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Abstract

We develop a novel methodology for extracting information from option implied volatil-

ity (IV) surfaces for the cross-section of stock returns, using image recognition tech-

niques from machine learning (ML). The predictive information we identify is essen-

tially uncorrelated with most of the existing option-implied characteristics, delivers a

higher Sharpe ratio, and has a significant alpha relative to a battery of standard and

option-implied factors. We show the virtue of ensemble complexity: Best results are

achieved with a large ensemble of ML models, with the out-of-sample performance

increasing in the ensemble size, saturating when the number of model parameters sig-

nificantly exceeds the number of observations. We introduce principal linear features,

an analog of principal components for ML and use them to show IV feature complex-

ity: A low-rank rotation of the IV surface cannot explain the model performance. Our

results are robust to short-sale constraints and transaction costs.
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1 Introduction

The Option Implied Volatility (IV) surface contains information about state-contingent risk

premia and the probability distribution of returns over multiple horizons. Stock and option

traders systematically use the shape of this surface, including its slope, skewness, and other

geometric features, to infer market expectations and risk attitudes and make trading deci-

sions. The option pricing theory provides a basis for such analysis: local properties of this

surface indeed contain information about the underlying market dynamics. For example, the

surface variation along the moneyness dimension can be used to uncover the Arrow-Debreu

state prices (Breeden and Litzenberger, 1978a), while the surface slope along the maturity

dimension contains information about volatility by the Dupire formula (Davis, 2011). In

the language of machine learning, universal local features (non-linear transformations that

depend on neighboring strikes and maturities) of the IV surface can be used to extract useful

information about the stochastic structure of returns.

Despite the underlying theory’s elegance, empirically computing the theory-driven fea-

tures is associated with often unsurmountable econometric difficulties: theoretical formulas

rely heavily on the continuity of strike and maturity dimensions, while, in reality, both strikes

and maturities are discrete, living on a sparse grid. Furthermore, high bid-ask spreads due

to often extreme illiquidity of options markets1 introduce large amounts of noise into the

estimation of equity implied volatilities.

In this paper, we leverage the progress in deep learning for computer vision and image

recognition to construct powerful, non-linear, local features of IV surfaces. To this end, we

exploit a particular neural network architecture called convolutional neural networks (CNNs).

Thanks to their use of convolutional layers, CNNs are designed to capture spatial patterns

and relationships between pixels in images. These layers apply filters to local regions of

the input image, allowing the network to learn and identify patterns at various levels of

abstraction (e.g., edges, shapes, and more complex features). The behavior of CNNs closely

resembles the way in which humans interpret images. As a result, CNNs have the potential to

detect patterns on the IV surface that are similar to those recognized by professional traders

1See (Glebkin et al., 2023).
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during visual inspection. Furthermore, the locality of CNNs makes them perfect instruments

for learning non-linear filters extracting the volatility and risk premia information from the

noisy IV surface.2

We train several CNN architectures of increasing depth (complexity) on the standard Op-

tionMetrics dataset of IV surfaces for several thousand stocks to predict stock returns over a

one-month horizon. Since CNNs (like any neural networks) are trained by gradient descent,

they are sensitive to (random) weight initialization: Depending on where the gradient descent

starts, it may converge to a weight vector corresponding to a different local minimum.3 A

classic approach for dealing with this is to create an ensemble of neural networks correspond-

ing to different weight initializations and then combine them. See, (Lakshminarayanan et al.,

2017). We find that the benefits from this ensembling are huge because predictive models

generated by different initializations produce portfolios with low pairwise correlations. As

a result, for the most complex (4- and 5-layer) deep learning architectures, increasing the

ensemble size from one to a hundred leads to an increase in the out-of-sample Sharpe ratio

from 0.9 to 2.7 for the full stock universe. By contrast, for the lower complexity (1 hidden

layer) CNN, the Sharpe ratio only increases from 0.80 to 1.6. As (Lakshminarayanan et al.,

2017) explain, the sensitivity of predictions generated by NN to initialization captures the

degree of uncertainty around these predictions. In low signal-to-noise ratio environments of

financial markets, this uncertainty is very high, implying large gains from ensembling.

Since each model in the ensemble is represented by a (completely) different set of pa-

rameters, this finding implies a very large virtue of complexity (in the language of (Kelly

et al., 2021) and (Didisheim et al., 2023)): bigger, more complex, non-linear models gener-

ate significant gains out-of-sample.4 However, the nature of the complexity of the ensemble

is different: While (Kelly et al., 2021) and (Didisheim et al., 2023) establish the virtue of

complexity for one very big model with all parameters jointly trained, in this paper, we

document the virtue of ensemble complexity. Namely, we train a large number of randomly

2Formally, locality means that two close points on the IV surface have similar informational content.
3The reason is that the dependence of CNN mean squared error on the CNN coefficients is highly non-

convex. As a result, the problem is many local minima, and it is impossible to predict to which local
minimum the gradient descent will converge.

4Table 9 shows that these models are indeed extremely complex, with the number of parameters signifi-
cantly exceeding the number of observations in our panel dataset.
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initialized CNNs with identical architecture and then average their predictions, and show

that the out-of-sample Sharpe ratios are approximately monotone increasing in the ensemble

size. A similar pattern is observed if we measure the out-of-sample performance of the model

in terms of its alpha with respect to a large set of standard factors, including many standard

stock characteristics as well as a large set of option-based characteristics from (Neuhierl

et al., 2022).

The complexity of our CNN-based model ensemble seems to contradict the conventional

principle of parsimony in economics, suggesting that predictive information (originating, e.g.,

from risk premia or behavioral anomalies) can be encoded into a small number of factors and

stock characteristics. When applied to the IV surface, the principle of parsimony suggests

that only a few key surface features might contain useful information about future stock

returns. Most of these features used in the existing literature are constructed as simple, linear

combinations of implied volatilities; for example, the IV level, the slope of the term structure,

and the smile. To test whether such a low-dimensional structure is indeed present in our

highly non-linear predictive model, we use the methodology of (Constantine et al., 2014) to

identify key linear combinations of IVs with the most explanatory power. These combinations

are natural analogs of principal components for our highly non-linear models, and we refer to

them as principal linear features. Contrary to conventional wisdom, we find no evidence for a

low-dimensional structure. While broadly consistent with the complexity principle of (Kelly

et al., 2021) and (Didisheim et al., 2023), the nature of this phenomenon is different. Indeed,

the results in (Kelly et al., 2021) and (Didisheim et al., 2023) mostly concern complexity due

to non-linearities, whereas our last finding is about feature complexity, expressing the fact

that a very large number of linear features is necessary to extract the predictive information

contained in the IV surface.

As (Kelly et al., 2021; Didisheim et al., 2023) explain, this virtue of complexity means

that, even for an already complex model, we can often find a new, nonlinear transformation

of the IV surface that boosts the out-of-sample performance. This complexity is not a puzzle

to be solved or evidence of data mining. Instead, it is the theoretically expected outcome of

learning a non-linear, high-dimensional relationship with limited data. The only constraint

we impose on the model is the principle of locality, formalized by choice of a convolutional
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NN instead of a generic NN architecture utilized, say, in (Gu et al., 2020b) and (Chen et al.,

2021).

Recently, several papers (see, e.g., (DeMiguel et al., 2020), (Detzel et al., 2023), and (Mu-

ravyev et al., 2022)) have argued that the performance of modern multi-factor models needs

to be evaluated by accounting for transaction costs and short-sale constraints. We perform

a detailed analysis of trading costs for our strategies and find that, perhaps surprisingly, the

market-neutral portfolio constructed by sorting stocks based on the CNN-predicted return

makes most of the money with the long leg, implying that our findings are not sensitive to

short-selling costs and constraints. Transaction costs incurred by our strategy are signifi-

cant: As with many machine learning models, it exhibits a high turnover (about 80% per

month). Following (Jensen et al., Forthcoming) and (Didisheim et al., 2023), we study the

model performance separately for several groups of stocks, created based on their market

capitalization (mega, large, small, micro, and the non-micro group constructed as the set

of all stocks excluding the micro-cap group). While the micro-group dominates the per-

formance, the non-micro group also delivers a very strong Sharpe Ratio and a significant

alpha. Both micro- and non-micro groups retain their alpha significance after accounting

for realistic costs. It is also important to note that, in any case, the optionable stocks (i.e.,

stocks with options traded on them) are typically large and have a significant trading vol-

ume, implying that even the predictability we identify for micro stocks can be exploited with

some meaningful arbitrage capital.5

The rest of this paper is organized as follows. Section 2 reviews the related literature.

Section 3 describes data and methodology. Section 4 provides the necessary background

on CNNs. Our main empirical results are reported in Section 5. Section 6 investigates

feature importance, introduces principal linear features, and documents the virtue of feature

complexity. Section 7 concludes.

5Recent results of (Jensen et al., 2022a) suggest that, by properly smoothing positions, it is possible to
reduce turnover and preserve the bulk of the performance of machine learning models such as ours. We leave
this important direction for future research.
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2 Related Literature

Understanding why average returns differ across assets is a central question in finance. Over

the last few decades, the search for stock characteristics that predict returns has led to the

emergence of the (constantly growing) “factor zoo”: A huge number of characteristics that

contain information about the cross-section. See, for example, (Cochrane, 2011), (Harvey

et al., 2016), (McLean and Pontiff, 2016), (Hou et al., 2020), (Feng et al., 2020), (Jensen

et al., Forthcoming), and (Giglio et al., 2022) for a recent overview.

Many papers in this literature focus on predicting asset returns using complex, non-linear

models; see (Moritz and Zimmermann, 2016), (Chinco et al., 2019), (Han et al., 2019), (Chen

et al., 2019), (Bryzgalova et al., 2020), (Liu et al., 2020), (Gu et al., 2020b), (Kozak et al.,

2020), (Freyberger et al., 2020), (Avramov et al., 2021), (Guijarro-Ordonez et al., 2021),

(Leippold et al., 2022), (Kelly et al., 2021), and (Didisheim et al., 2023). Given the ever-

growing complexity of these models (both in terms of the number of characteristics and the

degree of non-linearity of the predictive relationships), several papers develop techniques to

“shrink” the cross-section and find a sparse representation of the expected returns, either

through a form of dimensionality reduction (e.g., by exploiting principal components, as in

(Kelly et al., 2020), (Kozak et al., 2018), (Kozak et al., 2020), (Lettau and Pelger, 2020),

and (Giglio and Xiu, 2021)), or by imposing sparsity directly in the space of characteristics

(see, e.g., (Gu et al., 2020b), (Freyberger et al., 2020), and (Bryzgalova et al., 2023)). While

the evidence is mixed, recent findings of (Didisheim et al., 2023) suggest that complexity is

there to stay, and there might be no feasible way to find a sparse representation of expected

returns. Namely, as (Didisheim et al., 2023) show, the factor zoo is simply a statistical

phenomenon originating from the small data problem: We do not have enough data to find

the right low-dimensional representation of expected returns, even if it exists; hence, our

best bet is to build the most complex model without imposing a sparse prior.6

Most of the above-mentioned papers focus on stock characteristics that are either purely

price-based (such as momentum; see, (Carhart et al., 1997)) or depend on company funda-

mentals such as the book-to-market ratio. By contrast, our paper focuses exclusively on the

6More generally, several recent papers have questioned the principle of sparsity in economic modeling.
See, e.g., (Giannone et al., 2021).
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predictive information contained in the implied volatility surface, motivated by the idea that

derivative prices provide an interesting lens to uncover rich information about the underlying

assets and associated risks. The early contributions by (Breeden and Litzenberger, 1978b),

(Banz and Miller, 1978) show how Arrow-Debreu state prices can be recovered from the

option prices. State prices contain information about risk premia and (subjective) physical

probabilities as market participants anticipate. Under technical conditions, some informa-

tion about these physical probabilities can be recovered; see, e.g., (Ross, 2015), (Borovička

et al., 2016), and (Jensen et al., 2019). The idea of extracting useful forward-looking infor-

mation from both individual equity and index options has been exploited in many papers.

For example, (Bali and Hovakimian, 2009) show that the difference between implied (i.e.,

risk-neutral) and physical volatility, as well as the difference between the implied volatilities

of near-the-money call and put options are both strong predictors of stock returns; (Cremers

and Weinbaum, 2010) use deviations from put-call parity to predict stock returns; (Johnson

and So, 2012) show that the ratio of the volume between options and stocks predicts stock

returns at the one-week horizon; (Chordia et al., 2020) reach a similar conclusion when ex-

amining the (signed) order flow in equity index options; (An et al., 2014) find that stocks

with large increases in call (put) implied volatilities over the previous month tend to have

high (low) future returns; (Andersen et al., 2015), (Bollerslev and Todorov, 2014; Bollerslev

et al., 2015), (Lin and Todorov, 2019), (Begin et al., 2020), and (Han et al., 2020) show how

the jump (tail) risk extracted from options prices predicts future stock returns; (Baltussen

et al., 2018) show that the volatility of implied volatility has predictive power for future stock

returns, and (Dew-Becker and Giglio, 2020) show how to estimate cross-sectional uncertainty

from option prices.

Many option-implied predictors build on a potential risk-return relationship between the

risk-neutral variance, variance risk-premium (VRP), and stock returns; see, e.g., (Bollerslev

et al., 2009), (Feunou et al., 2018), (Martin and Wagner, 2019), (Kilic and Shaliastovich,

2019), (Feunou et al., 2019), (Tang, 2019), (Kadan and Tang, 2020), (Pederzoli, 2020), and

(Duarte et al., 2022).

Several other papers propose characteristics of the IV surface that are related to the

shape of the implied volatility smirk or corresponding risk-neutral skewness portfolios; see,
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e.g., (Xing et al., 2010), (Yan, 2011), (Conrad et al., 2013), (Stilger et al., 2017), (Jones et al.,

2018) and (Bali and Murray, 2019), and (Schneider et al., 2020). While many of these papers

find that IV-surface-based skewness measures contain predictive information, the nature of

this information seems extremely sensitive to precise details of factor construction. For

example, (Conrad et al., 2013) document a negative relation between ex-ante risk-neutral

skewness and asset returns, while (Stilger et al., 2017) finds a positive relation.7 These

findings suggest that the nature of predictive information might be extremely complex,

making it difficult to pin down the precise underlying economic mechanism.

The paragraphs above suggest that, even in the smaller world of option-implied charac-

teristics, we are clearly facing the problem of an ever-growing factor zoo, with new predictive

relationships constantly discovered by academic researchers. Two recent papers attempt to

bring order into this option-implied factor zoo by combining the informational contents of the

multiple factors identified in the existing literature. (Bali et al., 2022) use five of those fac-

tors (based on the findings of (Bali and Hovakimian, 2009), (Cremers and Weinbaum, 2010),

(Xing et al., 2010), and (An et al., 2014)). They provide evidence that a linear tangency

portfolio of these factors is not spanned by standard stock characteristics-based managed

portfolios. However, in a more recent paper, (Neuhierl et al., 2022) provide evidence that

the factors in (Bali et al., 2022) are spanned by fundamental stock characteristics when more

of those characteristics are included in the model. (Neuhierl et al., 2022) then argue that

machine learning methods can deal with the IV-surface-based factor zoo and extract useful

information unspanned by standard factors. They consider 17 options-based characteristics,

including five of (Bali et al., 2022). Then, they apply the adaptive group LASSO method-

ology of (Freyberger et al., 2020) to build non-linear predictive models based on these 17

characteristics. They provide strong evidence that only 4 out of 17 option characteristics

contain information about future stock returns not spanned by a large set of more than 60

stock characteristics. These four economically important characteristics are all related to

the shape of the IV smirk.

While (Neuhierl et al., 2022) do develop a complex, non-linear, machine learning model,

7See, also, (Jiang et al., 2020) for similar results based on physical measures of skewness; and (Kozhan
et al., 2013), (Schneider and Trojani, 2019), and (Orlowski et al., 2020) for a studies of aggregate measures
of skewness.
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they utilize relatively small (only 17) ready, pre-built characteristics of the IV surface, mo-

tivated by sparsity considerations and the idea that a few linear features of the IV surface

summarize its predictive information. In this paper, we follow a different approach. First,

we completely abstract from the existing set of characteristics such as smirk, skew, slope,

etc.; instead, we take an agnostic approach and let the machine learning model decide which

features of the IV surface are useful for predicting stock returns. Second, we do not try to

impose any form of sparsity on the model. Instead, we build a model with an exorbitant

number of features and parameters following the principle of the virtue of complexity ((Kelly

et al., 2021; Didisheim et al., 2023)) combined with the virtue of ensemble complexity intro-

duced in this paper. As explained above, we find evidence for both virtues: There is a large

amount of predictive information in the IV surface, and we need a large ensemble of highly

complex models to leverage this information efficiently. Furthermore, our model exhibits a

very high feature complexity: A small number of linear IV features cannot span our model’s

predictive content.

We complete this literature review by noting that implied volatility is closely related

to the physical volatility (in fact, in the idealized Black-Scholes continuous time setting,

the two should be identical) and, hence, any signal about the level of the IV surface is

closely related to the physical idiosyncratic stock volatility. The latter contains predictive

information about stock returns and belongs to the large family of “low-risk anomalies.”

See, (Ang et al., 2006), (Harvey and Siddique, 2000), (Boyer et al., 2010), (Frazzini and

Pedersen, 2014), (Amaya et al., 2015) and (Schneider et al., 2020). In particular, (Schneider

et al., 2020) argue that these low-risk anomalies reflect compensation for co-skewness risk.

It is possible that the more complex predictive signals extracted from the IV surface by our

model might also reflect a form of risk premium related to some jump, tail, or high-order

moment risk. Understanding the connection of our non-linear signals with risk premia is an

important direction for future research.
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3 Data and methodology

3.1 Data

Options data are from OptionMetrics IvyDB. The historical IvyDB Volatility Surface dataset

contains interpolated option implied volatility surfaces for a large set of firms for each trading

day from January 1996 to December 2021. For interpolation, a proprietary kernel smoothing

algorithm is applied by OptionMetrics across both moneynesses (defined in terms of option

δ) and expiry (defined in terms of days-to-maturity τ) grids, allowing us to abstract from

option cycles and varying strikes. Thus, for each trading day, δ-moneyness grid goes from

-1 to +1 in equidistant 0.05 steps (puts have negative δ, calls have positive δ), and expiry

grid ranges from 10 to 730 days-to-maturity.

06/05/2023, 16:38 127.0.0.1.html

file:///Users/tengxu/Desktop/127.0.0.1.html 1/1

Figure 1: Transformed implied volatility surface of TSLA stock, 01/07/2016.

We hypothesize that in-the-money calls contain the least forward-looking information

and only keep δ ∈ [−0.5, 0.5]; then, we drop all 10-days-to-maturity values due to lack of

data before 20108; lastly, we re-stack volatility surfaces at-the-money (so that δ goes from 0.1

to 0.5, then goes from -0.5 to -0.1) – this way, the combination of put and call IV components

results in a more seamless transition. Thus, we end up with implied volatility surface images

of size 10×18. Figure 1 shows a typical example of an implied volatility surface from Option

8This is likely because so-called ”weeklies” (options with weekly expiration cycles) were only introduced
in 2005 and gained popularity after the Global Financial Crisis.
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Metrics IvyDB that we work with. We denote IVi,t = (IVi,t(δ, τ))δ∈∆,τ∈T , ∈ R|∆|×|T | the

interpolated implied volatility surface of a stock i ∈ N on the last day of the month t ∈ T .

Here, δ ∈ ∆, where ∆ is the grid of available δ-levels, and τ ∈ T , where T is the grid of

available times to maturity.

We use daily stock data from CRSP to construct monthly total stock returns for all

NYSE, AMEX, and NASDAQ firms. CRSP sample is aligned to our OptionsMetrics sample

and lasts from January 1996 to December 2021. The number of stocks with available stock

and options data is shown in Figure 2. The total number of stocks in our sample is close

to 25 thousand, with the average number of stocks at any point in time exceeding three

thousand.9 We denote Ri,t+1 the total return on stock i from the last business day of the

month t to the last business day of the month t+ 1.

1996 2000 2004 2008 2012 2016 2020
Year
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Figure 2: Evolution of our post-processed dataset size regarding the number of unique firms.

Monthly returns are constructed as follows. First, for each stock i and business day d,

daily total gross returns are computed as (1 + ri,d) or as (1 + ri,d)(1 + rdelisti,d ) if the stock i

delists on day d. Here, ri,d is the total daily return from the CRSP Daily Stock file, and

ri,d=delist is the delisting return from the Delisting Information CRSP file. Missing daily

returns10 are replaced with zeros. Monthly total gross returns for a month t, denoted by

9See the section A of the Appendix for a detailed description of CRSP and OM datasets, the dataset
linking procedure, and some additional statistics.

101.34% of the total number of return observations.
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Ri,t, are cumulative products of daily gross returns,

Ri,t =
∏
d∈t

(1 + ri,d)(1 + rdelisti,d 1d=delist) − 1 . (1)

Everywhere in this paper, we focus on predicting monthly returns Ri,t+1 using only implied

volatility surfaces on the last business day of the preceding month t, which we denote by

IVi,t.
11

3.2 Ensembles of Randomly Initialized Neural Nets

Given a family of non-linear functions, f(x;w), indexed by a (high-dimensional) vector of

parameters w (e.g., neural weights for the case of neural networks), we can optimize w

with the objective of predicting returns Ri,t+1 by plugging the month-end IVi,t into f and

minimizing an error on the training data: Given a look-back horizon T , we can try selecting

a parameter vector w that minimizes the in-sample prediction error based on the last T

periods of the data:

w∗,t = argmin
w

ℓ(w), ℓ(w) =
t∑

θ=t−T

Nθ∑
i=1

(Ri,θ+1 − f(IVi,θ;w))
2 , (2)

where Nθ is the number of stocks in our data set at time θ. The standard way of finding w∗

is by using gradient descent: Given a learning rate η, one can randomly initialize w0 and

then implement the algorithm of gradient descent by iteratively computing

ŵj(w0) = ŵj−1 − η∇wℓ(ŵj−1) (3)

for j ≥ 1, where ∇wℓ is the gradient of the loss ℓ(w) with respect to w.

