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Abstract

We predict daily realized volatility based on intraday stock return images
which are fed into convolutional neural networks. We combine these pre-
dictors within a linear model mimicking the cascading structure of the
Heterogeneous Autoregressive Model (HAR) model. Predicting daily realized
volatility with this model for a sample of Dow Jones constituent stocks
shows that the trained convolutional neural networks can extract predictive
patterns from the images of return series. These patterns provide information
beyond those of the traditional HAR components. Our findings highlight
the potential for improved forecasting performance when relying on deep
learning approaches.
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1 Introduction

Financial volatility is an important input for security valuation, portfolio allocation,

investment decisions, risk management, and monetary policy. Accurate volatility

forecasting models have been extensively studied by both academics and practi-

tioners (e.g. Poon and Granger, 2003, Hansen and Lunde, 2011, Hong et al., 2021,

Blair et al., 2001). The Heterogeneous Autoregressive (HAR) model introduced by

Corsi (2009) serves as a primary benchmark for volatility prediction in the current

finance literature. The HAR model relies on realized volatility (RV) calculated

from high-frequency data (Andersen and Teräsvirta, 2009 and Barndorff-Nielsen

and Shephard, 2002) and effectively captures the persistence of daily volatility in a

concise linear way.

More recently, using deep neural networks (NNs) to forecast volatility has gained

traction, challenging the dominance of traditional models. NNs do not rely on

restrictive assumptions regarding data-generating processes and can detect complex

non-linear patterns (Kristjanpoller and Minutolo, 2015). Specifically, Convolutional

Neural Networks (CNNs) have gained popularity in financial forecasting, consis-

tently outperforming traditional price trend indicators and benchmark volatility

models (Audrino and Faessler, 2023; Borovykh et al., 2018; Bucci, 2020; Jiang

et al., 2023; Miura et al., 2019; Rahimikia and Poon, 2020; Reisenhofer et al., 2022;

Zhang et al., 2023; Zhu et al., 2023).
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CNNs were originally developed for image analysis tasks (LeCun et al., 1998) and

excel at deriving patterns from 2D spatial representation. Consequently, rather

than defining an underlying stochastic process, CNNs possess the capability to

extract patterns directly from an image of a return series. Jiang et al. (2023)

and Sezer and Ozbayoglu (2018) utilize CNNs to predict stock returns and de-

velop trading strategies, demonstrating superior performance compared to selected

benchmarks. Most recently, Reisenhofer et al. (2022) introduced HARNet, a neural

network (NN) that utilizes hierarchies of dilated convolutional layers to compute

features resembling the weekly and monthly aggregates of the original HAR model.

Audrino and Faessler (2023) use CNNs as classifiers for price patterns which they

subsequently use to augment the HAR model. Their analysis also shows improve-

ments in forecasting performance, when including CNN based predictors within

the traditional HAR approach.

In contrast to previous studies we use three deep CNNs to directly predict daily

RV based on intraday return images, which mirror the daily, weekly, and monthly

volatility components. The resulting predictors are subsequently combined in

one common forecast. Thereby, our approach is theoretically based on the Het-

erogeneous Market Hypothesis (Müller et al., 1997, Corsi, 2009), where groups

of investors make decisions based on different investment horizons and daily RV

emerges as a combination of these short, medium and long-term traders’ actions.
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Within the traditional HAR approach daily volatility emerges based on an AR(1)

structure of these cascading volatility components. Our Convolutional Neural Nets

based approach can be viewed as a generalization of this structure. Since each

CNN is fed images of the past day’s, week’s, and month’s intraday return series,

respectively, the RV predictions are based on a richer information set, because

CNNs are able to use higher frequency (intraday) data to directly predict a daily

target variable (RV). Furthermore, these CNN-RV predictors are based on more

complex, non-linear relationships between past return images and the next day’s

daily RV. Thereby, our approach seeks to use the advantage of deep learning

methods such as the CNN in terms of flexibility and overcome - to some extent -

their notion of a black-box via their combination in a HAR-like cascading fashion to

preserve the interpretability against the background of the Heterogeneous Market

Hypothesis.

In detail, we train three CNNs based on past day’s, week’s and month’s minute-by-

minute return images for a sample of 28 Jones Industrial Average Index (DJIA)

intraday stock returns. Combining the resulting daily, weekly, and monthly predic-

tors, we forecast daily RV for each stock. We use data from 2010 through 2019

to train and test the model. We evaluate the models by testing the in-sample

statistical significance of the CNN components and by assessing the out-of-sample

forecasting performance of the CNN model against the benchmark of the traditional
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HAR model. We find that the CNN model outperforms the baseline HAR model

in forecasting daily realized volatility. Including the CNN predictors as additional

regressors in the benchmark HAR model reveals that mostly both groups of predic-

tors significantly contribute to RV prediction, while the overall performance of the

combined model does not exceed the purely CNN predictor based approach.

The remainder of this paper is structured as follows: In Section 2.1, we outline

the general structure of the benchmark HAR, the CNNs-based and the combined

models. Section 2.2 develops the images of intraday stock returns used as inputs

for the CNNs, section 2.3 outlines the basics of CNNs, and section 2.4 describes

the architecture of the CNNs applied in this study. Section 3 provides information

on the data. Sections 4.1 and 4.2 present the in-sample and out-of-sample results,

respectively. Finally, Section 5 concludes the paper.

2 Forecasting Realized Volatility from Intraday

Return Images

2.1 The General Structure of the forecasting models

The realized volatility forecasting approach proposed in this paper maintains the

parsimonious structure of the standard HAR model based on daily, weekly, and

4



monthly RV components (for details on the derivation of the HAR model, we refer

to Appendix A and Corsi, 2009). The benchmark HAR model is given by

RV
(d)
i,t+1d = c+ β

(d)
i RV

(d)
i,t + β

(w)
i RV

(w)
i,t + β
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(m)
i,t + ωi,t+1d

(1)

where RV
(d)
i,t , RV

(w)
i,t , and RV

(m)
i,t denote the daily, weekly, and monthly realized

volatility aggregates, as described in Corsi (2009) for stock i at day t, which are

derived from the previous day’s, the past 5 days’, and the past 22 days’ RV esti-

mators, respectively. ωi,t+1d denotes contemporaneously and serially independent

zero-mean innovations.

Our proposed CNN-RV model relies on three CNN-based prediction components,

aligning with the standard daily, weekly, and monthly components. This approach

aims to capture more complex abstractions by directly relating past days’ intraday

returns to the next day’s daily RV, potentially enhancing the overall model perfor-

mance. We preserve the general structure of the HAR model, which allows us to

analyze the importance of different components within the prediction task. Our

proposed CNN-RV model has the following structure:
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where I
(d)
i,t is an image of stock i′s minute-by-minute intraday returns at date t.

Analogously, I
(w)
i,t denotes the image of the intraday returns starting at date [t− 4]

up until date t of stock i, i.e., for a total of five days. Lastly, I
(m)
i,t denotes the

image of stock i‘s intraday returns from [t − 21] until t, for a total of 22 days.

