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Abstract

We develop a neoclassical theory of a firm with seasonal output prices and inventory building. Our theory
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quasi-fixed production costs and delevering themselves. In turn, the delevering creates inverse seasonality
in their expected returns. Crucially, higher inventory holding costs reduce inventory building, making the
expected return seasonality disappear. Supporting our theory, our empirical work reveals that seasonal
firms build up inventories toward their high-sales seasons. Also, high seasonal inventory leverage predicts
high stock returns and helps explain several seasonal and allegedly-non-seasonal stock anomalies.
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1 Introduction

Many empirical studies discover important seasonalities in stock, accounting, and macro-

economic variables. Citing several recent examples, Chang et al. (2017) and Hartzmark and

Solomon (2018) find seasonalities in corporate earnings. Heston and Sadka (2008, 2010) and

Keloharju et al. (2016, 2021) detect seasonalities in stock returns, showing that a stock’s past same-

calendar-month return positively predicts its future return (“same-calendar-month anomaly”).

Ogden (2003) observes seasonalities in aggregate production, investment, and stock market

capitalization. Interestingly, Grullon et al. (2020) connect the seasonalities in stock and ac-

counting data, showing that stocks tend to underperform in their high sales quarters and vice

versa (“seasonal sales anomaly”). Yet, despite this abundance of empirical evidence, we lack

theoretical studies shedding light on the seasonalities and their connections.

In this paper, we make a first step toward closing this gap in the literature by developing a

neoclassical theory of a firm with a seasonal (exogenous) state variable and output-inventory

building. Specifically, we study a firm able to produce, store in inventory, and later sell a unique

output good at a seasonal stochastic price. Assuming no or linear inventory holding costs, we

show that the firm’s optimal policy is to build up output inventories over some period before

its high price season, to sell those in that season. A crucial implication is that the firm prepays

quasi-fixed production costs associated with output kept in-house over that period, gradually

lowering its “seasonal inventory leverage” and thus expected return.1 Strikingly, higher inventory

holding costs reduce inventory building, making the endogenous seasonalities disappear. In line

with our theoretical work, we empirically show that seasonal firms build up output inventories

1Akin to the operating leverage concept, a higher seasonal inventory leverage (induced through lower inventory
holdings) implies that a fixed percentage increase in sales generates a more positive fixed percentage increase in
firm value and vice versa, simply because the present value of inventory holdings are added to firm value.
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toward their high-sales seasons. Also, seasonal inventory leverage is positively related to future

stock returns and sheds new light on several well-known stock anomalies.

In our theoretical work, we investigate a toy model and a real options model of an all-equity-

financed firm owning capacity able to produce a unique output good (“assets-in-place”) and

operating over a finite continuous horizon. We innovate upon similar models in the literature by,

first, exposing the firm to seasonality in the stochastic price at which it sells output and, second,

allowing it to hold output in inventory. To be specific, we model the output price as a generalized

geometric Brownian motion whose drift term contains an additive sine function yielding a

seasonal output-price drift.2 Moreover, while the firm always produces at full capacity since it

incurs only fixed (but no variable) production costs, we allow it to sell its concurrent production

at a later time by either paying no (toy model) or a linear (real options model) inventory holding

cost. Also important, while the toy model assumes that the firm has to precommit on when it

will sell its concurrent production, the real options model allows the firm to optimally update its

selling dates for output held in inventory as uncertainty resolves. The upshot is that both our

models contain three state variables, namely the current time, output held in inventory, and

output price, and one set of choice variables, namely the optimal selling dates.

We start our empirical work by testing our theory’s prediction that seasonal firms build up

output inventories toward their high-demand seasons. Toward that goal, we first turn to the

Manufacturers’ Shipments, Inventories, and Orders (MSIO) surveys, containing unique monthly

data for several manufacturing industries (see, e.g., Jones and Tüzel (2013)). The data show that

while the surveyed firms are exposed to strong seasonalities in their new orders, they swiftly react

to these, with them shipping out the lion share of new orders in high-order months within those

months. In line with our theory, one reason is that those firms hold large work-in-progress and

2Among others, Geman and Nguyen (2005) employ trigonometric functions in the drift of diffusion processes
to model seasonal patterns in commodity prices and to derive futures prices.
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finished-good but small raw material inventories at the start of high-order months, suggesting

they actively build up output inventories toward these months. Running a similar albeit cruder

analysis over a more diverse set of industries using Compustat data, we further show that the

tendency to build up output inventories toward high-demand seasons is significantly greater

for (i) firms with more seasonal sales and (ii) industries expected to have lower (e.g., consumer

durables) than higher (e.g., services or healthcare) inventory holding costs. In addition, we reveal

that seasonal firms lower their cash balances and raise their short-term liabilities over their

inventory building periods as well as raise their payouts over their high sales periods.

Having confirmed that our sample firms engage in optimal inventory building in response

to seasonalities, we next empirically assess our theory’s prediction that firms with amplified

inventory holdings relative to their annual average holdings have prepaid quasi-fixed costs and

thus have low seasonal inventory leverage and expected returns. In the spirit of Grullon et al.

(2020), we thus calculate the historical fraction of a firm’s inventory holdings at the start of the

current fiscal quarter relative to its average holdings over the fiscal year (QInv). QInv is an inverse

measure for seasonal inventory leverage and a high value signals a delevered firm (since output

kept in inventory adds to the firm’s value). In line with our theory, our empirical work shows that

QInv is strongly negatively priced. Our value-weighted portfolio sorts, for example, show that

the top-minus-bottom QInv tercile spread portfolio yields a mean monthly return of –0.39%

(t-statistic: –4.39). Remarkably, the mean spread return is close-to-unaffected by the Fama and

French (2016) six-factor-model (–0.35%) or the Hou et al. (2021) augmented q-theory (–0.38%)

factors but is more negative in the seasonal-stock (–0.56%) than the non-seasonal-stock (–0.26%)

subsample. Also, while our Fama and MacBeth (FM; 1973) regressions confirm our portfolio

results, they further validate our theory’s prediction that the QInv premium is stronger for firms

with higher historical quarterly inventories-to-quarterly sales ratios.

3



We finally study whether seasonal inventory leverage sheds new light on several seasonal

and allegedly-non-seasonal stock anomalies. Specifically, while, as we already said, Grullon

et al. (2020) show that stocks tend to earn low (high) returns in their high (low) sales quarters,

our theory predicts that firms with high (low) abnormal inventory holdings — and thus low

(high) seasonal inventory leverage — at the start of those quarters (“inventory builders”) drive

the low (high) returns. In the same vein, if a firm’s high (low) return months identify its low

(high) sales quarters, then seasonal inventory leverage should also condition Heston and Sadka’s

(2008, 2010) same-calendar-month anomaly. Moving to allegedly-non-seasonal anomalies,

Heston and Sadka (2008) show that Jegadeesh and Titman’s (1993) twelve-month momentum

effect is almost entirely driven by the twelve-month-ago return, so that the momentum and

same-calendar-month anomalies greatly overlap (see also Novy-Marx (2012)). Finally, Hou

et al.’s (2015) past-quarter ROE may also crudely distinguish between a firm’s high and low sales

seasons. Given that, seasonal inventory leverage may also help to explain those anomalies.

We rely on triple portfolio sorts to evaluate whether seasonal inventory leverage adds to

or even explains the anomalies by contrasting standard anomaly-variable spread portfolios

with seasonal-inventory-leverage-neutral spread portfolios exclusively formed from stocks not

building up output inventories toward their high sales seasons. Remarkably, our evidence shows

that each single anomaly is stronger in the seasonal than in the non-seasonal stock subsample,

a first piece of evidence linking the anomalies to seasonality. More importantly, it further reveals

that the seasonal-inventory-leverage-neutral spread portfolios yield mean returns significantly

closer to zero than the standard spread portfolios. While the standard QSales spread portfolio,

for example, produces a highly significant mean monthly return of –0.22% (t-statistic: –2.17), the

corresponding number for the seasonal-inventory-leverage-neutral portfolio is an insignificant

–0.10% (t-statistic: –0.80), a whopping 55% increase. In comparison, the seasonal-inventory-
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leverage-neutral same-calendar-month, momentum, and quarterly ROE spread portfolios yield

no-longer-significant mean returns 20%, 35%, and 43% closer to zero, respectively.

Our work adds to a large literature studying the pricing of leverage coming from a firm’s

operational characteristics. On the theoretical front, Rubinstein (1973), Carlson et al. (2004),

Cooper (2006), and Lambrecht et al. (2016), among others, show that operating leverage induced

through quasi-fixed production costs inflates expected firm returns. On the empirical front,

Mandelker and Rhee (1984), Garcia-Feijóo and Jorgensen (2010), and Novy-Marx (2011) support

the positive pricing of operating leverage and link it to value anomalies. Conversely, Gu et

al. (2018) and Kogan et al. (2023b) show that the pricing of operating leverage depends on

investment flexibility and variable production costs. While these studies look into the effects of

time-invariant leverage induced through quasi-fixed production costs, we study those of time-

variation in a firm’s leverage over the fiscal year coming from its optimal seasonality-induced

inventory holdings. We also contribute to studies looking into the pricing of inventory variables,

again however focusing on the effects of dynamic (rather than static) inventory variables.3

We also contribute to a literature on recent seasonalities in firm-level stock and accounting

data. Chang et al. (2017) show that the announcement of high (low) earnings in fiscal quarters

with historically high (low) earnings produces high (low) abnormal returns, presumably because

investors and analysts overweight the information in the most recent 2-3 earnings announce-

ments but neglect seasonal patterns in earnings. As already said, Heston and Sadka (2008, 2010)

and Keloharju et al. (2016, 2021) report that the past same-calendar-month return positively

prices stocks. While Keloharju et al. (2021) posit that these results come from temporary mis-

3Thomas and Zhang (2002) show that annual inventory changes negatively price stocks. Using dynamic invest-
ment models, Belo and Lin (2012), Jones and Tüzel (2013), and Chen (2016) rationalize that finding by showing that
firms with larger inventory investments have lower adjustment costs, making them more flexible. Different from us,
these papers focus on input inventory holdings, while we focus on output inventory holdings. Similarly, Chen et al.
(2005) and Alan et al. (2014) find that absolute inventory holdings also negatively price stocks, possibly because
investors only slowly incorporate inventory information from financial reports into their valuations.
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pricing effects, Hirshleifer et al. (2020) suggest that they are driven by seasonalities in investors’

mood. As also already said, Grullon et al. (2020) find that stocks tend to underperform in their

high sales quarters and vice versa, linking their findings to firms’ investment behavior, their

financial leverage, and investor inattention. We add to these studies by offering evidence that

seasonal inventory leverage not only underlies the seasonal sales and same-calendar-month

effects but also the (intrinsically related) momentum and quarterly ROE effects.

We finally also add to the real options asset pricing literature. Differentiating ourselves from

other models in that literature (see, e.g., Kogan and Papanikolaou (2013, 2014), Hackbarth and

Johnson (2015), Aretz and Pope (2018), Kogan et al. (2023a), and others), we consider a firm

exposed to seasonalities in its main exogenous state variable, the stochastic price at which it sells

its output. As a further difference, we also allow the firm to store produced output in inventory

to sell it later, disentangling the production and selling of output.

We organize our paper as follows. In Section 2, we develop a toy and real options model

with seasonal output prices and optimal inventory building. In Section 3, we verify the models’

predictions that (i) firms with seasonal demand and low inventory holding costs build up output

inventories toward their high-demand season, and that (ii) seasonal inventory leverage induced

through optimal inventory building positively prices stock returns. In Section 4, we assess

whether seasonal inventory leverage sheds new light on stock anomalies. Section 5 sums up and

concludes. We relay mathematical proofs as well as supplementary theoretical and empirical

material to our main paper appendix and Internet Appendix.
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2 Theoretical Analysis

In this section, we develop a toy model and a real options model of a firm with output price

seasonality and output inventory building. The key advantage of the toy model is that it allows

us to derive the firm’s optimal policies and values in quasi-closed-form, shedding more light

on our models’ main mechanisms. We start with stating the toy model’s assumptions and then

derive its quasi-closed-form solution. We next discuss how the real options model differs from

the toy model and then explain how we numerically solve the real options model. We finally

elaborate on the main corporate finance and asset pricing implications of our models.4

2.1 The Toy Model

2.1.1 Modeling Assumptions

In our toy model, we study an all-equity-financed firm operating over a continuous time horizon

indexed by t and ending at time T . The firm owns K̄ capacity units, with each capacity increment

enabling it to produce one output increment per time unit. Since the firm only incurs fixed

but no variable production costs of f K̄ , where f > 0 is a fixed parameter, it always optimally

produces at full capacity. The firm immediately shifts its produced output into inventory, with

the stock of output in inventory at time t equal to It . In the toy (but not the real options) model,

we assume that the firm does not incur costs from holding output in inventory.

The firm can costlessly shift an amount of output St ∈ [0, It ] out of inventory and sell it at the

prevailing output price Pt at future time t . Importantly, however, the toy model assumes that

the firm has to precommit on the time at which it will sell its concurrently produced output,

4In Section IA.1 of our Internet Appendix, we also look into an extended version of our real options model in
which the firm holds a growth option allowing it to discretely raise its capacity-in-place at some fixed cost. The
extended model shows that our theoretical conclusions are robust to adding that option.
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Figure 1: The figure plots five sample paths (non-black lines) and the time-0 conditional expectation (black
line) of seasonal stochastic process (1) under the real world measure over the period from t = 0 to 4. We describe
the stochastic process parameter values used to create the figure in Section 2.1.1.

allowing us to solve the model in quasi-closed-form. We assume that the demand for the firm’s

output is seasonal, so that Pt obeys a generalized geometric Brownian motion (GBM) whose

drift term displays seasonal variations due to an additive sine function component:

dPt = (α+κsin(ηt ))Pt dt +σPt dBt , (1)

where the constantα> 0 is the linear time trend, the constantκ≥ 0 controls the amplitude of

seasonal fluctuations, the constantη> 0 governs the length of a seasonal cycle,5 the constant

σ> 0 is volatility, and Bt is a Brownian motion. Settingκ= 0, stochastic process (1) collapses to a

standard GBM, as used in other asset pricing models. Assuming an initial output price value (P0)

of five, an annualized linear time trend (α) of 1%, a seasonal strength (κ) of 0.25,6 a periodicity

(η) of 2π, and an annualized volatility (σ) of 5%, Figure 1 plots five sample paths (non-black

lines) plus the time-0 expectation (black line) of stochastic process (1).

5The length of a seasonal cycle is 2π/η. Since we interpret a seasonal cycle as a year, we always set η= 2π.
6To guide our choice of parameter values, we use a maximum likelihood estimation to fit stochastic process (1)

to the quarterly sales growth of seasonal firms with at least five years of data, where we classify a firm as seasonal
if its average Seasonality value exceeds the full-sample median (see Section 3 for more details about our sample
data and variable definitions). Doing so, we obtain an average κ estimate of about 0.22.
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It follows that we can write the firm’s net operating profits per time unit,Πt , as:

Πt = Pt St − f K̄ , (2)

while we can write the law of motion for the output in inventory, It , as:

dIt = (K̄ −St )dt . (3)

Consistently choosing St = K̄ , the firm always sells all of its concurrently produced output

instantaneously, as in other asset pricing models in the extant literature.

Overall, the model’s state space consists of the current time t (due to the seasonality and the

finite horizon), the output price Pt , and the output in inventory It . Conversely, the only choice

variables are the amounts of output to be sold out of inventory in the future, St .