By definition, the path of ŵj(w0) during the gradient descent (as j increases from one to

∞) depends on the initialization w0. However, standard results imply that, as the number

11One may wonder whether information about the daily dynamics of implied volatility surfaces in the
preceding month t contains predictive information about Ri,t+1 and whether we are neglecting this informa-
tion by keeping only month-end IVi,t. We have tried to incorporate additional information about daily IV
dynamics in the preceding month in our predictive models, and these experiments suggested that lagged IV
information during the month does not add predictive power.
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j of gradient steps increases while the learning rate η converges to zero, ŵj(w0) converges

to a local extremum ŵ∞(w0) = limj→∞,η→0 ŵj(w0), satisfying ∇wℓ(ŵ∞(w0)) = 0. In fact, as

recent research shows, these local extrema are typically global minima for neural nets. See,

e.g., (Soudry and Carmon, 2016). In simple, linear regression problems, the loss function

ℓ(w) is convex in w and, hence, has a unique extremum which is also a global minimum;

hence, for convex problems, ŵ∞ is independent of w0. By contrast, for realistic, non-linear

machine-learning models (such that CNNs in our paper), ℓ(w) is not convex and has a

tremendous number of (global or local) minima. See, e.g., (Lakshminarayanan et al., 2017;

Li et al., 2018; Yao et al., 2020; Fort et al., 2019). As a result, ŵ∞(w0) depends on the

initial weights, w0, in a highly complex fashion. In particular, for K different initializations

w0(k), k = 1, · · · , K, we will typically end up with K different weight vectors ŵ∞(w0(k)).

This leads to a randomly initialized ensemble of K models, {f(x; ŵ∞(w0(k)))}, indexed by

k = 1, · · · , K. We then build the ensemble prediction by taking a simple average across k :

R̂ ens
i,t =

1

K

K∑
k=1

f(IVi,t; ŵ∞(w0(k))) . (4)

Our findings present results for CNN ensembles of different sizes, with K ranging from 1

to 100. We observe a significant enhancement in portfolio performance as the ensemble size

increases up to around 50 models, after which it saturates.

Given these predictions at each month-end, all stocks are sorted into decile, equal-

weighted portfolios to construct a long-short spread portfolio, “H-L”, that is long the upper

decile and short the lower decile. Denote NR̂ ens
i,t >Qt

the number of stocks in the upper decile

at time t, and NR̂ ens
i,t <qt

the number of stocks in the lower decile at time t, the returns on

“H-L” are given by:

RH−L
t+1 =

Nt∑
i=1

Ri,t+1 wi,t , wi,t =
1R̂ ens

i,t >Qt

NR̂ ens
i,t >Qt

−
1R̂ ens

i,t <qt

NR̂ ens
i,t <qt

, (5)

where Qt and qt are the 90% and 10% percentiles of the distribution of R̂i,t at time t.

The algorithm described above depends on two key objects: The look-back window T

in (2) used for training the model and the family of non-linear functions f(x;w). For the
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lookback window, we follow the approach of (Gu et al., 2020b) and use an expanding window

(allowing us to use all available data at time t). 12

We consider three different families of functions fℓ(x;w), ℓ ∈ {CNN1, CNN4, CNN5}

in our analysis. Each family is a convolutional neural network (CNN, see Section 4 for

details), with CNNi equipped with i hidden convolutional layers, i = 1, 4, 5. The number

of layers of the network defines its complexity, expressive power, and ability to approximate

non-linear functions. The complexity of a CNN model (defined as the number of parameters

divided by the sample size, see (Kelly et al., 2021)) increases exponentially with depth. See

Table 9 for details. Intuitively, we expect shallow CNNs to learn fewer and simpler features,

whereas more complex CNNs will detect a greater variety of features. While such complex

models are tremendously over-parametrized and severely overfit the data in-sample, their

performance out-of-sample might be better due to the virtue of complexity. See (Kelly

et al., 2021), (Didisheim et al., 2023), and Belkin (2021).

4 Convolutional Neural Networks

This section provides a concise overview of the rationale behind Convolutional Neural Net-

works (CNNs), the architecture of the proposed models, and the training methodology em-

ployed.13 Additionally, we briefly discuss the discrete convolution operation and model

optimization via stochastic gradient descent. Please refer to Appendix B for rigorous math-

ematical definitions.

4.1 CNN Architecture

Convolutional Neural Networks (CNNs) continue to be the state-of-the-art approach for

image classification (see (Shankar et al., 2020)). We outline some of the key advantages of

utilizing CNNs.

1. Spatial Hierarchy and Local Connectivity: CNNs are designed to capture spatial pat-

12We also report that using a rolling window of five years, which allows us to account for potential non-
stationarity, leads to a performance drop.

13See, also, (Jiang et al., 2022).
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terns and relationships between pixels in images, thanks to their use of convolutional

layers. These layers apply filters to local regions of the input image, allowing the net-

work to learn and identify patterns at various levels of abstraction (e.g., edges, shapes,

and more complex features). In contrast, Deep Neural Networks (DNNs) treat all in-

put features independently, losing the spatial information and relationships between

neighboring pixels. This makes it difficult for DNNs to learn and recognize complex

image patterns effectively.

2. Translational and Rotational Invariance: CNNs inherently possess translation and ro-

tational invariance, meaning that they can recognize patterns and features regardless

of their position in the image. Conversely, as mentioned earlier, DNNs treat each input

independently, resulting in the loss of information.
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BatchNorm

Figure 3: The figure above shows a building block of the CNN model consisting of a convo-
lutional layer with a 3 × 3 filter, a ReLU layer, 2 × 2 max-pooling, and batch normalization
layers. Note the max-pooling layer shrinks the height and width of the input by half and
keeps the same depth.

We now describe a Convolutional Neural Network (CNN) as a sequence of operations to

transform raw images, implied volatility surfaces in this case, into a prediction. See Appendix
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Figure 4: The figure above describes our CNN4 architecture.

B for details.

A CNN core building block consists of three operations: convolution, activation, and pool-

ing. In addition, we also use a batch normalization layer at the end of each block. A batch

normalization layer normalizes the building core’s output reducing the so-called internal co-

variance shift (acting as a regularizer) from one building core to the next (Ioffe and Szegedy,

2015). The core CNN building block is shown in Fig. 3. A convolution layer applies filters

to the input data, capturing local spatial patterns and generating feature maps as output.

An activation function is a nonlinear function applied elementwise to the output of a layer.

Max-pooling is a downsampling operation in a CNN that reduces the spatial dimensions of

a feature map by selecting the maximum value within a defined neighborhood, helping to

retain the most prominent features while reducing computational complexity and achieving

translation invariance. Global Average Pooling is a pooling operation that computes the

average value of each feature map across its entire spatial extent, effectively “vectorizing”

the feature map. The final CNN layer is a single fully connected node that targets the next

month’s stock gross return. The CNNi architectures described above are constructed by

stacking i such building blocks. For example, Figure 4 shows the CNN4 architecture.14 See

Appendix B for details and precise mathematical definitions of convolutions, MaxPool, and

Global Average Pooling layers.

14In particular, we use an increasing number of convolution filters in each block, i.e., 16, 32, 64, and 128.
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4.2 Training the CNN

Our initial training uses the first seven years of observations (1996-2002) for the expanding

window case. We call this the warm-up period. In this period, the CNN is trained for ten

epochs. Then, we apply the trained model to the features of the subsequent month (unseen

to the model) to make predictions. Afterward, we include this new month in the training

set to retrain the model using the same procedure. We call this the transfer-learning period.

In this period, the CNN is trained for five epochs only, as the CNN has mostly learned the

market dynamics during the warm-up period, and only requires fine-tuning to adjust to an

additional one month of observations.

We employ the same regularization methods as in (Gu et al., 2020a) to mitigate overfitting

and facilitate efficient computation. We utilize the Xavier initializer for weight assignment

in each layer, as proposed by (Glorot and Bengio, 2010), which accelerates convergence by

producing initial weight values that align the prediction variance with the label scale. For

loss function optimization, we combine stochastic gradient descent with the Adam algorithm

(Kingma and Ba, 2014), setting the initial learning rate at 1 × 10−3 and using a batch size

of 512.

5 CNN Portfolio Performance

In this section, we investigate the out-of-sample performance of CNN-based return forecasts.

Given a CNN architecture, we randomly initialize its weights w0 using 100 different ran-

dom seeds and train each of these NNs using gradient descent, as described in Section 4,

thus creating an ensemble of CNNs. As described in Section 3.2, we construct a long-short

spread portfolio, “H-L”, that is long the upper decile and short the lower decile of predicted

stock returns, with a monthly holding period, see (5). Then, we compute the predictions

(4) gradually increasing the ensemble size K from 1 to 100 and report the corresponding

out-of-sample Sharpe ratios in Figure 13, and summarize their distribution in Table 2. Fol-

lowing (Jensen et al., Forthcoming) and (Didisheim et al., 2023), we perform the analysis

separately for different size groups of stocks: mega (largest 20% of stocks based on NYSE

monthly breakpoints), large (between 80% and 50% percentile of NYSE breakpoints), small
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(between 50% and 20% percentile of NYSE breakpoints), and micro (smallest 20% of stocks).

Additionally, we report the results for the non-micro group that comprises all stocks with a

market cap larger than the 20% NYSE percentile.

Figure 13 clearly illustrates the virtue of ensemble complexity: Sharpe ratios are monotone

increasing in the ensemble size and, for more complex models (CNN4 and CNN5), saturate

only around K = 40. While a single run of CNN1, CNN4, and CNN5 achieves an annualized

Sharpe Ratio of 0.80, 1.48, and 0.88, respectively, the portfolios built using ensembles of K =

100 randomly initialized CNN1, CNN4, and CNN5 (see (4) for the definition), achieve out-

of-sample Sharpe ratios of 1.64, 2.72, and 2.50, respectively. Figure 14 shows the cumulative

performance of our strategy over time and compares it with the three strongest option

characteristics-based factors from (Neuhierl et al., 2022). As one can see, the complex model

clearly outperforms these factors. Sharpe ratios for 100-ensemble CNN models per market

cap segment are reported in Table 17.

We now investigate to what extent standard and option-based characteristics span the

performance of CNN-based factors. As Table 3 shows, ensemble CNN portfolios deliver a

highly significant alpha against a variety of option-based factor portfolios from (Neuhierl

et al., 2022) as well as the standard Fama-French factors. Complexity also has a very strong

impact on the regression R2 : While for the lower-complexity CNN1, the R2 is about 66%,

it drops all the way to 36% for CNN4 and CNN5 models, suggesting that more complex

models are able to pick up highly non-linear predictive patterns in the IV surface that are

not accessible to simpler models.

Perhaps surprisingly, our most complex CNN4 and CNN5 models have only minimal and

marginally significant exposure to option characteristics-based factors. It has some exposure

to long-term reversal while being significantly negatively exposed to short-term reversal,

suggesting that the predictability we identify is not driven by standard short-term statistical

arbitrage. Instead, exposure to long-term reversal suggests some link between our signals

and fundamental stock valuations. The low complexity CNN1 model does pick up significant

exposure to the Skew factor, but as complexity increases, this exposure vanishes, confirming

our intuition that complex models identify highly non-linear patterns that are not spanned

by standard, linear characteristics of the IV surface.
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The H-L strategy (5) is non-linear and exploits the power of the relationship between

CNN-based predictions and future returns in the tails of the prediction distribution. We

test the robustness of the above results by running simple, cross-sectional (Fama-MacBeth)

regressions of returns on CNN-based predicted returns, using multiple characteristics as con-

trols. Table 10 strongly supports our findings: Stock returns are indeed highly significantly

related to CNN-based predictions, even after controlling for a large number of standard stock

characteristics, including reversal, momentum, idiosyncratic volatility, as well as standard

option-based characteristics.

We find that smaller-capitalization stocks largely drive the model performance, see Tables

4-8, nonetheless, CNN models still generate significant alpha for the not-micro group. We

also find that it exhibits the same virtue of the ensemble complexity15. Notably, the results

from the Fama-Macbeth regressions per-segment reveal that the statistical power of CNN

forecasts is mainly concentrated in the small-cap stock group. This is highlighted in Tables

11 to 15. Value-weighted16 portfolios built using CNN4 forecasts generate alphas that are

statistically significant at a 10% level, see Table 38.

5.1 Simpler Models

The above findings clearly indicate that CNN-based models are able to extract important

predictive information from the IV surface. But do we really need CNNs? Is it possible to

extract the same information using simpler models?

We start by investigating whether it is possible to use all IVs in a linear fashion to predict

returns. To this end, we generate predictions based on the simple ridge panel regression model

with an expanding window by building the prediction R̂ridge
t :

R̂ridge
t = IVt(IV

⊤
0:t−1IV0:t−1 + zI)−1IV ⊤

0:t−1R0:t−1, (6)

for each period in time t = 0, . . . , T with a ridge penalty z. Here, IVt ∈ RNt×|∆|×|T | represents

the panel of implied volatility surfaces for Nt stocks at time t; IV0:t−1 ∈ RN0:t−1×|∆|×|T | and

15These results are not included and are available from the authors upon request.
16Weights are set in proportion to stock market capitalization, with market caps winsorized at 80% NYSE

percentile as described in (Jensen et al., Forthcoming).
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R0:t−1 ∈ RN0:t−1 denote the expanding window of implied volatility and true gross returns,

respectively, covering the time period t = 0, . . . , t − 1. This is a “kitchen sink” approach,

whereby we are completely agnostic about the nature of predictors that the model generates.

Table 18 reports the corresponding H-L strategy. As one can see, even such a simple strategy

generates significant alpha relative to existing option-based factors. However, a per-group

analysis, see Tables 19-23, indicates that, in fact, only the micro-group delivers significant

alpha, in stark contrast to the case of CNN, see Tables 4-8.

We now turn to a simpler non-linear model, referred to as NN1 in the sequel: A single-

hidden layer perceptron (a fully connected neural network). We use a relatively wide hidden

layer of 128 neurons, implying a modest complexity (see Table 9). As for the CNNs, we

build an ensemble of 100 randomly initialized NN1 models and find evidence for the same

virtue of ensemble complexity as for the CNN models. Thus, we build our final NN1 model by

averaging across 100 seeds and then build the corresponding H-L portfolios. Table 24 studies

whether the NN1-based factor absorbs any significant fraction of the alpha generated by the

CNN models. Comparing with Table 3, we see that both alphas significance and magnitudes

are preserved: While NN1 does absorb about 50% of the CNN1 alpha, it absorbs only 25%

of the alpha of more complex CNN4 and CNN5 models. At the same time, Table 25 shows

that the NN1 model does not exhibit any alpha relative to the simple CNN1 model. These

findings have two important implications for us. First, they imply a very strong form of the

virtue of complexity, manifesting itself in the ability of CNN4 and CNN5 models to identify

non-linear features that the simpler models cannot capture. Second, ignoring the geometry

of the IV surface and the key locality principle used by CNNs for feature construction leads

to highly inferior performance of the simple NN1 model. Just naively building bigger models

suggested by the complexity principle of Kelly et al. (2021) and Didisheim et al. (2023)

is not enough: One needs to exploit the economic structure of the data and build neural

architectures that optimally exploit this structure.

5.2 Long only

Short selling might be extremely costly for some stocks, especially less liquid ones. Many

anomalies have been criticized for being difficult to implement for this reason. See (Muravyev
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et al., 2022). In this section, we investigate the long leg of our strategy, defined as

RH
t+1 =

Nt∑
i=1

Ri,t+1wi,t , wi,t =
1R̂ ens

i,t >Qt

NR̂ ens
i,t >Qt

, (7)

where Qt is the 90% percentile of the predicted returns, and NR̂ ens
i,t >Qt

is the number of

stocks in the upper decile at time t. The performance of this long-only strategy is reported

in Figure 15 (cumulative returns plot) and Table 16 (regressions statistics) for all stocks. To

emphasize the power of our results, we set an extremely high bar for our long-only strategy

and compute the alphas with respect to the benchmark factors (including all option-based

factors) that are long-short. As one can see, the performance is robust, and alphas are highly

significant. Compared to Table 3, complex models lose about half of their alpha and gain

(not surprisingly) a huge exposure to the market portfolio.

5.3 Transaction and Short-Sale Costs

Many stock market anomalies and factors have been criticized for generating very high

turnover and hence, their performance being extremely sensitive to transaction costs. Many

characteristics-based portfolios generate negative performance after costs. See, for example,

(Detzel et al., 2023). As (Jensen et al., 2022a) show, efficiently exploiting machine-learning-

based strategies requires optimizing portfolio positions to reduce turnover optimally. While

it is possible to use the methodology of (Jensen et al., 2022a) and incorporate costs and

turnover directly into our optimization algorithm, in this paper, we purposely follow a simpler

approach and evaluate the performance of (5) and its long-only version (7) after costs,

without applying position smoothing techniques.

We apply linear transaction fees 17 and short-sale costs to all our portfolios (CNN1,

CNN4, CNN5, NN1, and Ridge) and, for a fair comparison, to all option-based factors from

(Neuhierl et al., 2022) against which we benchmark our models. We do not apply fees to the

factors that are not option-based (e.g., momentum, reversal, Fama-French factors), which

makes our analysis even more conservative. Following (Crego et al., 2023), we apply the

17Restricting the analysis to linear transaction costs abstracts from important price impact considerations,
see (Jensen et al., 2022a).
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method that accounts for transaction costs at the portfolio level, which is described below.

At a given time t, denote wt ∈ RNt the weight vector with coordinates

wi,t =
1R̂ ens

i,t >Qt

NR̂ ens
i,t >Qt

−
1R̂ ens

i,t <qt

NR̂ ens
i,t <qt

, (8)

i.e., our portfolios (CNN1, CNN4, CNN5, NN1, and Ridge) are equal-weighted, and, at a

given t, all positive (negative) weights sum up to 1 (-1). We abuse the notation and use

Nt ∪ Nt+1 to denote the set of stocks available for trading at times t and t + 1. Then, the

unit cost (per dollar of investment) of rebalancing and short-selling at time t+1 is given by

f̄t+1 =
∑

i∈Nt∪Nt+1

(fi|wi,t+1 −
1 + ri,t+1

1 + rt+1

wi,t|+ (−wi,t)
+θi)

= θi +
∑

i∈Nt∪Nt+1

fi|wi,t+1 −
1 + ri,t+1

1 + rt+1

wi,t|,
(9)

where rt+1 stands for the total return on the long-short portfolio with weights defined in (8)

and x+ = max(x, 0). Notice that we used that weights set at time t change from t to t + 1

relative to the total portfolio value by
1+ri,t+1

1+rt+1
. This reflects the fact that the security value

in the portfolio compounds from t to t+1, and the portfolio value compounds from t to t+1

as a whole. For simplicity, we assume that short-sale costs are paid out at the beginning

of each holding period (this is why we use wi,t in the (−wi,t)
+θi) term). We also used that∑

i∈Nt∪Nt+1
(−wi,t)

+ = 1 by definition (8). Now, let It denote the total investment value of

the portfolio at time t. The investment value evolves from t+ 1 to t+ 2 as follows:

It+2 = It+1(1− f̄t+1)rt+2, (10)

where rt+2 is pre-fee gross return on the portfolio of stocks between t+1 and t+2, and It+1

is pre-(t+ 1)-rebalancing investment value. Regrouping, we get the net-of-fee net return on

the portfolio

It+2

It+1

− 1 = (1− f̄t+1)rt+2 − 1. (11)

21



This simple identity allows us to deduct linear transaction costs without keeping track of

the investment value but by discounting net-of-fee returns only.

We set transaction costs fi for a stock i in the micro-cap segment to be two times the

cost level for other segments so that

fi = (1 + 1i∈microcap)fbase (12)

and we investigate two settings: fbase = 0.001 (ten basis points (bps)) and fbase = 0.002

(twenty bps). To account for costly short-selling, we assume a fixed monthly cost of

θi = fi. (13)

For fbase = 0.002, this corresponds to 40 bps (= 4.8% per annum) short-sale cost for micro-

stocks and 20 bps (=2.5% per annum) short-sale cost for non-micro stocks.18

Again, to ensure a fair comparison, we apply the same fee structure to all option-based

factor portfolios from Neuhierl et al. (2022), and we do not apply fees to other factors, which

adds to the challenge for CNN-based portfolios to maintain their superiority.

Tables 26 to 37 present the performance of long-short portfolios net of linear transaction

costs and short-sale fixed monthly costs, at two different cost levels: 10 bps (and 20 bps for

the micro-cap segment) and 20 bps (and 40 bps for the micro-cap segment). In both cases,

the micro-cap segment shows high and significant net-of-fee excess returns for CNNs, and,

notably, CNN4 also exhibits consistent excess performance in the not-micro-cap segment at

5% (10%) significance level for the 10 (20) bps cost level. On the other hand, the performance

of NN1 and the ridge model diminishes, indicating that it’s not solely the micro-cap segment

that drives excess returns for CNNs. Overall, CNN4 withstands tests with conservative linear

transaction and short-sale costs, even outside the micro-cap segment.