CNN(d), CNN(w), and CNN(m) refer to separate CNNs which predict day-ahead RV

based on the daily, weekly, and monthly input images, respectively. Each of these

CNNs is trained exclusively on the images (Ii,t) at the time range indicated by the

CNNs’ superscript. The CNNs lack stock-specific (i) subscripts, as one common

CNN is trained on the images of all stocks at the respective aggregation period.1

Then, for example, CNN(w)
[
I
(w)
i,t

]
denotes the prediction for RV

(d)
i,t+1d produced by

the trained CNN(w) when fed the images I
(w)
i,t as input. The subscripts i on the

coefficients indicate that a separate CNN-RV model is fitted for each stock i. ϵi,t+1d

denotes contemporaneously and serially independent zero-mean innovations. A

constant term a is included when fitting the regression models.

Finally, a combination of the standard and CNN-based components results in what

we refer to as the CNN-HAR model:
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(3)

1Training one common CNN for all stocks at each period increases training data availability.
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The CNN-HAR model allows us to assess whether a combination of both approaches

yields a superior forecasting performance. All models are fit by ordinary least

squares and relying on Newey-West standard errors.

2.2 Time Series to Image Encoding

Financial time series data are typically one-dimensional (1D), while CNNs were

originally designed for two-dimensional (2D) spatial objects, such as images (Good-

fellow et al., 2016; Wang et al., 2020). Encoding the input data, denoted by I
(.)
i,t for

CNNs is therefore a crucial step in this process. Mapping a stream of 1D financial

time series data into the required matrix form has not yet reached a consensus in

the literature. We therefore have adopted an image design similar to the approach

used by Jiang et al. (2023) and Sezer and Ozbayoglu (2019). However, we employ

a colored waterfall-chart-type graph. In this representation, increasing returns are

represented by green-colored vertical bars, while decreasing returns are represented

by red-colored bars. Each pixel within the image is represented by a triplet of red,

green, and blue (R, G, B) values. The black image background corresponds to

pixel vectors of (0, 0, 0). As each pixel triplet value constitutes a different CNN

input channel, we allow for potentially different treatments of positive and negative

returns within the CNN, when predicting daily realized volatility. The intraday

log returns are concatenated according to time along the x-axis. Relying on a
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minute-by-minute sampling frequency, the daily images I
(d)
i,t are 380 pixels wide.

Missing values are represented as black pixels. While the x-axis represents time,

the y-axis refers to the intraday log returns. We define square images of 380 pixels

in each dimension and determine the scale of the y-axis in the daily graphs to be

±0.0025, which includes 99% of the observations. All returns beyond this range

are cut off at the limiting value. In effect, they are treated as outliers. Using a

fixed y-axis scale for all images allows the CNN to effectively distinguish between

high- and low-volatility patterns, as volatility depends on the absolute variation of

intraday returns.

Figure 1: Image Design
The graph shows three exemplary images corresponding to the daily, weekly, and monthly time
range.

I
(d)
Boeing, 2019/02/20 I

(w)
IBM, 2017/04/11 I

(m)
Visa, 2013/12/31

The most literal translation of this design for the weekly and monthly components

of I
(w)
i,t and I

(m)
i,t in equation (2) would be to increase the width of the images

to include the minutely intraday returns of the entire aggregation periods. This
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design would yield very large images, which increases computational cost drastically.

However, reducing the sampling frequency of the returns should equally capture

relevant information for longer-term traders, since their actions are less dependent

on very high-frequency returns. For this reason, we define all three image types,

i.e., I
(d)
i,t , I

(w)
i,t , and I

(m)
i,t to have the same dimensions by reducing the sampling

frequency of the depicted weekly and monthly return images accordingly: Con-

catenating five days of five-minute-by-minute returns yields an image of 380×380

pixels, where the first pixel column represents the first return of day [t− 4], while

the ultimate pixel column on the right presents the last five minutely return of

day t. For the monthly images, we reduced the sampling frequency to 22 minutes,

which yields an image width of 374 pixels. We add three blank columns to the

left and right of this return series to maintain a total width of 380 pixels. As the

returns for the weekly and monthly images are calculated at lower frequencies,

the absolute range of the y-axis must increase correspondingly. We determine a

scale of ±0.005 for the weekly and a scale of ±0.01 for the monthly images. Again,

this includes more than 99% of all intraday observations in the images. Figure

1 depicts exemplary images representing the daily, weekly, and monthly return

series. These are fed into three separate CNNs, which then produce the components

CNN(d)[I
(d)
i,t ], CNN

(w)[I
(w)
i,t ], and CNN(m)[I

(m)
i,t ] for the CNN-RV model in equation 2.
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2.3 Convolutional Neural Nets

CNNs are a group of regularized, feed-forward neural networks that learn feature

engineering via filter optimization. More specifically, each layer of a CNN consists

of a convolution operation, a (non-linear) activation, and a pooling operation to

extract possibly non-linear features from the image. An input layer and an output

layer wrap these specific CNN layers. Additionally, a fully connected layer is applied

between the last CNN layer and the output layer to map the extracted features

to a single output. The basic architecture of our CNN model is similar to the

one employed in Jiang et al. (2023). We employ three sequential building blocks

consisting of a convolutional and max-pooling layer each. These three building

blocks are followed by a fully connected layer, with the final output layer comprising

a single unit. CNNs are built by sequentially applying convolution, activation,

and pooling, creating representations of small details combined in deeper layers

to capture more complex features in larger areas of the original image. The final

building block is flattened and passed to a fully connected layer, followed by an

output layer for prediction. These last layers of the CNN are analogous to a regular

multilayer perceptron, where each unit is connected to all units in the previous

layer. They thereby produce a prediction via a combination of the learned image

features.2

2For a more in-depth introduction to CNNs see Goodfellow et al. (2016) and Li et al. (2022).
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Input Layer

The input layer provides the data suitable for the CNN calculations to the network.

Therefore, the input layer provides the CNN with the images as a 2-D grid of

pixels. The CNN processes one image at a time unlike a classic feedforward neural

network in which the input layer simultaneously provides a set of input features to

the network.

Convolution Operation

Via the convolution operation, filters are applied to small subsets (areas) of an

input image, producing activation maps that represent the responses of the filters

at different positions. By learning these filters in training, CNNs can detect

features with high predictive power, regardless of their position in the image. The

functionality of these filters is adjusted by three hyperparameters: the stride with

which the filter is slid across the input (image), the number of filters, and the

(two-dimensional) filters’ size. The output of each convolution layer consists of

as many depthwise stacked activation maps as filters used within this layer. A

non-linear activation is applied to the convolution output before passing it to the

next layer. Figure 2 illustrates the first step of the convolutional operation. The

2× 2 filter (green matrix) will continue to slide over the input matrix according to

the defined or hypertuned stride length to generate the output matrix.
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Figure 2: Illustration of the Convolution Operation

Activation

For different inputs, different neurons are essential to make a prediction. More

specifically, with different inputs, some neurons ”fire” and some are ”silent”.

The activation function provides a way to provide weights and biases to each

neuron. Moreover, it introduces non-linearity to the neural network’s input as

neural networks without an activation function collapse to a linear regression.

The introduction of non-linearity allows the neural network to find more complex

patterns in the mapping from the input to the output. In the case of CNNs, the

activation function is applied to the output of the convolution operations and the

fully connected layers.

