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1 Introduction

Question
Consumption decision and wealth-management decision are routine decisions

of consumers. Food price in the grocery store, meal price in the restaurant
induce the spending decision of consumers across consumption categories. On
the other sides, the return of financial assets also induces the spending decision
of consumers across time and space. The intrinsic connection of consumption
commodity market and the financial asset market invokes the natural research
question for the financial economist: Can commodity price help the financial
economist make precise prediction for financial asset return? This paper aims
to investigate the innate linkage of spot commodity market and financial asset
market under the general economy environment.

Consumer’s shopping cart covers the chicken wing, the toothpaste, and the
visit to dental clinics. Consumer’s price for purchasing a commodity reflects
the commodity’s marginal contribution to consumer welfare. For example, corn
price in 1900 and the Subway sandwich price in 2020 allows economists to rea-
sonably compare the corn in 1900 and the Subway sandwich in 2020.

Correlation with consumer’s welfare determines the discount rate of financial
asset. In the equity market, dividend flow of company stocks have different cor-
relation with commodity prices. Taking into account the uncertain fluctuation
of consumption price, when consumers hold shares in companies that move si-
multaneously with consumer prices, consumers require compensation for taking
additional consumption price risks.

How to quantify the risk price for bearing the fluctuation of consumer’s
price? Do the cereal price and the restaurant dining price perfectly elicit their
impacts over consumer welfare? Should we anticipate equalized amounts of risk
compensation across commodities?

Methodology
To answer these questions, I investigate consumer’s intra-temporal pref-

erence and the inter-temporal preference simultaneously. I describe the con-
sumer preference with indirect utility function, to straightforwardly evaluate
the welfare impact of high-dimensional consumption prices. I conduct a non-
parameteric decomposition for equation that decides the spending share, and
the Euler equation that determines the expected excess return of equity assets.
I further conduct the non-parametric analysis in the heterogeneous-agent econ-
omy. I construct the artificial consumer that are consistent with the aggregate
consumption spending and financial market Stochastic Discount Factor. The
non-parameteric analysis of single consumer fully holds for the artifical con-
sumer in the heterogeneous-agent economy.

For the consumption commodity with smaller price-elasticity, consumer is
less able to evade the impact of price increase. Consumer spends a smaller
fraction of expenditure for such necessity commodity when she allocate a larger
expenditure. Simultaneously, the consumer charges higher risk-compensation
when the stock return is correlated with the necessity, compared with the com-
pany whose stock return is correlated with the luxury.
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In the economy with income growth, asymmetric price elasticity implies
the the structural transformation of risk premium. When evaluating the risk
premium of consumption price, I use expenditure share to amend the linear
Stochastic Discount Factor. In the economy where correlation between the
economy fundamental and the stock return are stationary, the long-run shift
of expenditure share gives direct explanation for the long-run evolution of risk-
premium.

Literature
The literature of Consumption-based Asset Pricing incorporate multiple con-

sumption sectors to analyze the consumer welfare in the more granular view.
(Yogo, 2006; Belo, 2010; Yang, 2011; Eraker et al., 2016) considers the durable
consumption sector and the non-durable consumption sector. (Piazzesi et al.,
2007) include the housing sector. (Dittmar et al., 2020) include the energy
sector. Above researches considers the CES functional form, hence tractable
analysis is available. (Ait-Sahalia et al., 2004) considers the nondurable con-
sumption sector and the luxury sector, consumer’s utility is separable in the
quantities of each consumption sector. (Lochstoer, 2009) use Stone-Geary pref-
erence for the necessity-luxury two-sector economy. (Pakoš, 2011) allows the
heterogeneous elasticity of the durable sector and non-durable sector in the CES
functional form. These three articles allows the non-homotheticity in consumer
preference.

The literature of structural transformation quantitatively evaluates whether
the non-homothetic preference is capable to explain the long-run shift of con-
sumption composition. (Boppart, 2014) uses PIGL (Price-independent Gener-
alized Linear) preference, quantifies the income effect in the two-sector economy
with unbalanced productivity growth; (Comin et al., 2021) use non-homothetic
CES preference, separate the income effect and the price effect in a three-sector
model. There have been a long tradition in identifying the micro consump-
tion decision with non-homothetic preference. (Deaton and Muellbauer, 1980)
discuss the convenience in estimating the PIGLOG (Price-independent Gener-
alized LOG) preference. (Blundell et al., 1994; Parodi et al., 2020) exploits
PIGLOG prefernce to simultaneously estimate the consumption portfolio and
inter-temporal saving decision using the granular consumption data.

A strand of Macroeconomic literature investigates the parametrized ag-
gregation conditional on thick-tail distribution: (Houthakker, 1955; Levhari,
1968; Lagos, 2006) explores the production function, (Wang and Wen, 2012;
Ai et al., 2013) studies the investment adjustment cost function. As the par-
allel literature, non-parametric aggregation answers whether it is possible to
understand the aggregate outcome without detailed knowledge of underlying
distribution: (Muellbauer, 1976) discuss the existence of static consumer un-
der price-independent generalized linear preference; (Jackson and Yariv, 2019)
question the existence of dynamic investor when Gorman-preference is not avail-
able; (Hulten, 1973; Gabaix, 2011; Baqaee and Farhi, 2019) discuss the aggre-
gate production function of the production network; (Baqaee and Burstein,
2021b) discuss a particular scenario for the existence of aggregate consumer
where individual consumers have non-homothetic preference. Empirically, the
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non-parametric aggregation helps to construct the sufficient statistics for the
economy with heterogeneous decision-makers and distribution of decision out-
comes.

Contribution
This paper primarily contributes to the asset pricing literature that stud-

ies the endogenous determination of asset price and commodity price. Price
elicits the primitive aggregate shock in (Papanikolaou, 2011) and (Johnson,
2011). Price reveals the producer’s marginal utility in (Belo, 2010), consumer’s
marginal utility in (Lochstoer, 2009). Sticky wage increases correlation be-
tween the aggregate dividend flow and the consumer welfare in (Favilukis and
Lin, 2016). (Roussanov et al., 2021) estimates the risk premium of core-CPI
across multiple financial assets. I contribute to this literature by using indirect
utility function to describe the consumer welfare. This allows me to deliver
the innate connection between the consumer welfare and the spot consumer’s
commodity price. In particular, my estimation framework admits generalized
non-homothetic preference. Compared with the consumption-based asset pric-
ing literature of heterogeneous goods (Ait-Sahalia et al., 2004; Yogo, 2006; Pi-
azzesi et al., 2007; Lochstoer, 2009; Belo, 2010; Pakoš, 2011; Yang, 2011; Eraker
et al., 2016; Dittmar et al., 2020), this paper differs in the use of non-parametric
analysis. The theoretical prediction applies for a broad class of parameterized
preference.