18These estimates are very conservative. According to (D’avolio, 2002), most stocks have short-selling
costs below 1% per annum.
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6 Principal Linear Features

Despite the abundance of data and the recent emergence of the “factor zoo” with numer-

ous characteristics identified as return predictors, predictive relationships in economic and

financial data are commonly believed to be sparse. While characteristic-based sparsity (the

hypothesis that only a few characteristics matter for economic relationships) is likely an

illusion (Giannone et al., 2021), many papers argue that there exists some form of “linear

feature sparsity”, usually formulated in terms of the principal components (Kozak et al.,

2020). Namely, only a few top principle components are believed to be responsible for most

of the predictable variation in returns.

Literature on the predictive content of the IV surface largely relies on the idea of linear

feature sparsity and studies only a small number of signals represented as linear trans-

formations of the IV surface, for instance, CIV, PIV, IVSatm, IVSotm, and related option

characteristics described above are all examples of linear transformations of the IV surface.

It is thus natural to ask a more general question of whether it is possible to use some non-

parametric statistical techniques to extract relevant, linear combinations of the IV surface

with the most predictive content.19 Under the linear feature sparsity hypothesis, we expect

that the true dependence

f(IVi,t) = E[Ri,t+1|IVi,t] (14)

of expected returns on implied volatilities is given by a low-rank function, as formalized in

the following definition.

Definition 1 Let S ⊆ Rd. A function f : S → R is said to have rank r on S if there exists

a low-rank matrix M ∈ Rr×d, r < d, and a function g : MS → R such that f(x) = g(Mx)

∀x ∈ S.
19One common way of detecting sparsity in a non-linear model is by measuring feature importance. If most

features get a low importance score, then one can conclude that the model is effectively sparse. The standard
way of measuring feature importance is based on the Shapley value. See, e.g., (Lundberg and Lee, 2017).
This approach is designed to measure the importance of a given feature that is expected to contain predictive
information. This is the case for standard stock characteristics such as momentum, value, reversal, etc. (see,
e.g., (Jensen et al., 2022a)). However, in the case of the IV surface, the features are individual IVs. Hence,
it is unlikely that a given IV for a specific (moneyness, maturity) combination contains distinct predictive
information, and removing just one point on the IV surface will likely not impact model performance.
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In the context of our machine learning task, x̂ = Mx ∈ Rr is the r-dimensional vector

of linear features, i.e., those linear transformations of x that matter for the function f . To

determine whether a given function is low-rank, we will use the following observation from

(Constantine et al., 2014) and (Radhakrishnan et al., 2022):

Lemma 1 Let S ⊂ Rd be an open subset and f(x) : S → R be a real analytic function such

that ∇f(x) is bounded on S. Let also X be a random vector taking values in S, such that

its density p(x) : S → R+ is Lebesgue-almost surely positive on S. Define

M∗ = E[∇f(X)∇f(X)′] ∈ Rd×d . (15)

Suppose that rankM∗ = r, and let M∗ = UDU ′ be its eigenvalue decomposition, where

D = diag(λ1, · · · , λr) is the vector of non-zero eigenvalues of M∗ and U ∈ Rd×r is the

matrix of corresponding eigenvectors. Then, for Lebesgue almost every x0, g(y) = f((I −

UU ′)x0 + Uy) satisfies f(x) = g(U ′x)∀x ∈ S. Conversely, any function f : S → R of rank

r has rankE[∇f(X)∇f(X)′] ≤ r. Furthermore, if f(x) = g(Mx) where M ∈ Rr×d has

rank exactly r and g(y) is real analytic on MS and the functions ∇yig(y), i = 1, · · · , r, are

linearly independent, then, rankE[∇f(X)∇f(X)′] = r.

This lemma motivates the following definition:

Definition 2 We refer to the eigenvectors of the gradient outer product matrix (15) as the

principal linear features.

By definition, principal linear features of f are the directions along which the function varies

the most.

We now show how principal linear features can be used to capture a large fraction of

variation of the f function. To state the result, we will make use of the Poincare inequality

(Leoni, 2017): We say that a probability measure p(x)dx on Ω ⊂ Rd satisfies the Poincare

inequality on Ω if there exists a constant C such that

Var[f(x)] ≤ C E[∥∇f(x)∥2] (16)
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for any continuously differentiable function f. Here, we use this inequality for Gaussian

measure (Brascamp and Lieb, 1976): If p(x) is a Gaussian measure with the covariance

matrix Σ on Ω = Rn, then C = λ1(Σ), where λ1 is the largest eigenvalue of Σ. It is possible

to prove the following result using subtle properties of the Gaussian measures.

Lemma 2 Let M∗ = UDU ′ be the eigenvalue decomposition of M∗ and Up the matrix whose

columns are the top p eigenvectors of M∗. Suppose that the data x ∼ N(µ,Σ) is normally

distributed. Let fp(y) : Rp → R be defined via fp(y) = E[f(x)|U ′
px = y]. Then,

E[(f(x)− fp(U
′
px))

2] ≤ λ1(Σ)Λ(M∗) , (17)

where

Λ−p(M∗) =
d∑

i=p+1

λi(M∗) . (18)

Lemma 2 shows that fp(U
′
px) represents a good approximation to f(x) as long as the

residual variation Λ−p(M∗) is sufficiently small. The linear feature sparsity hypothesis is

then simply a claim about the quality of the approximation of Lemma 2. The smaller the

residual variation Λ−p(M∗), the more accurate the approximation is. To validate our analysis,

we verify that Λ−p(M∗) is reasonably small for each CNNi model and each p of interest.

Algorithm 1 describes the procedure of building the low-rank counterparts of the ensem-

ble function f ens(x) = 1
K

∑K
k=1 f(x; ŵ∞(wo(k))). Using p-predictions obtained with f ens

p (x)

counterparts, we build long-short portfolios and compare them by the Sharpe ratio.

Figure 5 shows the out-of-sample Sharpe ratios of this strategy as a function of p. We

find a striking virtue of feature complexity: The out-of-sample performance is monotone

increasing for p > 50, and the increase is slow. Even for p = 100, the Sharpe ratio is still

significantly below the full model (corresponding to p = 180 linear features). Even for the

low complexity CNN1 model, p = 100 recovers only about half of the full model Sharpe

ratio, and the effect is even stronger for more complex models. It means that we need more

than 100 linear features of the IV surface to capture the predictive relationships identified

by the CNN models.

25



Algorithm 1 Linear Feature Sparsity

Require: Full sample of IVi,t ∈ R18×10 for each stock i ∈ Nt available at time t, and
ensembles of CNNs f ens

t (·) trained until t for all t ∈ T .
1: Compute the total number of IVi,t observations in the sample N =

∑T
t Nt,

2: Compute average outer gradient product M = 1
N

∑
i,t ∇f ens

T (IVi,t)∇f ens
T (IVi,t)

′,
3: Perform eigenvalue decomposition of M = UDU ′,
4: for p ∈ [1, . . . , 180] do
5: Pick eigenvectors Up corresponding to p largest eigenvalues, and denote U−p the re-

mainder,
6: Let vec(x) be the vertical stack of flattened IVi,t for each i, t, i.e. vec(x) ∈ RN×180×1,
7: Compute µy =

1
N

∑
i,t Upvec(x),

8: Compute µz =
1
N

∑
i,t U−pvec(x),

9: Compute Σx = Cov(vec(x), vec(x)) ∈ R180×180,
10: Compute Σz = U ′

−pΣxU−p,
11: Compute Σzy = U ′

−pΣxUp,
12: Compute Σy = U ′

pΣxUp,

13: Compute Σ̂z = Σz − ΣzyΣ
−1
y Σyz,

14: Sample ϵ ∼ N (0, 1) ∈ Rn×(180−p),
15: for i, t do
16: Compute vec(yi,t) = U ′

pvec(xi,t), where

17: Sample Nε realisations of vec(z|yi,t,k) = µz + ΣzyΣ
−1
y (vec(yi,t) − µy) + Σ̂

1/2
z εk, k =

1, ..., Nε,
18: Estimate f ens

p,t (yi,t) = E
[
f ens
t (z + Upyi,t)|yi,t

]
= 1

Nε

∑Nε

k=1 f
ens
t (z|yi,t,k + Upyi,t).

19: end for
20: end for
21: We end up with N new f ens

p,t (yi,t) for p-predictions (for each p of interest) for each i, t by
which new p-portfolios are sorted.
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Figure 5: The figures above show the Sharpe Ratio of our H-L strategy (5) as a function of P,
the number of principal features, based on the function fP (x) constructed using Algorithm 1.
The experiment is run separately for each of the CNN1, CNN4, and CNN5 models.

7 Conclusion

The remarkable growth of the factor zoo (Feng et al., 2020), (Bryzgalova et al., 2023) over

the last few years has been accompanied by the development of machine learning methods

for asset pricing Gu et al. (2020b). As Kelly et al. (2021) and Didisheim et al. (2023) explain,

this is no coincidence: Factor zoo is a natural consequence of complexity: A highly non-linear

predictive relationship between returns and characteristics. The most naive and direct way

of exploiting this complexity is to build large, unstructured non-linear models such as simple,

fully connected neural networks of Gu et al. (2020b) or the random feature models of Kelly

et al. (2021) and Didisheim et al. (2023). While this approach works well with unstructured

stock characteristics, it is unsuited for structured data, such as the IV surface. To deal with

such data, one needs to develop tools and ML algorithms that exploit the data structure

optimally. In this paper, we take a step in this direction and propose Convolutional Neural

Networks (CNN) architecture designed specifically to extract features of the IV surface that

respect locality, as economic theory requires. We show that CNNs can successfully identify

highly complex non-linear relationships that cannot be learned with naive, fully-connected

networks. Importantly, we find that consistent with the existing evidence for image data
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Lakshminarayanan et al. (2017), the loss landscape of the CNN is extremely non-convex

and is characterized by a very large number of local minima. All those minima contain

information about returns. Exploiting them requires using an ensemble of CNNs, and we

document a very large virtue of ensemble complexity. Gaining insights into the incremental

information offered by the model as it converges to different local minima for other return

prediction problems (including even simpler ones, with the fully connected networks of Gu

et al. (2020b)) is an important direction for future research.

Conventional wisdom based on the numerous manually constructed option characteristics

suggests that a few linear features of the IV surface (e.g., level, slope, skew, and convexity)

should fully summarize its predictive content. To test this “linear feature sparsity hypoth-

esis,” we introduce a novel object in financial machine learning, the gradient outer product,

whose eigenvectors, the principal linear features, are natural analogs of principal components

for machine learning (Radhakrishnan et al., 2022). We find no evidence for linear feature

sparsity and show that a very large number (more than 100) of linear features are necessary

to explain the predictive content of IV, manifesting a very high feature complexity. Inves-

tigating principal linear features for other ML models and datasets might bring interesting

novel insights into the different notions of sparsity in return prediction.
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LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner, 1998, Gradient-based

learning applied to document recognition, Proceedings of the IEEE 86, 2278–2324.

Leippold, Markus, Qian Wang, and Wenyu Zhou, 2022, Machine learning in the chinese

stock market, Journal of Financial Economics 145, 64–82.

Leoni, Giovanni, 2017, A first course in Sobolev spaces (American Mathematical Soc.).

Lettau, Martin, and Markus Pelger, 2020, Factors that fit the time series and cross-section

of stock returns, The Review of Financial Studies 33, 2274–2325.

Li, Hao, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, 2018, Visualizing

the loss landscape of neural nets, Advances in neural information processing systems 31.

Lin, H., and V. Todorov, 2019, Aggregate asymmetry in idiosyncratic jump risk.

34



Lin, Min, Qiang Chen, and Shuicheng Yan, 2013, Network in network, arXiv preprint

arXiv:1312.4400 .

Liu, Yang, Guofu Zhou, and Yingzi Zhu, 2020, Maximizing the sharpe ratio: A genetic

programming approach, Available at SSRN 3726609 .

Lundberg, Scott M, and Su-In Lee, 2017, A unified approach to interpreting model predic-

tions, Advances in neural information processing systems 30.

Martin, Ian WR, and Christian Wagner, 2019, What is the expected return on a stock?, The

Journal of Finance 74, 1887–1929.

McLean, R David, and Jeffrey Pontiff, 2016, Does academic research destroy stock return

predictability?, The Journal of Finance 71, 5–32.

Moritz, Benjamin, and Tom Zimmermann, 2016, Tree-based conditional portfolio sorts: The

relation between past and future stock returns, Available at SSRN 2740751 .

Muravyev, Dmitriy, Neil D Pearson, and Joshua Matthew Pollet, 2022, Anomalies and their

short-sale costs, Available at SSRN 4266059 .

Neuhierl, Andreas, Xiaoxiao Tang, Rasmus T. Varneskov, and Guofu Zhou, 2022, Option

characteristics as cross-sectional predictors, SSRN Electronic Journal .

Orlowski, P., P. Schneider, and F. Trojani, 2020, On the nature of jump risk premia, Un-

published manuscript, Swiss finance institute.

Pederzoli, P., 2020, Skewness swaps on individual stocks.

Radhakrishnan, Adityanarayanan, Daniel Beaglehole, Parthe Pandit, and Mikhail Belkin,

2022, Feature learning in neural networks and kernel machines that recursively learn fea-

tures, arXiv preprint arXiv:2212.13881 .

Ross, S., 2015, The recovery theorem’, The Journal of Finance 70, 615–648.

Schneider, P., and F. Trojani, 2019, Divergence and the price of uncertainty’, Journal of

Financial Econometrics 17, 341–396.

Schneider, P., C. Wagner, J. Zechner, and W.F. Sharpe, 2020, Low-risk anomalies?’, The

Journal of Finance 75, 2673–2718.

35



Shankar, Vaishaal, Alex Fang, Wenshuo Guo, Sara Fridovich-Keil, Jonathan Ragan-Kelley,

Ludwig Schmidt, and Benjamin Recht, 2020, Neural kernels without tangents, in Interna-

tional Conference on Machine Learning , 8614–8623, PMLR.

Soudry, Daniel, and Yair Carmon, 2016, No bad local minima: Data independent training

error guarantees for multilayer neural networks, arXiv preprint arXiv:1605.08361 .

Stilger, P.S., A. Kostakis, and S.-H. Poon, 2017, What does risk-neutral skewness tell us

about future stock returns?’, Management Science 63, 1814–1834.

Tang, X., 2019, Variance asymmetry managed portfolios.

Xing, Y., X. Zhang, and R. Zhao, 2010, What does the individual option volatility smirk tell

us about future equity returns?’, Journal of Financial and Quantitative Analysis 641–662.

Yan, Y., 2011, Jump risk, stock returns and slope of implied volatility smile’, Journal of

Financial Economics 99, 216–223.

Yao, Zhewei, Amir Gholami, Kurt Keutzer, and Michael W Mahoney, 2020, Pyhessian:

Neural networks through the lens of the hessian, in 2020 IEEE international conference

on big data (Big data), 581–590, IEEE.

36



A Data Preprocessing

We get option implied volatility surfaces from the Option Metrics IvyDB. In IvyDB, each

option chain is already normalized across expiration dates and deltas20 (11 and 34 different

values, respectively). We remove all rows with 10-days-to-expiration implied volatility values

due to the high number of missing values at the beginning of the time frame. For each option

implied volatility surface, we end up with a 2D matrix of size 10× 34.

1995 1998 2001 2004 2007 2010 2013 2016 2019 2022
Year

200K

400K

600K

800K

1000K

1200K

#
 O

bs
er

va
ti

on
s

Incomplete Images
Missing Images
Complete Images

Figure 6: The figure above shows our dataset sample size. On the y-axis, we show the number
of observations, while on the x-axis, we show the corresponding year. One observation is a
single image obtained by stacking implied volatility surfaces for a given pair of stock and
date. Incomplete Images are those observations (stock and date pair) where some implied
volatility value is missing, given a particular expiration date and delta pair. Missing Images
are the sample where the stock and date pair appear in the dataset but have all empty
values. Complete Images are the correctly built images where the implied volatility surfaces
are complete.

We link the CRSP dataset together with the CRSP delisting dataset, both available in

WRDS, to take into account the delisting return as explained in subsection 3.1. As the

Option Metrics database uses its own security identifier and CRSP uses the PERMNO to

identify an asset uniquely, we merge these datasets thanks to a linking dataset provided by

WRDS. From the linking dataset, we remove ”bad” entries:

20In other words, each option implied volatility surface in IvyDB is interpolated across moneyness and
maturities.
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1. If an entry has a score lower than 1 is removed from our sample. A score of 1 means

a 100% of mapping confidence.

2. Each entry has a starting date (sdate), ending date (edate), Option Metrics ID (secid),

and the PERMNO. We double-sort the dataset using sdate and PERMNO. If two

consecutive entries have the same PERMNO, but the first (preceding) row has edate

higher than the second (following) row sdate, then the PERMNO is removed from our

sample as well.

B More about Convolutional Neural Networks

B.1 The Convolution Function

In this section, we present the convolution operation in continuous time and subsequently

expound upon its counterpart in the discrete domain. Convolution is a fundamental con-

cept in mathematics and is used in many areas of science and engineering to analyze and

manipulate signals and images. The operation involves taking a smaller function, called a

kernel or filter, and sliding it over a larger function, called the input, to compute the area of

overlap at each point. This process can be thought of as extracting local features from the

input function and creating a third function that captures the interactions between the two

functions. Formally, if we define the kernel function with g(t) and the signal as f(t), then

the convolution function is defined as

(f ∗ g)(t) :=
∫ ∞

−∞
f(τ)g(t− τ)dτ. (19)

One can imagine this operation as “sliding” (to the right) the kernel function while the

signal function stays still. At some point, the kernel function g(t) will start overlapping with

the signal function f(t). The area of overlap will be less or bigger depending on the “shape”

of the two functions. Equation 19 defines exactly the area where the two functions intersect.

Figure 19 shows an example of convolution in continuous time.
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Table 1: The table below shows our preprocessed Option Metrics statistics. Namely, Incom-
plete Images are those observations (stock and date pair) where some implied volatility value
is missing, given a particular expiration date and delta pair. Missing Images are the sample
where the stock and date pair appear in the dataset but have all empty values. Complete
Images are the correctly built images where the implied volatility surfaces are complete.

Year Missing (%) Incomplete (%) Complete (%) Total

1996 3289 (0.68%) 0 (0.0%) 477674 (99.32%) 480963
1997 5975 (1.03%) 0 (0.0%) 574945 (98.97%) 580920
1998 8789 (1.33%) 2 (0.0%) 651291 (98.67%) 660082
1999 11665 (1.7%) 10 (0.0%) 673334 (98.3%) 685009
2000 19943 (3.18%) 15 (0.0%) 606628 (96.81%) 626586
2001 28265 (4.84%) 6 (0.0%) 555407 (95.16%) 583678
2002 27345 (4.59%) 2 (0.0%) 568126 (95.41%) 595473
2003 10304 (1.84%) 5 (0.0%) 548341 (98.15%) 558650
2004 6137 (1.02%) 6 (0.0%) 593240 (98.98%) 599383
2005 6203 (0.94%) 3 (0.0%) 655095 (99.06%) 661301
2006 5991 (0.84%) 4 (0.0%) 706582 (99.16%) 712577
2007 8783 (1.12%) 5 (0.0%) 776060 (98.88%) 784848
2008 29436 (3.6%) 8 (0.0%) 788981 (96.4%) 818425
2009 40659 (5.04%) 7 (0.0%) 766591 (94.96%) 807257
2010 20822 (2.47%) 7 (0.0%) 821281 (97.53%) 842110
2011 26609 (2.94%) 9 (0.0%) 877955 (97.06%) 904573
2012 38756 (4.19%) 6 (0.0%) 886891 (95.81%) 925653
2013 31810 (3.22%) 3 (0.0%) 956879 (96.78%) 988692
2014 32621 (3.1%) 0 (0.0%) 1020567 (96.9%) 1053188
2015 51663 (4.78%) 0 (0.0%) 1030061 (95.22%) 1081724
2016 60616 (5.45%) 3 (0.0%) 1052121 (94.55%) 1112740
2017 53694 (4.95%) 1 (0.0%) 1031601 (95.05%) 1085296
2018 44705 (4.14%) 3 (0.0%) 1034656 (95.86%) 1079364
2019 54570 (5.1%) 1 (0.0%) 1016092 (94.9%) 1070663
2020 57409 (5.33%) 2 (0.0%) 1020423 (94.67%) 1077834
2021 20653 (1.63%) 0 (0.0%) 1248461 (98.37%) 1269114

We now introduce the definition of convolution in case the signal is discrete:

(f ∗ g)(t) :=
∞∑

τ=−∞

f(a)g(t− a). (20)

While in signal processing, the convolution function can be used to filter, smooth, or

extract features from signals, in image processing and machine learning, an edge-detection

kernel can be convolved with an image to highlight edges and contours. However, in this
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case, we will have a two-dimensional signal (the image) I and a two-dimensional kernel K

(I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n). (21)

Starting from the top-left corner of the image matrix and moving clockwise, the 2D kernel

extracts features from the matrix. Figure 8 illustrates an example of 2D convolution applied

to a 6× 6 matrix using a 3× 3 kernel. In this case, the kernel captures the first 3× 3 block

of the image matrix (highlighted in yellow) and generates a feature mapping output for the

first cell by computing 23+255+34−66−67−89 = 90. The kernel then moves by 2 cells to

capture the number -154. The distance by which the kernel moves is referred to as the stride.

Finally, the last column is dropped as the kernel wouldn’t fit, and no padding was specified.

Padding refers to adding additional pixels or values around the edges of the input image

to increase its spatial dimensions and prevent the output feature maps from becoming too

small. By adding padding, we can control the spatial resolution of the output feature maps

and ensure that the features extracted by the convolutional layers are more representative

of the original input. Normally, in the machine learning literature, the following forms of

padding are used:

• Zero-padding, where additional zero values are added to the edges of the input data.

• Reflective padding, where the values at the edges of the input are reflected to create

the additional padding.

