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Abstract

Bond yields can be decomposed into two unobservable components: the ex-
pected sequence of short-term rates and term premia. The standard literature
Affine Macro Term Structure literature achieves the decomposition of yields
by estimating a common factor structure for yields and excess returns. A new
model in which yields are drifting, sharing a common stochastic trend driven by
the drift in short-term rates and excess returns are stationary, as the compen-
sation for risk is driven by the cycles in yields produces much better forecasts
of the dynamics of US rates at all maturities and, consequently, different and
stationary dynamics for the term premia.
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1 Introduction

The dynamics of nominal government bond yields at different maturities plays a cen-

tral role in shaping the response of the real economy to monetary and fiscal policy

interventions. Yields can be decomposed into two unobservable components: the

sequence of expected one-period rates and the term-premia (Campbell and Shiller,

1991; Duffee, 2002). The first component reflects the future expected path of mon-

etary policy rates, while the second reflects both macro fundamentals, including the

prospects for growth, inflation and government debt dynamics, and the investors’

attitude toward risk. Policymakers are fully aware that the market-based financing

conditions that matters for the control of the business cycle and inflation depend on

both components of yields. Fluctuations in term premia are considered as important

as the market perception of the future path of interest rates (Schnabel, 2023), and

they are also used to evaluate the macroeconomic implications of monetary policy

(Schnabel, 2022).

Term structure models are helpful in that they allow the identification of the

two components by forecasting the expected path of interest rates and by imposing

consistency with no-arbitrage restrictions for the derived term premia at different

maturities. The data tell us that yields are drifting, but excess returns are cyclical.1

In standard Affine Macro Term Structure (AMTS) models a few factors, modelled

by a Vector Autoregressive Process, are the common drivers of the dynamics of both

the expected path of future one-period rates and the term premia. As yields drift,

1Although, there is evidence that over a 700 hundred year horizon yields are stationary, (Rogoff
et al., 2022), the data tell us that over a horizon of up fifty years (and especially the last fifty years)
bond yields are drifting, while returns obtained by holding for one-quarter bonds at any maturity
in excess of the return of the three-month rates are stationary.
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factors exhibit a high level of persistence. When these factors are modelled using

a Vector Autoregression (VAR), the forecast of future one-period rates gradually

converges to the mean of the sample used for estimation. Standard AMTS models

tend to generate term premia that are a-cyclical and parallel to the secular trend in

yields. These features of the term-premia are a direct consequence of the specification

strategy for the dynamics of both yields and excess-returns that adopts a common

autoregressive factor structure for them.

Our contribution is to build a model consistent with the empirical evidence which

tells that yields are non-stationary and driven by a common trend while excess returns

are stationary. Hence, we propose a new AMTS model in which yields drift, sharing

a common stochastic trend driven by the drift in short-term (monetary policy) rates

and excess returns are stationary as the compensation for risk depends on the cycle

in yields.

Following Favero et al. (2016), Del Negro et al. (2019), Lunsford and West (2019),

and Favero et al. (2022), we decompose short-term rates in a trend component and a

cycle component. The trend component is driven by the very long-run forecast of the

central bank for real short-term rates and by the response of monetary policy to the

very long-run forecast for inflation. The very long-run forecast for the real rates is

labelled in the literature as the natural rate of interest. We model the natural rate as

function of the equilibrium growth rate of output in the economy and the age struc-

ture of population, a time-varying determinant of household preferences. We provide

statistical evidence that these variables capture successfully the trend in one-period

rates and that the trend in yields at all maturities is successfully modelled by the av-

erage of the trend in one-period rates over the residual life of the different bonds. The
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current and future trend component of the short-term rates are constructedGiven the

availability of long-run forecast for the growth rate of the economy, the age structure

of population, and long-term expected inflation.

A factor model is then built for the cyclical components of yields, where the

dynamics of holding period excess returns and term-premia is consistent with no-

arbitrage restrictions. We keep a VAR specification for the identified factors, but,

thanks to the trend-and-cycle decomposition, it is now a VAR on stationary variables.

Predictions for short-term rates at any future dates are then derived by combining the

predictions for the trends (not based on the VAR for factors and therefore forward-

looking) and the predictions for the cyclical components (based on the VAR for factors

and, therefore, backward-looking). Bonds at any maturities are then priced via pricing

equations that imposes no-arbitrage restrictions. Term premia are derived as the

difference of bond yields obtained when the price of risk is estimated in the affine

specification and when the price of risk is restricted to zero. Bond yields are non-

stationary, but their trend is the average trend of short-term rates over the maturities

of the bond and term-premia are driven by the stationary state variables. However,

we do not use the trend derived from the ATMS to de-trend yields. We assume that

all yields have a common stochastic trend that coincides with the one period yield

trend and, therefore, use it to de-trend the whole yield curve.

The specification strategy dominates standard models in term of forecasting per-

formance for returns and yields at any maturity and leads to a very different mea-

surement of term premia.

By shedding light on the relationships between the two components and the trends

and cycles in yields, our ATSMmodel contributes to advancing theoretical frameworks
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and provides a robust foundation for more precise forecasting and effective policy

simulation analysis.

The rest of the paper is organized as follows: Section 2 has a first look at the

data, Section 3 places our contribution to the literature, Section 4 proposes the new

specification for ATSMmodels, Section 5 illustrates and discusses the empirical results

and Section 6 concludes.

2 A First Look at the Data

The quarterly US data from the last fourty years on the term structure of zero-coupon

Government bonds show the presence of a common drift in yields to maturity which

disappears for the 1-period excess holding returns for bonds at all maturities.

Figure 1 reports quarterly observations of the Treasury yield curve estimates of

the Federal Reserve Board made available by Gürkaynak et al. (2007) over the sample

period 1980-2023. A quick look at the shape of the figures shows that every bond

yield shows the presence of a common drift. We chose the quarter to be the unit for

periods. Hence, we take the three-month Treasury Bills to be our 1-period bond.

Figure 2 reports the observed 1-quarter returns of holding bonds at all maturities

from 5 to 15 years in excess over the return on 1-period bond. Contrary to the previous

case, no trend is evident from the data. The stationarity of one-period excess holding

returns has two immediate implications. First, term premia at all maturities, i.e., the

average of expected one-period excess holding returns over the residual maturity of

bonds, have to be stationary as well. Second, the common drift component in the

term structure is driven by the trend in the 1-period bond. Consequently, it vanishes
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when considering the spread on the one-period bond.

Figure 1. Quarterly observations on the time-series of (an-
nualised) yields from the 3-month to the 15-year maturity.
We use the same colour palette for all maturities (blue).
Darkest blue indicates the highest maturity, i.e., 15 years.