Last but not least, this paper contributes to the emerging macro-finance
literature of structural transformation. (Hou and Van Dijk, 2019) explains the
disappearance of size premium. (Belo et al., 2021) documents the rising share of
intangible capital in the market valuation of listed firm. (Crouzet and Eberly,
2021) incorporate the intangible capital to ease the quantitative tension between
the physical capital investment rate and the firm valuation. I contribute to this
literature in explaining the gradual-shift of Stochastic Discount Factor in the
economy with income growth. (Smith and Timmermann, 2021) investigates the
diminishing risk premia across equity portfolios.

Layout
The paper is organized as follows. Section 2 provides the approximation

of Euler Equation in financial asset holding. Section 3 estimates the Euler
Equation, and tests the consumption preference in the pricing kernel. In Section
4, I discuss how the price-decomposition of SDF helps find the risk-premium,
and how it helps explain the long-run evolution of SDF. Section 5 constructs the
consistent artificial representative consumer in the economy with heterogeneous
consumers under generalized consumption preference. In Section 6, I discuss
the existing conflicts in the estimation of aggregate consumption data. Section
7 concludes.
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2 Decomposition of Pricing Kernel

2.1 Description of Consumer Decision

I consider the discrete-time infinite-horizon consumption bundle allocation
problem of a representative consumer. The set of commodity category is fixed
set J . The state of the world is described by the {{zt}∞t=0}. Motion of history
path is zt+1 = (zt, zt+1). The consumer is endowed with the stream of labor
earning L̃: at path z, at time point t, the labor endowment is `t.

The consumer participates in the competitive financial market. The price of
financial security1 is P sk,t, the payout is Dk,t. The consumer participates in the
Walras commodity market. The spot price of commodity is Pj,t per unit. The
consumer earns wage wt per unit of labor.

Now I describe the consumer’s life-time consumption problem (P.0),

U0(~θ0) = sup
C̃,θ̃

U(c̃)

s.t.
∑
k

θk,t · (Pk,t +Dk,t) + wt · `t =
∑
j

P cj,t · Cj,t +
∑
k

θk,t+1 · Pk,t,

cj,t ≥ 0;
∑
k

θk,t+1 · Pk,t ≥ a.

(P.0)

The utility function U(C̃) describes the consumer’s preference over life-time

consumption bundle, I specify the preference in details later. The vector ~θt
describes the shares of financial security held by the consumer. The financial
constraint is constructed to avoid the Ponzi-game, and a is constructed to never
bind, in the same argument of Chapter 8 of (Ljungqvist and Sargent, 2012).

I skip the exact specification for the producer in the economy, because above
description applies for arbitrary economy where the aggregate consumption al-
location is consistent with the rational dynamic consumption decision. This
identification methodology is similar with (Yogo, 2006), where the details of
production is irrelevant for the consumption asset pricing model.

2.1.1 Intra-temporal Preference

The indirect utility function V (P,E) : P × R++ → R is defined as

V (P,E) = max
~C∈X

g(C1, C2, . . . , CJ)

s.t.
∑
j∈J

Pj · Cj ≤ E.
(S.1)

Here, the direct utility function g(·) describes the consumer’s preference over
the consumption bundle (C1, C2, . . . , CJ).

1I use the subscript s for the financial security.
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Definition 1. Define the absolute share of j-th sector as ωj,

ωj ≡
Pj · Cj
E

.

Define the relative expenditure share between the k-th sector and the j-th
sector as Sk,j,

Sk,j ≡
ωk
ωj
.

Define the core-IDU as the value of IDU given price vector P and 1 unit
consumption spending E,

V ∗(P ) ≡ V (P, 1).

Define the (k, j)-pair price elasticity as ηk,j,

ηk,j ≡ −
Dk,jV ∗(E−1 · P )

DkV ∗(E−1 · P )
· (E−1 · Pj).

The matrix of price-elasticity η is well-defined as long as the absolute ex-
penditure share is strictly positive 2.

2.1.2 Inter-temporal Preference

I assume the preference of representative consumer over the consumption
stream C̃ can be represented by the utility function U : RJ×∞×Z+ → R. In
particular, I consider the simple inter-temporal preference where the consumer
has CRRA coefficient γ over the utility flow ut = g(~Ct),

U(C̃) = lim
T→∞

E[

T∑
t=1

βt · g(~Ct)
1−γ

1− γ
]. (1)

I use utility function u(~C) = g(~C)1−γ

1−γ to represent the life-time equivalent utility

of consumption bundle ~C. I use indirect utility function v(~P ,E) = V (~P ,E)1−γ

1−γ
to represent the life-time equivalent utility from consumption spending E and
commodity price ~P . Lemma 1 ensures the legitimate conversion from dynamic
optimization problem with consumption bundle to the dynamic optimization
problem with total consumption expenditure 3.

2For example the Cobb-Douglas direct utility function u(C1, C2) = CΩ1
1 ·CΩ2

2 implies the
constant expenditure share, but the matrix of price-elasticity η is still well-defined as

η =

[
Ω1 + 1 Ω2

Ω1 Ω2 + 1

]
.

3This conversion is directly used in the (Parodi et al., 2020), here I formally verify the
legitimate conversion following (Stokey, 1989).
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Lemma 1. Define the problem (P.1) as

U0(~θ0) = sup
C̃,θ̃

lim
T→∞

E[

T∑
t=1

βt · u(~Ct)]

s.t.
∑
k

θk,t · (P sk,t +Dk,t) + wt · `t =
∑
j

Pj,t · Cj,t +
∑
k

θk,t+1 · P sk,t,

Cj,t ≥ 0;
∑
k

θk,t+1 · P sk,t ≥ a.

(P.1)

Define the problem (P.2) as

V
New

0 (~θ0) = sup
Ẽ,θ̃

lim
T→∞

E[

T∑
t=1

βt · v(~Pt, Et)]

s.t.
∑
k

θk,t · (P sk,t +Dk,t) + wt · `t = Et +
∑
k

θk,t+1 · P sk,t,

Et ≥ 0;
∑
k

θk,t+1 · P sk,t ≥ a.

(P.2)

Optimization problems (P.1) yields equivalent value as the optimization problem
(P.2). For each optimal policy C∗ in problem (P.1), E∗ such that

E∗t =
∑
j∈J

Pj,t · C∗j,t, ∀t, zt (2)

is an optimal policy in the optimization problem (P.2).

In the appendix, I directly show the linkage between the optimal consump-
tion plan and the optimal expenditure plan. 4

For the representative consumer, the wealth-constraint never binds, so the
shadow price wealth-constraint is zero along the optimal path of expenditure.
Optimal expenditure decision implies

λt = V (~Pt, Et)
−γ · DEV (~Pt, Et). (3)

where λt is the shadow price of (t, z) budget constraint in the optimization
problem (P.2), after the correction of subjective discount rates and natural
probability.