2.1.2 Optimal Selling Policy

We assume that the firm chooses its optimal selling policy by maximizing its value. To determine

how the firm should optimally allocate its current production over the period from current

time t to T , we notice that this decision does not affect the firm’s benefits and costs derived

from output produced in the future. The reason is that the current allocations neither affect

future output prices nor production costs. Thus, the firm can make decisions about its current

production in isolation of those about its future production. In addition, we notice that if it were

optimal to sell a non-zero amount of concurrently produced output at future timeτ∗ ∈ [t , T ], it

would also be optimal to sell all other such output at that time, simply because the present value

from selling an output unit does not differ across output units. As a result, the firm either sells

9



0 1 2 3 4

4.5

5

5.5

6

A: Output Price

0 1 2 3 4

0

0.5

1

B: Accumulated Inventory

Figure 2: The figure plots the output price Pt (Panel A) and the firm’s inventory holdings It (Panel B) over
the period from t = 0 to 4. While the white areas in each subpanel are optimal inventory building periods, the
gray-shaded areas are optimal instantaneous selling periods. We describe the parameter values in Section 2.1.2.

no (Sτ∗ = 0) or all available (Sτ∗ = K̄ ) output at future time τ∗ (“bang-bang solution;” see, e.g.,

Majd and Pindyck (1987) and Dixit and Pindyck (1994) for other examples).

To identify the optimal selling dateτ∗ for concurrent production, the firm can maximize the

present value from selling one single output unit at future time u . More rigorously, the firm can

solve the following constrained maximization problem:

max
u∈[t ,T ]
EQt [Pu ]e

−r (u−t ) = max
u∈[t ,T ]

Pt exp
�

−(µ−α)(u − t ) +
κ

η

�

cos(ηt )− cos(ηu )
�

�

, (4)

whereEQt [·] is the time-t expectation under the equivalent martingale measure, r is the risk-free

rate, andµ is the constant expected return of a mimicking portfolio perfectly correlated with the

output price. For future reference, we define Et ,u ≡ exp
�

−(µ−α)(u − t ) + κ
η

�

cos(ηt )− cos(ηu )
�

�

for u > t and else zero. Taking the partial derivative of Equation (4) with respect to u and setting

to zero, we find the local maximums of the objective function to be atτ∗ = π
η −

1
η sin−1
�

µ−α
κ

�

+ 2π
η n

for n ∈ {. . . ,−2,−1, 0, 1, 2, . . .}. As the local maximums decline with time (due to discounting), we

then pick as global maximum the value closest to but larger than t . We stress that in the absence

of output price seasonality (i.e., whenκ= 0 and/orη= 0), we would always findτ∗ = t , so that,

as in other models, the firm would always instantaneously sell its concurrent production.
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Figure 2 aids in better understanding the firm’s optimal selling policy. In Panel A, we plot an

output price path which is identical to its expectation, to better highlight the implications of

seasonality. We rely on the same stochastic process parameter values as in Section 2.1.1, and we

assume an expected output-price mimicking portfolio return (µ) of 8% per annum. The white

areas indicate periods in which the firm optimally delays selling its output (τ∗ > t ), whereas

the gray areas indicate periods in which it optimally instantaneously sells its output (τ∗ = t ). In

turn, Panel B plots the firm’s inventory holdings, showing that those holdings linearly rise over

inventory building periods and remain at zero over instantaneous selling periods. Intuitively,

the firm builds up output inventories over inventory building periods because the present value

of selling output at the next seasonal high exceeds the current output price. Conversely, the firm

instantaneously sells it concurrently produced output over some period after the prior seasonal

high since the current output price exceeds that same present value.

2.1.3 Firm Valuation and Expected Firm Return

We now derive the firm’s value and expected excess return. Starting with the firm’s value, Wt , we

first use an integral to compute the present value of output produced before the current time t

but still optimally held in inventory at that same time, W i
t , as:

W i
t =

∫ t

0

PtEt ,τ∗s K̄ ds = Pt K̄

∫ t

0

Et ,τ∗s ds , (5)

whereτ∗s is the optimal selling time chosen at time s < t , and we again impose Et ,τ∗s = 0 ifτ∗s < t

to ensure that we do not consider output already sold in the past. We next use another integral
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to compute the present value of output produced after time t , W p
t :

W p
t =

∫ T

t

PtEt ,τ∗s K̄ ds = Pt K̄

∫ T

t

Et ,τ∗s ds , (6)

whereτ∗s is now the firm’s expectation of the optimal selling time for output produced at future

time s ≥ t , determined from the law of iterated expectations.7 The present value of the firm’s

future fixed production costs, C p
t , is equal to:

C p
t =

∫ T

t

f K̄ e −r (s−t )ds =
f K̄

r

�

1− e −r (T−t )
�

. (7)

Proposition 1 finally combines the three value components into the total value of the firm:

Proposition 1. The firm’s value at time t , Wt =W (t , Pt ), is:

Wt =W i
t +W p

t −C p
t = Pt K̄

∫ T

0

Et ,τ∗u du −
f K̄

r

�

1− e −r (T−t )
�

. (8)

We next compute the firm’s conditional expected excess return. Since the output price, Pt , is

the only priced stochastic variable, that expected return is linear in the firm’s elasticity (i.e., the

partial derivative of firm value with respect to output price times the ratio of output price to firm

value), as in other asset pricing models in the literature. Proposition 2 formalizes this insight

and also offers a linear decomposition of the firm’s elasticity:

Proposition 2. The firm’s conditional expected excess return per time unit is:

E[rW ]− r =βt (µ− r ), (9)

7In words, the firm’s best estimate at current time t of its best estimate at future time s ≥ t of the present
value of selling an output unit net of inventory holding costs at some later time u ≥ s is simply its best estimate of
that net present value at time t . Given that, the firm can simply maximize over the estimate at time t .
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where the elasticity βt =
∂Wt /Wt
∂ Pt /Pt

captures the responsiveness of the firm’s value to its output price,

and µ is the constant expected return of a mimicking portfolio whose price changes perfectly

correlate with output price changes. The elasticity βt can be written as:

βt = 1+
C p

t

Wt
= 1+

C p
t

W i
t +W p

t −C p
t

. (10)

Equation (10) suggests that the firm’s elasticityβt (and thus its expected excess return) vary

seasonally over time. To understand that, we first notice that C p
t , the present value of future

production costs, is a deterministically declining function over time. We next realize that both

W i
t and W p

t , the present values of selling already-produced and still-to-be-produced output,

respectively, rise with the firm approaching its next high-output-price season. The reasons are

that, first, the firm’s future sales revenues are less strongly discounted and, second, that the

firm holds more output in inventory the closer it is to that season. The upshot is that the firm’s

optimal inventory building toward its next high-output-price season gradually levers down (or:

delevers) the firm, inducing its expected excess return to fall over that period. In contrast, the

static operating leverage coming from quasi-fixed production costs in, for example, Carlson

et al. (2004) and Cooper (2006) lever up the firm, simply because the present value of those costs

are subtracted from (and not added to) the firm’s value (see again Equation (10)).

2.2 The Real Options Model

We next introduce the real options model. The real options model innovates over the toy model

by, first, assuming that the firm incurs a cost from holding inventories and, second, by no longer

requiring the firm to precommit on the time at which it will sell its concurrently produced output.

Rather, the firm now owns the real option to optimally update that time.
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Figure 3: The figure plots the firm’s optimal inventory building (white areas) and instantaneous selling (gray
areas) regions on the output price Pt -time t plane. We describe the parameter values used to create the figure in
the second paragraph of Section 2.1.1 and in the last paragraph of Section 2.1.2.

2.2.1 Optimal Selling Policy and Firm Valuation

We start with valuing the output held in inventory. As each output increment in inventory is

again (just like in the toy model) identical to all others, we can find the value of an arbitrary

output unit, V (t , Pt ), from the following standard Bellman equation:

V (t , Pt ) =−cI dt +EQt [V (t +dt , Pt +dPt )]e
−r dt , (11)

where cI > 0 is the cost of holding one output unit in inventory for one time unit.

Using Itô’s Lemma, taking the equivalent martingale measure expectation, and re-arranging,

we can rewrite Equation (11) as the partial differential equation (PDE):

1

2
σ2P 2 ∂

2V

∂ P 2
+ (r −δt )P

∂ V

∂ P
− r V +

∂ V

∂ t
− cI = 0, (12)

which the output unit value, V (t , Pt ), must obey subject to the boundary condition that V (t , Pt ) =

Pt at the optimal selling time. Due to the early exercise decision, we cannot solve PDE (12) in

closed-form and resort to a finite difference approach. See Appendix A.2 for details.
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Using the same parameter values as in Sections 2.1.1, 2.1.2, and 2.1.3 and assuming cI = 0.25,

Figure 3 displays the firm’s optimal inventory building and selling policy in output price Pt -time

t space. As long as the output price-time combination is within one of the white areas in the

figure, the firm optimally produces to exclusively build up its output inventories. Upon crossing

into a gray area (which happens at the circles for the exemplary sample path), the firm then sells

off its entire output in inventory and starts producing to instantaneously sell until it crosses

back into a white area (which happens at the rectangles). As in the toy model, the firm thus

again follows a bang-bang strategy. Interestingly, if the output price becomes sufficiently low

(the threshold is about 1.7 in the figure), it is never optimal for the firm to pay inventory holding

costs, and it thus consistently sells all of its concurrent production instantaneously.

Relying on the value of a single output unit, V (t , Pt ), Proposition 3 offers the real-option-

model implied value of a firm with It output units in inventory at time t :

Proposition 3. The firm’s value at time t , Wt =W (t , Pt , It ), is:

Wt =W i
t +W p

t −C p
t = It V (t , Pt ) + K̄

∫ T

t

e −r (u−t )EQt [V (u , Pu )]du −
f K̄

r

�

1− e −r (T−t )
�

, (13)

where W i
t = It V (t , Pt ), W p

t = K̄
∫ T

t
e −r (u−t )EQt [V (u , Pu )]du, C p

t is defined as before, and the

future output unit values V (u , Pu ) are given by the finite difference grid.

As the distribution of Pt under the equivalent martingale measure is log-normal, we can use the

law of the unconscious statistician to (numerically) computeEQt [V (u , Pu )].

Finally, we can again use Equation (9) to compute the firm’s expected return.
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2.3 Model Conclusions

We finally use a simulation exercise to determine the main corporate finance and asset pricing

implications of our two models. Since the models, however, produce similar implications, we

exclusively focus on the real options model in this section, only drawing on the toy model to

interpret our results. Notwithstanding, we offer the results from the toy model in Appendix B at

the end of this paper. In each simulation, we look into the period from t = 0 to 4. To bring the

effects of seasonality into sharper focus, we consistently let the output price evolve according

to its drift term (i.e., the solid black line in Figure 1).8 We use the same basecase parameters

as in Figures 1 to 3. More specifically, we choose P0 = 5.00,α= 0.01,κ= 0.25,η= 2π,σ= 0.05,

µ= 0.08, r = 0.01, cI = 0.25, K̄ = 1.00, f = 1.00, and T = 40. To study how the inventory holding

costs modulate our conclusions, we later also consider cI = 0.00, 0.66, and+∞.

In Figure 4, we plot the evolution of the output price Pt (Panel A; repeated for convenience),

the amount of output the firm holds in inventory It (Panel B), the firm’s inventory holdings

value W i
t (Panel C), its continuation value W p

t (Panel D), its total value Wt (Panel E), and its

expected excess returnE[rW ]− r (Panel F) over time. The white (gray) shaded areas indicate

optimal inventory-building (instantaneous selling) periods. Spurred by the seasonal output

price in Panel A, Panel B demonstrates that the firm produces to exclusively build up output

inventories over some period before its optimal selling timeτ∗ (the start of each gray-shaded

area). Reaching timeτ∗, the firm sells off its entire output in inventory and starts producing to

exclusively instantaneously sell over some period. As the firm keeps the value-added generated

over inventory-building periods in-house, Panels C and D establish that the value of its inventory

holdings W i
t — but not its continuation value W p

t — markedly rises over such periods. In turn,

8To be clear, while the firm expects the output price to evolve stochastically according to the seasonal GBM (1),
it is just a “coincidence” that the actual realization is in agreement with the expectation. We rely on that coincidence
to more clearly establish how the firm responds to seasonality in its output price.
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Figure 4: The figure shows the results from our benchmark simulation exercise. While Panel A displays the
evolution of the output price, Pt , over the period from t = 0 to 4, Panels B to F display how the firm’s inventory
holdings It , inventory holdings value W i

t , continuation value W p
t , total value Wt , and conditional expected excess

return, E[rW ]− r , vary over that period, respectively. To focus on seasonal patterns, we remove a linear trend
from the inventory holding, continuation, and total firm value as well as the conditional expected excess return.
While the white areas in each subpanel are optimal inventory-building periods, the gray-shaded areas are optimal
instantaneous-selling periods. We describe the parameter values in the first paragraph of Section 2.3.

Panel E reveals that the seasonality in the firm’s inventory holdings value maps directly into

similar seasonality in its total value Wt . Finally, Panel F confirms that the firm’s value increases

induced through its optimal inventory building delever it over those same periods, gradually

lowering its expected return toward timeτ∗. As suggested by Proposition 2, the delevering over

the optimal inventory holding periods occurs because the firm’s elasticity and thus expected

return are inversely related to the present value of its inventory holdings (W i
t ).

Our simulation results so far insinuate that optimal inventory building delevers the firm,

yielding endogenous seasonality in the firm’s expected return inversely related to the exogenous

seasonality in its output price. To further support the claim that optimal inventory building is
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Figure 5: The figure gives comparative statics for the expected excess return. While Panel A displays the evolution
of that expected return under an inventory holding cost, cI , of 0.00, Panels B to D display it under a cost of 0.25,
0.66, and +∞, respectively. To focus on seasonal patterns, we remove a linear trend from the expected returns.
We describe the parameter values in the first paragraph of Section 2.3.

the mechanism underlying those conclusions, we next repeat the simulations varying the ease

with which the firm can build up inventories by setting the inventory holding cost, cI , to 0.00,

0.25 (for comparison), 0.66, or+∞. Using those values in Panels A to D, respectively, Figure 5

plots the evolution of the expected excess return from time t = 0 to 4. Contrasting the panels,

the figure confirms that lower inventory holding costs raise (lower) the duration of the inventory

building (instantaneous selling) periods, in turn amplifying the endogenous seasonality in the

expected return. Crucially, when the firm finds it prohibitively costly to engage in any inventory

building, the expected return does not display seasonalities at all (see Panel D).

It is instructive to consider a version of our toy model in which the firm must instantaneously

sell its output to better understand why optimal inventory building is a necessary condition for

output price seasonality to translate into inverse expected return seasonality. In that version,
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the present value of the firm’s futures sales revenue, W p
t , is equal to:

W p
t = Pt K̄

∫ T

t

e −(µ−α)(u−t )+ κη (cos(ηt )−cos(ηu ))du . (14)

While it is obvious that Pt evolves seasonally according to GBM (1), the κ
η (cos(ηt )− cos(ηu ))

term inside the integral evolves exactly inverse-seasonally, reaching its seasonal high when Pt

reaches its seasonal low, and vice versa. The intuition is that when Pt is at its seasonal high (low)

its expected seasonal drift is lowest (highest). In turn, the present value W p
t displays almost no

seasonalities and, since the elasticityβt continues to be inversely linear in Wt =W p
t −C p

t (as in

Proposition 2), neither does the expected excess return of the firm,E[rW ]− r .

Overall, this section offers theoretical evidence that in a world with seasonal exogenous

output prices and inventory building, firms with lower inventory holding costs optimally build

up output inventories over longer periods before their high-price seasons. As a result, they also

produce stronger inverse endogenous expected-return seasonalities, induced through their

inventory holdings gradually delevering them over their inventory building periods.

