubble (Brunnermeier and Nagel, 2004). In comparison, the loading of mutual

funds is negative on average. We can see that the change in mutual fund loadings predicts

future BwB returns prior to 2008 but not afterward. Finally, households appear to be on

the other side of BwB for most of the sample period, in the sense that the sharp changes in

households’ loadings typically predict BwB returns in the opposite direction. However, as

emphasized, we cannot label such portfolio choices simply as “smart” vs. “dumb” money. As

investors differ in their consumption processes, the same strategy might appear safe to one

group of investors and very risky to another group, even though the alpha of the strategy is

positive relative to academic risk factors.

2.4.3 Further implications of the rational explanation

Due to data limitations, our analysis focuses on the S&P 500 stocks. However, the BwB

time series allows us to expand our attention to all stocks. Following the rational explanation

that shows BwB is risky, one immediate implication is that a stock that co-moves positively

with BwB is also risky and thus requires compensation in the form of a higher return. We

test this implication on all common stocks listed on the NYSE, NASDAQ, and AMEX from

July 1997 (one year after the first BwB return) to December 2019. With a slight alteration

to the notation, we estimate βBwB
i,t with the daily returns of stock i and BwB, using a one-

year rolling window ending at month t that contains at least 200 valid observations. When

estimating βBwB
i,t , we experiment with three sets of control variables: (1) MktRf only; (2)

MktRf, SMB, and HML; and (3) MktRf, SMB, HML, CMA, and RMW. We refer to the

resulting βBwB
i,t as the CAPM-version, FF3-version, and FF5-version, respectively. We then

test the pricing of βBwB
i,t in the cross-section of all common stock returns and report the
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results in Table 5.

Table 5: Pricing of βBwB
i,t in the Cross-Section of All Common Stock Returns

We estimate βBwB
i,t from the daily returns of stock i and BwB using a one year rolling

window ending at month t that contains at least 200 valid observations. When estimating
βBwB
i,t , we use three sets of control variables: (1) MktRf only; (2) MktRf, SMB, and HML;

and (3) MktRf, SMB, HML, CMA, and RMW. We refer to the resulting βBwB
i,t as the

CAPM-version, FF3-version, and FF5-version, respectively. The control variables are
defined in Table 2. The standard errors in parentheses are adjusted according to Newey
and West (1987), with six lags. The data ranges from July 1997 to December 2019 due to
the availability of βBwB

i,t , and includes all common stocks listed on the NYSE, NASDAQ,
and AMEX.

Panel A Time-series average of cross-sectional statistics of βBwB
i,t

Mean Std Min 25% 50% 75% Max Skew N
CAPM-version -0.10 0.79 -7.22 -0.45 -0.05 0.31 6.19 -0.64 4460
FF3-version -0.04 0.78 -7.24 -0.39 0.01 0.36 6.35 -0.63 4460
FF5-version -0.02 0.79 -7.50 -0.38 0.01 0.37 7.02 -0.42 4460

Panel B Fama-Macbeth regression coefficient on βBwB
i,t

The dependent variable is ri,t+1 in percentage points
CAPM-version FF3-version FF5-version

βBwB
i,t

0.17* 0.17* 0.20** 0.19** 0.18** 0.21*** 0.12* 0.12* 0.15**
(0.09) (0.09) (0.09) (0.08) (0.08) (0.08) (0.07) (0.07) (0.07)

β, ME, B/M Y Y Y Y Y Y Y Y Y
INV , OP ∗ Y Y Y Y Y Y

MOM , REV Y Y Y

The results across all specifications confirm that a positive covariance with BwB is associ-

ated with a higher expected return. Of the three versions, the FF3-version performs slightly

better. The coefficients from the FF3-version suggest that a 2-standard-deviation difference

in βBwB
i,t creates a return spread of 2 × 0.78 × 0.21% = 0.33% per month, or 3.9 percent

per annum, which is economically meaningful and plausible. Of course, the inclusivity of

the sample makes it difficult to implement the result as a trading strategy. In unreported

results, we also run a horserace regression of BIR and βBwB
i,t using the subsample of S&P 500

stocks. We find that the coefficient of BIR is essentially unchanged by βBwB
i,t , which itself is
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not significant in this subsample.

3 Aggregated BIRM in the Time Series

It is meaningful to aggregate BIR in each cross-section, as BIR refers to the future returns

in the same state; that is, in a market crash. The aggregated series measures the return of

the S&P 500 index when it crashes. Unlike the cross-sectional analysis in Section 2, which

is mostly monthly, the time series tests in this section use annualized returns. As a result,

we use an annualized series, BIRM (BIR of the Market), which is defined as

BIRMt = A(
∑
i

MktCapi,tBIRi,t/
∑
i

MktCapi,t) (11)

where MktCapi,t is the market capitalization of stock i at the end of month t, and A (x) =

(1 + x)12 − 1 annualizes the series. As plotted in Figure 4, BIRM is significantly lower

during recession periods. It is also responsive to other crises that unfold slowly, such as the

worsening of the European debt crisis around 2011.

B
IR
M

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

1996 2000 2004 2008 2012 2016 2020

Figure 4: Time series of BIRMt, which is the average of BIRi,t across all stocks, weighted
by the market cap at the end of month t and then annualized. The shaded periods are NBER
recessions.
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3.1 BIRM and Expected Return

The severity of a crash is an important determination of equity risk premium. Quantitatively,

if we regress a measure of equity risk premium EPt =
1
n
Et (RM,t→t+n −Rf,t) on BIRMt, i.e.,

EPt = βEP
0︸︷︷︸
>0

+ βEP
B︸︷︷︸
<0

×BIRMt + ϵEP
t (12)

the resulting coefficient βEP
B equals the difference between the physical (pM of Eq. 1) and risk-

neutral probability (pMB−γ, with B−γ > 1) of a market crash. This difference is negative,

as the pricing kernel is higher in a market crash. The constant term βEP
0 captures the

remaining equity risk premium due to the varying crash probability or other risks, such as

rare disasters.