Figure 2. Quarterly observations on the time series of 1-
quarter holding period returns for bonds at maturities be-
tween 5 and 15 years in excess of the return on three-month
Treasury Bills
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3 The Literature

Macro-finance models of the term structure mostly belong to the class of Affine Term

Structure Models (Diebold et al., 2005). These models are originally designed for

stationary processes in yields, as the yield dynamics is modelled as a vector autore-

gression (VAR) of a set of factors extracted from the term structure partially, like Ang

and Piazzesi (2003), or totally, like Kim and Wright (2005) and Adrian et al. (2015);

and VAR models are used for forecasting stationary processes. Importantly, the fac-

tor dynamics also drives the price of risk and holding period returns. The presence

of a stochastic trend in yields has several negative consequences for this approach.

VAR models are inappropriate for long-run forecasting of non-stationary data, bi-

ased forecast of the dynamics of short-term rates2 do affect the measurement of term

premia. The non-stationarity of factors might results in non-stationarity of term pre-

mia, which is counterfactual with respect to the empirical evidence of stationarity of

holding period (excess) returns.

Several papers have documented the existence of a slow-moving component com-

mon to the entire term structure (see, for example, Bakshi and Chen, 1994 and Fama,

2006). An important and growing literature has modeled Treasury yields using shift-

ing endpoints (Kozicki and Tinsley, 2001), near-cointegration (Jardet et al., 2013) or

long memory (Golinski and Zaffaroni, 2016), vector autoregressive models (VAR) with

common trends (Del Negro et al., 2019), slow-moving averages of inflation (Cieslak

and Povala, 2015) and consumption (Jørgensen, 2018), or an (unobserved) stochastic

trend common across Treasury yields (Bauer and Rudebusch, 2020).

2It has also been recognised that OLS estimates of near-unit roots are notoriously biased down-
ward, thus overestimating the amount of mean reversion in yields.
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Interestingly, Bauer and Rudebusch (2020), in their model that allows for a trend

in yields and returns, note that the loading of returns on the unobserved common

stochastic trend is an order of magnitude smaller than the loading of prices and

they also report that predictive regressions of returns on de-trended yields and trend

proxies lead to coefficients on the trend that are not significantly different from zero.

Bauer et al. (2014) observe that, as a consequence of the very high persistence in

yields, term premia implied by maximum likelihood estimates of affine term structure

models are misleading because of small-sample bias. They show that ATSM models,

such as that estimated by Wright (2011), tend to produce cyclical risk premium

estimates, often just parallel to the secular trend in interest rates, while bias corrected

term-premia show strong (counter-)cyclical behaviour. Christensen and Rudebusch

(2012) address the problem of non-stationarity of yields by imposing a unit root in

the factor capturing the level of the term structure, showing that this restriction

produces a clear improvement in the forecasting performance of the model. Their

evidence illustrates that “standing still” (i.e. using random walk forecast) is better

than “moving in the wrong direction” (using VAR based forecast that affected by the

small-sample bias produce mean-reversion towards the wrong mean); in this paper we

consider the alternative of “moving in the right direction” (by identifying the drivers of

the stochastic trends in yields and using predictions on these variables for forecasting).

Campbell and Shiller (1987) have proposed a stationary representation of spreads and

changes in short-term rates, based on cointegration between short-term rates and

yields at any maturity, but their approach has never found its way in Affine Term

Structure models. The existence of a (1,−1) cointegrating vector between long-term

and short term rates, i.e. the stationarity of the spread, provides statistical evidence
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against the non-stationarity of the term premia and it does not justify a pattern of

term premia that reflects the secular trend in interest rates. Piazzesi et al. (2015)

use survey data on interest rate forecasts to construct subjective bond risk premia to

find that subjective premia are less volatile and not very cyclical. They explain this

evidence by pointing out that survey forecasts of interest rates are made as if both

the level and the slope of the yield curve are more persistent than under common

statistical models. Zhao (2020) and Feunou and Fontaine (2023) propose structural

models of trends and cycles in the term structure capable of explaining several features

of the data. However, these models rely on statistical trend-cycle decompositions

and do not relate the trend component of the yield curve to observable slow-moving

variables, such as the demographic structure of the population and potential output

growth, whose properties can be exploited for forecasting purposes.

4 An Affine Term Structure model with Trend

and Cycle in Monetary Policy Rates

Affine models of the term structure of interest rates are a popular way of determining

the term premia, that are derived as the difference between observed yields and the

model-based expectation of the future path of short rates3. The affine models typically

use state variables (latent factors) to model the shocks that drive the economy. The

key assumptions are: First, the pricing kernel is exponentially affine in the state

variables, whose dynamics is described by a VAR. Second, market prices of risk are

3In fact, the models also include a correction for convexity, which is empirically small and,
ironically, of second-order importance.
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affine in the state variables. Finally, the innovations to state variables and one-period

holding excess returns are jointly normal-distributed.

Using these assumptions, together with no-arbitrage restrictions, delivers gener-

ating processes for continuously compounded excess returns and continuously com-

pounded yields at any maturity that are a function of the state variables. Yields can

be decomposed into a term premium, a convexity correction, and a part reflecting

expectations for the one-period rate over the residual life of the bond. In the light

of the evidence reported in the introduction, this specification strategy suffers from

a clear shortcoming: the state variables have to capture the drift in the data, and

a VAR model is not the most appropriate specification for long-run projections of

the relevant variables if they are highly persistent. Indeed, long-run projections are

needed because pricing a long-dated bond with quarterly data will require to project

the three-month rates over an horizon equal to the maturity of the bond.

To deal with this problem, we propose to specify an Affine Term Structure model

with two sets of states variables: the trending ones and the stationary ones. The

trending variables will be related to slow moving components in the structure of the

economy and will not be predicted by a VAR. The VAR specification will then be

limited to the stationary state variables.

4.1 Detrending the Term Structure to model excess returns

The identification of the two sets of state variables is implemented starting from the

specification of the one-period nominal risk free rate r
(1)
t . The risk free rate can be

decomposed in a trend and a cycle. The trend, i.e. long-run risk free rate, is made

of two components: the natural rate of interest, r∗t , and a component that reflects
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long-term inflation expectations.

Laubach and Williams (2003) show that in the standard Ramsey model households

intertemporal optimization delivers a positive relationship between the natural rate of

interest and both the growth rate of output in the economy and household preferences.

This motivates the inclusion of (log) growth rate of potential output, ∆ypott , as a

variable explaining the trend. However, Jordà and Taylor (2019) and Mian et al.

