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Abstract

We introduce a �nancial market model populated by imperfectly informed mean-variance investors.
The set-up is identical to the Capital Asset Pricing Model (CAPM), but with the perfect information
assumption fully relaxed - that is, heterogeneous and biased beliefs on the asset means, variances and
correlations. The model shows that not only exposures to the market return matter in equilibrium,
but also exposures to the expectation errors which have a persistent three-term structure. The
pricing relationship is hence a four-dimensional space but can be conveniently expressed as a two-
dimensional plane, the Security Market Plane (SMP). We provide an empirical procedure similar
to two-pass regressions that allows to test for the out-of-sample pricing relevance of any arbitrary
mean-variance beliefs, for a given set of observed prices. We use the procedure to assess whether
the beliefs implied by the Institutional Brokers' Estimate System (I/B/E/S) can explain well-known
asset pricing anomalies such as the value, size and idiosyncratic volatility premia.
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1 Introduction

The Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965) states that the
market return should be the only priced risk factor. Any cash-�ow can be priced with respect to
the risk-free rate and its covariance with the market. It is intuitively attractive because it is an
equilibrium single factor model and it conveniently summarizes the relationship between expected
return and risk. However, it is valid under strict assumptions and has been heavily criticized in the
literature. In particular, the assumption of perfect information which implies that the representative
investor represented by the market has full knowledge of the asset true moments. The assumption
automatically implies that the market is mean-variance e�cient, leading to the pure one-factor
pricing relationship represented by the Security Market Line (SML). As an equilibrium model, the
CAPM is based on the work of Markowitz (1952) on Modern Portfolio Theory (MPT). In that
set-up, investors choose mean-variance e�cient portfolios. While appealing in theory, a proper
optimization requires knowledge of the mean vector and the variance-covariance matrix of the asset
returns. In practice, the asset return moments are unknown and must be estimated using available
information, likely with errors. The portfolios identi�ed using the MPT are known to be extremely
sensitive to the moment estimates and often result in unreasonably large weights. The optimality
of the MPT solution is only as valid as the moment estimates used for the computations. The
historical expected return vector and variance-covariance matrix are known to be backward looking
and hence not representative of future returns.

Crucial to the CAPM is the perfect information assumption, which implies both homogeneous
and correct beliefs for all investors. Using intuition, the homogeneity assumption can be easily inval-
idated: in practice, there are many di�erent actors co-existing within one market. The divergences
in investor beliefs can come from di�erent information sets or di�erent ways to interpret the same
information. Moreover, investors have di�erentiated access to funds and �nancial constraints, which
can arguably preclude investors to fully act on their beliefs. However, heterogeneity in itself does
not directly challenge the CAPM model results. Indeed, Levy, Levy and Benita (2006) relax the
homogeneity assumption and show that, although the two-fund separation theorem does not hold,
the CAPM pricing relationship still holds under unbiased heterogeneous beliefs. They deduce that
a violation of the homogeneity assumption in itself can not explain the lack of empirical support to
the SML relationship. However, their results do not generalize to the case of biased heterogeneous
beliefs. In other words, the perfect information assumption is only partly relaxed since the market
correctly aggregates information. In contrast, Williams (1977) studies heterogeneous and biased
beliefs with respect to the asset means, using Brownian motion processes. Since security prices are
distributed log-normally in continuous time, investors estimate the unknown variances and covari-
ances with complete accuracy. He shows that biased heterogeneity in the asset means can explain
momentary deviations to the CAPM pricing relationship. However, as time passes and information
unfolds, the biased beliefs should become unbiased and the SML should converge to its usual pure
one-factor form. For linear risk tolerance utility functions in a dynamic set-up, Jouini and Napp
(2006) show that a heterogeneous belief equilibrium is equivalent to a homogeneous or consensus
belief equilibrium plus an aggregation bias which takes the form of a discount rate, proportional to
the belief dispersion. They show that if investors are pessimistic, the bias results in an increase in
the market price of risk with respect to the standard case. However, as it is the case in Williams
(1977), there can be no heterogeneity with respect to volatilities and correlations since the model

2



is in continuous time. In a companion paper but in discrete time, Jouini and Napp (2006) study
the impacts of heterogeneous beliefs for general utility functions on the market price of risk and
risk-free rate. Since the model is in discrete time, there can also be disagreements on the assets'
volatilities, leading to richer distortion e�ects. They focus on the beliefs aggregation and the e�ects
of pessimism or doubt, without formally distinguishing the impacts each type of expectation errors.
The impact of disagreement and errors in the risk dimension is likely to be important and complex,
especially in high-dimension. In the static CAPM set-up with mean-variance preferences, Chiarella,
He and Dieci (2006) develop an aggregation procedure that allows for investors' heterogeneity in
the mean, variance and correlation beliefs. It relies on the rewriting of the sum of the individual
optimal weights into a representative belief, which is a risk tolerance weighted sum of the beliefs.
Contrary to the approach developed by Jouini and Napp (2006), there is no bias due to the aggre-
gation. Chiarella et al. do not construct the homogeneous belief from the heterogeneous belief for
general utility functions, but rather mechanically �nd the representative belief for mean-variance
preferences and in a static set-up. Investors are allowed to have di�erent views not only about the
asset expected returns, but also about the risk related to these returns. Indeed, in discrete time,
there is no reason to assume that heterogeneity is restricted to the mean dimension. Investor views
about expected returns are likely to be associated with personal views about the risk inherent to
these same returns. As highlighted by Levy, Levy and Benita (2006), the full relaxation of the as-
sumption implies not only heterogeneous beliefs, but also biased beliefs. In addition, it should allow
for biased beliefs about the components of portfolio risk - that is, asset variances and covariances.

The linear SML relationship has found little empirical support in the empirical asset pricing
literature, as early as Black, Jensen and Scholes (1972). They �nd a positive linear relationship
between market beta and expected returns, but also intercepts (alphas) signi�cantly di�erent from
zero, contradicting the results of the CAPM. There seems to be a consistent related structure behind
the alphas, as low (high) beta portfolios tend to have positive (negative) alphas. They suggest that
expected returns are better explained by a two-factor model than the single-factor model represented
by the CAPM. The expected return variation left unexplained by the market return is considered as
anomalous if it is found to have a common cross-sectional structure. Asset pricing anomalies usually
relate to �rm characteristics, like the well-documented value and size anomalies. The size premium
investigated by amongst others by Banz (1981) describes the fact that stocks with low market
capitalization (small stocks) tend to earn positive abnormal returns with respect to the CAPM. It
is the opposite for stocks with high market capitalization (big stocks), which tend to under-perform.
Similarly, the value premium is the observation that stocks with high book-to-market ratio (value
stocks) tend to earn positive abnormal returns whereas stocks with low book-to-market ratio (growth
stocks) tend to earn negative abnormal returns. It has long been observed in empirical return data,
as early as Graham and Dodd (1934). Another well-documented anomaly is the low volatility or low
beta anomaly in the context of the CAPM. Stocks with low beta tend to have low risk as expected,
but earn signi�cantly higher returns than expected by the theory. It dates from as early as Black
(1972) and Black, Jensen and Scholes (1972), but the anomaly is more recently investigated by
Baker, Bradley and Wurgler (2011) who give a behavioural explanation to the anomaly. Based on
the value and size e�ects observed in the data, Fama-French (1993) build a three-factor model by
adding the value and size factors to the market factor. The linear pricing relationship stemming from
the CAPM is used as the basis, but it is augmented by two exogenous characteristic-based portfolio
factor returns. They are constructed as long-short portfolios that invest into the available asset
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returns according to binary rules in the underlying characteristics (book-to-market and market
capitalization). They capture the spread in expected returns generated by the characteristic in
the cross-section. Fama-French (1996) show that the three-factor model explain many anomalies
identi�ed in previous work. Since the three-factor model is based on empirical performance ex-
post, there is no clear factor identi�cation method. That is, many characteristic-based factors can
be added to the pricing relationship if they are found to be empirically meaningful. In addition,
there are degrees of freedom in the construction of the characteristic-based factors themselves since
they are portfolios invested in the underlying assets. The Arbitrage Pricing Theory (APT) from
Ross (1976) is the foundation for the linear factor structure in returns. It is based on no-arbitrage
arguments rather than equilibrium mean-variance preferences, as it is the case for the CAPM. Stock
returns are modelled as linear functions of arbitrary systematic risk factors and since the factors
explain common variations in returns, they should earn positive risk premia. From this perspective,
the market return is not special and only one amongst many possible factors. The APT and the
Fama-French model identify additional sources of risk premia in the cross-section, aside from the
market excess return explained by mean-variance theory. The APT factor selection method is not
speci�ed, aside that they should relate to common sources of risk. There has been hundreds of
factor candidates in the literature, such that it has been termed as the "factor zoo" by Cochrane
(2011). The asset pricing empirical research has then focused on the selection of the correct factor
structure. Amongst others, the two-pass testing procedure from Feng, Giglio and Xiu (2020), which
allows to systematically discriminate across models while taking omitted factors into account.

We propose a belief-based approach of the CAPM in which mean-variance investors do not know
the true asset return underlying process. The perfect information assumption is fully relaxed in the
sense that the consensus or representative belief is allowed to di�er from the true return moments.
The focus is not on the aggregation of the individual beliefs into the representative belief, but rather
on the resulting bias or error between the representative belief and the true return distribution mo-
ments. More speci�cally, it is on the expectation errors on the risk dimension, i.e. the variances and
correlations. The theoretical model stays agnostic on the sources of belief heterogeneity and biases.
In other words, it is valid for arbitrary mean-variance investor beliefs implying arbitrary expectation
errors. The representative market beliefs correspond to a perceived probability measure P, which is
di�erent than the real or objective measure O. Under the perspective of the representative investor,
the market is e�cient and the CAPM is valid. However, since the market is really ine�cient, the
CAPM that holds ex-ante under the subjective measure does not hold ex-post. The representative
distribution and expected betas are unobservable. In that sense, the intuition behind the change of
measure in the model is similar to the di�erence between the investor and the empiricist's CAPM
explained in Andrei, Cujean and Wilson (2021). To explain the di�erence, they focus on the varia-
tion in the individual investors' betas, whereas we focus on the di�erence between the representative
investor's beliefs and the true moments. In the presence of expectation errors, the SML slope can
be positive under the representative measure P and �at under the objective measure O. Two-fund
separation holds with respect to the representative belief, but the market return is located within
the mean-variance e�cient frontier and the Capital Market Line (CML) is not an e�cient frontier
ex-post. The market weights are decomposed into four portfolios. The �rst one is de�ned by the
true asset moments and corresponds to the e�cient or informed part of the market portfolio. The
other three error portfolios are de�ned by the expectation errors on both moments and the com-
bination of both: Mean Errors (ME), Precision Errors (PE) and combined Mean and Precision
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errors (MPE). The belief deviations are not observable under the representative measure, that is
from the point-of-view of the market. However, they are observable under the objective measure,
with knowledge of the true moments. The precision matrix is the inverse of the variance-covariance
matrix and summarizes all relevant information with respect to risk. The market weights decom-
position is the starting point of all results in the model, such that all the additional error terms
respect the three-term structure. The SML has additional systematic and idiosyncratic expecta-
tion error terms. There is a slope adjustment to the SML and the total equity premium (required
excess return on exposure to the market portfolio) is not equal to the market excess return. The
adjustment relates to the expectation errors made on the market return: it is positive when there
is over-optimism (mean over-estimation or volatility under-estimation) and negative when there is
over-pessimism (mean under-estimation or volatility over-estimation). It consists in an additional
premium to consider when pricing any covariance with the market return. Simultaneously, there
are idiosyncratic asset alphas which are consequences of the expectation errors made on each of the
individual asset returns: they are positive when there is over-pessimism and negative when there is
over-optimism. The market itself has an alpha with respect to the true error-adjusted SML, which
is equal to the negative of the slope adjustment in the market premium formulation.