Pooling Operation

Pooling layers are commonly used after one or multiple convolution layers. They

downsample the image size and control overfitting by de-noising the input. In
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contrast to convolution, pooling applies a fixed function to each activation map,

reducing the number of parameters. The pooling function typically takes the form

of max-pooling, which outputs the maximum value of the entries the filter covers

at each position. Figure 3 illustrates the first step of the max pooling operation.

Using two filters and convolutions, two output matrices are generated, which are

then reduced to two 2 × 2 matrices by subsequently applying the max pooling

operation to each 2× 2 segment of the output channels.

Figure 3: Illustration of the Max-Pooling Operation

Flattening and Fully Connected Layer

The convolution and pooling layer produces a compromised but still one-dimensional

output. In order to generate a prediction using the extracted features, a reshaping

in a one-dimensional structure is applied. The two-dimensional grid of extracted

features is flattened to represent a vector of explanatory variables. The flattened

vector is an input layer for a fully connected dense layer similar to those used in
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standard feed-forward neural networks. The fully connected layer processes the

filtered features from the images as inputs similar to a regression problem and,

ultimately, provides an automated selection of predictors for the output layer.

Output Layer

The final layer in an artificial neural network, the output layer, produces the predic-

tion based on the feature extraction beforehand. The output layer has weights and

biases and is similar to a non-linear regression equation, predicting the next day’s

RV. Therefore, based on the predicted value, a loss function is calculated, which in

return provides a measure of the performance of the current set of weights in the

CNN. Hence, the loss is used to re-adjust the weights in the back-propagation step of

neural networks. By re-applying the forward- and backward-propagation, the neural

network learns to adjust the internal weights to increase the predictive performance.

2.4 CNN architecture for realized volatility prediction

The inputs into the CNNs are the images discussed in Section 2.2. With their

dimension of 380x380x3, the images are much larger than is common in the related

literature. This large size results in highly parameterized CNNs, introducing

large computational needs. Therefore, we increase the stride of the convolution

operation to two. This results in a halving of the image width and height in
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each convolutional layer, thus decreasing the computational burden for the entire

CNN (Goodfellow et al., 2016). We apply max-pooling after each convolutional

layer to reduce noise. Figure 4 depicts the architecture of the CNNs we train.

Grid-search-based hyperparameter tuning yields an optimal initial learning rate of

Figure 4: Final CNN Model

10−4 for the adaptive Adam optimizer (Kingma & Ba, 2014) and a batch size of 8.

Further, the optimal number of filters in the convolutional layers is determined to

be 16 in C1, 32 in C3, and 64 in C5 (see Figure 4). Lastly, tuning the kernel size

results in the adoption of a 3x3 kernel for all three convolutional layers. Our CNNs

apply the Rectified Linear Unit (ReLU) activation function to the convolution

outputs. (Goodfellow et al., 2016).3 We introduce a dropout layer for regularization

between the final pooling operation and the fully connected layer (Srivastava et al.,

2014). Furthermore, the dropout rate and number of units in the fully connected

3The ReLU activation function takes the following form: ReLU(x) =

{
0, if x < 0

x, otherwise.
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layer for each CNN are jointly tuned. The results are presented in Table A.1 in the

Appendix. A dropout rate of 0.75 with 500 nodes in the dense layer is within the

ten best hyperparameter combinations for all three CNNs and is revealed as the

best choice for CNN(m) and as the second best for CNN(d). This finding suggests

that similar hyperparameter choices for all three CNNs are appropriate. Therefore,

we adopt this combination for all three CNNs, producing three identical CNN

models that differ only in the data they training data.

To produce reliable results in the face of CNN training stochasticity (Gu et al.,

2020; Jiang et al., 2023), we train an ensemble of four CNNs at each frequency

and average their forecasts. Table A.2 in the Appendix depicts the evolution of

average validation root mean squared errors (RMSE) in these ensembles until

training epoch 20. For all three CNNs, the average RMSE at the fourteenth epoch

is within the lowest five. Therefore, for simplicity, we train each CNN for fourteen

epochs. CNNs are trained to minimize the MSE of day-ahead RV predictions. The

CNNs are trained exclusively on their respective training sets and evaluated on the

validation set.

3 Data

We use high-frequency return data from 28 stocks, which have been constituents

of DJIA during our entire sample period. The sample period runs from January
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4th, 2010, to December 31st, 2019, which yields 2516 trading days per stock. Each

day covers the trading window from 9:36 a.m. to 3:55 p.m. ET, with log returns

sampled minute-by-minute. Therefore, one day usually consists of 380 intraday

observations at a minute-by-minute frequency. Daily RV is calculated based on

squared one-minute returns. Given the high liquidity of the DJIA constituents’

stocks, this seems an appropriate frequency for calculating RV (Liu et al., 2015).

We split the data into a training-, validation-, and test set along the temporal

dimension (Golbayani et al., 2020). We perform a 70-15-15 split, such that the first

1762 days of each stock, from January 4th, 2010, until December 30th, 2016, are

allocated to the training set. The validation set comprises each stock’s 376 trading

days from January 3rd, 2017, until June 29th, 2018. Lastly, the test set starts

on July 2nd, 2017, and extends 377 days until December 30th, 2019. Following

Rahimikia and Poon (2020), we use the RMSE to evaluate forecasting performance

(Patton, 2011).
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4 Realized Volatility Prediction

4.1 In-Sample Results

Table 1 shows in-sample results on the benchmark HAR and the CNN-RV model

according to equations 1 and 2, respectively. We observe a higher R2 for the

CNN-RV model compared to the benchmark HAR model for all stocks. However,

it has to be noted that the CNN components are produced by a highly complex,

non-linear function approximator. The Universal Approximation Theorem states

that Neural Networks can approximate any possible continuous function with

reasonable accuracy (Cybenko, 1989). Continued in-sample fitting of our CNNs for

further epochs would have decreased training loss as the CNN starts overfitting.

However, the CNN predictors are optimized for accurate out-of-sample forecasting

rather than explaining variations within the training sample. Interestingly, our

results indicate that the CNN components are already highly significant at the

point at which we determined the training to stop. Table 2 depicts the estimated

parameters for the combined model according to equation 3.4 For 29 out of 84

coefficient pairs we observe that the benchmark and the CNN components are

significant at the same aggregation period. This finding suggests that both inputs

contribute to explaining next day’s RV variations.

4We observe only partly significant coefficients with mostly negative signs considering the
benchmark HAR components. The latter is not surprising considering the substantial correlation
between the different components (see Table A.3 in the Appendix).

18



Table 1: In-Sample Results: HAR and CNN-RV Models.
The table displays the coefficient estimates of fitting the HAR model (equation 1) and the CNN-RV model (equation 2).
Robust standard errors are given in parentheses. ∗∗∗, ∗∗, ∗∗∗ indicate significance at the 1%, 5%, and 10% significance level
respectively. FHAR and FCNN−RV columns give the p-value of the F-test for joint significance of the variables referred to
in the subscript.

