
Score-Driven Asset Pricing:

Predicting Time-Varying Risk Premia Based on Cross-Sectional

Model Performance

Dennis Umlandt

July 27, 2022

Abstract

This paper proposes a new parametric approach for estimating linear factor pricing models
with dynamic risk premia. Time-varying risk prices and exposures follow an observation-driven
updating scheme that reduces the one-step-ahead prediction error from a cross-sectional factor
model at the current observation. This agnostic approach is particularly useful in situations
where predictors are unknown or of uncertain quality. Updating schemes for elliptically dis-
tributed returns are derived and propose cross-sectional regression errors as driving sequence
for the parameter dynamics. Estimation and inference are performed by likelihood maximiza-
tion. A simulation study confirms that the novel method is capable of filtering and predicting
substantial risk price movements. The empirical performance of the method is illustrated by an
application to a panel of size-sorted equity portfolios.
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1 Introduction

Risk premia for holding financial assets vary over time (Campbell and Shiller (1988), Fama and

French (1989), Lettau and Ludvigson (2001), Cochrane (2011)). Traditional factor asset pricing

models (e.g. Fama and French (1993) and Carhart (1997)) describe these premia with risk prices

(lambdas) demanded by investors for each unit of exposure (beta) to a financial or macroeconomic

source of risk. Although the predominant methods for testing asset pricing models, such as the

two-step regression procedure of Fama and MacBeth (1973) (referred to hereafter as the FMB

procedure), rely on constant lambdas and betas, the appropriateness of this assumption has been

widely called into question (Jagannathan and Wang (1996), Ghysels (1998)).

Estimation approaches for conditional factor pricing models typically formulate betas (see, e.g.,

Ferson and Harvey (1999) and Lettau and Ludvigson (2001)) and lambdas (see, e.g., Adrian et al.

(2015), Gagliardini et al. (2016), Adrian et al. (2019)) as functions of predictor variables that

generate the time dynamics. These approaches are advantageous for testing asset pricing theories

that suggest drivers of risk premia. However, beta estimates are found to be especially sensitive to

the choice of predictor variables (Harvey (2001)). Moreover, employing inappropriate explanatory

instruments or leaving out relevant ones may yield misleading results if one is interested mainly

in filtering time-varying risk premia. Empirical research on dynamic asset pricing would therefore

benefit from methods that allow for exploring the risk price and exposure dynamics implied solely

by the cross-sectional model specification rather than dynamics prescribed by additional external

forecast variables. In turn, knowledge of these agnostic dynamics can offer a better understanding

of risk premia dynamics in asset pricing theories.

The method presented in this paper allows for estimating dynamic versions of cross-sectional

multifactor asset pricing models without specifying predictor variables for driving time dynamics.

In every period, the idea is to evaluate current pricing errors with an observation density, implied by

the multifactor model, to identify the mispricing that can be attributed to variation in parameters

and update them accordingly. To choose the direction and intensity of this parameter updating, I

follow the generalized autoregressive score (GAS)1 approach developed by Creal et al. (2013) and

Harvey (2013), who propose updating parameters in econometric models in the direction of the

gradient of the log likelihood, the so-called score, evaluated at the current observation.2 Hence,

parameters are pushed in the direction with the steepest increase in the likelihood function pointed

out by the gradient.

This paper’s main contribution is the introduction of a general framework for dynamic asset

pricing models with GAS parameter dynamics. The resulting score-driven likelihood-based asset

pricing model (SD-APM) is applicable for every linear (cross-sectional) factor model that can

be analyzed using the traditional FMB procedure and generates latent risk price and exposure

1Also referred to as score-driven (SD) model or dynamic conditional score (DCS) model.
2GAS models have been applied successfully in numerous applications in time series analysis and financial econo-

metrics. See, for example, Harvey and Lange (2017) and Gorgi et al. (2019) for applications in volatility modeling
and Oh and Patton (2018) and Bernardi and Catania (2019) for systemic risk applications.

1



dynamics. Lambda, beta and factor mean series are estimated from asset returns and cross-sectional

risk factor data only. The second main contribution is the derivation of optimal model parameter

updating schemes with respect to the observational likelihood. They show an intuitive relation

to the classical FMB estimates: The updating corrects lambdas and betas with respect to local

cross-sectional pricing errors that are produced when employing FMB with constant parameters

and thus can be regarded as a local FMB correction. Moreover, the model setup is extended to

accommodate tradeable factors as well as general elliptical distributional assumptions for factor

and return innovations. Estimation and inference can be carried out according to the maximum

likelihood principle.

I perform a Monte Carlo study to investigate the ability of the SD-APM to filter risk price

dynamics in a setting with a realistic signal-to-noise ratio and constant betas. The performance of

the SD-APM is compared to that of the dynamic asset pricing model developed by Adrian et al.

(2015) (referred to hereafter as DAPM), which employs noisy signals of different strengths of the

true instrument factor driving the lambda dynamics of the data-generating process. In an asset

return panel of 25 assets and 600 (monthly) time observations, a DAPM would need to be informed

with a signal containing more than 60% of the information from the true data-generating process to

compete with the in-sample pricing performance of the SD-APM. More than 50% of the information

is needed to outperform the SD-APM in out-of-sample risk premium forecasting. The results

suggest that SD-APM is a valuable method not only in situations where time series predictors are

not available but also in situations where the suitability of these predictors is sufficiently uncertain.

An empirical application to a two-factor model of a cross-section of equity portfolios sorted

by size shows that the SD-APM produces considerably lower pricing and forecast errors than

traditional unconditional benchmark approaches like FMB regressions. Moreover, the SD-APM is

able to produce comparable pricing errors to the dynamic regression-based approach of Adrian et al.

(2015), which employs external time series predictors. In a setting restricted to time-constant betas,

the SD-APM shows greater flexibility by producing considerably lower pricing errors compared to

the dynamic benchmark model.

With the SD-APM, this paper contributes a novel methodology to the extensive literature on the

estimation of conditional asset pricing models. The closest and most commonly used methods differ

as follows. The DAPM of Adrian et al. (2015) is considered the main benchmark for comparisons.

Both DAPM and SD-APM rely on the same beta pricing equation but differ in the construction

of risk price dynamics (external forecasters vs. recursive observation-driven updating) and their

estimation methodology (three-step linear regressions vs. maximum likelihood). Adrian et al.

(2019) employ an enhanced version of the DAPM that allows for nonlinear relations between risk

prices and forecast variables. Risk prices and exposures that are affine-linear transformations of

instruments are also employed in Gagliardini et al. (2016, 2019), with a focus on large unbalanced

panels of individual stock returns. The functioning and intentions of these methods are different

from those of the method I propose, as their aim is to filter economically meaningful variation

in risk prices explained by forecasting factors in regression-based frameworks. Related to these
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studies, Creal and Kim (2021) study time-varying risk premia explained by external predictors in a

unbalanced panel of individual assets based on Bayesian regression trees. In contrast, the study in

this paper investigates the portion of risk premium movement that can be learned from observed

cross-sectional model pricing errors with a classical non-Bayesian approach.

Early contributions already allow for instrument-free dynamics of risk prices by conducting

cross-sectional FMB regressions period by period, such as Fama and MacBeth (1973) and Ferson

and Harvey (1991). The approach presented in this paper differs from the traditional one by

explicitly modeling an intertemporal relation between lambdas of different time periods that can

be fitted and analyzed; in contrast, period-by-period FMB risk price estimates are not explicitly

connected over time and are extremely volatile. The risk price updating mechanism in my approach

can be understood as an attempt to infer how much of this risk price volatility stems from actual

parameter movements and is not caused by estimation errors.

The paper is organized as follows. Section 2 introduces and discusses the proposed score-driven

dynamic asset pricing framework as well as parameter updating schemes for elliptically distributed

returns. It closes by laying out a strategy for likelihood-based estimation and inference. A Monte

Carlo study evaluating the performance of the SD-APM is conducted in Section 3. The empirical

application to a equity portfolio cross-sectional model is presented in Section 4. Section 5 concludes.

2 Theoretical Framework

This chapter introduces a framework for score-driven likelihood-based asset pricing models. The

model setup is described first, followed by a derivation for optimal parameter-updating schemes

in case of elliptical distributions. Before turning to the applications in the following sections, the

estimation strategy is explained and discussed.

2.1 Model Setup

The basic model setup is in line with the one presented in Adrian et al. (2015) but differs in

some instances, like the specification of conditional factor means as well as risk price and exposure

dynamics, which are driven by scores of the observation density.

Let rt = (r1
t , . . . , r

N
t )> denote the N-dimensional vector representing the excess returns of N

different assets at time t ∈ {0, . . . , T}. The underlying data-generating process is defined on a

probability space (Ω,F ,P), equipped with a filtration Ft = σ ({rt, . . . , r0}) representing the set of

information available at time t. Suppose the risk in the economy is described in terms of K risk

factors covered in the state vector ft that follows

ft+1 = µt + ut+1, t = 0, . . . , T − 1, (1)

where ut
iid∼ N (0,Σu), and µt is a conditional mean process adapted to Ft.

Assume the existence of a unique stochastic discount factor (SDF) mt that prices every asset
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i ∈ {1, . . . N} according to

Et(mt+1r
i
t+1) = 0, (2)

where Et denotes the conditional expectation with respect to time t information Ft. The Euler

equation (2) can be used to compute the conditional covariance between the SDF and the asset

return as

Covt(mt+1, r
i
t+1) = −Et(mt+1)Et(rit+1). (3)

Regressing the demeaned return of asset i on the factor innovations ut+1 yields an idiosyncratic

noise term ei,t+1 that is orthogonal to ut+1. Taken together with (3), the return can be decomposed

as

rit+1 = Et(rit+1) + (rit+1 − Et(rit+1)) (4)

= −
Covt(mt+1, r

i
t+1)

Et(mt+1)
+ β>i,tut+1 + ei,t+1, (5)

where βi,t = Σ−1
u Covt(ut+1, r

i
t+1) denotes the K-dimensional vector of risk exposures. Let the SDF

be affine-linear in the economy’s risk factor innovations; that is,

mt+1 − Et(mt+1)

Et(mt+1)
= −λ>t Σ−1

u ut+1 (6)

with time-variant price of risk vector λt of dimension K. Plugging the SDF into the return decom-

position (5) yields a standard beta representation given by

rit+1 = λ>t Σ−1
u Covt(ut+1, r

i
t+1) + β>i ut+1 + ei,t+1 (7)

= β>i,tλt + β>i,tut+1 + ei,t+1. (8)

The decomposition (8) therefore consists of a predictable risk premium β>i,tλt that compensates

risk exposures, an unpredictable component β>i,tut+1 depending on risk factor innovations and an

asset-specific innovation term ei,t+1. We assume et = (e1,t, . . . eN,t)
> iid∼ N (0,Σe).

3 Representation

(8) may be interpreted as a system of seemingly unrelated regressions (SUR) with time-varying

coefficients and identical regressors that can be stacked to

rt+1 = βt(λt + ut+1) + et+1, (9)

where βt = (β1,t, . . . , βN,t)
>. What essentially distinguishes the setting proposed here from those

of prior studies is the specification of the dynamics of the time-varying (N + 2)K-dimensional4

parameter vector θt = (µ>t , λ
>
t , vec(βt)

>)>. Adrian et al. (2015) assume that the conditional mean

of ft is described by a vector autoregressive model of order one, λt is affine-linear in a set of

predictor variables that have to be specified and derive time-varying betas with a non-parametric

3It is later shown that the Gaussianity assumptions for et and ut can be relaxed.
4K factor means, K lambdas plus N betas per lambda.
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kernel-based approach. In contrast, the approach discussed here will suggest driving the whole set

of dynamic parameters by recent observations from the return panel and cross-sectional pricing

factors ft.

2.2 Score-Driven Risk Premia

The GAS model proposed by Creal et al. (2013) provides an opportunity to introduce time variation

into general models with specified observation densities. The basic idea is to let the time-varying

parameters of a model be updated proportionally to the score of the observation density; that is,

the derivative of the logarithmic density with respect to the parameter that should become time-

varying. Thus, the parameter vector is pushed in the direction indicated by the gradient. This

is the direction in which the update would yield the steepest increase in the observation density.

The approach can therefore be understood as a parameter update optimizing the local likelihood

in period t.

