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Abstract
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1 Introduction

Impact investing, a strategy aimed at generating social and environmental impact alongside finan-

cial returns, has grown tremendously over the last decade. Portfolio “screens” or “mandates” are

common implementations of ESG-investing strategies. Such policies aim to restrict capital allo-

cation to specific firms to increase target firms’ cost of capital and make it more costly for them

to fund their operations. PricewaterhouseCoopers (2022) forecasts that ESG-related assets under

management are expected to increase from $18.4tn in 2021 to $33.9tn by 2026, with ESG assets on

pace to constitute 21.5% of total global assets under management. Bloomberg Intelligence (2021)

expects global ESG assets to exceed $53 trillion by 2025, representing more than a third of total

assets under management. On the other hand, partly on the grounds that it reduces investment re-

turns, several states in the US have introduced proposals against impact investing (Donefer, 2023),

and twenty-five US states have sued the Biden Administration to halt a Department of Labor rule

that prioritizes ESG concepts into retirement-fund regulations (Mayer, 2023).

Despite the large sums of assets being allocated to impact investing and the controversy

about its costs and benefits, the academic literature to date provides a skeptical view of its effec-

tiveness. In their pioneering work, Heinkel, Kraus, and Zechner (2001) and, more recently, Berk

and van Binsbergen (2021) argue that impact-investing policies have a negligible impact on tar-

geted firms’ cost of capital and are, therefore, ineffective in influencing capital allocation. Along

the same lines, there is a large literature that uses the change in the cost of capital to measure the

effectiveness of various ESG-motivated policies.1

In this paper, we argue that the change in the cost of capital is generally not a good measure

of the change in capital allocation. We also demonstrate in a quantitative model that portfolio

mandates can lead to significant differences in capital allocation despite minimal differences in

the cost of capital. Our analysis has wider implications than just ESG considerations and also

1See, for instance, the article from McKinsey “Why ESG is Here to Stay,” which discusses how ESG scores are
related to the cost of capital. The article states “. . . there have been more than 2,000 academic studies, and around 70
percent of them find a positive relationship between ESG scores on the one hand and financial returns on the other,
whether measured by equity returns or profitability or valuation multiples. Increasingly, another element is the cost
of capital. Evidence is emerging that a better ESG score translates to about a 10 percent lower cost of capital.” For
a further discussion of the effect of ESG on the cost of capital, see Edmans (2023).
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encompasses situations in which portfolio constraints are imposed to impact the activity of investors

because of other considerations, such as economic sanctions.2

Heinkel, Kraus, and Zechner (2001), Berk and van Binsbergen (2021), and the literature

using the cost of capital to measure the effectiveness of ESG-related policies reach their conclusions

based on the analysis of an endowment economy. In such an economy, a firm’s dividends are

exogenous, and only its asset returns depend on market-clearing prices. In this paper, we revisit

the conclusion that impact-investing policies have a negligible impact on targeted firms’ cost of

capital and are, therefore, ineffective in influencing capital allocations by studying the effect of

portfolio mandates in a model of a production economy. In contrast to an endowment economy,

in a production economy both dividends (payoffs or output) and asset returns are determined

endogenously in equilibrium. We show that this has important implications for understanding the

real effects of portfolio mandates: in particular, portfolio mandates can lead to large differences in

the equilibrium allocation of physical capital across firms despite negligible differences in the cost

of capital across these firms.

To understand the intuition driving our result that portfolio mandates can lead to significant

changes in capital allocation despite a negligible effect on the cost of capital, we study three versions

of a production economy that has two sectors, which consist of green firms and brown firms. First,

we consider the case of a single representative investor in an economy with no friction. Second, we

consider the case of two groups of investors, of which only one group is constrained by the portfolio

mandate while the other is unconstrained, and there are still no frictions in the economy. Finally,

we extend the one-period, two-investor, two-sector model to a multiperiod setting with a variety of

frictions and other features that allow it to match the macroeconomic and asset-pricing moments

in the data

In an economy with a single representative investor, the allocation of capital across sectors

depends only on the representative investor’s risk aversion and the properties of the production

function, which determine asset returns. The production function we consider is of the standard

type, Y = AKα, where Y is output, A is an exogenous productivity shock, K is the capital

that is invested, and α ∈ [0, 1] is the returns-to-scale parameter. The case of α = 0 represents

2For example, Article 5 of Regulation (EU) No 833/2014, enacted after the onset of the war between Russia and
Ukraine, states that “It shall be prohibited to directly or indirectly purchase, sell, provide investment services for or
assistance in the issuance of, or otherwise deal with transferable securities” https://eur-lex.europa.eu/legal-co

ntent/EN/TXT/PDF/?uri=CELEX:32022R0328.
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an endowment economy, in which output Y = AKα = A; thus, output depends only on the

exogenously specified productivity shocks. The case of α = 1, where output is given by Y = AK,

represents the typical “AK” model of a production economy with constant returns to scale. The

realized return or cost of capital (we use the terms “return” and “cost of capital” interchangeably

depending on the context) is the ratio of output to investment, R = Y/K = AKα/K = AKα−1.

In particular, for the case of an endowment economy (α = 0), the realized return is inversely

proportional to the capital invested, R = AK−1. In contrast, for a production economy with

constant returns to scale (α = 1), the realized return is entirely unrelated to the capital invested,

R = A. Thus, in a constant-returns-to-scale production economy, the cost of capital is not affected

at all by changes in physical capital. Conversely, even a large change in physical capital allocation

may be associated with no change in the costs of capital across sectors.

This raises the question about the appropriate value for the returns-to-scale parameter, α.

Empirical estimates from the macroeconomic literature indicate that returns to scale are nearly

constant in the US economy, i.e., α ≈ 1. In a series of influential papers, Hall (1988, 1990)

argues that market power and increasing return to scale can explain procyclical productivity in

the US. In more recent work, Ahmad, Fernald, and Khan (2019) argue that returns to scale are

constant or slightly decreasing; however, they also suggest that there may be increasing returns to

scale in specific industries or regions or the presence of factors such as technological progress and

network effects. Therefore, increasing returns to scale might be particularly relevant for “green

technologies” where learning-by-doing and increased scale have dramatically decreased costs over

the past twenty-five years.3

Next, we consider an economy with two types of investors, “unconstrained” and “con-

strained,” where the constrained investors face a portfolio mandate that forces them to invest a

certain fraction of their wealth in the green sector. To measure the effectiveness of a portfolio

mandate on the sectoral allocation of physical capital in equilibrium, we introduce the concept of

“mandate pass-through.” To illustrate this main idea, consider an economy where both investors

have equal wealth and both sectors have identical risk-return tradeoffs so that the optimal uncon-

strained allocation for both investors is to hold 50% of their portfolio in each sector. Suppose a

3For example, Way, Ives, Mealy, and Farmer (2022) argue that, unlike traditional technologies such as oil and
gas, clean-energy technologies are on learning curves, where costs drop as a power law of cumulative production. In
Section 3.3, we explain in greater detail that estimates from the macroeconomic literature suggest that α ≈ 1 is the
more empirically relevant case.
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mandate requires constrained investors to have 75% of their portfolio in the green sector. If we

were to ignore the mandate’s effect on equilibrium asset prices, the capital allocated to the green

sector is (50% + 75%)/2 = 62.5%, instead of the 50% in the absence of a mandate. We refer to this

difference, 12.5%, as the maximum mandate pass-through.

In equilibrium, the imposition of a mandate in favor of the green sector raises the price

of green assets and lowers that of brown, making brown assets more attractive on a risk-return

basis. As a result of the higher return on brown assets, the unconstrained investor will invest

more than 50% in the brown sector, undoing part of the effect of the portfolio mandate. If, after

accounting for general equilibrium effects, the overall allocation of capital to green assets is, say,

only 56.25%, then the equilibrium mandate pass-through is only 6.25%. Thus, the effective mandate

pass-through ratio, defined as the ratio of the equilibrium to maximum mandate pass-through, is

6.25%/12.5% = 50%; that is, 50% of the mandate survives the equilibrium effects.