We show in Figure 9 a more concrete example using a popular edge detection algorithm

in computer vision (see (Davis, 1975)). Like the Sobel kernel, there are many others, like

the Gaussian kernel and the Laplacian kernel. probably expand on the conclusion

B.2 The Activation Function

Now that we have a basic understanding of image processing and discrete convolution, we

can discuss using activation functions in deep learning. These functions are non-linear and
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are applied element-wise to the tensor, determining how a neuron should ”fire.” In our work,

we exclusively use the Rectified Linear Unit (ReLU) activation function, defined as

z = max{0, x} (22)

The ReLU activation function is popular in the literature due to its simplicity and ability

to create sparsity by setting negative values to zero. This can help reduce overfitting and

improve generalization. Additionally, the ReLU function is inspired by real biological neuron

models, such as the leaky integrate-and-fire model (see, e.g., (Attwell and Laughlin, 2001),

(Dayan and Abbott, 2005), and (Glorot and Bengio, 2010)).

Figure 10 shows an example: By applying the ReLU function, the negative values are set

to zero, leaving only the positive values. This helps highlight the important features in the

input image and can improve the neural network’s performance.

B.3 The Max-Pooling Function

Empirical data is often noisy, and images are no exception to this rule. When working with

image data, noise can come from various sources, such as imperfect sensors, compression

algorithms, or environmental factors. Moreover, the dimension of these images can grow

exponentially when applying CNNs. To this end, (LeCun et al., 1998) has first introduced

the max-pooling function.

The max-pooling function selects the maximum value within each pooling region, making

the pooling operation less sensitive to small variations in the input and more resistant to

noise. By reducing the dimensionality of the data, the function also helps lower the network’s

computational cost while improving performance.

Figure 11 shows an example of this function. At the top, a max-pool with a kernel size of

2× 2 is applied to an input matrix of 2× 2, giving out a single number; then, at the bottom,

the same kernel is applied to a 4× 2 matrix, giving in output a 2× 1 vector.
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B.4 The Batch-Normalization Function

When training CNNs, finding a local minimum convergence might be slow due to the dis-

tribution change for each layer in the deep architecture. While data normalization is a

common practice in machine learning, the hidden layers’ input is not normalized due to

random parameter initialization and non-linearities. Because these inputs are not normal-

ized by they are rather shifted, (Ioffe and Szegedy, 2015) call this phenomenon the internal

covariate shift. The Batch-Normalization function accelerates convergence dramatically and

acts as a regularizer, replacing the need for further heuristics techniques, e.g., Dropout. The

Batch-Normalization function is applied at each mini-batch, and Algorithm 2 sums up the

procedure.

Algorithm 2 Batch Normalization Algorithm

Require: Mini-batch of data {x1, x2, ..., xm}, trainable parameters γ and β, and a small
constant ϵ

1: µ = 1
m

∑m
i=1 St

2: σ2 = 1
m

∑m
i=1(St − µ)2

3: x̂i =
St−µ√
σ2+ϵ

4: Rt+1 = γx̂i + β

B.5 The Global Average Pooling Function

As we approach the end of the CNN architecture, it is crucial to transform the input to the

final layer into a vector right before producing a regression or classification output.

This transformation process, often referred to as ”flattening” or ”vectorization”, involves

taking the multi-dimensional output from the previous layer (usually a feature map or ac-

tivation map) and converting it into a one-dimensional vector. This is an essential step

because the final layer, which is typically a fully connected layer (also known as a dense

layer), expects its input data to be in the form of a vector. This flattened vector is then fed

into the final layer to produce the desired output, such as class probabilities for classification

tasks or continuous values for regression tasks.

Flattening the image into a one-dimensional vector can lead to several issues when using

images as input to a neural network. One problem is that flattening the image discards the
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Table 2: Annualized Sharpe Ratio Minimum & Maximum Values of the curves shown in
Figure 13 for CNN1, CNN4 and CNN5 long-short portfolios from 2003 to 2022.

SRfull SRmega SRlarge SRsmall SRmicro SRnot micro

CNN1
Min 0.756 -0.181 -0.038 0.371 1.506 0.175
Max 1.641 0.201 0.534 0.962 2.163 1.059

CNN4
Min 1.477 -0.156 0.140 0.647 1.300 0.757
Max 2.724 0.204 0.613 1.502 2.365 1.470

CNN5
Min 0.881 -0.204 -0.340 0.096 1.111 0.001
Max 2.501 0.174 0.511 1.383 2.184 1.377

spatial structure of the image, which can be important for capturing meaningful patterns

in the data. In addition, flattening the image can result in a very high-dimensional input,

which can increase the number of parameters in the model and make it more difficult to

train.

In this work, we use the Global Average Pooling (GAP) (Lin et al., 2013), a technique

that addresses these issues by summarizing the feature maps produced by a convolutional

layer using an average pooling operation. Unlike flattening, GAP preserves the feature maps’

spatial structure by computing each feature map’s average value over its entire spatial extent.

This reduces the dimensionality of the data, which can improve the model’s efficiency while

reducing the risk of overfitting.

Furthermore, GAP has been shown to have additional benefits, such as better resistance

to adversarial attacks and better generalization performance than flattening. This is because

GAP encourages the model to learn features that are robust to spatial transformations of

the input, which can help the model generalize better to new data.

Figure 12 illustrates a shallow CNN consisting of a sequence of operations: a single

convolutional layer with a ReLU activation function, followed by a max-pooling layer, and

finally, a GAP layer before the input is fed into the dense network.

C Results
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Table 3: All stocks, long-short portfolio. Monthly OLS regression of the CNN1, CNN4,
and CNN5 portfolios on the factor model that includes CIV, PIV, IVSatm, IVSotm, Skew,
VOV, ∆CIV, and ∆PIV factor portfolios from (Neuhierl et al., 2022), along with the standard
Fama-French factors. The intercept coefficient is reported in monthly return terms, with
corresponding standard errors in parentheses.

CNN1 CNN4 CNN5

Intercept 0.008∗∗∗ 0.012∗∗∗ 0.011∗∗∗

(0.002) (0.002) (0.002)
rM − rf -0.047 0.016 -0.048

(0.061) (0.056) (0.055)
SMB -0.183∗ -0.040 0.021

(0.100) (0.090) (0.089)
HML -0.085 -0.082 -0.132∗

(0.085) (0.077) (0.076)
2-12 Momentum -0.097∗∗ -0.081∗ -0.107∗∗

(0.046) (0.042) (0.041)
ST Reversal -0.074 -0.137∗∗ -0.175∗∗∗

(0.067) (0.060) (0.060)
LT Reversal 0.153∗ 0.173∗∗ 0.262∗∗∗

(0.087) (0.078) (0.077)
CIV 0.519∗∗ 0.120 0.053

(0.231) (0.209) (0.206)
PIV -0.304 -0.025 -0.014

(0.236) (0.213) (0.210)
IVSatm -0.356∗∗∗ 0.088 0.245∗∗

(0.118) (0.106) (0.105)
IVSotm 0.679∗∗∗ 0.181 0.170

(0.133) (0.121) (0.119)
Skew 0.600∗∗∗ 0.244∗∗ 0.135

(0.125) (0.113) (0.111)
VOV 0.159∗ 0.139∗ 0.144∗

(0.084) (0.076) (0.075)
∆ CIV 0.055 0.288∗∗∗ 0.182∗

(0.119) (0.107) (0.106)
∆ PIV 0.135 0.170∗ 0.086

(0.108) (0.098) (0.096)

Observations 227 227 227
R2 0.657 0.367 0.344
Adjusted R2 0.634 0.325 0.301
Residual Std. Error 0.023 0.020 0.020
F Statistic 29.003∗∗∗ 8.766∗∗∗ 7.949∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 7: The figures above show the convolution operation (f ∗ g)(t) in continuous time. In
this particular example, the kernel function, in red, g(t), is equal to the input signal, in blue,
f(t), and they share the same area. In information theory, this is a known example where
the convolution of two “rectangular” functions gives an output a “triangle.” The more you
slide the kernel function to the right, the kernel g(t) will start overlapping with the signal
f(t). The overlapping area will start increasing (b), reaching the maximum at (c), and it
will smoothly decay (d). The final figure (e) shows the convolution result.
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Figure 8: The figure above shows the convolution operation. A kernel filter with size 3x3
and stride equal to two is convolved to the 2-dimensional image matrix. The kernel filter
moves clockwise and projects the output value to the Feature Mapping matrix. A padding is
necessary to obtain the convolution in the figure. In this case, we show the ”same” padding.
Another popular option in literature is not to use padding at all. In case of no padding, the
last column would have been dropped, and the feature mapping matrix would have been a
2x2 matrix.
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Figure 9: The figure above shows an example of an edge detection algorithm using the Sobel
operator.
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Figure 10: The figure above shows the output of a ReLU activation function applied to a
2× 2 matrix.
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Figure 11: The figure above shows the max-pooling function. In this particular example,
we show a max-pooling function with a kernel 2× 2. That means the function extracts the
maximum value in a pool as big as 2× 2. Hence, the output of a 2× 2 input has size 1× 1,
and similarly, the output of a 4× 2 input has size 2× 1.
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Figure 12: The figure above shows a building block of a CNN model. From left to right, we
have the input image decomposed in an RGB tensor. To this tensor, a series of convolutions
are applied using N different kernels, in this case, with size 3x3. Next, a ReLU activation
function is applied to the previous step result. Finally, to reduce the image’s complexity
even more, a Pooling Layer is applied. The figure shows a classic MaxPool with kernel and
stride size equal to two.
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Figure 13: Sharpe ratios of ensemble-based returns (5) as a function of ensemble size. In
particular, Figures 13a, 13b, and 13c show the performance of CNN1, CNN4, and CNN5,
respectively.
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Figure 14: Cumulative Returns of the market neutral (long-short) strategy (5) for a full
universe of stocks. CNNi K refers to the ensemble of K CNNi models. IVSATM, IVSOTM,
and SKEW are the top three option characteristics-based factors from (Neuhierl et al., 2022)
in terms of Sharpe ratio, and SPY is the SP&500 ETF.
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Table 4: Mega-cap segment, long-short portfolio. Monthly OLS regression of the
CNN1, CNN4, and CNN5 portfolios on the factor model that includes CIV, PIV, IVSatm,
IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor portfolios from (Neuhierl et al., 2022), along
with the standard Fama-French factors. The intercept coefficient is reported in monthly
return terms, with corresponding standard errors in parentheses.

CNN1 CNN4 CNN5

Intercept -0.001 -0.001 -0.003
(0.002) (0.002) (0.002)

rM − rf 0.065 0.107 0.062
(0.073) (0.073) (0.071)

SMB 0.070 0.117 0.015
(0.119) (0.119) (0.115)

HML -0.061 -0.009 0.093
(0.102) (0.101) (0.098)

2-12 Momentum 0.036 -0.029 -0.016
(0.055) (0.055) (0.053)

ST Reversal -0.238∗∗∗ -0.154∗ -0.202∗∗∗

(0.080) (0.079) (0.077)
LT Reversal 0.159 0.198∗ 0.124

(0.103) (0.103) (0.100)
CIV -0.443 -0.331 -0.444∗

(0.276) (0.274) (0.267)
PIV 0.206 0.242 0.376

(0.282) (0.280) (0.272)
IVSatm -0.326∗∗ 0.031 0.195

(0.141) (0.140) (0.136)
IVSotm 0.232 -0.165 0.046

(0.159) (0.158) (0.154)
Skew 0.666∗∗∗ 0.309∗∗ 0.147

(0.149) (0.148) (0.144)
VOV 0.127 0.165∗ 0.209∗∗

(0.100) (0.099) (0.097)
∆ CIV 0.280∗∗ 0.246∗ 0.137

(0.142) (0.141) (0.137)
∆ PIV 0.311∗∗ 0.106 -0.081

(0.129) (0.128) (0.124)

Observations 227 227 227
R2 0.523 0.100 0.098
Adjusted R2 0.491 0.040 0.038
Residual Std.
Error

0.027 0.027 0.026

F Statistic 16.591∗∗∗ 1.676∗ 1.636∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5: Large-cap segment, long-short portfolio. Monthly OLS regression of the
CNN1, CNN4, and CNN5 portfolios on the factor model that includes CIV, PIV, IVSatm,
IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor portfolios from (Neuhierl et al., 2022), along
with the standard Fama-French factors. The intercept coefficient is reported in monthly
return terms, with corresponding standard errors in parentheses.

CNN1 CNN4 CNN5

Intercept -0.000 -0.001 -0.001
(0.002) (0.002) (0.002)

rM − rf 0.153∗∗ 0.085 0.016
(0.064) (0.058) (0.061)

SMB 0.118 -0.080 0.013
(0.103) (0.095) (0.100)

HML -0.022 -0.118 -0.076
(0.088) (0.081) (0.085)

2-12 Momentum -0.025 -0.052 -0.066
(0.048) (0.044) (0.046)

ST Reversal -0.031 -0.088 -0.159∗∗

(0.069) (0.063) (0.067)
LT Reversal 0.029 0.195∗∗ 0.160∗

(0.090) (0.082) (0.086)
CIV -0.099 -0.180 -0.379

(0.239) (0.219) (0.231)
PIV -0.077 0.176 0.367

(0.244) (0.223) (0.236)
IVSatm -0.451∗∗∗ 0.226∗∗ 0.368∗∗∗

(0.122) (0.111) (0.117)
IVSotm 0.684∗∗∗ -0.094 -0.154

(0.138) (0.126) (0.133)
Skew 0.577∗∗∗ 0.419∗∗∗ 0.375∗∗∗

(0.129) (0.118) (0.125)
VOV -0.060 0.200∗∗ 0.207∗∗

(0.087) (0.079) (0.084)
∆ CIV -0.050 0.114 0.126

(0.123) (0.112) (0.118)
∆ PIV 0.166 -0.150 -0.199∗

(0.112) (0.102) (0.108)

Observations 227 227 227
R2 0.534 0.199 0.194
Adjusted R2 0.503 0.146 0.141
Residual Std.
Error

0.023 0.021 0.023

F Statistic 17.321∗∗∗ 3.752∗∗∗ 3.641∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: Small-cap segment, long-short portfolio. Monthly OLS regression of the
CNN1, CNN4, and CNN5 portfolios on the factor model that includes CIV, PIV, IVSatm,
IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor portfolios from (Neuhierl et al., 2022), along
with the standard Fama-French factors. The intercept coefficient is reported in monthly
return terms, with corresponding standard errors in parentheses.

CNN1 CNN4 CNN5

Intercept 0.001 0.005∗∗ 0.005∗∗

(0.002) (0.002) (0.002)
rM − rf -0.013 0.125 0.005

(0.077) (0.079) (0.072)
SMB -0.333∗∗∗ -0.022 0.054

(0.125) (0.129) (0.117)
HML 0.176∗ 0.065 0.006

(0.107) (0.110) (0.099)
2-12 Momentum 0.022 0.007 -0.074

(0.058) (0.060) (0.054)
ST Reversal 0.022 -0.050 -0.109

(0.084) (0.086) (0.078)
LT Reversal -0.022 -0.034 0.152

(0.108) (0.111) (0.101)
CIV 0.347 0.374 0.207

(0.290) (0.298) (0.270)
PIV -0.068 -0.318 -0.181

(0.295) (0.304) (0.275)
IVSatm -0.198 0.059 0.414∗∗∗

(0.147) (0.152) (0.137)
IVSotm 0.511∗∗∗ 0.190 0.081

(0.167) (0.172) (0.155)
Skew 0.540∗∗∗ 0.191 0.121

(0.156) (0.161) (0.146)
VOV -0.007 0.106 0.105

(0.105) (0.108) (0.098)
∆ CIV -0.039 0.011 -0.139

(0.148) (0.153) (0.138)
∆ PIV 0.232∗ 0.124 -0.053

(0.135) (0.139) (0.126)

Observations 227 227 227
R2 0.457 0.132 0.190
Adjusted R2 0.421 0.074 0.136
Residual Std.
Error

0.028 0.029 0.026

F Statistic 12.723∗∗∗ 2.297∗∗∗ 3.547∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Micro-cap segment, long-short portfolio. Monthly OLS regression of the
CNN1, CNN4, and CNN5 portfolios on the factor model that includes the CIV, PIV, IVSatm,
IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor portfolios from (Neuhierl et al., 2022), along
with the standard Fama-French factors. The intercept coefficient is reported in monthly
return terms, with corresponding standard errors in parentheses.

CNN1 CNN4 CNN5

Intercept 0.034∗∗∗ 0.041∗∗∗ 0.038∗∗∗

(0.006) (0.006) (0.006)
rM − rf -0.512∗∗∗ -0.389∗ -0.245

(0.187) (0.204) (0.204)
SMB -0.228 0.061 0.291

(0.305) (0.333) (0.332)
HML -0.417 -0.341 -0.456

(0.260) (0.283) (0.283)
2-12 Momentum -0.253∗ -0.376∗∗ -0.378∗∗

(0.141) (0.154) (0.154)
ST Reversal -0.265 -0.639∗∗∗ -0.670∗∗∗

(0.204) (0.222) (0.222)
LT Reversal 0.397 0.434 0.568∗∗

(0.264) (0.288) (0.288)
CIV 1.769∗∗ 0.543 0.459

(0.706) (0.770) (0.769)
PIV -1.351∗ -0.478 -0.666

(0.720) (0.785) (0.785)
IVSatm -0.304 0.553 0.440

(0.359) (0.391) (0.391)
IVSotm 0.858∗∗ 0.385 0.741∗

(0.406) (0.443) (0.443)
Skew 0.372 -0.031 -0.280

(0.381) (0.416) (0.416)
VOV 0.279 1.043∗∗∗ 0.833∗∗∗

(0.255) (0.279) (0.278)
∆ CIV 0.301 0.691∗ 0.774∗

(0.362) (0.394) (0.394)
∆ PIV 0.212 0.370 0.293

(0.329) (0.359) (0.359)

Observations 227 227 227
R2 0.354 0.240 0.219
Adjusted R2 0.312 0.190 0.167
Residual Std.
Error

0.069 0.075 0.075

F Statistic 8.305∗∗∗ 4.778∗∗∗ 4.235∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8: Not-micro-cap segment, long-short portfolio. Monthly OLS regression of the
CNN1, CNN4, and CNN5 portfolios on the factor model that includes CIV, PIV, IVSatm,
IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor portfolios from (Neuhierl et al., 2022), along
with the standard Fama-French factors. The intercept coefficient is reported in monthly
return terms, with corresponding standard errors in parentheses.

CNN1 CNN4 CNN5

Intercept 0.002 0.004∗∗ 0.003∗

(0.002) (0.002) (0.002)
rM − rf 0.061 0.047 0.023

(0.057) (0.051) (0.048)
SMB -0.067 0.017 0.032

(0.093) (0.083) (0.079)
HML 0.018 0.029 -0.012

(0.079) (0.070) (0.067)
2-12 Momentum -0.042 -0.002 -0.026

(0.043) (0.038) (0.036)
ST Reversal -0.059 -0.001 -0.086

(0.062) (0.055) (0.053)
LT Reversal 0.063 0.074 0.147∗∗

(0.080) (0.071) (0.068)
CIV 0.150 -0.076 -0.107

(0.215) (0.191) (0.182)
PIV -0.081 0.130 0.132

(0.219) (0.195) (0.186)
IVSatm -0.303∗∗∗ 0.089 0.286∗∗∗

(0.109) (0.097) (0.093)
IVSotm 0.490∗∗∗ 0.029 0.005

(0.124) (0.110) (0.105)
Skew 0.582∗∗∗ 0.329∗∗∗ 0.256∗∗∗

(0.116) (0.103) (0.098)
VOV 0.018 0.095 0.111∗

(0.078) (0.069) (0.066)
∆ CIV -0.065 0.087 -0.043

(0.110) (0.098) (0.093)
∆ PIV 0.120 0.066 -0.081

(0.100) (0.089) (0.085)

Observations 227 227 227
R2 0.512 0.205 0.216
Adjusted R2 0.479 0.153 0.164
Residual Std.
Error

0.021 0.019 0.018

F Statistic 15.865∗∗∗ 3.908∗∗∗ 4.169∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: The number of parameters for a single, 40-ensemble, and 100-ensemble for our set
of CNN models. Similarly, Single c, 40-ensemble c, and 100-ensemble c show the total model
complexity as defined in (Kelly et al., 2021): c := P/T , where T = 973947 is the total
number of observations at the end of the sample (all models are trained using an expanding
window).

Model Single 40-Ensemble 100-Ensemble Single c 40-Ensemble c 100-Ensemble c

CNN1 1921 76840 192100 0.002 0.079 0.197
CNN4 98241 3929640 9824100 0.101 4.035 10.087
CNN5 394561 15782440 39456100 0.405 16.205 40.512
NN1 23809 952360 2380900 0.024 0.978 2.445
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Table 10: All stocks, long-short portfolio. Cross-sectional (Fama-MacBeth) regression
of next-month security returns ri,t+1 for the full stock universe on a set of predictive charac-

teristics over the time period February 2003 to December 2021. R̂ens
t,CNN is the prediction in

(4). CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV and ∆PIV are option characteristics from
(Neuhierl et al., 2022). ret are momentum- and short-term-reversal-based characteristics;
β are market beta characteristics; ivol are idiosyncratic volatility characteristics. All these
are taken from (Jensen et al., 2022b). T-statistics are reported in parentheses.