Using covariances, the alphas can be written as exposures to expectation error portfolios. As
it is the case for the market factor, the asset exposures to each of the three error portfolios are
measured by their corresponding betas: covariance with the given error portfolio return divided
by its variance. This formulation shows that, when the perfect information is relaxed, the true
pricing relationship is a four-dimensional space rather than a line. That is the case even if there
is only one true external source of systematic risk. Due to the expectation errors, which are by
de�nition not taken into account in the representative investor's utility function, four portfolio
returns (instead of one) explain the cross-section of equilibrium expected returns ex-post. Hence,
what appears as unexplained performance on the one-dimensional line is actually explained when
observing the four-dimensional space. The three error portfolios can be conveniently regrouped
into one error portfolio, summarizing all types of expectation errors. In this case, the four-factor
pricing relationship becomes a two-dimensional plane; the Security Market Plane (SMP). The error-
adjusted SML with idiosyncratic and systematic alphas consists then in a cut of the asset pricing
plane at an error portfolio beta equal to zero. Equilibrium expected returns are then functions of
two exposures, the market beta and the overall error portfolio beta. That is, two portfolios only
explain the full cross-section of returns. This result is consistent with the ones of Andrei, Cujean
and Fournier (2019) who show that adding a long-short portfolio to the market portfolio allows
to always explain the cross-section of returns. In their paper, the additional portfolio is identi�ed
empirically using the distance between the market and the tangency portfolios. The expectation
errors bring an equilibrium explanation to this deviation. The error portfolio stemming from the
approach conducted in this paper corresponds to the negative of the Low-Minus-High portfolio and
indeed does not proxy for fundamental risk. Regrouping all three portfolios into one error portfolio
reduces the number of factors and makes the relationship easier to represent graphically, with the
disadvantage of losing the information with respect to each type of errors. As previously stated, the
most interesting e�ects are the one related to the expectation errors on the second market moment,
combined with the error on the means. Biases with respect to risk, especially with respect to the
correlation beliefs, have not been extensively studied in the literature although they are likely to be
important in a high-dimensional context.
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We show that the linear regression is a too simple model to test for the error-adjusted version of
the CAPM. When the assumption is relaxed, the true pricing relationship is really four-dimensional.
The expectation error risk is not a true risk factor since it is not related to any external source of
risk. By de�nition, it is unaccounted for in the representative investor's optimal portfolio problem
ex-ante. Nevertheless, it has cross-sectional power in explaining expected returns. Through the
error pricing terms, the model can theoretically and jointly explain several characteristic-based
cross-sectional anomalies. To derive the error-adjusted results, only the standard CAPM model is
needed. Williams (1977) can be seen as a special case of the error-adjusted or imperfectly informed
version of the CAPM in continuous time when there are only errors in the asset means. Kozak,
Nagel and Santosh (2018) argue that factor models are closely related to investors' beliefs. The
Fama-French portfolios are economically founded, but it is di�cult to theoretically explain why
they still exist in the data. The analysis conducted in this paper suggests that their existence
relates to persistent biases in the way the market forms its expectations. It makes a structural link
between beliefs and returns, showing that a multi-factor structure can be inferred from the data
even in a single factor set-up due to expectation errors. Andrei, Cujean and Fournier (2019) argue
that the existence of anomalies with respect to the market return is not evidence that the theory
is wrong. Indeed, we show that anomalies are theoretically consistent with the CAPM once the
perfect information is relaxed. That is, empirical tests based on the standard one-factor SML are
tests of the perfect information assumption rather than the CAPM theory itself.

The theoretical framework is valid regardless of the objective and representative distributions
on the mean-variance space. It describes the relationship between belief biases and observable equi-
librium returns without taking a stand on where the errors come from. If the objective distribution
can be estimated using samples of asset returns, the representative measure P is unobservable. By
de�nition, it is the measure that generates the market weights. In theory, the asset moments under
P could be inferred from the observed market weights. However, there are more unknowns than
equations and hence an in�nity of potential solutions. In turn, it implies that exogenous beliefs
will (almost) never match the strong market weights condition. Rather than aiming for the correct
beliefs, we provide an empirical method that uses the model structure and allows to test for any
arbitrary beliefs on the mean-variance space. More precisely, it tests if the biases implied by the
exogenous beliefs help explaining the cross-section of asset returns out-of-sample. In particular,
the focus is on well-known asset pricing anomalies, like the value, size or idiosyncratic volatility.
The procedure is similar to Fama-MacBeth (1973) two-pass regressions, except that it does not use
linear regressions in the �rst step. In the empirical tests, the price targets from the Institutional
Brokers' Estimate System (I/B/E/S) are used to estimate the representative belief but other beliefs
formation system can be used. Given estimates for the objective return distribution moments, dif-
ferent beliefs implies di�erent expectation errors and hence di�erent error portfolios with di�erent
out-of-sample explaining power. Expectation errors in the means and especially variances and cor-
relations can be tested within the framework of the model. Although it can be used on any asset
returns, the approach requires the estimation of the variance-covariance matrix and hence imposes
a condition on the number of assets considered. To that purpose, the available asset returns are
regrouped into portfolios formed according to given characteristics, similarly to the 25 Fama-French
portfolios formed on size and book-to-market. The market weights are used to weight the individual
assets into each of the portfolios, such that they always sum to the market portfolio. Using portfolio
returns rather than asset returns allows to have balanced samples and reduce idiosyncratic noise.
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Explaining the anomalies corresponds then to explaining the cross-section of characteristic-sorted
portfolio returns.

The paper is organized as follows. In section 2, the model is described, leading to the main
propositions. In section 3, the risk-return relationship stemming from the model and the links with
asset pricing puzzles are studied in more details. Section 4 describes the main pricing result of the
paper, which is that the error-adjusted SML can be expressed as a four-factor beta relationship.
Section 5 focuses on the empirical estimation of the model. Finally, section 6 concludes.

2 The model

The model is static, although the same method can likely be applied (with additional complications)
to dynamic models. The objective is to capture the e�ect of imperfect information on both the
return and risk dimensions. On the mean-variance space, it corresponds to expectation errors on
the means, variances and covariances of the asset returns. The set-up is the same as the CAPM,
but with the perfect information assumption relaxed. It is �exible and allows for a high-dimensional
analysis of the asset returns. Under the true probability measure, expectation errors are observable.
Using a belief-based decomposition of the market weights, it results in propositions relating the
representative measure to the real one. The latter is the only measure under which the relationships
are generated and observed ex-post.

2.1 Assets

The market is composed ofN risky assets and one risk-free asset. The risky assets' gross returns mul-
tivariate distribution is denoted F, with N×1-dimensional vector mean µO and N×N -dimensional
variance-covariance matrix ΣO:

R ∼ F(µO,ΣO)

The rates of return from 0 to 1 are denoted R and Rf for respectively the risky assets and the
risk-free asset. The asset returns can follow any multivariate distribution as long as they have �nite
means and variance-covariance.

2.2 Investors

There are J classes of investors who take positions in the assets at 0 such as to optimize their portfolio
return at maturity 1. They have mean-variance preferences but are imperfectly informed and
heterogeneous. The mean-variance set-up allows for �exibility as it does not require any assumption
on the terminal wealth distribution. Investors only consider the mean and variance of their portfolio
returns regardless of the true underlying distribution. The market is competitive and investors act
as price takers.

2.2.1 The objective function

Since beliefs are heterogeneous across investor classes, the return moments are computed according
to investor j's beliefs. Portfolio weights at time 0 and portfolio return at time 1 for investor j are
denoted respectively by πj and Rj1. The problem is written as:
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maximize
πj

Ej
[
Rj1

]
− θjV arj

[
Rj1

]
subject to Rj1 = πj

′
R + (1− 1′πj)Rf ∀j = 1, .., J

The portfolio return mean and variance from investor j's perspective depend on his beliefs about
the expected asset return vector µj and return variance-covariance matrix Σj . They correspond
to a perceived multivariate return probability measure speci�c to investor j, denoted Pj . The
model stays agnostic on the sources of the belief heterogeneity and biases (behavioural biases,
incorrect estimation, �nancial constraints,...). Since more informed agents have beliefs closer to
the true moments, their portfolio positions should be more mean-variance e�cient than the ones
of uninformed agents, whose beliefs are further away from the true ones. Investors can be too
optimistic or pessimistic on the asset expected returns, but also on the asset dispersions (risks) and
co-dispersions. It can generate many belief combinations and attitudes with respect to the assets.
For example, an agent might under-estimate an asset expected return, over-estimate its standard
deviation and under-estimate its correlations with the rest of the market. Each class of investors j is
allowed to have a di�erent relative risk aversion coe�cient θj . The framework is able to nest di�erent
strategies and investor types through di�erent subjective moments and risk-aversion coe�cients.

2.3 Equilibrium

The individual investors solve for their optimal portfolios, and the sum of their positions de�nes
the time zero asset prices. The individual beliefs are aggregated into a representative belief which
de�nes the multivariate probability measure corresponding to the market's perspective about the
next period asset returns. The analysis is done on the representative investor which mechanically
results from an aggregation of the individual investors. The market clears when the aggregate
investment in the risky assets is equal to total market wealth, implying that the risk-free asset is in
zero net aggregate supply. The market corresponds to a representative investor and a corresponding
probability measure on the mean-variance space. It summarizes the aggregate views about the
expected returns, the expected risks and the (linear) dependences in the individual asset returns.
The representative distribution implies aggregate holdings, which are portfolio weights and prices
when multiplied by the current total market wealth. When studied on the portfolio return space, the
market is the return implied by the aggregate market weights. In the theoretical part, the market
has several meanings as it is referred to as a probability measure, an investor and a portfolio.

2.3.1 The beliefs aggregation procedure

The solution of the one-period problem is the well-known mean-variance optimal portfolio:

πj =
Ωj

θj

[
µj − 1Rf

]
πj0 = 1− 1′πj

The aggregation procedure is from Chiarella, He and Dieci (2006) and relies on writing the market
weights as the individual optimal weights. The asset return representative moments correspond to
a multivariate market probability measure, denoted P. The solution is written as:

πM =
ΩP

θM

[
µP − 1Rf

]
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where: θM =
1∑J
j=1

1
θj

ΩP = θM

J∑
j=1

1

θj
Ωj µP = (ΩP)−1θM

J∑
j=1

1

θj
Ωjµj

The representative beliefs are weighted sums of the individual beliefs. The weights depend on the
investors' risk aversion coe�cient, but also on the beliefs themselves. Extreme views, especially
about the risk, imply a high contribution to the market representative measure. All the investors
use the same portfolio policy, so the market weights depend on the overall wealth but not on the
investors' individual wealth. The market weights formula above is actually a pricing formula since
multiplying both sides by the market wealth gives the observed stock prices.

2.3.2 Market-clearing and the endogenous risk-free rate

The market clears when the aggregate investment in the risky assets equates the total market
wealth, with the risk-free asset in zero aggregate net supply. The equilibrium risk-free rate can be
endogenously determined:

rf =
1′ΩPµP − θM

1′ΩP1
= Rf − 1

It is equal to the Lagrange multiplier corresponding to the full investment constraint
∑
πM = 1. The

investors can lend and borrow to each other at the equilibrium risk-free rate but on the aggregate the
borrowing amount is equal to the lending amount. The risk-free rate depends on the representative
belief about the risky assets, the risk-aversion coe�cient and the market wealth. The dependence
on the two latter parameters is simple and intuitive: higher are the market wealth and the absolute
risk aversion coe�cient, lower is the risk-free rate. They decrease the investments in the risky assets,
pushing the rate lower to increase the risk premia and prevent the market from investing in the
risk-free asset. The e�ects of the represent beliefs are more complex and di�erent beliefs result in a
wide range of possible risk-free rates. In general, more attractive is the risky market (higher means,
lower volatilities, better diversi�cation opportunities), and higher is the risk-free rate. The asset
impacts are di�erentiated in the cross-section depending on the perceived asset pro�le (low or high
mean, low or high risk, highly correlated or not,...) considered.

2.4 From the subjective to the objective measure

In the perfect information case, the market knows the correct asset moments. Therefore, its ag-
gregate holdings are e�cient and the market lies on the MVE frontier. The market is the best
attainable portfolio given the aggregate risk-aversion, with all the idiosyncratic risk e�ectively di-
versi�ed. It can then be used as a factor to price all the assets exactly. When there are expectation
errors, the market is no longer mean-variance e�cient and the mechanism breaks down. Errors
on the variances and correlations imply that idiosyncratic volatilities are not e�ciently diversi�ed.
The usual equilibrium relationships only hold under the representative measure, but not under the
objective measure which is observed ex-post. The objective of this section is to nest this duality
and reconstruct the well-known relationships under O in order to capture the e�ects of imperfect
information. The analysis is purely descriptive and hence agnostic about the origins of the expec-
tation errors, as well as their repartition across the available assets. The framework developed in
this section holds for any real distribution (projected on the mean-variance space) and any belief
formation system.
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2.4.1 The equilibrium relationships

The following propositions link the outputs of interest under P to the real ones underO by switching
from the representative measure to the real measure. Hence, expectation errors which are unob-
servable under the representative measure become observable. µO, ΣO and ΩO =

(
ΣO
)−1

denote
respectively the real asset mean return vector, the real variance-covariance matrix and the real
precision matrix. µD = µP − µO, ΣD = ΣP − ΣO and ΩD = ΩP − ΩO denote the beliefs devi-
ations from P to O for respectively the expected returns, the variance-covariance matrix and the
precision matrix. µDi is positive in the case of an over-estimation of the mean return of asset i, and
negative in the case of an under-estimation. When variances or covariances are over-estimated, ΣD

has mostly positive elements. In the opposite, it has mostly negative elements when diversi�cation
opportunities are over-estimated or when variances are under-estimated. The decompositions often
rely on the precision matrix bias ΩD, which is high-dimensional and complicated to analyze.