We analyze the equilibrium effects of portfolio mandates in two steps. First, to develop the

intuition for our main result, we study the equilibrium effects of heterogeneous investors in a simple

single-period (two-date) economy with two sectors, “green” (G) and “brown” (B), and two types

of investors, “constrained” and “unconstrained.” For this simple model, we derive the quantities

of interest in closed form. This model shows that for the case of an endowment economy (α = 0),

because RG/RB = (AG/AB)× (KG/KB)−1, a portfolio mandate designed to increase KG relative

to KB, leads to a corresponding decrease in RG relative to RB. Thus, unconstrained investors are

strongly incentivized to shift their portfolio toward the B sector. Therefore, in equilibrium, the

response of the unconstrained investors to the change in relative return across sectors undoes a

large part of the effect of the portfolio mandate; consequently, the effective mandate pass-through

ratio is small. On the other hand, for the case of a constant-returns-to-scale production economy

(α = 1), RG/RB = (AG/AB); thus, a portfolio mandate designed to increase KG relative to KB

does not affect at all RG relative to RB. As a result, unconstrained investors have no incentive to

shift their portfolio toward the B sector. Therefore, in equilibrium, the unconstrained investors’

response does not offset at all the effect of the portfolio mandate. Thus, the effective mandate

pass-through ratio is a full hundred percent, even though the change in the cost of capital is zero.

Finally, to assess the quantitative effects of portfolio mandates on the financial and real

sectors, we use a dynamic general-equilibrium model of a production economy that is calibrated

to match asset-pricing and macroeconomic moments in the US. For the case of constant returns
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to scale (α = 1) and no portfolio constraints, our model is a canonical real-business-cycle model,

similar to that in King, Plosser, and Rebelo (1988) and Jermann (1998), among many others.

Just as in the simple single-period model, we consider an economy characterized by two sectors

with different technologies, “green” and “brown,” and two types of investors, “constrained” and

“unconstrained.” However, we relax many of the simplifying assumptions made in the single-period

model. In particular, we consider an infinite-horizon economy in discrete time where investors

have Epstein-Zin recursive preferences, consume in each period, and are endowed with one unit of

labor that they supply to firms inelastically. Firms are all-equity financed, incur convex capital-

adjustment costs (e.g., Hayashi, 1982), and choose labor and investment to maximize shareholder

value subject to a capital-accumulation constraint. We solve for the equilibrium in this economy

and then study the effect of a portfolio mandate on the equilibrium stock returns (cost of capital)

and capital allocations in the two sectors.

The quantitative multiperiod model confirms the intuition of the simple one-period model.

In equilibrium, the optimal portfolio decisions of the unconstrained investor “undo” some of the

effects of the portfolio mandate. This occurs because unconstrained investors face a trade-off. On

the one hand, the desire to diversify pushes the portfolio towards a 50/50 allocation. On the other

hand, by making the brown sector more attractive from a risk-reward perspective, the mandate

induces unconstrained investors to tilt their portfolios toward it. We find, however, that portfolio

mandates retain a quantitatively significant impact in equilibrium under a realistic calibration that

matches asset-pricing and macroeconomic moments of the US economy. For example, under our

baseline calibration with a mandate forcing the constrained investor to hold 75% of the portfolio

in the green sector, the effective mandate pass-through ratio is about 22%. Higher levels of risk

aversion, leading to higher and more realistic risk premia, increases the unconstrained investor’s

desire to hold a diversified portfolio and strengthens the equilibrium real effect of portfolio man-

dates. Higher values of return to scale also strengthen the real impact of portfolio mandates. In

contrast, the effect on the equilibrium cost of capital or Sharpe ratio of the two types of firms

remains negligible, consistent with existing evidence.

In summary, our analysis suggests that in a dynamic general equilibrium production econ-

omy designed to match the macroeconomic and asset-pricing moments of the US economy, portfolio

mandates can have a quantitatively significant impact on aggregate capital allocation, even if their

effect on the cost of capital is negligible. This result sharply contrasts the conclusion drawn from
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studying endowment economies, where, because dividends are exogenous, there is a direct relation

between firms’ cost of capital and equilibrium capital allocations.

The main contribution of our paper is to study how much of the intended effect of portfolio

mandates is undone in equilibrium. Our paper makes two key points. First, we highlight that

studying the effects of portfolio mandates in an endowment economy, as most of the finance liter-

ature on portfolio mandates has done, is likely to lead to misleading conclusions. In particular, to

measure the effectiveness of portfolio mandates, it is essential to focus on the quantity of capital

flowing to the mandated sectors instead of the effect on the cost of capital. This insight is similar

to that of Berk and Green (2004), who, in the context of the mutual-fund-performance literature,

have emphasized the importance of measuring fund flows instead of risk-adjusted returns. Second,

we quantify the impact of portfolio mandates on capital allocation. Specifically, we show, in a

general-equilibrium production-economy model calibrated to match key macroeconomic and asset-

pricing moments, that the real effect of portfolio mandates can be substantial, even if their impact

on the cost of capital is negligible.

Our paper relates to the growing literature on socially responsible investing. This literature

consists of two main strands: exclusion (exit) and engagement (voice). The first strand of this

literature focuses on a “discount-rate channel” in that it studies the effects of limiting (or excluding

entirely) investment in certain firms from an investor’s portfolio on the cost of capital of targeted

firms. The key mechanism in this literature is reduced risk-sharing that affects the cost of capital

in an endowment economy (e.g., Heinkel, Kraus, and Zechner, 2001; Zerbib, 2019, 2022; Berk and

van Binsbergen, 2021; Pastor, Stambaugh, and Taylor, 2021, 2022; Pedersen, Fitzgibbons, and

Pomorski, 2021; Broccardo, Hart, and Zingales, 2022; De Angelis, Tankov, and Zerbib, 2022).

Notably, Heinkel, Kraus, and Zechner (2001) and Berk and van Binsbergen (2021) focus on the

result that the effect on risk premia is small if profit-seeking investors can substitute for the capital

they are restricted from holding. Our paper revisits this evidence by considering a production

economy and studies the quantitative effects of portfolio mandates in a calibrated model designed

to match key asset-pricing and macroeconomic moments.

In a recent paper, Dangl, Halling, Yu, and Zechner (2023a) studied how different types of

investor preferences affect equilibrium capital allocation. They find that if investments are endoge-

nous, the effect of social preferences on corporate decisions may be sizable even if the difference

in the cost of capital between the green and brown sectors is negligible. Dangl, Halling, Yu, and
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Zechner (2023b) extend this analysis to the case of time-varying social preferences. Unlike them,

we show that portfolio mandates can affect capital allocations across sectors—despite small differ-

ences in the cost of capital across these sectors—in a standard macroeconomic framework with the

portfolio mandate imposed on only a fraction of investors. We also illustrate that the degree of the

returns to scale has a crucial impact on the ability of portfolio mandates to influence equilibrium

capital allocation.

Finally, Hong, Wang, and Yang (2023) introduce decarbonization capital in a representative-

agent dynamic stochastic general-equilibrium model and investigate the effectiveness of sustainable

finance mandates in mitigating externalities within the economy. In their economy, the mandate

affects all investors and is, therefore, by definition, effective. In contrast, we study an economy

where only a fraction of investors is constrained. Because unconstrained investors can trade against

constrained investors, in equilibrium, they can potentially undo the effect of mandates. Our finding

that mandates can substantially impact equilibrium capital allocation aligns with their conclusion

that mandates can effectively address externalities.

The second strand of literature focuses instead on the “cash-flow channel.” Broccardo, Hart,

and Zingales (2022), following Hart and Zingales (2017), conclude that “voice” is more effective

than “exit.” Oehmke and Opp (2022) focus on activist investors who care about the social cost

of investing in brown firms and provide a corporate perspective on the economics of motivated

investors: socially responsible activists subsidize firms to adopt clean technologies. Chowdhry,

Davies, and Waters (2019) show that if a firm cannot credibly commit to social goals, such subsidies

take the form of investment by socially-minded activists. Our paper does not contribute directly to

this strand of literature; however, our focus on production economies allows us to consider jointly

the cash-flow and discount-rate channels emphasized separately by the engagement and exclusion

literature, respectively.

The rest of the paper proceeds as follows. In Section 2, we develop intuition in a simple

one-period (two-date) general equilibrium model that we can solve analytically. In Section 3,

we assess the real impact of portfolio mandates in a multiperiod general-equilibrium model with

heterogeneous investors that is calibrated to match asset-pricing and macroeconomic moments in

the US economy. Section 4 concludes.
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2 A single-period equilibrium model with portfolio mandates

To understand the economic intuition driving our key results, in this section, we consider a single-

period general-equilibrium economy with several simplifying assumptions that make transparent

the economic forces at work. Then, to establish the quantitative implications of portfolio mandates,

in the next section, we consider a multiperiod model without these simplifying assumptions.