Stock HAR CNN-RV F-test

β
(d)
i β

(w)
i β

(m)
i R2

HAR γ
(d)
i γ

(w)
i γ

(m)
i R2

CNN FHAR FCNN−RV

American Express 0.497∗∗∗ 0.195∗∗∗ 0.226∗∗∗ 0.619 0.457∗∗∗ 0.354∗∗∗ 0.284∗∗∗ 0.737 0.000 0.000
[0.050] [0.057] [0.049] [0.051] [0.084] [0.077]

Amgen 0.416∗∗∗ 0.338∗∗∗ 0.149∗∗∗ 0.574 0.476∗∗∗ 0.267∗∗∗ 0.420∗∗∗ 0.659 0.034 0.000
[0.043] [0.054] [0.042] [0.055] [0.072] [0.065]

Apple 0.495∗∗∗ 0.094∗ 0.218∗∗∗ 0.386 0.784∗∗∗ 0.334 −0.020 0.604 0.067 0.000
[0.061] [0.056] [0.053] [0.155] [0.247] [0.366]

Boeing 0.425∗∗∗ 0.227∗∗∗ 0.229∗∗∗ 0.487 0.399∗∗∗ 0.373∗∗ 0.322∗∗∗ 0.606 0.077 0.000
[0.055] [0.065] [0.050] [0.067] [0.148] [0.111]

Caterpillar 0.498∗∗∗ 0.235∗∗∗ 0.198∗∗∗ 0.665 0.321∗∗∗ 0.507∗∗∗ 0.352∗∗∗ 0.765 0.001 0.000
[0.053] [0.061] [0.056] [0.058] [0.083] [0.073]

Chevron 0.556∗∗∗ 0.234∗∗∗ 0.138∗∗∗ 0.687 0.521∗∗∗ 0.295∗∗∗ 0.334∗∗∗ 0.783 0.031 0.000
[0.054] [0.069] [0.052] [0.095] [0.111] [0.063]

Cisco Systems 0.453∗∗∗ 0.206∗∗∗ 0.229∗∗∗ 0.507 0.529∗∗∗ 0.395∗∗ 0.125 0.639 0.063 0.000
[0.045] [0.052] [0.050] [0.047] [0.177] [0.166]

Coca Cola 0.464∗∗∗ 0.163∗∗∗ 0.219∗∗∗ 0.433 0.507∗∗∗ 0.419∗∗ 0.036 0.560 0.001 0.000
[0.062] [0.059] [0.055] [0.056] [0.163] [0.183]

Disney 0.491∗∗∗ 0.182∗∗∗ 0.217∗∗∗ 0.532 0.413∗∗∗ 0.430∗∗ 0.232∗∗∗ 0.657 0.128 0.000
[0.054] [0.057] [0.053] [0.118] [0.203] [0.089]

Goldman Sachs 0.440∗∗∗ 0.233∗∗∗ 0.231∗∗∗ 0.558 0.433∗∗∗ 0.340∗∗∗ 0.404∗∗∗ 0.662 0.047 0.000
[0.082] [0.074] [0.051] [0.060] [0.083] [0.062]

Home Depot 0.488∗∗∗ 0.241∗∗∗ 0.176∗∗∗ 0.587 0.535∗∗∗ 0.318∗∗∗ 0.199∗∗∗ 0.698 0.004 0.000
[0.048] [0.058] [0.050] [0.052] [0.077] [0.075]

Honeywell 0.519∗∗∗ 0.202∗∗∗ 0.196∗∗∗ 0.625 0.483∗∗∗ 0.298∗∗∗ 0.312∗∗∗ 0.741 0.183 0.000
[0.046] [0.058] [0.052] [0.050] [0.086] [0.070]

IBM 0.504∗∗∗ 0.207∗∗∗ 0.138∗∗∗ 0.493 0.478∗∗∗ 0.513∗∗∗ 0.016 0.630 0.002 0.000
[0.054] [0.059] [0.052] [0.055] [0.100] [0.095]

Intel 0.458∗∗∗ 0.209∗∗∗ 0.198∗∗∗ 0.480 0.638∗∗∗ 0.263∗∗ 0.196∗ 0.637 0.071 0.000
[0.059] [0.056] [0.044] [0.071] [0.113] [0.111]

JPMorgan 0.565∗∗∗ 0.164∗∗∗ 0.202∗∗∗ 0.678 0.468∗∗∗ 0.358∗∗∗ 0.324∗∗∗ 0.764 0.233 0.000
[0.043] [0.050] [0.045] [0.057] [0.118] [0.086]

Johnson Johnson 0.477∗∗∗ 0.213∗∗∗ 0.169∗∗∗ 0.487 0.544∗∗∗ 0.358∗∗∗ 0.122 0.610 0.001 0.000
[0.056] [0.061] [0.058] [0.065] [0.130] [0.146]

MMM 0.327∗∗∗ 0.238∗∗ 0.297∗∗∗ 0.396 0.216 0.771∗ 0.098 0.547 0.517 0.000
[0.111] [0.096] [0.063] [0.232] [0.451] [0.179]

McDonalds 0.419∗∗∗ 0.186∗∗∗ 0.258∗∗∗ 0.431 0.427∗∗∗ 0.308∗∗ 0.222∗ 0.529 0.003 0.000
[0.046] [0.056] [0.052] [0.064] [0.133] [0.128]

Merck 0.418∗∗∗ 0.249∗∗∗ 0.198∗∗∗ 0.474 0.546∗∗∗ 0.403∗∗∗ 0.104 0.580 0.051 0.000
[0.071] [0.075] [0.052] [0.106] [0.102] [0.151]

Microsoft 0.439∗∗∗ 0.241∗∗∗ 0.173∗∗∗ 0.461 0.450∗∗∗ 0.359∗∗∗ 0.211∗∗∗ 0.614 0.000 0.000
[0.069] [0.066] [0.044] [0.079] [0.072] [0.075]

Nike 0.519∗∗∗ 0.168∗∗∗ 0.205∗∗∗ 0.548 0.300∗∗∗ 0.562∗∗ 0.215 0.704 0.022 0.000
[0.056] [0.056] [0.052] [0.091] [0.238] [0.157]

Procter Gamble 0.085 0.164∗ 0.284∗∗∗ 0.050 0.613∗∗∗ 1.465 −0.968 0.205 0.515 0.000
[0.069] [0.093] [0.056] [0.067] [1.106] [0.991]

Salesforce 0.423∗∗∗ 0.225∗∗ 0.235∗∗∗ 0.483 0.649∗∗∗ 0.265∗∗ 0.351∗∗∗ 0.611 0.862 0.000
[0.074] [0.103] [0.075] [0.088] [0.106] [0.088]

Travelers 0.452∗∗∗ 0.261∗∗∗ 0.182∗∗∗ 0.560 0.438∗∗∗ 0.423∗∗∗ 0.149 0.657 0.002 0.000
[0.055] [0.060] [0.053] [0.049] [0.119] [0.098]

UnitedHealth 0.281∗∗∗ 0.264∗∗∗ 0.345∗∗∗ 0.431 0.528∗∗∗ 0.495∗∗∗ 0.134 0.575 0.042 0.000
[0.093] [0.075] [0.067] [0.124] [0.152] [0.199]

Verizon 0.379∗∗∗ 0.286∗∗∗ 0.145∗∗∗ 0.381 0.459∗∗∗ 0.372∗∗∗ 0.140∗ 0.459 0.247 0.000
[0.044] [0.058] [0.055] [0.060] [0.066] [0.077]

Visa 0.351∗∗∗ 0.263∗∗∗ 0.249∗∗∗ 0.412 0.569∗∗∗ 0.274∗∗∗ 0.305∗∗∗ 0.528 0.045 0.000
[0.052] [0.063] [0.055] [0.113] [0.105] [0.118]

Walmart 0.340∗∗∗ 0.291∗∗∗ 0.188∗∗∗ 0.359 0.471∗∗∗ 0.409∗∗∗ 0.105 0.468 0.002 0.000
[0.054] [0.065] [0.058] [0.090] [0.077] [0.098]
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Table 2: In-Sample Results: CNN-HAR Models.
The table shows estimation results for the CNN-HAR model in equation (3) at the stock level, where
the CNN components have been fitted on the training data set. Robust standard errors are given in
parentheses. ∗∗∗, ∗∗, ∗∗∗ indicate significance at the 1%, 5%, and 10% significance level respectively.