3 Main Empirical Evidence

In this section, we empirically evaluate the main predictions of our theory in Section 2. To do so,

we first introduce our variable definitions. We next state our data sources and offer descriptive

statistics. We then test the prediction that seasonal firms with low inventory holding costs build

up output inventories toward their high-demand season. We finally test the prediction that high

seasonal inventory leverage predicts high future stock returns in the cross-section.
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3.1 Main Variable Definitions

Our theoretical work suggests that firms with seasonal demand and low inventory holding costs

actively build up output inventories toward their high-demand seasons, gradually delevering

themselves and inducing their expected returns to fall. To capture seasonal swings in a firm’s

inventory holdings, we compute abnormal quarterly inventory holdings, QInvi ,q ,y , as:

QInvi ,q ,y =
3
∑

j=2

�

QuarterlyInventoryi ,q−1,y− j

MeanQuarterlyInventoryi ,y− j

�

/2, (15)

where QuarterlyInventoryi ,q ,y are the total inventory holdings of firm i at the end of quarter q in

fiscal year y and MeanQuarterlyInventoryi ,y are its average quarterly total inventory holdings

over fiscal year y . Intuitively, QInv captures the mean deviation of the firm’s total inventory

holdings at the end of the prior quarter (and thus at the start of the current) from its average

(“normal”) holdings over the fiscal year, calculated over the fiscal years ending in calendar years

t −1 and t −2. As a result, QInv is an inverse proxy for seasonal inventory leverage.9

In addition to QInv, we also calculate an equivalent variable, QFWInv, using the sum of

work-in-progress and finished-good (rather than total) inventories. While QFWInv is only

available for a small subset of our sample data, we use it to verify QInv. Furthermore, since QInv

captures only the magnitude of a firm’s inventory holdings at the start of some quarter relative

to its normal holdings but not a firm’s general propensity to store output in inventory, we also

compute InvToSales, defined as the average fraction of the quarterly inventories-to-quarterly

sales ratio over the fiscal years ending in calendar years t −1 and t −2.

9In line with our theory, our empirical work assumes that a firm’s output-price seasonality and ability to build
up output inventories are highly persistent, so that past values of QInv can be used to predict future values. In
Section IA.2 in the Internet Appendix, we offer evidence verifying that assumption.
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As our theory predicts that its main implications are stronger for seasonal firms (i.e., firms

with higherκvalues in Section 2), we follow Grullon et al.’s (2020) strategy to distinguish between

seasonal and non-seasonal firms. In particular, we compute QSalesi ,y ,q , the average historical

contribution of a firm’s sales over the current quarter to its total annual sales, as:

QSalesi ,q ,y =
3
∑

j=2

�

QuarterlySalesi ,q ,y− j

AnnualSalesi ,y− j

�

/2, (16)

where QuarterlySalesi ,q ,y are the quarterly sales of firm i over quarter q in fiscal year y and

AnnualSalesi ,y are the annual sales of that firm over fiscal year y . We subsequently calculate the

standard deviation of QSales over the fiscal year (“Seasonality”), classifying firms with a value

above (below) the cross-sectional median as seasonal (non-seasonal) firms.10

In our supplementary industry-level analysis, we calculate our variables in the same spirit

as in Equations (15) and (16), except that we compute contemporaneous (and not historical

average) fractions at the monthly (and not quarterly) frequency. Using an industry’s new orders

as example for a flow variable, we compute MNewOrdersi ,m ,y as:

MNewOrdersi ,m ,y =
MonthlyNewOrdersi ,m ,y

AnnualNewOrdersi ,y
, (17)

where MonthlyNewOrdersi ,m ,y are the new orders of industry i in month m of calendar year

y and AnnualNewOrdersi ,y are the total new orders of that industry over year y . We calculate

the flow variables derived from either monthly shipment values (MShipments) or monthly

unfilled orders (MUnfilledOrders) in an analogous manner. Conversely, using total inventories

10Our variable definitions ensure that real investors could have calculated the variables in real-time. We form
historical averages over two fiscal years to mitigate noise. Taking averages over longer past periods does not
change our results. Neither does excluding fiscal years for which quarterly sales do not add up to annual sales.

21



as example for a stock variable, we compute MInvi ,m ,y as:

MInvi ,m ,y =
MonthlyInventoriesi ,m ,y

MeanMonthlyInventoriesi ,y

, (18)

where MonthlyInventoriesi ,m ,y are the total inventory holdings of industry i at the end of month

m in calendar year y and MeanMonthlyInventoriesi ,y are the average monthly total inventory

holdings of that industry over year y . We finally also calculate three more granular abnormal

inventory holding variables, in particular, raw material (MRMInv), work-in-progress (MWIPInv)

and finished-goods (MFGInv) inventory holdings, in an analogous manner.

We use the following standard control variables. In our single-firm panel regressions, we

control for Assets, QROE, and Investment. Conversely, our portfolio sorts control for either Fama

and French’s (2016) six-factor-model or Hou et al.’s (2021) augmented q-theory factors. Finally,

our single-stock FM regressions control for QCash, QDebt, InvToSales, MarketBeta, MarketSize,

BookToMarket, Momentum, Investment, and Profitability. We offer more details about the

calculation of our variables in Table C1 in Appendix C at the end of this paper.

3.2 Data Sources and Descriptive Statistics

In our firm-level analysis, we use market data from CRSP, accounting data from Compustat, and

factor model data from Ken French’s and Lu Zhang’s websites. We study common stocks traded

on the NYSE, Amex, or NASDAQ excluding financial and utility stocks. We replace a stock’s return

with its delisting return when the delisting return is available. We exclude observations for which

quarterly sales and/or quarterly inventory holdings are negative as well as those for which these

variables are not available for the entire fiscal year. In our FM regressions, we further exclude

stocks with a market capitalization below the first NYSE quintile or $5 at the end of the prior
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month. We winsorize all variables except the stock return at the 0.5th and 99.5th percentiles per

month. Our sample period is January 1979 to December 2022.11

Panel A of Table 1 gives descriptive statistics for QInv, QSales, Seasonality, InvToSales, and

QFWInv. Except for the number of observations, we calculate each statistic first by sample

month and then average over time. The panel shows that our main variables are available

for more than one million observations (see column (1)). The only exception is QFWInv, our

abnormal inventory variable computed from finished-good and work-in-progress inventories,

which is available for only about 180k observations. The panel further reveals that while QInv

(QSales) necessarily produces a mean value of 1.00 (0.25; see column (2)), QInv is about 3-4

times more volatile than QSales (see column (3)). Also strikingly, while, in contrast to QFWInv,

QInv also includes raw-material inventories, the two variables are extremely similar, not only

in terms of their moments but also percentiles. Looking into the Seasonality and InvToSales

statistics, we find that firms vary markedly in the extent to which single quarters make up the

lion share of their annual sales and the extent to which they hold output in inventory.

TABLE 1 ABOUT HERE.

In the industry-level analysis, we use non-seasonally-adjusted data on the values of orders,

shipments, and inventory holdings of seven major industries from the Manufacturers’ Ship-

ments, Inventories, and Orders (MSOI) database made available by the Census Bureau of the

United States.12 Our sample period is January 1993 to December 2021.

Panel B of Table 1 gives descriptive statistics for the industry-level variables. The panel shows

that these variables are available for about 2,500 observations. It also reveals that the aggregation

11The start of our sample period is dictated by the availability of quarterly inventory data in Compustat.
12To be specific, we look into the primary metals (31S), fabricated metal products (32S), machinery (33S),

computer and electronics (34S), electrical equipment, appliances, and components (35S), transportation equip-
ment (36S), and furniture and related products (37S) industries. The reason is that the three more granular (raw
material, work-in-progress, and finished-good) inventory variables are only available for those industries.
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to the industry level slightly attenuates the seasonalities in them (with, e.g., the volatility of

MNewOrders being less than one-third of the volatility of QSales (see column (3)).

3.3 Seasonal Demand and Inventory Building Policies

We first test our theory’s prediction that firms with seasonal demand and low inventory holding

costs optimally build up output inventories toward their high-demand season, to better serve

demand in that season. We start off with using industry-level data from the MSOI database to

test that prediction. Two key advantages of the MSOI data are that they allow us to (i) directly

observe demand in the form of new orders, and to (ii) decompose total inventory holdings into

raw material, work-in-progress, and finished-good holdings. To be more specific, we conduct

the following panel regression with fixed effects on the industry-level data:

MVariablei ,m ,y =β
′MVariables+αi +εi ,m ,y , (19)

where MVariable ∈ {MNewOrders, MShipmentValues, MUnfilledOrders}, MVariables is a vec-

tor of contemporaneous and/or lagged values of MNewOrders, MInv, MFGInv, MWIPInv, and

MRMInv,β is a parameter vector,α is an industry fixed effect, and ε is the residual. We cluster

the standard errors from the panel regression at the major-industry level.13,14

13We do not include time fixed effects since if the seven industries received most of their new orders in the
same or similar calendar months, then the time fixed effects would subsume the seasonalities in demand and the
other variables. Notwithstanding, the inclusion of time fixed effects only mildly changes our results.

14We can show that whenever we regress MNewOrders, MShipments, or MUnfilledOrders on one of the inventory
variables (MInv, MFGInv, MWIPInv, or MRMInv), we would find slope coefficients of 1/12 on those variables
if firms preproduced and held in inventory at the start of the relevant month all output ordered, shipped, or
unfilled over month t (and sales revenues were a constant multiple of historical costs). The technical reason is
that MNewOrders, MShipments, and MUnfilledOrders are scaled by their annual sums, whereas the inventory
variables are scaled by their annual means. To ease interpretation, we thus multiply the slope coefficients of the
inventory variables by twelve, implying that a coefficient of one signals “perfect inventory building.”
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Table 2 reports the results from estimating regression (19). The plain numbers are coefficient

estimates, whereas those in square brackets are t-statistics. While the dependent variable is

MNewOrders in columns (1) and (2), it is MUnfilledOrders in column (5), and MShipments in the

remaining columns. Moreover, while “lag x ” after an independent variable’s name indicates

that the variable is lagged by x months, “lag x -y ” indicates that the variable is the sum of its

lagged values over lags x to y . The first two columns confirm that the share of an industry’s

annual new orders attributable to the current month is highly predictable and seasonal. To be

specific, while column (1) shows that the shares over the past twelve months capture 46% of

the variations in the share of the current month, column (2) reveals that the twelve-month-ago

same-calendar-month share captures 43% on its own (estimate: 0.65, t-statistic: 6.14). The

upshot is that if an industry received a disproportionally small (large) number of new orders in

some month over the previous year, it is highly likely that it will also receive a disproportionally

small (large) number of new orders in that same month over the current year.

TABLE 2 ABOUT HERE.

Notwithstanding, columns (3) to (5) suggest that the surveyed firms deal swiftly with seasonal

swings in demand. To wit, a higher new-order share in the current month translates into a

significantly higher shipment share in the same month (estimate: 0.69; t-statistic: 11.46) in

column (3) but not in later months in column (4). Moreover, that same higher new-order

share has a much smaller effect on the same-month unfilled-order share (estimate: 0.13; t-

statistic: 2.23) in column (5). Finally, the remaining columns indicate that inventory building is

at least partially responsible for the swift reactions. In particular, they show that the surveyed

firms hold larger (smaller) than usual inventories at the start of their high (low) shipment-share

months (estimate: 0.93; t-statistic: 3.66) in column (6) but not one month earlier or later in

column (7). Decomposing total inventory holdings into raw material, work-in-progress, and
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finished-good holdings, column (8) reveals that the higher than usual inventories at the start of

high shipment months mostly come from higher finished-good (estimate: 0.69; t-statistic: 4.53)

and work-in-progress (estimate: 0.58; t-statistic: 3.87) inventories but, in an important contrast,

smaller raw material (estimate: –0.33; t-statistic: –2.60) inventories.

While the MSOI survey data support several important predictions of our theory, they do

not allow us to test the predictions that (i) seasonal firms build up more output inventories

toward their high-demand seasons than non-seasonal firms, and that (ii) inventory holding

costs condition the ability to build up output inventories toward those seasons. The reason is

that the survey firms all manufacture relatively homogeneous physical goods (as, e.g., metal,

machinery, electrical equipment, etc.) with a likely similar demand seasonality. Given that, we

now also conduct a cruder analysis based on firm-level Compustat data over a greater variety

of industries. To be specific, we execute the following panel regressions with fixed effects:

QSalesi ,q ,y =βQInvi ,q ,y +η
′Controli ,q ,y +αi +εi ,q ,y , (20)

and

QSalesi ,q ,y = βQInvi ,q ,y +γ(QInvi ,q ,y ×DSeasonalityi ,q ,y ) (21)

+δDSeasonalityi ,q ,y +η
′Controli ,q ,y +αi +εi ,q ,y ,

where Control= [Assets,QROE,Investments]′, DSeasonality is a dummy variable equal to one of

Seasonality is above its median and else zero, β , γ, and δ are parameters,η is a parameter vector,

αi is a firm-fixed effect, and εi ,q ,y is the residual. We cluster standard errors at the firm level.15

15Consistent with footnote (14), we multiply the slope coefficients of the inventory, cash, and short-term
debt variables and their interactions in Tables 3, 4, and 5 with four, so that a unit coefficient indicates that firms
perfectly build up inventories and short-term debt and run down cash toward their high-sales quarters.
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Table 3 reports the results from estimating regressions (20) and (21) in the odd and even-

numbered columns, respectively. While we run the estimations in columns (1) and (2) over our

full sample, we run those in columns (3) and (4), (5) and (6), (7) and (8), and (9) and (10) over

the durable consumer goods, manufacturing, services, and healthcare industry subsamples,

respectively.16 Plain numbers are estimates and those in square brackets t-statistics. Column (1)

shows that the average sample firm builds up inventories toward its high-sales quarter (QInv

estimate: 0.15; t-statistic: 17.66). Crucially, however, column (2) demonstrates that the tendency

to build up inventories is almost exclusively driven by seasonal firms. Specifically, while non-

seasonal firms yield a QInv estimate of 0.00 (t-statistic: 2.41), the corresponding number for

seasonal firms is 0.21 (t-statistic of interaction: 17.26). Also reassuringly, columns (3) to (10)

demonstrate that seasonal firms with plausibly lower inventory holding costs (as those from the

durable-good or manufacturing industry) build up more inventories than those seasonal firms

with plausibly higher such costs (as those from the service or healthcare industry).

TABLE 3 ABOUT HERE.

In Table 4, we verify that our evidence in Table 3 is robust to us using QFWInv (i.e., abnormal

work-in-progress plus finished-good inventories) rather than QInv (i.e., abnormal total invento-

ries). Doing so is important since our theory in Section 2 makes predictions about finished-good

(and not raw-material) inventories. To that end, the tables gives the results from reestimating

regressions (20) and (21) on the full sample (columns (1) and (2); for comparison); on the sub-

sample of firms with non-missing work-in-progress and finished-good inventory values ((3)

and (4)); and on that subsample but with QInv replaced with QFWInv ((5) and (6)). Contrasting

the columns, we find that QInv yields results close-to-identical to QFWInv. While the estimate

16We do not focus on a comprehensive but rather a highly selective sample of industries with plausibly either
relatively low (the former two industries) or high (the latter two) inventory holding costs.
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of QInv is, for example, 0.22 (t-statistic: 9.29) in regression (20) in column (3), the corresponding

estimate of QFWInv in column (5) is a similar 0.18 (t-statistic: 9.82).

TABLE 4 ABOUT HERE.

We finally also examine how seasonal firms finance building up output inventories and when

they distribute sales revenues to equityholders. While our theory in Section 2 assumes that those

firms continuously raise external equity for financing purposes, and that they instantaneously

distribute sales revenues to equityholders, it is likely that our sample firms rely on a greater mix of

financing sources and smooth their payouts over time. To study firms’ financing sources, we use

abnormal quarterly cash holdings, QCash, and abnormal quarterly short-term debt holdings,

QDebt, both computed analogously to QInv but with total inventory holdings replaced with

cash reserves and current liabilities, respectively.17 To study their payout policies, we look into

abnormal quarterly dividends, QDiv, computed analogously to QSales but with sales replaced

with dividends. See Table C1 in Appendix C at the end of this paper for more details.