Definition 2. Define the real Stochastic Discount Factor M̃ as

M̃(~Pt, Et) ≡ V (~Pt, Et)
−γ · DEV (~Pt, Et) · PJ,t. (4)

The real pricing kernel augments the natural distribution of economic states
and subjective discount rate when determining the financial asset price. The
formula V (~Pt, Et)

−γ is H.D.0, while the formula DEV (~Pt, Et) depends on the
choice of numeiraire in the economy environment. I include PJ,t to focus on the

relative term
PJ,t
Et

, and to avoid the unnecessary discussion of numeiraire choice.

4Alternatively, one can show the equivalence with shadow price, assuming the trans-
versality condition holds.
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2.2 Decomposition of SDF

The real Stochastic Discount Factor M̃ helps evaluate the price formation
in the financial markets. Hereafter, I use notation m̃ = log(M̃), and dm̃ for the
change of m̃.

Theorem 1. First-Order Approximated SDF is

dm̃ = −
J∑
j=1

bj(~P ,E) · ωj · (dpj − dpJ)− be(~P ,E) · (de− dpJ) + o(h). (5)

with high-order term o(h) for h = max{{dpj}j ,de}. The risk price vector b is

bj(~P ,E) =− [γ · DEV (~P ,E) · E
V (~P ,E)

+ 1] +

J∑
i=1

ηj,i(~P ,E),

be(~P ,E) =−
J∑
j=1

[bj(~P ,E)− 1] · ωj .

(6)

The marginal utility from consumption expenditure are decomposed into
terms related with the vector of absolute expenditure share ω, and the matrix
of price-elasticity η. The risk-aversion parameter for utility flow γ and the term
DEV (~P ,E)·E
V (~P ,E)

determines the absolute level of risk price ~b. The vector of absolute

expenditure share ω, and the matrix of price-elasticity η decides the relative
level of risk price ~b. Here, I directly decompose the marginal utility of spending
V [~Pt, Et]

−γ · DEV (~P ,E), assuming non-trivial relative risk-aversion parameter
γ over utility flow 5.

The real Stochastic Discount Factor contains the term DEV (~P ,E), so the
decomposition involves the matrix of price-elasticity η. Further, the approxima-
tion of fluctuation in the term DEV (~P ,E) is mainly determined by the Hessian
Matrix of core-IDU function V ∗. Now, I briefly explain the intuition behind the
algebra. The indirect utility function is Homogeneous Degree of Zero, so the
marginal utility of expenditure is the summation of marginal utility contributed
by the consumption price in each consumption sector,

DEV (~P ,E) · E = −
J∑
j=1

DjV (~P ,E) · Pj .

Importantly, the absolute expenditure share ωj tells us the contribution of con-
sumption sector j toward the marginal utility of expenditure,

ωj =
Pj · DjV (~P ,E)∑
i Pi · DiV (~P ,E)

.

5The author finished the preliminary decomposition in late August, 2021, so this work is
independent of the (Baqaee and Burstein, 2021a). (Baqaee and Burstein, 2021a) implements

the non-parametric decomposition for the consumer welfare V (~P ,E), by measuring the equiv-

alent spending Ê conditional on achieving the same level of utility V (~P , Ê) = V (~PB , EB). If

Ê > E, consumer utility is higher given (~PB , EB).
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In the consumer theory, this property is known as “Roy Identity” or the “Shep-
ard’s Lemma”. The price-elasticity ηj,i is constructed to describe the sensitivity

of DjV (~P ,E) (marginal utility of consumption sector j) toward the consump-
tion price i. Overall, the H.D.0 property and the “Roy Identity” produces the
term of price-elasticity η in the Equation (6),

d logDEV (~P ,E) =−
J∑
j=1

ωj · (dpj − de)

−
J∑
j=1

ωj · [
J∑
i=1

ηj,i(~P ,E)] · (dpi − de) + o(h).

(7)

Intuitively, the fluctuation of consumption price dpi impacts the marginal utility
of expenditure, through each consumption sector j. It looks as if the consumer’s
marginal utility of expenditure is a complicated production function of consump-
tion prices, as in the decomposition of production function in (Gabaix, 2011)
and (Baqaee and Farhi, 2019).

We can also decompose the fluctuation of V (~Pt, Et)
−γ in the similar way.

Further, the fluctuation of utility is simpler, because we only need the informa-
tion of first-order derivatives. Fluctuation of SDF is now the summation of the
fluctuation of utility, and the fluctuation of marginal utility of expenditure. The
decomposition analysis of SDF is Independent of the Consumption Hierarchy 6,
as long as we have full information for the matrix of price-elasticity η.

Proposition 1. Given the security k and the security f , real total return R̃k,t→t′

and R̃f,t→t′ satisfy

E[
M̃t′

M̃t

· (R̃k,t→t′ − R̃f,t→t′)|It] = 0. (8)

Corollary 1. Given the security k and the security f , total return Rk,t→t′ and
Rf,t→t′ satisfy

E[
M̃t′

M̃t

· (Rk,t→t′ −Rf,t→t′)|It] ≈ 0. (9)

Here, the essential identification assumption is the path-independent pref-
erence and the interior expenditure decision. Because the INADA condition is
assumed for limE→0DEV (~P ,E) =∞, so the constraints of strictly positive ex-
penditure are never binding. I exploit the Euler equation to identify the pricing
kernel decomposed from the Indirect Utility Function. Here, the Euler equation
describes the rational decision across different financial assets, so the choice of

6This is similar with the Network-Independence property in (Baqaee and Farhi, 2019).
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deflator has neutral role in identifying the real pricing kernel 7.
Similar with (Cochrane, 1996), expected return is decomposed as

Et[Rek,t+1] =be · Et
[
det+1 ·Rek,t+1

]
+
∑
j

bj · ωj,t · Et
[
dpj,t+1 ·Rek,t+1

]
. (10)

The absolute expenditure share is directly observed in the aggregate data of
personal consumption expenditure and micro-data of consumption panel. The
matrix of price-elasticity is deep parameters in the economy. The fluctua-
tion of price-elasticity is negligible in the economy with well-defined Repre-
sentative consumer, and the in economy with Heterogeneous consumers and
perfect risk-sharing. Therefore, above proposed decomposition helps the fi-
nancial economists from heavy parametric assumptions in the economy with
high-dimensional consumption portfolio. Compared to the literature of the
consumption-habit, researchers no longer need to carefully assume the struc-
ture of habit and the dynamic of habit.

One might ask where is the “primitive macroeconomic shock” in this decom-
position exercise. In the true world, the “primitive macroeconomic shock” enters
into the expenditure-scaled price vector E−1 · ~P = (E−1 ·P1, E

−1 ·P2, . . . , E
−1 ·

PJ). Because the expenditure-scaled price vector E−1· ~P is the sufficient statistic
for the marginal utility of consumer, Theorem (1) of decomposing SDF actually
constructs the sufficient statistics for the consumer welfare in a generalized
economy environment with the “primitive macroeconomic shock”. The prices
works as this sufficient statistics of shocks in the consumption-based asset pric-
ing model, so the financial economists no longer explicitly mine the “primitive
macroeconomic shock”. The absolute expenditure share ~ω works as the suffi-
cient statistic for the magnitude of impact, so the estimation is less dependent
on the model parameters in describing the economy environment.