2.1 The simple single-period model

2.1.1 Firms

We assume that there are two sectors in the economy, green and brown, and we refer to them using

the subscripts G and B, respectively. Each of these sectors consists of a large number of atomistic,

identical, all-equity-financed firms. Output Yj in each sector j = {G,B} is given by the production

function

Yj = AjK
α
j , j = {G,B}, (1)

where α ≥ 0 is the returns-to-scale parameter, Aj denotes a random productivity shock, and Kj is

the aggregate capital invested in sector j. The (gross) return on equity, or cost of capital, of a firm

in sector j is defined as

Rj =
Yj
Kj

= AjK
α−1
j , j = {G,B}. (2)

The case of α = 0 corresponds to an endowment economy in which the output of sector j

reduces to Yj = Aj , and, therefore, is entirely exogenous depending only on the specification of

the productivity shock Aj , while the cost of capital, Rj = Yj/Kj = Aj/Kj , is inversely related

to capital allocation: a high cost of capital Rj is associated with a low capital allocation Kj .

For α = 1, which corresponds to a constant-returns-to-scale production economy, the output of

sector j is Yj = AjKj , while the cost of capital, Rj = Yj/Kj = Aj , is completely independent

of the capital allocation Kj . Thus, the relation between the cost of capital (returns) and capital

allocation becomes weaker as the returns-to-scale parameter α deviates from zero and is entirely

absent when α equals one.

We assume that the productivity shocksAj are normally distributed, that is, Aj ∼ N (µAj , σAj ),

j = {G,B}, and their correlation is ρ, so that the covariance between them is given by Cov[AG, AB] =
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ρ σAGσAB . Thus, from (2), we see that the moments of asset returns are

E[Rj ] = µAjK
α−1
j , j = {G,B}, (3)

Var[Rj ] = σ2AjK
2(α−1)
j , j = {G,B}, (4)

Cov[RG, RB] = Kα−1
G Kα−1

B Cov[AG, AB] = Kα−1
G Kα−1

B ρ σAGσAB . (5)

Denoting the risk-free interest rate by Rf , the Sharpe ratio of investing in sector j is

SRj =
E[Rj ]−Rf√

Var[Rj ]
, and

the price of risk in sector j is defined as

[Price of risk]j =
E[Rj ]−Rf

Var[Rj ]
.

2.1.2 Investors

We consider an economy with a continuum of identical investors who live for one period (two

dates), and each investor has initial wealth K0. A fraction x of investors is constrained to follow

a portfolio mandate, and we refer to them using the subscript c. The remaining fraction 1 − x

is unconstrained, and we refer to them using the subscript u. For tractability, we assume that

both types of investors have constant absolute risk aversion (CARA) preferences with an identical

coefficient of risk aversion γ.4

At t = 0, each investor i = {u, c} needs to choose what fraction of her wealth to invest in G

and B firms, wG,i and wB,i, where the firms have random gross returns RG and RB. The remaining

fraction 1 − wG,i − wB,i is invested in the risk-free asset with a gross risk-free return Rf . These

portfolio choices at t = 0 result in the following consumption at time t = 1:

C1,i = K0

(
Rf + wG,i(RG −Rf ) + wB,i(RB −Rf )

)
, i = {u, c}, (6)

with the expected value of consumption at time t = 1 being

E[C1,i] = K0

(
Rf + wG,i(E[RG]−Rf ) + wB,i(E[RB]−Rf )

)
, i = {u, c}, (7)

4In the multiperiod model studied in the next section, we will allow for more general preferences.
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and the variance of consumption being

Var[C1,i] = K2
0

(
w2
G,iσ

2
RG

+ w2
B,iσ

2
RB

+ 2wG,iwB,i Cov[RG, RB]
)
, i = {u, c}, (8)

where E[Rj ], for j = {G,B}, is the expected return (expected cost of capital) in sector j, σ2Rj is

the variance of return in sector j, and Cov[RG, RB] is the covariance between the returns in the

two sectors.5

Unconstrained investors. Unconstrained investors chose their portfolios wj,u, j = {G,B}, by

maximizing the expected utility of terminal consumption. Specifically, they solve the following

problem,

max
wG,u,wB,u

E
[
−1

γ
e−γ C1,u

]
, (9)

with C1,u given in equation (6). Because we have assumed that the productivity shocks are normally

distributed, and preferences are of the CARA type, the problem in equation (9) is equivalent to

max
wG,u,wB,u

E [C1,u]− γ

2
Var [C1,u] . (10)

The optimal portfolio for unconstrained investors, using the moments given in (7) and (8),

is the familiar mean-variance portfolio

wG,u =
(E[RG]−Rf )σ2RB − (E[RB]−Rf ) Cov[RG, RB]

K0γ
(
σ2RGσ

2
RB
− Cov2[RG, RB]

) , (11)

wB,u =
(E[RB]−Rf )σ2RG − (E[RG]−Rf ) Cov[RG, RB]

K0γ
(
σ2RGσ

2
RB
− Cov2[RG, RB]

) . (12)

Note that the optimal portfolio weights wj,u depend on the risk-free rate, Rf , and the moments of

stock returns, RG and RB, which, we see from equations (3)–(5) will depend on the equilibrium

capital allocations to the two sectors, KG and KB.

Constrained investors. The restriction on portfolio investment takes the form of a portfolio

“mandate” to hold a given fraction of wealth in the two sectors.6 Thus, for constrained investors,

5It is straightforward to show that the correlation between the returns RG and RB is equal to the correlation
between the technology shocks, AG and AB , which we denote by ρ.

6An alternative way to model portfolio restrictions is by using portfolio “screens” on the B asset that limits
investment in the B sector. For instance, if the constrained investor is not allowed to invest in B at all, then
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the portfolio weights wG,c and wB,c are not a choice variable but are dictated by the mandate,

wG,c = wG and wB,c = wB. (13)

2.1.3 Equilibrium

While each investor is atomistic and takes the return on the risk-free asset, Rf , and the two risky

assets, RG and RB, as given, in equilibrium, these returns are determined endogenously by the

aggregate capital that flows to the G and B sectors and the production technologies in these two

sectors. The equilibrium allocation of capital KG and KB in the economy and the risk-free rate Rf

are obtained by imposing the condition that the capital market clears in the G and B sectors and

that the aggregate quantity of risk-free borrowing/lending is zero:

KG = K0

(
xwG,c + (1− x)wG,u

)
, (14)

KB = K0

(
xwB,c + (1− x)wB,u

)
, (15)

0 = x(1− wG,c − wB,c) + (1− x)(1− wG,u − wB,u), (16)

where wj,i for j = {G,B} and i = {u, c} are given in equations (11), (12), and (13).

The system of equations characterizing the optimal choices of investors and equilibrium in

the production model described above (i.e., equations (11), (12), (14), (15), and (16)) does not

admit a closed-form solution for generic values of the returns-to-scale parameter α. But, we can

obtain an analytical solution for the two special cases of interest: an endowment economy (α = 0)

and a constant-returns-to-scale production economy (α = 1). Comparing these two cases then

allows us to explain the intuition for why small differences in the cost of capital in the G and B

sectors can be associated with large differences in the capital allocated to these sectors. Finally,

to show that the insights for these special cases extend also to other values of the returns-to-scale

parameter, we solve the model numerically for α > 0.

In our analysis, we will be interested in two quantities in particular. One, the relation

between the cost of capital across the two sectors, RG/RB, to the quantity of capital across these

sectors, KG/KB. Two, the effective mandate pass-through. Formally, we measure the effective

wB,c = 0. In what follows, we analyze the case of portfolio mandates. The results for a model with portfolio screens
are qualitatively similar. The results are also qualitatively similar if one were to mandate only the investment in G,
while leaving the investment in B to be a choice variable.
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mandate pass-through in an economy with a returns-to-scale parameter α as the following ratio

Effective mandate pass-through =
KG

∣∣α
x
−KG

∣∣α
x=0

xK0

(
wG − wG,u

∣∣α
x=0

) , (17)

where KG

∣∣α
x

is the capital allocated to the G sector in equilibrium when a fraction x of investor

is constrained by the mandate, KG|αx=0 is the capital that would be allocated to the G sector in

an economy without a mandate, while wG,u|αx=0 is the agents’ portfolio weight in the G sector in

an economy where no investor faces a mandate. The numerator in equation (17) represents the

actual reallocation of capital to the G sector as a result of the mandate, while the denominator

represents the maximum effect of a mandate on the capital allocation to G, ignoring equilibrium

pricing effects. Thus, the effective mandate pass-through ratio tells us what percentage of the

maximum effect of the mandate is actually achieved in equilibrium.