Table 5 reports the results from reestimating regressions (20) and (21) using QCash (columns

(1) to (2)), QDebt ((3) to (4)), or QDiv ((5) to (6)) as dependent variable. While the odd-numbered

columns focus on regression (20), the even-numbered concentrate on regression (21). Moreover,

plain numbers are again estimates and those in square brackets t-statistics. The table suggests

that firms both deplete their cash reserves and take out short-term debt to finance building up

output inventories. While column (1), for example, shows that the average sample firm holds

smaller cash reserves before a high sales quarter (t-statistic: –24.90), column (2) reveals that this

effect is much stronger for seasonal firms (t-statistic of interaction: –19.87). The table further

17We notice that we focus on all current liabilities of a firm (rather than only its short-term debt) since the firm
could also finance the build-up of output inventories using trade credit, payable wages and salaries, or deferred
taxes. Despite that, we find similar results when we exclusively look into short-term debt financing.
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indicates that firms raise their dividends in high sales quarters (t-statistic: 11.51), with the effect

again much stronger for seasonal firms (t-statistic of interaction: 15.19).

TABLE 5 ABOUT HERE.

Overall, this section uses both granular industry as well as coarser firm-level data to support

our theory’s prediction that seasonal firms build up output inventories toward their high demand

seasons, to better accommodate demand in those seasons.

3.4 The Pricing of Seasonal Inventory Leverage

As Section 3.3 shows that our sample firms build up output inventories toward their high-demand

seasons, and as our theory suggests that doing so delevers firms, we would now naturally expect

that seasonal inventory leverage is positively related to the cross-section of future stock returns.

To test this prediction, we start off with univariate portfolio sorts. At the end of each month t −1,

we thus sort our sample stocks into portfolios according to the terciles of the QInv distribution

at that time. We value-weight the portfolios and form a spread portfolio long the highest QInv

portfolio and short the lowest. We hold all portfolios over month t . Alternatively, we first split our

sample stocks according to the median of the Seasonality distribution at the end of each month

t − 1, referring to above (below) median stocks as seasonal (non-seasonal) stocks. We then

independently sort into QInv portfolios just like before, using the intersection of the two sorts

to form double-sorted portfolios. To adjust for systematic risk, we regress the spread portfolio

returns on the Fama and French (2016) and Hou et al. (2021) factors.

Table 6 presents the univariate portfolio sort results. Panels A, B, and C focus on the full

sample and the seasonal and non-seasonal stock subsamples, respectively. Plain numbers are

monthly excess returns (in %; “Returne ”) or portfolio characteristics, whereas the numbers in
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square brackets are Newey and West (1987) t-statistics with a twelve-month lag length. The

portfolio characteristics are the average number of stocks, the time-series means of the cross-

sectional QSales and MarketSize means per portfolio, and the portfolio Sharpe ratio.

TABLE 6 ABOUT HERE.

The table confirms that seasonal inventory leverage is positively related to future stock

returns. Specifically, the full-sample results in Panel A show that while the bottom QInv tercile

(containing the stocks with the highest seasonal inventory leverage) yields a mean excess return

of 0.90% per month (t-statistic: 4.17) in column (1), the corresponding number for the top tercile

(containing the stocks with the lowest seasonal inventory leverage) in column (3) is 0.51% (t-

statistic: 2.41). The upshot is that the spread portfolio yields a significant mean excess return of

–0.39% (t-statistic: –4.39) in column (4). In line with our theoretical priors, Panels B and C reveal

that the mean spread return is an even more significantly negative –0.56% (t-statistic: –4.65) in

the seasonal — but an only weakly significant –0.26% (t-statistic: –2.51) in the non-seasonal

— stock subsample. Finally, columns (5) and (6) show that adjusting for systematic risk has

close-to-no effects on the pricing of seasonal inventory leverage.18

Looking at the portfolio characteristics, the table suggests that the portfolios include a large

number of stocks and are are thus well diversified. Crucially, however, the extreme seasonal

(non-seasonal) QInv portfolios in Panel B (C) feature a disproportionally large (small) number of

stocks, in line with seasonal stocks being more prone to build up inventories. In accordance, the

QSales means reveal that seasonal (but not non-seasonal) stocks tend to hold larger inventories

at the start of their high-sales quarters. Finally, the Sharpe ratio drops over the QInv portfolios in

Panels A and B, indicating that low seasonal-inventory-leverage firms are less risky.

18In Section IA.3 of our Internet Appendix, we offer evidence that our univariate QInv portfolio sort results
are robust to (i) using equal (rather than) value-weighted portfolios; (ii) relying on decile (rather than tercile)
breakpoints; and (iii) examining delevered asset (rather than equity) returns.
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In Table 7, we switch to FM regressions to verify that our portfolio sort results are robust

to reasonable methodological changes. In the regressions, we project the single-stock excess

return over month t on a rank variable formed from QInv and control variables measured at the

start of that month.19 As controls, we employ the rank of QCash, the rank of QDebt, InvToSales,

MarketBeta, MarketSize, BookToMarket, Momentum, Investment, and Profitability.20 While we

run the regression in column (1) over our entire sample, we estimate those in columns (2) and

(3) ((4) and (5)) on the seasonal and non-seasonal stock subsamples (subsamples of stocks with

InvToSales values above (firms relying a lot on output inventories) or below (firms not doing so)

the cross-sectional median), all respectively. As before, plain numbers are monthly premium

estimates (in %), while those in square brackets are Newey and West (1987) t-statistics.

TABLE 7 ABOUT HERE.

The table confirms that the FM regressions yield results in agreement with the portfolio

sorts. In particular, column (1) shows that the full sample produces a highly significant negative

QInv rank premium of –0.33% per month (t-statistic: –4.57). Conversely, columns (2) and (3)

corroborate that the same premium is a more negative –0.40% (t-statistic: –4.00) in the seasonal

— but a weaker –0.24% (t-statistic: –2.58) in the non-seasonal — stock subsample. Columns (4)

and (5) finally indicate that while the premium is a negative and significant –0.54% (t-statistic:

–4.56) in the subsample of stocks relying more on inventories, the corresponding number for the

other subsample is a less negative and significant –0.20% (t-statistic: –3.50).

We finally offer some evidence supporting our theory’s prediction that the pricing of seasonal

inventory leverage arises through systematic risk. One obstacle in doing so is that our models

19We use the rank variable since QInv is highly leptokurtic, possibly leading to concern that extreme QInv
values could drive our estimates. Despite that, using QInv instead of its rank does not change our conclusions.

20In Section IA.4 of our Internet Appendix, we show that our FM regression results are robust to also controlling
for standard inventory policies and operating flexibility. Specifically, also controlling for annual inventory growth,
inventory productivity, and firm flexibility only marginally affects the negative pricing of QInv.
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do not specify the underlying sources of priced risk (i.e., the factors determining the expected

return of the demand-mimicking portfolioµ). Following the literature (e.g., Carlson et al. (2010)

and Hackbarth and Johnson (2015)), we thus assume that market risk is one of those sources of

risk. To establish that market risk rises in seasonal inventory leverage, Table 8 reports the results

from standard (columns (1) and (2)) and weighted ((3) to (6)) least-squares panel regressions

of single-stock excess returns on the contemporaneous excess market return, an interaction

between market return and QInv, and industry fixed effects (only columns (2), (4), (6)):

Ri ,t =α+
�

β0+β1QInvi ,q ,y

�

MKTt +a j +εi ,t , (22)

whereα,β0, andβ1 are parameters, a j is the industry-fixed effect, and εi ,t is the residual. While

the regressions in columns (3) and (4) use the gross return over the past month as weight, those

in columns (5) and (6) use market size at the end of that month. As always, plain numbers are

premium estimates, while those in square brackets are t-statistics.

TABLE 8 ABOUT HERE.

The table suggests that systematic risk is at least partially behind the pricing of QInv. In

particular, we consistently find a significantly negative estimate on the interaction between the

excess market return and QInv, implying that market risk increases with seasonal inventory

leverage. The least-squares estimation with industry fixed effects in column (2), for example,

reveals that a one-unit rise in QInv induces market risk to drop by 0.10 (t-statistics: –2.53).

Overall, this section shows that, in line with our theory, seasonal inventory leverage is pos-

itively related to future stock returns in portfolio sorts as well as FM regressions. In further

agreement with our theory, it also links that positive relation to systematic market risk.

32



4 Implications for Stock Anomalies

In this section, we study whether seasonal inventory leverage contributes to or even explains

several recent seasonal and allegedly-non-seasonal stock anomalies. To do so, we first introduce

the anomalies and outline why they are likely to be related to seasonal inventory leverage. We

next conduct independent triple portfolio sorts investigating the extent to which seasonal

inventory leverage captures the abnormal profitability of the anomalies. We offer more details

about the definitions of the anomaly variables in Table C1 in Appendix C.

4.1 The Anomalies and their Relations with Our Theory

We examine whether seasonal inventory leverage adds to or explains Grullon et al.’s (2020)

seasonal sales, Heston and Sadka’s (2008, 2010) and Keloharju et al.’s (2016, 2021) same-calendar-

month, Jegadeesh and Titman’s (1993, 2001) momentum, and Hou et al.’s (2015) quarterly ROE

anomalies. To recap, the seasonal sales anomaly is that stocks tend to earn low (high) returns

in their high (low) sales quarters, while the same-calendar-month anomaly is that stocks tend

to earn high (low) returns in their past high (low) return same-calendar-months. Assuming

that a high sales quarter predicts a low-return month and vice versa, our theory suggests that

the anomalies arise because firms with low inventory holding costs hold large (small) output

inventories at the start of their high (low) sales quarters/past low (high) return same-calendar-

months, translating into low (high) seasonal inventory leverage. Thus, high QInv stocks should

drive the low mean returns of high-seasonal sales/low same-calendar-month return stocks,

whereas low QInv stocks should drive the high mean returns of their counterparts.

Conversely, the momentum anomaly is that stocks with high returns over months t −2 to

t −12 (“winners”) tend to earn higher returns than stocks with low returns (“losers”) over that
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same period. Crucially, Heston and Sadka (2008) find that the anomaly is almost exclusively

driven by the twelve-month-ago (i.e., month t − 12) return, closely linking it to their same-

calendar-month anomaly. As a result, low QInv stocks should drive the high mean returns of

winners, whereas high QInv stocks should drive the low mean returns of losers. Finally, the

quarterly ROE anomaly is that stocks with high past-quarter ROE values tend to earn higher

returns than those with low values. As a high (low) ROE must reflect seasonality in sales and

profits, it crudely identifies the high and low sales quarters of seasonal firms. Yet, if a firm’s last

quarter is a high (low) sales quarter, its current quarter is more likely than not a low (high) sales

quarter. Thus, low QInv stocks should drive the high mean returns of high quarterly ROE stocks,

whereas high QInv stocks should drive the low mean returns of their counterparts.

4.2 Seasonal Inventory Leverage and the Anomalies

We use triple portfolio sorts to evaluate whether seasonal inventory leverage adds to or explains

the anomalies in Section 4.1. At the end of each month t −1, we thus separately sort our sample

stocks into portfolios according to the median of the Seasonality distribution, the terciles of

the anomaly variable distribution, and the terciles of the QInv distribution at that time. We use

the intersection of the three sets of univariate portfolios to create tripe-sorted portfolios. We

value-weight the portfolios and hold them over month t . We then consider either all stocks, only

those in the top Seasonality portfolio, or only those in the bottom Seasonality portfolio. In line

with the literature, we next create standard anomaly spread portfolios by longing the relevant

stocks in the top anomaly-variable portfolio and shorting those in the bottom.

To study the effect of seasonal inventory leverage, we contrast the standard anomaly spread

portfolios with seasonal-inventory-leverage-neutral spread portfolios. While we would typically

form the neutral spread portfolios by averaging over all anomaly-variable spread portfolios
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within each QInv portfolio, our theory cautions us against doing so. The reason is that, according

to our theory, we should never observe stocks with abnormally high (low) inventories at the

start of their low (high) sales season. As a result, there should be few stocks in the corresponding

portfolios (e.g., the top QSales-bottom QInv portfolio), and those stocks should likely have

mismeasured QInv values. To take our theory seriously and to guard against this issue, we thus

choose as seasonal-inventory-leverage-neutral spread portfolios the anomaly-variable spread

portfolios formed from only those stocks in the middle QInv portfolio. We can interpret these

stocks as belonging to the non-inventory-builders with a flat seasonal inventory leverage over

the calendar year in our theory in Section 2 (recall Panel D in Figure 5).21

Table 9 reports the mean returns (columns (1) and (2)), augmented-q-theory alphas ((3)

and (4)), and six-factor-model alphas ((5) and (6)) of spread portfolios formed from QSales

(Panel A), the past same-calendar-month return (Panel B), the momentum return (Panel C),

and the quarterly ROE (Panel D). While columns (1), (3), and (5) focus on the standard spread

portfolios, columns (2), (4), and (6) look into the seasonal-inventory-leverage-neutral ones.

Conversely, while the first row-pair in each panel considers all stocks, the second (third) explores

seasonal (non-seasonal) stocks. As always, plain numbers are mean monthly excess returns or

alphas, whereas those in square brackets are Newey and West (1987) t-statistics.

TABLE 9 ABOUT HERE.

The table suggests that all the anomalies still exist in our sample data. In particular, the first

row-pairs in column (1) of Panels A to D show that the standard spread portfolios formed from

21One concern with that strategy could be that our seasonal-inventory-leverage-neutral spread portfolios
contain fewer stocks and are thus less well diversified than the standard spread portfolios, perhaps making it more
likely that their mean returns are insignificant. To mitigate that concern, Section IA.5 in our Internet Appendix
repeats the construction of the standard spread portfolios analyzed in this section, this time, however, only
including the one-third largest stocks in the short and long legs of the standard portfolios to ensure that those
legs contain an equal number of stocks across the two types of portfolios. Remarkably, the section shows that
doing so has hardly any effect on the mean returns and t-statistics of the standard spread portfolios.

35



QSales, the past same-calendar-month return, the momentum return, and the quarterly ROE

yield mean monthly returns of –0.22%, 0.51%, 0.52%, and 0.42% (t-statistics: –2.17, 3.03, 2.29,

and 2.08), all respectively.22 In agreement with the literature, the same row-pairs in columns

(3) and (5), however, demonstrate that while both the augmented-q-theory and the six-factor

model price the momentum and quarterly-ROE spread portfolios, only the six-factor model

prices the same-calendar-month spread portfolio (likely due to its inclusion of a momentum

factor). Finally, neither of the two models is able to price the QSales spread portfolio.

More importantly, the table further shows that each anomaly is stronger in the seasonal

than in the non-seasonal stock subsample, including the allegedly-non-seasonal momentum

and quarterly ROE anomalies. Contrasting the second and third row-pairs in Panels A to D, the

QSales, same-calendar-month return, momentum, and quarterly ROE spread portfolios, for

example, yield highly significant mean monthly returns of –0.34%, 0.68%, 0.87%, and 0.54% in

the seasonal but largely insignificant mean returns of –0.03%, 0.47%, 0.26%, and 0.26% in the

non-seasonal subsample, all respectively. As our theory in Section 2 suggests that seasonality in

demand and thus sales is a necessary condition for inverse seasonality in firms’ expected returns

to explain the anomalies, our evidence in this paragraph is a first piece of evidence supporting

our seasonal-inventory-leverage-based explanation for the anomalies.