We rely on the argument of Martin (2017) that risk-neutral variance Rf,t ·SVIX2
t→t+n is an

approximate measure of the equity risk premium EPt. In Table 6, we regress Rf,t ·SVIX2
t→t+n

on BIRMt, with the log dividend yield dpt as the control.4 Dividend yield is countercyclical

and thus one of the most commonly used proxies for the equity risk premium. However,

BIRM subsumes the effect of the dividend yield. The key coefficient is βEP
B , which is negative

as expected. The intercept βEP
0 is 3%, which is around half of the equity risk premium,

suggesting that BIRM explains the other half of the average equity risk premium. In terms

of time variation, the R2 of the univariate regression ranges from 18% to 31%, suggesting

that BIRM is also an important driver of the varying equity risk premium.

It is also unsurprising that BIRM is informative about the realized return, which we

verify in Table 13 and 14 the Internet Appendix with predictive regressions. However, unlike

Equation (12), which holds in every period, the coefficients obtained from the predictive

4To make the intercept interpretable, we use dpt − dp, where dp = −4.2 is the approximately in-sample
mean (the natural logarithm of 1.5%). This adjustment turns out to be unnecessary in this regression, as
the coefficient on dpt−dp is essentially zero when controlling for BIRMt. The SVIX series from Ian Martin’s
website ends in January 2012. The result with the extended series that we calculate ourselves is similar. The
Internet Appendix shows that the results are stable throughout the sub-periods by repeating the regression
in consecutive five-year windows.
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Table 6: BIRMt and Equity Risk Premium

This table reports the results of Regression (12). The proxy for equity risk premium EPt is the
end-of-month number of Rf,t · SVIX2

t→t+n from January 1996 to January 2012. dpt is the natural
logarithm of the annual dividend to price ratio for the S&P 500. We set dp = −4.2, which is the
natural logarithm of 1.5%. In the parentheses are the Hansen and Hodrick (1980) standard errors
with a bandwidth of 18.

Dependent EPt = Rf,t · SVIX2
t→t+n

(1) (2) (3) (4) (5) (6)

n = 1
12

n = 1

Intercept 0.03*** 0.04*** 0.03*** 0.03*** 0.04*** 0.03***

(0.01) (0.00) (0.01) (0.01) (0.01) (0.01)

BIRMt -0.09** -0.07** -0.07** -0.07***

(0.04) (0.03) (0.03) (0.02)

dpt − dp 0.07** 0.03 0.04 0.01

(0.03) (0.02) (0.03) (0.02)

R2 0.18 0.14 0.21 0.31 0.12 0.31

N 188 188 188 188 188 188

regressions change significantly over time, depending on whether a market crash occurs.

Therefore, we do not find evidence for out-of-sample predictability.

3.2 BIRM as the expectation of return

We establish that BIRMt is negatively correlated with the equity risk premium, which is

known professionally as the expected excess return. On the other hand, BIRMt represents

the expectation of return in one of the likely future states; that is, a market crash. Several

prominent surveys feature questions about the expectation of return. Could the answer be

influenced by the expectation of crash severity?

We find that this is the case. Following Greenwood and Shleifer (2014), we focus on the
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Gallup sentiment series, which calculates the difference between the percentage of bullish

and bearish investors. Although this series does not directly measure the expectation of

return, it is highly correlated (84% in levels and 65% in one-month changes) with the answer

to another question, “what is the estimate of the percentage return you expect on the market

over the next 12 months?”, which is only available for a shorter period. Therefore, the Gallup

sentiment series, shown by the dashed red line in Figure 5, is used to describe the variation

in the expectation of return among the survey participants.
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Figure 5: BIRMt and the Gallup sentiment series, the latter being calculated as the
difference between the percentage of bullish and bearish investors.

The survey expectation has a notable characteristic of being pro-cyclical, which dif-

fers from most theoretical measures of expected return. This difference is one of the most

fundamental puzzles, and it appears that the only way to resolve it is through behavioral

explanations (Barberis et al., 2015; Hirshleifer et al., 2015; Cassella and Gulen, 2018; Nagel

and Xu, 2022). BIRM is positively correlated with the survey expectation, as demonstrated

in Figure 5, and on the other hand, based on a pure rational consideration, negatively cor-

related with the expected return, as shown in Section 3.1. The question remains as to why

BIRM, which measures the return in a market crash, plays a central role in the expectations

of the survey participants.
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We think the answer lies in the interpretation of the word “expect,” as pointed out in

Cochrane (2017). The time series of BIRM allows us to give content to this argument.

After all, the colloquial meaning of “expect” is to “regard (something) as likely to happen.”

For example, if survey participants are fixated on a market crash that they consider to be

the most likely outcome in their own probability measure, then the return they expect, or

regard as likely to happen, would be the return in that state, or BIRM. Of course, this

answer differs from the textbook definition of “expect,” which is the average value under

the objective probability measure. This textbook answer is theoretically and empirically

negatively correlated with BIRM, as we explain in Section 3.1.