2.2 Solution for an endowment economy (α = 0)

We start by studying an endowment economy (α = 0), which is the case that has been studied in

the literature (e.g., Heinkel, Kraus, and Zechner, 2001; Berk and van Binsbergen, 2021).

2.2.1 Without a portfolio mandate

To establish the benchmark, we start by examining the equilibrium for the case of an endowment

economy (α = 0) when there are no portfolio mandates and so all investors are unconstrained. In

terms of the model described above, this is equivalent to setting x = 0.

Proposition 1. In an endowment economy (α = 0) in which no investor is constrained by a

portfolio mandate (x = 0), the equilibrium optimal portfolio weights, using (11) and (12), are

wG,u
∣∣α=0

x=0
=

µAG − γ
(
σ2AG + Cov[AG, AB]

)
(µAG + µAB )− γVar[AG +AB]

, (18)

wB,u
∣∣α=0

x=0
=

µAB − γ
(
σ2AB + Cov[AG, AB]

)
(µAG + µAB )− γVar[AG +AB]

,

implying that the aggregate capital allocation to the two sectors is

KG

∣∣α=0

x=0
= K0 × wG,u

∣∣α=0

x=0
,
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KB

∣∣α=0

x=0
= K0 × wB,u

∣∣α=0

x=0
,

and that the risk-free interest rate is

Rf
∣∣α=0

x=0
=

1

K0

(
(µAG + µAB )− γVar[AG +AB]

)
,

where Var[AG +AB] = σ2AG + 2 Cov[AG, AB] + σ2AB . Thus, the ratio of the returns (cost of capital)

in the two sectors is

RG
∣∣α=0

x=0

RB
∣∣α=0

x=0

=
AG
AB

(
KG

∣∣α=0

x=0

KB

∣∣α=0

x=0

)−1
=
AG
AB

(
wG,u

∣∣α=0

x=0

wB,u
∣∣α=0

x=0

)−1
. (19)

To obtain a solution that is even more transparent, one can consider the special case where

the productivity shocks in the G and B sectors are the same, i.e., AG = AB = A, µAG = µAB = µA,

and σAG = σAB = σA.

Corollary 1. In an endowment economy (α = 0) in which no investor is constrained by a portfolio

mandate (x = 0), and the productivity shocks in the G and B sectors are the same, in equilibrium

wG,u
∣∣α=0

x=0
= wB,u

∣∣α=0

x=0
=

1

2
,

KG

∣∣α=0

x=0
= KB

∣∣α=0

x=0
=

1

2
K0,

Rf
∣∣α=0

x=0
=

1

K0

(
2µA − 2γ(σ2A + Cov[AG, AB])

)
,

so that, in the absence of portfolio mandates, the ratio of the returns in the two sectors is

RG
∣∣α=0

x=0

RB
∣∣α=0

x=0

=
A

A

(
KG

∣∣α=0

x=0

KB

∣∣α=0

x=0

)−1
= 1. (20)

2.2.2 With a portfolio mandate for all investors

We now study the effect of introducing in an endowment economy (α = 0) a portfolio mandate for

all investors, which, in terms of the general model described above, is equivalent to setting x = 1.

Proposition 2. In an endowment economy (α = 0) in which all investors face a portfolio mandate

(x = 1), the optimal portfolio weights for all investors are

wG,c
∣∣α=0

x=1
= wG,
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wB,c
∣∣α=0

x=1
= wB = 1− wG,

implying that the aggregate capital allocation to the two sectors is

KG

∣∣α=0

x=1
= K0 × wG,

KB

∣∣α=0

x=1
= K0 × wB,

so that the ratio of the returns in the two sectors is

RG
∣∣α=0

x=1

RB
∣∣α=0

x=1

=
AG
AB

(
wG
wB

)−1
, (21)

which, for the special case in which the productivity shocks are the same across the two sectors,
simplifies to

RG
∣∣α=0

x=1

RB
∣∣α=0

x=1

=

(
wG
wB

)−1
. (22)

Comparing (19) with (21), or the more transparent (20) with (22), we see that a mandate

that imposes that wG > wG,u and/or wB < wB,u will lead to a corresponding change in the relative

cost of capital in the two sectors. That is, the cost of capital is tightly linked to portfolio mandates,

which is the finding in the literature that relies on endowment models (e.g., Heinkel, Kraus, and

Zechner, 2001; Berk and van Binsbergen, 2021).7

2.3 Solution for a constant-returns-to-scale production economy (α = 1)

We now study the effect of portfolio mandates in a constant-returns-to-scale production economy

(α = 1) and contrast it to that in an endowment economy, which we studied above. Just as before,

to establish the benchmark, we start by looking at the equilibrium when no investor faces a portfolio

mandate, which is equivalent to setting x = 0 in the general single-period model.

7Moreover, because in this section we are looking at the setting where all investors are constrained by the mandate
(i.e., x = 1), not surprisingly, we find that the

Effective mandate pass-through =
KG

∣∣α=0

x=1
−KG

∣∣α=0

x=0

K0 × x×
(
wG − wG,u

∣∣α=0

x=0

) =
K0wG −K0wG,u

∣∣α=0

x=0

K0 ×
(
wG − wG,u

∣∣α=0

x=0

) = 1.
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2.3.1 Without a portfolio mandate

Proposition 3. In a constant-returns-to-scale production economy (α = 1) in which no investor

is constrained by a portfolio mandate (x = 0), the optimal portfolio weights in equilibrium are

wG,u
∣∣α=1

x=0
=
µAG − µAB + γK0

(
σ2AB − Cov[AG, AB]

)
γK0 Var[AG −AB]

, (23)

wB,u
∣∣α=1

x=0
=
µAB − µAG + γK0

(
σ2AG − Cov[AG, AB]

)
γK0 Var[AG −AB]

, (24)

implying that the aggregate capital allocation to the two sectors is

KG

∣∣α=1

x=0
= K0 × wG,u

∣∣α=1

x=0
,

KB

∣∣α=1

x=0
= K0 × wB,u

∣∣α=1

x=0
,

and that the risk-free interest rate is

Rf
∣∣α=1

x=0
=
µAGσ

2
AB

+ µABσ
2
AG
− Cov[AG, AB] (µAG + µAB )− γK0

(
σ2AGσ

2
AB
− Cov2[AG, AB]

)
Var[AG −AB]

,

(25)

where

Var[AG −AB] = σ2AG − 2 Cov[AG, AB] + σ2AB . (26)

The ratio of the returns (cost of capital) in the two sectors is

RG
∣∣α=1

x=0

RB
∣∣α=1

x=0

=
AG
AB

, (27)

which is independent of the capital allocated to these two sectors. For the special case in which the

productivity shocks are the same across the two sectors, this ratio reduces to

RG
∣∣α=1

x=0

RB
∣∣α=1

x=0

= 1. (28)

2.3.2 With a portfolio mandate for all investors

We now study the effect of introducing in a constant-returns-to-scale production economy (α = 1)

a portfolio mandate for all investors, which is equivalent to setting x = 1 in the general model.
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Proposition 4. In a constant-returns-to-scale production economy (α = 1) in which all investors

are constrained by a portfolio mandate (x = 1), in equilibrium, the optimal portfolio weights for all

investors are the mandated weights,

wG,c
∣∣α=1

x=1
= wG, (29)

wB,c
∣∣α=1

x=1
= wB = 1− wG, (30)

implying that the aggregate capital allocation to the two sectors is

KG

∣∣α=1

x=1
= wGK0,

KB

∣∣α=1

x=1
= wBK0.

The ratio of the returns in the two sectors, then, is

RG
∣∣α=1

x=1

RB
∣∣α=1

x=1

=
AG
AB

, (31)

which, for the special case in which the productivity shocks are the same across the two sectors,

again reduces to

RG
∣∣α=1

x=1

RB
∣∣α=1

x=1

= 1. (32)

Comparing (27) with (31), or (28) with (32), we see that a mandate that imposes that

wG > wG,u|α=1
x=0 and/or wB < wB,u|α=1

x=0 will not lead to any change in the relative cost of capital

across the two sectors. That is, the cost of capital is unrelated to portfolio mandates, contrary to

the finding in the literature that relies on endowment models.

Furthermore, we see that a mandate is fully effective in shifting capital from the B to the

G sector. That is, a mandated wG > wG,u|α=1
x=0 results in a capital allocation K0wG > K0wG,u|α=1

x=0 .