In the framework described above, asset returns rt and risk factor realizations ft are observed

and can be evaluated with the conditional observation density p(rt, ft|Ft−1, θt−1), where θt =

(µ>t , λ
>
t , vec(βt)

>)> is the vector of time-varying parameters.5 Given this specification, the GAS

updating scheme for the dynamic vector of risk prices and exposures is then given by:

θt = ω +

p∑
i=1

Aist−i+1 +

q∑
j=1

Bjθt−j (10)

with

st = S−1
t ∇t, ∇t =

∇
µ
t

∇λt
∇βt

 =


∂ ln p(rt,ft|Ft−1,θt−1)

∂µt−1
∂ ln p(rt,ft|Ft−1,θt−1)

∂λt−1
∂ ln p(rt,ft|Ft−1,θt−1)

∂vec(βt−1)

 (11)

and

St =


Et−1

(
∇µt∇

µ
t
>) Et−1

(
∇µt∇λt >

)
0

Et−1

(
∇λt∇

µ
t
>) Et−1

(
∇µt∇

µ
t
>) 0

0 0 Et−1

(
∇βt∇

β
t
>
)
.

 (12)

We call a model comprising of equations (1), (9), and (10) to (12) the (Gaussian) Score-Driven

Asset Pricing Model of orders p and q (SD-APM(p,q)).

Equation (10) determines the updating mechanism for the time-varying parameter θt. Here, ω

is an (N + 2)K-dimensional vector of intercepts, and Ai, Bj are (N + 2)K × (N + 2)K matrices

of coefficients for i = 1, . . . , p and j = 1, . . . , q. The updating process therefore consists of a

constant part, an adjustment due to a innovation sequence st, and an autoregressive part. The

5Consider that the time-varying parameter in Creal et al. (2013) is denoted with another subindex. Here, the
subindex is shifted to harmonize the notation with the baseline conditional asset pricing model of Section 2.1.
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centerpiece of score-driven models is the specification of the innovation sequence st, that is set

proportional to the scores ∇µt , ∇λt and ∇βt defined in (11). The score sequences are scaled with the

matrix sequence St that is chosen as the inverse of a restriction of the Fisher information matrix

Et−1

(
∇t∇>t

)
. This choice has the advantage that the scaling depends directly on the variance of the

score.6 Note that the general Fisher information matrix including all GAS parameters is restricted

in the SD-APM such that the cross-information quantities with respect to beta are zero, that is,

Et−1

(
∇µt∇

β
t
>
)

= Et−1

(
∇λt∇

β
t
>
)

= 0. This modeling choice is made because it generates simpler

and more parsimonious models with less cumbersome derivations. Moreover, the central object in

GAS models that carries update information is the score, while the choice of the scaling matrix

is to some extent arbitrary. Therefore, it can be assumed that the update is reasonably resilient

with respect to the constraint. Results from simulations and the empirical application support this

conjecture. Note that the simplification does not mute the potential impact of the lambda (beta)

score on the beta (lambda) updating as long as the corresponding entry in the parameter matrix

Ai is not zero.

An apparent alternative to specifying score-driven risk parameters would be to model st in (10)

as Gaussian i.i.d. innovation to achieve so-called parameter-driven dynamics. This would resemble

a variant of the popular Kalman filter if either λt or βt is constant. The crucial difference, however, is

that st would be another independent source of randomness, whereas the mechanism in (11) relates

st to the innovations et and ut that already exist in the model. The mechanism therefore captures

systematic variation in idiosyncratic and factor innovations, signaled by current observations, to

generate updates in risk exposures and prices. This allows time-varying parameters in the SD-APM

to be perfectly predictable given past information. The latter feature is particular appealing in an

asset pricing framework, as risk prices and exposures are assumed to be pre-determined in most

asset pricing theories. Moreover, the observation-driven structure of parameter dynamics facilitates

the likelihood evaluation considerably.

Proposition 1. Let ft and rt be the factors and the returns of an Gaussian SD-APM(p,q), respec-

tively. The scaled score series for the dynamic parameter updating is then given by

st =

s
µ
t

sλt

sβt

 =

 ft − µt−1

(β>t−1Σ−1
e βt−1)−1β>t−1Σ−1

e rt − λt−1(
(λt−1λ

>
t−1 + Σu)−1(λt−1 + ut)

)
⊗ et

 (13)

Proof. See Appendix A.1.

Intuitively, Proposition 1 suggests that the factor mean should be updated according to the

deviation of the factor realization to the current factor mean belief. The scaled scores with respect

to λ, denoted as sλt in (13), can be regarded as generalized least squares (GLS) regression errors

6Other popular scalings proposed in Creal et al. (2013) use the identity matrix or the Cholesky factor of the
inverse Fisher information. The latter choice may be attractive for achieving a unit variance of the scaled score
process st.
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from cross-sectionally regressing rt on βt−1. The driving mechanism therefore intuitively corrects

local deviations in the cross-sectional fit. This observation can be related to the widely used

FMB regressions, in which constant risk prices are estimated with a cross-sectional regression of

the average portfolio returns r on their (costant) betas; that is, the risk price estimate is given

by (β>Σ−1
e β)−1β>Σ−1

e r. The correction step proposed by (10) in conjunction with (13) for the

lambda essentially enforces a drift to this average prescription. Finding that λt−1 is greater than

(β>t−1Σ−1
e βt−1)−1β>t−1Σ−1

e rt would indicate that the current risk price is too high. The resulting sλt

would therefore be negative and would downsize the risk price for the next period. The coefficient

matrices A1, . . . Ap reveal how much of the recent cross-sectional regression errors can potentially

be attributed to a change in risk prices and not to factor or idiosyncratic innovations.

The discussed updating mechanism underlines the difference between the proposed score-driven

method and the time-varying lambda framework of Fama and MacBeth (1973), which would choose

λt in each period to minimize the cross-sectional regression error, hence choosing λt such that

st = 0. This updating is nested in the SD-APM but comes with the drawback that time-varying

lambdas become unrealistically volatile because cross-sections are fitted independently period by

period and do not draw information from connections between lambdas of different time periods.

The constant lambda framework of Fama and MacBeth (1973) averages these lambda series to

achieve risk price estimates. Its model setting is recovered if innovations are uncorrelated and

Ai = Bj = 0 for i = 1, . . . , p and j = 1, . . . , q. Although the maximum likelihood estimator of

the SD-APM prescribes a cross-sectional regression based on betas for estimating risk prices in

the time-invariant setting, it differs from the FMB estimator, as betas and lambdas are estimated

simultaneously and and not in a two-step procedure.

Also notable are the similarities to the popular generalized conditional heteroscedastictiy (GARCH)

time series models developed by Engle (1982) and Bollerslev (1986). If the time-varying param-

eter in (10) was the conditional variance of a zero-mean time series εt (that is, θt = σ2
t ) and the

score was the squared current observation (that is, st = ε2
t ) the famous GARCH(p,q) updating

equation would be obtained.7 This updating process is quite intuitive because, in a setting with a

constant variance parameter, this would be estimated via the mean of squared observations. The

appropriate statistic of new incoming information ε2
t in relation to the past observation therefore

indicates whether it is likely that the variance has increased (if ε2
t is high relative to the current

variance estimate) or decreased (if ε2
t is relatively low). SD-APM works according to the same

principle, as (β>t−1Σ−1
e βt−1)−1β>t−1Σ−1

e rt summarizes the relevant incoming information in period t

for estimating risk prices.

The score-driven updating sequence for the β, that is sβt in (13), follows a similar intuition

as the lambda updating. It is the local error from regressing the return rt on the stochastic

regressor λt−1 + ut. This becomes plausible when acknowledging from equation (9) that βt−1 can

be interpreted as the corresponding regressor. Moreover, in section 2.4.3. it is shown that this

updating relates to the well-known first-stage time series regressions on factors if the latter are

7Creal et al. (2013) argue that the Gaussian GARCH(1,1) model is indeed a GAS model.
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assumed to be traded.

2.3 Estimation and Inference

One major advantage of the SD-APM is that its likelihood function can be evaluated directly. The

set of static parameter vectors and matrices to be estimated is given by ω,A1, . . . Ap, B1, . . . Bq, µ,Φ,Σe

and Σu. This collection of parameters, stacked in the parameter vector ϑ, needs to be chosen to

maximize the (conditional) log-likelihood function given by

L =

T∑
t=1

ln p(rt, ft|Ft−1, θt−1, ϑ) (14)

=

T∑
t=1

ln (p(rt|ft,Ft−1, θt−1, ϑ)p(ft|Ft−1, θt−1, ϑ)) (15)

= −T (N +K) lnπ − T

2
ln |Σe| −

T

2
ln |Σu| −

1

2

T∑
t=1

e>t Σ−1
e et −

1

2

T∑
t=1

u>t Σ−1
u ut. (16)

Besides the problems associated with the enormous number of parameters, closed-form solutions

of the ML estimators are not available due to the strong dependencies of the parameters on each

other. This makes it necessary to employ numerical optimization procedures to optimize (16).

The number of parameters can be crucially reduced when assuming cross-sectionally homoscedas-

tic and independent errors et. This additionally facilitates the derivation of the risk price updating

scheme in (13), which henceforth simplifies to sλt = (β>β)−1β>rt − λt−1. Because of the missing

occurrence of Σe in the updating scheme, the maximum likelihood estimator of the covariance ma-

trix is given by Σ̂e = 1
T

∑T
t=1 ete

>
t . This approach may weight innovations in the updating scheme

incorrectly, especially if idiosyncratic errors are highly correlated. However, one can construct a

correction by running a second maximum likelihood estimation with a prespecified dispersion ma-

trix estimated from a first estimation stage with homoscedastic and independent errors et in the

spirit of feasible GLS estimation approaches. Another promising approach is to compute a prior

covariance matrix estimate Σ̂e based on pricing errors from Fama and MacBeth (1973). The re-

sults turn out to be close to the two-stage approach, as the variation of time-varying parameters is

relatively low compared to the error variances.

Inference is conducted based on the inverse Hessian of the log-likelihood evaluated at the opti-

mum, as suggested by Creal et al. (2013) for GAS models. If ϑ stacks all the static parameters of

the model, standard asymptotic theory for ML estimators establishes asymptotic normality under

some regularity conditions, in particular

√
T
(
ϑ̂− ϑ

)
d→ N

(
0, I−1(ϑ)

)
, (17)

with Fisher information matrix I(ϑ) := −E
(
∂2lt/∂ϑ∂ϑ

>), where lt is the log-likelihood contribu-

tion of the i-th observation evaluated at ϑ. Blasques et al. (2022) provide general conditions for
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consistency and asymptotic normality of the ML estimator for correctly specified univariate time

series models with a single time-varying parameter. However, a formal proof of this theoretical re-

sult for the multivariate SD-APM is beyond the scope of this paper. Because the use of a Gaussian

SD-APM is a potential source of model misspecification, it could be advisable to rely on quasi-ML

standard errors that can be derived with

√
T
(
ϑ̂− ϑ

)
d→ N

(
0, I−1(ϑ)J (ϑ)I−1(ϑ)

)
, (18)

where J (ϑ) := limT→∞ T
−1E

(
(∂L(ϑ)/∂ϑ) (∂L(ϑ)/∂ϑ)>

)
. Standard errors in the following empir-

ical application are derived by numerically differentiating the score function with a finite difference

approximation.

2.4 Alternative Specifications and Extensions

The following sections present some alternative specifications and extensions of the baseline Gaus-

sian SD-APM.

2.4.1 Traded Factors

Many asset pricing models include factors that are themselves returns and are therefore traded. A

well-known example is the CAPM. The pricing equation (8) would then also apply to these factors.

An immediate implication is then that factor means are equal, that is, µt = E (ft+1) = λt. Imposing

this identity in the SD-APM framework causes the factor model to become

ft+1 = λt + ut+1 (19)

and the beta representation to become

rt+1 = βt(λt + ut+1) + et+1 = βtft+1 + et+1. (20)

Hence, assets are priced with an regression model, where the risk factors in ft serve as regressors

and risk prices enter the model as conditional factor means. Score-driven updating schemes for this

restricted model can be derived almost analogously to the unrestricted case. A crucial difference

is that Fisher information does not have to be restricted in order to get feasible updating schemes

because Et−1

(
∇λt∇

β
t
>
)

= 0 in this setting. Proposition 2 provides the scaled score series for the

parameter updating.