3.3 Pricing of BIRM in the Cross-section of Stock Returns

As clear from Figure 4, a negative shock to BIRM is concurrent with a decrease in con-

sumption. By Merton (1973), BIRM should carry a positive price of risk as all risk-averse

utility maximizers choose to underweight stocks with positive exposure to BIRM. To test this

implication, we use an APT specification with the only systematic risks being the market

return and news about BIRM. In this specification, the pricing error of the test assets is

gT (b) =
1

T

T∑
t=1

ut (b) ≡
1

T

T∑
t=1

Re
t − γMRe

t

(
RM,e

t − µM
)
− γBRe

t

(
∆BIRMt − µB) (13)

where Re
t is a row vector of the excess returns of the test assets and RM,e

t is the excess return

of the market. ∆BIRMt = BIRMt −BIRMt−1 is the (annualized) news about the severity of

a crash. µM and µB are the in-sample means of RM,e
t and ∆BIRMt, respectively.5 In addition

to 25 size/BM portfolios, the test assets also include portfolios with weaker factor structures

such as 10 beta portfolios and 10 iVol portfolios, following the advice of Lewellen, Nagel,
5Prior to estimation, we calculate µM and µB in-sample. In Table 15 of the Internet Appendix, we use

the specification in which the means are estimated rather than calculated, similar to Maio and Santa-Clara
(2012), and the point estimates for γM and γB are very similar.
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and Shanken (2010).6 The range of the data is from July 1996 to December 2019.

We are interested in the prices of risk γM and γB. It is common to interpret RM,e
t as the

excess return to the wealth portfolio of the marginal investor. In this case, the γM parameter

is the coefficient of relative risk aversion, so it should be positive and not too large. We also

expect γB to be positive, as assets that perform poorly when BIRM decreases are considered

risky. We estimate γM and γB in two stages. The first stage produces the parameter estimate

b̂1 = argmin{b1}gT (b1)
′ gT (b1)

which minimizes the sum of the squared pricing error. The first stage estimate of γB is posi-

tive, though only marginally significant. We also perform the second stage, which minimizes

the (squared) Sharpe ratio attainable with the unspanned residuals, or

b̂2 = argmin{b2}gT (b2)
′ Ŝ−1gT (b2)

where Ŝ is the estimate of the spectral density matrix from the first stage. As we can

see in Table 7, the second stage estimate of γB is positive and significant, suggesting that

the severity of the market crash carries a positive price of risk in the cross-section of stock

returns.

Table 7: The Price of Risk via GMM Estimation

We estimate parameters b =
{
γM, γB

}
with the moment condition (13). The standard errors

use the adjustment of Newey and West (1987), with six lags in each stage.

First Stage Second Stage
γM γB γM γB

b̂ 2.15 5.09* 3.51** 7.60***
s.e. (1.49) (2.90) (1.49) (2.65)

6In unreported results, we also include the industry portfolios in test assets. However, due to the large
cross-section and the short sample period, we do not find a significant price of risk for ∆BIRMt.
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The GMM approach uses the full sample to estimate the price of risk. In unreported

results, we use another approach akin to the one in Section 2.4.3. We directly calculate the

∆BIRMt beta of an individual stock with a rolling window and then estimate the price of

risk using the Fama-MacBeth regression. However, since the frequency of BIRMt is monthly,

the resulting beta is very noisy and does not show a significant price of risk. Additionally, in

the subsample of S&P 500 stocks, the ∆BIRMt beta has essentially no effect on the pricing

of BIR.
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Figure 6: Monthly excess returns of BwB and the market in 2020 measured in
percentage points.

4 Concluding Remarks

This paper proposes an innovative approach to uncover the time-varying expectation of

individual stock returns during a market crash, which can then be aggregated into a measure

of the market return in a future crash. The key inputs are the prices of the butterfly options,

which contain information about a narrow range of stock prices, and the VIX index, which

contains information about a future market crash. The expectation of return is useful in

both the cross-section and the time series.
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After the circulation of this paper and the availability of data for 2020 from Option-

Metrics, we find that the original conclusions in the paper remain unchanged by the new

data. Figure 6 plots the excess return of the market and the long-short return of BwB in

each month of 2020. First, BwB remains a low-risk bet, far less volatile than the market.

Second, between February and March, there is a market crash of more than 20%, while BwB

realizes a positive 2% return in this period by shorting the worst performers. When the

market recoups its previous loss in April and May, BwB starts to lose, consistent with what

we find in Section 2.3.2. The market realized an annualized Sharpe ratio of 0.9 in 2020, more

than double the historical average. However, the Sharpe ratio of BwB in the same period is

1.1, which is even higher. Overall, the results for 2020 provide out-of-sample validation of

the findings of this paper.

References

An, Byeong-Je, Andrew Ang, Turan G Bali, and Nusret Cakici, 2014, The joint cross section

of stocks and options, Journal of Finance 69, 2279–2337.

Ang, Andrew, Joseph Chen, and Yuhang Xing, 2006a, Downside risk, Review of Financial

Studies 19, 1191–1239.

Ang, Andrew, Robert J Hodrick, Yuhang Xing, and Xiaoyan Zhang, 2006b, The cross-section

of volatility and expected returns, Journal of Finance 61, 259–299.

Augustin, Patrick, Menachem Brenner, and Marti G Subrahmanyam, 2019, Informed options

trading prior to takeover announcements: Insider trading?, Management Science 65, 5697–

5720.

Bakshi, Gurdip, Nikunj Kapadia, and Dilip Madan, 2003, Stock return characteristics, skew

laws, and the differential pricing of individual equity options, Review of Financial Studies

16, 101–143.

35



Bali, Turan G, and Armen Hovakimian, 2009, Volatility spreads and expected stock returns,

Management Science 55, 1797–1812.

Ball, R., J. Gerakos, J. T. Linnainmaa, and V. V. Nikolaev, 2015, Deflating profitability,

Journal of Financial Economics 117, 225–248.

Baqaee, David Rezza, 2020, Asymmetric inflation expectations, downward rigidity of wages,

and asymmetric business cycles, Journal of Monetary Economics 114, 174–193.