Proposition 1. Market weights

Under P :

πM =
ΩP

θM
(µP − 1Rf )

Under O :

πM =
1

θM

[
ΩO(µO − 1Rf ) + ΩD(µO − 1Rf ) + ΩOµD + ΩDµD

]
= π∗ + πPE + πME + πMPE

The market weights decomposition is the foundation for all the results in the model as it makes
the link between expectation errors and prices. The market portfolio is a sum of four portfolios. The
�rst one π∗ relates to the correct asset moments, or the fundamental part of the market portfolio.
The other ones are due to the beliefs errors, or the non-fundamental part of the market portfolio:
Precision-Errors (PE), Mean-Errors (ME) and Mean-Precision-Errors (MPE). The existence of the
three additional expectation errors portfolios characterizes market sub-optimality on the portfolio
space. For simplicity, they can be considered altogether as one global error portfolio, which is a sum
of the three di�erent error portfolios. The more share they have in the market portfolio, the less
e�cient is the market return and the more important is the mispricing. In general, in the presence
of errors, the portfolio corresponding to the correct moments will not sum to one, implying that a
part of the market wealth is sub optimally invested. It in turn implies that the sum of the global
error portfolio weights does not sum to zero. Expectation errors simultaneously impact the risk-free
rate, which adjusts itself such as to respect the full investment constraint.

Proposition 2. Covariances and market variance

Under P :

ΣPπM =
(µP − 1Rf )

θM
= cov [R, RM ]P

π
′
MΣPπM =

(µPM −Rf )

θM
= var [RM ]P
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Under O :

ΣOπM =
1

θM

[
(µO − 1Rf ) + ΣOΩD(µO − 1Rf ) + µD + ΣOΩDµD

]
= cov [R, R∗]

O + cov [R, RPE ]O + cov [R, RME ]O + cov [R, RMPE ]O = cov [R, RM ]O

π
′
MΣOπM =

1

θM

[
(µOM −Rf ) + π

′
MΣOΩD(µO − 1Rf ) + µDM + π

′
MΣOΩDµD

]
= cov [RM , R∗]

O + cov [RM , RPE ]O + cov [RM , RME ]O + cov [RM , RMPE ]O = var [RM ]O

Only the �rst term in the expressions is actually related to the real market moments. The other
ones are related to the expectations errors. Multiplying the di�erent portfolios by the variance-
covariance matrix gives the asset covariances with the di�erent portfolio returns. The asset covari-
ances with the market is equal to the sum of the covariances with each of the four portfolios, and
they are proportional to some asset excess returns. In other words, scaled asset covariances are on
the asset expected return space. Only asset covariances with the e�cient part of the market port-
folio are rewarded in true asset expected excess return. The error terms are rewarded in expected
excess returns, but not the ones of the asset themselves, rather to a transformation of the true
asset excess returns. The two terms that relate to the precision matrix expectation errors depend
on ΣOΩD, whose components do not cancel out: it is a term that represents deviations from the
usual diagonal matrix of ones under perfect information ΣOΩO = 1. Multiplying by the market
weights again gives the market variance, which is the sum of the market return covariance with
the di�erent portfolios. The covariance of the market with its e�cient part is proportional to the
market excess return. As it is the case for individual assets, only the informed part of the market
portfolio is actually rewarded by mean market portfolio excess returns. The other covariance terms
are not directly equal to mean excess returns, but since they are on the excess return space they
must correspond to some portfolio expected excess return.

Proposition 3. Asset betas

Under P :

βP =
ΣPπM

π
′
MΣPπM

=
(µP − 1Rf )

(µPM −Rf )
=
cov [R, RM ]P

var [RM ]P

Under O :

βO =
(µO − 1Rf ) + ΣOΩD(µO − 1Rf ) + µD + ΣOΩDµD

(µOM −Rf ) + π
′
MΣOΩD(µO − 1Rf ) + µDM + π

′
MΣOΩDµD

=
cov [R, RM ]O

var [RM ]O

Errors in the means imply di�erent betas than under perfect information, but it does not lead
to any beta expectation errors. In other words, if there are only errors on the asset means, the
asset betas are ine�cient since based on incorrect return moments but they correspond to the ones
perceived by the market. From the beta relationship above, the SML under imperfect information
can be derived.

Proposition 4. The SML

Under P :

µP −Rf = βP(µPM −Rf )
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Under O :

µO −Rf = −ΣOΩD(µO − 1Rf )− µD −ΣOΩDµD + βO(µOM −Rf ) + βOµDM

+ βOπ
′
MΣOΩD(µO − 1Rf ) + βOπ

′
MΣOΩDµD

The relationship that holds under P does not hold when departing from the perfect information
assumption. Only the relationship under the objective measure O is observed ex-post. The expec-
tation errors terms create noise around the standard CAPM relationship. There are idiosyncratic
asset alphas and systematic terms that a�ect the slope of the SML. Both the idiosyncratic and sys-
tematic pricing terms have the similar common three-component structure, which relate to the types
of expectation errors: mean errors, precision errors and mean-precision errors. The error-adjusted
SML is studied in more details in Section 3.2.

3 The risk-return relationships

Expectation errors imply that the two main risk-return relationships of the standard CAPM i.e.
the Capital Market Line (CML) and the Security Market Line (SML), do not hold. Since the
market is mean-variance ine�cient, the CML is not an e�cient frontier and the SML has additional
terms that are consequences of the expectation errors. In this section, the error-adjusted risk-return
relationships are studied. Exogenous beliefs biases are considered separately in order to better
understand how each type of errors (means, volatilities, correlations) impacts the two equilibrium
risk-return relationship in the model. Errors on the variance dimension i.e. on the asset variances
and covariances have di�erent and more complex impacts than the ones on the mean dimension.
Considering each type of error separately implies that only one error portfolio (out of three) is active
at the same time. In general, all types of errors can be made at the same time and the additional joint
mean-precision error term is non-zero. However, it is necessary to �rst understand the individual
e�ects before studying the joint ones. In the illustrations, the asset returns' distribution is simulated
as a multivariate normal. A sample of N = 130 asset monthly returns over 21 years from the
CRSP database is used to compute the sample moments, which are then used as the objective
moments in the theoretical analysis (that is, µO and ΣO). Exogenous beliefs deviations from the
objective moments are then considered in the representative distribution (that is, µP and ΣP). The
expectation errors are simulated randomly or equally across the assets, depending on the scenario
considered. In practice, the errors are not random and some types of assets are likely to be related
to some types of errors.

3.1 The Capital Market Line (CML)

The market price of risk corresponds to the reward for risk-taking on e�cient portfolios i.e. the slope
of the mean-variance e�cient frontier. If risk is measured by volatility and without the risk-free
asset, the Mean-Variance E�cient Frontier (MVEF) is a parabola on the

[
σO;µO

]
graph. In the

presence of the risk-free asset and under the perfect information assumption, the e�cient frontier
becomes the Capital Market Line (CML), connecting the risk-free return to the e�cient market
return and leading to the two-fund decomposition. When there are expectation errors, the market
return is mean-variance ine�cient. It is on the MVEF which corresponds to the representative
beliefs and characterizes the market weights. However, the latter frontier does not exist since it is
based on expectation errors and holds only under the representative measure. Under the objective
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one, the market return is suboptimal and located within the MVEF. Hence, the error-adjusted CML
links the risk-free rate to an ine�cient portfolio return. The equations for the CML under both
measures are given in the following proposition.

Proposition 5. The CML

Under P :

µP∗ = Rf +
(µPM −Rf )

σPM
σP∗ = Rf + ΛPσP∗

Under O :

µO = Rf +
(µOM −Rf )

σOM
σO = Rf + ΛOσO

The star is used for the moments under the representative measure to show that the relationship
applies to e�cient returns. Under the objective measure, the market is ine�cient and the relation-
ship is not a frontier. It does not apply to mean-variance e�cient returns. The relationship between
the market price of volatility under the representative measure ΛP and the one under the objective
measure ΛO is the following:

ΛO =
µOM −Rf
σOM

= ΛP
(

1 +
σDM
σOM

)
−
µDM
σOM

The values µDM and σDM can both be positive or negative depending on the belief biases. For
example, a negative σDM means that market volatility is over-estimated and a negative µDM that the
market mean return is under-estimated. Di�erent beliefs and di�erent investment sets can lead to
a wide range of risk-free rates and prices of risk, corresponding to various market environments.

3.1.1 Exogenous beliefs analysis

In this section, three belief scenarios are presented for each moment (on the mean-variance space) of
the multivariate return distribution. The perfect information case that leads to the regular CAPM
is used as a benchmark. It is represented by the yellow color in the

[
σO;µO

]
graphs. The over-

estimation scenario, which is optimistic in the case of the means and pessimistic in the case of the
variances/covariances, is represented by the purple color. Finally, the under-estimation scenario
corresponds to the red color in the graphs. For each scenario, the true CML, which corresponds to
the true market price of risk, is represented by a solid line. The dashed line is the CML perceived
by the market when it creates its positions. It is imaginary in the case of expectation errors. The
moments corresponding to both measures are represented on the same scale. The dashed CML is
tangent to an unobservable mean-variance e�cient frontier which is not presented in the graphs
for clarity. In the benchmark case, the true and the perceived CML's are indistinguishable. The
perceived market return, which is represented by a cross in the graphs, is on the CML under P,
whereas the true market return, represented by a asterisk in the graphs, is on the true CML underO.
Their positions on the mean-volatility graph can be contrasted with the true risky Mean-Variance
E�cient Frontier (MVEF), which corresponds to the blue parabola in the graphs.
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Errors in the asset means In the case of only mean errors, volatility is correctly estimated by
the market i.e. σOM = σPM . The true market price of risk is given by:

ΛO =
µOM −Rf
σOM

=
µOM −Rf
σPM

= ΛP −
µDM
σOM

= ΛP −
µDM
σPM

The market return under the objective measure is translated vertically from the one under the repre-
sentative measure on the

[
σO;µO

]
graph. The translation is positive if the means are over-estimated,

and negative if the means are under-estimated. In Figure 1, the e�ects of mean expectation errors
on the CML are illustrated.

Figure 1: The e�ects of mean expectation errors on the CML
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In the perfect information case, the CML under P is the same as the one under O. The true
market return is mean-variance e�cient and hence located on the true risky MVEF. In the cases of
mean under and over-estimation, the CML under P (dashed line) is di�erent than the one under
O (solid line). Although the slope is di�erent, they start from the same intercept since the risk-
free rate is the same under both measures. The true market return is di�erent than the perceived
market return, which is located on the imaginary CML under P. Under-estimated asset means can
lead to a market whose mean is over-estimated because the unpro�table assets (from the market
point-of-view) are sold short to �nance more investments in pro�table assets. Since it is based on
incorrect beliefs, the CML under P is di�erent than the one under O. In Figure 1, each asset is
given a random share of the overall mean expectation error (equal to 70%).
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Errors in the asset volatilities In the case of volatility errors, the true market price of risk is
given by:

ΛO =
µOM −Rf
σOM

=
µPM −Rf
σOM

= ΛP
(

1 +
σDM
σOM

)
The true market return is translated horizontally from the perceived market return. If market
volatility is over-estimated, corresponding to a pessimistic scenario, the market return under the
objective measure is located on the left of the market return under the representative measure. In the
opposite, if market volatility is under-estimated, the market return under the objective measure is
located on the right of the market return under the representative measure. The e�ect is represented
in Figure 2, using an overall volatility error of 260% allocated equally across assets.

Figure 2: The e�ects of volatility expectation errors on the CML
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Although the market return moments are di�erent across the two volatility error scenarios, the
slopes of the CML's under O are close to the perfectly informed one. Market risk is under-estimated
when volatilities are under-estimated and over-estimated when volatilities are over-estimated. Due
to the structure of the precision matrix, volatility expectation errors are more complicated to analyze
than mean expectation errors. Contrary to mean belief deviations, the e�ect of volatility belief
deviations is asymmetric and non-linear on the error portfolio weights.

Errors in the asset correlations In general, overall negative correlation belief deviations should
correspond to an optimistic scenario since diversi�cation opportunities are over-estimated, whereas
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overall positive correlation belief deviations should correspond to a pessimistic scenario. However,
since higher correlations imply more potential hedging trades amongst assets, it can also result in
an under-estimation of the market volatility. An illustration of correlation expectation errors can be
seen in Figure 3. The overall correlation error of +/−5 is equally allocated across all (o�-diagonal)
correlation coe�cients.