Suppose we use the format of traditional literature of asset pricing: identify
the “primitive macroeconomic shock” empirically, and then simulate the shock-
propagation of “primitive macroeconomic shock” in a quantitative model. Both
the expenditure-scaled price vector E−1 · ~P and the stochastic discount factor
M̃ can be represented in the vector of “primitive macroeconomic shock”. This
exercise would work for a long list of asset pricing models. In the true world,
the major shock in the economy is different in different periods of economy.
For example, the China-U.S. trade war had been the focus of financial media
during 2015-2018, while the energy price was the focus during War-time in
2022. It is more difficult to explicitly tracks a particular source of “primitive
macroeconomic shock” than tracing the sufficient statistics, let alone quantify
the welfare-impact of a particular “primitive macroeconomic shock”.

7The choice of deflator is non-trivial if we consider the Euler equation of longing a particular
type of financial assets. Though treasury bonds provides almost risk-free fixed monetary
coupon, the welfare-amount of risk-free coupon can still fluctuate. In addition, in the economy
where there exists no well-defined composite consumption good, it is difficult to pin down the
“effective numeraire”, eg. gold, water, leisure, etc. From this perspective, it requires further
efforts to understand the nominal risk-free rate.
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The decomposition of SDF in the Theorem (1) is a legitimate approximation

using the Taylor Theorem. The fluctuation of E−1 · ~P might contain both the
expected drift term, the cyclical term, and the unexpected shock term. The
Taylor expansion is legitimate as long as the change is incremental and tiny. If
the expected drift term, the cyclical term, and the unexpected shock term are all
sufficiently tiny, the equation of approximation holds. However, the econometric
models for identifying the vector of risk price ~b have particular requirement for
the process of expenditure-scaled prices E−1 · ~P . In the online appendix, I
discuss the identification assumptions involved in Theorem (1), for econometric
methods commonly used by the researcher of asset pricing literature.

The decomposition of SDF in the Theorem (1) is particularly useful in the
economy with multiple commodities. If we ignore the evolution of consump-
tion basket along the economic history, combining the consumption expenditure,
the CPI (consumption-price index) provided by the statistic authority is the suf-
ficient statistic for gauging the consumer welfare. Unfortunately, the evolution
of consumption basket is non-trivial when we look at the long economic history.
The proportion of consumption expenditure toward the food sector is high in the
early decades when the economy is poor, while it is low in the modern period
when the economy is richer. Also, we observe non-trivial fluctuation of con-
sumption basket along the business cycle. When the financial economists take
the consumption basket seriously, the relative price across different consumption
commodities is informative in gauging the consumer welfare. As the result, it is
difficult to infer the financial market pricing kernel accurately without knowing
the detailed consumption prices with respect to the consumption commodities.

One might ask why the composite price index provided by the bureau of
statistic can’t work as the ideal deflator for the financial market. In the economy
with multiple commodities, if the consumer has symmetric preference across
consumption commodities, the price elasticity η will also be symmetric,

J∑
i=1

ηj,i(~P ,E) ≡
J∑
i=1

η1,i(~P ,E).

Under this scenario, the Tornqvist index PTornqvist provided by NIPA indeed
works as the sufficient statistic in Equation (7),

d logDEV (~P ,E) =− [1 +

J∑
i=1

η1,i(~P ,E)] ·
J∑
j=1

ωj · (dpi − de) + o(h)

≈− [1 +

J∑
i=1

η1,i(~P ,E)] · d log PTornqvist

(11)

Unfortunately, symmetric price elasticity η imposes an overly strong simplifica-
tion for the true world. As the result, the financial market pricing kernel favors
knowing the detailed consumption prices across consumption sectors.
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3 Estimation

In this section, I estimate the pricing kernel of financial assets in a two-sector
economy J = {g, s}. I choose the service price as the deflator PJ . I identify the
parameters (bg, be) in the pricing kernel with relative expenditure and relative
good price 8

dm̃ ≈ −be · (de− dps)− bg · ωg · (dpg − dps). (13)

Moment gk,T (θ) is sample mean of the Euler equation in holding the risky asset
k,

gk,T (θ)

≡ 1

T
·
T∑
t=1

[1− be · (det+1 − dps,t+1)− bg · ωg,t+1 · (dpg,t+1 − dps,t+1)] ·Rek,t+1

(14)

I denote gT (θ) as the K−dimension vector of {gk,T (θ)}Kk=1. The GMM estima-
tor is

θ̂ ≡ min
θ∈Θ

gT (θ)
′ ·W · gT (θ) (15)

In the appendix, I specify the identification assumption for the GMM estimator
as the consistent Extremum Estimator.

3.1 Data Description

3.1.1 Data Construction

I use the Annual data during 1964-2019 in Table 2.3.4, Table 2.3.5 from
the NIPA website to construct the sector-level price and total non-durable con-
sumption expenditure. I consider the good sector and the service sector:

� good: food grocery, apparel, other non-durable goods. I remove energy
from the commodity sector referring (Nakamura, 2008).

� service: health care, food-away, recreation, financial service, and other
service. I remove public transportation, housing from the service sector,
following (Hazell et al., 2020).

I construct the Fisher index 9 as the sector-level price index. For all nominal
time series, I use the price of service sector as the deflator to construct the

8The pricing kernel in the two-sector economy is

dm̃ ≈ −bg · ωg · dpg − bs · ωs · dps − be · de. (12)

I deflate the nominal good price and nominal expenditure with the nominal service price, so
dpss is constant zero.

9It is also known as price index implied by the chained real quantity. Fisher index is widely
used by the Statistic Department in countries using the Kuznets’ National Accounting system.
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relative expenditure, the relative price of good. Figure (1) visually shows the
peak of nominal prices at around 1980. I deflate the nominal time series using the
nominal service price, to ensure the stationary relative price and the stationary
relative expenditure.

Figure 1: Plot of Price Indice

[—See the Figure appendix—]

I use the equity portfolios from the DataLibrary of Kenneth French’s website.
I choose the the diverse equity portfolios based on the prominent anomalies in
equity return.

� 5-Quintile Size portfolios, size is measured as the market value of out-
standing common stock;

� 5-Quintile Book-to-Market portfolios, book asset is measured as the total
asset in the balanced sheet;

� 5-Quintile Operating Profitability portfolios, operating profitability is mea-
sured as the EBITDA over the total asset;

� 5-Quintile Investment portfolios, investment rate is measured as the change
rate of total asset;

� 10-Tercile Momentum portfolios, momentum is measured as the accumu-
late return of nearby 11-months one month ago.