Proposition 2. Let ft and rt be the traded factors and returns of an Gaussian SD-APM(p,q),

respectively. The scaled score series for the risk price and exposure updating is then given by

st =

(
sλt

sβt

)
=

(
ft − λt−1(

(λt−1λ
>
t−1 + Σu)−1ft

)
⊗ et

)
. (21)
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Proof. See Appendix A.2.

It is striking that the dynamics of risk prices are no longer driven by the cross-sectional regres-

sion errors but exclusively by deviations from the current factor realization. Therefore, the score

approach proposes to use only the information from the role of risk prices as factor means. This

seems sensible in theory, as other returns in (20) are composed of the factor realization as signal of

the time-varying factor mean plus idiosyncratic noise and therefore do not carry additional infor-

mation. Thus, it is quite reasonable that the score approach suggests the use of the signal ft only.

However, this can lead to problems in practical applications, as many asset pricing factors have an

extremely low signal-to-noise ratio. This may imply that the deviation from the current realization

is only a weak signal for the direction of the parameter update. This could explain the relatively

weak performance of this model specification in the following simulations and application, although

the factors themselves are returns.

In terms of beta updating, we see that the sequence sβt is identical to the case without the traded

factor assumption, given the identity (19). It can still be interpreted as an error from regressing

current returns on the stochastic regressor ft.

2.4.2 Elliptically Distributed Returns and Factors

In order to compute the score ∇t, assumptions on the distributions of the innovations ut and et

have to be made. The basic SD-APM developed so far assumes that these innovations are normally

distributed, which means that the returns and factors are also assumed to be (conditionally) nor-

mally distributed. This could be problematic because empirical distributions of returns often show

departures from the normal distribution. In particular, the tails of the return distribution tend to

be heavier than in the Gaussian case, which is known as excess kurtosis. To allow for additional

flexibility in fitting the data while keeping the framework tractable, I consider the distribution

families from the general class of elliptical distributions8 for an alternative SD-APM specification.

The general n-dimensional density of such distributions can be formulated as

p(x) = |Ω|−
1
2ψ
(

(x− µ)>Ω−1(x− µ)
)
, (22)

with mean µ ∈ Rn, dispersion matrix Ω ∈ Rn×n, and a characteristic density generator ψ : R≥0 ×
R>0 → R≥0. Denote with X ∼ En(µ,Ω, ψ) that a random variable X possesses a density given

by (22). The elliptical class includes not only the normal distribution, as can be seen by choosing

the generator to be ψ(x) = (2π)−N/2 exp (−x/2), but also many other distributions that account

for excess kurtosis and are commonly used to fit financial returns, such as the Laplace and the

Student’s t-distribution.

We define SD-APM(p,q) in which the innovations are not (necessarily) Gaussian but fol-

low a common elliptical distribution as Elliptical SD-APM(p,q). In particular, we require that

8See Fang et al. (1990) or Chapter 6 of Embrechts et al. (2015) for a comprehensive treatment of elliptical
distributions.
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(u>t , e
>
t )> ∼ EN+K(0,Ω, ψ) with

Ω =

(
Ωu 0

0 Ωe

)
(23)

and a characteristic density generator ψ. Note that ut and et are still orthogonal as required in the

baseline model but not necessarily independent as in the Gaussian case. Proposition 3 provides the

implied factor mean and risk price score sequences for the elliptical model specification.

Proposition 3. Let xt = (f>t , r
>
t )> be the stacked factors and returns of an Elliptical SD-

APM(p,q) with density generator ψ. The scaled score series for the factor mean and risk price

updating is then given by(
sµt
sλt

)
= C(‖x̃t‖2 , ψ)

(
ft − µt−1

(β>t−1Ω−1
e βt−1)−1β>t−1Ω−1

e rt − λt−1

)
(24)

with

C(‖x̃t‖2 , ψ) =
−(N +K)ψ

′(‖x̃t‖2)

ψ(‖x̃t‖2)

2Et−1

(
‖x̃t‖2

(
ψ′(‖x̃t‖2)

ψ(‖x̃t‖2)

)2
) (25)

and ‖x̃t‖2 = (xt − Et−1(xt))
>Ω−1

x (xt − Et−1(xt)).

Proof. See Appendix A.3.

A derivation of the beta updating sequence based on the elliptical model is not feasible be-

cause the betas enter the covariance matrix of xt. This makes the derivation of Fisher information

cumbersome in the multivariate setting and highly dependent on the shape of the particular dis-

tribution. A straightforward way to include time-varying betas in the elliptical model is to replace

the Fisher information with the identity matrix that yields the beta score given by

sβt = − ψ
′(‖x̃t‖2)

2ψ(‖x̃t‖2)

(
(λt−1λ

>
t−1 + Σu)−1ft

)
⊗ et. (26)

Another straightforward solution would be to numerically compute the Fisher information matrix

with respect to β. With regard to the factor mean and risk price updating in Proposition 3, it is

striking that the particular choice of the elliptical return distribution does not alter the direction of

both the mu and the lambda score and therefore also does not alter the direction of the factor mean

and risk price parameter updating. Only the scalar function C depends on the distributional shape

represented by the density generator ψ. Updating steps are therefore scaled differently according

to the specified distribution. The following corollary collects particular scaling functions for normal

and the student-t distribution.

Corollary 1. The scaling in (25) is given by

11
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Figure 1: Factor Mean Score The figure shows the factor mean score sµt as a function of ut = ft − µt−1 for
different elliptical distributions. The number of assets and factors is chosen as N = 10 and K = 1, respectively.
Covariance matrices are fitted on a return panel of portfolios sorted by size an a market return factor.

(i) C(‖x̃t‖2 , ψ) = 1 if (u>t , e
>
t )>

iid∼ N (0,Ω).

(ii) C(‖x̃t‖2 , ψ) = ν+N+K+2
ν+‖x̃t‖2

if (u>t , e
>
t )>

iid∼ tν(0,Ω).

Proof. See Appendix A.4.

Part (i) of Corollary 1 just confirms that Proposition 3 is in line with Proposition 1. Hence, a

particularly simple updating scheme is achieved when assuming normally distributed innovations

because the scaling is equal to unity in this case. The derivation of the scaling is more cumbersome

for the majority of elliptical distributions, but Proposition 1 indicates that the cross-sectional

regression errors should be informative for driving the parameter dynamics irrespective of the true

elliptical distribution. Setting the scaling C to unity can therefore crucially improve tractability,

while the updating still works in the correct direction. This reasoning could also be used to justify

the use of the Gaussian beta updating. However, the gained tractability comes at the cost of

incorrectly weighting the magnitude of observed model errors on parameter updates, if the data-

generating process is not Gaussian.

The effect of the scaling becomes clear when considering the Student’s t-updating sequences

presented in Corollary 1(ii). Figure 1 shows the factor mean score as a function of a demeaned

factor observation ut = ft − µt for a SD-APM with different elliptical distributions. Covariance

matrices are fitted on a return panel of portfolios sorted by size and a market return factor that

are also used in the following empirical application. The Gaussian score is the 45◦ line, and new
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observations therefore impact the updating according to their magnitude. Regarding the Student-t

distribution, the score shows a steeper ascent for observations close to the mean but approaches

zero for |ut| → ∞. Hence, the score gives more weight to observations close to the mean and less

weight to those that crucially deviate from the mean. This down-weighting is a result of dividing the

observation by ‖x̃t‖2 in the Student-t scaling function C in Corollary 1(ii). The updating scheme

therefore takes the more pronounced tails of the return and factor distributions into account and

dampens the impact of outliers. This is also in line with the observation that the effect is less

pronounced for a higher degrees of freedom parameter ν. The discussion for the factor mean can

be applied analogously to the risk price score sλt . Hence, using the Student-t distribution makes

the score-driven parameter dynamics more robust to outliers in the data. This latter feature has

also been documented and discussed for score models of location (Creal et al. (2014), Harvey and

Luati (2014)) and scale (Creal et al. (2011)).

3 Monte Carlo Study

In this section, the performance of the constant-beta SD-APM is evaluated with a Monte Carlo

study on forecasting risk prices and excess returns. The central question is whether the SD-APM is

able to filter risk price movements without knowing the driving forces and how well it can compete

with models making use of information about the predictable component. The simulation setting

assumes time-constant betas for two reasons. First, the estimation with time-varying betas is highly

computationally demanding in panels with N > 10 because the introduction of every additional

asset requires taking account of K additional time-varying beta parameters. This would render

reliable Monte Carlo results with a reasonable number of replications infeasible, at least for larger

panels. Moreover, empirical studies such as Braun et al. (1995) and Ghysels (1998) document that

changes in betas, in contrast to lambdas, are rather slow, if they occur at all. However, time-varying

betas are allowed for in the following empirical application, and Appendix B includes Monte Carlo

results for a particular cross-section with N=10, showing that the SD-APM is capable of filtering

beta dynamics as well.

3.1 Data-Generating Process

Assume there is one (cross-sectional) risk factor ft and a forecasting factors zt such that

rt+1 = β(λ0 + Λ1zt) + βut+1 + et+1, (27)

where ut+1 is the innovation to the risk factors ft+1 from the factor model (1). The pricing equation

employed for simulations is chosen in line with the DAPM modeling approach of Adrian et al.

(2015) with exactly one risk factor ft, where the dynamic risk price is an affine-linear function of

the forecasting factor zt, i.e., λt = λ0 + Λ1zt.
9 This poses a challenge for the SD-APM procedure,

9Adrian et al. (2015) explicitly include the possibility that factors can be both risk and forecasting factors
simultaneously. In the simulation study, I abstain from doing so for simplicity.
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which has to prove itself within the framework of the competing DAPM approach. In order to

generate realistic returns, the DGP is calibrated with a cross-section of 10 portfolios sorted by size

from the Kenneth French data library. This cross-section is also used in the following empirical

application.

To get a candidate process for the forecasting factor, a DAPM with three forecasting factors

is fitted on the size portfolio cross-section. The first two forecasting factors under consideration

are the 10-year treasury yield as well as the term spread, computed as the difference between the

yields of the 10-year treasury note and the three-month treasury bill. Both series are obtained from

the H.15 statistical release of the Board of Governors of the Federal Reserve System. The third

forecasting factor is the dividend yield of the S&P -500 index. All three series have been reported

to predict stock returns in the past10 and are also used in the following empirical application. For

simplicity, the three predictors are combined to form one forecast process by computing the linear

combination of the three weighted by coefficients from the fitted DAPM. The forecasting factor

series shows a high degree of persistence, with an estimated AR(1) coefficient of 0.9796. Hence, the

dynamics are well described by an AR(1) process given by zt+1 = 0.5 + 0.98(zt− 0.5) + uz,t+1 with

uz,t+1
iid∼ N

(
0, 0.1372

)
that is used for simulation in the following. The process always starts with

its unconditional mean, i.e., z0 = 0.5. Based on using the combined forecasting factor processes in

a one-factor DAPM of the size portfolio cross-section, the risk price parameters are calibrated with

λ0 = 0 and Λ1 = 1. This means that λt = zt for every t.

If the risk factor is tradeable, its conditional mean should relate to the risk prices λt = zt.

The risk factor is therefore simulated from ft = 0.5zt + ut, where the coefficient is chosen based

on regressing the Small-Minus-Big (SMB) factor from the Kenneth French data library on the

combined forecasting factor. Returns are derived from the beta representation according to (27),

with N being the number of assets in the panel and T being the number of time observations. The

betas are equidistantly spread over the interval [0.6, 1.5], which is the range commonly observed for

portfolio exposures in models with only one factor. Factor innovations ut and idiosyncratic errors

eit are drawn from a common zero-mean Student t-distribution with covariance matrix according to

(23). Motivated by the results in the empirical application below, the degrees of freedom parameter

is set to ν = 6. Covariances are set to Σu = 18 and Σe = 4IN in order to match the variance of

the size-sorted portfolio returns in the empirical application. Note that this calibration yields a

realistically low signal-to-noise ratio. In particular, the λt process to be filtered has a variance of

about 0.48, which is very low relative to the variances of the factor and the idiosyncratic innovations.

For illustration, Figure 2(a) shows a simulated return of an asset with a risk factor exposure of 1

from a panel with N = 10 and T = 600 together with its conditional risk premium given by βλt−1.