Figure 3: The e�ects of correlation expectation errors on the CML
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In both cases of overall positive and negative correlation belief deviations, market volatility
is under-estimated. The expectation error on the market return is more important in the under-
estimation case. The increase in perceived diversi�cation opportunities leads to a too aggressive
market. Under the representative measure, the market return is perceived to be low risk and
therefore the market is willing to accept a low price of risk. However, since market risk is under-
estimated, the price of risk is even lower under the objective measure.

A sample example In this paragraph, an example of expectation errors on both mean and
variance dimensions is studied. In addition to the sum of the individual e�ects, there is an additional
joint e�ect stemming from the Mean-Precision-Error portfolio. To generate Figure 4, a sample is
drawn from the multivariate normal distribution and the sample moments are computed to give the
representative beliefs.
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Figure 4: A sample example of expectation errors and the CML
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The market return under the objective measure, represented by the asterisk, is translated both
horizontally and vertically from the one under the representative measure, represented by the cross.
From the location of the market return under both measures, it can deduced that market risk is
under-estimated and its mean is over-estimated. Hence, the market invests on the basis of a highly
�ctional market price of risk. The imaginary MVEF which corresponds to the market beliefs is
presented in solid red, tangent to the dash-lined CML under O. Regardless of the errors, the true
market return can be decomposed as the sum of an e�cient or fundamental part, represented by
a star in the graph, and an ine�cient or error-based part, represented by a downward-pointing
triangle. Trading the e�cient part of the market portfolio allows to retrieve an optimal portfolio
return. The error-based part of the market portfolio is highly mean-variance ine�cient and located
within the MVEF. Short-selling the error portfolio to invest aggressively in the star portfolio should
be a highly pro�table strategy.

3.2 The Security Market Line (SML)

With the perfect information relaxed, the market excess return does not carry su�cient information
to correctly price all the assets in the model. There are idiosyncratic asset alphas and a slope
adjustment to the SML with respect to the market excess return:

µO − 1Rf = αO + βO
[
(µOM −Rf ) + γOM

]
Where:

αO = −ΣOΩD(µO − 1Rf )− µD −ΣOΩDµD
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γOM = µDM + π
′
MΣOΩD(µO − 1Rf ) + π

′
MΣOΩDµD

αO are alphas with respect to the correct SML i.e. the one including the slope adjustment γOM .
They have the three-term structure stemming from the market weights decomposition: mean-error,
precision-error and mean-precision error. Errors on the asset risk are more complex than the ones
on the mean return dimension. Indeed, the precision-error and mean-precision-error terms depend
on the product of the true variance-covariance with the precision deviation matrices ΣOΩD. The
resulting matrix correspond to the belief deviations on the assets' risks, multiplied by the true
asset risks. For a given asset, risk under-estimation or mean over-estimation by the market i.e.
over-optimism results in a negative alpha, while risk over-estimation or mean under-estimation i.e.
over-pessimism results in a positive alpha. Since individual asset returns have alphas, the market
return also has an alpha with respect to the true SML. The market alpha is equal to the market-
weighted average of the ones of the individual assets. The systematic adjustment γOM is the negative
of the market alpha and is directly related to the expectation errors made on the market return.
It has the three-term structure: market mean-error, variance-error and mean-variance-error. The
mean-error systematic term µDM corresponds to a market portfolio of the N × 1 individual mean
belief deviation vector. For errors on the variance dimension, it is less straightforward. As it is the
case for the individual assets, a negative alpha for the market (positive γOM ) implies over-optimism:
risk under-estimation or mean over-estimation. In the opposite, a positive market alpha (negative
γOM ) implies over-pessimism: risk over-estimation or mean under-estimation. The slope adjustment
is an additional premium required on any covariance with the market, compensating for its mean-
variance ine�ciency. Hence, the total equity risk premium is equal to the market true excess return
plus the adjustment term γOM . For the latter to be positive and the total equity premium to be
higher than the market excess return, the market mean return and/or its risk must be respectively
over-estimated and under-estimated. The relationship automatically holds for the market itself
despite impacting the whole cross-section of assets. Since it is composed of alphas, the market
return is itself not on the SML under O. Note that there are no constraints on the alpha values. If
the risk and/or mean returns of all assets are under-estimated, all assets alphas are negative and the
slope adjustment term in the SML γOM is positive. In the opposite, if all asset means and risks are
respectively under and over-estimated, all asset alphas are positive. Di�erent types of expectation
errors a�ect the alphas di�erently, and it is studied in more details in section 3.2.1.

3.2.1 Exogenous beliefs analysis

In this section, the e�ects of exogenous belief deviations are studied on the SML under the objective
measureO. It allows to better understand the shapes of the additional terms in the true equilibrium
asset pricing relationship, and their links with the belief biases. In the following

[
βO;µO

]
graphs,

the over and under-estimation scenarios are represented by the purple and red colors respectively.
The moments under both the representative and the objective measures are shown on the same
graph. The true SML under O is a solid line, and the position of the market on it is represented
by a diamond marker. It does not correspond to the market return, but rather to the required
return on an asset with a beta equal to one (without alphas). Although it is only a part of the
assets' risk premia, the line corresponding to the market's true Sharpe ratio is represented by the
dashed-dotted line and the market return by a square marker. The SML under P is a dashed line,
whose slope corresponds to the perceived market price of risk. The perceived market return is on
it and corresponds to a cross marker on the graphs. In addition, the positions of the e�cient and
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ine�cient parts of the market portfolio (under the true objective measure O) are represented by
the star and downward triangle markers respectively. The benchmark perfect information case is
represented by the yellow color. In this case, all the markers are on the same point and all the lines
(SML under P, SML under O and market excess return) are indistinguishable.

Figure 5: The e�ects of mean expectation errors on the SML
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Errors in the means In the case of only errors in the asset means, the SML is given by:

µO − 1Rf = −µD + βO(µOM −Rf ) + βOµDM

The market estimates the di�erent asset betas correctly and there are no discrepancies between the
SML under P and the one under O. However, their slopes are di�erent than the market excess
return due to the systematic mean error term. A mean over-estimation for an asset i tends to imply
a negative alpha for asset i and for the market (assuming it is positively invested in asset i). The
mean-error systematic term is then positive to compensate for the negative market alpha and the
equity risk premium is higher than the market excess return. Due to their simple structure, mean
errors only a�ect assets individually. That is, a mean over-estimated by 1% for asset i correspond
to a negative asset alpha equal to 1% for asset i. Assets whose means are correctly estimated
have alphas equal to zero. In Figure 5, an illustration of the e�ects of mean errors on the SML
is presented. The optimistic scenario corresponding to the mean over-estimation case (in purple)
leads to the highest market price of risk, illustrated by the highest slope of the SML under O. The
position of the market on the correct SML (diamond marker) is the same as the perceived market
excess return under P (cross marker). However, the true market excess return is about 4% lower,
the di�erence being equal to the negative market alpha. The mean under-estimation scenario (in
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red) also leads to an over-estimation of the market expected return due to short positions in assets
whose means are su�ciently under-estimated.

Errors in the volatilities In the case of only errors in the asset volatilities, the SML is given by:

µO − 1Rf = −ΣOΩD(µO − 1Rf ) + βO(µOM −Rf ) + βO
[
π

′
MΣOΩD(µO − 1Rf )

]

Figure 6: The e�ects of volatility expectation errors on the SML
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Since the market estimates the means correctly, the slope of the SML under P is equal to the
market excess return. However, it is di�erent than the slope of the SML under O. Due to the
structure of the variance-based terms, an error on only one of the asset volatility results in non-zero
alphas for all the assets in the market. Moreover, a mis-estimation equal to |xi|% does not result in
an alpha equal to |xi|% for asset i, as it was the case for mean errors. Figure 6 shows an illustration
of the impact volatility expectation errors on the SML. When volatility is under-estimated, the
market is optimistic and takes more risk than it should. The asset alphas are then negative in
general, especially for the mis-estimated asset, and the systematic variance-error term is positive.
In the opposite, when there is a volatility over-estimation, the market is pessimistic and the asset
alphas are negative in general, especially for the mis-estimated asset. The market variance-error
term is hence negative, implying a �atter SML under O than the market excess return.

Errors in the correlations As for volatility errors, correlation errors result in a di�erent SML
under O than under P. All the asset alphas are di�erent than zero, even if only one correlation
pair is mis-estimated. Both under and over-estimation scenarios can be seen as optimistic scenarios
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because of better diversi�cation opportunities and more hedging trades, respectively. The impacts
of correlation expectation errors are illustrated in Figure 7. Indeed, both error scenarios result
in an under-estimation of the market price of risk. Asset alphas tend to be negative, implying a
negative alpha for the market and a positive systematic slope adjustment term in the SML. The
under-estimation scenario leads to the largest slope adjustment, implying a more incorrect risk
assessment. It also leads to the most important di�erence between the systematic risk-return of the
error and e�cient part of the market portfolio, the latter having a positive alpha for a low beta.

Figure 7: The e�ects of correlation expectation errors on the SML
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A sample example A sample example of the SML is shown in Figure 8 with joint errors on
means, variances and covariances. In this case, the SML under O (solid red line) is di�erent than
the SML under P (solid blue line), and both are di�erent than the true market excess return line
(dashed yellow line). The risk premium is under-estimated by the market and the SML under P
has a lower slope than the SML under O. Since the market excess return (which is only a part of
the total risk premium) is under-estimated by the market, the true market excess return (yellow
asterisk) is lower than the perceived market excess return (blue cross). The e�cient part of the
market portfolio (purple star) allows to have an excess return similar to the market for a systematic
exposure cut by more than 40%. Nevertheless, it still has a negative alpha with respect to the true
SML. The error part of the market portfolio, represented by the downward-facing purple triangle,
has an excess return approximately equal to the asset with the lowest excess return. Its systematic
risk exposure is also higher than (almost) all assets. The cross markers represent each of the assets
in the market portfolio. As expected, they mostly have negative alphas with respect to the true
SML under O. Assets with positive alphas tend to have low betas and the asset with the most
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negative alpha is the one with the highest beta. In this case, the expected return of the asset in
question is over-estimated by about 2%, leading to a more negative alpha for the asset, a higher
market weight and hence a higher beta.

Figure 8: A sample example of expectation errors on the SML
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4 The SML revisted: the four-factor model

The asset alphas do not consist in unexplained performance because they are explained by expec-
tation errors. However, they still consist in deviations from the error-adjusted SML. It suggests
that at least one dimension is missing from the pricing line. From Proposition 2, it can be seen
that returns are proportional to covariances and variances. More precisely, the true asset excess
returns correspond to (scaled) covariances with the e�cient part of the market portfolio whereas
the belief-based error pricing terms are proportional to covariances with the three error portfolios:

(µO −Rf ) = cov(R, R∗)θM

ΣOΩD(µO − 1Rf ) = cov(R, RPE)θM

µD = cov(R, RME)θM

ΣOΩDµD = cov(R, RMPE)θM

Since the relationships hold for individual assets, they must also hold for any portfolios. From
market variance, the market excess return is proportional to its covariance with the star portfolio
and the three systematic error pricing terms are proportional to the (scalar) market covariances

22



with the di�erent error portfolios. It leads to a simple rewriting of the SML pricing relationship:

(µO −Rf )

θM
= −cov(R, RME)− cov(R, RPE)− cov(R, RMPE) + cov(R, RM )

Under perfect information, the market portfolio is equal to the star portfolio. Hence, covariances
with the market portfolio are directly proportional to the asset excess returns. Market variance is
then also proportional to the market excess return, which is the de�nition of the equity premium
in standard models. In the presence of expectation errors, the market variance still corresponds to
the equity premium but the latter is not equal to the market excess return because it also includes
the slope adjustment. The covariance formulation shows that the exposures to the error portfolios
matter in the cross-section, resulting in a four-dimensional pricing relationship. Contrary to the
market premium, the signs of the error premia are negative. That is, positive exposures to the error
portfolios are rewarded in negative excess returns. The three error covariances can then be written
as beta exposures, leading to a four-dimensional beta relationship named the Security Market Space
(SMS). The error exposures correspond to a rewriting of the idiosyncratic asset alphas. Since they
have a de�ned structure in the cross-section, they can be expressed as systematic premia.