These equity portfolios covers the representative cross-section anomalies in the
equity market of United States. The portfolio design of passive funds refers
the cross-section return anomalies, so the artificial equity portfolios reasonably
mimick investors’ market practice. I estimate the pricing kernel during the time
interval of 1964-2019, when the 5 sets of equity portfolios are available.

3.1.2 Descriptive Statistic

Panel (a) of Table (1) provides the descriptive statistic for the two time se-
ries: the relative expenditure de − dps, and the relative good price dpg − dps.
The first column illustrates the mean annual growth rate of relative expenditure
is 1.27%, mean annual growth rate of relative good price is -1.33%. The second
and the third columns show the auto-correlation coefficient in each time series,
the correlation of relative expenditure and the relative price. The AR(1) coeffi-
cient for relative expenditure is 0.36, and 0.47 for the relative good price. Panel
(b) of Table 1 provides the correlation coefficient between the relative good price
with business cycle indices. Correlation between the relative price of good and
the aggregate labor input is insignificant. Correlation between the relative good
price and the market excess return is significantly negative. There exists no
mechanical correlation between the time-series factors and the main indicators
or equity market. Pairwise correlation between the relative good price and the
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sub-category price are provided in Table (A.2). I require stationary time-series
factors when constructing the pricing kernel, this allows the intuitive interpre-
tation of risk price for covariance. Dicker-Fuller test of relative good price and
other main-sector price are provided in Table (A.3) in the table appendix.

Table 1: Descriptive Statistic

[—See the Table appendix—]

3.2 Cross-section Expected Return

3.2.1 IDU Pricing Kernel

Table (2) provides evaluation of estimation. For objective evaluation of
model fit, I listed the traditional Asset Pricing models in column (1)-(4). Col-
umn “CAPM” considers the excess return of market portfolio exposes the fluc-
tuation of SDF, the pricing kernel is assumed to be

dm̃ ≈ −bm · remkt. (16)

Column “FF-5” considers the Fama-French 5-factor model exposes the fluctu-
ation of SDF that contingent on high-dimensional state variables, the pricing
kernel is assumed to be

dm̃ ≈ −bm · remkt −
5∑
k=2

bk · fk. (17)

Column “C-ND” considers using direct utility function to describe the marginal
utility. In particular, I assume there exists well-defined non-durable composite
good Cnd and the chained-quantity index describes the quantity of composite

good Cnd. The utility flow is u(Cnd) =
C1−γ
nd

1−γ . The pricing kernel is decomposed
as

dm̃ ≈ −γ · dcnd. (18)

Column “C-D” considers the durable stock affects the utility flow of represen-
tative consumer. Construction of durable stock Cd follows (Yogo, 2006). The

utility flow is u(Cnd, Cd) = g(Cnd,Cd)1−γ

1−γ . The pricing kernel is decomposed as

dm̃ ≈ −γ · Dndg · dcnd − γ · Ddg · dcd. (19)

For comparable analysis, column “P-D” considers the durable stock affects the
utility flow of representative consumer. This assumption is similar with the
two-stage budget system in (Parodi et al., 2020). The durable stock acts as the
parameter for the indirect utility function from budget allocation decision in

non-durable consumption bundle. The utility flow is u(~C,Cd) = V (~P ,End;Cd)1−γ

1−γ .

13



When inferring the fluctuation of marginal utility from non-durable expenditure,
I consider the effect from change of durable stock,

dm̃ ≈ −be · (de− dps)− bg · ωg · (dpg − dps)︸ ︷︷ ︸
Durable Stock is fixed

−bd · dcd︸ ︷︷ ︸
Quantity Change of Durable

. (20)

Though it is an unfinished research agenda to construct the representative con-
sumer with aggregate durable stock, (Yogo, 2006) shows the empirical impor-
tance in inferring the SDF based on business cycle of durable stock. Here,
I include the fluctuation of aggregate durable stock to overcome the omitted
component of SDF.

I calculate the sample mean of absolute moments as the MAPE (Mean Ab-
solute Pricing Error) of portfolio’s annual excess return. If the SDF dm̃ is
mis-specified, the financial economist would observe the high MAPE.

MAPE =
1

K

∑
k

∣∣∣∣∣ 1

T
·
T∑
t=1

(1 + dm̃t+1) ·Rek,t+1

∣∣∣∣∣. (21)

If an investor use the mis-specified SDF dm̃ to hedge the aggregate risk and
construct risk-neutral investment strategy (more accurately, “perceived” risk
neutral investment strategy, if the investor believes the accuracy of this SDF),
high MAPE implies that the investor can still go a long way to construct high α
based on this rmis-specified risk-neutral investment strategy. When reading the
statistics of MAPE, the magnitude of MAPE reflects the magnitude of potential
α in the corresponding investment strategy.

The IDU-pricing kernel larges compress the potential of mining α in the
equity market, because it well describes the aggregate risk. MAPE decreases
from the 1.93% to 0.39% when I use the IDU-pricing kernel, in comparison with
the pricing kernel of market portfolio excess return. This comparison shows
the equity market of United States is consistent with the consumer’s rational
choice of wealth management and consumption portfolio. MAPE is 0.84% for
the pricing kernel of non-durable composite good. This comparison shows that
approximated non-durable composite good using the chained-quantity generate
larger model error than the general decomposition of indirect utility function.

For straight-forward comparison of model fitness, I report the RMSE (Root
Mean Square Error) defined as

RMSE =

√√√√ 1

K

∑
k

∣∣∣∣∣ 1

T
·
T∑
t=1

(1 + dm̃t+1) ·Rek,t+1

∣∣∣∣∣
2

. (22)

Statistic of RMSE provides similar information with MAPE. Here is the subtle
difference between the statistic RMSE and the statistic MAPE: if we observe
the low MAPE and the high RMSE simultaneously, it tells us the pricing error∣∣∣ 1
T ·
∑T
t=1(1 + dm̃t+1) ·Rek,t+1

∣∣∣ is dispersed across assets. In other words, the

proposed SDF dm̃ works extremely bad for certain asset k.
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I report the CV-R2 (Campbell-Vuolteenaho R2) defined as

R2 =1−

∑
k

[
1
T ·
∑T
t=1(1 + dm̃t+1) ·Rek,t+1

]2
∑
k

[
1
T ·
∑T
t=1R

e
k,t+1

]2 . (23)

The time-series average expected excess return 1
T ·
∑T
t=1R

e
k,t+1 reads as the Y-

variable. Assume the SDF factor ft+1, the time-series average covariance term
1
T ·

∑T
t=1 dft+1 · Rek,t+1 reads as the X-variable. This statistic evaluates the

model-fitness cross-assets, R2 = 1 −
∑
k(yk−~b· ~X)2∑

k y
2
k

. Compared with RMSE, the

statistic CV-R2 only focus on the model-fit, where the pricing error is scaled by
the time-series average expected excess return. It is interesting to see that the
quantity-based consumption model “C-ND” (Non-durable consumption quan-
tity) and “C-D” (Non-durable consumption quantity and durable consumption
quantity) already out-performs the traded-factor model “CAPM” (MKT factor)
and “FF-5” (Fama-French five-factor model). Further, the price-based consump-
tion model “P-ND” (relative good price, relative non-durable expenditure) and
“P-D” (relative good price, relative non-durable expenditure, durable consump-
tion quantity) has higher CV-R2.