Stock β̃
(d)
i β̃

(w)
i β̃

(m)
i γ̃

(d)
i γ̃

(w)
i γ̃

(m)
i N R2

American Express −0.284∗∗∗ −0.097∗∗ −0.092∗∗ 0.691∗∗∗ 0.478∗∗∗ 0.432∗∗∗ 1740 0.751
[0.054] [0.045] [0.041] [0.074] [0.077] [0.061]

Amgen −0.149∗∗∗ 0.047 −0.016 0.625∗∗∗ 0.253∗∗∗ 0.430∗∗∗ 1740 0.661
[0.051] [0.047] [0.04] [0.079] [0.085] [0.08]

Apple −0.191 −0.223∗ −0.125∗∗ 0.779∗∗∗ 0.592∗∗ 0.333 1740 0.627
[0.191] [0.114] [0.057] [0.245] [0.298] [0.206]

Boeing −0.129∗ −0.168∗∗ −0.006 0.496∗∗∗ 0.528∗∗∗ 0.399∗∗∗ 1740 0.613
[0.075] [0.078] [0.045] [0.087] [0.191] [0.115]

Caterpillar −0.247∗∗∗ −0.07 0.003 0.597∗∗∗ 0.544∗∗∗ 0.414∗∗∗ 1740 0.772
[0.065] [0.05] [0.043] [0.098] [0.087] [0.078]

Chevron −0.342∗∗ −0.066 −0.119∗∗ 0.810∗∗∗ 0.456∗∗∗ 0.468∗∗∗ 1740 0.796
[0.139] [0.063] [0.047] [0.173] [0.128] [0.073]

Cisco Systems −0.296∗∗ −0.146 −0.049 0.763∗∗∗ 0.590∗∗ 0.224∗∗ 1740 0.657
[0.124] [0.101] [0.042] [0.116] [0.246] [0.112]

Coca Cola −0.166 −0.334∗∗∗ 0.053 0.657∗∗∗ 0.628∗∗∗ 0.152 1740 0.579
[0.123] [0.082] [0.056] [0.145] [0.137] [0.104]

Disney −0.166 −0.266∗∗ −0.147∗∗ 0.494∗∗∗ 0.703∗∗ 0.454∗∗∗ 1740 0.677
[0.105] [0.134] [0.07] [0.132] [0.294] [0.089]

Goldman Sachs −0.071 −0.084 −0.029 0.474∗∗∗ 0.424∗∗∗ 0.488∗∗∗ 1740 0.663
[0.047] [0.052] [0.042] [0.087] [0.101] [0.072]

Home Depot −0.201∗∗∗ −0.093 −0.017 0.712∗∗∗ 0.398∗∗∗ 0.277∗∗∗ 1740 0.705
[0.076] [0.066] [0.039] [0.1] [0.098] [0.062]

Honeywell −0.223∗∗ −0.073 −0.065 0.661∗∗∗ 0.379∗∗∗ 0.435∗∗∗ 1740 0.749
[0.105] [0.065] [0.051] [0.117] [0.13] [0.081]

IBM −0.274∗∗ −0.184∗∗∗ −0.090∗ 0.727∗∗∗ 0.636∗∗∗ 0.225∗∗∗ 1740 0.649
[0.109] [0.065] [0.049] [0.116] [0.11] [0.074]

Intel −0.180∗∗ −0.037 −0.106∗∗ 0.780∗∗∗ 0.298∗∗ 0.357∗∗∗ 1740 0.646
[0.087] [0.069] [0.049] [0.122] [0.137] [0.089]

JPMorgan −0.064 −0.105∗ 0.028 0.515∗∗∗ 0.438∗∗∗ 0.363∗∗∗ 1740 0.766
[0.059] [0.06] [0.04] [0.087] [0.134] [0.082]

Johnson Johnson −0.113 −0.238∗∗∗ −0.089 0.582∗∗∗ 0.561∗∗∗ 0.328∗∗∗ 1740 0.622
[0.116] [0.066] [0.07] [0.136] [0.126] [0.112]

MMM −0.047 −0.324 −0.135 0.125 1.151∗ 0.302∗∗∗ 1740 0.567
[0.091] [0.22] [0.108] [0.298] [0.675] [0.107]

McDonalds −0.194 −0.234∗∗∗ −0.041 0.609∗∗∗ 0.452∗∗∗ 0.365∗∗∗ 1740 0.541
[0.147] [0.07] [0.059] [0.162] [0.113] [0.078]

Merck −0.067 −0.135∗∗ −0.046 0.594∗∗∗ 0.518∗∗∗ 0.197 1740 0.583
[0.166] [0.06] [0.048] [0.229] [0.118] [0.158]

Microsoft −0.159∗∗ −0.125∗∗ −0.064 0.524∗∗∗ 0.492∗∗∗ 0.348∗∗∗ 1740 0.623
[0.065] [0.05] [0.044] [0.079] [0.079] [0.079]

Nike −0.114 −0.243∗∗ −0.026 0.380∗∗∗ 0.694∗∗∗ 0.386∗∗∗ 1740 0.718
[0.075] [0.097] [0.041] [0.122] [0.268] [0.124]

Procter Gamble 0.008 −0.21 −0.009 0.583∗∗∗ 1.697 −0.928 1740 0.210
[0.045] [0.152] [0.054] [0.084] [1.249] [0.93]

Salesforce −0.07 −0.02 0.003 0.731∗∗∗ 0.294∗∗ 0.356∗∗∗ 1740 0.611
[0.11] [0.111] [0.063] [0.156] [0.134] [0.081]

Travelers −0.297∗∗∗ −0.196∗∗ −0.014 0.761∗∗∗ 0.556∗∗∗ 0.231∗∗∗ 1740 0.671
[0.092] [0.083] [0.043] [0.116] [0.12] [0.054]

UnitedHealth −0.061 −0.183∗∗ 0.042 0.529∗∗∗ 0.685∗∗∗ 0.18 1740 0.580
[0.075] [0.072] [0.052] [0.17] [0.193] [0.146]

Verizon −0.113 −0.110∗∗ −0.002 0.574∗∗∗ 0.464∗∗∗ 0.183∗∗ 1740 0.462
[0.175] [0.056] [0.061] [0.187] [0.087] [0.084]