(2021) illustrate that fluctuations in output growth (per capita) of the economy cannot

fully explain the drift in natural rate, therefore, other time-varying determinants of

the rate of time preference of the agents in the economy should be considered. On the

one hand, we follow Favero et al. (2016), Lunsford and West (2019), and Favero et al.

(2022), and consider the age structure of the population as the driver of changing

preferences, in particular MYt, the ratio of middle-aged (40-49) to young (20-29)

population. On the other hand, Gürkaynak et al. (2005) convincingly argue that

private agents views of long-run inflations are subject to fluctuations. In line with

this evidence we use the survey-based measure of long-run inflation expectations,

πLR
t , also considered in the Fed’s FRB/US model4 as the proxy for long-run inflation

expectations. This is a reasonable proxy under the assumption that the central bank

is credible. The yield’s cyclical part can thus be identified with the residual after

regressing the short rate on those three variables, ∆ypott , MYt, and πLR
t .

Once the trend and the cycle in the one-period rate are identified, the trend and

the cycle for yields at all maturities can be consistently derived. In fact, by using the

relationship between prices and yields to maturities and by applying no-arbitrage to

4Available at https://www.federalreserve.gov/econres/us-models-package.htm.
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zero-coupon bond we have:

p
(n)
t = −nr

(n)
t , (1)

rx
(n−1)
t+1 = p

(n−1)
t+1 − p

(n)
t − r

(1)
t , (2)

Et

[
rx

(n−1)
t+1

]
= ϕn

t,t+1, (3)

r
(1)
t = r

∗,(1)
t + u

(1)
t (4)

r
∗,(1)
t = γ1MYt + γ2∆ypott + γ3π

LR
t (5)

r
(n)
t = r

(1)
t +

n−1∑
i=1

(
1− i

n

)
Et

[
∆r

(1)
t+i

]
+

1

n

n−1∑
i=0

ϕn
t+i,t+i+1 (6)

r
(n)
t = r

∗,(1)
t + u

(n)
t (7)

u
(n)
t = u

(1)
t +

n−1∑
i=1

(
1− i

n

)
Et

[
∆r

(1)
t+i

]
+

1

n

n−1∑
i=0

ϕn
t+i,t+i+1 (8)

The model is naturally interpreted within a cointegration approach (Engle and Granger,

1987) to the stochastic drift in rates: if demographics, productivity and the inflation

target of the central bank successfully capture the trend in nominal rates, then u
(1)
t

should be stationary. Stationarity of u
(1)
t , paired with stationarity of the term pre-

mia5, implies that u
(n)
t are stationary. Note also that, in this framework, the stochastic

trends in yields at all maturities are all driven by the trend in one period rates.

Long-run forecast forMYt+i, ∆ypott+1, π
LR
t+i are readily available in that demographics

and potential output long-term forecast can be respectively downloaded from the

Bureau of Census and the Fred database, while credibility of the central bank implies

that long forecast for inflation cannot diverge from the CB target. Therefore, no VAR

5The term premium at time t and maturity n is given by 1
n

n−1∑
i=0

ϕn
t+i,t+i+1, which is the average

of the expected one-period risk-premia over the residual maturity of the bond
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is needed to obtain r
∗,(1)
t+i , as these forecasts can be derived directly by using (4) with

the appropriate scenario for the exogenous variables MYt+i, ∆ypott+1, π
LR
t+i.

Once the stochastic trend has been removed from yields (and, potentially, excess

returns), the general procedure consists of extrating the K factors from principal

components to the N cyclical components of the yield curve u
(j)
t , for j = 1, . . . , n,

which we stack into a T × N matrix, U. We denote these K factors as Xt ∈ RK ,

and they are the first K principal components of U. This procedure ensures the

stationarity of Xt to specify a VAR, i.e.,

Xt+1 = µ+ ΦXt + vt+1 (9)

vt+1| (Xs)
t
s=0 ∼ N (0,Σ), (10)

where µ ∈ RK , Φ ∈ RK×K and Σ ∈ RK×K . On the other hand, the variables in Xt

determine the market price of risk, λt, in the following affine form:

λt = Σ−1/2(λ0 + λ1Xt), (11)

The assumption of no-arbitrage implies that there exists a pricing kernel,Mt, such that:

P
(n)
t = Et

(
Mt+1P

(n−1)
t+1

)
, (12)

for every n > 0 and t ≥ 0, and where P
(n)
t = exp

[
−nr

(n)
t

]
is the price of a zero

coupon bond with maturity n. We are strictly following Adrian et al. (2015). Hence,
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we assume that the pricing kernel is exponentially affine, i.e.,

mt+1 = −r
(1)
t − 1

2
λT

t λt − λT

t Σ
−1/2vt+1, (13)

where r1t = − log
(
P

(1)
t

)
= −p

(1)
t is the continuously compounded risk-free rate, and

mt = logMt. The excess log returns are given by:

xr
(n−1)
t+1 = p

(n−1)
t+1 − p

(n)
t − r

(1)
t , , (14)

where p
(n)
t = logP

(n)
t . After some derivations using (13) and (12) (see Appendix A.1),

we arrive to

Et

(
xr

(n−1)
t+1

)
= covt

[
xr

(n−1)
t+1 , v′t+1Σ

−1/2λt

]
− 1

2
Vt

(
xr

(n−1)
t+1

)
, (15)

In the same fashion as Adrian et al. (2013), we can define β
(n−1)′

t as

β
(n−1)
t := Σ−1covt

(
xr

(n−1)
t+1 , vt+1

)
∈ RK . (16)

By substituting from (16) into (15) and using (11), we have:

Et

[
xr

(n−1
t+1

]
= λt · β(n−1)

t − 1

2
Vt

[
xr

(n)
t+1

]
, (17)

The unexpected excess return can be decomposed in a component that is correlated

with vt+1, and whose correlation vector coincides with β
(n−1)
t , and another component

which is conditionally orthogonal to vt, and which can be interpreted as the return
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pricing error:

xr
(n−1)
t+1 − Et

(
xr

(n−1)
t+1

)
= β

(n−1)
t · vt+1 + e

(n−1)
t+1 , (18)

Under the assumption that the return pricing error are i.i.d. with variance σ2 and

that βt is constant, the generating process for log excess returns becomes:

xr
(n−1)
t+1 = (λ0 + λ1Xt)

Tβ(n−1) − 1

2

((
β(n−1)

)T
Σβ(n−1) + σ2

)
+ vT

t+1β
(n−1) + ε

(n−1)
t+1 ,

(19)

and so it’s clear now that the (log) excess returns can be decomposed into the ex-

pected return (first term), a convexity correction (second term), and a return inno-

vation. This expression also allows us to see that the time-varying component of

expected excess returns is stationary and driven by the dynamics of the stationary

state variables. We can thus stack (19) across N maturities and T time-periods to

obtain the following matrix-form representation:

xr =
(
λ01

T

T×1 + λ1X
T

−
)T

B− 1

2

(
B∗vec (Σ) + σ21K×1

)
1T

T×1 +VTB+ E (20)

where 1l×m is a matrix of ones for each l,m ∈ N, and

1. xr ∈ RT×N .