CNN1 CNN4 CNN5

R̂ens
t,CNN 16.28∗∗∗ 8.30∗∗∗ 3.85∗∗

(4.38) (4.42) (2.44)
CIV 0.54∗∗ 0.52∗ 0.57∗∗

(2.02) (1.91) (2.14)
PIV -0.70∗∗∗ -0.64∗∗ -0.68∗∗

(-2.58) (-2.32) (-2.46)
IVSatm -1.24∗∗∗ -1.15∗∗∗ -1.25∗∗∗

(-4.15) (-3.80) (-4.16)
IVSotm 0.10 -0.13 -0.16

(0.31) (-0.40) (-0.51)
Skew -0.56∗ -0.73∗∗ -0.75∗∗

(-1.68) (-2.19) (-2.24)
VOV -0.88∗∗ -0.91∗∗ -0.93∗∗

(-2.44) (-2.50) (-2.54)
∆CIV -0.22 -0.28 -0.33

(-0.64) (-0.85) (-0.98)
∆PIV 0.22 0.18 0.21

(0.62) (0.50) (0.59)
ret 1 0 -0.48 -0.50 -0.54

(-0.86) (-0.89) (-0.97)
ret 6 1 0.06 0.05 0.05

(0.24) (0.20) (0.19)
ret 12 1 0.30∗∗ 0.28∗ 0.28∗

(2.01) (1.90) (1.91)
ret 18 1 -0.26∗∗ -0.26∗∗ -0.27∗∗

(-2.21) (-2.16) (-2.21)
rvol 21d -8.68 -9.64 -9.34

(-0.43) (-0.48) (-0.46)
rvol 252d -125.12∗∗ -116.52∗∗ -113.90∗∗

(-2.15) (-2.01) (-1.96)
beta 21d -0.08 -0.07 -0.08

(-0.43) (-0.42) (-0.46)
beta 252d 0.70∗∗ 0.63∗ 0.63∗

(2.11) (1.90) (1.91)
ivol capm 21d 6.02 6.74 6.67

(0.31) (0.35) (0.35)
ivol capm 252d 105.79∗ 98.22∗ 95.50∗

(1.89) (1.76) (1.71)
ami 126d 1.05 1.22 1.24

(1.01) (1.18) (1.21)

Note: ∗t>1.645; ∗∗t<1.960; ∗∗∗t>2.576
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Table 11: Mega-cap segment, long-short portfolio. Cross-sectional (Fama-MacBeth)
regression of next-month security returns ri,t+1 for the full stock universe on a set of pre-

dictive characteristics over the time period February 2003 to December 2021. R̂ens
t,CNN is

the prediction in (4). CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV and ∆PIV are option
characteristics from (Neuhierl et al., 2022). ret are momentum- and short-term-reversal-
based characteristics; β are market beta characteristics; ivol are idiosyncratic volatility
characteristics. All these are taken from (Jensen et al., 2022b). T-statistics are reported in
parentheses.

CNN1 CNN4 CNN5

R̂t+1,CNN -3.56 1.30 -6.29
(-0.25) (0.17) (-0.98)

CIV 0.54 0.65 0.60
(0.75) (0.89) (0.83)

PIV 0.11 0.32 0.25
(0.14) (0.44) (0.34)

∆CIV 0.45 0.45 0.43
(0.45) (0.43) (0.41)

∆PIV -0.68 -0.75 -0.63
(-0.65) (-0.71) (-0.60)

IVSatm -0.43 -0.33 -0.35
(-0.43) (-0.34) (-0.36)

IVSotm -1.26 -1.14 -1.23
(-1.54) (-1.47) (-1.58)

Skew -0.53 -1.31 -1.29
(-0.54) (-1.31) (-1.25)

VOV -0.70 -0.64 -0.71
(-1.04) (-0.95) (-1.06)

ret 1 0 -0.26 -0.32 -0.29
(-0.34) (-0.41) (-0.38)

ret 6 1 0.16 0.17 0.16
(0.42) (0.44) (0.42)

ret 12 1 0.35 0.35 0.35
(1.11) (1.09) (1.11)

ret 18 1 0.05 0.03 0.03
(0.23) (0.16) (0.14)

rvol 21d -91.26∗∗ -102.38∗∗ -97.26∗∗

(-2.19) (-2.45) (-2.34)
rvol 252d -31.30 -15.06 -22.78

(-0.29) (-0.14) (-0.21)
beta 21d 0.58 0.68∗ 0.67∗

(1.57) (1.81) (1.79)
beta 252d -0.48 -0.63 -0.56

(-0.54) (-0.71) (-0.64)
ivol capm 21d 80.89∗∗ 89.25∗∗ 84.49∗∗

(2.13) (2.36) (2.24)
ivol capm 252d 17.16 1.28 8.71

(0.18) (0.01) (0.09)
ami 126d 59.06 63.12 72.27

(0.62) (0.65) (0.75)

Note: ∗t>1.645; ∗∗t<1.960; ∗∗∗t>2.576
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Table 12: Large-cap segment, long-short portfolio. Cross-sectional (Fama-MacBeth)
regression of next-month security returns ri,t+1 for the full stock universe on a set of pre-

dictive characteristics over the time period February 2003 to December 2021. R̂ens
t,CNN is

the prediction in (4). CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV and ∆PIV are option
characteristics from (Neuhierl et al., 2022). ret are momentum- and short-term-reversal-
based characteristics; β are market beta characteristics; ivol are idiosyncratic volatility
characteristics. All these are taken from (Jensen et al., 2022b). T-statistics are reported in
parentheses.

CNN1 CNN4 CNN5

R̂t+1,CNN 5.82 -1.05 -0.50
(0.67) (-0.28) (-0.15)

CIV 0.43 0.33 0.37
(1.02) (0.79) (0.88)

PIV -0.28 -0.38 -0.33
(-0.67) (-0.91) (-0.79)

∆CIV 0.02 -0.06 -0.08
(0.03) (-0.11) (-0.14)

∆PIV 0.25 0.28 0.27
(0.46) (0.50) (0.50)

IVSatm -0.70 -0.71 -0.69
(-1.27) (-1.25) (-1.23)

IVSotm 0.30 0.20 0.15
(0.64) (0.42) (0.33)

Skew -0.95∗∗ -1.03∗∗ -1.03∗∗

(-2.01) (-2.08) (-2.08)
VOV -0.97∗∗ -0.93∗ -0.93∗

(-2.00) (-1.92) (-1.92)
ret 1 0 -0.69 -0.65 -0.63

(-0.95) (-0.91) (-0.87)
ret 6 1 0.25 0.24 0.25

(0.81) (0.77) (0.79)
ret 12 1 0.25 0.25 0.25

(1.26) (1.24) (1.23)
ret 18 1 -0.24 -0.24 -0.24

(-1.53) (-1.50) (-1.48)
rvol 21d 2.96 3.39 4.67

(0.10) (0.11) (0.16)
rvol 252d 38.71 34.80 36.87

(0.37) (0.33) (0.35)
beta 21d -0.26 -0.26 -0.26

(-1.06) (-1.04) (-1.08)
beta 252d 0.13 0.16 0.15

(0.21) (0.25) (0.24)
ivol capm 21d 2.28 1.63 0.29

(0.08) (0.06) (0.01)
ivol capm 252d -59.77 -53.94 -56.82

(-0.62) (-0.57) (-0.60)
ami 126d 4.24 0.60 0.05

(0.25) (0.04) (0.00)

Note: ∗t>1.645; ∗∗t<1.960; ∗∗∗t>2.576
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Table 13: Small-cap segment, long-short portfolio. Cross-sectional (Fama-MacBeth)
regression of next-month security returns ri,t+1 for the full stock universe on a set of pre-

dictive characteristics over the time period February 2003 to December 2021. R̂ens
t,CNN is

the prediction in (4). CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV and ∆PIV are option
characteristics from (Neuhierl et al., 2022). ret are momentum- and short-term-reversal-
based characteristics; β are market beta characteristics; ivol are idiosyncratic volatility
characteristics. All these are taken from (Jensen et al., 2022b). T-statistics are reported in
parentheses.

CNN1 CNN4 CNN5

R̂t+1,CNN 19.85∗∗∗ 10.43∗∗∗ 6.88∗∗

(2.86) (3.71) (2.47)
CIV 0.85∗∗ 0.74∗ 0.77∗

(2.02) (1.78) (1.86)
PIV -0.78∗∗ -0.74∗ -0.79∗∗

(-1.98) (-1.92) (-2.03)
∆CIV -0.45 -0.61 -0.65

(-0.86) (-1.18) (-1.26)
∆PIV 0.29 0.35 0.38

(0.56) (0.69) (0.74)
IVSatm -1.62∗∗∗ -1.48∗∗∗ -1.57∗∗∗

(-3.70) (-3.36) (-3.53)
IVSotm -0.12 -0.38 -0.39

(-0.29) (-0.97) (-0.97)
Skew 0.30 0.11 0.09

(0.59) (0.22) (0.18)
VOV -0.98∗∗ -0.94∗∗ -0.94∗∗

(-2.09) (-2.10) (-2.08)
ret 1 0 -0.61 -0.61 -0.65

(-0.98) (-0.98) (-1.04)
ret 6 1 0.14 0.12 0.12

(0.50) (0.43) (0.43)
ret 12 1 0.17 0.17 0.18

(1.01) (1.01) (1.07)
ret 18 1 -0.23∗ -0.22∗ -0.23∗

(-1.75) (-1.65) (-1.75)
rvol 21d -2.11 -2.74 -2.36

(-0.07) (-0.10) (-0.08)
rvol 252d -143.25 -133.55 -140.45

(-1.22) (-1.15) (-1.20)
beta 21d -0.27 -0.26 -0.26

(-0.97) (-0.93) (-0.94)
beta 252d 0.63 0.55 0.58

(1.22) (1.06) (1.13)
ivol capm 21d 4.33 4.12 4.33

(0.16) (0.15) (0.16)
ivol capm 252d 121.52 113.08 119.74

(1.10) (1.03) (1.08)
ami 126d 1.10 0.64 1.02

(0.25) (0.15) (0.23)

Note: ∗t>1.645; ∗∗t<1.960; ∗∗∗t>2.576
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Table 14: Micro-cap segment, long-short portfolio. Cross-sectional (Fama-MacBeth)
regression of next-month security returns ri,t+1 for the full stock universe on a set of pre-

dictive characteristics over the time period February 2003 to December 2021. R̂ens
t,CNN is

the prediction in (4). CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV and ∆PIV are option
characteristics from (Neuhierl et al., 2022). ret are momentum- and short-term-reversal-
based characteristics; β are market beta characteristics; ivol are idiosyncratic volatility
characteristics. All these are taken from (Jensen et al., 2022b). T-statistics are reported in
parentheses.

CNN1 CNN4 CNN5

R̂t+1,CNN 16.11∗ 6.71 2.11
(1.94) (1.26) (0.37)

CIV -0.49 -0.48 -0.35
(-0.83) (-0.83) (-0.56)

PIV -0.79 -0.65 -0.70
(-1.42) (-1.14) (-1.20)

∆CIV 0.36 0.35 0.17
(0.46) (0.44) (0.22)

∆PIV 0.23 0.12 0.24
(0.29) (0.15) (0.30)

IVSatm -0.29 -0.17 -0.35
(-0.32) (-0.19) (-0.37)

IVSotm -0.58 -1.05 -1.02
(-0.58) (-1.13) (-1.13)

Skew -1.32 -1.63∗∗ -1.68∗∗

(-1.58) (-2.12) (-2.24)
VOV -3.94∗∗∗ -4.43∗∗∗ -4.50∗∗∗

(-2.77) (-3.07) (-3.07)
ret 1 0 -0.25 -0.26 -0.38

(-0.32) (-0.34) (-0.49)
ret 6 1 -0.31 -0.30 -0.33

(-0.71) (-0.69) (-0.76)
ret 12 1 0.33 0.24 0.25

(0.94) (0.70) (0.71)
ret 18 1 -0.21 -0.16 -0.15

(-0.76) (-0.55) (-0.51)
rvol 21d -98.64 -91.46 -93.97

(-1.60) (-1.53) (-1.59)
rvol 252d 197.02 241.10 261.30

(0.60) (0.74) (0.80)
beta 21d 0.08 0.09 0.08

(0.30) (0.34) (0.29)
beta 252d -0.40 -0.63 -0.61

(-0.40) (-0.63) (-0.62)
ivol capm 21d 83.45 75.97 78.99

(1.40) (1.30) (1.37)
ivol capm 252d -193.20 -236.00 -256.20

(-0.60) (-0.74) (-0.80)
ami 126d 0.57 0.34 0.36

(0.42) (0.26) (0.27)

Note: ∗t>1.645; ∗∗t<1.960; ∗∗∗t>2.576
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Table 15: Not-micro-cap segment, long-short portfolio. Cross-sectional regression of
next-month security returns ri,t+1 for the full stock universe on a set of predictive character-

istics over the time period February 2003 to December 2021. R̂ens
t,CNN is the prediction in (4).

CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV and ∆PIV are option characteristics from
(Neuhierl et al., 2022). ret are momentum- and short-term-reversal-based characteristics;
β are market beta characteristics; ivol are idiosyncratic volatility characteristics. All these
are taken from (Jensen et al., 2022b). T-statistics are reported in parentheses.

CNN1 CNN4 CNN5

R̂t+1,CNN 18.18∗∗∗ 7.50∗∗∗ 4.60∗∗

(3.38) (3.15) (2.17)
CIV 0.61∗ 0.53∗ 0.56∗

(1.93) (1.69) (1.77)
PIV -0.50∗ -0.49 -0.53∗

(-1.66) (-1.59) (-1.71)
∆CIV -0.23 -0.33 -0.35

(-0.58) (-0.83) (-0.89)
∆PIV 0.19 0.18 0.21

(0.46) (0.45) (0.52)
IVSatm -1.12∗∗∗ -1.02∗∗∗ -1.08∗∗∗

(-3.58) (-3.23) (-3.43)
IVSotm 0.15 -0.11 -0.13

(0.44) (-0.34) (-0.39)
Skew -0.36 -0.53 -0.55

(-0.99) (-1.48) (-1.53)
VOV -0.83∗∗ -0.84∗∗ -0.85∗∗

(-2.20) (-2.24) (-2.25)
ret 1 0 -0.66 -0.70 -0.70

(-1.08) (-1.14) (-1.15)
ret 6 1 0.14 0.12 0.13

(0.54) (0.46) (0.48)
ret 12 1 0.27∗ 0.27∗ 0.27∗

(1.73) (1.71) (1.74)
ret 18 1 -0.23∗ -0.23∗ -0.23∗

(-1.89) (-1.85) (-1.88)
rvol 21d -4.91 -5.17 -4.94

(-0.24) (-0.25) (-0.24)
rvol 252d -101.99 -91.69 -93.77

(-1.44) (-1.30) (-1.32)
beta 21d -0.08 -0.09 -0.09

(-0.40) (-0.42) (-0.41)
beta 252d 0.48 0.42 0.43

(1.10) (0.97) (1.00)
ivol capm 21d 7.84 7.85 7.73

(0.40) (0.40) (0.39)
ivol capm 252d 79.41 70.26 71.99

(1.20) (1.07) (1.09)
ami 126d 2.58 2.79 3.06

(0.70) (0.76) (0.83)

Note: ∗t>1.645; ∗∗t<1.960; ∗∗∗t>2.576
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C.1 Long-only Portfolio Performance
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Figure 15: Long-only strategy (7). Cumulative Returns of (7) for the full universe of
stocks. CNNi K refers to the ensemble of K CNNi models. IVSATM, IVSOTM, and
SKEW are the top three option characteristics-based factors from (Neuhierl et al., 2022),
and SPY is the SP&500 ETF.
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Table 16: All stocks, long-only portfolio (7). Monthly OLS regression of the CNN1,
CNN4, and CNN5 long-only portfolios on the factor model that includes the CIV, PIV,
IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor portfolios from (Neuhierl et al., 2022),
along with the standard Fama-French factors. The intercept coefficient is reported in monthly
return terms, with corresponding standard errors in parentheses.

CNN1ew CNN4ew CNN5ew

Intercept 0.004∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.002) (0.001) (0.001)
rM − rf 0.835∗∗∗ 0.944∗∗∗ 0.930∗∗∗

(0.049) (0.041) (0.042)
SMB 0.248∗∗∗ 0.422∗∗∗ 0.473∗∗∗

(0.079) (0.066) (0.068)
HML 0.048 0.016 -0.014

(0.067) (0.056) (0.058)
2-12 Momentum -0.167∗∗∗ -0.127∗∗∗ -0.145∗∗∗

(0.037) (0.031) (0.032)
ST Reversal 0.048 0.015 0.008

(0.053) (0.044) (0.046)
LT Reversal 0.099 0.130∗∗ 0.176∗∗∗

(0.068) (0.057) (0.059)
CIV 0.655∗∗∗ 0.568∗∗∗ 0.467∗∗∗

(0.183) (0.153) (0.158)
PIV -0.105 -0.026 0.016

(0.187) (0.157) (0.161)
IVSatm -0.299∗∗∗ -0.157∗∗ -0.050

(0.093) (0.078) (0.080)
IVSotm 0.401∗∗∗ 0.171∗ 0.142

(0.105) (0.088) (0.091)
Skew 0.458∗∗∗ 0.279∗∗∗ 0.221∗∗

(0.099) (0.083) (0.085)
VOV 0.115∗ 0.125∗∗ 0.141∗∗

(0.066) (0.056) (0.057)
∆ CIV 0.035 0.112 0.029

(0.094) (0.079) (0.081)
∆ PIV -0.007 0.036 -0.022

(0.085) (0.072) (0.074)

Observations 227 227 227
R2 0.946 0.967 0.963
Adjusted R2 0.943 0.965 0.961
Residual Std. Error 0.018 0.015 0.015
F Statistic 267.669∗∗∗ 444.960∗∗∗ 395.497∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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C.2 The Impact of Costs

Table 17: Annualized Sharpe Ratio calculated for equal-weighted portfolios constructed using
our 100-Ensemble models (CNNi and NN1) and Ridge Regression predictions. We consider
both transaction and short-sale fees of 0, 20, and 40 bps for the micro-cap group, and fees
of 0, 10, and 20 bps for all other groups.

SRfull SRmega SRlarge SRsmall SRmicro SRnot micro

Base Fee: 0bps
Model
CNN1 1.57 0.06 0.47 0.86 1.92 0.94
CNN4 2.66 0.03 0.47 1.45 2.22 1.45
CNN5 2.44 -0.05 0.36 1.34 2.14 1.29

Ridgez=0.1 1.70 0.43 0.59 1.09 1.93 0.98
NN1 2.04 0.31 0.63 1.30 2.53 1.22

Base Fee: 10bps
Model
CNN1 1.20 -0.26 0.11 0.54 1.67 0.54
CNN4 2.05 -0.42 -0.08 1.03 1.95 0.84
CNN5 1.80 -0.51 -0.16 0.89 1.86 0.65

Ridgez=0.1 1.30 0.09 0.23 0.74 1.56 0.61
NN1 1.62 -0.03 0.23 0.94 2.21 0.79

Base Fee: 20bps
Model
CNN1 0.83 -0.59 -0.26 0.21 1.41 0.13
CNN4 1.43 -0.87 -0.62 0.61 1.67 0.23
CNN5 1.16 -0.98 -0.69 0.43 1.58 0.00

Ridgez=0.1 0.90 -0.24 -0.13 0.39 1.19 0.23
NN1 1.19 -0.38 -0.16 0.58 1.89 0.36
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D Additional Results

D.1 Ridge Regression Results

Table 18: All stocks, ridge long-short portfolio Monthly OLS regression of the Ridge
portfolios on the factor model that includes the CIV, PIV, IVSatm, IVSotm, Skew, VOV,
∆CIV, and ∆PIV factor portfolios from (Neuhierl et al., 2022), along with the standard
Fama-French factors. The intercept coefficient is reported in monthly return terms, with
corresponding standard errors in parentheses. z is the penalty term. Sharpe Ratio Full
Sample: 1.70.

z = 10−5 z = 10−3 z = 10−1 z = 100 z = 101

Intercept 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
rM − rf 0.066 0.066 0.065 0.059 0.059

(0.051) (0.051) (0.051) (0.051) (0.050)
SMB -0.028 -0.028 -0.028 -0.026 -0.042

(0.083) (0.083) (0.083) (0.082) (0.081)
HML -0.139∗ -0.139∗∗ -0.141∗∗ -0.140∗∗ -0.158∗∗

(0.071) (0.071) (0.070) (0.070) (0.069)
2-12 Momentum 0.109∗∗∗ 0.109∗∗∗ 0.108∗∗∗ 0.107∗∗∗ 0.117∗∗∗

(0.038) (0.038) (0.038) (0.038) (0.038)
ST Reversal 0.013 0.013 0.016 0.022 0.029

(0.055) (0.055) (0.055) (0.055) (0.054)
LT Reversal 0.223∗∗∗ 0.223∗∗∗ 0.226∗∗∗ 0.223∗∗∗ 0.233∗∗∗

(0.072) (0.072) (0.072) (0.071) (0.070)
CIV 0.473∗∗ 0.473∗∗ 0.475∗∗ 0.500∗∗∗ 0.518∗∗∗

(0.192) (0.192) (0.191) (0.190) (0.188)
PIV -0.169 -0.169 -0.171 -0.193 -0.190

(0.195) (0.195) (0.195) (0.194) (0.192)
IVSatm -0.010 -0.010 -0.009 -0.014 -0.012

(0.097) (0.097) (0.097) (0.097) (0.096)
IVSotm 0.412∗∗∗ 0.412∗∗∗ 0.408∗∗∗ 0.405∗∗∗ 0.353∗∗∗

(0.110) (0.110) (0.110) (0.110) (0.108)
Skew 0.549∗∗∗ 0.549∗∗∗ 0.554∗∗∗ 0.555∗∗∗ 0.584∗∗∗