This, of course, is not surprising because the mandate is imposed on all investors. In the next

section, we study the effectiveness of a portfolio mandate imposed on only a fraction of the investors

and show that, if α = 1, then the effective mandate pass-through is still 100 percent.

2.3.3 With a portfolio mandate for only some investors

In this section, we study a constant-returns-to-scale production economy in which a fraction 0 <

x < 1 of investors are constrained in their portfolio choice. Because portfolio mandates do not have
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any effect on the returns in the two sectors when α = 1, the equilibrium in this more general case

can be characterized by exploiting the results we have for the two special cases where no investors

face the mandate (x = 0) and where all investors face the mandate (x = 1).

Proposition 5. In a constant-returns-to-scale production economy α = 1 where only a fraction

0 < x < 1 of investors face the portfolio mandate, in equilibrium, the optimal portfolio weights of

unconstrained investors, wG,u|α=1
0<x<1 and wB,u|α=1

0<x<1, are given by (23) and (24), respectively. The

portfolio weights of the group of investors facing portfolio mandates, wG,c|α=1
0<x<1 and wB,c|α=1

0<x<1,

are given by (29) and (30), respectively. The aggregate capital allocations KG|α=1
0<x<1 and KB|α=1

0<x<1

are obtained by substituting into equations (14) and (15) the expressions for the portfolio weights

{wG,u, wB,u, wG,c, wB,c} for the case (α = 1, 0 < x < 1). The risk-free interest rate is given by the

expression in (25).

The ratio of the returns (cost of capital) in the two sectors is still independent of the capital

allocated to these two sectors: RG/RB = AG/AB, and, noting that wG,c|α=1
x=1 = wG, the effectiveness

of the mandate is 100 percent, that is,

Effective mandate pass-through =
KG

∣∣α=1

0<x<1
−KG

∣∣α=1

x=0

x×K0 ×
(
wG − wG,u

∣∣α=1

x=0

)

=
K0

(
xwG,c

∣∣α=1

x=1
+ (1− x)wG,u

∣∣α=1

x=0

)
−K0 × wG,u

∣∣α=1

x=0

x×K0 ×
(
wG − wG,u

∣∣α=1

x=0

) = 1.

2.4 Solution for a general production economy (α ≥ 0)

In the sections above, we have studied the equilibrium for two special values of the returns-to-scale

parameter for which the model can be solved analytically: the case of α = 0, which corresponds

to an exchange economy, and the case of α = 1, which corresponds to a constant-returns-to-scale

exchange economy. In this section, to show that the results we have obtained for the case of α = 1

generalize to other values of α, we solve the model numerically for different values of α ≥ 0.

The model we consider is of an economy in which x = 50% of the investors face a mandate to

invest wG,c|αx=0.5 = wG = 75% of their portfolio in sector G and wB,c|αx=0.5 = wB = 25% in sector B.

The quantities of interest obtained from the numerical solution are illustrated in Figure 1, where

the parameter values used are: K0 = 1, µAG = µAB = 1.05, σAG = σAB = 0.15, ρ = 0, γ = 5.
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Figure 1: Equilibrium capital allocation and cost of capital

Panel A shows the equilibrium capital allocation across theG sector (green line) andB sector (brown line) as a function
of the returns-to-scale parameter, α. The dashed red line is the capital allocation without a portfolio mandate. Panel B
shows the equilibrium mandate pass-through, defined in equation (17). Panel C shows E[RB ] − E[RG], the spread
between the expected return in the B and G sectors, as a function of α. Panel D shows the spread between the
Sharpe ratios of the returns in the B and G sectors, SRB − SRG, as a function of α. The parameter values used
to generate these plots are: K0 = 1, µAG = µAB = 1.05, σAG = σAB = 0.15, ρ = 0, γ = 5, x = 0.5, wG = 0.75,
wB = 0.25.
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Panel A of Figure 1 shows how the equilibrium allocation of physical capital varies with the

returns-to-scale parameter, α. The panel shows that the mandate increases the allocation of capital

in the G sector relative to the benchmark no-mandate case in which the allocation is 50 percent.

Thus, the effectiveness of the mandate increases with the returns-to-scale parameter, α.

Panel B of Figure 1 shows the equilibrium mandate pass-through, defined as the capital

allocated to the G sector in equilibrium as a fraction of the maximum allocation that would result
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if we ignored the equilibrium effects on asset prices. Formally, we construct the effective mandate

pass-through as defined in equation (17). In the calibration used in Figure 1, wG,u|αx=0 = 50% and

wG = 75%, therefore, with K0 = 1 and x = 0.5, the denominator equals 12.5%. As Panel B shows,

the mandate’s effectiveness is small (about 25%) for low values of the returns-to-scale parameter α

but can be substantial as α approaches 1, reaching a value of 100 percent when α = 1.

This result contrasts sharply with the effect of α on the cost of capital. Panel C of Figure 1

shows that the mandate to invest in the G sector creates a positive spread between the cost of

capital in the B and G sectors, E[RB] − E[RG]. The mandate, by creating excess demand for G

capital, increases its price and lowers its required return (cost of capital) relative to the B sector.

However, the panel also shows that, in equilibrium, the spread E[RB]−E[RG] decreases with α. In

fact, for the case where the returns-to-scale parameter is α = 1, the difference in the cost of capital

between the two sectors is zero (Panel C), while the difference in the capital allocation is extremely

large (Panel A). The results in Panels A and C illustrate that one does not need a higher cost of

capital for the B sector relative to the G sector to reduce the capital flowing to the B sector.

Panel D shows that the mandate to invest in the G sector also increases the Sharpe ratio of

the brown asset relative to the green asset, making it more attractive for the unconstrained investor

to invest in the brown sector. Just as for the cost of capital, the difference in the Sharpe ratio of

the B asset relative to the G asset is zero when α = 1.

In summary, Figure 1 shows that to fully understand the channels through which portfolio

mandates can have an effect, it is essential to consider production models. Models without pro-

duction, such as the endowment models of Heinkel, Kraus, and Zechner (2001) and Berk and van

Binsbergen (2021), where output is exogenous, can lead to the inference that a low cost-of-capital

spread also implies a negligible effect on the allocation of real capital across the B and G sectors,

which is not true in general. As the case of constant returns to scale shows, the difference in returns

can be zero, yet the mandate’s real effect can be substantial. Thus, studying the difference in cost of

capital for firms in the B and G sectors is generally not the best way to evaluate whether portfolio

mandates are effective; instead, one should directly measure the physical capital in each sector.

The results of this section, obtained from an analytically tractable model, illustrated the

qualitative impact of portfolio mandates in a general-equilibrium production economy. To assess
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these claims quantitatively, we now turn to a state-of-the-art dynamic general-equilibrium produc-

tion economy model.

3 A multiperiod equilibrium model with portfolio mandates

In this section, we embed portfolio mandates in a canonical neoclassical general equilibrium model

with production that is then calibrated to match empirical macroeconomic and asset-pricing mo-

ments. Our model, when returns to scale are constant (α = 1) and there are no portfolio constraints,

is a canonical real-business-cycle model, similar to King, Plosser, and Rebelo (1988) and Jermann

(1998), among many others.8 We use this model to assess quantitatively the impact of portfolio

mandates in equilibrium.

In the baseline version of the model, we assume that the technologies for the firms in the

green and brown sectors are identical. In the absence of mandates, the equilibrium in this economy

implies that each investor allocates an equal fraction of its risky portfolios to the two sectors.

As a result, in equilibrium, capital is equally distributed between the green and brown sectors.

Portfolio mandates distort this allocation directly, through the portfolio constraint, and indirectly

through the equilibrium effect on prices. Solving for the equilibrium in this economy allows us

to assess the magnitudes of these distortions quantitatively. In particular, the analysis in this

section highlights that the qualitative effects identified in the simple model of Section 2 are also

quantitatively substantial. In particular, portfolio mandates can significantly impact the allocation

of real capital even when the difference in the cost of capital in the two sectors is negligible.

3.1 The multiperiod model with frictions

3.1.1 Investors

We consider an infinite-horizon economy in discrete time t = {0, 1, . . .}. Just as in the previous

section, the economy is populated by a continuum of measure-one investors who are infinitely lived

and supply labor and invest in firms with one of two production technologies: G and B. A fraction

8For example, our model is identical to King, Plosser, and Rebelo (1988) if we shut down capital adjustment costs
and set the utility of leisure to zero, and is similar to Jermann (1998) with the only difference being the adjustment
cost specification—we use quadratic adjustment costs as in Hayashi (1982).
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x of the investors is constrained (c) in that it is subject to a portfolio mandate to hold the risky

assets in a given fixed proportion. The remaining fraction 1− x of investors is unconstrained (u).