I report the p-value for the J-stat of GMM estimation. The J-stat is defined
as the objective function value at the optimal parameter in the GMM estimation,

J ≡ T · gT (θ∗)
′ ·W ∗ · gT (θ∗). (24)

If we observe the J-stat to be tiny, that means we don’t observe variation in
the moment of Euler Equation (1 + dm̃t+1) · Rek,t+1. This would leads to over-

identification of parameter ~b 10. Because the construction of testing assets use
the diverse equity portfolios, p-value of J-stat is high under all specifications of
SDF. Therefore, there exists no concern of over-identification.

Table 2: Model Fitness

[—See the Table appendix—]

Figure (2) illustrates the improvement of model fit for the six asset pricing
models. The testing assets are colored for straight-forward interpretation. As
in the figure, the improvement from the model “C-ND” to the model “P-ND”
mainly occurs in the Size-BM testing assets and the Momentum assets. The
improvement occurs because Size-BM testing assets has considerable dispersion
of factor-loading toward the relative good price, while the Momentum assets
has considerable dispersion of factor-loading toward the relative expenditure.

10An extreme case would be that the asset returns are highly correlated, Re
k,t+1 ≡ k·R

e
1,t+1,

then we in fact use the single moment for asset-type No.1. When using the single moment to
identify two parameters bg and be, we have the issue of over-identification.
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For intuitive interpretation of approximated Euler equation, I consider the
“quasi-equivalent” Fama-Macbeth two-step regression11, constructed in the ap-
proach of (Cochrane, 1996). The diverse equity portfolio encompasses five fa-
mous cross-section asset-pricing anomalies. In particular, the operating-profitability
related testing assets has smaller correlation with the value-related testing as-
sets. Therefore, construction of diverse equity portfolio already addresses the
critique of linear reformation in testing assets. I also consider the GLS re-
gression for each model, using the weight-matrix suggested by (Lewellen et al.,
2010), to mitigate the concern of strong correlation across testing assets. Be-
cause the expenditure share is involved, I consider two setups of identification
to evaluate how the IDU decomposition reduce the pricing error. The statis-
tic “OLS-R2” and “GLS-R2” takes the original time series of relative price
dpg − dps as the time-series factor, then evaluates the explanatory power of co-
variance over sample-average excess return assuming the remained pricing error
as zero. As in Table (2), the “OLS-R2” of IDU pricing kernel is the high across
the six asset pricing models. The “GLS-R2” is comparable with the pricing ker-
nel constructed with the direct utility function. The statistic “COLS-R2” and
“CGLS-R2” considers the case where the remained pricing error can be non-
zero. Under the lens of “COLS-R2” and “CGLS-R2”, cross-section explanatory
power in column “P-ND” is comparable with column “C-ND” and “C-D”. Both
setups of Fama-Macbeth two-step regression consider time-series factors and the
equity excess return has stationary correlation coefficient.

Figure 2: Fitness of Asset Pricing Models

[—See the Figure appendix—]

Table (3) investigates whether the choice of testing assets affects the point
estimate of be and bg. When using the Size-BM 25 portfolios point estimate
of be and bg slightly changes to 30.05 and -68.26. When using the industry
portfolios point estimate of be and bg slightly changes to 33.27 and -69.95. In
these two setups, over-identification hypothesis are both rejected. In addition,
The IDU-pricing kernel generates smaller MAPE than both the traded-factor
pricing kernel and real-quantity pricing kernel. The point estimate of “Anomaly
Factors Pricing Kernel” qualitatively changes in different setup of testing assets
12. The point estimates of the “Real-quantity Pricing Kernel” are quantitatively

11Fama-Macbeth two-step regression requires more assumptions than the GMM estimation
of SDF, see the explanation in (Cochrane, 1996). In particular, when the testing assets is
not sufficiently diversified, the sampler-average exces return of testing asset has non-trivial
idiosyncratic noise. For example, for major asset pricing models, the industry-30 portfolios
generally has poor model-fitness when gauging the model fit-ness using the R2 in the 2nd
stage regression. Nonetheless, Fama-Macbeth two-step regression delivers straightforward
interpretation of risk-premium and risk-exposure, so I provide the comparison.

12In the online appendix, Table A.5 reports the point estimate of ~b in the “Anomaly Factors
Pricing Kernel” constructed with Fama-French five factors. The risk price for the operating
profitability factor bProfit has large standard error in the “Mix-30” portfolio, using the diverse
equity portfolios. However, the point estimate of bProfit is 5.80, and is empirically significant.
The risk price for the value-growth factor bBM is −2.33, with non-trivial standard error in the
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similar. This further verifies the equity market operates consistently with the
consumer’s rational choice.

Table 3: Parameters

[—See the Table appendix—]

The time-series average risk-premium is calculated in the 2nd step regression,
without the intercept term or with the intercept term. In Panel (D) of Table
(2), the time-series average risk-premium for the relative expenditure de− dps
is significantly positive, the risk-premium for the relative good price dpg − dps
is significantly negative, when the testing assets is the diverse equity portfolios.

Figure 3: Factor-Loading of Benchmark Model

[—See the Figure appendix—]

Figure (3) illustrates the distribution of factor-loading. As in second plot
of Figure (3), there are significant correlation between the factor-loading to
relative price and the sample-average excess return. Estimated risk-premium
for the relative good price dpg − dps is significantly negative, when using other
testing assets such as the Size-BM 25 portfolios and the Industry-30 portfolios.
However, the estimated risk premium for the relative expenditure de−dps is less
stable. The unstable estimation partly attributed to the distribution of factor-
loading in the Size-BM 25 portfolios and the Industry-30 portfolios: the factor-
loading (portfolio beta) toward the time-series factor de − dps is empirically
noisy, located around the zero, while the the factor-loading (portfolio beta)
toward the time-series factor dpg − dps is deeply negative locating in the left-
side of origin.