Barberis, Nicholas, Robin Greenwood, Lawrence Jin, and Andrei Shleifer, 2015, X-capm: An

extrapolative capital asset pricing model, Journal of Financial Economics 115, 1–24.

Bhandari, Anmol, Jaroslav Borovička, and Paul Ho, 2022, Survey data and subjective beliefs

in business cycle models, Working paper.

Black, Fischer, 1975, Fact and fantasy in the use of options, Financial Analysts Journal 31,

36–41.

Bollerslev, Tim, and Viktor Todorov, 2011, Tails, fears, and risk premia, The Journal of

Finance 66, 2165–2211.

Borovička, Jaroslav, Lars Peter Hansen, and José A Scheinkman, 2016, Misspecified recovery,

Journal of Finance 71, 2493–2544.

Breeden, Douglas T, and Robert H Litzenberger, 1978, Prices of state-contingent claims

implicit in option prices, Journal of Business 51, 621–651.

Brunnermeier, Markus K, and Stefan Nagel, 2004, Hedge funds and the technology bubble,

Journal of Finance 59, 2013–2040.

Cassella, Stefano, and Huseyin Gulen, 2018, Extrapolation bias and the predictability of

stock returns by price-scaled variables, Review of Financial Studies 31, 4345–4397.

36



Chang, Bo Young, Peter Christoffersen, and Kris Jacobs, 2013, Market skewness risk and

the cross section of stock returns, Journal of Financial Economics 107, 46–68.

Chen, Andrew Y, and Tom Zimmermann, 2022, Open source cross-sectional asset pricing,

Critical Finance Review 11, 207–264.

Cochrane, John H, 2017, Macro-finance, Review of Finance 21, 945–985.

Cremers, Martijn, Michael Halling, and David Weinbaum, 2015, Aggregate jump and volatil-

ity risk in the cross-section of stock returns, Journal of Finance 70, 577–614.

Cremers, Martijn, and David Weinbaum, 2010, Deviations from put-call parity and stock

return predictability, Journal of Financial and Quantitative Analysis 45, 335–367.

Daniel, Kent, and Tobias J Moskowitz, 2016, Momentum crashes, Journal of Financial

Economics 122, 221–247.

Fama, Eugene F, and Kenneth R French, 1993, Common risk factors in the returns on stocks

and bonds, Journal of Financial Economics 33, 3–56.

Fama, Eugene F, and Kenneth R French, 2015, A five-factor asset pricing model, Journal of

Financial Economics 116, 1–22.

Fama, Eugene F, and James D MacBeth, 1973, Risk, return, and equilibrium: Empirical

tests, Journal of Political Economy 81, 607–636.

Gabaix, Xavier, 2012, Variable rare disasters: An exactly solved framework for ten puzzles

in macro-finance, Quarterly Journal of Economics 127, 645–700.

Goncalves-Pinto, Luis, Bruce D Grundy, Allaudeen Hameed, Thijs van der Heijden, and

Yichao Zhu, 2020, Why do option prices predict stock returns? the role of price pressure

in the stock market, Management Science 66, 3903–3926.

37



Greenwood, Robin, and Andrei Shleifer, 2014, Expectations of returns and expected returns,

Review of Financial Studies 27, 714–746.

Hansen, Lars Peter, and Robert J Hodrick, 1980, Forward exchange rates as optimal pre-

dictors of future spot rates: An econometric analysis, Journal of Political Economy 88,

829–853.

Harvey, Campbell R, Yan Liu, and Heqing Zhu, 2016, . . . and the cross-section of expected

returns, Review of Financial Studies 29, 5–68.

Hayunga, Darren K, and Peter P Lung, 2014, Trading in the options market around financial

analysts’ consensus revisions, Journal of Financial and Quantitative Analysis 49, 725–747.

Hirshleifer, David, Jun Li, and Jianfeng Yu, 2015, Asset pricing in production economies

with extrapolative expectations, Journal of Monetary Economics 76, 87–106.

Hou, Kewei, Haitao Mo, Chen Xue, and Lu Zhang, 2020, An augmented q-factor model with

expected growth, Review of Finance .

Jackwerth, Jens Carsten, and Marco Menner, 2020, Does the ross recovery theorem work

empirically?, Journal of Financial Economics 137, 723–739.

Jensen, Christian Skov, David Lando, and Lasse Heje Pedersen, 2019, Generalized recovery,

Journal of Financial Economics 133, 154–174.

Jin, Wen, Joshua Livnat, and Yuan Zhang, 2012, Option prices leading equity prices: Do

option traders have an information advantage?, Journal of Accounting Research 50, 401–

432.

Kadan, Ohad, and Xiaoxiao Tang, 2020, A bound on expected stock returns, Review of

Financial Studies 33, 1565–1617.

Kelly, Bryan, and Hao Jiang, 2014, Tail risk and asset prices, Review of Financial Studies

27, 2841–2871.

38



Koijen, Ralph SJ, Hanno Lustig, and Stijn van Nieuwerburgh, 2017, The cross-section and

time series of stock and bond returns, Journal of Monetary Economics 88, 50–69.

Koijen, Ralph SJ, and Motohiro Yogo, 2019, A demand system approach to asset pricing,

Journal of Political Economy 127, 1475–1515.

Lewellen, Jonathan, Stefan Nagel, and Jay Shanken, 2010, A skeptical appraisal of asset

pricing tests, Journal of Financial Economics 96, 175–194.

Lu, Zhongjin, and Scott Murray, 2019, Bear beta, Journal of Financial Economics 131,

736–760.