The rather small magnitude of the risk premium fits the observation that stock returns show little

if any predictability.

10See the data section of the empirical application for more information.
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Figure 2: Simulated Return and Lambda. The figure shows simulated excess returns together with the
conditional expectation βλt−1(panel (a)) of an asset with β = 1 from one draw of a panel with N = 10 assets and
T = 600 observations. Panel (b) shows the associated lambda series together with a SD-APM(1,1) estimated series.

3.2 Models and Benchmarks

The simulated data are used to evaluate the performance of a (Gaussian) SD-APM(1,1) with score-

driven factor means and risk prices but time-constant betas. Two further variants of the SD-APM

are considered. The first is the specification discussed in section 2.4.1 assuming the pricing factor

ft is perfectly traded. A second alternative model specification assumes that the innovation terms

ut and et are commonly t-distributed, as discussed in section 2.4.2, and is referred to as t-SD-APM.

An empirical analysis with the SD-APM requires a careful choice of starting values for the

optimization routine and potentially additional parameter restrictions to ensure convergence of

the optimization and to reach a global maximum. This is particular challenging in a simulation

study in which such an estimation needs to be done for thousands of simulated panels. Because an

individual model specification for every Monte Carlo draw is infeasible, some adequate parameter

restrictions are imposed on matrices A and B that would also likely be imposed in an actual

empirical application. A rather stable SD-APM specification can be reached by restricting the

factor mean equation to an purely autoregressive process. Moreover, this levels the playing field with

the benchmark models that treat factor returns with an autoregression, such that improvements

in pricing and forecast errors can merely be attributed to an improved estimation of risk price

dynamics. In addition, it is worthwhile to restrict the risk price updating such that the coefficient

with respect to sµt is the negative of the one with respect to sλt . This allows further adjusting risk

premium dynamics according to innovations in the factor time series model.

A risk price series from a simulated panel of N = 10 assets and T = 600 observations, together

with the risk prices filtered with a SD-APM(1,1), is shown in Figure 2(b). The SD-APM seems to

correctly anticipate updating directions and turning points but with some delay, as information in

the forecast factor becomes available via pricing errors in the subsequent time period.

I consider the unconditional FMB regression estimates to be the first benchmark method for
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investigating the gain from introducing dynamics into risk prices. The DAPM of Adrian et al.

(2015) is considered as dynamic benchmark model. It models risk prices as affine-linear functions

of risk price forecasters as in (27) and is estimated with a three-pass regression approach. Because

the part of the data-generating process concerning the risk price dynamics completely follows the

same specification, the DAPM estimator has a trivially high information advantage over the other

approaches when using the correct forecaster zt as the explanatory variable. To address this issue,

the DAPM is estimated with a diffuse signal of the true forecast factor realization, ranging from

pure noise to the true signal. The DAPM is therefore estimated with a signal z̃κt drawn from

z̃κt = κzt + (1− κ)εt, εt
iid∼ N (0, σ2

z), (28)

where κ ∈ [0, 1]. For κ = 0, the signal exhibits no information about the true factors, and for κ = 1

the DAPM exploits the true forecasting factor series. The results will of course depend heavily

on the variance of the noise term εt. For better comparability, I set this variance parameter to be

equal to the variance of the true predictor process zt. The z̃κt is not used in SD-APM estimation

because this model does not make use of any external forecaster information in zt.

3.3 Simulation Results

This section presents the results of the estimated SD-APM specifications and benchmark models.

The central question is whether the SD-APM is able to filter risk premia movements without

knowing the driving forces and how well it can compete with models making use of information

about the predictable component.

3.3.1 In-Sample Pricing and Forecasting

The first metric for evaluating the in-sample performance is the root mean squared pricing error

(RMSE), which is computed as

RMSEi =

√√√√ 1

T

T∑
t=1

ê2
i,t (29)

for asset i. It reflects the average return share of asset i that cannot be explained by the (cross-

sectional) factor model. Table 2(a) shows the RMSEs averaged across N assets and S = 2500

replications. The number of time observations is given by T. The starting value of the risk price

λ0 is initialized with the unconditional regression estimate, and the first 50 time observations are

discarded before computing pricing errors in order to mitigate the influence of the starting value.

Not surprisingly, the SD-APM shows lower pricing errors than the static FMB benchmark across

all panels. Comparing the SD-APM to the DAPM reveals that the latter always performs better

if κ > 0.7, or put differently, if more than 70% of the information in signal z̃t results from the

true predictor. The breakeven κ at which the two models perform on par, slightly varies across
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Table 1: Pricing and Forecast Error Comparison

The table shows the average root mean squared pricing errors (RMSE) and root mean squared forecast errors
(RMSFE) of a Gaussian SD-APM(1,1), a SD-APM(1,1) with traded factor and a t-SD-APM(1,1) with
t-distributed innovations as well as competing benchmark models. The eight simulated panels have different
numbers of assets N, time observations T and are replicated 2500 times each. Benchmarks are a constant risk price
specification estimated fitted with the unconditional approach of Fama and MacBeth (1973) (FMB) and the
regression-based dynamic asset pricing model of Adrian et al. (2015) (DAPM). The share of information from the
correct forecast variable made available to the DAPM is denoted with κ.

N=10 N=25 N=100

T= 300 600 1200 T=300 600 1200 T=300 600 1200

(a) Average RMSE

SD-APM 2.016 2.014 2.013 2.012 2.012 2.010 2.011 2.008 2.007
SD-APM (traded) 2.041 2.048 2.049 2.038 2.047 2.050 2.040 2.045 2.050
t-SD-APM 2.017 2.015 2.013 2.015 2.013 2.010 2.014 2.010 2.008

FMB 2.020 2.027 2.032 2.018 2.027 2.032 2.019 2.026 2.031
DAPM κ = 0.0 2.030 2.033 2.035 2.029 2.033 2.034 2.029 2.032 2.034

0.1 2.029 2.033 2.034 2.028 2.033 2.034 2.029 2.031 2.034
0.2 2.028 2.031 2.033 2.028 2.031 2.033 2.028 2.030 2.032
0.3 2.026 2.028 2.030 2.026 2.029 2.030 2.026 2.027 2.029
0.4 2.023 2.024 2.025 2.022 2.024 2.025 2.023 2.023 2.024
0.5 2.019 2.019 2.019 2.018 2.019 2.019 2.019 2.018 2.018
0.6 2.014 2.013 2.013 2.014 2.014 2.013 2.015 2.013 2.012
0.7 2.011 2.009 2.008 2.010 2.009 2.008 2.011 2.008 2.007
0.8 2.008 2.006 2.005 2.007 2.006 2.005 2.008 2.005 2.004
0.9 2.006 2.004 2.003 2.005 2.004 2.003 2.007 2.003 2.002
1.0 2.006 2.004 2.003 2.005 2.004 2.003 2.006 2.003 2.002

(b) Average RMSFE

SD-APM 4.916 4.921 4.932 4.904 4.919 4.928 4.909 4.911 4.916
SD-APM (traded) 4.921 4.941 4.955 4.908 4.943 4.956 4.918 4.933 4.948
t-SD-APM 4.915 4.920 4.930 4.902 4.921 4.928 4.914 4.910 4.917

FMB 4.932 4.943 4.957 4.923 4.944 4.956 4.930 4.938 4.947
DAPM κ = 0.0 4.925 4.940 4.955 4.917 4.941 4.955 4.923 4.935 4.946

0.1 4.925 4.939 4.955 4.916 4.940 4.954 4.923 4.934 4.945
0.2 4.923 4.937 4.953 4.915 4.938 4.952 4.921 4.932 4.943
0.3 4.920 4.933 4.948 4.912 4.934 4.947 4.918 4.928 4.938
0.4 4.915 4.926 4.941 4.907 4.928 4.940 4.914 4.922 4.931
0.5 4.909 4.918 4.932 4.901 4.920 4.931 4.908 4.914 4.922
0.6 4.902 4.910 4.922 4.894 4.912 4.922 4.901 4.905 4.912
0.7 4.895 4.903 4.915 4.887 4.905 4.914 4.895 4.898 4.905
0.8 4.891 4.898 4.910 4.883 4.900 4.909 4.891 4.894 4.900
0.9 4.888 4.895 4.908 4.880 4.898 4.907 4.888 4.891 4.897
1.0 4.888 4.895 4.907 4.879 4.897 4.906 4.888 4.891 4.897

panels between 0.5 and 0.7. In particular, pricing error differences between the two dynamic models

indicate that the breakeven kappa becomes more favorable for the SD-APM with increasing N.

Comparing the pricing errors of the SD-APM variants, we notice two findings. First, the pricing

errors of the SD-APM crucially increase when assuming that ft is a traded factor. This is surprising,
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as the conditional factor mean and risk prices follow the same dynamics, although the factor is not

perfectly priced. The second finding is that the t-SD-APM specification assuming that innovations

are commonly t-distributed, as in the true DGP, performs equally well as the baseline Gaussian

SD-APM. If anything, the pricing errors of the t-SD-APM appear slightly higher.

The second metric for evaluating the in-sample performance is the root mean squared forecast

error (RMSFE), which is computed as

RMSFEi =

√√√√ 1

T

T∑
t=1

(
ri,t − β̂iλ̂t−1

)2
. (30)

for asset i. Whereas the pricing errors in RMSE evaluate the the overall pricing performance of the

model, including the fitted factor residuals ût, the RMSFE can be used to evaluate how well the

model captures the one-period-ahead prediction equation Et(rt) = βλt in-sample. Put differently,

the RMSFE measures the adequacy of the in-sample filtered risk premium series, which is given by

βλt. Notably, the RMSFEs shown in panel (b) of Table 2 slightly increase with sample length T,

which is likely a result of the extremely persistent lambda dynamics. Because of the latter, large

departures from the mean level, which are hard to capture by the models, are more likely in longer

samples. We see that the relative performance of the SD-APM compared to DAPM is weaker when

comparing forecast errors in panel (b) instead of pricing errors in (a). The breakeven κ in case of

forecast errors is located between 0.3 and 0.6, and it tends to be higher with an increasing number

of assets N. However, the improved performance of the SD-APM over the FMB approach is even

more pronounced for forecast errors. The comparison of the forecast errors of the SD-APM variants

resembles the results of the corresponding pricing error comparisons.

In conclusion, the in-sample pricing and forecast error comparisons show that the SD-APM

is able to partly filter risk premium variation in a realistically noisy panel setting. As expected,

knowledge of the true time series predictor zt causes the regression-based DAPM approach to be the

most promising one. However, the situation is different if we realistically assume that the predictor

is noisy and that only fifty percent of the variation results from the true predictor. Then, the

SD-APM, which completely abstains from using information from zt, can keep up with the DAPM

in a typical return panel of N = 10 assets and T = 600 monthly observations. This suggests

that the use of the SD-APM is worthwhile not only in situations where no time series predictors

are available but also when they are sufficiently uncertain. The baseline Gaussian SD-APM with

no traded factor assumption appears to be a particular worthwhile specification, as it produces

considerably lower pricing and forecasting errors than its traded version. In particular, it appears

that the factor innovations are too noisy to serve as an adequate forcing variable for risk price

dynamics. Moreover, it performs similar to the t-SD-APM that captures the correct distribution of

the innovations in the DGP, but it is less parsimonious because of the additional degrees of freedom

parameter. The similar pricing and forecasting performance likely stems from the risk price being

dependent on the first two moments of the innovations and not the ones of higher order, which are
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Table 2: Risk Premium Forecast Error Comparison

The table shows the average root mean squared pricing error (RMSE) of a Gaussian SD-APM(1,1), a SD-APM(1,1)
with traded factor and a t-SD-APM(1,1) with t-distributed innovations as well as competing benchmark models.
The eight simulated panels have different numbers of assets N, time observations T and are replicated 2 500 times
each. Benchmarks are a constant risk price specification estimated fitted with the unconditional approach of Fama
and MacBeth (1973) (FMB) and the regression-based dynamic asset pricing model of Adrian et al. (2015) (DAPM).
The share of information from the correct forecast variable made available to the DAPM is denoted with κ.