(0.104) (0.104) (0.103) (0.103) (0.102)
VOV 0.152∗∗ 0.152∗∗ 0.153∗∗ 0.155∗∗ 0.137∗∗

(0.069) (0.069) (0.069) (0.069) (0.068)
∆ CIV -0.055 -0.055 -0.060 -0.066 -0.070

(0.098) (0.098) (0.098) (0.098) (0.096)
∆ PIV 0.145 0.145 0.142 0.149∗ 0.158∗

(0.089) (0.089) (0.089) (0.089) (0.088)

Observations 227 227 227 227 227
R2 0.734 0.734 0.735 0.738 0.743
Adjusted R2 0.717 0.717 0.718 0.721 0.726
Residual Std. Error 0.019 0.019 0.019 0.019 0.018
F Statistic 41.861∗∗∗ 41.874∗∗∗ 42.093∗∗∗ 42.653∗∗∗ 43.801∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 19: Mega-cap segment, ridge long-short portfolio Monthly OLS regression of
the Ridge portfolios on the factor model that includes the CIV, PIV, IVSatm, IVSotm, Skew,
VOV, ∆CIV, and ∆PIV factor portfolios from (Neuhierl et al., 2022), along with the standard
Fama-French factors. The intercept coefficient is reported in monthly return terms, with
corresponding standard errors in parentheses. z is the penalty term. Sharpe Ratio Mega
Sample: 0.42.

z = 10−5 z = 10−3 z = 10−1 z = 100 z = 101

Intercept -0.001 -0.001 -0.001 -0.001 -0.001
(0.002) (0.002) (0.002) (0.002) (0.002)

rM − rf 0.173∗∗ 0.173∗∗ 0.173∗∗ 0.178∗∗ 0.180∗∗

(0.073) (0.073) (0.073) (0.073) (0.073)
SMB 0.055 0.055 0.057 0.060 0.048

(0.118) (0.118) (0.118) (0.119) (0.119)
HML -0.165 -0.165 -0.165 -0.153 -0.178∗

(0.101) (0.101) (0.101) (0.101) (0.101)
2-12 Momentum 0.190∗∗∗ 0.190∗∗∗ 0.190∗∗∗ 0.188∗∗∗ 0.199∗∗∗

(0.055) (0.055) (0.055) (0.055) (0.055)
ST Reversal 0.004 0.004 0.000 -0.000 -0.003

(0.079) (0.079) (0.079) (0.079) (0.079)
LT Reversal 0.214∗∗ 0.214∗∗ 0.215∗∗ 0.214∗∗ 0.232∗∗

(0.102) (0.102) (0.102) (0.103) (0.103)
CIV -0.050 -0.050 -0.057 -0.056 -0.025

(0.273) (0.273) (0.273) (0.275) (0.275)
PIV 0.070 0.070 0.075 0.067 0.034

(0.279) (0.279) (0.279) (0.281) (0.280)
IVSatm -0.262∗ -0.262∗ -0.261∗ -0.272∗ -0.311∗∗

(0.139) (0.139) (0.139) (0.140) (0.140)
IVSotm 0.215 0.215 0.214 0.235 0.226

(0.157) (0.157) (0.157) (0.158) (0.158)
Skew 0.597∗∗∗ 0.597∗∗∗ 0.593∗∗∗ 0.579∗∗∗ 0.571∗∗∗

(0.148) (0.148) (0.148) (0.149) (0.149)
VOV 0.551∗∗∗ 0.551∗∗∗ 0.550∗∗∗ 0.547∗∗∗ 0.540∗∗∗

(0.099) (0.099) (0.099) (0.100) (0.099)
∆ CIV -0.077 -0.077 -0.075 -0.071 -0.014

(0.140) (0.140) (0.140) (0.141) (0.141)
∆ PIV 0.174 0.174 0.173 0.181 0.229∗

(0.127) (0.127) (0.127) (0.128) (0.128)

Observations 227 227 227 227 227
R2 0.444 0.444 0.443 0.439 0.447
Adjusted R2 0.408 0.408 0.406 0.402 0.410
Residual Std. Error 0.027 0.027 0.027 0.027 0.027
F Statistic 12.106∗∗∗ 12.106∗∗∗ 12.051∗∗∗ 11.847∗∗∗ 12.240∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 20: Large-cap segment, ridge long-short portfolio Monthly OLS regression of
the Ridge portfolios on the factor model that includes the CIV, PIV, IVSatm, IVSotm, Skew,
VOV, ∆CIV, and ∆PIV factor portfolios from (Neuhierl et al., 2022), along with the standard
Fama-French factors. The intercept coefficient is reported in monthly return terms, with
corresponding standard errors in parentheses. z is the penalty term. Sharpe Ratio Large
Sample: 0.60.

z = 10−5 z = 10−3 z = 10−1 z = 100 z = 101

Intercept -0.003 -0.003 -0.003 -0.003 -0.002
(0.002) (0.002) (0.002) (0.002) (0.002)

rM − rf 0.214∗∗∗ 0.214∗∗∗ 0.214∗∗∗ 0.204∗∗∗ 0.188∗∗∗

(0.062) (0.062) (0.062) (0.062) (0.061)
SMB 0.321∗∗∗ 0.321∗∗∗ 0.322∗∗∗ 0.304∗∗∗ 0.327∗∗∗

(0.101) (0.101) (0.101) (0.101) (0.099)
HML -0.239∗∗∗ -0.239∗∗∗ -0.237∗∗∗ -0.243∗∗∗ -0.283∗∗∗

(0.086) (0.086) (0.086) (0.086) (0.085)
2-12 Momentum 0.185∗∗∗ 0.185∗∗∗ 0.184∗∗∗ 0.181∗∗∗ 0.174∗∗∗

(0.047) (0.047) (0.047) (0.047) (0.046)
ST Reversal 0.183∗∗∗ 0.183∗∗∗ 0.183∗∗∗ 0.174∗∗ 0.191∗∗∗

(0.068) (0.068) (0.068) (0.067) (0.066)
LT Reversal 0.194∗∗ 0.194∗∗ 0.193∗∗ 0.197∗∗ 0.247∗∗∗

(0.088) (0.088) (0.088) (0.087) (0.086)
CIV -0.028 -0.028 -0.035 -0.035 -0.030

(0.234) (0.234) (0.234) (0.233) (0.230)
PIV 0.046 0.046 0.052 0.064 0.046

(0.239) (0.239) (0.239) (0.238) (0.234)
IVSatm -0.072 -0.072 -0.074 -0.052 -0.062

(0.119) (0.119) (0.119) (0.118) (0.117)
IVSotm 0.281∗∗ 0.281∗∗ 0.279∗∗ 0.261∗ 0.265∗∗

(0.135) (0.135) (0.135) (0.134) (0.132)
Skew 0.587∗∗∗ 0.587∗∗∗ 0.590∗∗∗ 0.595∗∗∗ 0.568∗∗∗

(0.127) (0.127) (0.126) (0.126) (0.124)
VOV 0.262∗∗∗ 0.262∗∗∗ 0.260∗∗∗ 0.275∗∗∗ 0.277∗∗∗

(0.085) (0.085) (0.085) (0.084) (0.083)
∆ CIV -0.156 -0.156 -0.154 -0.170 -0.194

(0.120) (0.120) (0.120) (0.119) (0.118)
∆ PIV 0.258∗∗ 0.258∗∗ 0.258∗∗ 0.234∗∗ 0.256∗∗

(0.109) (0.109) (0.109) (0.109) (0.107)

Observations 227 227 227 227 227
R2 0.557 0.557 0.557 0.556 0.570
Adjusted R2 0.528 0.528 0.527 0.527 0.542
Residual Std. Error 0.023 0.023 0.023 0.023 0.022
F Statistic 19.063∗∗∗ 19.062∗∗∗ 19.005∗∗∗ 18.971∗∗∗ 20.088∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 21: Small-cap segment, ridge long-short portfolio Monthly OLS regression of
the Ridge portfolios on the factor model that includes the CIV, PIV, IVSatm, IVSotm, Skew,
VOV, ∆CIV, and ∆PIV factor portfolios from (Neuhierl et al., 2022), along with the standard
Fama-French factors. The intercept coefficient is reported in monthly return terms, with
corresponding standard errors in parentheses. z is the penalty term. Sharpe Ratio Small
Sample: 1.09.

z = 10−5 z = 10−3 z = 10−1 z = 100 z = 101

Intercept 0.000 0.000 0.000 0.000 0.000
(0.002) (0.002) (0.002) (0.002) (0.002)

rM − rf 0.038 0.038 0.035 0.032 0.045
(0.067) (0.067) (0.067) (0.067) (0.067)

SMB -0.022 -0.022 -0.026 -0.031 -0.036
(0.109) (0.109) (0.109) (0.109) (0.109)

HML 0.026 0.026 0.020 0.020 0.032
(0.093) (0.093) (0.093) (0.093) (0.092)

2-12 Momentum 0.174∗∗∗ 0.173∗∗∗ 0.173∗∗∗ 0.173∗∗∗ 0.162∗∗∗

(0.051) (0.051) (0.051) (0.050) (0.050)
ST Reversal -0.015 -0.015 -0.015 -0.016 -0.001

(0.073) (0.073) (0.073) (0.073) (0.073)
LT Reversal 0.111 0.111 0.116 0.121 0.099

(0.095) (0.095) (0.095) (0.094) (0.094)
CIV 0.121 0.121 0.110 0.107 0.050

(0.253) (0.253) (0.253) (0.252) (0.251)
PIV 0.153 0.153 0.166 0.172 0.228

(0.258) (0.258) (0.258) (0.257) (0.256)
IVSatm 0.194 0.194 0.199 0.201 0.173

(0.129) (0.129) (0.129) (0.128) (0.128)
IVSotm 0.386∗∗∗ 0.385∗∗∗ 0.380∗∗∗ 0.365∗∗ 0.376∗∗

(0.146) (0.146) (0.146) (0.145) (0.145)
Skew 0.370∗∗∗ 0.370∗∗∗ 0.375∗∗∗ 0.374∗∗∗ 0.408∗∗∗

(0.137) (0.137) (0.137) (0.136) (0.136)
VOV 0.041 0.041 0.044 0.044 0.040

(0.091) (0.091) (0.092) (0.091) (0.091)
∆ CIV -0.027 -0.026 -0.029 -0.021 0.015

(0.130) (0.130) (0.130) (0.129) (0.129)
∆ PIV 0.125 0.126 0.123 0.141 0.169

(0.118) (0.118) (0.118) (0.118) (0.117)

Observations 227 227 227 227 227
R2 0.526 0.526 0.526 0.526 0.532
Adjusted R2 0.494 0.494 0.495 0.495 0.501
Residual Std. Error 0.025 0.025 0.025 0.025 0.024
F Statistic 16.786∗∗∗ 16.785∗∗∗ 16.805∗∗∗ 16.793∗∗∗ 17.197∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 22: Micro-cap segment, ridge long-short portfolio Monthly OLS regression
of the Ridge portfolios on the factor model that includes the CIV, PIV, IVSatm, IVSotm,
Skew, VOV, ∆CIV, and ∆PIV factor portfolios from (Neuhierl et al., 2022), along with
the standard Fama-French factors. The intercept coefficient is reported in monthly return
terms, with corresponding standard errors in parentheses. z is the penalty term. Sharpe
Ratio Micro Sample: 1.90.

z = 10−5 z = 10−3 z = 10−1 z = 100 z = 101

Intercept 0.015∗∗∗ 0.015∗∗∗ 0.015∗∗∗ 0.015∗∗∗ 0.018∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.005)
rM − rf 0.242∗ 0.242∗ 0.246∗ 0.237∗ -0.011

(0.139) (0.139) (0.138) (0.139) (0.147)
SMB -0.030 -0.030 -0.031 -0.030 -0.193

(0.226) (0.226) (0.225) (0.226) (0.240)
HML -0.021 -0.021 -0.028 -0.013 -0.001

(0.192) (0.192) (0.192) (0.192) (0.205)
2-12 Momentum -0.149 -0.149 -0.147 -0.139 -0.125

(0.104) (0.104) (0.104) (0.104) (0.111)
ST Reversal 0.172 0.172 0.169 0.197 0.107

(0.151) (0.151) (0.151) (0.151) (0.161)
LT Reversal -0.116 -0.116 -0.112 -0.141 0.039

(0.195) (0.195) (0.195) (0.196) (0.208)
CIV 1.241∗∗ 1.241∗∗ 1.252∗∗ 1.270∗∗ 1.729∗∗∗

(0.522) (0.522) (0.521) (0.523) (0.556)
PIV -0.972∗ -0.972∗ -0.979∗ -0.991∗ -1.390∗∗

(0.533) (0.533) (0.532) (0.533) (0.567)
IVSatm 0.284 0.284 0.278 0.268 0.415

(0.266) (0.266) (0.265) (0.266) (0.283)
IVSotm 0.320 0.320 0.320 0.303 0.285

(0.301) (0.301) (0.300) (0.301) (0.320)
Skew 0.947∗∗∗ 0.947∗∗∗ 0.949∗∗∗ 0.958∗∗∗ 0.815∗∗∗

(0.282) (0.282) (0.282) (0.282) (0.300)
VOV 0.230 0.230 0.222 0.214 0.456∗∗

(0.189) (0.189) (0.189) (0.189) (0.201)
∆ CIV -0.535∗∗ -0.535∗∗ -0.523∗ -0.532∗∗ -0.595∗∗

(0.268) (0.268) (0.267) (0.268) (0.285)
∆ PIV -0.422∗ -0.422∗ -0.418∗ -0.417∗ -0.295

(0.244) (0.244) (0.243) (0.244) (0.259)

Observations 227 227 227 227 227
R2 0.345 0.345 0.348 0.345 0.333
Adjusted R2 0.302 0.302 0.304 0.302 0.289
Residual Std. Error 0.051 0.051 0.051 0.051 0.054
F Statistic 7.982∗∗∗ 7.982∗∗∗ 8.067∗∗∗ 7.974∗∗∗ 7.556∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 23: Not-micro-cap segment, ridge long-short portfolio Monthly OLS regression
of the Ridge portfolios on the factor model that includes the CIV, PIV, IVSatm, IVSotm,
Skew, VOV, ∆CIV, and ∆PIV factor portfolios from (Neuhierl et al., 2022), along with
the standard Fama-French factors. The intercept coefficient is reported in monthly return
terms, with corresponding standard errors in parentheses. z is the penalty term. Sharpe
Ratio Non-Micro Sample: 0.99

z = 10−5 z = 10−3 z = 10−1 z = 100 z = 101

Intercept -0.001 -0.001 -0.001 -0.001 -0.001
(0.002) (0.002) (0.002) (0.002) (0.001)

rM − rf 0.118∗∗ 0.118∗∗ 0.118∗∗ 0.120∗∗ 0.121∗∗

(0.049) (0.049) (0.049) (0.049) (0.048)
SMB 0.151∗ 0.151∗ 0.152∗ 0.152∗ 0.160∗∗

(0.080) (0.080) (0.080) (0.080) (0.078)
HML -0.137∗∗ -0.137∗∗ -0.139∗∗ -0.140∗∗ -0.150∗∗

(0.068) (0.068) (0.068) (0.068) (0.067)
2-12 Momentum 0.146∗∗∗ 0.146∗∗∗ 0.146∗∗∗ 0.145∗∗∗ 0.144∗∗∗

(0.037) (0.037) (0.037) (0.037) (0.036)
ST Reversal 0.053 0.053 0.054 0.055 0.051

(0.054) (0.054) (0.054) (0.053) (0.052)
LT Reversal 0.173∗∗ 0.173∗∗ 0.172∗∗ 0.169∗∗ 0.179∗∗∗

(0.069) (0.069) (0.069) (0.069) (0.068)
CIV -0.002 -0.002 -0.001 -0.021 -0.018

(0.185) (0.185) (0.185) (0.185) (0.181)
PIV 0.203 0.203 0.203 0.221 0.228

(0.189) (0.189) (0.189) (0.189) (0.184)
IVSatm 0.061 0.061 0.060 0.061 0.057

(0.094) (0.094) (0.094) (0.094) (0.092)
IVSotm 0.301∗∗∗ 0.301∗∗∗ 0.299∗∗∗ 0.303∗∗∗ 0.285∗∗∗

(0.107) (0.107) (0.107) (0.106) (0.104)
Skew 0.519∗∗∗ 0.519∗∗∗ 0.522∗∗∗ 0.517∗∗∗ 0.533∗∗∗

(0.100) (0.100) (0.100) (0.100) (0.098)
VOV 0.148∗∗ 0.148∗∗ 0.150∗∗ 0.149∗∗ 0.142∗∗

(0.067) (0.067) (0.067) (0.067) (0.065)
∆ CIV -0.055 -0.055 -0.057 -0.051 -0.063

(0.095) (0.095) (0.095) (0.095) (0.093)
∆ PIV 0.209∗∗ 0.209∗∗ 0.211∗∗ 0.216∗∗ 0.212∗∗

(0.086) (0.086) (0.086) (0.086) (0.084)

Observations 227 227 227 227 227
R2 0.681 0.681 0.683 0.683 0.698
Adjusted R2 0.660 0.660 0.662 0.662 0.678
Residual Std. Error 0.018 0.018 0.018 0.018 0.018
F Statistic 32.393∗∗∗ 32.393∗∗∗ 32.555∗∗∗ 32.660∗∗∗ 34.945∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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D.2 Comparison: Simple NN against CNN

Table 24: All stocks, long-short. Monthly OLS regression of the CNNs portfolios on
the factor model that includes the NN, CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and
∆PIV factor portfolios from (Neuhierl et al., 2022), along with the standard Fama-French
factors. The intercept coefficient is reported in monthly return terms, with corresponding
standard errors in parentheses. As we can see, the alphas survive for any CNNi even if the
NN factor portfolio is included on the right-hand side.

CNN1ew CNN4ew CNN5ew

Intercept 0.004∗∗ 0.009∗∗∗ 0.009∗∗∗

(0.001) (0.002) (0.002)
rM − rf -0.134∗∗∗ -0.045 -0.096∗

(0.047) (0.048) (0.050)
SMB -0.170∗∗ -0.030 0.028

(0.076) (0.078) (0.081)
HML -0.035 -0.047 -0.104

(0.065) (0.066) (0.069)
2-12 Momentum -0.142∗∗∗ -0.112∗∗∗ -0.132∗∗∗

(0.035) (0.036) (0.038)
ST Reversal -0.065 -0.131∗∗ -0.170∗∗∗

(0.051) (0.052) (0.054)
LT Reversal 0.053 0.102 0.205∗∗∗

(0.066) (0.068) (0.071)
CIV 0.242 -0.076 -0.104

(0.177) (0.182) (0.190)
PIV -0.153 0.082 0.071

(0.180) (0.184) (0.192)
IVSatm -0.394∗∗∗ 0.061 0.224∗∗

(0.089) (0.092) (0.096)
IVSotm 0.427∗∗∗ 0.002 0.028

(0.103) (0.106) (0.110)
Skew 0.222∗∗ -0.024 -0.079

(0.100) (0.102) (0.107)
VOV 0.089 0.089 0.104

(0.064) (0.066) (0.068)
∆ CIV 0.049 0.283∗∗∗ 0.179∗

(0.090) (0.092) (0.096)
∆ PIV 0.039 0.102 0.032

(0.082) (0.084) (0.088)
NN 0.619∗∗∗ 0.438∗∗∗ 0.350∗∗∗

(0.049) (0.051) (0.053)

Observations 227 227 227
R2 0.803 0.532 0.456
Adjusted R2 0.789 0.499 0.418
Residual Std. Error 0.017 0.018 0.018
F Statistic 57.399∗∗∗ 15.985∗∗∗ 11.814∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 25: All stocks, long-short. Monthly OLS regression of the NN portfolio on the
factor model that includes the CNN, CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and
∆PIV factor portfolios from (Neuhierl et al., 2022), along with the standard Fama-French
factors. The intercept coefficient is reported in monthly return terms, with corresponding
standard errors in parentheses. As we can see, the NN’s alpha does not survive when the
CNN1 factor portfolio is included in the right-hand side.

NN1ew

Intercept 0.001
(0.002)

rM − rf 0.172∗∗∗

(0.049)
SMB 0.104

(0.081)
HML -0.022

(0.068)
2-12 Momentum 0.139∗∗∗

(0.037)
ST Reversal 0.037

(0.054)
LT Reversal 0.057

(0.070)
CIV 0.090

(0.187)
PIV -0.034

(0.190)
IVSatm 0.306∗∗∗

(0.096)
IVSotm -0.060

(0.113)
Skew 0.198∗

(0.105)
VOV 0.004

(0.068)
∆ CIV -0.027

(0.095)
∆ PIV 0.063

(0.087)
CNN1 0.688∗∗∗

(0.055)

Observations 227
R2 0.755
Adjusted R2 0.738
Residual Std. Error 0.018
F Statistic 43.409∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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E Additional Analysis for Different Size Groups of Stocks

Table 26: All-stocks, long-short portfolio. Monthly OLS regression of the CNN1, CNN4,
CNN5, NN1, and Ridge Regression long-short portfolios on the factor model that includes
the CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor long-short portfolios
from (Neuhierl et al., 2022), along with the standard Fama-French factors. The intercept
coefficient is reported in monthly return terms, with corresponding standard errors in paren-
theses. We apply a linear fee of 10 bps and a short-sale monthly cost of 10 bps to the
returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all option-based portfolios from
(Neuhierl et al., 2022).