Let Wi,t, Ci,t, and Li,t represent, respectively, the net worth, consumption, and labor supply

of investor i = {u, c}. Investors are endowed with one unit of labor that they supply inelastically,

that is, Li,t = 1 for all i and t for the wage ωt. Let Bu,t+1 denote the face value at time t+ 1 of the

one-period risk-free bond held by the unconstrained investors and by Rf,t the risk-free rate; hence,

Bu,t+1/Rf,t represents the time t value of the holdings of the risk-free bond. We denote by wG,i,t

and wB,i,t the share of the investible wealth of investor i that is invested in the G and B sectors,

respectively. The cum-dividend time-t values of the green and brown firms are, respectively, VG,t

and VB,t, with dividends DG,t and DB,t.

We assume investors have Epstein-Zin recursive preferences with risk aversion γ, elasticity

of intertemporal substitution ψ and time-discount parameter β. The unconstrained investor solves

Uu(Wu,t) = max
{Cu,t,wG,u,t,wB,u,t}

{
(1− β)C

1−1/ψ
u,t + β

(
Et[Uu(Wu,t+1)

1−γ) 1−1/ψ
1−γ

} 1
1−1/ψ

, (33)

subject to the intertemporal budget constraint

Wu,t+1 = (Wu,t + ωtLu,t − Cu,t) (Rf,t + wG,u,t(RG,t+1 −Rf,t) + wB,u,t(RB,t+1 −Rf,t)) + Υu,t+1,

(34)

where the return Rj,t+1 = Vj,t+1/Vj,t, j = {G,B}, with Vj,t denoting firm j’s value, defined later

in equation (36). The term Υu,t+1 in equation (34), represents net lump-sum transfers received

by unconstrained investors. Allowing for such transfers helps with the stability of the numerical

solution. Without transfers, the constrained investors’ wealth share can drift toward zero or one

for long periods.9 In aggregate, the lump-sum transfer is zero-sum, that is, xΥc,t + (1−x)Υu,t = 0.

The optimality conditions for the problem (33)–(34) results in three standard Euler equations, one

for each of the three financial assets, that is, the bond and the stocks for G and B firms.

The constrained investors’ problem is identical to that of the unconstrained investor, with

the only difference being that constrained investors cannot choose their equity shares; instead, they

face a mandate to invest in the G and B sectors in given proportions, wj,c ∈ (0, 1), j = {G,B}.
9We assume that the net transfer to unconstrained investors is a small fraction ξ of the difference in the wealth

of the constrained and unconstrained investors. Hence the transfer Υu,t+1 to an unconstrained investor is positive if
the constrained investor’s wealth is larger than that of the unconstrained and negative otherwise. Since the wealth
of each type of investor is close to 50% in equilibrium, the size of the net transfer is very small.
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As a result, the optimality conditions for constrained investors consist of a single Euler equation,

characterizing the optimal consumption decision.

3.1.2 Firms

There are two types of firms, G and B, which make optimal hiring and investment decisions to max-

imize shareholders’ value. As in a standard neoclassical model, we assume that firms incur convex

capital-adjustment costs when making investment decisions (e.g., Hayashi, 1982). We assume that

firms are all-equity financed, with investors being the shareholders. Investors’ consumption and

portfolio decisions result in a flow of capital Kj,t, j = {G,B} into the two sectors of the economy.

Firms operate in a perfectly competitive market and produce identical goods but are subject to

different productivity shocks.

Firms produce output Yj,t according to a Cobb-Douglas production function

Yj,t = (Kj,t)
αθ(Aj,tLj,t)

(1−θ), (35)

where θ ∈ [0, 1] controls the relative importance of capital in the production and α ∈ [0, 1] is a

returns-to-scale parameter. The production function exhibits constant returns to scale if α = 1 and

declining returns to scale if α < 1. The quantity Aj,t in equation (35) denotes a stationary process

representing neutral (TFP) productivity shocks. This shock may contain aggregate or firm-specific

components; the aggregate component may have stationary and non-stationary components.

Firms choose labor Lj,t and investment Ij, to maximize shareholder value. Formally, firm j’s

value Vj,t results from the solution of the following problem

Vj,t(Kj,t) = max
Lj,t,Ij,t

Dj,t(Kj,t) + Et [Mu,t+1Vj,t+1(Kj,t+1)] , (36)

where Mu,t+1 is the stochastic discount factor (SDF) of the unconstrained investors, the marginal

investors in this economy. When maximizing shareholder value, firms take Mu,t+1 as given. The

optimization in (36) is subject to the capital accumulation equation, which, using δ > 0 to denote

capital depreciation, is

Kj,t+1 = (1− δ)Kj,t + Ij,t. (37)

As is well known, the firm value Vj,t(Kj,t) can be written as Vj,t(Kj,t) = Kj,t × Qj,t, with Qj, t

denoting Tobin’s Q, or the market-to-book ratio. In the absence of adjustment costs, Tobin’s Q is
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equal to 1, in which case, Vj,t(Kj,t) = Kj,t because capital can be instantaneously transferred to

and from consumption. In the presence of adjustment costs, there is a wedge between the price of

installed capital (firm value) and uninstalled capital (consumption), and therefore, Tobin’s Q will,

in general, be different from one.

3.1.3 Labor

In equation (36), Dj,t(Kj,t) represents the dividends firm j distributes to its shareholders. To

define this quantity, we need to describe how wages are set in the model. If labor markets were

perfectly flexible, the aggregate wage would be far too volatile, having the same properties as

output; this would also counterfactually imply that profits and dividends are counter-cyclical and

that equity volatility is too low. As shown by Favilukis and Lin (2016), introducing wage rigidity

into a production-economy model makes wages, profits, and dividends behave more like in the

data and improves the model’s asset-pricing performance. Because asset prices are crucial for our

mechanism, we introduce wage rigidity in a reduced-form manner.

Specifically, we assume that firms must hire at least labor L < Lj,t at wage ωt, but are free

to choose how much remaining labor, Lj,t−L, to hire, and that labor is paid a competitive wage ω̃t

that clears labor markets. Because labor supply is inelastic and set to Lj,t = 1, the average wage

paid is therefore ωtLj,t = ωtL+ ω̃t(Lj,t−L), which, in equilibrium, is smoother than ω̃t. Note that

the firm’s first-order condition is independent of L; therefore, this reduced-form way of modeling

wage rigidity does not affect the firm’s investment choice. However, it does affect dividends, wage

paid, firm value, and equity return. Firm j’s dividends are therefore given by

Dj,t(Kj,t) = Yj,t − ωtLj,t − Ij,t − η
(
Ij,t
Kj,t

− δ̂
)2

Kj,t, η > 0, δ̂ > 0, (38)

where Yj,t is output, defined in equation (35), δ̂ = δ+g is capital depreciation δ gross of the growth

rate g, and the term η
(
Ij,t
Kj,t
− δ̂
)2
Kj,t represents a quadratic adjustment-cost function.10

10Because we set gross depreciation to δ̂ = δ + g, adjustment costs are zero in the steady state.
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3.1.4 Equilibrium

An equilibrium of this economy consists of the following: (i) investors’ consumption and portfolio

policies, {Ci,t, wG,i,t, wB,i,t}; (ii) firms’ investment and hiring policies, {Ij,t, Lj,t}; (iii) wages ω̃t;

(iv) prices of the two risky assets, {VG,t, VB,t}, and the risk-free rate, Rf,t, such that: investors

maximize their lifetime utility in equation (33), firms maximize shareholder value in equation (36),

and the markets for labor, the two risky assets, and the risk-free asset clear. By Walras’ law, the

goods market automatically clears; that is, the aggregate budget constraint holds.

3.2 Calibration

We solve numerically for an equilibrium in the economy described above using dynamic program-

ming. We calibrate the model’s parameters at an annual frequency to match key macroeconomic

and asset-pricing moments. Table 1 shows the parameter values used in our baseline calibration. In

our benchmark case, we consider a coefficient of relative risk aversion γ = 5. However, we also solve

the model with higher risk aversion, up to γ = 50, to explore the model’s implications with a more

realistic value of the equity risk premium. We set the elasticity of intertemporal substitution (EIS)

to ψ = 0.2 so that for the benchmark case of γ = 5, the investors’ preferences are time-separable

CRRA. We set β = 0.9422 to target a ratio of capital to output K/Y of around 2.9 in the steady

state and an aggregate growth rate of g = 1.5%. We assume that 50% of investors are subject to a

portfolio mandate (x = 0.5) requiring them to hold their wealth in the ratio 75% to 25% between

the G and B sectors. We set the wealth transfer parameter at the end of each period to ξ = 0.01.