N=10 N=25 N=100

T= 300 600 1200 T=300 600 1200 T=300 600 1200

SD-APM 0.566 0.523 0.526 0.523 0.506 0.484 0.503 0.466 0.457
SD-APM (traded) 0.816 0.781 0.784 0.820 0.768 0.770 0.815 0.777 0.766
t-SD-APM 0.553 0.514 0.518 0.523 0.499 0.479 0.536 0.474 0.461

FMB 0.727 0.726 0.735 0.720 0.738 0.734 0.723 0.733 0.742
DAPM κ = 0.0 0.777 0.752 0.745 0.764 0.769 0.745 0.771 0.753 0.751

0.1 0.773 0.747 0.741 0.761 0.765 0.740 0.766 0.748 0.744
0.2 0.759 0.730 0.725 0.748 0.748 0.723 0.753 0.732 0.725
0.3 0.730 0.696 0.689 0.723 0.712 0.686 0.726 0.698 0.688
0.4 0.682 0.639 0.628 0.682 0.653 0.625 0.681 0.643 0.628
0.5 0.617 0.561 0.542 0.625 0.571 0.540 0.621 0.566 0.545
0.6 0.546 0.472 0.441 0.558 0.477 0.441 0.553 0.476 0.447
0.7 0.483 0.386 0.340 0.494 0.389 0.342 0.488 0.388 0.347
0.8 0.440 0.319 0.257 0.445 0.323 0.258 0.440 0.318 0.262
0.9 0.418 0.281 0.204 0.418 0.287 0.204 0.412 0.279 0.207
1.0 0.412 0.270 0.189 0.409 0.276 0.187 0.401 0.268 0.187

more precisely captured by the Student-t distribution.

3.3.2 Out-of-Sample Risk Premium Forecasting

Because ET (rT+1) = βλT , predicting stock market returns one period ahead requires an accurate

estimate of β and λT . The performance of the SD-APM is therefore evaluated with respect to its

ability to predict the one-period-ahead risk premium βλT out-of-sample. The specifications of the

SD-APM are the same as in the in-sample analysis, and the DAPM and FMB regressions are again

considered as benchmarks.

The predictive accuracy is evaluated with the out-of-sample risk premium error computed as√√√√ 1

S

S∑
s=1

(
βi(s)λT (s)− β̂i(s)λ̂T (s)

)2
(31)

for asset i. Note that, unlike in the in-sample analysis, the errors are now averaged only across the

Monte Carlo draws s. Hence, the only error to be used for the evaluations is the one made in the

last period T, which is the relevant one for forecasting T + 1 returns.

Table 2 provides out-of-sample risk premium forecast errors averaged across assets. Comparing

the errors of the FMB and the SD-APM approaches suggests that the SD-APM provides an im-
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proved out-of-sample risk premium prediction by capturing risk price variation. Moreover, the risk

premium prediction errors of the SD-APM generally decrease with the number of assets N and time

observations T. The breakeven kappa at which the SD-APM and the diffused DAPM perform on

par lies again between 0.6 and 0.7. Hence, we can generally confirm that the in-sample results also

apply out-of-sample as well. Moreover, the relative performance of the SD-APM compared to the

DAPM is slightly better for samples with T=300. Hence, the results suggest that the SD-DAPM

suffers less from a low number of time observations than the DAPM. One observation that might

explain this is that the latter regression-based approach tends to estimate the regression intercept

λ0 in (27) with a large standard error in short samples. A poor estimate of λ0 would then crucially

weaken the prediction, even if an informative predictor z̃T is provided.

Comparing the three SD-APM specifications with each other, we see first that the traded factor

version performs even worse than the FMB benchmark assuming static risk prices. This supports

the impression gained from the in-sample results that factor innovations are too noisy to predict

risk price dynamics, and one might be better off using cross-sectional errors instead. Another

observation, which fits the in-sample results, is that the t-SD-APM and the Gaussian specification

perform similarly well. However, the latter performs slightly better with a high panel size N,

whereas the t-SD-APM produces lower prediction errors for N equal to 10 or 25.

4 Empirical Application

The Monte Carlo study presented in the previous section provides evidence that the SD-APM

performs well in cross-sections simulated from correctly specified models. The following empirical

application intends to shed light on whether and to what extent the SD-APM can detect predictable

components of risk factors from actual equity return data.

4.1 Data

Test assets are ten size-sorted portfolios based on US equities. Monthly series have been obtained

from Kenneth French’s online library and span the period from January 1964 to June 2021. Hence,

we work with a return panel with dimensions N = 10 and T = 691. Two risk factors are considered

to price this cross-section of test assets:

ft =

(
MKTt

SMBt

)
, (32)

where MKT is the excess return on the value-weighted equity market portfolio, and SMB is the

small minus big portfolio return from Fama and French (1993).

Additional forecasting factors are used in the regression-based DAPM approach of Adrian et al.

(2015), which serves as the main dynamic benchmark. These factors are the same that are used
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for calibrating the DGP in the simulation study, hence we have

zt =

TSY 10t

TERMt

DYt

 (33)

where TSY10 is the 10-year treasury yield and TERM is the term spread, computed as the difference

between the yields of the 10-year treasury note and the three-month treasury bill. Both series are

obtained from the H.15 statistical release of the Board of Governors of the Federal Reserve System.

The third forecasting factor is the dividend yield of the S&P 500 index. All three series are also

used as forecasters in Adrian et al. (2015). More evidence on equity return predictability from

these factors can be found in Keim and Stambaugh (1986), Campbell (1987), Fama and French

(1989), and Campbell and Thompson (2008) for long-run treasury yields and Campbell and Shiller

(1988), Fama and French (1989), Campbell and Thompson (2008), and Cochrane (2008) for the

term structure and dividend yields.

4.2 Empirical Model Specifications

A dynamic version of the cross-sectional model in line with the baseline SD-APM framework of

Section 2 yields the following pricing equation:

rit+1 = βMKT
i,t (λMKT

t + uMKT
t+1 ) + βSMB

i,t (λSMB
t + uSMB

t+1 ) + ei,t+1 (34)

for test assets i = 1, . . . 10. The main specification to be considered is an SD-APM(1,1) with

Gaussian innovations. Non-diagonal elements in parameter matrices A and B in the updating

scheme (10) are set to zero. The diagonalization mutes the impact of scaled scores and factor

innovations on the parameter updating of the other factor. However, excluding those effects in the

present application does not crucially impair the model performance but rather yields a much more

parsimonious model. The resulting updating equations, parameterized along the long-run values

µ, λ, and β, are given by

µjt = µj + aµj s
µ
j,t + bµj

(
µjt−1 − µ

j
)

(35)

λjt = λ
j

+ aλj s
λ
j,t + bλj

(
λjt−1 − λ

j
)

(36)

vec
(
βji,t

)
= vec

(
β
j
i

)
+ aβi,js

β
i,j,t + bβi,jvec

(
βji,t−1 − βi

j
)

(37)

with scalar parameters µj , λ
j
, β

j
, aµj , a

λ
j , a

β
i,j , b

µ
j , b

λ
j and bβi,j , where i = 1, . . . , 10 and j = MKT,SMB.

Two established benchmark specifications are considered to investigate whether the SD-APM

approach can actually improve on filtering risk premia and explain return variation in cross-section

and time simultaneously. The first benchmark is the constant risk price specification underlying

classical Fama and MacBeth (1973) regressions. In line with Adrian et al. (2015), estimated in-
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novations ût from a VAR(1) model including the abovementioned factors are provided as pricing

factors in order to account for the significant persistence of the pricing factors. Betas in this bench-

mark are either constant over time or time-varying in a moving window of 60 months. The second

benchmark is a DAPM that explains risk price variations with the forecasting factors described

above. This yields a regression equation given by

λjt = λ0 + Λj,TSY 10
1 TSY 10t + Λj,TERM1 ∆TERMt + Λj,∆DY1 ∆DYt (38)

for each of the two cross-sectional risk factors j = MKT,SMB. Time-varying betas in the DAPM

are estimated with a Gaussian kernel regression approach, including a data-driven bandwidth choice

following Ang and Kristensen (2012). Estimation and inference for the DAPM is conducted as

described in Adrian et al. (2015), and I refer to them for more detail.

4.3 Empirical Results

In the following, the results of the empirical analysis will be discussed along different lines. First,

we examine parameter estimates of factor risk exposures and risk prices. Afterwards, we compare

the SD-APM with several benchmarks with respect to pricing and forecasting errors.

4.3.1 Factor Risk Exposures

Table 3 shows estimates of factor risk exposure of the 10 size-sorted equity portfolios. The first block

of five columns contains estimated parameters for the market factor (MKT), whereas the second

block contains those of the small-minus-big factor (SMB). Parameter estimates of the beta updating

scheme from a SD-APM(1,1) with time-varying betas are presented in the first three columns of

each block. The fourth and fifth columns of each block contain risk exposure estimates from a

constant beta SD-APM(1,1) and first-stage Fama and MacBeth (1973) regressions, respectively.

First, we can observe that the risk exposure estimates from the constant beta SD-APM speci-

fication are very close to those estimated by FMB. This holds particularly true for market betas.

Moreover, the unconditional betas β in the SD-APM specification with time-varying betas are quite

close to the unconditional FMB estimates, especially those with respect to MKT. In line with the

literature on the size effect, we find that all 10 size portfolios have exposure around unity to MKT,

whereas these loadings show a wedge with respect to SMB. We find significant time-variation for

all risk exposures, as indicated by aβ being significantly different from zero. The estimated values

for bβ reveal that the time-varying SD-APM betas quite persistently fluctuate around the uncon-

ditional risk exposure. Notable exceptions are the size2 and size10 exposures to SMB, which show

negative values bβ that are also considerably smaller than for the other exposures.

The filtered SD-APM betas can be compared to those estimated with the non-parametric ap-

proach of the time-varying beta DAPM. Figure 3 shows the corresponding plots of some selected

exposures together with betas estimated from rolling 60-month window Fama and MacBeth (1973)

first-stage regressions. Exposures implied by the SD-APM show a movement that is much larger
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Table 3: Risk Exposure Estimates

This table shows estimates of factor risk exposure parameters for the market factor (MKT) and the small-minus-big
factor (SMB). It reports results from a SD-APM(1,1) model with time-varying betas and a specification with
constant betas as well risk exposure estimates from first stage Fama and MacBeth (1973) (FMB) regressions.
Standard errors are shown in parentheses. Test assets are 10 value-weighted equity portfolios sorted on size with
monthly returns denoted in percentages. The sample period is 1964:01 - 2021:06.

MKT SMB

SD-APM (t.-v. beta) SD-APM FMB SD-APM (t.-v. beta) SD-APM FMB

β aβ bβ β β β aβ bβ β β

size1 0.872 0.046 0.964 0.875 0.868 1.161 0.070 0.902 1.205 1.177
(0.038) (0.011) (0.020) (0.017) (0.023) (0.040) (0.003) (0.041) (0.025) (0.034)

size2 1.001 0.023 0.983 0.997 1.001 1.052 -0.112 -0.184 1.087 1.088
0.026 0.009 0.019 0.012 0.017 0.006 0.016 0.121 0.017 0.025

size3 1.025 0.031 0.911 1.021 1.022 0.920 0.047 0.861 0.908 0.911
0.013 0.010 0.053 0.010 0.015 0.018 0.017 0.050 0.015 0.021

size4 1.015 0.044 0.755 1.013 1.015 0.850 0.069 0.841 0.809 0.812
0.011 0.010 0.087 0.010 0.014 0.019 0.003 0.059 0.014 0.021

size5 1.035 0.027 0.888 1.029 1.031 0.712 0.075 0.869 0.672 0.678
0.012 0.009 0.070 0.010 0.013 0.022 0.003 0.049 0.015 0.020

size6 1.021 0.034 0.900 1.020 1.020 0.530 0.057 0.793 0.482 0.484
0.014 0.010 0.062 0.011 0.014 0.019 0.005 0.089 0.016 0.021

size7 1.051 0.042 0.729 1.048 1.048 0.390 0.027 0.958 0.366 0.370
0.012 0.012 0.107 0.011 0.013 0.023 0.005 0.017 0.016 0.019

size8 1.047 0.025 0.700 1.038 1.039 0.244 0.019 0.984 0.251 0.258
0.011 0.011 0.147 0.010 0.012 0.027 0.005 0.011 0.015 0.018

size9 1.002 0.015 0.965 1.000 1.001 0.057 0.021 -0.570 0.061 0.063
0.013 0.006 0.020 0.009 0.011 0.011 0.007 0.190 0.014 0.016

size10 0.981 0.044 0.858 0.983 0.983 -0.192 0.050 1.000 -0.266 -0.266
0.005 0.007 0.040 0.004 0.007 0.027 0.003 0.002 0.006 0.010

than those implied by the DAPM, which are extremely smooth. In fact, the smooth non-parametric

estimates could be a kind of long-term trend of the score-driven beta, best seen for size1-SMB in

panel (b). The variations of the SD-APM betas resemble those of the rolling regression estimates

but appear less persistent. Rather, one observes exposure peaks in the shaded NBER recessions,

which tend to quickly fall and revert back to a medium level. An exception is the size10-SMB beta

in panel (f), which moves very persistently like the corresponding rolling beta.