Visa −0.073 −0.148∗∗ −0.061 0.597∗∗∗ 0.436∗∗∗ 0.425∗∗∗ 1740 0.532
[0.079] [0.059] [0.054] [0.146] [0.125] [0.114]

Walmart −0.186 −0.242∗∗∗ 0.04 0.644∗∗∗ 0.622∗∗∗ 0.163∗∗ 1740 0.481
[0.14] [0.069] [0.051] [0.168] [0.101] [0.075]
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4.2 Out-of-Sample Results

After fitting the models on the training data, we use the test data set to assess the out-of

sample performance of the models. Table 3 presents the RMSEs evaluated on the test

data set for the CNN-RV, the benchmark HAR (HAR), the combined model (CNN-HAR)

as well as for the individual CNN predictors based on daily (CNN (d)), weekly (CNN (w)),

and monthly (CNN (m)) intraday return images. Remarkably, for 23 out of our 28 sample

stocks, we observe the lowest RMSE for the CNN-RV model. The CNN-RV model thereby

not only beats the benchmark HAR model with respect to its forecasting performance,

but for most stocks also the combined CNN-HAR model. The latter beats the HAR model

for 20 out of 28 stocks. The HAR model shows the lowest RMSE for only 3 out of 28

sample stocks.5

Comparing the CNN-RV results with the individual CNN predictors based on daily, weekly

and monthly images (Columns 1-3 in table 3) only, reveals that their combination within

a HAR-like linear framework further decreases the RMSE. This might be interpreted as

evidence for the validity of the heterogeneous market hypothesis, since even the monthly

images, which depict the return series at a 22-minute frequency, cannot encompass all the

information included within the daily and weekly images, leading to a further prediction

improvement when combining them within a linear model, i.e. within the CNN-RV.

These results might also indicate different dynamics with respect to daily, weekly, and

monthly input images and the next day’s RV predictions, which again supports the idea of

training three separate CNNs for each time frame and subsequently combine the resulting

predictors.

5Forecasting performances relying on the mean absolute error (MAE) are given in table A.4 in the
appendix and show similar results. For the majority of stocks (21 out of 28) the CNN-RV model exhibits
the lowest MAE, followed by the HAR model, which gives the highest predicting accuracy for 7 out of 28
stocks.
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Table 3: Out-of-Sample Forecasting Performance based on the RMSE.
The table reports the RMSE of each model’s day-ahead forecasts based on the test set. The first three
columns present the results of the individual CNNs by themselves. The fourth column presents the RMSE
of the CNN-RV model described in equation 2. The fifth denotes the RMSE of the benchmark HAR in
equation 1 and the last column the RMSE of the combined CNN-HAR model as given in equation 3.

Stock RMSE

CNN(d) CNN(w) CNN(m) CNN-RV HAR CNN-HAR

American Express 23.042 22.584 24.439 21.977 22.835 22.110

Amgen 37.711 35.551 37.864 35.712 36.308 36.171

Apple 33.548 32.677 34.520 32.406 33.167 32.408

Boeing 40.195 39.162 40.015 37.285 38.440 37.388

Caterpillar 35.526 32.712 34.225 31.238 32.199 31.480

Chevron 22.586 22.157 24.339 21.624 21.421 22.276

Cisco Systems 28.799 28.174 30.656 27.429 28.697 27.863

Coca Cola 17.781 16.765 18.166 16.424 16.835 16.828

Disney 26.975 27.148 28.378 26.117 25.950 26.701

Goldman Sachs 27.271 25.808 28.168 24.872 24.922 25.178

Home Depot 26.551 25.635 28.354 25.035 25.597 25.172

Honeywell 23.519 23.574 23.752 22.497 22.985 22.626

IBM 28.078 28.344 30.675 27.229 28.900 27.280

Intel 31.476 29.885 30.941 29.587 29.598 29.832

JPMorgan 22.579 22.711 24.275 21.890 22.208 22.011

Johnson Johnson 32.657 32.523 33.615 31.924 32.372 32.246

MMM 29.940 28.846 30.086 28.570 29.191 28.904

McDonalds 21.260 20.830 22.036 20.186 20.501 20.447

Merck 25.411 25.275 25.816 24.367 24.218 24.561

Microsoft 29.763 29.436 31.000 28.086 28.446 28.849

Nike 26.477 25.737 27.813 25.047 25.591 25.425

Procter Gamble 19.334 18.902 20.411 23.595 21.601 24.519

Salesforce 41.178 37.582 40.204 34.045 35.833 34.262

Travelers 20.448 19.908 21.360 19.121 19.424 19.583

UnitedHealth 32.552 33.160 35.471 31.100 32.874 31.728

Verizon 20.020 20.535 22.005 19.186 19.871 19.285

Visa 24.857 24.494 26.249 23.590 24.907 23.927

Walmart 21.825 21.493 22.899 20.731 21.525 20.822

Average 27.549 26.843 28.490 26.103 26.658 26.424
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To assess the statistical significance of the difference in prediction accuracy, we conducted

Diebold-Mariano tests (Diebold and Mariano, 2002) to test the null hypothesis of no

difference in the prediction accuracy between the CNN-RV and the HAR model (see table

A.5 in the appendix). The results indicate that based on the RMSE the CNN-RV shows a

significantly higher prediction accuracy for 10 (4) out of 28 sample stocks at the 10% (5%)

significance level. Relying on the MAE yields similar test results (see table A.5 in the

appendix). Figure 5 offers a visualization of the out-of-sample prediction performances

for the CNN-RV and CNN-HAR models using the HAR model as a benchmark (inspired

by a similar visualisation in Christensen et al. (2021)).

Figure 5: Out-of-Sample Forecasting Performance
The figure reports the RMSE of day-ahead out-of-sample forecasts of the CNN-RV and CNN-HAR models
relative to the HAR model’s RMSE, i.e. values larger then 1 imply a higher RMSE and worse performance
compared to the HAR model and vice versa. Boxplots display the interquartile range for each model.
The central mark is the median, while the mean observation is marked with a circle. The whiskers give
the outermost observations for that model.
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Figure 5 presents the out-of-sample RMSEs for the CNN-HAR and CNN-RV models

in comparison to the HAR model’s RMSE. Therefore, values below one represent an

improvement in out-of-sample forecasting performance above the benchmark HAR model.

Furthermore, it displays boxplots showing the interquartile range for each model. The

central mark denotes the median, while the mean observation is marked with a circle.

The whiskers give the outermost observations for that model. Figure 5 again highlights

the gain in prediction accuracy of the CNN-RV model over the benchmark HAR model.

It also depicts the overall higher prediction accuracy of the CNN-RV model compared to

the combined CNN-HAR approach.

Overall, the results suggest that both, the CNN and the HAR-RV components, contribute

significantly to explaining variation in RV. Of course, the inclusion of additional regressors

will always improve in-sample fit. However, a detailed analysis of the CNN and HAR-RV

components suggests that both contribute significantly to increased model fit. However,

for out-of-sample forecasting performance, our results indicate that the CNN-RV model

is superior to the CNN-HAR model. This finding suggests that the capacity of deep

learning methods to identify intricate patterns when mapping intraday returns to the next

day’s daily RV results in more accurate forecasts. At the same time, the significance of

the individual CNN predictors, i.e. based on daily, weekly and monthly intraday data,

highlights the importance of the standard HAR structure when predicting RV.