The seasonal-inventory-leverage-neutral spread portfolios in columns (2), (4), and (6) of

Table 9 offer more direct evidence that seasonal inventory leverage is, at least partially, behind

the anomalies. To see that, consider the QSales anomaly in Panel A. Forming the QSales spread

portfolio from only stocks in the middle QInv portfolio (i.e., from stocks not building up in-

ventories toward their high sales season and thus with a flat seasonal inventory leverage over

22The low t-statistic for the momentum anomaly is a result of our data filters. To show this, we sort stocks into
decile portfolios based on the three anomalies without requiring non-missing data for QInv and Seasonality. The
resulting mean monthly spread returns for the same-calendar-month, momentum, and quarterly ROE anomalies
are 0.98%, 1.65%, and 0.82% (t-statistics: 3.80, 3.99, and 2.58), all respectively.
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time), the mean monthly spread portfolio return rises from a significant –0.22% (t-statistic:

–2.17) to an insignificant –0.10% (t-statistic: –0.80), a whopping 55% rise. Similarly, forming

the same-calendar-month return, momentum, and quarterly ROE spread portfolios from only

stocks in that same QInv portfolio in Panels B to D, their mean returns drop from 0.51% to

0.41% (t-statistics: 3.03 vs.2.06); 0.52% to 0.34% (t-statistics: 2.29 vs.1.29); and 0.42% to 0.24%

(t-statistics: 2.08 vs.1.05), translating into 20%, 35%, and 43% declines, all respectively.

Overall, this section offers evidence that seasonal inventory leverage significantly adds to

the seasonal sales, same-calendar-month, momentum, and quarterly ROE anomalies.

5 Concluding Remarks

We develop a neoclassical theory of a firm with output price seasonality and optimal inventory

building. Our theory predicts that a seasonal firm optimally builds up output inventories toward

its high-price season, to sell more output in that season. An implication is that the firm prepays

quasi-fixed production costs associated with output kept in-house, lowering its seasonal inven-

tory leverage and expected return toward its high-price season. In agreement, our empirical

work shows that seasonal firms hold amplified output inventories at the start of their high-sales

months or quarters. Moreover, these holdings (which inversely proxy for seasonal inventory

leverage) negatively price stocks. Our empirical work finally reveals that seasonal inventory

leverage partially explains several seasonal and allegedly-non-seasonal stock anomalies, such as

the seasonal sales, same-calendar-month, momentum, and quarterly ROE anomalies.
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Table 1: Descriptive Statistics
The table presents descriptive statistics for our main firm-level (Panel A) and industry-level (Panel B)
variables. The descriptive statistics include the total number of observations (“#”), the mean, standard
deviation (“Std.Dev.”), and several percentiles. Except for the number of observations, we calculate
the table entries first by sample month and then average over our sample period. See Table C1 in the
appendix of this paper for more details about variable construction.

Std Percentiles

# Mean Dev 1 25 50 75 99

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Firm-Level Variables

QInv 1,132,788 1.00 0.14 0.56 0.95 1.00 1.05 1.46
QSales 1,132,788 0.25 0.04 0.15 0.23 0.25 0.26 0.38
Seasonality 1,132,788 0.03 0.03 0.00 0.01 0.02 0.04 0.17
InvToSales 1,132,788 0.70 1.07 0.02 0.29 0.55 0.83 3.75
QFWInv 178,992 1.00 0.14 0.59 0.95 1.00 1.05 1.46

Panel B: Industry-Level Variables

MNewOrders 2,436 0.08 0.01 0.08 0.08 0.08 0.09 0.09
MShipments 2,436 0.08 0.00 0.08 0.08 0.08 0.09 0.09
MUnfilled Orders 2,436 0.08 0.00 0.08 0.08 0.08 0.09 0.09
MInv 2,436 1.00 0.02 0.97 0.99 1.00 1.01 1.03
MFGInv 2,436 1.00 0.03 0.96 0.98 1.00 1.02 1.04
MWIPInv 2,436 1.00 0.02 0.96 0.98 1.00 1.02 1.04
MRMInv 2,436 1.00 0.02 0.97 0.98 1.00 1.02 1.03
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Table 2: Manufacturers’ Shipments, Inventories, & Orders Survey Regressions
The table presents the results from panel regressions of an industry’s monthly new orders (columns
(1) and (2)), shipment values ((3), (4), and (6) to (8)), and unfilled orders ((5)) as fractions of the an-
nual totals on various combinations of the contemporaneous and/or lagged new-order fractions, the
contemporaneous and/or lagged total-inventory fractions, and the one-month lagged finished good,
work-in-progress, and raw material inventory fractions as well as industry fixed effects. Plain numbers
are estimates, while the numbers in square brackets are Petersen (2008) t-statistics clustered at the
industry level. The regression industries are the primary metals (31S), fabricated metal products (32S),
machinery (33S), computers and electronic products (34S), electrical equipment, appliances, and com-
ponents (35S), transportation equipment (36S), and furniture and related products (37S) industries.
See Table C1 in the appendix of this paper for more details about variable construction.

Dependent Variable:

MNew MNew MShip- MShip- MUnfilled MShip- MShip- MShip-
Orders Orders ments ments Orders ments ments ments

(1) (2) (3) (4) (5) (6) (7) (8)

MNewOrders 0.69 0.69 0.13
[11.46] [11.00] [2.23]

MNewOrders (Lag 1) −0.02 0.00
[−0.34] [−0.12]

MNewOrders (Lag 2-4) −0.04 0.01
[−1.02] [0.55]

MNewOrders (Lag 5-11) −0.08
[−9.94]

MNewOrders (Lag 12) 0.61 0.65
[6.24] [6.14]

MInv −0.56
[−1.38]

MInv (Lag 1) 0.93 1.54
[3.66] [3.00]

MInv (Lag 2-4) −0.22
[−4.23]

MFGInv (Lag 1) 0.69
[4.53]

MWIPInv (Lag 1) 0.58
[3.87]

MRMInv (Lag 1) −0.33
[−2.60]

Industry FEs Yes Yes Yes Yes Yes Yes Yes Yes
SE Cluster Ind. Ind. Ind. Ind. Ind. Ind. Ind. Ind.
R-Squared 0.46 0.43 0.66 0.67 0.09 0.11 0.16 0.18
Obs. 2,436 2,436 2,436 2,436 2,436 2,436 2,436 2,436
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Table 3: Compustat Regressions of Abnormal Seasonal Sales on Lagged Abnormal Seasonal Inventories
The table presents the results from panel regressions of a firm’s quarterly sales as fraction of its annual total (QSales) on combinations
of its start-of-quarter abnormal total inventory fraction (QInv), an interaction between the inventory fraction and the seasonality
dummy variable (QInv ×DSeasonality), the seasonality dummy variable (DSeasonality), controls, and firm fixed effects. While
we run the regressions in columns (1) and (2) over our full sample, we run those in columns (3) and (4); (5) and (6); (7) and (8);
and (9) and (10) over durable consumer-goods, manufacturing goods, services, and healthcare industry subsamples, respectively.
The control variables are log total assets (Assets), the quarterly ROE (QROE), and asset growth (Investment). Plain numbers are
estimates, while the numbers in square brackets are Petersen (2008) t-statistics clustered at the firm level. See Tables C1 and C2 in
the appendix of this paper for more details about analysis variable and industry-subsample definitions, respectively.

Dependent Variable=QSales

Durable Manufacturing
Full Sample Consumer Goods Goods Services Healthcare

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

QInv 0.15 0.01 0.51 0.06 0.18 0.04 0.03 −0.01 0.02 −0.01
[17.66] [2.41] [9.38] [5.31] [8.03] [5.69] [2.89] [−4.09] [1.30] [−1.72]

QInv×DSeasonality 0.21 0.58 0.22 0.07 0.04
[17.26] [8.78] [6.55] [4.06] [1.95]

DSeasonality −0.05 −0.14 −0.06 −0.02 −0.01
[−16.91] [−8.76] [−6.50] [−3.66] [−1.52]

Firm FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
SE Cluster Firm Firm Firm Firm Firm Firm Firm Firm Firm Firm
R-Squared 0.03 0.03 0.13 0.16 0.03 0.04 0.01 0.01 0.01 0.01
Obs. (in 1,000s) 854 854 82 82 196 196 83 83 81 81
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Table 4: Compustat Regressions of Abnormal Seasonal Sales on Lagged Abnormal Seasonal Total
or Finished Good and Work-in-Progress Inventories
The table presents the results from panel regressions of a firm’s quarterly sales as fraction of its annual total
(QSales) on combinations of its start-of-quarter abnormal inventory fraction, an interaction between the
inventory fraction and the seasonality dummy variable, the seasonality dummy variable (DSeasonality),
controls, and firm fixed effects. While we use the abnormal total inventory fraction (QInv) in columns (1)
to (4), we use the abnormal finished-good plus work-in-progress inventory fraction (QFWInv) in columns
(5) and (6). Conversely, while we run the regressions in columns (1) and (2) over the full sample, we
run those in columns (3) to (6) over the subsample of observations with non-missing finished-good
and work-in-progress inventory values. The control variables are log total assets (Assets), the quarterly
ROE (QROE), and asset growth (Investment). Plain numbers are estimates, while the numbers in square
brackets are Petersen (2008) t-statistics clustered at the firm level. See Table C1 in the appendix of this
paper for more details about the analysis variable definitions.

Dependent Variable=QSales

Full Sample Non-Missing-QFWInv
(for comparison) Subsample

(1) (2) (3) (4) (5) (6)

QInv 0.15 0.01 0.22 0.03
[17.66] [2.43] [9.29] [4.50]

QInv×DSeasonality 0.21 0.23
[17.25] [7.80]

QFWInv 0.18 0.03
[9.82] [6.04]

QFWInv×DSeasonality 0.19
[8.00]

DSeasonality −0.05 −0.06 −0.05
[−16.91] [−7.72] [−7.89]

Firm FEs Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes
SE Cluster Firm Firm Firm Firm Firm Firm
R-Squared 0.03 0.03 0.04 0.05 0.04 0.04
Obs. (in 1,000s) 854 854 146 146 146 146
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Table 5: Compustat Regressions of Abnormal Seasonal Sales on Lagged Abnormal Cash and Short-
term Debt and Contemporaneous Abnormal Dividends
The table presents the results from panel regressions of a firm’s quarterly sales as fraction of its
annual total (QSales) on combinations of its start-of-quarter abnormal cash (QCash) and debt (QDebt)
fractions, its quarterly dividends as fraction of its annual total (QDiv), interactions between the QCash,
QDebt, and QDiv variables and our seasonality dummy (DSeasonality), DSeasonality on its own,
control variables, and firm fixed effects. The control variables are log total assets (Assets), the quarterly
ROE (QROE), and asset growth (Investment). Plain numbers are estimates, while the numbers in
square brackets are Petersen (2008) t-statistics clustered at the firm level. See Table C1 in the appendix
of this paper for more details about the definitions of the analysis variables.

Dependent Variable=QSales

(1) (2) (3) (4) (5) (6)

QCash −0.07 −0.02
[−24.90] [−25.20]

QCash×DSeasonality −0.09
[−19.87]

QDebt 0.10 −0.03
[11.51] [−12.64]

QDebt ×DSeasonality 0.18
[15.19]

QDiv 0.07 0.03
[24.21] [27.30]

QDiv×DSeasonality 0.09
[15.05]

DSeasonality 0.02 −0.04 −0.02
[20.73] [−14.87] [−14.87]

Firm FEs Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes
SE Cluster Firm Firm Firm Firm Firm Firm
R-Squared 0.03 0.04 0.01 0.02 0.10 0.13
Obs. (in 1,000s) 847 847 832 832 289 289

45



Table 6: Univariate Portfolios Sorted on Abnormal Inventories
The table presents the results of portfolios univariately sorted on QInv. At the end of each month t −1, we
first choose either all stocks (Panel A), those with a Seasonality value above the median (Panel B, “seasonal
stocks”), or those with a Seasonality value below that median (Panel C, “non-seasonal stocks”). We next
sort the chosen stocks into portfolios according to the unconditional terciles of the QInv distribution at
that time. We value-weight the portfolios and hold them over month t . We also form spread portfolios
long the top and short the bottom value-weighted portfolios (“High – Low”). In columns (1) to (3), we
report the mean excess returns (Returne ), mean number of stocks (# Stocks), mean cross-sectional QSales
averages (QSales), mean cross-sectional MarketSize averages (MarketSize), and the annualized Sharpe
ratios (mean excess return over volatility) of the portfolios. Conversely, columns (4) to (6) report the
mean excess returns, q 5-model alphas, and FF6-model alphas of the spread portfolios. Plain numbers
are estimates, while those in square brackets are Newey-West (1987) t-statistics with a twelve-month lag
length. See Table C1 in the appendix of this paper for more details about variable definitions.

QInv High – Low

Low Medium High Mean q 5-Alpha FF6-Alpha

(1) (2) (3) (4) (5) (6)

Panel A: Full Sample

Returne 0.90 0.70 0.51 −0.39 −0.35 −0.38
[4.17] [3.85] [2.41] [−4.39] [−4.01] [−4.46]

# Stocks 708 708 729
QSales 0.24 0.25 0.26
MarketSize 9.22 9.40 9.24
Sharpe (p.a.) 0.63 0.58 0.36

Panel B: Seasonal Subsample

Returne 0.98 0.61 0.42 −0.56 −0.44 −0.48
[4.32] [2.60] [1.78] [−4.65] [−3.69] [−4.17]

# Stocks 409 267 396
QSales 0.24 0.25 0.26
MarketSize 9.05 9.13 9.06
Sharpe (p.a.) 0.67 0.40 0.27

Panel C: Non-Seasonal Subsample

Returne 0.84 0.78 0.58 −0.26 −0.30 −0.31
[3.90] [4.53] [2.95] [−2.51] [−2.69] [−2.74]

# Stocks 300 441 332
QSales 0.25 0.25 0.25
MarketSize 9.29 9.46 9.29
Sharpe (p.a.) 0.60 0.70 0.46
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Table 7: Fama-MacBeth Regressions of Stock Returns on Abnormal Inventories
The table presents the results from Fama-MacBeth (1973) regressions of single-stock returns over
month t on QInv, QCash, and QDebt rank variables, InvToSales, MarketBeta, MarketSize, BookToMarket,
Momentum, Investment, and Profitability, all measured exclusively using data until the start of that
month. While we run the regression on the full sample in column (1), we run it on only those firms with
a Seasonality value above or below the cross-sectional median at the end of the prior June in columns
(2) and (3), respectively. Conversely, we run it on only those firms with a total quarterly inventories-to-
quarterly annual sales ratio value above or below the cross-sectional median at the end of the prior
June in columns (4) and (5), respectively. The plain numbers are monthly premium estimates, in
percent. The numbers in square brackets are Newey-West (1987) t-statistics with a twelve-month lag
length. See Table C1 in the appendix of this paper for more details about variable definitions.

Non- Large Small
Full Seasonal Seasonal Inventories Inventories

Sample Subsample Subsample Subsample Subsample

(1) (2) (3) (4) (5)

QInv (Rank) −0.33 −0.40 −0.24 −0.54 −0.20
[−4.57] [−4.00] [−2.58] [−4.56] [−2.50]

QCash (Rank) 0.19 0.38 −0.03 0.13 0.20
[2.76] [3.65] [−0.48] [1.54] [2.17]

QDebt (Rank) 0.00 −0.08 0.12 0.18 −0.12
[−0.02] [−0.80] [1.53] [1.89] [−1.27]

InvToSales −0.07 −0.09 −0.04 −0.14 0.25
[−1.33] [−1.41] [−0.53] [−1.68] [1.45]

MarketBeta −0.07 −0.16 0.02 −0.04 −0.10
[−0.51] [−1.10] [0.12] [−0.28] [−0.70]

MarketSize 0.00 −0.01 0.01 0.04 −0.02
[0.08] [−0.23] [0.28] [1.10] [−0.61]

BookToMarket 0.06 0.00 0.08 0.08 0.05
[0.72] [−0.05] [0.96] [0.90] [0.60]

Momentum 0.64 0.81 0.46 0.73 0.57
[2.73] [3.27] [1.97] [3.05] [2.27]

Investment −0.42 −0.49 −0.19 −0.51 −0.31
[−3.30] [−3.28] [−1.13] [−3.23] [−2.04]

Profitability 0.32 0.31 0.28 0.37 0.31
[2.17] [1.90] [1.62] [2.09] [1.93]

Constant 0.68 0.77 0.60 0.47 0.79
[1.91] [1.97] [1.64] [1.24] [2.04]
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Table 8: Regressions of Stock Returns on Market Returns Interacted with Abnormal Inventories
The table presents the results from ordinary (columns (1) and (2)) and weighted (columns (3) to
(6)) least-squares panel regressions of single-stock returns over month t on the contemporaneous
market return minus the risk-free rate of return (“excess market return;” MktReturne ) and that same
market return interacted with start-of-quarter abnormal inventories (MktReturne ×QInv). While the
regressions in the even-numbered columns do not include fixed effects, those in the odd-numbered
columns include fixed effects based on Kenneth French’s 49 industry classification scheme. Also,
while the regressions in columns (3) and (4) use a stock’s gross return over the last month as weight,
those in columns (5) and (6) use its stock capitalization at the end of that month. Plain numbers are
estimates, while the numbers in square brackets are Petersen (2008) t-statistics clustered at the firm
level. See Table C1 in the appendix of this paper for more details about variable definitions.