In summary, with few exceptions, betas fluctuate significantly and persistently over time. How-

ever, it is also clear from Figure 3 that the range in which the betas fluctuate is quite narrow in

most cases.
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Figure 3: Time-Varying Beta Estimates. This figure shows estimated factor risk exposures for the market factor
(MKT) and the small-minus-big factor (SMB). It reports results from a SD-APM(1,1) and a DAPM from Adrian
et al. (2015). Rolling refers to betas estimated on a rolling 60-month window using Fama and MacBeth (1973) first
stage regressions. Test assets are value-weighted equity decile portfolios sorted on size with monthly returns denoted
in percentages. Shaded areas refer to NBER recessions. The sample period is 1964:01 - 2021:06.
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Table 4: Price of Risk Estimates

This table shows estimates of risk price parameters for the market factor (MKT) and the small-minus-big factor
(SMB). The first two columns show results from a constant-beta SD-APM(1,1). Following two rows provide
estimates from a dynamic asset pricing model (DAPM) in line with Adrian et al. (2015). Forecasting factors are
those discussed in Section 4.1. Columns 5 and 6 provide FMB regression results of a constant risk price
specification. Results from time-varying beta specifications of the SD-APM, the DAPM and 60-month rolling FMB
regressions are provided in the columns on the right. Standard errors are shown in parentheses. SD-APM standard
errors are derived from the numerically computed Fisher Information as described in Section 2.3. Errors for the
DAPM estimates are adjusted for cross-asset correlation in the residuals and for estimation error of the time-series
betas. FMB standard errors include a Shanken (1992) correction. Test assets are 10 value-weighted equity
portfolios sorted on size with monthly returns denoted in percentages. The sample period is 1964:01 - 2021:06.

Constant betas Time-varying betas

SD-APM DAPM FMB SD-APM DAPM FMB

MKT SMB MKT SMB MKT SMB MKT SMB MKT SMB MKT SMB

λ 0.600 0.232 0.621 0.217 0.621 0.217 0.773 0.104 0.633 0.257 0.603 0.111
(0.181) (0.142) (0.185) (0.158) (0.172) (0.125) (0.915) (0.309) (0.525) (0.373) (0.239) (0.165)

aλ 0.054 0.055 0.097 0.044
(0.024) (0.022) (0.028) (0.011)

bλ 0.151 0.681 0.310 0.750
(0.300) (0.163) (0.163) (0.108)

TSY10 -0.228 -0.148 -0.196 -0.125
(0.084) (0.063) (0.087) (0.061)

TERM 0.262 0.090 0.256 0.111
(0.138) (0.101) (0.143) (0.100)

DY 1.553 1.021 1.218 0.918
(0.629) (0.482) (0.636) (0.464)

4.3.2 Factor Risk Prices

We now come to the factor risk price dynamics estimated by the SD-APM. Table 4 provides es-

timates of the risk price parameters from the SD-APM(1,1) and benchmark models. The first six

columns show results of model specifications with betas assumed to be constant over time. The

unconditional risk prices λ are reported in the first row. We see that the unconditional estimates of

the two dynamic models are quite close to the FMB estimates. In addition, their standard errors,

shown in parentheses, are only slightly higher than those of the FMB estimates including a Shanken

(1992) correction for the pre-estimation bias from first-stage time series regressions. The estimates

for aλ reveal how risk prices react in response to the scaled score, which is the contemporaneous

cross-sectional regression error. They are estimated as 0.054 and 0.055 for the MKT and SMB fac-

tors respectively, and are statistically different from zero. This reveals that the risk prices of both

pricing factors significantly vary over time and that contemporaneous cross-sectional regression er-

rors are informative for inferring the time-variation of risk prices. The coefficients ΛTSY 10
1 ,ΛTERM1 ,
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and ΛDY1 indicate how risk prices react in the benchmark DAPM based on equation (38). The

reported estimates show, in line with Adrian et al. (2015), that the three forecasting factors are

capable of predicting risk price movements. This is valid for the TERM factor to a limited extent,

as the corresponding coefficient is only significant in the MKT regression.

An examination of the time-varying beta specifications, the results of which are shown in

columns 7 to 10 of Table 4, reveals that unconditional risk prices estimated by the SD-APM

deviate more strongly from those obtained with the classical FMB approach. This particularly

holds for the MKT risk price. Moreover, standard errors for the unconditional risk prices increase

greatly. Consider that the time-varying beta specification requires two additional parameters to

be estimated for each beta. If we leave out the entries in the covariance matrices, this makes it

necessary to estimate 3K + 3NK = 66 parameters instead of 3K + 3NK = 26 in the constant

beta specification. Hence, the increased number of parameters to be estimated may explain the

increased uncertainty in estimating λ. With respect to the aλ estimates, we see that this coefficient

becomes larger for MKT and slightly smaller for SMB, while both remain statistically significant.

The bλ estimates reveal that both risk price processes become more persistent when allowing for

time-varying betas. The estimates of coefficients ΛTSY 10
1 ,ΛTERM1 , and ΛDY1 from the benchmark

DAPM are quite similar in both the time-varying and the time-constant beta setting. However,

we also see a clear increase of the corresponding standard errors of the unconditional risk price

estimate.

We now turn to a graphical comparison of filtered factor risk prices that are provided in Figure

4. The upper-left panel shows market risk prices from specifications with constant betas. The

most striking observation is that SD-APM-implied risk prices are much less persistent than the

DAPM trajectories that would be predicted by forecasting factors. Moreover, the two risk price

processes differ considerably from each other, which is also evidenced by an empirical correlation of

0.086. If anything, one can recognize some connection in the early 70s. The SD-APM-implied risk

premia do not show the commonly observed pattern of generally increased risk prices in recessions,

which are indicated by the shaded areas in Figure 4. What can be found instead is a pattern

where the market risk price tends to go down at the beginning and increases towards then end

of a recession. This is best seen in the global financial crisis period around 2008. This down

and up behavior is even more pronounced in the risk prices filtered from the SD-APM with time-

varying betas that is shown in the lower-left panel. Whereas the corresponding DAPM trajectory

is almost unchanged, SD-APM-implied market risk prices are considerably more volatile based on

time-varying beta specifications. It is also noteworthy that the dynamics in the SD-APM react in

particular to financial market-specific shocks. Consider, for example, the striking drop in October

1987, when a massive unexpected crash, Black Monday, occurred. This is also a result of the

observation-driven construction of the SD-APM. While the DAPM explains fluctuations in risk

prices through instrument variables, the SD-APM dynamics are driven by deviations between the

observed returns and portfolios and those predicted by the assumed factor model. In the case of

an extreme event such as Black Monday, it must then be quantified how much the observation
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Figure 4: Time-Varying Risk Prices. This figure shows estimated factor risk prices for the market factor
(MKT) and the small-minus-big factor (SMB). It reports results from a SD-APM(1,1) and a DAPM from Adrian
et al. (2015). Reults in panel (a) are based on constant beta specifications whereas those in panel (b) are based
on time-varying betas. Test assets are value-weighted equity decile portfolios sorted on size with monthly returns
denoted in percentages. Shaded areas refer to NBER recessions. The sample period is 1964:01 - 2021:06.

results from a change in the parameters and how much merely results from an extreme realization

of the innovation terms. However, it cannot be conclusively clarified here without doubt whether

the drop on Black Monday resulted from a correction of future return expectations, which would

be reflected by a lower lambda, or is due to the way the SD-APM is constructed.

The estimated SMB risk price paths are shown in the plots on the left of Figure 4. As expected

from the parameter estimates, the SMB risk price dynamics are much more persistent and track

the DAPM-implied SMB risk prices more closely until the second half of the 1990s. However, in

the last 25 years of the sample, the series implied by the two different methods differ considerably.

The DAPM proposes low lambdas at the turn of the millennium and increased lambdas during the

global financial crisis. Neither of these movements is captured by the SD-APM. Instead, the SD-

APM-implied SMB risk price shows a pronounced peak just before the burst of the dotcom bubble

and considerably lower SMB risk prices during and after the global financial crisis. The latter is in

line with the SMB factor realizations showing no reaction to the global financial crisis, whereas the
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regression-based benchmark would imply higher SMB premia during the financial crisis. It could be

that the SD-APM is not able to capture the increased post-crisis SMB premia. However, another

explanation for the differences in estimated risk premia could be that the relations to the predictor

variables are unstable and thus the DAPM implied risk premia are misleading. An observation

supporting this view is that DAPM-implied premia to MKT and SMB share very similar dynamics,

although returns and SD-APM premia differ considerably across factors.

4.3.3 Pricing and Forecasting Error Comparisons

In order to evaluate the fit of the SD-APM, we compare pricing and forecasting errors from different

SD-APM specifications as well as from DAPM and FMB benchmarks, which are shown in Table

5. The first four columns show the results of the Gaussian SD-APM specifications, which differ

in whether the betas are constant or vary over time and whether the pricing factors are traded

or not. Columns 5 and 6 show results for constant beta SD-APMs with t-distributed residuals in

specifications with either non-traded or traded factors. Column 7 refers to a two-step score-driven

filter in which time-varying betas are estimated in a first stage based on score-driven time-varying

coefficient model. Time-varying risk prices and factor means are then estimated in a second stage

with an SD-APM based on betas from the first stage. 11 This approach can be understood

as computational alternative to estimate the full SD-APM in Column 1. Columns 8 and 9 show

results from DAPM specifications using the forecasting variables described in section 4.1 with betas

being either constant or time-varying. The last two columns show errors from constant lambda

specifications estimated with Fama and MacBeth (1973) regressions, where betas are constant or

pre-estimated with a rolling window of 60 months. Errors from fitting the first 60 observations are

discarded in order to make the results comparable with the rolling model for which these are not

available. In addition, this exclusion serves as a burn-in period to mitigate the impact of starting

values in the score-driven models.

With respect to the pricing performance, we recognize that all dynamic models perform consid-

erably better than the unconditional FMB specification, which shows an average RMSE of 1.565.

The best-performing model with respect to the average RMSE is the regression-based DAPM with

time-varying lambdas and betas. This is not surprising, as this model uses predictor information

in zt that is not used by the score-driven and constant model specifications. More surprising is

that the (Gaussian) time-varying beta SD-APM specifications have average RMSEs of 1.159 and

1.160, which are quite close to the one of the DAPM benchmark that is given by 1.108. If we

estimate the time-varying beta SD-APM with the computationally less demanding but also less

efficient two-stage approach 2SF, we still get an average RMSE of 1.177. Hence, in terms of pricing

errors, the score-driven models can crucially make up for not knowing the predictors by evaluating

contemporaneous model errors. If we consider models that assume constant betas, we even see that

the (Gaussian) SD-APM with an RMSE of 1.194 performs much better than the DAPM benchmark

with an RMSE of 1.352. This could be due to the greater flexibility of the SD-APM to accom-

11More details on this benchmark are provided in Supplementary Appendix D.3.
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Table 5: Root mean squared pricing and forecasting errors

The table shows root means squared pricing errors (RMSE) and rooot mean squared forecast errors (RMSFE) of
different asset pricing model specifications. Pricing factors are the market factor (MKT) and the small-minus-big
factor (SMB). The first four columns show the results of the Gaussian SD-APM specifications, which differ in
whether the betas are constant or vary over time and whether the pricing factors are traded or not. Columns 5 and
6 show results for constant beta SD-APMs with t-distributed residuals in specification with non-traded and traded
factors. Columns 7 and 8 show results from DAPM specifications using the forecasting variables described in
section 4.1 and having betas either constant or time-varying. The last two columns show errors from constant
lambda specifications estimated with Fama and MacBeth (1973) regressions where betas are constant or
pre-estimated on a rolling window of 60 months. Test assets are 10 value-weighted equity portfolios sorted on size
with monthly returns denoted in percentages. The sample period is 1964:01 - 2021:06.