Proposition 6. The four-dimensional Security Market Space

(µO −Rf ) = −βOMEvar [RME ] θM − βOPEvar [RPE ] θM − βOMPEvar [RMPE ] θM + βOMvar [RM ] θM

= −βOMEµ
D

ME − βOPEπ
′
PEΣOΩD(µO − 1Rf )− βOMPEπ

′
MPEΣOΩDµD + βOM

(
(µOM −Rf ) + γOM

)
The total equity premium is composed of four pricing terms, rather than one. The premium

that rewards market exposure is not equal to the market excess return because there is a slope
adjustment that accounts for the expectation errors made on the market return. Although the
market excess return can be negative, the sum of the excess return and the slope adjustment can
not be negative because it is proportional to the market variance (assuming implicitly positive
risk-aversion). Although the error premia are not usual portfolio excess returns since they depend
on the belief deviations, they are on the portfolio excess return space and can be expressed as
such. As it is the case for the market factor, the error premia must each be positive because they
correspond to the given portfolio variance, scaled by the risk-aversion. Mechanically, it is the case
because the same belief deviations which are in the premia are also in the error portfolio weights.
The presence of expectation errors can generate signi�cant deviations from the usual one-factor
relationship. Although they are expressed as factors, exposures to the expectation error portfolios
are rewarded negatively in equilibrium, contrary to the market factor. That is, depending on the
expectation errors made on the asset and the corresponding beta values, the exposures to the error
portfolios can o�set the positive exposure to the market factor. However, the presence of the three
additional factors is fully consistent with the assumptions of the market model. That is, deviations
from the one-factor relationship do not consist in a rejection of the CAPM as an equilibrium asset
pricing model. Since the SMS is four-dimensional, it can not be represented graphically. However,
all three error portfolios can be regrouped into one overall error portfolio, which includes all three
types of errors. In this case, only two exposures matter in the cross-section: the market beta and
the expectation error beta. The four-dimensional space becomes a two-dimensional plane and the
Security Market Plane (SMP) equation is given in Proposition 7.

Proposition 7. The two-dimensional Security Market Plane

(µO −Rf ) = −βOE var [RE ] θM + βOMvar [RM ] θM
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= −βOE π
′
E

[
µD + ΣOΩD(µO − 1Rf ) + ΣOΩDµD

]
+ βOM

(
(µOM −Rf ) + γOM

)
The two-factor model has the advantage of conveniently summarizing all the information into

two factors and being easier to represent graphically. However, it also can not distinguish between
each type of errors, in particular between mean and variance/covariance expectation errors. From
the previous equations, it is clear that precision errors have di�erent e�ects than mean errors.
The latter premium do not depend on the true variance-covariance matrix and can intuitively be
thought of as a portfolio of deviations. In contrast, the precision error premium depends on the
true covariance matrix in addition to the precision matrix deviations. In addition, the third joint
mean-precision term, which combines both mean and precision e�ects, can not exist in a model
with no expectation errors on variances and covariances. It shows that much of the cross-sectional
variation is ignored using models with only errors on the �rst moment. The precision pricing e�ects
are likely to be more important in magnitude and more persistent than mean pricing e�ects. It is
the case in simulations, but it remains to be shown empirically.

Illustration The sample example from Figure 8 is represented as a two-dimensional SMP in
Figure 9. It shows that the error-adjusted SML from 2.4.1 is a cut of the SMP at βE = 0.

Figure 9: A sample example of expectation errors - the SMP

The market, represented by the yellow asterisk marker, is the return with the most negative alpha.
The aggregation corresponding to the market portfolio seems to magnify the expectation errors made
on each of the individual assets, rather than o�set them. The error-adjusted SML corresponds to
the required mean on assets whose covariance with the error portfolio is zero. Therefore, it consists
in a return that is not directly available using traded assets. The latter tend have non-zero alphas,
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especially in the case of belief deviations on the variances and correlations. The most desirable
returns are the ones with negative exposures to the error portfolio since it implies positive alphas
with respect to the error-adjusted SML.

4.1 The expectation error risk

The expectation error risk is not a true risk factor since it is not in the representative investor's
utility function. It does not proxy for fundamental risk as it is the case for a risk factor. Rather, it
is an involuntary consequence of the di�erence between the representative investor's optimization
and the true unobservable optimization. That is, the consequence of the expectation errors made on
the only one true risk factor, the market risk. The three additional factors are based on a rewriting
of the idiosyncratic alphas. The expectation error risk is measured through the beta with respect
to the error portfolio return, as it is the case for the market risk. If there are only mean expectation
errors, only assets whose means are mis-estimated have non-zero alphas, and are hence exposed
to the expectation error risk. When there are errors on volatilities or correlations, all assets have
non-zero alphas, even if only a part of the assets' volatilities are mis-estimated. The error portfolios
have cross-sectional power in explaining returns ex-post, in the same spirit as risk factors. However,
they do not reward in the excess return of the factor portfolio. Rather, the premia are function of
the belief biases and the true moments, multiplied by the corresponding factor weights. However, as
it is the case for risk factor excess returns, the expectation error premia must be positive. Since they
have negative signs, they put a downward pressure on the asset expected returns. Positive error
exposures imply negative alphas and vice-versa. The asset exposures inform about the expectation
errors made by the market as a representative investor on that asset. Some assets can be more
exposed to mean expectation errors than precision expectation errors, in which case βOME should be
more important than βOPE . The factor formulation provides a clear method to quantify the e�ects
of the expectation errors in the cross-section. Note that, contrary to risk factors, the market and
error portfolios do not have to be independent. In general, they have non-zero correlations with
each other. It is especially the case for the mean-precision error portfolio, which is by construction
signi�cantly correlated with both the mean and precision error portfolios. It means that the error
betas can not be estimated using Ordinary Least Squares (OLS).

4.2 The CAPM and the one-factor linear regression

Estimating a linear regression of the asset returns on the market return corresponds to testing the
perfect information assumption of the CAPM. When the latter is relaxed, there are idiosyncratic
asset alphas and a systematic adjustment to the market excess return, making the single factor linear
regression model too simple. The alphas have a structure which translates to three additional factors
in the cross-section. Although it is explained by expectation errors, the cross-sectional variation
appears as unexplained when tested using the one-factor linear regression. The excess variation is
incorrectly labelled as anomalous or abnormal when it is really the relationship de�ning the expected
variation which is inappropriate. The perfect information assumption is one of the most restrictive
assumption in the CAPM, likely violated in practice. The four-dimensional relationship could hence
be the one that holds in the data, at least when tested on the mean-variance space. It is the set-up
in which many models are tested and this paper makes clear that some variation in the asset returns
can simply not be captured by the sole market return. Ignoring three factors arguably has an e�ect
on the pricing performance. Much of the cross-sectional variation is missed in using the wrong model
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i.e. the sole market excess return. Unless the empiricist believes the perfect information assumption
holds in practice, there is no point in using the standard one-factor SML relationship to test the
CAPM. The pricing terms depend on both the belief deviations and the true asset moments, making
the additional variation di�cult to estimate using real data. Empirically, it is hence understandable
that the one-factor linear regression model performs poorly and that other models seem to out-
perform, factor models in particular. Some known characteristics may be associated with persistent
expectation errors, resulting in the characteristic-based factor being correlated with the expectation
error portfolio returns. The presence of this e�ect in the cross-section leads the empiricist to
incorrectly conclude that the CAPM is rejected and that the identi�ed variation is an anomaly.
The link between expectation errors and factor models/anomalies is studied in Section 4.3

4.3 The link with asset pricing puzzles and factor models

Cross-sectional variation in expected returns is considered as an anomaly only if it is not explained
by the benchmark model. In empirical tests, the benchmark model has usually been the one-factor
CAPM. When the perfect information assumption is violated, which is arguably the case in practice,
the one-factor pricing relationship fails even if the CAPM holds as an equilibrium model. Hence,
cross-sectional variation that is considered as anomalous using the usual CAPM might not be an
anomaly when adjusting for expectation errors. The widely used three-factor pricing model from
Fama-French (1993) is built on empirical evidences of value and size premia in the cross-section. The
factors matter in the cross-section but their consistent presence in the data is di�cult to explain
using equilibrium arguments. The results derived in this paper show that characteristic-based
anomalies might be related to persistent expectation errors on the same types of stocks.

4.3.1 Expectation errors and characteristics-based premia

The factor structure from Ross (1976) comes from arbitrage arguments and does not specify the
common sources of risk. The model presented in this paper shows that anomalies with respect to
the market excess return factor can be consistent with the CAPM model when relaxing the perfect
information assumption. The error pricing terms have cross-sectional power in explaining asset
returns, even though they do not relate to any external source of risk. If there is (time-series)
persistence in the way the market forms its expectations and that it makes regularly the same types
of errors on the same types of stocks, a simili factor structure can be deduced from the data. In
other words, if some belief biases are consistent, there can be a consistent structure in the error
pricing terms ex-post. The model above depends on arbitrary mean and volatility errors, without
any assumptions on the origin of the errors. If the same expectation errors persistently relate to
the same stock characteristics over time, long-short portfolios based on these characteristics are
positive alpha strategies. For example, to re�ect the value premium, the market should be over-
invested in growth stocks and under-invested in value stocks, corresponding to respectively positive
and negative weights in the error portfolio. It implies negative alphas for the growth stocks and
positive alphas for the value stocks. Therefore, a portfolio short-selling growth stocks to invest
in value stocks should out-perform the market. A positive systematic impact should correspond
to more negative alpha stocks than positive ones, consistent with a stronger impact of growth
stocks due to higher prices. Similarly, to re�ect the size premium, the error portfolio should be
positively invested in big size stocks and negatively invested in small size stocks, re�ecting over
and under-investment respectively. Therefore, short selling big stocks to invest in small stocks is a
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positive alpha strategy. The systematic impact is positive because the negative alphas of big stocks
exceed the positive alphas of small stocks. A long position in the market and a short position in
the error portfolio allows to retrieve the more mean-variance e�cient fundamental portfolio. The
Fama-French long-short portfolios could be strategies that take pro�t of some extreme aspects of the
expectation errors. Many factors can then be jointly explained, using equilibrium arguments. If the
intuition is correct, the error portfolio should be related to stock characteristics like book-to-market
or size for example. That is, it should be negatively related to book-to-market and positively related
to the market equity characteristic. As explained by Andrei, Cujean and Fournier (2019), many
characteristic-based e�ects can be summarized through one long-short portfolio. That is, factors
based on characteristics and other valuation ratios can be proxies for this long-short portfolio. They
also conclude that it needs not proxy for fundamental risk. Whereas they can not explain where
the portfolio comes from, the analysis conducted in this paper shows that one potential explanation
is the expectation errors. It decomposes the additional factor into three separate e�ects, which
correspond to each type of equilibrium expectation errors.

4.3.2 Illustration

In the model, asset alphas with respect to the true SML under O are related to expectation errors.
Mean expectation errors coupled with errors on volatilities and correlations can generate an in�nity
of possible scenarios for the additional error terms. In Figure 10, the means and the volatilities of
a subset of assets are respectively under-estimated and over-estimated. There is a cut-o� in the
belief biases depending on an (arbitrary) characteristic value. In this case, they are low risk assets,
corresponding to the assets in the lowest quartile in terms of volatilities. At the same time, the
other asset means are over-estimated. The market excess return slope is represented by the dashed
blue line, whereas the SML under P is represented by the dashed yellow line.

Figure 10: Errors on a subset of assets - SMP & SML
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The assets whose volatilities and means are respectively under-estimated and over-estimated
are represented by the star markers. The assets whose volatilities are correctly estimated and
whose means are over-estimated are represented by dot markers. Star assets are located around
low beta values because the biases push their valuations downward, in addition to being low risk
assets. They have higher alphas with respect to the SML under O than the other dot assets,
and positive alphas are concentrated around low beta values. All star assets have positive alphas
with respect to the excess market return, implying positive out-performance with respect to the
market return. However, only a subset of the star assets actually have positive alphas with respect
to the true pricing relationship. All dot assets have negative alphas with respect to the SML
under O, although some of them concentrated around high beta values have positive alphas with
respect to the market excess return. Figure 10 is consistent with low risk anomalies, like the low-
beta anomaly. There is a relationship between volatility and expectation errors, which translates
directly to the SML. To generate this Figure, for simplicity, only errors on means and volatilities
were considered. In addition, the high-dimensional correlation error matrix can bring complexity
to the belief combinations. The SMP can can correspond to many market scenarios, with di�erent
anomalies based on di�erent characteristics.