Maio, Paulo, and Pedro Santa-Clara, 2012, Multifactor models and their consistency with

the icapm, Journal of Financial Economics 106, 586–613.

Martin, Ian, 2017, What is the expected return on the market?, Quarterly Journal of Eco-

nomics 132, 367–433.

Martin, Ian, and Christian Wagner, 2019, What is the expected return on a stock?, Journal

of Finance 74, 1887–1929.

Merton, Robert C, 1973, An intertemporal capital asset pricing model, Econometrica 41,

867–887.

Muravyev, Dmitriy, Neil D. Pearson, and Joshua Matthew Pollet, 2022, Why does options

market information predict stock returns?, Working paper.

Nagel, Stefan, 2005, Short sales, institutional investors and the cross-section of stock returns,

Journal of Financial Economics 78, 277–309.

Nagel, Stefan, and Zhengyang Xu, 2022, Asset pricing with fading memory, Review of Fi-

nancial Studies 35, 2190—2245.

39



Newey, Whitney K, and Kenneth D West, 1987, A simple, positive semi-definite, het-

eroskedasticity and autocorrelation consistent covariance matrix, Econometrica 55, 703–

708.

Roll, Richard, Eduardo Schwartz, and Avanidhar Subrahmanyam, 2010, O/s: The relative

trading activity in options and stock, Journal of Financial Economics 96, 1–17.

Ross, Stephen A, 2015, The recovery theorem, Journal of Finance 70, 615–648.

Schneider, Paul, and Fabio Trojani, 2019, (almost) model-free recovery, Journal of Finance

74, 323–370.

Stambaugh, Robert F, and Yu Yuan, 2017, Mispricing factors, Review of Financial Studies

30, 1270–1315.

Stilger, Przemysław S, Alexandros Kostakis, and Ser-Huang Poon, 2017, What does risk-

neutral skewness tell us about future stock returns?, Management Science 63, 1814–1834.

Xing, Yuhang, Xiaoyan Zhang, and Rui Zhao, 2010, What does the individual option volatil-

ity smirk tell us about future equity returns?, Journal of Financial and Quantitative Anal-

ysis 45, 641–662.

40



Internet Appendix of “Butterfly Implied Returns”

5 Results Complementing the Cross-sectional Analysis of

Section 2

5.1 BwB generates robust alpha with different rolling windows and

skipping periods

To estimate BIR, we use a rolling six-month window in our main analysis. To make the

strategy implementable, we skip a month before forming the BwB strategy. In this section,

we experiment with different specifications of rolling windows and skipping periods. A

longer rolling window produces a more precise estimation of the correlation. However, if

the correlation is time-varying, information from earlier periods might be stale. Table 8

summarizes the alphas from the alternative specifications. The six-month window offers a

good balance between the two considerations. On the other hand, the length of the skipping

periods plays a minor role, and the results are similar across the different choices (0, 1, or 2

months).

5.2 Equal-weighted BwB performs even better

In the main analysis, we focus on the results based on the value-weighted approach, which is

in line with the common practice in cross-sectional asset pricing studies. However, since we

only use the constituents of the S&P 500 index, an equal-weighted portfolio is also relevant

and practical. Table 9 presents the returns of the equal-weighted portfolios and the alpha

of the equal-weighted Betting-with-Butterfly (BwB_ew) strategy. Although the magnitudes

are similar, BwB_ew outperforms the original BwB in terms of statistical significance, re-

sulting in a higher information ratio.
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Table 8: BwB with Different Rolling Windows and Skipping Periods

This table examines the robustness of BwB strategy under alternative rolling windows (in
BIR estimation) and alternative skipping period (before forming portfolios). In the main
analysis, we estimate BIR using a six-month rolling window which ends at the end of month
t−1, then form portfolios at the end of month t, which corresponds to the (Rolling, Skipping)
pair of (6, 1). For each pair of parameters, we report the BwB strategy alphas with respect
to different factor models used in Table 3. The data ends in December 2019.

Rolling Skipping Alpha
FF3 FF5 M4 Q5

3

0 0.30** 0.25** 0.21 0.27**
(0.12) (0.12) (0.14) (0.13)

1 0.19 0.13 0.17 0.24*
(0.12) (0.12) (0.14) (0.13)

2 0.24** 0.22* 0.17 0.29**
(0.11) (0.12) (0.13) (0.12)

6

0 0.36*** 0.31** 0.29** 0.32**
(0.12) (0.12) (0.14) (0.13)

1 0.39*** 0.28** 0.32** 0.34**
(0.12) (0.12) (0.14) (0.13)

2 0.41*** 0.34** 0.30** 0.36**
(0.13) (0.13) (0.15) (0.14)

12

0 0.30** 0.19 0.24 0.28*
(0.13) (0.13) (0.15) (0.14)

1 0.37*** 0.26** 0.31** 0.32**
(0.12) (0.13) (0.14) (0.14)

2 0.28** 0.20 0.24 0.28*
(0.13) (0.13) (0.15) (0.14)
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5.3 Alpha of BwB primarily comes from the short leg of “vulnera-

ble” stocks

Table 10 reports alphas separately for the long and short legs of the original BwB strategy.

The findings indicate that the alpha of BwB mainly originates from the short leg. This

means that the approach used in this paper identifies the stocks that are most susceptible

to market crashes and have the worst performance.