(1) (2) (3) (4) (5) (6)

MktReturne 1.25 1.25 1.21 1.21 1.18 1.18
[32.54] [31.32] [31.77] [30.69] [21.39] [21.21]

MktReturne ×QInv −0.10 −0.10 −0.08 −0.09 −0.11 −0.12
[−2.57] [−2.53] [−2.15] [−2.21] [−2.07] [−2.21]

Industry FEs No Yes No Yes No Yes
Technique OLS OLS WLS WLS WLS WLS
Weight – – Return Return Size Size
SE Cluster Firm Firm Firm Firm Firm Firm
R-Squared 0.19 0.18 0.19 0.19 0.23 0.23
Obs. (in 1,000s) 517 516 508 507 517 516
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Table 9: Standard and Seasonal-Inventory-Leverage-Neutral Anomaly Spread Portfolios
In this table, we present the mean returns (columns (1) and (2)), augmented-q-theory-model alphas
(“q 5;” (3) and (4)), and six-factor-model alphas (“FF6;” (5) and (6)) of seasonal sales (Panel A), same-
calendar-month return (Panel B), momentum (Panel C), and quarterly ROE (Panel D) spread portfolios.
At the end of each month t −1, we form the spread portfolios from independently sorting our sample
stocks into portfolios based on the median of Seasonality, the terciles of the anomaly variable, and
the terciles of QInv at that time. We value-weight the portfolios and hold them over month t . We
then consider either all stocks (“All Stocks”), only those in the top Seasonality portfolio (“Seasonal
Stocks”), or only those in the bottom Seasonality portfolio (“Non-Seasonal Stocks”). We finally form
standard anomaly spread portfolios through longing the top-anomaly-variable and shorting the
bottom portfolios (columns (1), (3), and (5)), while we form seasonal-inventory-leverage-neutral
spread portfolios through longing the top-anomaly-variable and shorting the bottom portfolios
within the middle QInv portfolio ((2), (4), and (6)). Plain numbers are estimates, while those in square
brackets are Newey-West (1987) t-statistics with a twelve-month lag length. See Table C1 in the
appendix of this paper for more details about the anomaly variable definitions.

Mean Spread Return q 5-Spread Alpha FF6-Spread Alpha

QInv QInv QInv
Standard Neutral Standard Neutral Standard Neutral

(1) (2) (3) (4) (5) (6)

Panel A: Seasonal Sales Anomaly

All Stocks −0.22 −0.10 −0.12 0.02 −0.18 −0.04
[−2.17] [−0.80] [−1.00] [0.12] [−1.63] [−0.26]

Seasonal Stocks −0.34 −0.16 −0.24 −0.04 −0.28 −0.03
[−2.62] [−0.96] [−1.52] [−0.20] [−2.07] [−0.20]

Non-Seasonal Stocks −0.03 −0.02 0.07 0.10 0.05 0.03
[−0.27] [−0.11] [0.54] [0.55] [0.41] [0.18]

Panel B: Same-Calendar-Month Anomaly

All Stocks 0.51 0.41 0.50 0.45 0.51 0.45
[3.03] [2.06] [2.93] [2.06] [2.96] [2.11]

Seasonal Stocks 0.68 0.65 0.58 0.66 0.63 0.61
[3.32] [2.42] [2.49] [1.75] [2.81] [1.81]

Non-Seasonal Stocks 0.47 0.41 0.53 0.43 0.46 0.44
[2.94] [2.35] [3.06] [2.45] [2.75] [2.36]

(continued on next page)
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Table 9: Standard and Seasonal-Inventory-Leverage-Neutral Anomaly Spread Portfolios (cont.)

Mean Spread Return q 5-Spread Alpha FF6-Spread Alpha

QInv QInv QInv
Standard Neutral Standard Neutral Standard Neutral

(1) (2) (3) (4) (5) (6)

Panel C: Momentum Anomaly

All Stocks 0.52 0.34 −0.10 −0.09 −0.05 −0.08
[2.29] [1.29] [−0.41] [−0.38] [−0.35] [−0.43]

Seasonal Stocks 0.87 0.93 0.08 0.24 0.23 0.37
[3.35] [2.77] [0.33] [0.77] [1.47] [1.52]

Non-Seasonal Stocks 0.26 0.11 −0.14 −0.15 −0.17 −0.22
[1.10] [0.44] [−0.56] [−0.60] [−1.27] [−1.25]

Panel D: Quarterly-ROE Anomaly

All Stocks 0.42 0.24 −0.43 −0.42 −0.02 0.06
[2.08] [1.05] [−2.14] [−2.12] [−0.10] [0.40]

Seasonal Stocks 0.54 0.38 0.00 −0.28 0.26 0.13
[2.63] [1.33] [0.03] [−0.90] [2.08] [0.50]

Non-Seasonal Stocks 0.26 0.17 −0.24 −0.24 0.01 0.05
[1.15] [0.69] [−1.67] [−1.22] [0.09] [0.27]
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A Model Solutions

In this appendix, we provide additional information about our theoretical models. In particular, we
first describe how we identify the inventory building and instantaneous selling regions in the toy
model. We next outline how we numerically solve the real options model.

A.1 Derivation of the Optimal Selling Date in the Toy Model

In Equation (1) in our main text, we conjecture that the output price, Pt , in the toy and real options
models evolves according to the generalized geometric Brownian motion (GBM):

dPt = (α+κsin(ηt ))Pt dt +σPt dBt . (A1)

We now letµ be the expected return of a portfolio perfectly replicating the stochastic variations in
the output price and thus reflecting its systematic risk. In line with Dixit and Pindyck (1994), we then
define the “expected-return shortfall” of the output price as δt = µ− 1

Pt dt E[dPt ] = µ−α−κsin(ηt ),
which is a sinusoidal function of time. Intuitively, we can interpretδt as the opportunity cost of selling
output immediately rather than in the future. Using the definition for the expected-return shortfall
δt , we can rewrite the output price differential in Equation (A1) as:

dPt = (µ−δt )Pt dt +σPt dBt , (A2)

whose closed-form solution is equal to:

Pt = P0 exp

�∫ t

0

(µ−δu )du −
1

2
σ2t +σBt

�

(A3)

= P0 exp
��

α−
1

2
σ2
�

t +
κ

η

�

1− cos(ηt )
�

+σBt

�

. (A4)

Conversely, switching to the equivalent martingale measureQ under which the instantaneous drift
changes fromµ−δt to r −δt , the explicit solution for the output price becomes:

Pt = P0 exp

�∫ t

0

(r −δu )du −
1

2
σ2t +σBQt

�

(A5)

= P0 exp
��

r −µ+α−
1

2
σ2
�

t +
κ

η

�

1− cos(ηt )
�

+σBQt

�

, (A6)

where BQt is a standard Brownian motion under the equivalent martingale measure.
Using Equation (A6), the conditional expectation of the time-t output price taken under the

equivalent martingale measureQ at time s is equal to:

EQs [Pt ] = Ps exp
�

(r −µ+α)(t − s ) +
κ

η

�

cos(ηs )− cos(ηt )
�

�

, (A7)

so that we can write the first-order condition for maximization problem (4) in our main text as:

Pt exp
�

−(µ−α)(t ∗− t )−
κ

η

�

cos(ηt ∗)− cos(ηt )
�

�

(µ−α−κsin(ηt ∗)) = 0, (A8)

which holds when t ∗ = π
η −

1
η sin−1
�

µ−α
κ

�

+ 2π
η n for n ∈ {. . . ,−1, 0, 1, . . .} and is equivalent toδt ∗ = 0.
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A.2 Numerical Solution for the Real Options Model

We next discuss how we use the explicit finite difference method to solve the real options model
introduced in Section 2.2 of our main paper. As shown in Equation (12) of that paper, the value of an
output unit in inventory in that model must satisfy the linear PDE:

r V =−cI +
∂ V

∂ t
+ (r −δt )P

∂ V

∂ P
+

1

2
σ2P 2 ∂

2V

∂ P 2
. (A9)

Using the log-transformation pt = ln(Pt ) to improve numerical stability, we can simplify PDE (A9) to:

r V =−cI +
∂ V

∂ t
+
�

r −δt −
1

2
σ2
�

∂ V

∂ p
+

1

2
σ2 ∂

2V

∂ p 2
. (A10)

Consider a grid (ti , pj ) of time and the log output price on which we approximate the partial
derivatives of the PDE using the forward and central finite differences:

∂ V

∂ t
=

Vi+1, j −Vi , j

∆t
+O (∆t ), (A11)

∂ V

∂ p
=

Vi+1, j+1−Vi+1, j−1

2∆p
+O (∆p 2), (A12)

∂ 2V

∂ p 2
=

Vi+1, j+1−2Vi+1, j +Vi+1, j−1

(∆p )2
+O (∆p 2). (A13)

Using these approximations, the PDE turns into the explicit finite difference scheme:

Vi , j = ai Vi+1, j−1+ b Vi+1, j + ci Vi+1, j+1+d , (A14)

where:

ai =
1

1+ r∆t

�

−
�

r −δti
−

1

2
σ2
�

∆t

2∆p
+

1

2
σ2 ∆t

(∆p )2

�

, (A15)

b =
1

1+ r∆t

�

1−σ2 ∆t

(∆p )2

�

, (A16)

ci =
1

1+ r∆t

��

r −δti
−

1

2
σ2
�

∆t

2∆p
+

1

2
σ2 ∆t

(∆p )2

�

, (A17)

d =
−cI∆t

1+ r∆t
. (A18)

We impose standard boundary conditions. When Pt → 0, the output price approaches an absorbing
boundary such that Vi , jmin

= 0. When Pt →∞, we use the solution with pre-commitment by setting

Vi , jmax
= EQti

[Pt ∗ |Pti
= Pjmax

]e −r (t ∗−ti )−CI (ti , t ∗), where CI (s , t ) =
∫ t

s
e −r (u−s )cI du = cI

r

�

1− e −r (t−s )
�

is the
holding cost of an inventory unit from s to t and t ∗ is the next optimal selling point between ti and T
identified as in Section A.1 of this appendix after accounting for the presence of inventory holding
costs. When t → T (the liquidation time), the firm immediately sells all remaining output, implying
that Vimax, j = Pj . We incorporate the free boundary condition Vi ∗, j = Pj by setting:

Vi , j =max{ai Vi+1, j−1+ b Vi+1, j + ci Vi+1, j+1+d , Pj }. (A19)
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Figure B1: The figure plots the present value of the firm’s future sales revenue W i
t +W p

t (Panel A), the present value
of its future fixed production costs C p

t (Panel B), its total value Wt (Panel C), and its expected excess return (Panel D)
over the period from t = 0 to 4. To focus on seasonal patterns, we remove a linear trend before plotting. While the white
areas in each subpanel are optimal inventory building periods, the gray-shaded areas are optimal instantaneous selling
periods. We describe the parameter values in Section 2.1.3 in our main paper.

B Toy Model Simulation Exercise

In this section, we offer the results from simulations of the toy model analogous to those of the real
options model in Section 2.3. Using the same basecase parameters as in Section 2.3, Figure B1 plots
the present value of firm’s future sales revenue W i

t +W p
t (Panel A), the present value of its future

fixed production costs C p
t (Panel B), its total value Wt =W i

t +W p
t −C p

t (Panel C), and its expected
excess return (Panel D) over time. The figure yields conclusions in complete agreement with the
corresponding real-options-model figure, Figure 4 in our main text. More specifically, Panel A reveals
that the present value of the firm’s future sales revenues rises over optimal inventory building periods.
In contrast, since the firm pays constant production costs at each time, Panel B demonstrates that the
present value of those costs are flat over time. Combining the two present values into the firm’s total
value, Panel C confirms that the total value inherits the seasonality from the present value of its future
sales revenue. Finally, in line with the real options model, Panel D documents that the seasonality in
the firm’s total value translates into inverse seasonality in its expected excess return, simply because
the firm’s elasticity is linear in the inverse of its total value (see Equation (9) in our main text).
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C Variable Definitions

Table C1: Variable Definitions
The table presents the definitions of our analysis variables. While Panel A focuses on our main firm-level
variables, Panels B, C, and D focus on our main industry-level, anomaly, and control variables, respectively.
We update the variables indexed by “M” (“Q”) [“A”] on a monthly (quarterly) [annual]basis and use their
values to condition returns over month t +1 (month t +1) [the period from July of year t to June of year
t +1]. We show the data-provider mnemonics of the CRSP and Compustat variables in parentheses.

Variable Name Variable Definition

Panel A: Main Firm-Level Variables

QInv (Q) Ratio of quarterly total inventories (invtq) at the start of the current quarter to
mean quarterly inventories over the fiscal year, averaged over the two fiscal years
ending in calendar years t −1 and t −2.

QSales (Q) Ratio of quarterly sales (saleq) over the current quarter to total sales over the fiscal
year, averaged over the two fiscal years ending in calendar years t −1 and t −2
(see Grullon et al. (2020)).

Seasonality (A) Standard deviation of the four QSales values for the current fiscal year.
InvToSales (A) Ratio of the mean of quarterly total inventories (invtq) over the fiscal year to the

mean of quarterly sales (saleq) over the fiscal year, averaged over the two fiscal
years ending in calendar years t −1 and t −2.

QFWInv (Q) Ratio of the sum of quarterly finished-good and work-in-progress inventories
(invfgq+invwipq) at the start of the current quarter to the mean of such inventories
over the fiscal year, averaged over the two fiscal years ending in calendar years
t −1 and t −2.

QCash (Q) Ratio of quarterly cash and short-term investments (cheq) at the start of the current
quarter to the mean of such cash holdings over the fiscal year, averaged over the
two fiscal years ending in calendar years t −1 and t −2.

QDebt (Q) Ratio of quarterly current liabilities (lctq) at the start of the current quarter to
the mean of such liabilities over the fiscal year, averaged over the two fiscal years
ending in calendar years t −1 and t −2.

QDiv (Q) Ratio of quarterly cash dividends (dvy) over the current quarter to total dividends
over the fiscal year, averaged over the two fiscal years ending in calendar years
t −1 and t −2.

(continued on next page)
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Table C1: Variable Definitions (cont.)

Variable Name Variable Definition

Panel B: Main Industry-Level Variables

MNewOrders (M) Ratio of new output-good orders received over the current month to total
new output-good orders over the calendar year.

MShipments (M) Ratio of the value of output goods shipped out over the current month to
total value of shipments of output goods over the calendar year.

MUnfilledOrders (M) Ratio of the unfilled output-good orders over the current month to total
unfilled output-good orders over the calendar year.

MInv (M) Ratio of total inventories at the end of the current month to mean total
inventories over the calendar year.