We choose parameters for the Markov chain describing the TFP process to match the

volatility and autocorrelation of Hodrick-Prescott (H-P) filtered output.11 Specifically, we assume

that the firm’s productivity is separated into aggregate and industry-level components: Ajt = AtZ
j
t .

The aggregate component At = (1 + g)t captures the growth trend. The industry component

Zjt = 1 + zjt drives the business cycle and follows a 2-state Markov chain, with L = 0.912 and

H = 1.088, and with probability p = 0.82 of staying in the current state.

We set the capital adjustment cost η = 5 to match investment volatility. We set the fraction

of labor receiving a fixed wage L = 0.50 so that the volatility of wages is about half that of output,

which also implies reasonable values for the volatility and procyclicality of dividends and profits.

11We use a filtering parameter of 100, as proposed by Backus and Kehoe (1992).
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Table 1: Parameter values

The table reports the values for the parameters used in the benchmark calibration of the multiperiod model described
in this section.

Parameter Symbol Benchmark value

Investors

Relative risk aversion γ 5.0
Elasticity of intertemporal substitution ψ 0.2
Time discount rate β 0.9422
Fraction of constrained investors x 0.50
Portfolio mandate in G capital wG 0.75
Portfolio mandate in B capital wB 0.25

Faction of labor receiving government fixed L 0.5
Investors’ wealth transfer fraction ξ 0.01

Firms

Aggregate growth rate g 0.015
Low TFP shock realization L 0.912
High TFP shock realization H 1.088
Probability of remaining in current state p 0.82
Depreciation rate δ 0.06
Capital adjustment cost η 5.0
Parameter controlling the capital share θ 0.35
Return to scale α 1.0

We set depreciation δ = 0.06, a standard value in the literature. We set capital share θ = 0.35 so

that 65% of output is paid to labor. In our baseline model, we set returns to scale to be constant,

that is, α = 1.0. We also solve models with decreasing returns to scale: α = 0.90 and α = 0.80. For

these models, for the model to match the target moments (specifically, labor share and the capital-

to-output ratio) β rises to 0.952 and 0.963, respectively, and αθ falls to 0.32 and 0.28. Finally, to

explore the implications of increasing returns to scale, we also solve the model for α = 1.02.

In our calibration, we allow for the existence of a government sector which enables us to

distinguish between total and private-sector GDP. It is well known that the latter is much more

volatile than the former. To model the government in a simple way, we assume that the actual

amount of labor supplied by investors is 1.35 instead of 1.0, as described in the model section above,

with 1.0 working in the private sector and 0.35 in government. Unlike private-sector employees,

government employees are paid a constant wage adjusted for growth. That is, the government

wage rate is set to ω(1 + g)t where ω is the unconditional average of the detrended market-clearing
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Table 2: Macroeconomics moments

The table shows macroeconomics moments from the model and compares them to corresponding quantities in the
data. All variables, other than the Share of GDP, are H-P filtered. Volatility is in annual percentage units. GDP-P
refers to private sector GDP. The values in the “Model” columns are obtained by solving a version of the model with
a portfolio mandate that constrains 50% of investors to invest 75% of their wealth in firms in the G sector and 25%
in firms in the B sector. The model is calibrated at an annual frequency. Parameter values are reported in Table 1.

Share of GDP Volatility (%) Corr with GDP Autocorr
Data Model Data Model Data Model Data Model

GDP 1.00 1.00 2.33 2.32 1.00 1.00 0.54 0.35
GDP-P 0.80 0.81 2.74 2.85 0.91 1.00 0.48 0.35
Consumption 0.63 0.64 1.72 1.60 0.91 0.99 0.53 0.34
Investment 0.17 0.18 7.60 7.42 0.78 0.99 0.45 0.34
Wages — — 1.17 1.42 0.49 1.00 0.58 0.35

wage. Hence, total government expenses are equal to 0.35 × ω and total labor income is then

(ωt × 1) + (ω × 0.35). We assume that government expenditure equals a lump-sum tax levied on

total labor income. With this assumption, the problem’s solution is independent of government

size. The only quantity affected by government expenditure is total GDP, which is equal to the

sum of private-sector GDP and government expenditure. The choice of 1.35 for total labor implies

that private sector GDP is 80% of total GDP, as in the data.12

Table 2 compares macroeconomic moments in the data to corresponding quantities in the

multiperiod model, under the assumption that 50% of investors face a mandate to invest 75% of

their wealth in firms in the G sector and 25% in the B sector. The values reported in the table are

obtained by simulating the model for 10,000 years and using a 100-year burn-in period. The table

reports five quantities: total GDP, private-sector GDP (GDP-P), Consumption, Investment, and

Wages. For each quantity, we compute the share of GDP, the volatility, the correlation with GDP,

and the autocorrelation and compare them to the corresponding values in the data. The table shows

that the model matches key macroeconomic moments reasonably well under the baseline parameters

of Table 1. These moments remain largely unaffected by different values of risk aversion; therefore,

in the table, we report results only for the benchmark case of γ = 5. The only moments significantly

different from the data are the correlations of investment and wages with GDP, which, in the data,

12Note that labor is approximately 65% of output, so if private labor is 1.0, then private output is 1.0/0.65=1.54.
Government labor, which equals government output, is 35%. Therefore private output as a share of total output is
1.54/(1.54+0.35)=81%.

27



Table 3: Asset-pricing moments

The table shows the annual mean and volatility of the risk-free rate, E[Rf ] and σ(Rf ), and of the market risk premium,
E[RM − Rf ] and σ(RM − Rf ) obtained from a model with a portfolio mandate that constrains 50% of investors to
invest 75% of their wealth in firms in the G sector and 25% in firms in the B sector. The model is calibrated at an
annual frequency. The equity return is levered using a leverage ratio of 2. Parameter values are reported in Table 1.
Values in the Data column are based on the sample period 1950–2021 and are from Ken French’s website.

Model
Data γ = 5 γ = 10 γ = 25 γ = 40 γ = 50

E[Rf ] 0.91 5.78 5.62 5.06 4.53 4.17
σ(Rf ) 2.27 3.27 3.24 3.21 3.23 3.29
E[RM −Rf ] 8.99 1.42 1.76 2.84 3.92 4.36
σ(RM −Rf ) 17.89 16.32 16.28 16.16 16.00 16.28

are much less than in the model. This is not surprising because, with only one aggregate shock,

model correlation with GDP tends to be close to 1.

Table 3 reports the asset-pricing moments: the annual mean and volatility of the risk-free

rate and the equity-market risk premium. The equity return used to compute the market risk

premium is levered using a factor of two, equivalent to an economy-wide 50/50 debt/equity ratio.

The table shows that the model does a good job of matching the volatility of the risk-free rate and

the equity risk premium in the data. However, not surprisingly, for the case of low risk aversion,

γ = 5, the risk-free rate is too high, and the equity risk premium is too low. This is just a

manifestation of the equity-premium puzzle. Higher values of risk aversion in the table result in

values of the equity premium and risk-free rate that are closer to the data.13

3.3 Equilibrium effects of portfolio mandates

Below, we describe the equilibrium effects of portfolio mandates in the multiperiod model of a

production economy. Table 4 contains our main quantitative results about the equilibrium effects of

portfolio mandates. The fundamental goal of the analysis is to contrast capital allocation measures

(Panels A and B) and cost of capital measures (Panels C and D) for different values of the returns-

to-scale parameter, α.

13Note that as we change risk aversion, EIS stays constant, which explains why the macroeconomic moments don’t
change much.
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Table 4: Equilibrium effects of portfolio mandates

The table shows the equilibrium effect of portfolio mandates on capital allocation and cost of capital for different
values of the risk aversion and returns-to-scale parameters. These values are obtained from a model with a portfolio
mandate that constrains 50% of investors to invest 75% of their wealth in firms in the G sector and 25% in the B sector.
Panel A reports the share of capital allocated to the green sector as a fraction of total capital, KG/(KG+KB); Panel B
computes the effective mandate pass-through ratio defined in equation (39); that is, the fraction of the intended pass-
through effect that survives general equilibrium effects; Panel C reports the difference in the equilibrium cost of
capital between G and B sectors; and Panel D reports the difference in Sharpe ratios between firms in the G and B
sectors. Parameter values are reported in Table 1.