5 Empirical test

The theoretical part of the model explicitly links beliefs to equilibrium returns, which have a four
dimensional factor structure. The objective of the empirical analysis is to estimate the pricing
relationships and assess whether expectation errors can help explaining well-known asset pricing
anomalies like the value, size and idiosyncratic volatility premia. The empirical test uses the model
structure and allows to study the relevance of any arbitrary beliefs on the mean-variance space, for
any test assets. The beliefs are exogenous, and may or may not be an accurate representation of
the true representative beliefs, which de�ne the market weights. That is, there can be di�erences
between the endogenous market weights and the observed market weights, corresponding to the true
unobservable representative measure. However, the error exposures corresponding to the exogenous
beliefs can still be computed and the four-factor pricing relationship can still be estimated. The
empirical procedure is similar to Fama-MacBeth regressions, with the exception that it does not use
individual linear regressions to estimate the asset exposures. Instead, in the �rst step, the latter
are estimated conditionally using the observed portfolio weights and the return variance-covariance
matrix. In the second step, the estimated exposures are used in cross-sectional regressions to
determine whether they indeed carry premia out-of-sample. If the exogenous beliefs matter for
pricing, the estimated premia corresponding to its error exposures - three in the complete model,
and one in the reduced model - should be positive and signi�cantly di�erent from zero. The pricing
errors stemming from the out-of-sample cross-sectional regressions should equivalently be lower -
lower mean and lower volatility - than the one-factor CAPM. The method requires a belief formation
system with exogenous beliefs, characterized by aN×1 perceived mean vector and aN×N perceived
variance-covariance matrix, where N is the number of considered assets. We use the representative
beliefs implied by the Institutional Brokers' Estimate System (I/B/E/S) price targets but other
belief system can also be considered, like the sample and equally-weighted beliefs. The procedure
requires the estimation of theN×N objective variance-covariance matrix, which indirectly imposes a
constraint on the number of assets that can be considered in the test. At the same time, there should
be enough assets such that the endogenous market portfolio is realistic. In order to satisfy both
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restrictions as much as possible, the test assets consist of characteristic-sorted portfolio returns.
The asset weights in the portfolios are de�ned by the market weights, such that the sum of the
portfolios equals the market portfolio. Explaining the characteristic premium corresponds then to
explaining the cross-section of test asset returns.

5.1 The objective and representative measures

The results from the theoretical model are valid regardless of the objective and representative
measures, which are taken as parameters. In the model, an asset is a return process with �nite means
and variances/covariances. It can be a stock, a bond, a portfolio or any other types of �nancial
assets. Although the model is evaluated on the mean-variance space, the objective distribution does
not have to be normal for the results to hold: the normality assumption is in the beliefs. That is,
even if the true returns are not normally distributed, they must be perceived as such by the investors.
Whereas the objective distribution can be estimated using observed samples of asset returns, it is not
the case for the representative distribution, which is unobservable. The representative beliefs relate
to the observed market weights, which have a dimension equal to the number of assets considered.
Hence, in theory, the beliefs could be extracted from the market weights. However, due to their high
dimension, there are more unknowns than equations and hence an in�nity of solutions. However,
for a given sample of returns, not all beliefs are equally likely. First, because they do not all
correspond to the observed market weights. Some beliefs must be closer to reality than others. The
framework is valid for any representative beliefs but an unrealistic belief formation system results
in endogenous market weights too far from what is observed. Second, because di�erent belief biases
imply di�erent error portfolio weights and hence di�erent e�ects in the expected returns ex-post.
For a given sample of observed returns, more accurate error portfolios should better explain the
cross-section of returns. Rather than searching for the representative beliefs that exactly correspond
to the market weights, the logic of the empirical test is the following: assuming an arbitrary belief
formation system (with errors with respect to the observed market weights) and test its signi�cance
for pricing out-of-sample using the model structure. Even if the market weights corresponding to
the exogenous beliefs do not equal the market weights in-sample, they still result in estimated error
betas that can be used for out-of-sample cross-sectional regressions. The most interesting feature
of the model is that it allows to test for the expectation errors on the risk dimension i.e. volatilities
and correlations through the second and third error factors. We use the summary price targets from
the I/B/E/S database to estimate the representative distribution. That is, we study if the beliefs
implied by the analysts' forecasts are relevant for pricing ex-post, more speci�cally with respect to
characteristic-based asset pricing anomalies.

5.2 Data

Characteristics Since they are used to create sorted portfolios, the characteristics considered
should correspond to well-known asset pricing anomalies. We consider the book-to-market and
market capitalization characteristics together to jointly explain the size and value premia that cor-
respond to the Fama-French three-factor model. The characteristic data come from Compustat.
We also consider separately the idiosyncratic volatilities generated by the CAPM. They are com-
puted from the price and return data, using a 5-year estimation period. There are hence two sets
of characteristics (size-value and idiosyncratic volatilities), which each de�ne di�erent test assets
according to the procedure described in the next section.
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Test assets The underlying assets are the stocks covered by the I/B/E/S analysts. The monthly
price data come from CRSP and consists in 9640 stocks over a period of slightly more than 20
years (1999-2020). Each month in the sample, the market is composed of all stocks whose prices
are available at time t and t+ 1. Stock i's market weights are computed as:

πM,i,t =
Pi,t∑
Pi,t

The market return at t+ 1 is then computed as:

RM,t+1 = π
′
M,tRt+1

There are on average 4658 stocks in the market at each period in the sample. At each t, the
stocks are regrouped into an arbitrary number of portfolios according to each of the considered
characteristics. In the case of the size-value characteristics, the stocks are double-sorted as for the
Fama-French 25 portfolios. The market weights are used for each of the portfolios, such that the
market-weighted sum of the characteristic-sorted portfolio returns equals the market return at each
time period in the sample. The characteristic-based portfolio returns are used then as the test assets
in the model. Explaining the associated anomalies corresponds to explaining the cross-section of
portfolio returns. The portfolio returns have the advantages of being balanced and of low-dimension,
while still representing a high number of individual assets.

Beliefs The forecasts come from the I/B/E/S Summary database and consist in the means and
standard deviations of the price targets. The forecasts are forward-looking one-year targets that
are updated monthly. The forecast data go from March 1999 to August 2020. At the stock level,
the forecasts are converted into monthly expected returns and volatilities using the observed stock
price at the date of the forecast announcement. That is, for stock i:

µPi,t =

(
PriceTargeti,t

Pi,t

) 1
12

− 1

σPi,t =

(
StdPriceTargeti,t

Pi,t

)√
1

12

The expected moments are converted to a monthly frequency in order to match the observed return
data frequency. The conversion is naive but it still results in valid beliefs corresponding to the
I/B/E/S price targets. The stock-level mean return forecasts are converted to portfolio-level mean
forecasts µPj,t using:

µPp,t = π′p,tµ
P

t

Where πp,t are the weights corresponding to portfolio p for the given characteristic and µPt the
corresponding vector of stock-level mean returns at time t. The IBES beliefs about the portfolio
volatilities are then given by:

σPp,t =
(
π′p,tΣp,tπp,t

) 1
2
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Where Σp,t is the variance-covariance matrix corresponding to all the stocks into the portfolio:

Σp,t =


(
σP1,t
)2

σP1,tσ
P
2,tρ̄ . . .

. . . . . . . . .

σPNp,t
σP1,tρ̄ . . .

(
σPNp,t

)2


Np is the total number of assets into portfolio p at time t. Since there are no forecasts about
the correlations in the I/B/E/S database, a single coe�cient ρ̄ is used to aggregate the individual
beliefs about the volatilities. The output of the approach consists in beliefs about the means and
volatilities of the characteristic-ordered portfolio returns for each month in the sample. It does not
provide any information about the perceived correlations between the di�erent portfolios, which are
needed to compute the representative variance-covariance matrix. For simplicity, we assume that
the I/B/E/S beliefs about the correlations is a diagonal matrix, implying that the I/B/E/S investor
believes the portfolio returns to be independent of each other. It is a rather strong assumption
but it also seems to correspond well to the observed market weights. Indeed, in the mean-variance
set-up, only positive optimal weights in the market portfolio tend to occur when there are zero
o�-diagonal correlations. Moreover, the assumption does not mean that correlation errors are not
taken into account in the test since the objective variance-covariance matrix is non-diagonal. That
is, we do not assume that correlations do not matter, but rather that any non-zero correlations in
the objective returns is automatically unexpected by the I/B/E/S investor and hence considered as
an error.

5.3 The procedure

The idea is to test for exogenous representative beliefs and assess whether they help explaining
prices out-of-sample. However, since the beliefs are exogenous, they will not correspond to the
observed market weights as it is the case in the theoretical model. Hence, the model equations
must be adjusted, leading to modi�ed versions of the four and two-factor pricing relationships that
account for the deviations in the market weights.

5.3.1 The adjusted equations

To test for any set of arbitrary beliefs and retain realistic market betas, market weights deviations
πε are added to the weights decomposition from Section 2.4.1:

πM =
ΩP

θM
(µP − 1Rf ) + πε

=
1

θM

[
ΩO(µO − 1Rf ) + ΩD(µO − 1Rf ) + ΩOµD + ΩDµD

]
+ πε

The market weights deviations correspond to the di�erence between the true observed market
weights and the ones stemming from the exogenous beliefs. That is, it corresponds to the ex-
ogenous part of the market weights (current prices) that can not be explained using the beliefs. The
risk-free rate is the Lagrange multiplier associated with the constraint that the endogenous market
weights sum to one. Indeed, regardless of the assumed beliefs, the endogenous market weights must
always sum to one. The introduction of the market weights errors results in an adjusted �ve-factor
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relationship:

µO −Rf = −βOε var [Rε] θM − βOPEvar [RPE ] θM − βOMEvar [RME ] θM − βOMPEvar [RMPE ] θM

+ βOMvar [RM ] θM

As it is the case for the error portfolios, the portfolio πε has an impact on the relationships and it
results in a �fth factor. However, contrary to the other factor premia, the ε premia can not be de�ned
as a function of the beliefs. It does not exist in the theoretical model. Including the unexplained
exposures in the cross-sectional regressions should improve the performance of the model even if the
estimated premia may not be signi�cant. Since it is based on observed deviations from the market
weights, including the unexplained factor does not require any additional step and may improve
the estimation of the error premia. In addition to the cross-sectional regressions, portfolios based
on the estimated alphas are computed. That is, the exogenous beliefs result in some representative
beliefs associated to some error portfolios and hence perceived alphas. The available assets are
sorted according to their alphas, and strategies are created by investing (equally) in some given
quantiles of the alpha cross-sectional distribution. It allows to sort the assets from the worst to
the best performing ones according to the exogenous beliefs in-sample. If the exogenous beliefs are
representative, the strategies invested in high alpha stocks should perform better out-of-sample than
strategies invested in low alpha stocks. Or, at least, there should be clear cross-sectional variation
in the alpha-sorted portfolio returns. In the opposite, if the beliefs do not correspond well to the
reality, the alphas are non-informative and there is not a signi�cant cross-sectional variation in the
alpha-sorted portfolios.

5.3.2 The out-of-sample approach

The model is estimated using rolling windows. The subscript t means that the model is re-estimated
each month. A �rst sample of arbitrary size Tins from [t− Tins + 1; t] is used to estimate the true
return moments under O at month t µOt and ΣOt . The representative beliefs are computed using
the IBES beliefs at t, which is the most recent forecast at that month. The risk-aversion coe�cient
θM,t is then estimated as the one that minimizes the di�erence between the observed market weights
at t and the endogenous weights (i.e. πε,t):

min
θM,t

(
πobsM,t −

ΩPt
θM,t

(µPt − 1Rf,t)
)2

The risk-free rate is found such that the endogenous market weights sum to one. Using the true
estimated moments, the Mean-Error, Precision-Error and Mean-Precision-Error portfolio weights
can be computed. The error and market betas are computed from the portfolio weights and the
variance-covariance estimate:

βOX,t =
ΣOt πX,t

π′X,tΣ
O
t πX,t

For a given portfolio πX,t. Estimation of the betas is the �rst step of the out-of-sample pricing test.
In the second step, as it is the case in Fama-MacBeth two-pass procedure, we run a cross-sectional
regression of the betas on the returns at t+ 1 to estimate the factor premia. Several versions of the
pricing relationships are tested:
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CAPM

µOe,t+1 = λM,t+1β
O

M,t + εt+1

2-Factor model

µOe,t+1 = λM,t+1β
O

M,t − λE,t+1β
O

E,t + εt+1

4-Factor model

µOe,t+1 = λM,t+1β
O

M,t − λME,t+1β
O

ME,t − λPE,t+1β
O

PE,t − λMPE,t+1β
O

MPE,t + εt+1

Where µOe,t+1 are the excess returns from t to t + 1. The regressions give estimates for the
various premia from t to t+ 1, and the process is reiterated each month until the end of the sample.
The output is a distribution for the premia and the pricing errors. The betas stemming from the
market weights error βOε are added to the independent variables, leading to three and �ve-Factor
models. From the theory, we know that the premia corresponding to each of the factors, including
the market, has to be positive. The market premium λM is always positive even if the market excess
return is negative because it also includes the slope adjustment γOM . A non-negativity constraint
is therefore added to the least-square estimation of the regression coe�cients. Since the error and
market betas have opposite signs, the estimation without the constraints result in noisy unrealistic
coe�cients. In simulations, adding the constraint has been shown to greatly improve the precision
and the stability of the estimates.

5.4 Results

Each set of characteristics result in di�erent test assets and hence di�erent results. The benchmark
model is the usual one-factor CAPM relationship whose exposures are estimated using individual
linear regressions as in Fama-MacBeth. The Fama-French three-factor model is also considered
as it is widely used as a benchmark asset pricing model in practice. The latter is expected to
perform better on value and size sorted portfolios than on idiosyncratic volatility sorted portfolios.
In contrast, the performance of the error factor models corresponding to the I/B/E/S beliefs should
be more �exible and not depend on the sorting of the asset returns. The results from the cross-
sectional regressions can be studied along with the pricing error moments corresponding to each of
the chosen model alternatives.