MFGInv (M) Ratio of finished-good inventories at the end of the current month to mean
finished-good inventories over the calendar year.

MWIPInv (M) Ratio of work-in-progress inventories at the end of the current month to
mean work-in-progress inventories over the calendar year.

MRMInv (M) Ratio of raw-material inventories at the end of the current month to mean
raw-material inventories over the calendar year.

Panel C: (Additional) Anomaly Variables

SameCMReturn (M) The stock return (ret) over the same calendar month as the current, averaged
over calendar years t −1 to t −7 (see Heston and Sadka (2008)).

Momentum (M) Log of the gross monthly stock return (ret) compounded over months t −2
to t −12 (see Jegadeesh and Titman (1993)).

QROE (M) The ratio of quarterly income before extraordinary items (ibq) to the quar-
terly book value of equity, where the book value of equity is shareholders’
equity (seqq, ceqq+pstkq, or atq–ltq, in that order of availability) plus de-
ferred taxes and investment tax credits (txditcq, zero if missing) minus the
book value of preferred stock (pstkrq, zero if missing). We take quarterly
income from the latest earnings announcement date (rdq) and all other
variables from the earnings announcement date before. We set the variable
to missing if the earnings announcement date is more than six months after
the earnings date (see Hou et al. (2015)).

(continued on next page)
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Table C1: Variable Definitions (cont.)

Variable Name Variable Definition

Panel D: (Additional) Control Variables

MarketBeta (M) Sum of slope coefficients from a stock-level regression of excess stock returns
(ret) on current, one-day lagged, and the sum of two-, three-, and four-day
lagged excess market returns, where the regression is run using daily data
over the prior 12 months. We require that the regression is run on at least 200
observations (see Lewellen and Nagel (2006)).

MarketSize (A) Log of the product of the stock price (abs(prc)) and common shares outstanding
(shrout) at the end of the prior calendar year (in millions).

BookToMarket (A) Log of the ratio of the book value of equity to the market value of equity (abs(prc)
times shrout), where the book value of equity equals stockholder’s equity (seq)
plus deferred taxes (txditc) plus investment tax credits (itcb, zero if missing)
minus preferred stock (pstkrv, pstkl, pstk, or zero, in that order of availability).
We take all the variables from the fiscal year-end in calendar year t − 1 (see
Fama and French (2015)).

Investment (A) Log of the gross percentage change in total assets (at) over the fiscal year ending
in calendar year t −1 (see Fama and French (2015)).

Profitability (A) Ratio of sales (sale) net of costs of goods sold (cogs), selling, general, and ad-
ministrative expenses (xsga, zero if missing), and interest expenses (xint, zero
if missing) to the book value of equity, which equals stockholder’s equity (seq)
plus deferred taxes (txditc) plus investment tax credits (itcb, zero if missing)
minus preferred stock (pstkrv, pstkl, pstk, or zero, in that order of availability).
We take all the variables from the fiscal year ending in calendar year t −1 (see
Fama and French (2015)).

Assets (A) Log of total assets (at) from the fiscal year-end in calendar year t −1.
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Table C2: Industry Classifications
The table presents the Standard Industrial Classification (SIC) codes used in Table 3.

Label SIC Codes

Non-Perishable
Consumer Goods

2200-2399, 2500-2519, 2590-2599, 2700-2749, 2770-2799, 3100-3199, 3630-
3659, 3710-3711, 3714, 3716, 3750-3751, 3792, 3900-3939, 3940-3989, 3990-
3999.

Manufacturing Goods 2520-2589, 2600-2699, 2750-2769, 2800-2829, 2840-2899, 3000-3099, 3200-
3569, 3580-3621, 3623-3629, 3700-3709, 3712-3713, 3715, 3717-3749, 3752-
3791, 3793-3799, 3860-3899.

Services 7000-8999.
Healthcare 2830-2839, 3693-3693, 3840-3859, 8000-8099.
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Internet Appendix:

Seasonal Inventory Leverage

AUTHOR 1, AUTHOR 2, and AUTHOR 3

In this Internet Appendix, we offer supplementary theoretical derivations and empirical evidence on

the corporate finance and asset pricing implications of seasonal inventory leverage induced through

optimal inventory building. Section IA.1 starts with extending the real options model in Section 2.2 of

our main paper by awarding a growth option to the firm, to verify that seasonal investment policies

do not alter our main conclusions. Section IA.2 confirms that our main analysis variable, QInv, is

persistent over time, allowing us to its past values to proxy for its future values (Table IA.1). Section IA.3

reveals that our univariate portfolio sorts in Section 3.4 of our main paper are robust to (i) using

equal rather than value weights (Table IA.2); (ii) relying on decile rather than tercile breakpoints;

and (iii) evaluating delevered asset rather than equity returns. In Section IA.4, we confirm that QInv

continues to be significantly negatively priced even after adding further controls related to firms’

inventory policies as well as their operating flexibility (Table IA.3). In Section IA.5, we finally repeat our

calculations of the mean returns and alphas of the standard and seasonal-inventory-leverage-neutral

anomaly spread portfolios in Section 4 of our main paper, this time, however, ensuring that the long

(alternatively: short) legs of the standard and seasonal-inventory-leverage-neutral portfolios contain

an identical number of stocks and are thus equally well diversified (Table IA.4).
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IA.1 Growth Option Extension

We begin with endowing the firm in our real options model in Section 2.2 of our main paper with a

growth option allowing it to discretely and irreversibly raise its production capacity byψK̄ additional

units at an investment cost of k , whereψ > 0 and k > 0 are fixed parameters (see, e.g., McDonald

and Siegel (1986) and Dixit and Pindyck (1994)). To do so, we follow the methodology outlined in

Appendix A.2 of our main paper to value the additional units, U (t , Pt ). We can easily do so since our

model assumes constant returns to scale, no effect of quantity on price, and no increasing marginal

production costs. The upshot is that we only have to change K̄ toψK̄ in the finite difference grid

introduced in that appendix and that we can then calculate U (t , Pt ) from applying Equation (13) in

our main paper to the outcomes obtained from solving the finite difference grid.

We next value the growth option on theψK̄ additional production units. Since exercising that

option yields production units which have not yet produced output, the value of the option does not

depend on output in inventory It , allowing us to write it as F = F (t , Pt , It = 0) = F (t , Pt ). As well known

from the literature, the firm optimally exercises the option whenever the output price Pt rises above

the time-varying threshold P ∗t . Before the optimal exercise, the value of the growth option must satisfy

the following generalized Black-Scholes (1973) PDE:

∂ F

∂ t
+
�

r −δt −
1

2
σ2
�

∂ F

∂ p
+

1

2
σ2 ∂

2F

∂ p 2
− r F = 0, (IA1)

which is identical to PDE (A10) except for the inventory holding cost cI on the left-hand side. We can

thus use the familiar explicit finite difference scheme (excluding the right-hand side constant):

Fi , j = ai Fi+1, j−1+ b Fi+1, j + ci Fi+1, j+1, (IA2)

where the coefficients ai , b , and ci are as in Appendix A.2 in our main paper. We impose the usual

boundary conditions for American call options, F (ti , Pmin) = 0 and F (ti , Pmax) =U (ti , Pmax)−k , as well

as the terminal boundary condition F (tmax, Pj ) =max{U (tmax, Pj )− k ,0}. We incorporate the early
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Figure IA.1: The figure plots the optimal output price threshold P ∗t above which the firm exercises
its growth option (the lower boundary of the gray area), the optimal growth-option exercise region
(the gray area), and the optimal continuation region (the white area) over the period from t = 0 to
4. We add an output price trajectory as solid black line. While the solid vertical line indicates the
optimal exercise of the growth option, the broken lines separate the optimal inventory-building (IB)
and instantaneous-selling (IS) periods. We describe the parameter values in Section IA.1.

exercise boundary condition F (t , P ∗t ) =U (t , P ∗t )−k by relying on:

Fi , j =max{ai Fi+1, j−1+ b Fi+1, j + ci Fi+1, j+1,U (ti , Pj )−k}. (IA3)

In our growth option extension, the value of the firm, W (t , Pt , It ), is then the sum of its production

capacity-in-place, V (t , Pt , It ), valued as described in Appendix A.2, and its growth option, F (t , Pt ):

W (t , Pt , It ) =V (t , Pt , It ) + F (t , Pt ), (IA4)

whereas its conditional expected excess return,E[rW ]−r , is the value-weighted average of the expected

returns of the production capacity-in-place and the growth option:

E[rW ]− r =
�

V (t , Pt , It )
W (t , Pt , It )

βV +
F (t , Pt )

W (t , Pt , It )
βF

�

(µ− r ), (IA5)

whereβV =
∂ V /V
∂ P /P andβF =

∂ F /F
∂ P /P are the sensitivities of the value components to the output price.
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Using the same parameter values as in Section 2.1.2 of our main paper, an investment cost, k , of

10, and an increase in the firm’s production capacity upon it exercising its growth option,ψ, of 25%,

Figure IA.1 plots the firm’s optimal growth-option exercise strategy over the period from t = 0 to 4. To

be more specific, the lower boundary of the gray area in the figure is the optimal output price threshold

above which the firm exercises its growth option, P ∗t , the gray area is the optimal exercise region, and

the white area is the optimal continuation region. Conversely, the solid black line is the output price

trajectory also used in the main paper (see Figure 1 in that paper). The solid vertical line indicates

the exercise of the growth option, whereas the broken vertical lines separate the optimal inventory-

building (IB) and instantaneous-selling (IS) periods. The figure demonstrates that seasonality in the

output price translates into seasonality in the optimal growth-option exercise threshold. Interestingly,

however, the firm tends to invest after the seasonal output-price peak and closer toward the end of its

instantaneous selling period. The reason is that adding additional production capacity during a low

output price season allows the firm to build up greater output inventories toward its next high output

price season and, as a result, to generate even higher sales revenues in that latter season.

We next study the implications of adding the growth option for our seasonal inventory leverage

conclusions. To do so, Figure IA.2 plots the output price realization (Panel A), accumulated inventory

(Panel B), the value and expected return of the capacity-in-place (Panels C and D), the value and

expected return of the growth option (Panels E and F), and the value and expected return of the firm

(Panels G and H) from time t = 0 to 4, respectively. As before, the vertical line indicates the growth

option exercise, and the white (gray) shaded areas the optimal inventory-building (instantaneous-

selling) regions. Figure IA.2 yields conclusions largely consistent with those from Figure 4 in our main

paper, at least some time before the exercise of the growth option. To wit, Panels C and D show that

both the value and expected return of the capacity-in-place vary seasonally, with the value (expected

return) rising (falling) as the firm approaches its high-output-price season. In contrast, Panels E and F

reveal that while the value of the growth option gradually and monotonically increases over time, its

expected return moves inverse-seasonally to that of the capacity-in-place, mirroring the seasonal
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Figure IA.2: The figure plots the output price realization Pt (Panel A), accumulated inventory It (Panel B),
capacity-in-place value Vt and expected excess return βV (µ− r ) (Panels C and D), growth option value
Ft and expected excess return βF (µ− r ) (Panels E and F), and firm value Wt and expected excess return
βW (µ− r ) (Panels G and H) over the period from t = 0 to 4, all respectively. The vertical line indicates the
growth option exercise. The gray areas indicate the periods over which the firm acts as an instantaneous
seller. To focus on seasonal patterns, we remove a linear trend from the firm value and expected return
in Panels C, D, G, and H. We describe the basecase parameter values in Section IA.1.

pattern in the optimal exercise threshold.23 Despite that, Panels G and H confirm that, combining the

firm’s capacity-in-place and growth option into its total assets, the firm’s value and expected return

23The reason is that the seasonality in the output price induces the option to gradually move deeper out-of-(in)-the-
money over inventory-building (instantaneous-selling) periods, leading its expected return to rise (fall).
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display seasonal patterns in complete accordance with those of the capacity-in-place, simply because

the capacity-in-place makes up the lion share of the firm’s value.

Notwithstanding, an interesting twist occurs shortly before the growth option is exercised. To

wit, as the output price Pt draws close to the optimal growth-option exercise threshold P ∗t , Panels E

and F illustrate that both the value and the expected return of the growth option shoot up. In turn,

Panel H demonstrates that the rapid increase in the value and expected return of the growth option

can drag up the expected firm return, with the expected firm return becoming flatter (rising) over

optimal inventory building (instantaneous selling) periods. That said, the panel finally reveals that

the expected firm return immediately returns to its seasonal pattern observed in the main paper or

long before the growth option’s exercise directly after that option’s exercise.

IA.2 Persistence in Seasonalities and Inventory Building

In our theoretical work in Section 2 of our main paper, we assume that the seasonality in a firm’s output

price and its ability to build up output inventories do not vary over time, allowing us to use past QInv

values to proxy for future values in our empirical tests. While Grullon et al. (2020) show that a firm’s

output price seasonality, as measured using QSales, is indeed highly persistent, we next establish that

its ability to build up output inventories, as measured using QInv, is so, too. To do so, Table IA.1 shows

the proportions of all (Panel A), seasonal (Panel B), and non-seasonal (Panel C) stocks currently in the

low, medium, or high QInv tercile portfolio but in the same or another portfolio one (first subpanel),

two (second), and five (third) years later. The table confirms that QInv is highly persistent, especially

in the seasonal-firm subsample. Panel B.1, for example, reports that about 70% of seasonal firms

currently in the bottom (alternatively: top) portfolio are in that same portfolio one year later. Even

more strikingly, Panel B.3 shows that, even after five years, these two proportions only drop down

to about 57%. In contrast, Panel C.3 reveals that the proportions of non-seasonal firms still in the

top or bottom QInv portfolio after five years are a mere about 35% and 37%, respectively. Overall,
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Figure IA.3: The figure plots the mean excess returns of decile portfolios univariately sorted on QInv and the high-
minus-low spread portfolio (“10-1;” horizontal lines) plus their Newey-West (1987) 95% confidence intervals (vertical
lines). Panel A focuses on all stocks, Panel B on seasonal stocks, and Panel C on non-seasonal stocks.

our migration tests offer strong evidence that the ability of firms to build up output inventories to

accommodate seasonalities in their output prices does not change much over time.

TABLE IA.1 ABOUT HERE.

IA.3 Portfolio Sort Robustness Tests

We next present robustness tests for our univariate portfolio sorts based on QInv in Section 3.4 of our

main paper. To begin with, Table IA.2 repeats the portfolio sorts in Table 6 of our main paper using

equal (rather than value) weights. Consistent with our main empirical evidence, the table suggests

that mean returns and alphas also decline over the equally-weighted QInv portfolios, especially when

we form those portfolios from only seasonal stocks. Despite that, we notice that QInv more negatively

prices the value rather than equally weighted portfolios, in line with Grullon et al.’s (2020) evidence

that their seasonal sales anomaly is also stronger in value-weighted portfolios.

TABLE IA.2 ABOUT HERE.

In Figure IA.3, we plot the results from repeating the univariate QInv sorts using decile (rather

than tercile) breakpoints. Panel A focuses on all stocks, Panel B on seasonal stocks, and Panel C on
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Figure IA.4: The figure plots the mean excess delevered returns of decile portfolios univariately sorted on QInv and
the high-minus-low spread portfolios (“10-1;” horizontal lines) plus their Newey-West (1987) 95% confidence intervals
(vertical lines). Panel A focuses on all stocks, Panel B on seasonal stocks, and Panel C on non-seasonal stocks.

non-seasonal stocks. While the horizontal lines give the mean excess returns of the decile portfolios

and the top-minus-bottom spread portfolios, the vertical lines report their 95% confidence intervals

derived from Newey and West (1987) standard errors with a twelve-month lag length. The figure

suggests that the mean excess returns decline almost monotonically over the portfolios, at least in

case of the full sample and the seasonal-stock subsample. In particular, while the mean return of

the spread portfolio is –0.51% (t-statistic: –3.12) per month in the full sample, it is a more negative

–0.98% (t-statistic: –4.40) in the seasonal-stock subsample. Conversely, that same spread portfolio

does not yield a significant mean return in the non-seasonal stock subsample. Adjusting for standard

risk factors, the spread portfolio alphas are always close to their mean returns (not shown).