Risk aversion
Return to scale γ = 5 γ = 10 γ = 25 γ = 40 γ = 50

Panel A: Capital allocation, KG/(KG +KB)
α = 1.02 0.549 0.558 0.564 0.564 0.565
α = 1.00 0.527 0.539 0.546 0.552 0.555
α = 0.90 0.503 0.505 0.511 0.515 0.517
α = 0.80 0.501 0.501 0.502 0.503 0.504

Panel B: Effective mandate pass-through ratio (%)
α = 1.02 39.20 46.56 50.96 51.52 51.60
α = 1.00 21.60 31.20 36.80 41.60 44.00
α = 0.90 2.40 4.00 8.80 12.00 13.60
α = 0.80 0.80 0.80 1.60 2.40 3.20

Panel C: Difference in cost of capital, RB −RG (%)
α = 1.02 −0.02 −0.02 0.00 0.00 0.00
α = 1.00 0.04 0.08 0.12 0.14 0.14
α = 0.90 0.06 0.10 0.18 0.19 0.17
α = 0.80 0.05 0.07 0.10 0.12 0.13

Panel D: Difference in Sharpe ratio, SRB − SRG
α = 1.02 −0.0004 0.0012 0.0063 0.0106 0.0120
α = 1.00 0.0040 0.0070 0.0115 0.0148 0.0131
α = 0.90 0.0033 0.0057 0.0104 0.0124 0.0114
α = 0.80 0.0030 0.0037 0.0054 0.0066 0.0070

Table 4 considers values of the returns to scale parameter ranging from α = 0.80 (de-

creasing returns to scale) to α = 1.02 (increasing returns to scale). Empirical estimates from the

macroeconomic literature indicate that returns to scale are nearly constant in the US economy. A

series of influential papers Hall (1988, 1990) argues that market power and increasing return to

scale can explain procyclical productivity in the US. In subsequent work, Basu and Fernald (1997)

estimate constant or slightly decreasing returns to scale in the US economy. They note, however,

that estimates of returns to scale vary at different levels of industry aggregation. While a typical

industry exhibits decreasing returns, the total manufacturing and private economy show increasing
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returns. They suggest that there may be economies of scale at the aggregate level in that as the

scale of production increases, the average cost of production decreases. Ahmad, Fernald, and Khan

(2019) present new estimates of returns to scale for the US economy based on two separate industry

datasets and compare them to previous estimates in the literature. They find evidence of constant

or slightly decreasing returns to scale at the aggregate level in the US economy over 1989–2014,

consistent with a relatively small aggregate markup in the post-1990 period. While their evidence

points to constant or declining returns to scale, Ahmad, Fernald, and Khan (2019) do not rule

out the possibility of increasing returns to scale in specific industries or regions or the presence of

certain factors, such as technological progress or network effects. Increasing returns to scale might

be particularly relevant for “green technologies” where learning by doing and increased scale have

led to a dramatic decline in costs over the past 25 years; for example, Way, Ives, Mealy, and Farmer

(2022) argue that, unlike traditional technologies such as oil and gas, clean-energy technologies

are on learning curves, where costs drop as a power law of cumulative production. This might be

particularly relevant for “green technologies” in a model with different types of capital. In light

of this evidence, in our analysis in Table 4, we allow for both decreasing, constant, and (slightly)

increasing returns to scale.

Panel A of Table 4 reports the equilibrium fraction of capital flowing to firms in the G

sector, KG

KG+KB . Because we assume that the technologies of firms in the two sectors are identical,

the optimal unconstrained investor’s portfolio is equally weighted between the G and B sectors.

Hence, all entries in Panel A should equal 0.50 in a world without mandates. The values in the

table refer, however, to the case in which constrained investors are mandated to hold 75% of wealth

in firms in the G sector and 25% in the B sector, implying that the maximum proportion of capital

allocated to the G sector as a result of the mandate is (50% + 75%)/2 = 62.5%. Panel A shows

that the equilibrium allocation of capital to the G sector varies between 50% to 55.5% depending

on the returns-to-scale parameter α and risk aversion γ. The deviation from the unconstrained

50/50 allocation is particularly strong for the case of constant returns to scale (α = 1) and high

risk aversion. For example, the equilibrium capital allocation to the G sector is 55.5% for α = 1

and γ = 50. Although levels of risk aversion of γ = 25 or 50 are clearly unreasonable, they are

considered here as a reduced-form way of capturing high risk premia in the economy arising from,

e.g., limited participation, taxes, and intermediary frictions.14

14For example, in standard habit models, (e.g., Campbell and Cochrane, 1999), while the curvature parameter in
the utility function is 2, the average effective risk aversion is around 80.
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To evaluate the magnitude of the equilibrium effect of mandates on capital allocation, we

compute the “effective mandate pass-through,” defined in (17), which we report in Panel B of

Table 4. To construct the pass-through, we first compute the maximum effectiveness of a mandate,

ignoring any equilibrium consideration. In our setting, because the constrained investor represents

50% of the entire mass of investors, a portfolio mandate of 75% in G and 25% in B implies that

62.5% (= 0.5×75%+0.5×50%) of the entire capital should be allocated to the G sector. Under this

“partial equilibrium” intuition, the maximum deviation from the unconstrained 50/50 allocation

is, therefore, 12.5% = 62.5%− 50%. Using the equilibrium allocation to G in Panel A, denoted by

KG =|αx=50%, we can then construct the effective mandate pass-through ratio of the mandate as

the equilibrium pass-through expressed as a percentage of the maximum pass-through:

Effective mandate pass-through ratio =
KG

∣∣α
x=50%

− 0.50

0.125
. (39)

The values of the effective mandate pass-through ratio in Panel B of Table 4 show that,

although general-equilibrium effects undo part of the mandate, a significant part remains effective.

For example, with a risk aversion of 5 and constant returns to scale (α = 1), about 21.60% of the

mandate remains effective. Intuitively, by increasing the cost of capital of firms in the B sector, the

mandate makes them more attractive to unconstrained investors who trade off higher returns for

worse diversification. As risk aversion increases and risk premia increase, the equilibrium allocation

further deviates from the unconstrained 50%. For relative risk aversion of γ = 50 and constant

returns to scale, the pass-through is 44%. Thus, the results in Panel B show that the effect of

mandates on the allocation of real capital is particularly strong when risk premia are close to their

values in the data.

Panels C and D report the effect of mandates on the firms’ cost of capital and Sharpe

ratios, respectively. Unlike the significant impact documented in Panels A and B, the effect on the

cost of capital (Panel C) and Sharpe ratios (Panel D) are minimal. For example, in our baseline

calibration (γ = 5, α = 1.0), the cost of capital of firms in the B sector is only four basis points

higher than that of firms in the G sector (Panel C), and the Sharpe ratio is only 0.004 units higher.

This negligible difference in the cost of capital contrasts with the significant mandate pass-through

effect of 21.6% reported in Panel B. The contrast between the mandate’s “real” and “financial”

effects is even stronger when risk premia are closer to their value in the data (γ = 50). In this
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case, the difference in the cost of capital under constant returns-to-scale is 14 basis points, while

the mandate pass-through is 44%.

In sum, the results from our quantitative model support the central intuition developed

in the simple model of Section 2. Specifically, in an economy with production, the difference in

the cost of capital is a poor metric to assess the real impact of portfolio mandates in equilibrium.

Mandates can significantly impact capital allocation while having a negligible effect on firms’ cost

of capital. These findings caution against using the cost of capital to measure the effectiveness of

portfolio mandates in equilibrium; instead, one should measure the flow of capital.

4 Conclusion

In this paper, we examine the impact of portfolio mandates on the allocation of physical capital

in a general-equilibrium economy with production and heterogenous investors. In contrast to the

existing literature that has studied impact investing in models of an endowment economy, we

consider a production economy that nests the endowment economy as a special case.

To assess the quantitative importance of the effect of portfolio mandates, we study a dy-

namic general equilibrium production economy. Under a realistic calibration of the multiperiod

model that matches asset-pricing and macroeconomic moments of the US economy, we find that

the effect of portfolio mandates on the allocation of physical capital across sectors can be substan-

tial. In contrast, the impact on the equilibrium cost of capital and Sharpe ratio of firms in the two

sectors remains negligible, consistent with existing evidence.

Thus, a key takeaway of our analysis is that judging the effectiveness of portfolio mandates

by studying their effect on the cost of capital of affected firms can be misleading: small differences

in the cost of capital across sectors can be associated with significant differences in the allocation

of physical capital across these sectors.
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