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.010∗∗∗ 0.013∗∗∗ 0.011∗∗∗ 0.010∗∗∗ 0.007∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
rM − rf -0.047 0.016 -0.047 0.099∗ 0.065

(0.061) (0.055) (0.054) (0.058) (0.050)
SMB -0.179∗ -0.035 0.024 -0.024 -0.025

(0.100) (0.090) (0.089) (0.095) (0.082)
HML -0.085 -0.080 -0.130∗ -0.105 -0.141∗∗

(0.085) (0.077) (0.075) (0.081) (0.070)
2-12 Momentum -0.098∗∗ -0.081∗ -0.107∗∗∗ 0.064 0.107∗∗∗

(0.046) (0.042) (0.041) (0.044) (0.038)
ST Reversal -0.074 -0.135∗∗ -0.173∗∗∗ -0.039 0.017

(0.067) (0.060) (0.059) (0.063) (0.055)
LT Reversal 0.156∗ 0.173∗∗ 0.261∗∗∗ 0.239∗∗∗ 0.227∗∗∗

(0.086) (0.078) (0.077) (0.082) (0.071)
CIV 0.525∗∗ 0.120 0.048 0.463∗∗ 0.480∗∗

(0.231) (0.209) (0.205) (0.220) (0.191)
PIV -0.314 -0.029 -0.011 -0.266 -0.179

(0.236) (0.213) (0.209) (0.224) (0.195)
IVSatm -0.357∗∗∗ 0.089 0.248∗∗ 0.018 -0.010

(0.118) (0.106) (0.105) (0.112) (0.097)
IVSotm 0.686∗∗∗ 0.190 0.176 0.432∗∗∗ 0.415∗∗∗

(0.133) (0.120) (0.118) (0.127) (0.110)
Skew 0.594∗∗∗ 0.237∗∗ 0.129 0.542∗∗∗ 0.548∗∗∗

(0.125) (0.113) (0.111) (0.119) (0.103)
VOV 0.159∗ 0.139∗ 0.144∗ 0.115 0.153∗∗

(0.084) (0.076) (0.074) (0.080) (0.069)
∆ CIV 0.050 0.279∗∗ 0.176∗ 0.067 -0.069

(0.119) (0.108) (0.106) (0.113) (0.098)
∆ PIV 0.130 0.162∗ 0.081 0.160 0.135

(0.108) (0.098) (0.096) (0.103) (0.089)

Observations 227 227 227 227 227
R2 0.657 0.366 0.345 0.620 0.735
Adjusted R2 0.634 0.324 0.302 0.595 0.718
Residual Std. Error 0.022 0.020 0.020 0.021 0.019
F Statistic 28.965∗∗∗ 8.752∗∗∗ 7.972∗∗∗ 24.756∗∗∗ 42.095∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 27: Mega-cap segment, long-short portfolio. Monthly OLS regression of the
CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short portfolios on the factor model
that includes the CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor long-
short portfolios from (Neuhierl et al., 2022), along with the standard Fama-French factors.
The intercept coefficient is reported in monthly return terms, with corresponding standard
errors in parentheses. We apply a linear fee of 10 bps and a short-sale monthly cost of 10
bps to the returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all option-based
portfolios from (Neuhierl et al., 2022).

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.000 -0.002 -0.004∗ 0.001 0.001
(0.002) (0.002) (0.002) (0.002) (0.002)

rM − rf 0.065 0.108 0.064 0.149∗ 0.172∗∗

(0.073) (0.073) (0.071) (0.076) (0.072)
SMB 0.069 0.119 0.017 0.022 0.056

(0.119) (0.118) (0.115) (0.124) (0.118)
HML -0.063 -0.007 0.095 -0.016 -0.166∗

(0.101) (0.101) (0.098) (0.106) (0.100)
2-12 Momentum 0.034 -0.028 -0.015 0.211∗∗∗ 0.190∗∗∗

(0.055) (0.055) (0.053) (0.058) (0.054)
ST Reversal -0.237∗∗∗ -0.153∗ -0.202∗∗∗ -0.129 -0.000

(0.080) (0.079) (0.077) (0.083) (0.079)
LT Reversal 0.161 0.194∗ 0.121 0.187∗ 0.218∗∗

(0.103) (0.102) (0.099) (0.108) (0.102)
CIV -0.444 -0.330 -0.448∗ -0.240 -0.050

(0.276) (0.274) (0.267) (0.289) (0.273)
PIV 0.206 0.240 0.377 0.206 0.067

(0.282) (0.279) (0.272) (0.294) (0.279)
IVSatm -0.327∗∗ 0.026 0.192 -0.214 -0.265∗

(0.141) (0.140) (0.136) (0.147) (0.139)
IVSotm 0.234 -0.160 0.051 0.041 0.217

(0.159) (0.158) (0.154) (0.167) (0.158)
Skew 0.664∗∗∗ 0.305∗∗ 0.144 0.768∗∗∗ 0.589∗∗∗

(0.149) (0.148) (0.144) (0.156) (0.148)
VOV 0.125 0.162 0.206∗∗ 0.390∗∗∗ 0.548∗∗∗

(0.100) (0.099) (0.097) (0.105) (0.099)
∆ CIV 0.280∗ 0.245∗ 0.138 0.133 -0.076

(0.143) (0.141) (0.138) (0.149) (0.141)
∆ PIV 0.308∗∗ 0.104 -0.082 0.233∗ 0.170

(0.129) (0.128) (0.125) (0.135) (0.128)

Observations 227 227 227 227 227
R2 0.522 0.099 0.097 0.385 0.442
Adjusted R2 0.491 0.039 0.037 0.345 0.405
Residual Std. Error 0.027 0.027 0.026 0.028 0.027
F Statistic 16.561∗∗∗ 1.661∗ 1.628∗ 9.485∗∗∗ 11.992∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 28: Large-cap segment, long-short portfolio. Monthly OLS regression of the
CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short portfolios on the factor model
that includes the CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor long-
short portfolios from (Neuhierl et al., 2022), along with the standard Fama-French factors.
The intercept coefficient is reported in monthly return terms, with corresponding standard
errors in parentheses. We apply a linear fee of 10 bps and a short-sale monthly cost of 10
bps to the returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all option-based
portfolios from (Neuhierl et al., 2022).

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept -0.001 -0.002 -0.002 -0.002 -0.002
(0.002) (0.002) (0.002) (0.002) (0.002)

rM − rf 0.152∗∗ 0.086 0.017 0.202∗∗∗ 0.215∗∗∗

(0.063) (0.058) (0.061) (0.064) (0.062)
SMB 0.117 -0.084 0.008 0.208∗∗ 0.324∗∗∗

(0.103) (0.094) (0.099) (0.105) (0.101)
HML -0.027 -0.119 -0.072 -0.150∗ -0.239∗∗∗

(0.088) (0.080) (0.084) (0.089) (0.086)
2-12 Momentum -0.025 -0.048 -0.062 0.148∗∗∗ 0.182∗∗∗

(0.048) (0.043) (0.046) (0.049) (0.047)
ST Reversal -0.029 -0.088 -0.157∗∗ 0.123∗ 0.184∗∗∗

(0.069) (0.063) (0.066) (0.070) (0.067)
LT Reversal 0.032 0.197∗∗ 0.157∗ 0.191∗∗ 0.192∗∗

(0.089) (0.081) (0.086) (0.091) (0.087)
CIV -0.098 -0.179 -0.375 0.038 -0.028

(0.239) (0.218) (0.230) (0.243) (0.234)
PIV -0.080 0.179 0.368 -0.105 0.041

(0.244) (0.222) (0.235) (0.248) (0.238)
IVSatm -0.449∗∗∗ 0.220∗∗ 0.362∗∗∗ -0.007 -0.081

(0.122) (0.111) (0.117) (0.124) (0.119)
IVSotm 0.682∗∗∗ -0.100 -0.157 0.220 0.284∗∗

(0.138) (0.126) (0.133) (0.140) (0.135)
Skew 0.577∗∗∗ 0.428∗∗∗ 0.381∗∗∗ 0.636∗∗∗ 0.585∗∗∗

(0.129) (0.118) (0.124) (0.131) (0.126)
VOV -0.061 0.195∗∗ 0.204∗∗ 0.119 0.259∗∗∗

(0.087) (0.079) (0.083) (0.088) (0.085)
∆ CIV -0.055 0.113 0.123 -0.018 -0.164

(0.124) (0.113) (0.119) (0.126) (0.121)
∆ PIV 0.157 -0.149 -0.200∗ 0.247∗∗ 0.253∗∗

(0.112) (0.102) (0.108) (0.114) (0.109)

Observations 227 227 227 227 227
R2 0.533 0.199 0.192 0.452 0.556
Adjusted R2 0.502 0.146 0.139 0.416 0.527
Residual Std. Error 0.023 0.021 0.022 0.024 0.023
F Statistic 17.267∗∗∗ 3.754∗∗∗ 3.600∗∗∗ 12.503∗∗∗ 18.951∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 29: Small-cap segment, long-short portfolio. Monthly OLS regression of the
CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short portfolios on the factor model
that includes the CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor long-
short portfolios from (Neuhierl et al., 2022), along with the standard Fama-French factors.
The intercept coefficient is reported in monthly return terms, with corresponding standard
errors in parentheses. We apply a linear fee of 10 bps and a short-sale monthly cost of 10
bps to the returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all option-based
portfolios from (Neuhierl et al., 2022).

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.002 0.005∗∗ 0.003 0.002 0.002
(0.002) (0.002) (0.002) (0.002) (0.002)

rM − rf -0.003 0.130∗ 0.013 0.154∗∗ 0.038
(0.077) (0.079) (0.071) (0.072) (0.068)

SMB -0.334∗∗∗ -0.017 0.072 -0.087 -0.034
(0.125) (0.128) (0.116) (0.118) (0.110)

HML 0.183∗ 0.065 -0.008 0.112 0.010
(0.106) (0.109) (0.099) (0.100) (0.094)

2-12 Momentum 0.020 0.010 -0.080 0.096∗ 0.174∗∗∗

(0.058) (0.059) (0.054) (0.054) (0.051)
ST Reversal 0.006 -0.048 -0.106 -0.027 -0.010

(0.083) (0.086) (0.078) (0.079) (0.074)
LT Reversal -0.014 -0.019 0.162 0.015 0.135

(0.108) (0.111) (0.101) (0.102) (0.095)
CIV 0.371 0.325 0.155 -0.012 0.146

(0.289) (0.297) (0.270) (0.273) (0.255)
PIV -0.100 -0.274 -0.145 0.181 0.130

(0.295) (0.303) (0.275) (0.279) (0.260)
IVSatm -0.216 0.074 0.422∗∗∗ 0.503∗∗∗ 0.182

(0.147) (0.152) (0.138) (0.139) (0.130)
IVSotm 0.518∗∗∗ 0.194 0.086 0.257 0.353∗∗

(0.167) (0.171) (0.156) (0.158) (0.147)
Skew 0.537∗∗∗ 0.187 0.128 0.499∗∗∗ 0.393∗∗∗

(0.156) (0.161) (0.146) (0.148) (0.138)
VOV 0.006 0.105 0.103 0.005 0.045

(0.105) (0.108) (0.098) (0.099) (0.092)
∆ CIV -0.042 -0.001 -0.153 -0.057 -0.062

(0.149) (0.153) (0.139) (0.141) (0.132)
∆ PIV 0.228∗ 0.116 -0.067 0.049 0.119

(0.135) (0.139) (0.126) (0.128) (0.119)

Observations 227 227 227 227 227
R2 0.454 0.131 0.185 0.416 0.514
Adjusted R2 0.418 0.073 0.131 0.377 0.482
Residual Std. Error 0.028 0.029 0.026 0.027 0.025
F Statistic 12.580∗∗∗ 2.280∗∗∗ 3.443∗∗∗ 10.783∗∗∗ 16.034∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 30: Micro-cap segment, long-short portfolio. Monthly OLS regression of the
CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short portfolios on the factor model
that includes the CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor long-
short portfolios from (Neuhierl et al., 2022), along with the standard Fama-French factors.
The intercept coefficient is reported in monthly return terms, with corresponding standard
errors in parentheses. We apply a linear fee of 20 bps and a short-sale monthly cost of 20
bps to the returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all option-based
portfolios from (Neuhierl et al., 2022).

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.036∗∗∗ 0.046∗∗∗ 0.042∗∗∗ 0.036∗∗∗ 0.013∗∗∗

(0.005) (0.006) (0.006) (0.005) (0.004)
rM − rf -0.517∗∗∗ -0.401∗ -0.254 -0.160 0.245∗

(0.185) (0.203) (0.203) (0.160) (0.136)
SMB -0.246 0.049 0.257 -0.325 -0.017

(0.301) (0.331) (0.331) (0.261) (0.221)
HML -0.427∗ -0.310 -0.410 -0.079 -0.007

(0.256) (0.282) (0.282) (0.222) (0.188)
2-12 Momentum -0.259∗ -0.366∗∗ -0.359∗∗ -0.057 -0.137

(0.139) (0.153) (0.153) (0.121) (0.102)
ST Reversal -0.242 -0.625∗∗∗ -0.664∗∗∗ -0.027 0.132

(0.201) (0.221) (0.221) (0.174) (0.148)
LT Reversal 0.412 0.402 0.544∗ 0.063 -0.105

(0.260) (0.286) (0.286) (0.225) (0.191)
CIV 1.858∗∗∗ 0.732 0.524 1.615∗∗∗ 1.269∗∗

(0.697) (0.769) (0.767) (0.605) (0.513)
PIV -1.457∗∗ -0.663 -0.713 -1.189∗ -0.984∗

(0.711) (0.783) (0.782) (0.617) (0.523)
IVSatm -0.321 0.525 0.460 -0.020 0.227

(0.356) (0.392) (0.391) (0.308) (0.261)
IVSotm 0.883∗∗ 0.415 0.748∗ 0.563 0.302

(0.402) (0.443) (0.443) (0.349) (0.296)
Skew 0.341 -0.072 -0.300 0.467 0.945∗∗∗

(0.377) (0.415) (0.414) (0.327) (0.277)
VOV 0.289 1.020∗∗∗ 0.819∗∗∗ 0.503∗∗ 0.152

(0.253) (0.278) (0.278) (0.219) (0.186)
∆ CIV 0.267 0.691∗ 0.749∗ -0.138 -0.481∗

(0.360) (0.397) (0.396) (0.312) (0.265)
∆ PIV 0.155 0.367 0.253 0.068 -0.367

(0.326) (0.359) (0.359) (0.283) (0.240)

Observations 227 227 227 227 227
R2 0.356 0.239 0.215 0.305 0.347
Adjusted R2 0.314 0.188 0.163 0.259 0.304
Residual Std. Error 0.068 0.075 0.075 0.059 0.050
F Statistic 8.378∗∗∗ 4.748∗∗∗ 4.139∗∗∗ 6.635∗∗∗ 8.057∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 31: Not-micro-cap segment, long-short portfolio. Monthly OLS regression of
the CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short portfolios on the factor
model that includes the CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor
long-short portfolios from (Neuhierl et al., 2022), along with the standard Fama-French
factors. The intercept coefficient is reported in monthly return terms, with corresponding
standard errors in parentheses. We apply a linear fee of 10 bps and a short-sale monthly
cost of 10 bps to the returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all
option-based portfolios from (Neuhierl et al., 2022).

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.002 0.004∗∗ 0.002 0.001 0.001
(0.002) (0.002) (0.001) (0.002) (0.001)

rM − rf 0.066 0.049 0.028 0.151∗∗∗ 0.123∗∗

(0.057) (0.051) (0.048) (0.053) (0.049)
SMB -0.069 0.022 0.036 0.071 0.151∗

(0.093) (0.082) (0.078) (0.087) (0.080)
HML 0.018 0.031 -0.010 -0.026 -0.144∗∗

(0.079) (0.070) (0.066) (0.074) (0.068)
2-12 Momentum -0.040 -0.000 -0.025 0.123∗∗∗ 0.145∗∗∗

(0.043) (0.038) (0.036) (0.040) (0.037)
ST Reversal -0.064 -0.002 -0.085 0.015 0.056

(0.062) (0.055) (0.052) (0.058) (0.053)
LT Reversal 0.066 0.073 0.149∗∗ 0.139∗ 0.176∗∗

(0.080) (0.071) (0.068) (0.075) (0.069)
CIV 0.160 -0.099 -0.132 -0.020 0.014

(0.215) (0.191) (0.181) (0.201) (0.186)
PIV -0.090 0.150 0.151 0.105 0.185

(0.219) (0.195) (0.185) (0.205) (0.189)
IVSatm -0.313∗∗∗ 0.096 0.284∗∗∗ 0.211∗∗ 0.056

(0.110) (0.097) (0.092) (0.102) (0.095)
IVSotm 0.485∗∗∗ 0.029 0.009 0.291∗∗ 0.299∗∗∗

(0.124) (0.110) (0.104) (0.116) (0.107)
Skew 0.587∗∗∗ 0.329∗∗∗ 0.260∗∗∗ 0.486∗∗∗ 0.519∗∗∗

(0.116) (0.103) (0.098) (0.108) (0.100)
VOV 0.014 0.097 0.110∗ 0.045 0.146∗∗

(0.078) (0.069) (0.066) (0.073) (0.067)
∆ CIV -0.059 0.082 -0.041 0.031 -0.070

(0.111) (0.099) (0.094) (0.104) (0.096)
∆ PIV 0.126 0.058 -0.082 0.165∗ 0.209∗∗

(0.100) (0.089) (0.085) (0.094) (0.087)

Observations 227 227 227 227 227
R2 0.511 0.202 0.216 0.528 0.679
Adjusted R2 0.479 0.150 0.164 0.497 0.658
Residual Std. Error 0.021 0.019 0.018 0.020 0.018
F Statistic 15.812∗∗∗ 3.838∗∗∗ 4.170∗∗∗ 16.950∗∗∗ 32.048∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 32: All-stocks, long-short portfolio. Monthly OLS regression of the CNN1, CNN4,
CNN5, NN1, and Ridge Regression long-short portfolios on the factor model that includes
the CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor long-short portfolios
from (Neuhierl et al., 2022), along with the standard Fama-French factors. The intercept
coefficient is reported in monthly return terms, with corresponding standard errors in paren-
theses. We apply a linear fee of 20 bps and a short-sale monthly cost of 20 bps to the
returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all option-based portfolios from
(Neuhierl et al., 2022).

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.012∗∗∗ 0.013∗∗∗ 0.011∗∗∗ 0.012∗∗∗ 0.009∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
rM − rf -0.046 0.016 -0.047 0.098∗ 0.065

(0.061) (0.055) (0.054) (0.058) (0.050)
SMB -0.174∗ -0.031 0.027 -0.020 -0.021

(0.099) (0.090) (0.088) (0.094) (0.082)
HML -0.086 -0.079 -0.127∗ -0.105 -0.141∗∗

(0.084) (0.076) (0.075) (0.080) (0.070)
2-12 Momentum -0.098∗∗ -0.082∗∗ -0.107∗∗∗ 0.063 0.106∗∗∗

(0.046) (0.041) (0.041) (0.044) (0.038)
ST Reversal -0.074 -0.133∗∗ -0.171∗∗∗ -0.037 0.019

(0.066) (0.060) (0.059) (0.063) (0.055)
LT Reversal 0.158∗ 0.173∗∗ 0.260∗∗∗ 0.241∗∗∗ 0.228∗∗∗

(0.086) (0.077) (0.076) (0.081) (0.071)
CIV 0.531∗∗ 0.120 0.043 0.471∗∗ 0.485∗∗

(0.231) (0.208) (0.205) (0.219) (0.190)
PIV -0.324 -0.033 -0.008 -0.278 -0.187

(0.235) (0.212) (0.208) (0.223) (0.194)
IVSatm -0.359∗∗∗ 0.090 0.250∗∗ 0.018 -0.011

(0.118) (0.106) (0.105) (0.112) (0.097)
IVSotm 0.693∗∗∗ 0.199∗ 0.182 0.441∗∗∗ 0.421∗∗∗

(0.133) (0.120) (0.118) (0.127) (0.110)
Skew 0.588∗∗∗ 0.230∗∗ 0.125 0.533∗∗∗ 0.542∗∗∗

(0.125) (0.112) (0.110) (0.118) (0.103)
VOV 0.159∗ 0.140∗ 0.144∗ 0.116 0.152∗∗

(0.084) (0.075) (0.074) (0.079) (0.069)
∆ CIV 0.045 0.271∗∗ 0.171 0.054 -0.078

(0.120) (0.108) (0.106) (0.114) (0.099)
∆ PIV 0.124 0.154 0.076 0.147 0.127

(0.108) (0.097) (0.096) (0.103) (0.089)

Observations 227 227 227 227 227
R2 0.656 0.366 0.346 0.621 0.735
Adjusted R2 0.634 0.324 0.303 0.596 0.718
Residual Std. Error 0.022 0.020 0.020 0.021 0.018
F Statistic 28.926∗∗∗ 8.747∗∗∗ 8.003∗∗∗ 24.782∗∗∗ 42.107∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 33: Mega-cap segment, long-short portfolio. Monthly OLS regression of the
CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short portfolios on the factor model
that includes the CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor long-
short portfolios from (Neuhierl et al., 2022), along with the standard Fama-French factors.
The intercept coefficient is reported in monthly return terms, with corresponding standard
errors in parentheses. We apply a linear fee of 20 bps and a short-sale monthly cost of 20
bps to the returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all option-based
portfolios from (Neuhierl et al., 2022).