5.4 The result is robust in the extended sample period (1996-2021)

In the main analysis, we use the options data from 1996 to 2019, which was the data available

to us when we finish the first version of this paper. In Tables 11 and 12, we extend the sample

with data from 2020 and 2021. The conclusion of the paper is unchanged. In Section 4, we

highlight the performance of BwB during the COVID period: using monthly returns, the

market realizes an annualized Sharpe ratio of 0.9 in 2020, which is more than double the

historical average. However, the Sharpe ratio of BwB is even higher at 1.1 during the same

period.
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Table 9: Equal-weighted Portfolios and BwB

Based on BIRi,t−1, we divide the stocks into 10 groups at the end of month t and form 10
equal-weighted portfolios. Panel A reports the time-series average excess returns of each
portfolio and the 10–minus–1 returns (H–L) in month t + 1, as well as alphas adjusted for
the factor models used in Table 3. Panel B reports the alphas of an equal-weighted Betting-
with-Butterfly (BwB_ew) strategy, which trades the top and bottom three equal-weighted
portfolios. The standard errors in parenthesis are adjusted according to Newey and West
(1987) with 6 lags. The data ends in December 2019.

Panel A: Excess Return and Alpha of the Equal-weighted Portfolios
1 2 3 4 5 6 7 8 9 10 H-L

ExRet 0.57 0.57 0.86 0.86 0.90 0.85 0.80 0.84 0.96 1.06 0.49***
(0.45) (0.36) (0.29) (0.26) (0.28) (0.28) (0.26) (0.28) (0.29) (0.39) (0.18)

CAPM -0.41 -0.17 0.23 0.24 0.31 0.26 0.20 0.24 0.29 0.20 0.61***
(0.16) (0.16) (0.17) (0.16) (0.17) (0.15) (0.16) (0.18) (0.13) (0.19) (0.17)

FF3 -0.47 -0.25 0.15 0.18 0.24 0.21 0.14 0.16 0.22 0.15 0.61***
(0.14) (0.11) (0.12) (0.12) (0.12) (0.11) (0.12) (0.12) (0.10) (0.17) (0.17)

FF5 -0.28 -0.34 -0.00 -0.00 0.04 0.05 -0.03 -0.04 0.10 0.19 0.47***
(0.14) (0.13) (0.11) (0.12) (0.10) (0.11) (0.12) (0.11) (0.11) (0.19) (0.17)

M4 0.04 -0.18 0.18 0.11 0.21 0.16 0.12 0.12 0.23 0.58 0.54***
(0.18) (0.15) (0.13) (0.13) (0.13) (0.14) (0.13) (0.14) (0.14) (0.23) (0.20)

Q5 -0.19 -0.27 0.02 0.10 0.07 0.13 0.02 -0.02 0.15 0.42 0.61***
(0.13) (0.12) (0.12) (0.14) (0.12) (0.13) (0.12) (0.13) (0.10) (0.19) (0.20)

Panel B: Alpha of BwB_ew
FF3 FF5 M4 Q5

Alpha
0.36*** 0.29***

Alpha
0.30**

Alpha
0.33***

(0.10) (0.10) (0.12) (0.11)

MktRf
-0.10*** -0.06**

MktRf
-0.05*

R_MKT
-0.09***

(0.02) (0.03) (0.03) (0.03)

SMB
-0.04 -0.03

SMB
-0.05

R_ME
-0.05

(0.03) (0.04) (0.04) (0.03)

HML
-0.00 -0.10**

MGMT
0.06

R_IA
0.08

(0.03) (0.04) (0.04) (0.05)

CMA
0.18***

PERF
0.04*

R_ROE
-0.02

(0.06) (0.03) (0.05)

RMW
0.06

R_EG
0.03

(0.05) (0.06)
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Table 10: Regressing the Long and Short Legs of BwB on the Common Risk
Factors

This table repeats the analysis in Table 3 for the long and short legs of BwB. The short leg

comprise of stocks with lowest BIR and the excess return is r
(3)
t+1+r

(2)
t+1+r

(1)
t+1

3
− rf,t. The excess

return of the long leg is r
(10)
t+1+r

(9)
t+1+r

(8)
t+1

3
− rf,t. The data ends in December 2019.

Panel A: Dependent variable is r
(3)
t+1+r

(2)
t+1+r

(1)
t+1

3 − rf,t (the short leg)

FF3 FF5 M4 Q5

Alpha
-0.27*** -0.20**

Alpha
-0.14

Alpha
-0.25***

(0.08) (0.09) (0.10) (0.10)

MktRf
1.18*** 1.14***

MktRf
1.12***

R_MKT
1.19***

(0.02) (0.02) (0.03) (0.02)

SMB
-0.11*** -0.11***

SMB
-0.11***

R_ME
-0.12***

(0.03) (0.03) (0.03) (0.03)

HML
0.18*** 0.29***

MGMT
0.08**

R_IA
0.14***

(0.03) (0.04) (0.03) (0.04)

CMA
-0.21***

PERF
-0.14***

R_ROE
-0.04

(0.05) (0.02) (0.04)

RMW
-0.05

R_EG
0.06

(0.04) (0.05)

Panel B: Dependent variable is r
(10)
t+1+r

(9)
t+1+r

(8)
t+1

3 − rf,t (the long leg)

FF3 FF5 M4 Q5

Alpha 0.11 0.08 Alpha 0.18** Alpha 0.09

(0.07) (0.07) (0.08) (0.08)

MktRf 1.03*** 1.04*** MktRf 1.04*** R_MKT 1.05***

(0.02) (0.02) (0.02) (0.02)

SMB -0.14*** -0.13*** SMB -0.15*** R_ME -0.13***

(0.02) (0.03) (0.03) (0.02)

HML 0.08*** 0.04 MGMT 0.06** R_IA 0.16***

(0.02) (0.03) (0.03) (0.04)

CMA 0.07 PERF -0.00 R_ROE 0.02

(0.05) (0.02) (0.03)

RMW 0.03 R_EG 0.03

(0.03) (0.04)
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6 Results Complementing the Time Series Analysis of