Combining deep learning predictors based on a cascading structure as underlying the

HAR model, provides an example of how deep learning methods can be integrated into

traditional frameworks. The model represents one potential trade-off between model flexi-

bility, leading to prediction accuracy, while retaining some interpretability of individual

components.
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5 Conclusion

We analyze whether merging the worlds of classical volatility forecasting and modern deep

learning techniques produces synergies that allow improvement upon existing models. We

implement a CNN-RV model, which consists of predictors of daily realized volatility based

on convolutional neural nets. We construct three separate CNNs trained on coloured

images of intraday returns over the previous day, week, and month to predict day-ahead

RV. Although there is no in-depth theoretical justification for the CNN-based model, one

could adapt the interpretation of the Heterogeneous Market Hypothesis. Rather than

assuming that the partial volatilities at each level of the cascade underlying the HAR

model follow an AR(1) process of past RV (Corsi, 2009), volatilities are assumed to follow

any arbitrary, linear, or non-linear process. The utilization of CNNs as non-linear function

approximators can be understood in this light. Moreover, CNNs can leverage the entire

image-transformed intraday return series as a direct input into a volatility forecasting

model to extract predictive, non-linear patterns.

Using minutely return data on 28 stocks in the DJIA from 2010 until 2019, we demonstrate

that our proposed model surpasses the baseline HAR model in explaining variation in RV

and out-of-sample forecasting performance. However, it is worth noting that there are

several cases where the CNN and standard HAR components at the same aggregation

period are individually significant. This finding demonstrates that the CNNs effectively

capture predictive patterns in intraday returns that remain undetected by the HAR model,

providing significant additional information towards explaining variation in day-ahead

RV. Therefore, our findings highlight the potential of incorporating deep learning features
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into more traditional forecasting approaches.

Further research could thus pursue various avenues. Firstly, configurations of the model

which allow for multi-step-ahead forecasting should be devised. Secondly, a more systematic

approach could involve experimenting with various image designs, NN architectures, and

hybridization of various classical approaches. Such an approach could yield significant

improvements in model performance. Lastly, further research should investigate whether

the improved performance of the model above the HAR baseline also translates into

economic benefits, for example by evaluating an investments strategy based on the models

predictions or risk measures such as Value at Risk.
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Appendix

A The HAR Model

Assume that the dynamics of the log price of a stock evolves according to the stochastic

differential equation given by

dp(t) = µ(t)dt+ σ(t)dW (t)

µ(t) denotes the drift, W (t) is a standard Brownian motion, and σ(t) gives the spot

volatility, which is assumed to be independent of W (t).

Following Corsi (2009) the square root of the daily integrated variance, which is given by

IVt =

∫ t

t−1

σ2(ω)dω

can be estimated by realized volatility given by the square root of the sum of equally

spaced returns over a day

RVt =

√√√√N−1∑
n=0

r2t,n

where rt,n = p(t− n∆)− p(t− (n+ 1)∆) with ∆ = 1/N .

Corsi (2009) then proposes the so-called heterogeneous autoregressive model (HAR) model

for forecasting RVt. The model has a simple autoregressive structure and includes averages

of daily realized volatilities over different time horizons. For an aggregation period j ∈ N,

we denote the respective average of daily realized volatilities by
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RV
(j)
t =

1

j

j−1∑
n=0

RVt−n

Motivated by the Heterogeneous Market Hypothesis (Müller et al., 1993, Corsi, 2009),

the HAR model is an additive cascade model of different partial volatility components.

These volatility components are presumed to be generated by the heterogeneous actions of

market actors, originating from differences in their time horizons. The model differentiates

between short-term traders who operate daily, medium-term traders operating weekly,

and long-term actors who adjust their positions monthly. Observing the interrelations

between volatility at different time horizons reveals that volatility over longer intervals

substantially influences volatility over shorter intervals and vice versa. From this, Corsi

(2009) models the actions of short-term traders as dependent on their expectations of

longer-term volatility. On the other hand, short-term variations in returns do not affect

the trading strategies of longer-term actors. Therefore, Corsi (2009) models the three

levels of the volatility cascade as:

σ̃
(m)
t+1m = c(m) + ϕ(m)RV

(m)
t + ω̃

(m)
t+1m′

σ̃
(w)
t+1w = c(w) + ϕ(w)RV

(w)
t + γ(w)Et

[
σ̃
(m)
t+1m

]
+ ω̃

(w)
t+1w′

σ̃
(d)
t+1d = c(d) + ϕ(d)RV

(d)
t + γ(d)Et

[
σ̃
(w)
t+1w

]
+ ω̃

(d)
t+1d′

(A.1)

where σ̃
(d)
t+1d, σ̃

(w)
t+1w, and σ̃

(m)
t+1m are the latent partial volatilities generated by the daily,

weekly, and monthly market components. Furthermore, RV
(d)
t , RV

(w)
t , and RV

(m)
t are,

respectively, the daily, weekly, and monthly (ex-post) observed realized volatilities. These

multiperiod realized volatilities are defined as simple averages of the daily quantities.

The weekly component averages the past 5 and the monthly component averages the
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past 22 trading days. Lastly, the volatility innovations ω̃
(d)
t+1d′ , ω̃

(w)
t+1w′ and ω̃

(m)
t+1m′ are

contemporaneously and serially independent zero-mean nuisance variates. This notation,

again, reveals the underlying assumption of Corsi’s HAR model that each volatility

component in the cascade is determined by a type of market participant who forms his

expectations of next-period volatility based on his observation of current RV and their

expectation for the longer-term volatility. For the longest, that is, the monthly time scale,

only the AR(1) structure remains. Relying on realized volatility (RV) based on squared

intraday returns for daily volatility estimation, the weekly and monthly components are

derived on weekly and monthly daily RV averages, respectively, resulting in the HAR-RV

specification: 6

RV
(d)
t+1d = c+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ωt+1d (A.2)

This final HAR model has a simple autoregressive structure in the RV which can be

estimated via Ordinary Least Squares (OLS).