SD-APM t-SD-APM 2SF DAPM FMB

λt x x x x x x x x x
βt x x x x x
traded x x x

(a) RMSE

size1 1.921 1.932 1.974 1.996 1.990 1.995 1.974 1.702 2.406 2.467 2.590
size2 1.353 1.369 1.369 1.377 1.372 1.378 1.350 1.259 1.703 1.829 1.896
size3 1.057 1.064 1.127 1.130 1.129 1.133 1.103 1.046 1.369 1.552 1.634
size4 1.033 1.031 1.122 1.120 1.124 1.125 1.071 1.064 1.326 1.519 1.597
size5 1.083 1.074 1.145 1.140 1.141 1.141 1.123 1.060 1.251 1.417 1.500
size6 1.208 1.203 1.262 1.260 1.265 1.269 1.230 1.186 1.335 1.496 1.583
size7 1.212 1.209 1.217 1.218 1.215 1.219 1.211 1.159 1.296 1.409 1.479
size8 1.167 1.165 1.153 1.154 1.151 1.154 1.152 1.106 1.191 1.321 1.362
size9 1.071 1.072 1.066 1.066 1.064 1.067 1.068 1.032 1.098 1.211 1.250
size10 0.486 0.487 0.502 0.501 0.501 0.501 0.490 0.466 0.544 0.735 0.754

Average 1.159 1.160 1.194 1.196 1.195 1.198 1.177 1.108 1.352 1.496 1.565

(b) RMSFE

size1 6.340 6.325 6.367 6.427 6.390 6.398 6.381 6.371 6.371 6.444 6.437
size2 6.510 6.500 6.525 6.564 6.557 6.558 6.539 6.513 6.512 6.563 6.560
size3 6.166 6.165 6.173 6.201 6.213 6.211 6.186 6.135 6.134 6.199 6.194
size4 5.936 5.937 5.940 5.965 5.981 5.978 5.955 5.898 5.897 5.964 5.960
size5 5.778 5.782 5.778 5.797 5.816 5.810 5.788 5.735 5.733 5.793 5.790
size6 5.423 5.443 5.420 5.437 5.459 5.451 5.431 5.369 5.367 5.437 5.432
size7 5.363 5.387 5.360 5.378 5.395 5.387 5.370 5.328 5.329 5.379 5.375
size8 5.161 5.193 5.154 5.166 5.184 5.174 5.163 5.121 5.121 5.167 5.162
size9 4.752 4.788 4.745 4.754 4.771 4.762 4.751 4.715 4.716 4.756 4.753
size10 4.371 4.417 4.357 4.355 4.366 4.363 4.359 4.328 4.327 4.363 4.359

Average 5.580 5.594 5.582 5.604 5.613 5.609 5.592 5.551 5.551 5.606 5.602

modate different patterns of risk price dynamics compared to DAPM risk prices, whose dynamics

are tied to the predictor variables. In addition, we also find that taking time-varying lambdas into

account within the SD-APM results in a greater improvement of pricing performance than taking

beta dynamics into account as well. This is different in the case of the DAPM, where the additional

inclusion of beta dynamics leads to a considerable improvement in pricing performance. A potential
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reason for this could be that the non-parametrically estimated DAPM beta dynamics cover some

lambda dynamics that cannot be explained by the employed risk price predictors.

Comparing the different SD-APM specifications, we see that modeling residuals with a multi-

variate t-distribution does not improve the pricing performance compared to the Gaussian spec-

ifications, although the degrees of freedom parameter is estimated with 6.23 (6.19 with traded

factors). Hence, the gains from a better fit of the residual distribution do not seem to outweigh the

additional uncertainty from introducing the additional degrees of freedom parameter. This seems

reasonable considering that risk premia are mainly determined by the dynamics of the first two

moments of the distribution and not by the higher order moments, which are better captured by

the Student-t distribution.

Panel (b) of Table 5 shows the RMSFEs, which reveal how well the conditional risk premium

βtλt forecasts next period returns rt. These errors are generally higher than pricing errors because

the risk premium makes up a rather small share of the overall return. Moreover, the differences

between the models become reasonably smaller. However, we see that the DAPM benchmarks per-

form best with an RMSFE of 5.51 each. This is 0.092 less than the unconditional FMB benchmark.

The best-performing SD-APM specification is the one with time-varying betas and no traded factor

assumption that has an RMSFE of 5.580 which is 0.022 less than the unconditional FMB bench-

mark. Hence, 24 percent of the forecasting improvement from using external predictors in a DAPM

can also be achieved by an SD-APM that makes no use of the predictor information. Moreover, we

see that including time-varying betas does not have a major impact on the forecast performance.

Hence, the improved forecast performance merely stems from risk price dynamics and not from

changing exposures. Another remarkable finding is that the SD-APM specifications, which enforce

pricing factors to be tradeable perform considerably worse than those specifications without such

enforcement. In particular, the RMSFE of the constant beta SD-APM with traded factors is higher

than the one of the unconditional FMB specification. This observation can be explained by the fact

that the updating scheme of the traded factor version only uses factor innovations as drivers. Con-

sideration of the cross-sectional relationship and thus of the other returns is completely omitted.

This suffices to keep pricing errors small, but the information of the return panel for forecasting

the risk premium remains unused. In addition, the consideration t-distributed innovations worsen

the forecasting performance as well, and is slightly in line with the simulation results. A possible

explanation is that the additional scaling function C in the updating (25) over-dampens the impact

of extreme observations, which seem to be particularly informative.

5 Conclusions

This paper has introduced an empirical dynamic asset pricing framework that allows for time-

varying lambdas and betas, which are unobserved processes filtered from the cross-section of asset

returns and the asset pricing model’s factor structure, in line with the more general GAS model

developed by Creal et al. (2013). It is applicable to a wide range of linear factor models in the
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finance literature. A main advantage is that no external predictors are required to describe the

time dynamics of risk prices or exposures. A simulation study provides evidence that the method

is capable of filtering substantial risk price movements from a model with correctly specified cross-

sectional factors under a realistic signal-to-noise ratio. Moreover, it can compete with a dynamic

estimation approach taking signals of true time series drivers into account. The results point to

a non-negligible source of possible misspecification in the time series model that can be evaluated

and possibly circumvented by utilizing the SD-APM framework.

Updating schemes for the SD-APM class with elliptically distributed innovations have been

derived. It turns out that the risk price updating direction within this class is unaffected by the

distributional assumptions but the magnitude of the parameter movement depends on the shape

of the corresponding probability density function. The presented SD-APM(1,1) specification with

constant betas and normally distributed innovation terms is a particularly tractable model with

respect to the complexity and computational burden for estimation. Its use has been illustrated

by an empirical application filtering an adequate series of equity risk premia, revealing movements

that are not shown by the typically extremely persistent economic forecasting factors.

Appendix

A Proofs

Vector-by-vector derivatives are denoted in denominator layout such that ∂v
∂w is a n × m-matrix

given a n-dimensional vector v and m-dimensional vector w. The vec operator stacks the columns

of a n ×m-matrix X underneath the other such that vec(X) is a n ·m-dimensional vector. The

n-dimensional identity matrix is denoted with In and the Kronecker product with ⊗.

Before dealing with the main technical results of the paper, I provide two lemmas collecting

some helpful properties of spherically distributed random vectors. A n-dimensional random vector

x is spherically distributed if x = rs, where s is uniformly distributed on the (n-1)-dimensional unit

sphere and r is a non-negative random number that is independent of s. Moreover, let ‖x‖ denote

the euclidean norm of a vector x.

Lemma 1. Suppose the n-dimensional random vector x follows a spherical distribution, then:

(i) ‖x‖ and x
‖x‖ are independent.

(ii) E
(

x
‖x‖

x>

‖x‖

)
= 1

nIn

Proof. See proofs of Theorem 2.3 and Theorem 2.7 in Fang et al. (1990).
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Lemma 2. Suppose that Z ∼ F (n, ν), then:

E

(
Z(

ν
n + Z

)2
)

=
n2

(n+ ν + 2)(n+ ν)
(A.1)

Proof. See Supplementary Material C.1.

A.1 Proof of Proposition 1

Proof of Proposition 1. The common observational density of ft and rt can be derived with the

given density functions. We find

p(rt, ft|Ft−1, θt) = p(rt|ft,Ft−1, θt)p(ft|Ft−1, θt) (A.2)

= (2π)−
N
2 |Σe|−

1
2 exp

{
−e
>
t Σ−1

e et
2

}
(2π)−

K
2 |Σu|−

1
2 exp

{
−u
>
t Σ−1

u ut
2

}
(A.3)

and the conditional log-likelihood

lt = ln p(rt, ft|Ft−1, θt) = −(N +K) lnπ − 1

2
ln |Σe| −

1

2
ln |Σu| −

1

2
e>t Σ−1

e et −
1

2
u>t Σ−1

u ut. (A.4)

The score with respect to the factor mean µ can be derived as:

∇µt =
∂lt
∂µt−1

= − ∂et
µt−1

· Σ−1
e et −

∂ut
µt−1

· Σ−1
u ut = −β>t−1Σ−1

e et + Σ−1
u ut (A.5)

and the corresponding block entry of the Fisher information as

Iµt = Et−1

(
∇µt∇

µ
t
>
)

= β>t−1Σ−1
e Et−1

(
ete
>
t

)
Σ−1
e βt−1 + Σ−1

u Et−1

(
utu
>
t

)
Σ−1
u (A.6)

= β>t−1Σ−1
e βt−1 + Σ−1

u . (A.7)

The score with respect to the risk price λ can be derived as:

∇λt =
∂lt
∂λt−1

= − ∂et
λt−1

· Σ−1
e et = β>t−1Σ−1

e et (A.8)

and

Iλt = Et−1

(
∇λt∇λt >

)
= β>t−1Σ−1

e Et−1

(
ete
>
t

)
Σ−1
e βt−1 = β>t−1Σ−1

e βt−1. (A.9)

For the Fischer Information part concerning factor means and risk prices we find:

Iµ,λt = Et−1

(
∇µt∇λt >

)
= −β>t−1Σ−1

e Et−1

(
ete
>
t

)
Σ−1
e βt−1 + Σ−1

u Et−1

(
ute
>
t

)
Σ−1
e βt−1 (A.10)

= −β>t−1Σ−1
e βt−1. (A.11)
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For the risk exposure updating, we derive

∇βt =
∂lt

∂vec(βt−1)
= − ∂et

∂vec(βt−1)
Σ−1
e et (A.12)

=
∂

∂vec(βt−1)
[vec(βt−1(λt−1 + ut))] · Σ−1

e et (A.13)

=
∂

∂vec(βt−1)

[
((λt−1 + ut)

> ⊗ IN )vec(βt−1)
]
· Σ−1

e et (A.14)

= ((λt−1 + ut)⊗ IN )Σ−1
e et (A.15)

= ((λt−1 + ut)⊗ Σ−1
e )et. (A.16)

The corresponding Fisher information is given by

Iβt = Et−1

(
∇βt∇

β
t
>
)

(A.17)

= Et−1

(
((λt−1 + ut)⊗ Σ−1

e )Et−1

(
ete
>
t |ut

)
((λt−1 + ut)

> ⊗ Σ−1
e )
)

(A.18)

= Et−1

(
((λt−1 + ut)⊗ Σ−1

e )(1⊗ Σe)((λt−1 + ut)
> ⊗ Σ−1

e )
)

(A.19)

= (λt−1λ
>
t−1 + Σu)⊗ Σ−1

e . (A.20)

The scaling matrix can therefore be derived as

St =

β
>
t−1Σ−1

e βt−1 + Σ−1
u −β>t−1Σ−1

e βt−1 0

−β>t−1Σ−1
e βt−1 β>t−1Σ−1

e βt−1 0

0 0 (λt−1λ
>
t−1 + Σu)⊗ Σ−1

e


−1

(A.21)

=

Σu Σu 0

Σu (β>t−1Σ−1
e βt−1)−1 + Σu 0

0 0 (λt−1λ
>
t−1 + Σu)−1 ⊗ Σe

 (A.22)

which can be used to derive the driving sequences:

st =

s
µ
t

sλt

sβt

 = St

∇
µ
t

∇λt
∇βt

 (A.23)