The “Anomaly Factors Pricing Kernel” is constructed with the equity portfo-
lios, the correlation between the traded factors and the testing assets is more sta-
ble, compared with the correlation between the consumption-based macro fac-
tors. For the model-fitness in the Fama-Macbeth two-step regression, “Anomaly
Factors Pricing Kernel” is supposed to out-perform the consumption-based
macro factors. Using the testing assets “Mix-30”, we see the exception: the
IDU-pricing kernel is comparable with the “Anomaly Factors Pricing Kernel”.
This occurs because the correlation between the testing assets and the change
of relative consumption prices are generally non-zero. Further, the dispersion
of correlation is sufficient, so we have sufficient instruments to identify the risk-
premium and the latent parameters of risk-price. On the opposite side, if we use
the traditional testing assets such as the Size-BM 25 portfolios, the dispersion of
correlation is highly linear, so the identification is weaker. The Industry-30 port-
folios provide another extreme situation for identification. Although we have

“Size-BM 25” portfolio. However, the point estimate of bBM is -5.80 using the “Industry-30”
portfolio, with small standard error. Admittedly, the short time-interval of annual observa-
tions restrict the estimation power for the high-dimension SDF.
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sufficient variation for identifying the parameters, we have weak estimation for
the risk-loading in industry portfolios due to the non-trivial idiosyncratic noise.
Therefore, when calculating the statistics of model-fitness such as the “OLS-R2”
and “GLS-R2”, these statistics are often negative numbers 13.

3.2.2 Robustness Check

Table (4) further investigates where is the improvement of model fit, by esti-
mating the pricing kernel in separate groups of testing assets. For the 5 portfo-
lios of Operating Profitability plus the 5 portfolios of Investment, the “Anomaly
Factors Pricing Kernel” and the “Real-quantity Pricing Kernel” generates the
smaller model error. For the Size-BM testing assets and the Momentum assets,
the model fit is qualitatively improved. This is consistent with the observation
in Figure (3).

Table 4: Subgroup of Testing Assets

[—See the Table appendix—]

Because the traded-factors helps identifying the portfolio of high risk-exposure
and the portfolio of low risk-exposure, overall the traded-factors out-performs
the consumption-based asset pricing models, in the Fama-Macbeth regression.
However, traded factors doesn’t help eliciting the SDF. As the result, it is al-
most impossible to obtain robust estimate with the traded factors. The point
estimates of risk price of Fama-French 5-factor model is qualitatively different
in three subsets of testing assets: (a) 5 Size + 5 BM; (b) 5 Operating Profitabil-
ity + 5 Investment; (c) 10 Momentum. As the opposite side, the IDU-pricing
kernel is quantitatively similar in the 10 portfolios of momentum, and in the 5
portfolios of Operating Profitability plus the 5 portfolios of Investment.

If we admit the intercept term when estimating the factor-loading, asset pric-
ing model with traded factors performs worse than the consumption-based asset
pricing model. Non-negligible noise are produced when estimating the factor-
loading to true SDF indirectly via the traded-factors. If a financial economist
attempts to explain the growing cross-section anomaly by incorporating more
anomaly factors in equity assets, he or she will over-fit a particular cross-section
anomaly because of the volatile noise term14. In the opposite direction, the
IDU-pricing kernel is motivated by multiple consumption sectors, so it provides
the economically-reasonable explanation of high-dimensions in pricing kernel 15.

13It is possible that an over-fitting wrong asset pricing model generates the large “OLS-R2”
and “GLS-R2”, under the wrong guidance of idiosyncratic noise.

14In the online appendix, Table A.6 reports the point estimate of risk price ~b and estimation
of risk premium for the Fama-French 5-factor model. The estimation overfit the testing assets
in each subgroup of testing assets.

15So far I hasn’t observed the advantage of IDU pricing kernel in high-frequency environ-
ment. We are in lack of the high-frequency macroeconomic data, while the financial markets
provides more timely information, so it is more practical to mimick the successful trading
strategy for identifying the risk-premium.
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Table (5) investigates whether the construction procedure of price index af-
fects the point estimate of be and bg. When using the first-order difference
of Tornqvist Index, the point estimate is quantitatively similar. If I use the
average change of category-level price index, the point estimate of relative ex-
penditure is no longer significant, but the mis-measured change of relative price
is still significant. Construction of Fisher-Index takes consideration of a broad
class of consumption preference. Construction of Tornqvist Index caters to the
homothetic preference. However, using simply the cross-category average price
produces non-negligible approximation error. Because construction of Fisher-
Index and Tornqvist Index takes the consumption hierarchy into consideration,
approximation errors are smaller when I use these price index for the simplified
two-sector economy.

Table 5: Price Index

[—See the Table appendix—]

Table (6) investigates whether the construction procedure of consumption
sector affects the point estimate of be and bg. When using the classification of
Non-durable good and service of NIPA, the point estimate of bg is quantita-
tively similar. When using the classification of good and service of NIPA as in
(Boppart, 2014), the point estimate of be is quantitatively similar.

Table 6: Consumption Sector

[—See the Table appendix—]

Price-independent budget constraint ensures the Indirect Utility function
V (~P ,E) as the Homogeneity Degree of Zero. As the result, we have the identity
as

be = −
J∑
j=1

(bj − 1) · ωj .

under the estimation assumption of constant risk price ~b.
Table (7) exploits the identity of Price-Independent Budget Constraint, es-

timate the risk price ~b given different setups. I consider two alternative setups
as below

� I set the deflator as pJ = pg to identify parameter (be, bs). The variation of
real pricing kernel is decomposed into the variation of relative expenditure
and relative price of service (with respect to the good price).

dm̃ ≈ −be · (de− dpg)− bs · ωs · (dps − dpg). (25)

� I identify parameter (bg, bs). The variation of real pricing kernel is decom-
posed into the variation of the relative expenditure, relative price of good,
relative price of service (with respect to wage).

dm̃ ≈ −bg · ωg · (dpg − de)− bs · ωs · (dps − de)− (de− dps). (26)
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I find the model fit is qualitatively similar with the main table. In addition,
point estimate of risk price is quantitatively reasonable, compared with the
Table (3). Due to small magnitude of bs, the first-stage estimate is inaccurate
for bs, but estimated bg is quantitatively close.

Table 7: Alternal Estimation for Parameters

[—See the Table appendix—]

4 Application

4.1 Necessity Premium

On the one side, the consumer preference determines how the consumer
allocate the financial wealth across different states of economy and different
periods. On the other side, the consumer preference determines the intra-period
consumption basket. Theoretically, fundamental connection is expected to exist
between the financial market pricing kernel and the intra-period consumption
portfolio. The price elasticity η plays the role is the vector of risk price ~b in
Theorem 1. Now I use the Proposition 2 to interpret the matrix of price elasticity
η using the consumption portfolio.

Proposition 2. Given Sk,j is non-trivial constant, the log-change of relative
share is decomposed into the price effect and the income effect,

dsk,j =(1− ηk,k + ηj,k) · dpk − (1− ηj,j + ηk,j) · dpj −
∑
i 6=k,j

(ηk,i − ηj,i) · dpi

+
∑
i

(ηk,i − ηj,i) · de+ o(h).