2. λ0 ∈ RK , λ1 ∈ RK×K ,

3. X− = [X1 | X2 | · · · | XT−1]
T ∈ RT×K ,

4. B ∈ RK×N ,

5. B∗ = [vec (B1B
T
1 ) | · · · | vec (BnB

T
n)]

T ∈ RK2×N ,

6. V ∈ RT×K and E ∈ RT×N .
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4.2 Parameters’ Estimation

We proceed with the parameter estimation by extending the 3-step procedure pro-

posed by Adrian et al. (2013) to a 4-step procedure. All details can be found in the

Appendix A.2, but everything can be summarised to adapting the classical model to

the de-trended yield curve.

1. Construct the cyclical components of yields at all maturities by estimating a

(cointegrating) regression of the one-period rate as a function of predictable slow-

moving variables and use the available predictions on the drivers of the trend in one-

year yields to model the trend for yields at all maturities by taking the appropriate

average of the expected trends in the one-period rate as described in (??).

2. Construct the pricing factors, X, from principal component analysis (PCA) of

the cyclical components of yields derived in the first step, U. Estimate the equation

(9) using OLS, decomposing the pricing factors into predictable components and

factor innovations V̂ .

3. Regress excess returns on a constant, lagged pricing factors and contempora-

neous pricing factor innovations according to

xr = a1T×K1K×N + V̂b+X−c+ E (21)

4. We show in the Appendix A.2 that

a =
(
λ01

T

T×1

)T
B− 1

2

(
B∗vec (Σ) + σ21K×1

)
1T

T (22)

c = λT

1B (23)
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From these, market price of risk’s estimates are given by

λ̂0 =
(
B̂B̂

T
)−1

B̂

[
âT +

1

2
1T×1

(
B∗vec (Σ) + σ21N×1

)T]
, (24)

λ̂1 =
(
B̂B̂

T
)−1

B̂ĉT. (25)

4.3 Modelling Trending Yields

Bond prices at any maturity can be obtained by recursive forward substitution of

prices in (15), keeping in mind that the (log) price of all bonds at maturity is zero, i.e.,

p
(0)
t+n = 0. The cyclical component of the one-period bond r1t , i.e., u

(1)
t := r

(1)
t − r

∗,(1)
t ,

can be expressed as a linear function of the underlying factors, i.e.,

r
(1)
t = r

∗,(1)
t + δ0 + δ1 ·Xt + ε

(1)
t , (26)

p
(1)
t = −r

(1)
t , p

∗,(1)
t = −r

∗,(1)
t ,

where parameters δ̂0 and δ̂1 can be estimated by projecting the cycle u
(1)
t on the

stationary factors Xt, and · denotes the inner product.

On the other hand, No-A2rbitrage implies that bond prices depend linearly on a

trend component and on a stationary component6:

p
(n)
t = p

∗,(n)
t + An +XT

t Bn + ε
(n)
t , (27)

where pn,∗t captures the trend component of bond prices. The model also implies

6See Appendix A.3 for more details
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cross-equation restrictions on the parameters An, Bn and on the trend pn,∗t .

An = An−1 + (µ− λ0)
T Bn−1 +

1

2

(
BT

n−1ΣBn−1 + σ2
)
− δ0 (28)

Bn = (Φ− λ1)
T Bn−1 − δ1 (29)

p
(n),∗
t = p

∗,(n−1)
t+1 − r

∗,(1)
t (30)

In this specification, trends affect yields but excess returns are driven exclusively

by stationary variables. The main innovation in our proposal is that the vector Xt is

extracted from the de-trended term structure and therefore the drivers of the excess-

returns are the factors extracted from the cyclical components of the yield curve. Note

that our specification imposes on the dynamics of de-trended bond prices exactly the

same restrictions that a standard model imposes on the dynamics of bond prices.

Hence, the comparison of the output of our model with that of a comparable ATSM

model is immediate. In the case of a standard ATSM, the same VAR structure that

we use for factors extracted from the cyclical components of yields is adopted directly

for factors extracted from yields, without de-trending them. In this specification,

r
(1)
t = δ0 + δ1 ·XACM

t + ϵ
(1)
t , (31)

p
(n)
t = Cn +

(
XACM

t

)T
Dn + ϵ

(n)
t , (32)

where the recursive restrictions apply to Cn, and Dn. Basically, everything is the

same but the trendy terms are drifting prices and yields. Hence, in this specification

yields (trendy) and excess returns (stationary) are driven by the same set of state

variables, XACM
t (Adrian et al., 2013).
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4.4 Model Simulation, Forecasting and Term Premia

After the estimation is completed, we have the following model:

r
(1)
t = r

∗,(1)
t + u

(1)
t (33)

r
∗,(1)
t = γ1MYt + γ2∆ypott + γ3π

LR
t (34)

p
(n)
t = p

∗,(n)
t + An +BT

nXt + ε
(n)
t , (35)

Xt = µ+ ΦXt−1 + vt+1 (36)

r
(n)
t = − 1

n
p
(n)
t (37)

in which the factors Xt are extracted from the cyclical components of yields, un
t , after

the completion of the first stage of estimation. The model fit can be readily assessed,

by comparing actual data with fitted data from the model, model forecasts are also

naturally constructed using the factor structure. Finally, model simulation in two

scenarios, a baseline with all parameters set are their fitted values and an alternative

one in which the market price of risk is set to zero, i.e. λ0 = λ1 = 0, allows to

compute term premia as the differences between the model implied yields and the

risk neutral yields.

The performance of our model in terms of fit, forecast and the properties of the

derived term premia can be compared with that of a standard ATSM model:

p
(n)
t = Cn +

(
XACM

t

)T
Dn + ε

(n)
t , (38)

XACM
t = µ+ ΦXACM

t−1 + vt+1, (39)

in which estimation is implemented in three steps and the factors XACM
t are extracted

18



directly from the yield curve (i.e., not detrended).