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.001 -0.003 -0.005∗ 0.003 0.002
(0.003) (0.003) (0.003) (0.003) (0.003)

rM − rf 0.065 0.110 0.066 0.149∗ 0.172∗∗

(0.073) (0.072) (0.070) (0.076) (0.072)
SMB 0.070 0.120 0.018 0.023 0.056

(0.119) (0.118) (0.115) (0.124) (0.118)
HML -0.064 -0.004 0.096 -0.017 -0.166∗

(0.101) (0.100) (0.097) (0.106) (0.100)
2-12 Momentum 0.034 -0.028 -0.015 0.210∗∗∗ 0.189∗∗∗

(0.055) (0.054) (0.053) (0.057) (0.054)
ST Reversal -0.237∗∗∗ -0.152∗ -0.202∗∗∗ -0.129 -0.001

(0.079) (0.079) (0.077) (0.083) (0.078)
LT Reversal 0.163 0.191∗ 0.120 0.189∗ 0.219∗∗

(0.103) (0.102) (0.099) (0.107) (0.102)
CIV -0.443 -0.330 -0.450∗ -0.232 -0.043

(0.276) (0.274) (0.267) (0.289) (0.273)
PIV 0.203 0.238 0.378 0.196 0.058

(0.282) (0.279) (0.272) (0.294) (0.278)
IVSatm -0.327∗∗ 0.022 0.189 -0.219 -0.270∗

(0.141) (0.140) (0.136) (0.148) (0.140)
IVSotm 0.238 -0.155 0.054 0.046 0.222

(0.160) (0.158) (0.154) (0.167) (0.158)
Skew 0.660∗∗∗ 0.300∗∗ 0.142 0.762∗∗∗ 0.584∗∗∗

(0.149) (0.148) (0.144) (0.156) (0.148)
VOV 0.122 0.160 0.203∗∗ 0.387∗∗∗ 0.546∗∗∗

(0.100) (0.099) (0.097) (0.105) (0.099)
∆ CIV 0.280∗ 0.243∗ 0.139 0.132 -0.079

(0.144) (0.142) (0.139) (0.150) (0.142)
∆ PIV 0.305∗∗ 0.101 -0.082 0.229∗ 0.167

(0.129) (0.128) (0.125) (0.135) (0.128)

Observations 227 227 227 227 227
R2 0.522 0.098 0.097 0.384 0.441
Adjusted R2 0.490 0.039 0.037 0.343 0.404
Residual Std. Error 0.027 0.027 0.026 0.028 0.026
F Statistic 16.527∗∗∗ 1.648∗ 1.620∗ 9.425∗∗∗ 11.930∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 34: Large-cap segment, long-short portfolio. Monthly OLS regression of the
CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short portfolios on the factor model
that includes the CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor long-
short portfolios from (Neuhierl et al., 2022), along with the standard Fama-French factors.
The intercept coefficient is reported in monthly return terms, with corresponding standard
errors in parentheses. We apply a linear fee of 20 bps and a short-sale monthly cost of 20
bps to the returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all option-based
portfolios from (Neuhierl et al., 2022).

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept -0.001 -0.003 -0.003 -0.000 -0.000
(0.002) (0.002) (0.002) (0.002) (0.002)

rM − rf 0.151∗∗ 0.086 0.017 0.201∗∗∗ 0.214∗∗∗

(0.063) (0.057) (0.061) (0.064) (0.062)
SMB 0.118 -0.082 0.008 0.209∗∗ 0.323∗∗∗

(0.103) (0.094) (0.099) (0.105) (0.101)
HML -0.028 -0.119 -0.072 -0.151∗ -0.240∗∗∗

(0.087) (0.080) (0.084) (0.089) (0.085)
2-12 Momentum -0.025 -0.048 -0.061 0.148∗∗∗ 0.182∗∗∗

(0.048) (0.043) (0.046) (0.048) (0.046)
ST Reversal -0.029 -0.087 -0.155∗∗ 0.123∗ 0.184∗∗∗

(0.069) (0.063) (0.066) (0.070) (0.067)
LT Reversal 0.033 0.196∗∗ 0.157∗ 0.193∗∗ 0.194∗∗

(0.089) (0.081) (0.085) (0.090) (0.087)
CIV -0.093 -0.174 -0.371 0.046 -0.023

(0.239) (0.218) (0.230) (0.243) (0.234)
PIV -0.086 0.173 0.363 -0.115 0.035

(0.244) (0.222) (0.234) (0.248) (0.238)
IVSatm -0.450∗∗∗ 0.216∗ 0.359∗∗∗ -0.009 -0.082

(0.122) (0.111) (0.118) (0.124) (0.120)
IVSotm 0.685∗∗∗ -0.099 -0.157 0.223 0.286∗∗

(0.138) (0.126) (0.133) (0.141) (0.135)
Skew 0.573∗∗∗ 0.427∗∗∗ 0.380∗∗∗ 0.631∗∗∗ 0.580∗∗∗

(0.129) (0.118) (0.124) (0.131) (0.126)
VOV -0.062 0.194∗∗ 0.202∗∗ 0.118 0.259∗∗∗

(0.087) (0.079) (0.083) (0.088) (0.085)
∆ CIV -0.059 0.111 0.121 -0.024 -0.170

(0.124) (0.113) (0.119) (0.126) (0.121)
∆ PIV 0.153 -0.151 -0.202∗ 0.240∗∗ 0.248∗∗

(0.112) (0.102) (0.108) (0.114) (0.109)

Observations 227 227 227 227 227
R2 0.532 0.197 0.190 0.451 0.555
Adjusted R2 0.501 0.144 0.137 0.414 0.525
Residual Std. Error 0.023 0.021 0.022 0.024 0.023
F Statistic 17.195∗∗∗ 3.716∗∗∗ 3.562∗∗∗ 12.419∗∗∗ 18.862∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 35: Small-cap segment, long-short portfolio. Monthly OLS regression of the
CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short portfolios on the factor model
that includes the CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor long-
short portfolios from (Neuhierl et al., 2022), along with the standard Fama-French factors.
The intercept coefficient is reported in monthly return terms, with corresponding standard
errors in parentheses. We apply a linear fee of 20 bps and a short-sale monthly cost of 20
bps to the returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all option-based
portfolios from (Neuhierl et al., 2022).

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.004 0.004 0.002 0.004 0.004∗

(0.003) (0.003) (0.003) (0.003) (0.002)
rM − rf -0.002 0.130∗ 0.013 0.153∗∗ 0.037

(0.076) (0.078) (0.071) (0.072) (0.067)
SMB -0.331∗∗∗ -0.014 0.072 -0.085 -0.033

(0.124) (0.128) (0.116) (0.118) (0.110)
HML 0.180∗ 0.066 -0.008 0.109 0.008

(0.106) (0.109) (0.099) (0.100) (0.093)
2-12 Momentum 0.019 0.010 -0.079 0.096∗ 0.174∗∗∗

(0.057) (0.059) (0.054) (0.054) (0.051)
ST Reversal 0.005 -0.048 -0.105 -0.025 -0.009

(0.083) (0.085) (0.077) (0.079) (0.073)
LT Reversal -0.012 -0.019 0.161 0.018 0.136

(0.107) (0.110) (0.100) (0.102) (0.095)
CIV 0.380 0.325 0.155 -0.001 0.153

(0.289) (0.297) (0.270) (0.274) (0.255)
PIV -0.111 -0.276 -0.145 0.167 0.121

(0.294) (0.302) (0.275) (0.279) (0.260)
IVSatm -0.221 0.073 0.422∗∗∗ 0.499∗∗∗ 0.179

(0.148) (0.152) (0.138) (0.140) (0.131)
IVSotm 0.520∗∗∗ 0.197 0.085 0.260 0.355∗∗

(0.167) (0.171) (0.156) (0.158) (0.148)
Skew 0.534∗∗∗ 0.182 0.126 0.492∗∗∗ 0.388∗∗∗

(0.156) (0.160) (0.146) (0.148) (0.138)
VOV 0.006 0.105 0.102 0.003 0.043

(0.105) (0.108) (0.098) (0.099) (0.093)
∆ CIV -0.041 -0.004 -0.159 -0.063 -0.067

(0.150) (0.154) (0.140) (0.142) (0.133)
∆ PIV 0.228∗ 0.114 -0.070 0.043 0.114

(0.135) (0.139) (0.126) (0.128) (0.120)

Observations 227 227 227 227 227
R2 0.453 0.130 0.184 0.413 0.512
Adjusted R2 0.417 0.072 0.130 0.374 0.480
Residual Std. Error 0.028 0.029 0.026 0.027 0.025
F Statistic 12.540∗∗∗ 2.257∗∗∗ 3.410∗∗∗ 10.656∗∗∗ 15.890∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 36: Micro-cap segment, long-short portfolio. Monthly OLS regression of the
CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short portfolios on the factor model
that includes the CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor long-
short portfolios from (Neuhierl et al., 2022), along with the standard Fama-French factors.
The intercept coefficient is reported in monthly return terms, with corresponding standard
errors in parentheses. We apply a linear fee of 40 bps and a short-sale monthly cost of 40
bps to the returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all option-based
portfolios from (Neuhierl et al., 2022).

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.037∗∗∗ 0.052∗∗∗ 0.047∗∗∗ 0.036∗∗∗ 0.010∗∗

(0.007) (0.007) (0.007) (0.006) (0.005)
rM − rf -0.514∗∗∗ -0.399∗∗ -0.253 -0.160 0.244∗

(0.184) (0.202) (0.202) (0.159) (0.135)
SMB -0.241 0.053 0.259 -0.321 -0.017

(0.299) (0.330) (0.329) (0.260) (0.220)
HML -0.427∗ -0.308 -0.407 -0.081 -0.008

(0.254) (0.280) (0.280) (0.221) (0.187)
2-12 Momentum -0.256∗ -0.362∗∗ -0.355∗∗ -0.055 -0.135

(0.138) (0.152) (0.152) (0.120) (0.102)
ST Reversal -0.237 -0.617∗∗∗ -0.656∗∗∗ -0.023 0.132

(0.200) (0.220) (0.220) (0.173) (0.147)
LT Reversal 0.414 0.403 0.543∗ 0.067 -0.102

(0.259) (0.285) (0.284) (0.224) (0.190)
CIV 1.873∗∗∗ 0.733 0.527 1.629∗∗∗ 1.273∗∗

(0.696) (0.766) (0.765) (0.603) (0.511)
PIV -1.480∗∗ -0.671 -0.721 -1.209∗ -0.990∗

(0.709) (0.781) (0.779) (0.615) (0.521)
IVSatm -0.321 0.533 0.467 -0.021 0.222

(0.356) (0.392) (0.391) (0.309) (0.261)
IVSotm 0.897∗∗ 0.435 0.765∗ 0.575 0.305

(0.402) (0.442) (0.442) (0.348) (0.295)
Skew 0.318 -0.096 -0.322 0.448 0.936∗∗∗

(0.376) (0.414) (0.413) (0.326) (0.276)
VOV 0.285 1.017∗∗∗ 0.815∗∗∗ 0.499∗∗ 0.148

(0.252) (0.278) (0.277) (0.219) (0.185)
∆ CIV 0.239 0.665∗ 0.721∗ -0.165 -0.489∗

(0.362) (0.398) (0.397) (0.314) (0.266)
∆ PIV 0.129 0.339 0.226 0.043 -0.374

(0.326) (0.359) (0.358) (0.282) (0.239)

Observations 227 227 227 227 227
R2 0.354 0.237 0.213 0.302 0.346
Adjusted R2 0.311 0.187 0.161 0.256 0.303
Residual Std. Error 0.067 0.074 0.074 0.058 0.050
F Statistic 8.295∗∗∗ 4.708∗∗∗ 4.101∗∗∗ 6.566∗∗∗ 8.020∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 37: Not-micro-cap segment, long-short portfolio. Monthly OLS regression of
the CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short portfolios on the factor
model that includes the CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor
long-short portfolios from (Neuhierl et al., 2022), along with the standard Fama-French
factors. The intercept coefficient is reported in monthly return terms, with corresponding
standard errors in parentheses. We apply a linear fee of 20 bps and a short-sale monthly
cost of 20 bps to the returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all
option-based portfolios from (Neuhierl et al., 2022).

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.003 0.003∗ 0.000 0.003∗ 0.003∗

(0.002) (0.002) (0.002) (0.002) (0.002)
rM − rf 0.067 0.049 0.028 0.151∗∗∗ 0.122∗∗

(0.057) (0.050) (0.048) (0.053) (0.049)
SMB -0.068 0.024 0.037 0.072 0.152∗

(0.092) (0.082) (0.078) (0.086) (0.080)
HML 0.016 0.031 -0.010 -0.028 -0.145∗∗

(0.079) (0.070) (0.066) (0.073) (0.068)
2-12 Momentum -0.040 0.000 -0.024 0.123∗∗∗ 0.145∗∗∗

(0.043) (0.038) (0.036) (0.040) (0.037)
ST Reversal -0.065 -0.002 -0.084 0.015 0.057

(0.062) (0.055) (0.052) (0.058) (0.053)
LT Reversal 0.068 0.072 0.149∗∗ 0.142∗ 0.177∗∗

(0.080) (0.071) (0.067) (0.075) (0.069)
CIV 0.166 -0.095 -0.132 -0.010 0.024

(0.215) (0.191) (0.181) (0.201) (0.186)
PIV -0.098 0.145 0.151 0.092 0.173

(0.219) (0.194) (0.184) (0.205) (0.189)
IVSatm -0.315∗∗∗ 0.093 0.283∗∗∗ 0.209∗∗ 0.052

(0.110) (0.098) (0.093) (0.103) (0.095)
IVSotm 0.487∗∗∗ 0.031 0.009 0.295∗∗ 0.302∗∗∗

(0.124) (0.110) (0.104) (0.116) (0.107)
Skew 0.585∗∗∗ 0.326∗∗∗ 0.259∗∗∗ 0.480∗∗∗ 0.513∗∗∗

(0.116) (0.103) (0.098) (0.108) (0.100)
VOV 0.013 0.096 0.109∗ 0.044 0.145∗∗

(0.078) (0.069) (0.066) (0.073) (0.067)
∆ CIV -0.058 0.079 -0.043 0.025 -0.075

(0.112) (0.099) (0.094) (0.104) (0.097)
∆ PIV 0.125 0.056 -0.084 0.158∗ 0.204∗∗

(0.101) (0.089) (0.085) (0.094) (0.087)

Observations 227 227 227 227 227
R2 0.510 0.200 0.214 0.526 0.677
Adjusted R2 0.478 0.147 0.162 0.494 0.656
Residual Std. Error 0.021 0.018 0.018 0.019 0.018
F Statistic 15.762∗∗∗ 3.786∗∗∗ 4.131∗∗∗ 16.788∗∗∗ 31.776∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 38: Capped-value-weighted long-short portfolio (weights are set in propor-
tion to stock market capitalisation, with market caps winsorized at 80% NYSE
percentile as described in (Jensen et al., Forthcoming)). Monthly OLS regression of
the CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short portfolios on the factor
model that includes the CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor
long-short portfolios from (Neuhierl et al., 2022), along with the standard Fama-French
factors. The intercept coefficient is reported in monthly return terms, with corresponding
standard errors in parentheses.

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.000 0.003∗ 0.002 0.000 0.001
(0.002) (0.002) (0.002) (0.002) (0.002)

rM − rf 0.079 0.081 0.053 0.112∗ 0.044
(0.073) (0.059) (0.059) (0.063) (0.053)

SMB -0.110 0.128 0.104 0.061 0.126
(0.109) (0.088) (0.087) (0.093) (0.078)

HML -0.048 -0.012 0.039 -0.003 -0.207∗∗∗

(0.101) (0.082) (0.081) (0.087) (0.073)
2-12 Momentum -0.117∗∗ -0.119∗∗∗ -0.076∗ 0.092∗ 0.024

(0.056) (0.045) (0.044) (0.047) (0.040)
ST Reversal -0.040 0.044 -0.043 0.016 0.025

(0.080) (0.065) (0.064) (0.069) (0.058)
LT Reversal 0.012 0.012 0.045 0.091 0.109

(0.107) (0.087) (0.085) (0.091) (0.077)
CIV 0.144 0.039 -0.045 0.109 0.109

(0.160) (0.130) (0.128) (0.136) (0.115)
PIV -0.005 -0.022 -0.001 0.030 0.138

(0.165) (0.134) (0.132) (0.141) (0.119)
IVSatm -0.141 0.165∗ 0.190∗ 0.412∗∗∗ 0.200∗∗

(0.122) (0.099) (0.098) (0.104) (0.088)
IVSotm 0.771∗∗∗ 0.066 0.091 0.371∗∗∗ 0.410∗∗∗

(0.140) (0.114) (0.112) (0.120) (0.101)
Skew 0.818∗∗∗ 0.364∗∗∗ 0.234∗∗ 0.621∗∗∗ 0.596∗∗∗

(0.122) (0.099) (0.097) (0.104) (0.088)
VOV -0.049 -0.036 0.101 0.010 0.160∗∗

(0.090) (0.073) (0.072) (0.077) (0.065)
∆ CIV -0.096 0.221∗ 0.137 -0.107 0.027

(0.147) (0.120) (0.118) (0.126) (0.106)
∆ PIV 0.019 0.149 0.055 0.056 0.168∗

(0.134) (0.109) (0.108) (0.115) (0.097)

Observations 227 227 227 227 227
R2 0.597 0.280 0.174 0.589 0.728
Adjusted R2 0.571 0.233 0.119 0.562 0.710
Residual Std. Error 0.027 0.022 0.022 0.023 0.020
F Statistic 22.476∗∗∗ 5.897∗∗∗ 3.183∗∗∗ 21.684∗∗∗ 40.452∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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F Proofs

Proof of Lemma 1. For any x0, define

g(y) = f((I − UU ′)x0 + Uy) , (23)

and note that g is also real analytic. Then, defining x̃ = (I − UU ′)x0 + UU ′x

g(U ′x)− f(x) = f(x̃) − f(x) =

∫ 1

0

∇f(t(x̃− x) + x)′(x̃− x)dt. (24)

We have

(I − UU ′)M∗(I − UU ′) = (I − UU ′)UDU ′M∗(I − UU ′) = 0 (25)

since (I − UU ′)U = 0. Thus, for any vector z, the function ∇f(x)′(I − UU ′)z is zero for

Lebesgue almost every x because E[(∇f(x)′(I − UU ′)z)2] = z′M∗z = 0 and, hence, the real

analytic function

G(x1, x2) = ∇f(x1)
′(I − UU ′)x2 (26)

is zero for Lebesgue almost every (x1, x2). Therefore, for any fixed t, the real analytic function

Ĝ(t, x0, x) = ∇f(t(x̃−x)+x)′(x̃−x) = ∇f(t(I−UU ′)(x−x0)+x)′(I−UU ′)(x−x0) (27)

is zero for Lebesgue almost every (x0, x). Hence,

g(U ′x)− f(x) = 0 (28)

for Lebesgue almost every (x0, x). Thus, for Lebesgue almost every x0, we have that g(U
′x)−

f(x). To prove the last statement, note that

E[∇f(X)∇f(X)′] = E[M ′∇g(MX)∇g(MX)′M ] = M ′E[∇g(MX)∇g(MX)]M. (29)
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Since the components of ∇g(MX) are linearly independent, we have that the term

E[∇g(MX)∇g(MX)′] ∈ Rr×r

is strictly positive definite, and hence, rank(M ′E[∇g(MX)∇g(MX)]M) = r. Indeed,

a′E[∇g(MX)∇g(MX)′]a = E[(∇g(MX)′a)2] > 0 (30)

because ∇g(MX)′a is not identically zero (linear independence) and hence is almost surely

non-zero (by real analyticity). Then, for any y in the image of M (which has dimension r),

we have that y′E[∇g(MX)∇g(MX)]y > 0, this concludes the proof. □

Proof of Lemma 2. Let Up ∈ Rd×p be the matrix with first p eigenvectors and U−p ∈

Rd×(d−p) the matrix with the last d − p eigenvectors. Then, defining y = U ′
px ∈ Rp and

z = U ′
−px ∈ Rd−p, we get x = Upy + U−pz. Then, the conditional multivariate Gaussian

z|y ∼ N(µ(y), Σ̂z), where Σ̂z ∈ Rd×d satisfies

Σ̂z = Σz − ΣzyΣ
−1
y Σyz ≤ λ1(Σ)I, (31)

where we have defined the blocks

Σz = U ′
−pΣU−p ∈ R(d−p)×(d−p), Σzy = U ′

−pΣUp ∈ R(d−p)×d, Σy = U ′
pΣUp ∈ Rp×p. (32)

Let fp(y) = E[f(x)|U ′
px = y]. Let us fix y and define F (z) = f(U−pz + Upy) − fp(y) :

Rd−p → R (with a fixed y). Then, its gradient ∇zF (z) ∈ Rd−p satisfies (by the chain rule)

∇zF (z) = ∇z(f(U−pz + Upy)− fp(y) = U ′
−p∇xf(x) (33)
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for x = U−pz + Upy. Then, by the (Brascamp and Lieb, 1976) inequality,

Var[F (z)|y] = E[F (z)2|y] ≤ E[∇zF (z)′Σ̂z∇zF (z)|y]

≤ Λ1(Σ)E[∥∇zF (z)∥2|y] = Λ1(Σ)E[∥∇zF (z)∥2|y]

= λ1(Σ)E[∥U ′
−p∇xf(x)∥2|U ′

px = y]

= λ1(Σ)E[(U ′
−p∇xf(x))

′U ′
−p∇xf(x)|U ′

px = y]

= λ1(Σ)E[∇xf(x)
′U−pU

′
−p∇xf(x)|U ′

px = y]

= λ1(Σ) trE[U−pU
′
−p∇xf(x)∇xf(x)

′|U ′
px = y]

= λ1(Σ) tr(U−pU
′
−pE[∇xf(x)∇xf(x)

′|U ′
px = y])

(34)

and, hence,

E[(f(x)− fp(U
′
px))

2] = E[F (z)2] = E[E[F (z)2|y]]

≤ λ1(Σ)E[λ1(Σ) tr(U−pU
′
−pE[∇xf(x)∇xf(x)

′|U ′
px = y])]

= λ1(Σ) tr(U−pU
′
−pE[∇xf(x)∇xf(x)

′])

= λ1(Σ) tr(U−pU
′
−pM̄∗) = λ1(Σ)Λ−p(M∗).

(35)

□
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