Using the same decile sorts as in Figure IA.3, Figure IA.4 reports the mean excess delevered returns

of the portfolios plus their 95% confidence intervals. We look into delevered returns since our theory

abstracts from financial leverage and thus focuses on asset (and not stock) returns. We follow Doshi

et al. (2019) in calculating delevered returns, multiplying the original returns with one minus the

stock’s financial leverage.24 The figure shows that QInv is also significantly negatively related to future

asset returns, with a monthly premium of –0.39% (t-statistic: –2.72). Also, the premium is again an

even more significantly negative –0.75% (t-statistic: –3.88) in the seasonal but an only insignificant

24Financial leverage is the ratio of total liabilities to the sum of market size and total liabilities, where market size is
from the end of the prior calendar year and total liabilities from the fiscal year ending in that calendar year.
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–0.08% (t-statistic: –0.52) in the non-seasonal stock subsample. Overall, Figure IA.4 suggests that the

pricing of QInv in stocks is unlikely to arise from firms’ dynamic leverage choices.

IA.4 FM Regression Robustness Tests

In Table IA.3, we document that our FM regressions of single-stock returns on QInv and control

variables in Section 3.4 of our main paper are robust to adding further control variables proxying for

firms’ inventory policies and operating flexibility. To be more specific, we add the annual change

in inventory InvGrowth (Belo and Lin (2012)), inventory turnover InvTurnover (Alan et al. (2014)),

and asset inflexibility Inflex (Gu et al. (2018)). The table suggests that, even in the presence of the

additional controls, QInv continues to be negatively related to future stock returns in the full sample,

the seasonal subsample, and the large inventories subsample, in line with our theory and the results

in Table 7 of our main paper. As InvGrowth and InvTurnover are calculated from annual accounting

data and Inflex from a time-series of quarterly accounting variables, it is perhaps unsurprising that

their inclusion in our regression models cannot subsume the pricing power of QInv.

TABLE IA.3 ABOUT HERE.

IA.5 Equally-Well-Diversified Standard and Seasonal-Inventory-

Leverage-Neutral Anomaly Spread Portfolios

In Section 4.2 of our main paper, we form the standard anomaly-variable spread portfolios from the

entire, seasonal, or non-seasonal stock universe, while we form the seasonal-inventory-leverage-

adjusted anomaly-variable spread portfolios only from the corresponding stocks within the middle

QInv portfolio. We do so since both our theory and intuition dictate that it makes no sense for seasonal

firms to hold deflated (inflated) output inventories at the start of their high (low) sales seasons. In

accordance, we find that the, for example, high QSales-low QInv portfolio is indeed sparsely populated,

9



presumably mostly with firms with mismeasured QInv values. A concern with our remedy, however,

could be that the seasonal-inventory-leverage-adjusted spread portfolios are less well diversified

than the standard spread portfolios, with both their short and long legs containing only one-third

of the stocks relative to the short and long legs of the standard spread portfolios. In turn, the weaker

diversification could raise the volatility of the seasonal-inventory-leverage-adjusted spread portfolios,

making it more likely that their mean excess returns are only insignificantly different from zero.

To put the standard and seasonal-inventory-leverage-adjusted spread portfolios on equal footing,

Table IA.4 repeats the portfolio sorts in Table 9 of our main paper, this time, however, ensuring that

the two types of portfolios contain an identical number of stocks in their short and long legs. To that

end, we use only the 33% largest stocks (in terms of market capitalization) in both the long and short

leg of the standard spread portfolios. In contrast, we use the same stocks as in Table 9 in the short

and long legs of the seasonal-inventory-leverage-adjusted spread portfolios. The table suggests that

the updated standard spread portfolios yield mean excess returns and t-statistics almost identical

to the original ones. While the original full-sample standard QSales spread portfolio, for example,

yields a mean monthly return of –0.22% (t-statistic: –2.17), the corresponding number for the updated

portfolio is –0.24% (t-statistic: –2.32). Given the close alignment between the original and updated

standard spread portfolio results, we have decided, for the sake of simplicity, to continue to report the

better diversified standard spread portfolio results in our main paper.

TABLE IA.4 ABOUT HERE.
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Table IA.1: Portfolio Migration Matrixes
The table gives the average portfolio migration matrixes of univariate tercile portfolios sorted based on
QInv. We report those matrixes for the full sample (Panel A), the seasonal-stock subsample (Panel B),
and the non-seasonal-stock subsample (Panel C). Each row of the table offers the proportions of stocks
currently in the low (first row in each subpanel), medium (second), or high (third) QInv portfolio but
in the low (first column), medium (second), or high (third) portfolio one year (subpanel 1), two years
(subpanel 2), or five years (subpanel 3) later, averaged over our sample period.

QInv

Future Low Future Medium Future High

(1) (2) (3)

Panel A: Full Sample

Panel A.1: One Year

Current Low 0.64 0.24 0.12
Current Medium 0.22 0.54 0.24
Current High 0.11 0.24 0.64

Panel A.2: Two Years

Current Low 0.46 0.29 0.24
Current Medium 0.26 0.46 0.28
Current High 0.23 0.30 0.47

Panel A.3: Five Years

Current Low 0.43 0.32 0.24
Current Medium 0.25 0.47 0.28
Current High 0.23 0.33 0.44

Panel B: Seasonal Subsample

Panel B.1: One Year

Current Low 0.70 0.18 0.12
Current Medium 0.27 0.46 0.27
Current High 0.12 0.18 0.70

Panel B.2: Two Years

Current Low 0.56 0.22 0.22
Current Medium 0.31 0.38 0.31
Current High 0.22 0.21 0.57

Panel B.3: Five Years

Current Low 0.57 0.23 0.20
Current Medium 0.31 0.39 0.30
Current High 0.21 0.22 0.57

(continued on next page)
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Table IA.1: Portfolio Migration Matrixes (cont.)

QInv

Future Low Future Medium Future High

(1) (2) (3)

Panel C: Non-Seasonal Subsample

Panel C.1: One Year

Current Low 0.59 0.32 0.10
Current Medium 0.18 0.62 0.20
Current High 0.09 0.31 0.59

Panel C.2: Two Years

Current Low 0.39 0.39 0.21
Current Medium 0.21 0.55 0.24
Current High 0.20 0.40 0.40

Panel C.3: Five Years

Current Low 0.35 0.44 0.21
Current Medium 0.20 0.57 0.23
Current High 0.19 0.44 0.37
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Table IA.2: Equally-Weighted Univariate Portfolios Sorted on Abnormal Inventories
The table presents the results of portfolios univariately sorted on QInv. At the end of each month t −1, we
first choose either all stocks (Panel A), those with a Seasonality value above the median (Panel B, “seasonal
stocks”), or those with a Seasonality value below that median (Panel C, “non-seasonal stocks”). We next
sort the stocks into portfolios according to the unconditional terciles of the QInv distribution at that time.
We equally-weight the portfolios and hold them over month t . We also form spread portfolios long the
top and short the bottom equally-weighted portfolios (“High – Low”). In columns (1) to (3), we report the
mean excess returns (Returne ), the mean number of stocks (# Stocks), the mean cross-sectional QSales
averages (QSales), the mean cross-sectional MarketSize averages (MarketSize), and the annualized Sharpe
ratios (mean excess returns over volatilities) of the portfolios. Conversely, columns (4) to (6) report the
mean excess returns, q 5-model alphas, and FF6-model alphas of the spread portfolios. Plain numbers
are estimates, while those in square brackets are Newey-West (1987) t-statistics with a twelve-month lag
length. See Table C1 in the appendix of our main paper for more details about variable definitions.

QInv High – Low

Low Medium High Mean q 5-Alpha FF6-Alpha

(1) (2) (3) (4) (5) (6)

Panel A: Full Sample

Returne 1.05 0.97 0.85 −0.19 −0.16 −0.19
[3.64] [3.74] [2.94] [−3.52] [−2.47] [−3.27]

# Stocks 708 708 729
QSales 0.24 0.25 0.26
MarketSize 5.28 5.70 5.25
Sharpe (p.a.) 0.56 0.58 0.45

Panel B: Seasonal Subsample

Returne 0.97 0.91 0.74 −0.23 −0.19 −0.22
[3.12] [3.10] [2.39] [−3.48] [−2.42] [−3.09]

# Stocks 409 267 396
QSales 0.24 0.25 0.26
MarketSize 5.07 5.22 4.99
Sharpe (p.a.) 0.48 0.48 0.37

Panel C: Non-Seasonal Subsample

Returne 1.14 1.00 0.99 −0.16 −0.15 −0.18
[4.39] [4.12] [3.67] [−2.43] [−2.12] [−2.61]

# Stocks 300 441 332
QSales 0.25 0.25 0.25
MarketSize 5.56 5.98 5.55
Sharpe (p.a.) 0.68 0.64 0.57
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Table IA.3: Fama-MacBeth Regressions of Stock Returns on Abnormal Inventories Also Controlling
for Other Optimal Inventory Policy and Operating Flexibility Variables
The table presents the results from Fama-MacBeth (1973) regressions of single-stock returns over
month t on QInv, QCash, and QDebt rank variables, InvToSales, InvGrowth, InvTurnover, Inflex, and
the standard FF6 controls, MarketBeta, MarketSize, BookToMarket, Momentum, Investment, and
Profitability, all measured using data until the start of that month. While we run the regression on the
full sample in column (1), we run it on only those firms with a Seasonality value above or below the
cross-sectional median at the end of the prior June in columns (2) and (3), respectively. Conversely, we
run it on only those firms with a total quarterly inventories-to-quarterly annual sales ratio value above
or below the cross-sectional median at the end of the prior June in columns (4) and (5), respectively. The
plain numbers are monthly premium estimates, in percent. The numbers in square brackets are
Newey-West (1987) t-statistics with a twelve-month lag length. For the sake of brevity, we do not report
the effects of the FF6 controls. See Table C1 in the appendix of our main paper and Section IA.4 in this
Internet Appendix for more details about variable definitions.

Non- Large Small
Full Seasonal Seasonal Inventories Inventories

Sample Subsample Subsample Subsample Subsample

(1) (2) (3) (4) (5)

QInv (Rank) −0.34 −0.41 −0.29 −0.59 −0.19
[−4.32] [−3.79] [−2.60] [−4.52] [−2.12]

QCash (Rank) 0.16 0.29 −0.01 0.08 0.17
[2.32] [2.87] [−0.19] [1.01] [1.71]

QDebt (Rank) 0.01 −0.05 0.13 0.18 −0.10
[0.18] [−0.43] [1.58] [1.84] [−0.94]

InvToSales −0.10 −0.14 −0.08 −0.17 0.23
[−1.59] [−1.70] [−0.91] [−1.69] [1.17]

InvGrowth −0.04 −0.01 −0.02 −0.29 0.03
[−0.68] [−0.11] [−0.21] [−2.53] [0.44]

InvTurnover 0.00 0.00 0.00 0.00 0.00
[−1.88] [−2.54] [−0.67] [0.10] [−1.13]

Inflex 0.00 0.00 0.00 0.00 0.00
[0.33] [−0.37] [0.29] [0.63] [0.24]

Constant 0.77 0.92 0.68 0.58 0.83
[2.16] [2.33] [1.84] [1.45] [2.15]

FF6 Controls Yes Yes Yes Yes Yes
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Table IA.4: Equally-Well-Diversified Standard and QInv-Neutral Anomaly Spread Portfolios
In this table, we present the mean returns (columns (1) and (2)), augmented-q-theory-model alphas
(“q 5;” (3) and (4)), and six-factor-model alphas (“FF6;” (5) and (6)) of seasonal sales (Panel A), same-
calendar-month return (Panel B), momentum (Panel C), and quarterly ROE (Panel D) spread portfolios.
At the end of each month t −1, we form the spread portfolios from independently sorting our sample
stocks into portfolios based on the median of Seasonality, the terciles of the anomaly variable, and
the terciles of QInv at that time. We value-weight the portfolios and hold them over month t . We
then consider either all stocks (“All Stocks”), only those in the top Seasonality portfolio (“Seasonal
Stocks”), or only those in the bottom Seasonality portfolio (“Non-Seasonal Stocks”). We finally form
standard anomaly spread portfolios through longing the top-anomaly-variable and shorting the
bottom portfolios (columns (1), (3), and (5)), while we form seasonal-inventory-leverage-neutral
spread portfolios through longing the top-anomaly variable and shorting the bottom portfolios within
the middle QInv portfolio ((2), (4), and (6)). Importantly, we only consider the 33% largest stocks
(in terms of market capitalization) in the short and long legs of the standard portfolios, to ensure a
similar diversification across the two types of portfolios. Plain numbers are estimates, while those in
square brackets are Newey-West (1987) t-statistics with a twelve-month lag length. See Table C1 in the
appendix of this paper for more details about the anomaly variable definitions.

Mean Spread Return q 5-Spread Alpha FF6-Spread Alpha

Modified QInv Modified QInv Modified QInv
Standard Neutral Standard Neutral Standard Neutral

(1) (2) (3) (4) (5) (6)

Panel A: Seasonal Sales Anomaly

All Stocks −0.24 −0.10 −0.15 0.02 −0.20 −0.04
[−2.32] [−0.80] [−1.16] [0.12] [−1.80] [−0.26]

Seasonal Stocks −0.36 −0.16 −0.27 −0.04 −0.30 −0.03
[−2.69] [−0.96] [−1.60] [−0.20] [−2.12] [−0.20]

Non-Seasonal Stocks −0.06 −0.02 0.04 0.10 0.02 0.03
[−0.50] [−0.11] [0.29] [0.55] [0.19] [0.18]

Panel B: Same-Calendar-Month Anomaly

All Stocks 0.49 0.41 0.49 0.45 0.49 0.45
[2.83] [2.06] [2.80] [2.06] [2.76] [2.11]

Seasonal Stocks 0.67 0.65 0.57 0.66 0.61 0.61
[3.12] [2.42] [2.34] [1.75] [2.61] [1.81]

Non-Seasonal Stocks 0.46 0.41 0.53 0.43 0.45 0.44
[2.81] [2.35] [2.99] [2.45] [2.62] [2.36]

(continued on next page)
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Table IA.4: Equally-Well-Diversified Standard and QInv-Neutral Anomaly Spread Portfolios (cont.)

Mean Spread Return q 5-Spread Alpha FF6-Spread Alpha

Modified QInv Modified QInv Modified QInv
Standard Neutral Standard Neutral Standard Neutral

(1) (2) (3) (4) (5) (6)

Panel C: Momentum Anomaly

All Stocks 0.50 0.34 −0.12 −0.09 −0.07 −0.08
[2.19] [1.29] [−0.47] [−0.38] [−0.46] [−0.43]

Seasonal Stocks 0.86 0.93 0.10 0.24 0.23 0.37
[3.29] [2.77] [0.38] [0.77] [1.40] [1.52]

Non-Seasonal Stocks 0.24 0.11 −0.16 −0.15 −0.19 −0.22
[1.01] [0.44] [−0.60] [−0.60] [−1.31] [−1.25]

Panel D: Quarterly-ROE Anomaly

All Stocks 0.37 0.24 −0.16 −0.42 0.09 0.06
[1.87] [1.05] [−1.19] [−2.12] [0.71] [0.40]

Seasonal Stocks 0.47 0.38 −0.04 −0.28 0.20 0.13
[2.21] [1.33] [−0.26] [−0.90] [1.34] [0.50]

Non-Seasonal Stocks 0.24 0.17 −0.25 −0.24 0.01 0.05
[1.05] [0.69] [−1.66] [−1.22] [0.05] [0.27]
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