=

 −Σuβ
>
t−1Σ−1

e et + ΣuΣ−1
u ut + Σuβ

>
t−1Σ−1

e et

−Σuβ
>
t−1Σ−1

e et + ΣuΣ−1
u ut + (β>t−1Σ−1

e βt−1)−1β>t−1Σ−1
e et + Σuβ

>
t−1Σ−1

e et(
(λt−1λ

>
t−1 + Σu)−1 ⊗ Σe

)
((λt−1 + ut)⊗ Σ−1

e )et

 (A.24)

=

 rt − µt−1

(β>t−1Σ−1
e βt−1)−1β>t−1Σ−1

e rt − λt−1(
(λt−1λ

>
t−1 + Σu)−1(λt−1 + ut)

)
⊗ et

 (A.25)
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A.2 Proof of Proposition 2

Proof of Proposition 2. In case of traded factor, the observation density of ut and et can be derived

as follows

p(rt, ft|Ft−1, θt) = (2π)−
N
2 |Ωe|−

1
2 exp

{
−e
>
t Σ−1

e et
2

}
(2π)−

K
2 |Σu|−

1
2 exp

{
−u
>
t Σ−1

u ut
2

}
(A.26)

The conditional log-likelihood of the observation density can then be written as

lt = ln p(rt, ft|Ft−1, θt) =− (N +K) lnπ − 1

2
ln |Σe| −

1

2
ln |Σu| −

1

2
(rt − βt−1ft)

>Σ−1
e (rt − βt−1ft)

− 1

2
(ft − λt−1)>Σ−1

u (ft − λt−1). (A.27)

The score with respect to the risk price λ can be derived as:

∇λt =
∂lt
∂λt−1

= Σ−1
u (ft − λt−1) (A.28)

and the corresponding Fisher information as

Iλt = Et−1

(
∇λt∇λt >

)
= Σ−1

u . (A.29)

The driving sequence for the risk price updating can therefore derived as

sλt = (Iλt )−1∇λt = ft − λt−1. (A.30)

For the risk exposure updating, we derive

∇βt =
∂lt

∂vec(βt−1)
= (ft ⊗ IN )Σ−1

e (rt − βt−1ft) = (ft ⊗ Σ−1
e )(rt − βt−1ft) (A.31)

The corresponding Fisher information is given by

Iβt = −Et−1

(
∂

∂vec(βt−1)
∇βt
)

= Et−1

(
(ft ⊗ IN )(f>t ⊗ Σ−1

e )
)

= Et−1

(
ftf
>
t ⊗ Σ−1

e

)
(A.32)

=
(
λt−1λ

>
t−1 + Σu

)
⊗ Σ−1

e (A.33)

such that the driving sequence for the beta updating can be derived as

sβt = (Iβt )−1∇βt =

((
λt−1λ

>
t−1 + Σu

)−1
⊗ Σe

)
(ft ⊗ Σ−1

e )(rt − βt−1ft) (A.34)

=

((
λt−1λ

>
t−1 + Σu

)−1
ft ⊗ IN

)
(rt − βt−1ft) = vec

(
etf
>
t (λt−1λ

>
t−1 + Σu)−1

)
(A.35)
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A.3 Proof of Proposition 3

Proof of Proposition 2. Because of Theroem 2.16 in Fang et al. (1990), it holds xt := (f>t , r
>
t )> ∼

EN+K(µx,Ωx, ψ) with

µx =

(
µt−1

βt−1λt−1

)
and Ωx =

(
Ωu Ωuβ

>
t−1

βt−1Ωu βt−1Ωuβ
>
t−1 + Ωe

)
. (A.36)

The log observation density can then be derived as

ln p(xt|Ft−1, θ) = −1

2
ln |Ωx|+ lnψ

(
(xt − µx)>Ω−1

x (xt − µx)
)

(A.37)

= −1

2
ln |Ωx|+ lnψ

(
‖x̃t‖2

)
. (A.38)

The scores for the factor mean and risk price updating are given by

∇δt = −2
∂ ln p(xt|Ft−1, θ)

∂δt−1
= −2

ψ′
(
‖x̃t‖2

)
ψ
(
‖x̃t‖2

)DΩ−1
x (xt − µx) (A.39)

with δt = (µ>t , λ
>
t )> and D = ∂µx

∂δt−1
. Define x̃t = Ω

−1/2
x (xt − µx) with Ω

1/2
x being the Cholesky

factor of Ωx. Remark that x̃t is spherically distributed and therefore fulfills the conditions for

applying Lemma 1. The Fisher information matrix can then be computed as

Iδt = Et−1

(
∇δt∇δt>

)
= 4Et−1


ψ′

(
‖x̃t‖2

)
ψ
(
‖x̃t‖2

)
2

DΩ−1
x (xt − µx)(xt − µx)>Ω−1

x D>

 (A.40)

= 4Et−1

‖x̃t‖2
ψ′

(
‖x̃t‖2

)
ψ
(
‖x̃t‖2

)
2

DΩ−1/2
x

x̃t
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x̃>t
‖x̃t‖

Ω−1/2
x D>

 (A.41)

= 4Et−1

‖x̃t‖2
ψ′

(
‖x̃t‖2

)
ψ
(
‖x̃t‖2

)
2
DΩ−1/2

x Et−1

(
x̃t
‖x̃t‖

x̃>t
‖x̃t‖

)
Ω−1/2
x D> (A.42)

=
4

N +K
Et−1

‖x̃t‖2
ψ′

(
‖x̃t‖2

)
ψ
(
‖x̃t‖2

)
2
DΩ−1

x D> (A.43)

The third and fourth equality result from Lemma 1(i) and (ii), respectively. Because of

Ω−1
x =

(
Ω−1
u + β>t−1Ω−1

e βt−1 −β>t−1Ω−1
e

−Ω−1
e βt−1 Ω−1

e

)
and D =

∂µx
∂δt−1

=

(
IK 0

0 β>

)
, (A.44)
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we get

sδt = (Iδt )−1∇δt =
−(N +K)

ψ′(‖x̃t‖2)
ψ(‖x̃t‖2)

2Et−1

(
‖x̃t‖2

(
ψ′(‖x̃t‖2)
ψ(‖x̃t‖2)

)2
)(DΩ−1

x D>)−1DΩ−1
x (xt − µx) (A.45)

= C(‖x̃t‖2 , ψ)

(
Ω−1
u + β>t−1Ω−1

e βt−1 −β>t−1Ω−1
e βt−1

−β>t−1Ω−1
e βt−1 β>t−1Ω−1

e βt−1

)−1

·

(
(Ω−1

u + β>t−1Ω−1
e βt−1)(ft − µt−1)− β>t−1Ω−1

e (rt − βt−1λt−1)

β>t−1Ω−1
e βt−1(ft − µt−1)− β>t−1Ω−1

e (rt − βt−1λt−1)

)
(A.46)

= C(‖x̃t‖2 , ψ)

(
Ωu Ωu

Ωu (β>t−1Ω−1
e βt−1)−1 + Ωu

)(
(Ω−1

u + β>t−1Ω−1
e βt−1)(ft − µt−1)− β>t−1Ω−1

e (rt − βt−1λt−1)

−β>t−1Ω−1
e βt−1(ft − µt−1) + β>t−1Ω−1

e (rt − βt−1λt−1)

)
(A.47)

= C(‖x̃t‖2 , ψ)

(
ft − µt−1

(β>t−1Ω−1
e βt−1)−1β>t−1Ω−1

e rt − λt−1

)
. (A.48)

A.4 Proof of Corollary 1

(i) The density generator of a (N+K)-dimensional normal distribution is given by ψ(x) =

(2π)N/2e−x/2. By observing that ψ solves the differential equation ψ′ = −1
2ψ, we find that

−2ψ′(‖x̃t‖)/ψ(‖x̃t‖) = 1 and therefore

C(‖x̃t‖ , ψ) =

(
4

N +K
Et−1

(
‖x̃t‖2

(
−ψ′(‖x̃t‖)/2
ψ(‖x̃t‖)

)2
))−1

(A.49)

=

(
1

N +K
Et−1

(
‖x̃t‖2

))−1

=

(
1

N +K

N+K∑
i=1

Et−1

(
x̃>it x̃it

))−1

= 1 (A.50)

because x̃t ∼ N(0, IN+K).

(ii) The density generator ψ of the (N+K)-dimensional Student’s t-distribution is therefore given

by

ψ(x) =
Γ
(
ν+N+K

2

)
(νπ)

N+K
2 Γ

(
ν
2

) (1 +
x

ν

)− ν+N+K
2

(A.51)

and can be used to compute

−ψ
′(‖x̃t‖2)

ψ(‖x̃t‖2)
= −
−ν+N+K

2

(
1 + ‖x̃t‖2

ν

)− ν+N+K
2

−1
1
ν(

1 + ‖x̃t‖2
ν

)− ν+N+K
2

=
1

2

ν +N +K

ν + ‖x̃t‖2
. (A.52)
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The scaling can be reformulated as

C(‖x̃t‖ , ψ) =
(N +K)2

(ν +N +K)(ν + ‖x̃t‖2)

Et−1

 Z(
ν

N+K + Z
)2



−1

, (A.53)

with Z := ‖x̃t‖2 /(N + K). Since ‖x̃t‖2 is a sum of N + K squared centered t-distributed

random numbers with degrees-of-freedom-parameter ν, we know that Z ∼ F (N +K, νe) (see,

for example, p.22 in Fang et al. (1990)). Applying Lemma 2 yields

C(‖x̃t‖ , ψ) =
νe +N +K + 2

ν + ‖x̃t‖2
. (A.54)

B Time-Varying Beta Simulation Results

Table 6: Dynamic Beta Processes

β3,t Slow Cycle 0.8 + 0.5 · sin (2πt/T )
β4,t Fast Cycle 0.9 + 0.5 · sin (4πt/T )
β5,t Constant 1
β6,t Linear Trend 1.1 + 0.5t/T
β7,t Break 1.2 + 0.5 · 1 (t < T/2)− 0.5 · 1 (t ≥ T/2)
β8,t Several Breaks 1.3 + 0.5 · 1 (t < T/4 ∧ 2T/4 ≤ t < 3T/4)

−0.5 · 1 (T/4 ≤ t < 2T/4 ∧ t ≥ 3T/4)

This section provides simulation evidence that the SD-APM is able to adequately filter time-

varying betas in addition to time-varying risk prices and factor means. The data generating process

(DGP) ist the same as discussed in section 3.1, but with some of the betas being varying in time.

Table 6 shows the different specifications for β3 to β8. The remaining betas are constant at their

previously calibrated level. The time-varying beta simulation exercise is conducted on a panel with

N=10 assets and T=600, as this choice reflects most adequately the size of the data set in the

empirical stock return application. A (Gaussian) SD-APM model with the same specification as

described in section 3.2 but with score-driven beta dynamics is estimated on S=2500 Monte Carlo

replications. Coefficient matrices Aβ and Bβ are restricted to be diagonal and score-driven betas

are initialize at the constant FMB estimate.

Figure 5 shows beta estimates from the SD-APM averaged across S=2500 Monte Carlo replica-

tions alongside 90% confidence bands and the true trajectory. Based on the average estimates and

the rather narrow confidence bands, we see that the SD-APM is quite successful in tracking the

different beta dynamics. As characteristic for observation-based models, the SD-APM estimates

the beta dynamics with a small delay, best seen in the cycles in panels (a) and (b). Panel (c)
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Figure 5: Time-Varying Beta Estimates. This figure shows estimated factor risk exposures from a (Gaussian)
SD-APM specification with time-varying betas.

reveals that the SD-APM can also nicely adapt to situations in which the exposure parameter is

indeed constant over time. Linear trends can be captured as seen in panel (d), but the average

estimate slightly drifts apart for higher t. Moreover, breaks are nicely anticipated by the SD-APM,

as can be seen in in panel (e). The adjustment period after the break takes roughly 80 periods.

The performance weakens with the occurrence of several breaks in panel (f), but the SD-APM still

correctly detects the breaks and adjusts the parameter accordingly.

In conclusion, we can tell that the SD-APM is able to track different styles of time-variation

in betas. This provides reasonable confidence that the results from the constant beta simulation
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study hold true in a more general setting including time-varying betas.
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