Section 3

6.1 BIRMt and the realized market return

In equilibrium, asset prices adjust such that BIRM is positively correlated with returns in

the crash state and negatively correlated with returns in non-crash states. Therefore, when

regressing realized returns on BIRM in a long sample with crashes, we obtain a positive

coefficient equal to the physical probability of a market crash (pM ) only if we control for

the expectation of returns in a non-crash state. We use the following specification

1

n
(RM,t→t+n −Rf,t) = βR

0︸︷︷︸
=0

+ βR
B︸︷︷︸

>0

×BIRMt + βR
NB︸︷︷︸
>0

×
(
dpt − dp

)
+ ϵRt+n (14)

where dpt− dp captures the return if a crash does not occur, in which case dpt mean-reverts

to its mean dp. In this regression, βR
B directly measures the (ex post) probability of a crash,

pM , which should be positive. To operationalize this regression, it is necessary to introduce

some forward-looking bias and set dp to its in-sample mean. We use dp = −4.2, which is the

natural logarithm of 1.5%. Table 13 reports the results over the next month and the next

year, which are similar in all aspects except for R2. This is not surprising, as the result using

the monthly return reflects transitory shocks that are not captured by the two variables.

As expected, the coefficient βR
B is positive. The combination of βEP

B and βR
B allows us

to quantitatively evaluate the importance of a market crash. With the results from annual

data in the last columns of Table 6 and 13, we know that the probability of a crash is

pM = βR
B = 0.41, which corresponds to two crashes every five years. When a crash occurs,

the marginal utility is multiplied by B−γ = 1− βEP
B

βR
B

= 1.17, or increases by 17%. If we further

take a stance on the risk aversion by setting γ = 4, we can infer that the consumption of the

representative investor falls by 1−B = 4% in a market crash.

Interpreting the coefficients βR
NB is more subtle, as the variable dpt − dp is a mere proxy
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Table 13: Time Series Predictability of BIRMt

This table reports the results of Regression (14). The realized excess market return
12
n (RM,t→t+n −Rf,t) ends in December 2019. On the right-hand side of the regression, BIRM
is for the period March 1996 to December 2019. dpt is the natural logarithm of the annual dividend
to price ratio for the S&P 500. We set dp = −4.2, which is the natural logarithm of 1.5%. In the
parentheses are the Hansen and Hodrick (1980) standard errors with a bandwidth of 12× n.

Dependent 1
n
(RM,t→t+n −Rf,t)

n = 1
12

n = 1

Intercept 0.10 0.02 0.10 0.07 -0.00 0.06*

(0.06) (0.04) (0.06) (0.06) (0.04) (0.04)

BIRMt 0.08 0.49** -0.02 0.41***

(0.24) (0.20) (0.09)

dpt − dp 0.33 0.59*** 0.41*** 0.63***

(0.23) (0.21) (0.14) (0.09)

R2 0.00 0.01 0.03 0.00 0.24 0.35

N 282 282 282 271 271 271

for the future return. Over short horizons, if the log dividend-to-price ratio dpt mean-reverts

to dp, the return can be approximated by ϕdp
(
dpt − dp

)
, where ϕdp is the speed of mean-

reversion. To make quantitative inferences, one needs to take a stand on the magnitude

of ϕdp, which is not easy. For example, Lettau and van Nieuwerburgh (2007) challenge the

conventional wisdom that ϕdp is low. In their Table 2, the AR(1) coefficient is 0.61 with two

breaks, implying that ϕdp = 0.39 annually. We observe an even more speedy reversion after

the Great Recession, which leads to strong return predictability. More recently, the stock

market exhibits a V-shaped rebound from the low in March 2020, reflecting dissipation of

the initial fear over COVID-19. The debate about the persistence of the valuation ratio is

likely to continue for years to come and is beyond the scope of this paper.

Finally, we highlight another difference between βR
B and the coefficient βEP

B in the main

text. The relationship in Regression (12) holds in every period. Therefore, βEP
B is always
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the difference between the physical and risk neutral probability of a crash, which is a small

negative number. In contrast, the relationship in Regression (14) only holds in a long sample

in which the probability of crash converges to the mean. In a shorter sample, βR
B is heavily

influenced by the crash frequency. Figure 7 examines how the two coefficientsβEP
B and βR

B

evolve over time with a rolling 60-month window. As expected, the resulting βEP
B (solid line)

oscillates within a tight and mostly negative range, whereas βR
B (dashed line) is far more

volatile, shooting up if when a market crash occurs in the rolling window.
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Figure 7: Coefficients of the rolling estimation of the regressions (12) and (14). We
plot the time series of βEP

B (solid line) in Regression (12) and βR
B (dashed line) in Regression

(14), estimated with rolling data over 60 months.

6.2 BIRMt significantly predicts future 12-month return with Ami-

hud and Hurvich (2004) correction

Regression (14) is subject to the Stambaugh (1999) bias. The bias arises due to the mea-

surement error in the persistence of the predictors BIRMt and dpt− dp, whose shocks in the

future are correlated with the shock of RM,t→t+n − Rf,t. We follow the procedure proposed

in Amihud and Hurvich (2004) to reduce the bias. First, we estimate a univariate AR(1)
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model for xt = BIRMt or dpt − dp :

xt+1 = θx + ρxxt + νx
t+1. (15)

The estimated ρx is biased towards zero in a small sample. Therefore, we obtain the (doubly)

bias-adjusted coefficient ρ̂cx as

ρ̂cx = ρ̂x +
1 + 3ρ̂x

N
+

3 (1 + 3ρ̂x)

N2
(16)

with N = 271. The adjusted error terms, which will be added to the predictive regression,

are calculated as νx,c
t+1 = xt+1 −

(
θ̂x + ρ̂cxxt

)
.