5 Empirical Results

Estimation and simulation7 is performed by using the zero coupon yields provided by

the FED8 (Gürkaynak et al., 2007), data on MYt, the ratio of middle-aged (40-49)

to young (20-29) obtained from the Bureau of Census, the survey-based measure of

long-run inflation expectations, used in the Fed’s FRB/US model9 and the measure

of potential Gross Domestic Product available from the FRED database.10 Quarterly

data over the period 1980:1-2023:2 are considered. In this section, we shall report

evidence based on the comparison between the simulation of our model estimated in

four steps, which we label as FF, and a standard ATS model estimated in three steps,

which we label as ACM.

5.1 Detrending Yields

The trend in the one-period (three-month) rate is captured by projecting it on the

proxy for the age structure of the population, potential output growth and the survey-

based measure of long-run inflation expectations. The results, reported in Table 1,

show that the estimated model produces stationary residuals, as witnessed by the

reported value of the Augmented-Dickey Fuller (ADF) test, with estimated coefficients

on the drivers of the drift on short-term rates in line with previous studies Favero and

7A full replication package in R is available from the authors’ website
8https://www.federalreserve.gov/econres/feds/the-us-treasury-yield-curve-1961-to-the-

present.htm
9https://www.federalreserve.gov/econres/us-models-package.htm.

10https://fred.stlouisfed.org/series/GDPPOT.
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Fernandez-Fuertes (2023), Bauer and Rudebusch (2020), with a negative coefficients

on MY capturing the effects of the age structure of the population on the supply of

savings, and positive, and slightly larger than one, coefficients on potential output

growth and long-run inflation expectations.

Table 1. Modelling the Trend in three-month yields

Dependent variable:

r
(1)
t

MYt −0.037∗∗∗

(0.004)

∆ypott 1.418∗∗∗

(0.192)

πLR
t 1.315∗∗∗

(0.090)

Observations 174
Adjusted R2 0.907
ADF test on residuals -4.66∗∗∗

Residual Std. Error 0.017 (df = 171)
F Statistic 567.984∗∗∗ (df = 3; 171)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Given the trend component on one-period rates we derive the trend components

for yields at any maturity as specified in Section 4. Figure 3 illustrates our results

for the 3-month and the 10-year yields. Note that the cyclical components of yields

contain information on the term-premia, therefore we expect them to fluctuate around

a level different from zero and different across different maturities.
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Figure 3. Trend Components

(a) Three month yield time series against its trend.

(b) Ten year yield time series against its trend.
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5.2 The VAR in factors

The second step in the approach we follow is the extraction of principal components

from detrended yields and the specification of a VAR to model their dynamics.

Following the specification choice path of Adrian et al. (2013), we consider as

factors the first five principal components of a term structure of sixty cyclical com-

ponents of yields with maturities from three-month (one quarter) to 15-year (sixty

quarters),so we have , N = 60. Figure 4 illustrates the time series of these factors and

compares them with those of the equivalent factors extracted from the term structure

of yields with maturities from three-month to 15-year. The graphical evidence clearly

hints at the presence of a drift in at least one of the factors estimated in the standard

ACM approach, while the FF framework seems successful in removing it.
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Figure 4. Principal Components

(a) ACM

(b) FF
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Indeed, if we look at the two alternative VAR specifications for the five factors ,

we see that there exists a near unit-root in the VAR associated to the ACM model

in which there’s no correction for potential trends, which is not present in the VAR

specification for the five PC extracted from detrended yields in the FF model.

Table 2. Roots of the characteristic polynomial for the
VAR specification of PC extracted from yields (Panel A) and
of the VAR specification for PC extracted from the detrended
yields (Panel B).

Panel A: VAR on PCs from yields (Adrian et al., 2013)

PC1 PC2 PC3 PC4 PC5

0.9721 0.9053 0.6890 0.5127 0.3467

Panel B: VAR on PCs from yields’ cyclical component

PC1 PC2 PC3 PC4 PC5

0.89473 0.89473 0.7625 0.4935 0.3490

As we see in Table 2, the highest eigenvalue of the coefficient matrix of the VAR

model, i.e. equals 0.9721 ≈ 1. However, this almost-unit root is eliminated in our

model, in which the highest eigenvalue is just 0.89473.

The empirical findings presented herein validate the assertions established in prior

research (Campbell and Shiller, 1987) regarding the stationarity of term premia. By

subtracting the average predicted trend of one-period rates from yields across all

maturities, we effectively eliminate the drift from the entire yield curve.

Note that the observed stationarity of term premia emerges from our empirical

investigation rather than being a predetermined assumption. In cases where term

premia exhibit non-stationarity, subtracting the expected trend in one-period rates
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from yields fails to eliminate the underlying drift in yields. This underscores the

robustness of our empirical approach in identifying the dynamic properties of term

premia and their impact on yield behaviour.

5.3 Excess Returns regressions

We report in Table 3 the results of regressing excess returns on a constant, lagged

pricing factors, Xt, and contemporaneous pricing factor innovations, vt+1, for the

standard factor specification and our factor specification in the spirit of equation

(19). In particular, we consider the R2 from the “predictive” specification in which

contemporaneous pricing factor innovations are not included and the full specification

and compare them with the version in which contemporaneous pricing factor inno-

vations are included in both models, ACM and FF. It’s worth highlighting that the

predictive version of the model, which incorporates factors extracted from the cycli-

cal components of yields, outperforms the standard model. Indeed, R2 is below 0.20

across all maturities and around 0.1 in almost all maturities in the standard ACM

model, whilst it’s higher than 0.10 in all maturities in our model. However, when we

consider the full specification, the standard model achieves a nearly perfect fit, with

R2 near one in every maturity, surpassing the alternative FF model’s performance.
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Table 3. This table reports the R2 of regresing excess re-
turns on, either only the lagged pricing factors, Xt, or on
lagged pricing factors together with contemporaneous pric-
ing innovations, vt+1.

Panel A: ACM model

1 2 3 4 5 6 7 8

Xt 0.17 0.13 0.10 0.09 0.09 0.09 0.10 0.11

Xt and vt+1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel BB: FF model

1 2 3 4 5 6 7 8

Xt 0.15 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Xt and vt+1 0.94 0.93 0.92 0.91 0.90 0.89 0.87 0.86

5.4 Fit and Forecast Performance

To illustrate the fit and the forecasting performance of the two alternative specifica-

tions, we report in Figure 5 the results of a within-sample model simulation up to

2005:Q4, where current values of the factors are used to predict yields, and of out-

sample model simulation from 2006:Q1 onward, where n-step ahead forecasts of the

factors (with n going from 1-quarter to 70-quarters) are used to predict yields.
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Figure 5. This graph reports the fitted (1980Q1:2005Q4)
and the forecasted (2006Q1:2023Q2) time series of 1Y and
10Y yields given by the standard ACM model (green) and
our model (red) against the actual values (blue). The shaded
area indicates our selected out-of-sample period.