5.4.1 Value and size premia

The value-size portfolios are based on a double sorting done each month t. There are 5 quantiles per
characteristic, implying 25 value-size portfolios. The sample period used to estimate the objective
return moments is equal to four years i.e. 48 monthly observations. Each month, the model
is re-estimated until the end of the sample, implying 208 out-of-sample regressions. In Table 1,
the results from the cross-sectional regressions are shown. The mean, var and meanvar models
consist in two-factor models including only the market and the corresponding three error portfolio
exposures. The mean of the premia estimates over the out-of-sample period are shown, along with
the standard deviations in parenthesis. The pricing errors Pε are de�ned as the distance between
the true observed returns and the predicted return stemming from the respective models. The
four-factor model performs better than the Fama-French model as the pricing errors have lower
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CAPM 2-param 4-param mean var meanvar FF FF+4p

λM 0.0064 5.1592 6.0802 0.0271 2.0539 0.1193 0.0059 6.3438
(0.0615) (9.7961) (9.4438) (0.0155) (4.1588) (0.3480) (0.0793) (9.4681)

λE - 5.1867 - - - - - -
- (9.9893) - - - - - -

λε - 0.0164 0.0178 0.0006 0.0068 0.0020 - 0.0172
- (0.0449) (0.0433) (0.0012) (0.0291) (0.0060) - (0.0420)

λµ - - 0.0103 0.0058 - - - 0.0138
- - (0.0543) (0.0091) - - - (0.0664)

λσ - - 5.6715 - 1.9922 - - 5.9110
- - (9.0176) - (4.2657) - - (9.0585)

λµσ - - 0.0957 - - 0.0246 - 0.1277
- - (0.3739) - - (0.1013) - (0.4754)

λSMB - - - - - - 0.0036 0.0250
- - - - - - (0.0436) (0.0329)

λHML - - - - - - 0.0038 0.0236
- - - - - - (0.0509) (0.0414)

E[Pε] 0.0166 0.0138 0.0114 0.0168 0.0136 0.0182 0.0129 0.0106

σ[Pε] 0.0132 0.0111 0.0092 0.0128 0.0109 0.0132 0.0106 0.0084

Table 1: Value & size cross-sectional regressions - I/B/E/S beliefs

mean and volatility, by about 0.15% each. Naturally, there are two additional factors in the four-
factor model, compared to the Fama-French model. The two-factor model, which has actually three
factors since beliefs models always includes the market weights error ε, has pricing errors with
slightly higher mean and volatility compared to the Fama-French model. The latter is designed
based on the size and value premia, hence it is not surprising that it performs well on value-size
portfolio returns. Concerning the expectation error premia, most of the explaining power seems
to come from the variance factor. The magnitude of the coe�cient is higher in all the models,
and the var model (with only the market and variance factors) performs better in terms of pricing
errors than the two-factor model which includes all types of expectation errors into one factor. In
contrast, including only the mean-variance factor results in a worse pricing performance than the
regular CAPM. The variance premia value is close to the market premia value in all models in which
both factors are included. It suggests that the variance error portfolio, which makes most of the
overall error portfolio, relates to the market portfolio. That is, according to the I/B/E/S beliefs
with the zero correlation assumption, most of the market portfolio seems to be related to variance
expectation errors. As it can be seen in the last column on the right, adding the SMB and HML
factors from the Fama-French model to the four-factor model does not signi�cantly improve the
pricing error statistics. However, adding the four belief factors (�ve including the market weights
error) allows to signi�cantly lower the mean and volatility of Pε. It suggests that the belief factors
are not restricted to but include size and value cross-sectional e�ects. Note that the Fama-French
factors, as it is the case for the regular CAPM factor, is de�ned based on a given cross-section of
asset returns di�erent than the ones considered in the test. In the opposite, the expectation error
factors as well as the market factor stemming from the belief models are endogenously created using
the given test assets. It is a signi�cant di�erence that likely favours the performance of the belief
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models. None of the estimated premia are signi�cant by the t-stat criterion, including the ones from
the CAPM and Fama-French models. Note that the latter are unconstrained, whereas the former
are constrained to be only positive. However, the means and volatilities are time-series statistics
computed using the full sample of 208 monthly estimated premia i.e. about 17 years. Each premium
is estimated using cross-sectional regressions with the next monthly observed test asset returns as
dependent variables. That is, as it is the case in the Fama-Macbeth method, the dependent variables
are not mean returns but observed returns. The latter are more volatile than the former, and it
leads to volatile estimated premia. The sample encompasses many market conditions and the t-stat
might under-estimate the coe�cient signi�cance. Morever, since they relate to expectation errors,
it may be that the true premia vary much over time, although always remaining positive.

In Figure 11, the estimated (scaled) premia are represented for a given subsample including the
2008 �nancial crisis. That is, the coe�cients estimated from the regressions in Table 1 are divided
at each t by the market estimated risk-aversion coe�cient. In the period preceding the �nancial
crisis the estimated premia are close to zero, but they increase in 2008 to attain their maximum in
2009. They then decrease in magnitude but still tend to stay positive until the end of the sample,
with a local peak in the end of 2010. As the t-stats suggested, they are indeed unstable and move
much from one month to the next but with local tendencies. Aside from the market premium and
the mean-variance premium in the beginning of the crisis, the variance expectation error premium is
the only one visible in Figure 11. That is, as opposed to the variance errors, the mean expectation
errors from the I/B/E/S beliefs do not seem to explain much of the cross-sectional variation in
expected returns.

Figure 11: Value-size estimated prices of risk over time - 4-Factor model
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The values of the market and variance premia seem to be highly correlated and related to each
other. Remember that the market and error premia have opposite signs in the pricing relationship.
Hence, exposures to the market factor (rewarded positively in equilibrium) are partly compensated
by the exposure to the variance factor (rewarded negatively in equilibrium). However, although
they can be similar, the asset market beta is generally di�erent than the error beta, implying that
the net e�ect is di�erent than zero. The expectation error betas stemming from the belief deviations
from P to O depend on the exogenous beliefs, in this case the I/B/E/S beliefs. Although it has
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no impacts on the market betas, di�erent beliefs result in di�erent error betas and thus di�erent
estimated premia. The most relevant error portfolio for pricing is the one related to the variance
expectation errors. Since the correlations between test assets are exogenously assumed to be zero
under the representative measure whereas they are always di�erent than zero under the objective
measure, it is not surprising that the variance expectation error portfolio is the most important.
However, as mentioned earlier, this assumption results in low deviations between the endogenous
market weights and the observed market weights. That is, the market weights errors πε are generally
small in magnitude, implying that the zero correlation assumption �ts well to the observed price
data in the mean-variance set-up.

µ̂ σ̂ β̂M α̂M σ̂ε,M β̂E α̂E σ̂ε,E ¯mktcap ¯btm

πα,1 0.917 7.994 1.261 0.151 2.546 1.282 0.208 2.453 870.884 0.883
- - (0.000) (39.845) - (0.000) (22.688) - - -

πα,2 0.737 6.816 1.107 0.064 1.477 1.130 0.112 1.229 2002.859 0.635
- - (0.000) (53.568) - (0.000) (19.337) - - -

πα,3 0.564 6.624 1.080 -0.093 1.315 1.098 -0.044 1.185 1839.932 0.503
- - (0.000) (31.223) - (0.000) (59.456) - - -

πα,4 0.726 6.358 1.046 0.090 0.945 1.060 0.140 0.929 5008.327 0.444
- - (0.000) (17.399) - (0.000) (3.251) - - -

πα,5 0.535 5.684 0.934 -0.032 0.909 0.938 0.016 1.135 21594.760 0.421
- - (0.611) (61.059) - (0.000) (84.200) - - -

πM 0.608 6.009 1.000 0.000 0.000 1.009 0.050 0.528 12548.204 0.428
- - (0.000) (100.000) - (0.000) (17.889) - - -

πE 0.554 5.935 0.984 -0.045 0.521 1.000 -0.000 0.000 9278.323 0.471
- - (0.000) (22.187) - (0.000) (0.000) - - -

π∗ 0.004 0.337 0.027 -0.012 0.294 0.025 -0.009 0.302 1268.432 0.004
- - (0.000) (55.295) - (0.000) (65.640) - - -

Table 2: Value & size portfolio statistics - I/B/E/S beliefs

In order to better understand the error portfolio corresponding to the I/B/E/S beliefs and
its relationship with the market portfolio, the out-of-sample statistics corresponding to di�erent
relevant portfolios are shown in Table 2. They are based on the 208 out-of-sample monthly returns.
The three bottom portfolios are the observed market portfolio πM , the exogenous error portfolio πE
and the e�cient part of the market portfolio π∗. The �ve portfolios in the �rst lines of the Table
are the portfolios constructed based on the estimated alphas, corresponding to the I/B/E/S beliefs.
They are sorted from the lowest alphas to the highest alphas. That is, πα,1 is the equally-weighted
portfolio invested in the 5 test assets with the lowest estimated alphas, whereas πα,1 is invested in
the opposite in the 5 test assets with the highest estimated alphas. Concerning the statistics, µ̂
and σ̂ are respectively the means and volatilities of the portfolio returns, in percentage points. β̂M ,
α̂M and σ̂ε,M are the estimated beta, alpha and volatility of the residuals in a contemporary time-
series regression of the portfolio returns on the market return. The �gures in parenthesis are the
p-values, in percentage points. Similarly, β̂E , α̂E and σ̂ε,E correspond to the estimated coe�cients
resulting from a time-series regression with the error return as independent variable rather than
the market return. Hence, all the regression statistics consist in single scalar coe�cients. Finally,

¯mktcap and ¯btm are the average market capitalization (in millions) and book-to-market values for
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each of the considered portfolios. The error and market portfolios are indeed similar, highlighted
by their corresponding statistics and the similarity between the two betas for all the portfolios. It
is the case even if the market and error portfolios are di�erent, as the latter can for example have
short positions. It means that most of the observed market portfolio is due to I/B/E/S expectation
errors, in particular to variance expectation errors (including variances and correlations). The
e�cient part of the market portfolio π∗ has small positions in magnitude as both its mean and
volatility are close to zero. It means that few of the market variation relates to true moments,
whereas much of the variation is related to expectation errors. Assets with low estimated alphas
and hence not desirable according to the I/B/E/S beliefs, are high beta assets with high means and
idiosyncratic volatilities. In the opposite, assets with high estimated alphas are low-beta assets,
with low market betas inferior to one and low absolute/idiosyncratic volatilities. πα,5 is also the
portfolio with the lowest mean out of all the alpha-sorted portfolios. It implies that there are
systematic biases in the I/B/E/S beliefs, favouring low-beta assets with low risk. Assets with low
co-variation with the error portfolio are also assets with low co-variation with the market portfolio.
Regardless of the assumed beliefs, high alpha assets should have low beta with the error portfolio,
since the latter has a negative impact in the cross-section. In the I/B/E/S beliefs case, low beta
with the error portfolio also corresponds to low beta with the market portfolio. The relationship
between alphas and market/error betas is stable across alpha-sorted portfolios. In the regressions,
all beta coe�cients are signi�cant but only the alpha corresponding to portfolio πα,4's return with
respect to the error portfolio is signi�cant at the 5% level. Although not signi�cant, the portfolio
πα,1 has a positive alpha with respect to the market portfolio, contrary to what is expected by the
I/B/E/S investor. In the opposite, the portfolio πα,5, expected to have the highest alpha according
to the I/B/E/S investor, has a negative alpha with respect to the market return. Therefore, the
alpha predictions stemming from the I/B/E/S beliefs do not seem to correspond to what happens
ex-post. The average characteristics in the last two columns on the right show that assets with low
alphas according to the I/B/E/S beliefs are systematically small stocks with high book-to-market
ratios whereas assets with high alpha stocks are systematically big stocks with low book-to-market
ratios. To bet on the I/B/E/S beliefs, one should take a long position in portfolio πα,5 with high
market capitalization/low book-to-market and simultaneously take a short positions in πα,1 with low
market capitalization/high book-to-market. This strategy generates a negative alpha with respect
to the market return. In the opposite, if ones wishes to bet against the I/B/E/S beliefs, one should
take short positions in big stocks with low book-to-market ratios and take long positions in small
stocks with high book-to-market ratios. The latter strategy generates positive alpha and is the idea
behind the SMB and HML factors in the Fama-French three-factor model. The size and value
anomalies are perpetuated by the I/B/E/S beliefs in the sense that they are over-optimistic on big
stocks with low book-to-market ratios and low market betas, and over-pessimistic on small stocks
with high book-to-market ratios and high market betas/idiosyncratic volatilities. That belief does
not correspond to the reality as it is actually the contrarian strategy that generates positive alpha
ex-post.
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5.4.2 Idiosyncratic volatility premium