Finally, we run the augmented predictive regression

1

n
(RM,t→t+n −Rf,t) = βR

0 +βR
BIRM×BIRMt+βR

dp×
(
dpt − dp

)
+ϕBIRMνBIRM,c

t+n +ϕdpν
dp,c
t+n+ϵRt+n,

(17)

with the adjusted standard error for the predictive coefficient as

s.e.
(
β̂R
x

)c

=

√
s.e.

(
β̂R
x

)2

+

[
ϕ̂x

(
1 +

3

N
+

9

N2

)
s.e. (ρ̂x)

]2
(18)

for x = BIRM or dp. Table 14 compare the result with and without the bias reduction.

We focus on 12-month return by setting n = 1. The result clearly shows a bias in the

estimated coefficient. For example, the coefficient of BIRMt is adjusted from 0.41 down

to 0.15. However, our conclusion remains that BIRMt significantly predicts future return,

conditional on dividend yield.

6.3 The price of risk of ∆BIRMt is robust to the specification

Maio and Santa-Clara (2012) use a different GMM specification which allows for estimation
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Table 14: Predictive Regression with Amihud and Hurvich (2004) Correction

Panel A: AR(1) Model in Equations (15) and (16)
xt = θ̂x ρ̂x s.e. (ρ̂x) ρ̂cx

BIRMt -0.1306 0.5465 0.048 0.5563
dpt − dp 0.0606 0.6477 0.047 0.6586

Panel B: Predictive Regression in Equation (17)
Amihud and Hurvich (2004) corrected Table 6

xt = β̂R
x s.e.

(
β̂R
x

)
ϕ̂x s.e.

(
β̂R
x

)c

β̂R
x s.e.

(
β̂R
x

)
BIRMt 0.15*** 0.040 0.1182 (0.04) 0.41*** (0.09)
dpt − dp 0.48*** 0.032 -0.7024 (0.05) 0.63*** (0.09)

error of the factor means

gT (b) =
1

T

T∑
t=1

ut (b) ≡
1

T

T∑
t=1


Re

t − γMRe
t

(
RM

t − µM
)
− γBRe

t

(
∆BIRMt − µB

)
RM

t − µM

∆BIRMt − µB

. (19)

In this specification, the Jacobian matrix is

dT =
1

T

T∑
t=1


−Re

t

(
RM

t − µM
)
, −Re

t

(
∆BIRMt − µB

)
, γMRe

t , γBRe
t

0 0 −1 0

0 0 0 −1

 .

As in the main text, Re
t is a row vector of the excess returns of test assets, and RM

t is the

excess return of market. ∆BIRMt = BIRMt − BIRMt−1 is the news about the annualized

expectation of return, whose volatility is comparable to that of the realized returns. The

four parameters b =
{
γM, γB, µM, µB

}
are to be estimated.

We differ from Maio and Santa-Clara (2012) in two ways. First, to address the concerns

raised by Lewellen, Nagel, and Shanken (2010), we add 10 beta-sorted portfolios and 10
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iVol-sorted portfolios into the test assets. Second, we use the following weighting matrix in

the second stage

W =

 Ŝ−1
(n) 0

0 1002 × I(2)


where Ŝ−1

(n) inverts the top-left n × n sub-matrix of Ŝ (n = 45 in this case), which is the

estimate of spectral density matrix from the first stage. The difference here is that we

multiply the identity matrix I(2) by 1002 to give the two parts comparable weights, since Ŝ

measures the second moments of monthly returns.

Table 15: Result of an Alternative GMM Specification

We use the moment condition in Equation (19). The standard errors

are var
(
b̂
)
= 1

T

(
d′T Ŝ

−1dT

)−1

with Newey and West (1987) adjustment

Ŝ =
∑L

j=−L

(
1− |j|

L+1

)
1
T

∑T
t=1

[
ut

(
b̂
)
ut−j

(
b̂
)′
]

where ut = 0 if t < 1 or

t > T . The number of lags is L = 6 in both stages.

First Stage
γM γB 100× µM 100× µB

b̂1 1.95 5.82 0.59 -0.29

s.e.
(
b̂1

)
(1.39) (2.84) (0.24) (0.25)

Second Stage
γM γB 100× µM 100× µB

b̂2 3.00 8.05 0.64 -0.13

s.e.
(
b̂2

)
(1.13) (2.62) (0.22) (0.23)

The GMM procedure is equivalent to a two-pass estimation, where we first use the time

series of return of each portfolio to estimate the betas on the two risk, β̂M and β̂B, then run

a cross-section regression

µ = constant + λM β̂M + λBβ̂
B + ϵ (20)

to obtain the risk premium λM and λB. Here µ = 1
T

∑T
t=1R

e
t is the average excess return of
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the test assets. In Table 16, we report results from OLS and GLS (µ on V −1/2
[
ι β̂M β̂B

]
,

where V −1/2 = QΛ−1/2Q′ with Q and Λ from an eigen-decomposition of var (Re
t )), with

and without the constant term. The estimated monthly risk premium λB (around 1%)

approximately equals γB (Table 15, e.g., 5.82 from the first stage) times the monthly variance

of ∆BIRMt (approximately 0.002).

Table 16: Result of the Two-pass Regression
This table reports the slopes and standard errors from the cross-section
regression of Equation (20).

Constant λM × 100 λB × 100 R2

OLS

0.61 1.28
(0.04) (0.79)

0.91 -0.18 1.00 14%
(0.09) (0.08) (0.44)

GLS

0.71 1.26
(0.44) (1.09)

1.19 -0.48 0.56 32%
(0.24) (0.43) (0.89)
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