(a) 3-month yield.

(b) Ten year yield.
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Results for 3-month and 10-year yields are reported. The within-sample perfor-

mance of our models is slightly inferior to that of the standard model. This is to be

expected in that the trend components of yields are not as effective in fitting the term

structure as the five factors extracted from yields. However, the FF model clearly

dominates out-of-sample, showing the capability of tracking well the long-term dy-

namics of yields, especially at long-horizon. Indeed, the standard model behaves very

poorly out-of-sample, as it is evident by simply looking at the picture: the forecasted

path is basically a straight line whose level is much higher than the average of the

realised one. The presence of a unit root together with the very low R2 in the regres-

sions without innovations, vt+1, compared to the near one R2 when including them

may explain these phenomena (Panel A, first row of Table 3). The FF model instead

exploits cointegration and the predictability of the slow-moving components driving

the trend in yields for long-term forecasting purposes.

5.5 Term Premia

As it seems clear from Figure 6, the term premia derived by the two alternative models

appear to be quite distinct: the 10-year term premium suggested by the conventional

model exhibits a noticeable trend, in contrast to the model that uses the trend-cycle

decomposition of yields, where a cyclicality in term premia emerges. The a-cyclicality

of term premia estimated by standard ATS models and their parallelism to the sec-

ular trend in long-term interest rates has been already noted by Bauer et al. (2014)

in commenting on the estimates provided by Wright (2011). Bauer et al. (2014) at-

tribute the acyclicality to small sample bias caused by the very high persistence in

the VAR model for factors; they show that biased-adjusted estimates produce in-
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stead countercyclical term premia. In fact, adjusting for small sample-bias produces

estimates that are much closer to the unit root, preventing the sequence of predicted

one-period rate to converge to a biased estimate of their level. Christensen and Rude-

busch (2012) build a model in which the (three: level, slope, curvature) unobservable

latent factors indeed follow a mean-reverting Ornstein-Uhlenbeck process. However,

because of the reasons already exposed, they are forced to break this mean-reversion

property by killing the drift term of the first factor, letting it being a standard Brow-

nian Motion. In discrete time jargon, they are just forcing their model to have a

unit root (at least in the first factor). This issue has been common across the classic

ATSM models, as it’s also evident from Figure 4. Our approach is different. We

strongly claim that it’s not necessary to rely on unit roots to solve the small-sample

bias problem. Since the one-period rate’s trend is captured by the long-term drivers,

factors are then extracted from the deviations of yields from their drift explained by

productivity demographics and long-term inflation forecasts. Our VAR for factors

is much less persistent and the parameters’ estimates do not require a small sample

adjustment. As a result, the sequence of predicted one-period rates features much

smaller forecast errors than the equivalent in standard ATS models and also our es-

timates of the term premia show some counter-cyclical behaviour visible in Figure 6,

where the NBER recessions highlighted by shaded areas. This evidence is in line with

the empirical and theoretical research that has found support for countercyclical risk

premia, including, among many others, Campbell and Shiller (1987), Cochrane and

Piazzesi (2005),Campbell and Cochrane (1999), and Wachter (2006). It is also easy

to mathematically see that, under this view, the term premia is decontaminated from
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trendy terms. The term premium is defined by

TP
(n)
t = r

(n)
t −

n∑
k=1

Et

[
r
(1)
t+k

]
. (40)

If we just decompose it in r
(n)
t = r

∗,(n)
t + u

(n)
t , we get

TP
(n)
t = u

(n)
t − 1

n

n∑
i=1

Et

[
r
∗,(1)
t+i

]
+ r

∗(n)
t − 1

n

n∑
i=1

Et

[
r
∗,(1)
t+i

]
(41)

From (??), we can thus write it as

TP
(n)
t = u

(n)
t − 1

n

n∑
i=1

Et

[
u
∗,(1)
t+i

]
(42)

Therefore, TP (n) has no trend.
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Figure 6. This figure reports the 1Y (red) and 10Y (orange)
term premia in the two models. Shaded areas coincide with
recession periods.

(a) ACM.

(b) FF.
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6 Conclusions

Yields to maturity are (co-)drifting and holding period excess returns are (co-)cycling.

Standard Affine Term Structure model do not separate trends and cycles in the data,

but use factors extracted from yields to maturity to explain holding period excess

returns as well as yields to maturity. As a consequence, the empirical model has a

rather disappointing performance in predicting short-term rates and generates trend-

ing risk premia. This trend is steeper at longer horizons. As risk premia are not

observable, term structure models should be evaluated by their performance in pre-

dicting the future path of short-term rates. Risk premia are very strongly dependent

on this path. We propose a novel way to improve on the standard approach by ap-

plying the no-arbitrage restrictions to a model in which the factor structure adopted

to explain holding period excess returns is extracted from de-trended yields. The

trend in yields is a common trend driven by the drift in short-term rates. The drift

in short-term rates in turn is not predicted by a VAR but it is related to long-term

forecast for slow-moving variables such as the demographic structure of the popula-

tion, potential output growth and long-term inflation forecast. A VAR structure is

then adopted to model the dynamics of the stationary cyclical components. Our pro-

posed model outperforms the standard approach in forecasting short-term rates and

produces stationary risk premia, very different from those produced by the standard

approach.
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A Appendix

A.1 Derivations

As Adrian et al. (2013), we assume that the systematic risk is represented by a

stochastic vector, (Xt)t≥0, that follows a stationary vector autoregression

Xt = µ+ ΦXt−1 + vt (A.1)

with initial condition X0 and whose residual terms, (vt)t≥0 follow a Gaussian distri-

bution with variance-covariance matrix, Σ, i.e,.

vt
∣∣ (Xs)0≤s≤t ∼ N (0,Σ) . (A.2)

Let’s denote the zero coupon treasury bond price with maturity n at time t by P
(n)
t .

We take the following assumptions:

Assumption 1. No-arbitrage condition holds (Dybvig and Ross, 1989), i.e.,

P
(n)
t = Et

[
Mt+1P

n−1
t+1

]
. (A.3)

Assumption 2. The pricing kernel, mt+1 := logMt+1, is exponentially affine

mt+1 = −r
(1)
t − 1

2
||λt||2 − λT

t Σ
− 1

2vt+1, (A.4)

where r
(1)
t := −p

(1)
t is the continuously compounded risk-free rate, and λt ∈ RK .
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Assumption 3. Market prices of risk are affine

λt = Σ− 1
2 (λ0 + λ1Xt) , (A.5)

where λ0 ∈ RK and λ1 ∈ RK×K .