6As described in Corsi (2009), recalling that the daily partial volatility component is equal to the

integrated volatility yields IV
(d)
t+1d = c+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ω̃t+1d. Further, notice

that ex post IV
(d)
t+1d can be written as IV

(d)
t+1d = RV

(d)
t+1d + ω

(d)
t+1d′ . Substituting this into the equation

above yields the final representation of the cascade model.
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Additional Tables
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Table A.1: Final Layer Tuning Results

Hyperparameters CNN model

Dropout Units CNN(d) CNN(w) CNN(m)

0.10 250 1316.00 1299.49 1362.16

0.10 500 1335.00 1335.08 1392.51

0.10 1000 1299.88 1323.17 1396.11

0.10 5000 1307.63 1314.62 1361.54

0.10 10000 1282.01 1350.78 1399.80

0.25 250 1293.95 1349.51 1374.38

0.25 500 1295.68 1346.92 1390.03

0.25 1000 1288.77 1324.46 1394.87

0.25 5000 1295.17 1335.65 1402.66

0.25 10000 1307.13 1315.79 1401.99

0.50 250 1286.22 1320.14 1365.91

0.50 500 1296.64 1311.84 1396.45

0.50 1000 1283.03 1317.95 1373.00

0.50 5000 1287.96 1315.72 1400.89

0.50 10000 1294.10 1314.36 1401.27

0.75 250 1273.45 1314.76 1386.41

0.75 500 1271.89 1301.87 1360.09

0.75 1000 1268.75 1305.13 1383.32

0.75 5000 1285.88 1315.91 1382.05

0.75 10000 1279.79 1290.22 1399.06

0.90 250 1293.47 1300.03 1425.79

0.90 500 1282.63 1296.27 1386.46

0.90 1000 1288.70 1288.37 1375.20

0.90 5000 1274.22 1269.58 1440.66

0.90 10000 1286.48 1300.21 1393.15

Note: The table reports the minimum validation MSE per
hyperparameter combination for each CNN model when
evaluated on the validation set. To reduce tuning time,
we employ an early stopping algorithm with a patience
of four.

31



Table A.2: Average Validation RMSE per Epoch

Epoch CNN(d) CNN(w) CNN(m)

1 42.235 40.832 44.312

2 41.544 40.672 42.297

3 37.079 37.547 40.389

4 36.928 37.090 38.472

5 35.947 36.489 38.620

6 36.150 36.575 37.986

7 35.787 36.642 37.661

8 36.102 36.689 37.764

9 35.901 36.819 37.558

10 36.307 36.617 37.975

11 36.026 36.776 37.536

12 36.029 36.601 37.627

13 36.303 36.654 37.711

14 35.998 36.522 37.519

15 36.137 36.570 37.529

16 36.182 36.549 37.728

17 36.197 36.673 37.569

18 36.237 36.514 37.729

19 36.318 36.514 37.942

20 36.399 36.929 37.727

Note: The table reports the average RMSE
of each CNN ensemble until training epoch 20
when evaluated on the validation set.

Table A.3: Correlation Matrix

1 2 3 4 5 6

1. RV
(d)
i,t 1.000

2. RV
(w)
i,t 0.814 1.000

3. RV
(m)
i,t 0.677 0.844 1.000

4. CNN(d)
[
I
(d)
i,t

]
0.900 0.838 0.737 1.000

5. CNN(w)
[
I
(w)
i,t

]
0.853 0.913 0.806 0.939 1.000

6. CNN(m)
[
I
(m)
i,t

]
0.817 0.890 0.870 0.892 0.941 1.000

Note: The table displays the pearson correlation coefficients be-
tween the listed variables. The coefficients were calculated on the
entire sample.
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Table A.4: Out-of-Sample Forecasting Performance based on the MAE

Stock MAE

CNN(d) CNN(w) CNN(m) CNN HAR CNN-HAR

American Express 16.496 16.051 17.939 15.477 16.192 15.689

Amgen 21.335 20.843 21.731 20.570 20.778 20.771

Apple 22.724 23.006 24.805 22.342 23.521 23.021

Boeing 27.390 26.877 27.045 26.144 26.639 26.228

Caterpillar 23.905 22.267 22.739 21.884 22.255 22.154

Chevron 15.755 16.227 18.187 15.677 15.333 16.209

Cisco Systems 19.585 19.778 21.700 19.374 20.261 20.103

Coca Cola 12.021 11.608 12.438 11.097 11.389 11.532

Disney 18.587 18.967 19.634 18.209 17.932 18.801

Goldman Sachs 18.936 18.511 19.995 18.130 17.994 18.492

Home Depot 18.060 17.507 19.242 17.257 17.478 17.324

Honeywell 16.843 17.268 18.041 16.609 16.566 16.907

IBM 17.314 17.730 19.948 16.561 17.669 16.781

Intel 21.931 21.178 21.767 21.018 21.178 21.427

JPMorgan 16.276 16.704 17.833 16.045 16.328 16.226

Johnson Johnson 17.204 17.620 19.289 16.734 16.695 16.950

MMM 19.451 19.492 20.469 19.385 19.127 19.736

McDonalds 13.076 13.518 14.437 12.547 12.957 12.643

Merck 16.550 16.385 17.335 15.734 15.692 16.008

Microsoft 20.698 20.527 22.525 20.225 20.684 21.003

Nike 17.802 17.834 18.963 17.425 17.479 18.129

Procter Gamble 13.351 13.451 14.561 17.289 14.464 18.016

Salesforce 27.767 25.234 26.557 23.685 26.799 23.797

Travelers 13.990 13.891 14.451 13.137 13.365 13.386

UnitedHealth 20.601 20.021 20.660 19.755 21.253 20.120

Verizon 13.383 14.328 15.545 13.101 13.483 13.285

Visa 17.501 17.796 19.406 17.343 18.650 17.852

Walmart 14.089 14.166 14.944 13.222 13.721 13.360

Average 27.549 26.843 28.490 26.103 26.658 26.424

Note: The table reports the MAE of each model’s day-ahead forecasts in the test set. The
first three columns present the results of the individual CNNs by themselves. The fourth column
presents the MAE of the CNN-RV model described in equation 2. The fifth denotes the MAE
of the benchmark HAR in equation 1 and the last column the MAE of the combined CNN-HAR
model as given in equation ??.

33



Table A.5: Diebold Mariano Tests Results

Stock RMSE MAE

test statistic p-value test statistic p-value

American Express −1.863 0.063 −2.209 0.028
Amgen −0.988 0.324 −0.455 0.650
Apple −0.942 0.347 −1.913 0.057
Boeing −1.847 0.066 −1.104 0.270
Caterpillar −1.833 0.068 −0.878 0.380
Chevron 0.474 0.636 1.104 0.270
Cisco Systems −1.937 0.053 −1.904 0.058
Coca Cola −1.005 0.315 −1.067 0.286
Disney 0.336 0.737 0.746 0.456
Goldman Sachs −0.091 0.928 0.338 0.736
Home Depot −1.293 0.197 −0.727 0.467
Honeywell −0.898 0.370 0.143 0.887
IBM −2.387 0.018 −2.729 0.007
Intel −0.022 0.983 −0.379 0.705
JPMorgan −0.688 0.492 −0.823 0.411
Johnson Johnson −0.611 0.542 0.098 0.922
MMM −1.006 0.315 0.557 0.578
McDonalds −1.164 0.245 −1.705 0.089
Merck 0.237 0.813 0.110 0.912
Microsoft −0.576 0.565 −1.342 0.180
Nike −1.189 0.235 −0.146 0.884
Procter Gamble 1.296 0.196 3.076 0.002
Salesforce −2.243 0.026 −4.439 0.000
Travelers −0.932 0.352 −0.855 0.393
UnitedHealth −1.991 0.047 −2.347 0.019
Verizon −1.859 0.064 −1.298 0.195
Visa −1.686 0.093 −2.684 0.008
Walmart −2.071 0.039 −1.841 0.066

Note: The table displays Diebold Mariano test statistics and p-
value based on the root mean squared errors (RMSE) as well as
the mean absolute error (MAE).
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