CAPM 2-param 4-param mean var meanvar FF FF+4p

λM 0.0031 2.2579 2.9970 0.1008 0.8139 0.1774 0.0073 3.1936
(0.0665) (4.9731) (5.0816) (0.0577) (3.1379) (0.5956) (0.1626) (5.2498)

λE - 2.7480 - - - - - -
- (5.2877) - - - - - -

λε - 0.2099 0.3469 0.0251 0.0779 0.0194 - 0.3812
- (0.3315) (0.5855) (0.0214) (0.2797) (0.0438) - (0.6381)

λµ - - 0.0221 0.0131 - - - 0.0242
- - (0.0631) (0.0203) - - - (0.0648)

λσ - - 4.7494 - 0.9770 - - 4.8651
- - (9.8728) - (3.3818) - - (9.7428)

λµσ - - 1.0930 - - 0.2087 - 1.1410
- - (3.3729) - - (1.3116) - (3.4026)

λSMB - - - - - - -0.0067 0.0174
- - - - - - (0.1087) (0.0326)

λHML - - - - - - -0.0094 0.0149
- - - - - - (0.0967) (0.0295)

E[Pε] 0.0181 0.0149 0.0135 0.0228 0.0163 0.0222 0.0187 0.0131

σ[Pε] 0.0174 0.0140 0.0117 0.0226 0.0152 0.0168 0.0156 0.0112

Table 3: Idiosyncratic volatility cross-sectional regressions - I/B/E/S beliefs

The idiosyncratic volatilities for each of the stocks in-sample are computed using time-series regres-
sion with the market return as independent variables, using 24 months for the estimation. It results
in a characteristic that can be used to generate characteristic-ordered portfolio returns. Each t, the
volatility characteristic is decomposed into 25 bins used to generate 25 volatility-sorted portfolio
returns. As it is the case for the value-size premia, the in-sample period is equal to 48 months, imply-
ing 184 out-of-sample periods. In Table 3, the results from the cross-sectional regressions are shown,
using the I/B/E/S beliefs with the zero correlation assumption as exogenous beliefs. As expected,
the pricing performance of the Fama-French model on idiosyncratic volatility sorted portfolios is not
as accurate as it is on value-size sorted portfolios. The Fama-French model performs slightly worse
than the CAPM on average pricing errors but signi�cantly better in terms of volatility. The best
performing model is the four-factor model, with an improvement of about 0.50% in average pricing
errors and close to 0.6% in volatility compared to the CAPM. Although it is less clear than with
the value-size portfolios, the most signi�cant error portfolio is again the variance expectation error
portfolio. Its coe�cients in all models tend to be higher in magnitude than the ones of the market
factor. Contrary to the value-size portfolios, the pricing performance of the two-factor belief model
is better than the one using only the variance error portfolio. It is also better than the Fama-French
model, with an improvement by about 0.40% in expected pricing error and 0.16% in its volatility.
Moreover, the mean-variance premium seems to be higher in Table 3 than in Table 1. The models
with only the mean and mean-variance expectation errors portfolio result in pricing performances
signi�cantly worse than the usual CAPM. As shown on the last column on the right, adding the
Fama-French factors to the four-factor belief model does not bring signi�cant improvements in terms
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of pricing errors. The regression results suggest that the four-factor belief model (corresponding to
the I/B/E/S beliefs) is a more general approach than the one of the Fama-French model since it
can price accurately both value-size and idiosyncratic volatility portfolios.

In Figure 12, the estimated premia are shown from January 2008 to June 2011. They have
low values in the beginning of the period, before the �nancial crisis. Contrary to the case of the
value-size portfolios, the mean-variance expectation error is the most important premium during
the �nancial crisis. Moreover, the sum of the premia is higher, about 0.15, compared to a maximum
of about 0.04 in Figure 11. However, it does not appear much the rest of the period, in which the
variance expectation error premium is the most important aside from the market premium.

Figure 12: Idiosyncratic volatility estimated prices of risk over time - 4-Factor model
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The relevant portfolio statistics are shown in Table 4. As it is the case for the value-size sorted
portfolio returns, the alpha-sorted market betas are similar to their error counterpart. It is not
surprising since the exogenous beliefs are the same, only applied to di�erent returns. Assets with
low expected alphas by the I/B/E/S beliefs have high betas and idiosyncratic volatilities, whereas
assets with high expected alphas have low betas and low idiosyncratic volatilities. The alpha-sorted
portfolio moments show that the Sharpe ratio tends to indeed increase with the expected alpha
stemming from the I/B/E/S beliefs, and portfolio πα,1 has a monthly Sharpe ratio equal to 0.037
whereas portfolio πα,5 has a monthly Sharpe ratio of 0.127. The error beta of the latter portfolio
is lower than its market beta, the most important di�erence amongst all portfolios. That is, the
net exposure to the factors (βOM - βOE ) is positive leading to a positive e�ect on πα,5's mean. The
I/B/E/S beliefs seem to better predict the alphas of the idiosyncratic volatility sorted portfolio
returns. Although insigni�cant, portfolios one and two have negative alphas whereas portfolios four
and �ve have positive alphas. The volatilities of the residuals of the regressions show that the error
portfolio does signi�cantly better at explaining the alpha returns than the market portfolio, except
for portfolio πα,5. The only signi�cant regression alpha coe�cient at the 5% level in the regressions
is the (negative) of πα,2 on the error portfolio. The e�cient part of the market portfolio π∗ has
higher volatility and mean than in the value-size case in Table 2. It also has a signi�cant negative
beta with respect to the error portfolio and a beta insigni�cantly di�erent from zero with respect to
the market portfolio. The error portfolio has again statistics similar to the market portfolio, but it
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µ̂ σ̂ β̂M α̂M σ̂ε,M β̂E α̂E σ̂ε,E v̄ol

πα,1 0.347 9.334 1.337 -0.390 5.664 1.406 -0.352 3.523 31.283
- - (0.000) (35.508) - (0.000) (18.013) - -

πα,2 0.220 7.270 1.121 -0.398 3.765 1.142 -0.348 1.875 12.167
- - (0.000) (15.660) - (0.000) (1.333) - -

πα,3 0.526 6.975 1.110 -0.087 3.269 1.098 -0.020 1.756 8.886
- - (0.000) (72.142) - (0.000) (87.738) - -

πα,4 0.593 6.187 1.012 0.035 2.599 0.968 0.112 1.683 6.530
- - (0.000) (85.456) - (0.000) (37.035) - -

πα,5 0.639 5.012 0.842 0.175 1.819 0.754 0.264 1.900 4.535
- - (0.197) (19.695) - (0.000) (6.239) - -

πM 0.551 5.550 1.000 -0.000 0.000 0.788 0.160 2.702 6.181
- - (0.000) (100.000) - (0.000) (42.672) - -

πE 0.497 6.149 0.968 -0.037 2.993 1.000 0.000 0.000 6.004
- - (0.000) (86.915) - (0.000) (100.000) - -

π∗ 0.072 1.119 0.004 0.070 1.118 -0.046 0.095 1.083 3.451
- - (0.766) (40.390) - (0.001) (23.999) - -

Table 4: Idiosyncratic volatility portfolio statistics - I/B/E/S beliefs

is slightly less mean-variance e�cient since both its mean and volatility are respectively lower and
higher. The I/B/E/S beliefs seem to favour assets with low idiosyncratic volatilities compared to
asset with high idiosyncratic volatilities. It is a sound decision because the former assets perform
better than the latter ex-post. A strategy that bets on the I/B/E/S beliefs i.e. that takes a long
position πα,1 and a short position in πα,5 allows to generate a positive mean return for a zero net
investment. The strategy is then long low idiosyncratic volatility assets and short high idiosyncratic
volatility assets, leading to an overall negative exposure to the idiosyncratic volatility characteristic.

6 Conclusion

In this paper, we fully relax the perfect information assumption in the context of the CAPM.
That is, there are heterogeneous and biased beliefs on all moments of the return distribution,
resulting in equilibrium expectation errors on the asset means, variances and correlations. Market
weights are mean-variance ine�cient and decomposed as the sum of four portfolios. The �rst one
relates to the true asset moments, whereas the three other ones relate to each type of expectation
errors: Mean-Errors (ME), Precision-Errors (PE) and combined Mean-Precision-Errors (MPE).
It leads to an error-adjusted SML relationship, with idiosyncratic asset alphas and a systematic
slope adjustment with respect to the market excess return. All the pricing terms retain the same
structure as the portfolio decomposition, and the errors with respect to risk have di�erent and more
complex consequences than errors with respect to mean. The idiosyncratic alphas can be expressed
as exposures to the three expectation error portfolios, implying that the pricing relationship is
four-dimensional: the Security Market Space (SMS). The expectation error factors do not relate
to outside sources of risk, but rather are consequences of mistakes on the only true source of risk,
the market return. It suggests that the perfect information assumption of the CAPM has been
tested in the literature, rather than the market model itself. Cross-sectional e�ects considered
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as anomalous in the standard CAPM can be explained using the SMS. Fama-French portfolios
and other factor models are based on empirical performance but they can not be explained using
equilibrium arguments. Cross-sectional e�ects related to characteristics in the data are consistent
with persistent belief deviations on the underlying assets.

In order to test the results developed in the theoretical part, the SMP must be estimated using
real return data. While the objective distribution parameters can be estimated using observed
returns, the representative distribution parameters is only indirectly observed through the market
weights. There are more unknowns than equations and hence an in�nity of solutions. Rather than
searching for the optimal representative measure, we develop a procedure that allows to test for
the pricing relevance of arbitrary exogenous beliefs on any sample of asset returns. It requires as
inputs the representative variance-covariance matrix and mean vector, but the latter do not have
to correspond to the observed market weights. The procedure is similar to Fama-Macbeth two-
pass regressions but without linear regressions in the �rst stage. Di�erent assumed beliefs result
in di�erent error betas, with di�erent out-of-sample pricing performances. The approach works
for any arbitrary beliefs, irrespective of how realistic they are. However, the out-of-sample pricing
performance should be lower for unrealistic than for realistic beliefs. For the illustration, we use
the analysts' forecasts from the I/B/E/S database as exogenous representative beliefs. Since the
correlation beliefs are not given by the I/B/E/S database, they are for simplicity assumed to be zero
across portfolios. The zero correlation assumption seems to match well to the only positive observed
market weights in the mean-variance preferences set-up. To reduce the test asset dimension and
still be able to test for well-known asset pricing premia, we regroup the assets into characteristic-
sorted portfolio returns. We focus on the size-value premia, as well as the idiosyncratic volatility
premium. The results from the cross-sectional regressions show that the four-factor model associated
to the I/B/E/S beliefs performs better than the CAPM and the Fama-French model in terms of
pricing errors. In the value-size case, the latter model, which is speci�cally designed to price the
value and size premia, has a similar performance to the four-factor belief model. However, in the
idiosyncratic volatility case, there is a signi�cant pricing error di�erence between both models. There
is a preference for low-beta and hence low-risk assets in the I/B/E/S analysts' forecasts. Moreover,
in both datasets, amongst the three expectation error portfolios, the variance error premium seems
to be the most important. The I/B/E/S beliefs seem to do better at pricing the idiosyncratic
volatility sorted portfolios as the expected alphas better correspond to the realized performances
ex-post. It suggests that the biases stemming from the analysts' forecasts might be less exposed
to the idiosyncratic volatility anomaly than to the value and size anomalies. The error portfolio
seems to be similar to the error portfolio, implying that, according to the I/B/E/S beliefs and
mean-variance optimality, most of the market covariance is due to errors.

The empirical results show the model structure to be relevant as the four-factor model allows
to better price assets than the standard CAPM and the Fama-French model. The empirical test is
done on the value-size and idiosyncratic volatility premia, but many other premia can be considered.
Moreover, while the results are informative with respect to the beliefs corresponding to the I/B/E/S
forecasts, they also highly depend on the assumed beliefs. Di�erent beliefs give di�erent results, and
some are more realistic and hence accurate than others. The pricing performance of the four-factor
model can likely be improved by searching for more realistic beliefs, especially on the correlation
dimension. To that purpose, additional work must be done on the estimation of the representative
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measure, which is a high-dimensional object. Regarding the theoretical results, they are valid for a
static model under the mean-variance utility assumption. It could be interesting to use the same
weights decomposition method to derive the error-adjusted versions of more complicated models,
for example dynamic models. Moreover, the three additional error term structure relates to the
mean-variance utility assumption. If more than two moments were involved in the utility function
of the representative investor, more additional error terms would appear in the equations. Hence, it
would also be interesting to use the same method to relax the perfect information assumption with
other utility functions. These extensions are left for further research.
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