Assumption 4.
(
xr

(n−1)
t , vt

)
t≥0

are jointly normally distributed for n ≥ 2.

Thanks to all these assumptions, we can continue our modelling by recalling the

definition of the excess holding return of a bond maturing in n periods, i.e.,

xr
(n−1)
t+1 := p

(n−1)
t+1 − p

(n)
t − r

(1)
t , (A.6)

where n − 1 indicates the n − 1 periods remaining since time t + 1 with respect to

which the return is computed. Now, (A.3) can be rewritten as

1 = Et

[
exp

{
mt+1 + p

(n−1)
t+1 − p

(1)
t

}]
= Et

[
exp

{
−r

(1)
t − 1

2
||λt||2 − λT

t Σ
− 1

2vt+1 + xr
(n)
t+1 + r

(1)
t

}]
= Et

[
exp

{
xr

(n)
t+1 −

1

2
||λt||2 − λT

t Σ
− 1

2vt+1

}]
= exp

{
Et [ξt+1] +

1

2
V [ξt+1]

}
,

(A.7)

where ξt+1 := xr
(n)
t+1 − 1

2
||λt||2 − λT

t Σ
− 1

2vt+1, and

Et

[
ξ
(n−1)
t+1

]
= Et

[
xr

(n−1)
t+1

]
− 1

2
||λt||2 (A.8)

Vt

[
ξ
(n−1)
t+1

]
= Vt

[
xr

(n−1)
t+1 − λT

t Σ
− 1

2vt+1

]
= Vt

[
xr

(n−1)
t+1

]
+ Vt

[
λT

t Σ
− 1

2vt+1

]
− 2cov

(
xr

(n−1)
t+1 , λT

t Σ
− 1

2vt+1

)
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= Vt

[
xr

(n−1)
t+1

]
+ λT

t Σ
− 1

2Vt [vt+1] Σ
− 1

2λt − 2λT

t Σ
− 1

2 covt

(
xr

(n−1)
t+1 , vt+1

)
= Vt

[
xr

(n−1)
t+1

]
+ ||λt||2 − 2λT

t Σ
1
2β

(n−1)
t . (A.9)

where

β
(n−1)
t := Σ−1covt

(
xr

(n−1)
t+1 , vt+1

)
∈ RK . (A.10)

Therefore, no-arbitrage condition (A.3) is equivalent to

0 = Et

[
xr

(n−1
t+1

]
+

1

2
Vt

[
xr

(n)
t+1

]
− λT

t Σ
1
2β

(n−1)
t , (A.11)

which gives us the following expression for the expected returns:

Et

[
xr

(n−1)
t+1

]
= λT

t Σ
1
2β

(n−1)
t − 1

2
Vt

[
xr

(n)
t+1

]
. (A.12)

Assumption 5. β
(n)
t = β(n) for every t ≥ 0.

If we were to decompose the unexpected excess return, xr
(n−1)
t+1 − Et

[
xr

(n−1)
t+1

]
into a

component that is correlated with vt+1 and another component which is conditionally

orthogonal, ε
(n−1)
t+1 (return pricing error), we could simply write the following OLS-wise

form

xr
(n−1)
t+1 − Et

[
xr

(n−1)
t+1

]
= vT

t+1γ
(n−1) + ε

(n−1)
t+1 . (A.13)

and try to figure out who the γ(n−1) is. To do so, notice that

β
(n−1)
t = Σ−1

(
E
[
xr

(n−1)
t+1 vt+1

]
− E

[
xr

(n−1)
t+1

]
Et [vt+1]

)
= Σ−1E

[
xr

(n−1)
t+1 vt+1

]
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and

γ(n−1) =
(
E
[
vT

t+1vt+1

])−1 E
[
vt+1xr

(n−1)
t+1

]
= Σ−1E

[
xr

(n−1)
t+1 vt+1

]
,

because E
[
vT
t+1vt+1

]
= Σ. Therefore, γ(n) = β(n) for every n ≥ 0. With this identity

in our hands,

V
[
xr

(n−1)
t+1

]
= Et

[(
xr

(n−1)
t+1 − Et

[
xr

(n−1)
t+1

])2]
= Et

[(
vT

t+1β
(n−1) + εn−1

t+1

)2]
= Et

[(
vT

t+1β
(n−1)

)2
+ 2vT

t+1β
(n−1)ε

(n−1)
t+1 +

(
ε
(n−1)
t+1

)2]
=
(
β(n−1)

)T Et

[
vt+1v

T

t+1

]
β(n−1) + σ2

=
(
β(n−1)

)T
Σβ(n−1) + σ2,

Finally,

xr
(n−1)
t+1 = (λ0 + λ1Xt)

Tβ(n−1) − 1

2

((
β(n−1)

)T
Σβ(n−1) + σ2

)
+ vT

t+1β
(n−1) + ε

(n−1)
t+1 .

(A.14)

A.2 Estimation

We can then rewrite (A.14) as

xr
(n−1)
t+1 = (λ0 + λ1Xt)

T Bn−1 −
1

2

(
BT

n−1ΣBn−1 + σ2
)
+ vT

t+1Bn + e
(n−1)
t+1 (A.15)

and therefore have a vectorial form:

xr =
(
λ01

T

T×1 + λ1X
T

−
)T

B− 1

2

(
B∗vec (Σ) + σ21K×1

)
1T

T +VTB+ E (A.16)
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where

1. xr ∈ RT×N .

2. λ0 ∈ RK , λ1 ∈ RK×K ,

3. X− = [X1 | X2 | · · · | XT−1]
T ∈ RT×K ,

4. B ∈ RK×N ,

5. B∗ = [vec (B1B
T
1 ) | · · · | vec (BnB

T
n)]

T ∈ RK2×N ,

6. V ∈ RT×K and E ∈ RT×N .

So we take (A.16) as our reference point in the estimation process that we do in three

steps following Adrian et al. (2013) procedure:

1. Construct the pricing factors, (Xt)
T
t=1 and estimate the VAR coefficients µ ∈ RK

and Φ ∈ RK in (A.1) using OLS. Then take (v̂t)
T
t=1 from v̂t := Xt − X̂t ∈ RK , where

X̂t = µ + ΦXt−1 for every t = 1, . . . , T . Stack the time series (vt)
T
t=1 into the matrix

V̂ ∈ RT×K . The variance-covariance matrix is thus

Σ̂ =
V̂

T

V̂

T
(A.17)

2. Perform the regression according to (A.16), i.e.,

xr = a1T×K1K×N + V̂b+X−c+ E (A.18)

where a ∈ R, b, c ∈ RK×N . Collect everything into single matrices

Z =
[
1T×1 | V̂ | X−

]
∈ RT×(2K+1) (A.19)

d = [a1K×1 | b | c]T ∈ R(2K+1)×N (A.20)
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so we can write xr = Zd+ E and therefore

d̂ = (ZTZ)−1 ZTxr. (A.21)

Then, collect the residuals from this regression into the matrix

Ê = xr− Zd̂ ∈ RT×N . (A.22)

and estimate

σ̂2 =
tr
(
Ê

T

Ê
)

NT
. (A.23)

Finally, we construct B̂
∗
from b̂.

3. Estimate the price of risk parameters, λ0 and λ1 via cross-sectional regression.

Recall from (A.16) that

a =
(
λ01

T

T×1

)T
B− 1

2

(
B∗vec (Σ) + σ21K×1

)
1T

T (A.24)

c = λT

1B (A.25)

If we transpose them, we can estimate λ0 and λ1 via OLS, i.e.,

λ̂0 =
(
B̂B̂

T
)−1

B̂

[
âT +

1

2
1T×1

(
B∗vec (Σ) + σ21N×1

)T]
(A.26)

λ̂1 =
(
B̂B̂

T
)−1

B̂ĉT (A.27)
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A.3 Recursion for the Term Structure

Consider the generating process for log excess returns in our model:

xr
(n−1)
t+1 = (λ0 + λ1Xt)

Tβ(n−1) − 1

2

((
β(n−1)

)T
Σβ(n−1) + σ2

)
+ vT

t+1β
(n−1) + ε

(n−1)
t+1 .

(A.28)

We need now to find two sequences of coefficients, (An)
N
n=1 and (Bn)

N
n=1, that allow

us to express bond prices as exponentially affine in the vector of state variables, Xt,

plus a trend term, p
∗,(n)
t , i.e.,

p
(n)
t = p

∗,(n)
t + An +XT

t Bn + e
(n)
t , (A.29)

where p
(n)
t := logP

(n)
t . Notice that

p
(1)
t = −r

(1)
t = −r

∗,(1)
t − δ0 −XT

t δ1, (A.30)

motivating that A1 = −δ0, B1 = −δ1, and p1,∗t = −r
∗,(1)
t . For any n > 1,

xr
(n−1)
t+1 = p

∗,(n−1)
t+1 + An−1 +XT

t+1Bn−1 + e
(n−1)
t+1

− p
∗,(n)
t − An −XT

t Bn − e
(n)
t

+ p
∗,(1)
t + A1 +XT

t B1 + e
(1)
t

= p
∗,(n−1)
t+1 + An−1 + (µ+ ΦXt + vt+1)

TBn−1 + e
(n−1)
t+1

− p
∗,(n)
t − An −XT

t Bn − e
(n)
t

+ p
∗,(1)
t + A1 +XT

t B1 + e
(1)
t (A.31)

= xr
∗,(n−1)
t+1 + (An−1 − An + A1 + µTBn−1)
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+XT

t (ΦTBn−1 −Bn +B1) +
(
en−1
t+1 − e

(n)
t + e

(1)
t

)
+ vT

t+1Bn−1.

Hence, the following must hold

xr
∗,(n−1)
t+1 + (An−1 − An + A1 + µTBn−1)

+XT

t (ΦTBn−1 −Bn +B1) +
(
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t
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T
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(n−1) − 1

2
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)T
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)
+ vt+1β

(n−1) + ε
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i.e.,

An−1 − An + A1 + µTBn−1 = λT

0β
(n−1) − 1

2
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β(n−1)

)T
Σβ(n−1) + σ2

)
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xr
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t+1 = 0

vT

t+1β
(n−1) = vT

t+1Bn−1

and therefore

An = An−1 + µTBn−1 − λT
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1

2

((
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)T
Σβ(n−1) + σ2

)
+ A1
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(n−1)

p
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t

β(n) = Bn
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The last equation simplifies everything even more:

An = An−1 + (µ− λ0)
T Bn−1 +

1

2

(
BT

n−1ΣBn−1 + σ2
)
− δ0 (A.32)

Bn = (Φ− λ1)
T Bn−1 − δ1 (A.33)

p
(n),∗
t = p

(n−1),∗
t+1 − r

∗,(1)
t (A.34)

Equation (A.34) for the price stochastic trend implies that

r
∗,(n)
t =

1

n

n−1∑
i=0

r
∗,(1)
t+i . (A.35)

On the other hand, these equations are fully deterministic, meaning that one can

iterate all the equations back to get expressions that depend only on the initial values,

A1 and B1. First,

Bn = (Φ− λ1)
T
(
(Φ− λ1)

T Bn−2 − δ1
)
− δ1

= · · ·

=
[
(Φ− λ1)

T
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T
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(A.36)

Second,

An = An−2 + (µ− λ0)
T (Bn−1 +Bn−2) +

1

2
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BT
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)
+ 2

(
1

2
σ2 − δ0

)
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+
1

2
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It’s not difficult to see that
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j=1
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T
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That allows us to write

An = (Φ− λ1)
T

n−1∑
j=1
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(A.38)

A.4 Recursion for Term Premia

Remember that

TP
(n)
t = u

(n)
t − 1

n

n∑
i=1

Et

[
u
(1)
t+i

]
, (A.39)

where u
(n)
t = r

(n)
t − r

∗,(n)
t . The affine model implies that

u
(n)
t = −n

(
An +XT

t Bn + e
(n)
t

)
. (A.40)

In particular, for n = 1,

u
(1)
t = −A1 −XT

t B1 − e
(1)
t . (A.41)
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Hence,

Et

[
u
(1)
t+i

]
= −A1 − Et

[
XT

t+i

]
B1. (A.42)

Now, since Xt+i = µ+ ΦXt+i−1 + vt+i, then, we can iterate backwards to get

Xt+i = µ+ ΦXt+i−1 + vt+i

= µ+ Φ(µ+ ΦXt+i−2 + vt+i−1) + vt+i
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= · · ·
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(A.43)

Since Et [vs] = 0 for every s > t, then

Et [Xt+i] = Φ̃iµ+ ΦiXt, (A.44)

where

Φ̃i =

(
i−1∑
j=0

Φj

)
. (A.45)
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Hence,
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where
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n
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µ (A.47)

Ψn = − 1

n
BT
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Hence,
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t + Ξn +ΨnXt (A.49)
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