(27)

with sk,j = log(Sk,j), h = (dp,de) and dsk,j = sk,j(p + dp, e + de) − sk,j(p, e).
The term o(h) is higher-order in h in the sense that lim||h||→0

o(h)
||h|| = 0 under

sup-norm ||h|| ≡ supj |hj |.

All else equal, 1% increase of sector-k price Pk contributes to 1− ηk,k + ηj,k
increase of log-relative share Sk,j

16. Price-elasticity is required to be greater
than 0, so consumer’s utility is deteriorated after the increase of price.

If the price-elasticity ηk,k + ηk,j < ηj,j + ηj,k, all else equal, consumption
portfolio is more rigid toward the impact of sector-k price dpk. Substitution
across commodities wouldn’t largely alleviate the consumer’s utility in response

16For consistent notation, I use the upper-case character for the nominal price and the
nominal expenditure. I use the lower-case character for the log nominal price and the log
expenditure. I use the affix d for small changes, eg. dpk = logPk,t+1 − logPk,t.
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to the increase of sector-k price. In particular, if 1− ηk,k < 1, relative share in
the pair of sectors (k, j) increases in the sector-k price 17.

The equation of approximation in Proposition 2 departs from the demand
system in (Deaton and Muellbauer, 1980), in the sense that the demand sys-
tem is identified using the pairwise equations of relative share, while (Deaton
and Muellbauer, 1980; Parodi et al., 2020) identify the PIGLOG demand sys-
tem using equations of absolute share. Adoption of relative share develops the
identification strategy in (Comin et al., 2021). Here, I relax the assumption
of constant price elasticity across sectors, so the relative share is exploited to
directly understand the dynamic of consumption composition. (Deaton and
Muellbauer, 1980; Parodi et al., 2020; Comin et al., 2021) implement the identi-
fication based on parametric assumption of PIGLOG preference or Generalized
Non-homothetic CES preference. Here, the equation of non-parametric decom-
position guides to a more straight-forward interpretation of fluctuating price,
spending and the consumption portfolio.

The approximation of relative expenditure share develops the non-parametric
approach in (Baqaee and Farhi, 2019). (Baqaee and Farhi, 2019) defines the
“pseudo elasticity” for the production function referring (Morishima, 1967).
Here, I decompose the relative share Sk,j implied by the core-IDU function V ∗

using the “micro-fluctuation” as the spending-scaled price vector (E−1 ·P1, E
−1 ·

P2, . . . , E
−1 · PJ). In other words, I represent the relative expenditure change

using the fluctuation of consumer’s price P and total expenditure E.

Proposition 3. Define the Engel Slope for the sector pair (k, j) as

ESk,j(~P ,E) = lim
de→0

sk,j(p, e+ de)− sk,j(p, e)
de

, (28)

the risk price vector satisfies

bk − bj = ESk,j(~P ,E). (29)

This identity in Proposition 3 has straight-forward implication for seeking
the risk premium. All else equal, if the consumer allocates a smaller fraction of
spending toward the necessity sector, correspondingly, we shall witness the con-
sumer charges higher risk compensation for the equity portfolio correlated with
the necessity spot price. We have long-lasting curiosity toward the consumption
portfolio. I use name “Engel Slope” for the partial derivatives of relative expen-
diture share with respect to the expenditure change, because the statistician
Ernst Engel proposed this observation early in the 19th century. Functional
form of indirect utility function affects both the consumption portfolio and the
marginal utility, so we have the mirrored relationship between the Engel Slope
and the risk-price.

17In (Comin et al., 2021), Sato-style non-homothetic CES implies constant price elasticity
across sectors ηk,i ≡ η. (Comin et al., 2021) estimate η in (0, 1). The parameter restriction
affects the estimate of price-elasticity. Generally, for the heterogeneous-firm economy with
monopolistic competition in the derived literature of (Melitz, 2003), ηk,k − ηj,k > 1 delivers
the reasonable equilibrium outcome with producer’s strategic pricing.
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In particular, the gap between the risk price coefficient {bj}j is exactly the
marginal effect of expenditure effect (income effect) in the consumption port-
folio. There exists the fundamental relationship between the risk-price of con-
sumption sector and the position of consumption sector along the Engel curve.
Proposition 3 formally state this result.

Table (8) investigates more detailed specification of non-durable consump-
tion. Inside the non-durable good sector, I consider the food category and the
non-food category. Inside the service sector, I also separate the food category
and the non-food category. I implement the estimation of detailed consumption
sectors gradually.

Table 8: Detailed Consumption Sectors

[—See the Table appendix—]

As the first step, I introduce the detailed good sector as below

� I estimate parameters (bg,f , bg,n, bs) in the three-sector economy: Food
Good, Non-food Good, and the service

dm̃ ≈− bg,f · ωg,f · (dpg,f − de)− bg,n · ωg,n · (dpg,n − de)

− bs · ωs · (dps − de)− (de− dps).
(30)

� I estimate parameters (bg,f , bg,n, be) using the service price as the deflator,

dm̃ ≈− bg,f · ωg,f · (dpg,f − dps)− bg,n · ωg,n · (dpg,n − dps)

− be · (de− dps).
(31)

Estimation of bg,f is quantitatively close with bg in the estimation of good-
service two-sector economy. Due to the inaccurate estimate of bg,n, it is difficult
to conclude whether the Non-food good is more superior than the Food good.
When using the service price as the deflator, estimation of be is quantitatively
close with be in the estimation of good-service two-sector economy.

As the second step, I introduced the detailed service sector.

� I estimate parameters (bg,f , bg,n, bs) in the three-sector economy: Good,
Food Service, Non-Food Service

dm̃ ≈− bg · ωg · (dpg − de)

− bs,f · ωs,f · (dps,f − de)− bs,n · ωs,n · (dps,n − de)− (de− dps).

(32)

� I estimate parameters (bg,f , bg,n, be) using the Non-Food Service price as
the deflator,

dm̃ ≈− bg · ωg · (dpg − dps,n)− bs,f · ωs,f · (dps,f − dps,n)

− be · (de− dps,n).
(33)
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Estimation of (bg, be) is quantitatively close with (bg, be) in the estimation of
good-service two-sector economy. However, I don’t find accurate estimate of
(bs,f , bs,n).

As the final step, I consider the completely-specified economy.

� I estimate parameters (bg,f , bg,n, bs,f , bs,n) in the four-sector economy:
Food Good, Non-Food Good and Food Service, Non-Food Service.

dm̃ ≈− bg,f · ωg,f · (dpg,f − de)− bg,n · ωg,n · (dpg,n − de)

− bs,f · ωs,f · (dps,f − de)− bs,n · ωs,n · (dps,n − de)− (de− dps).

(34)

� I estimate parameters (bg,f , bg,n, bs,f , be) using the Non-Food Service price
as the deflator,

dm̃ ≈− bg,f · ωg,f · (dpg,f − dps,n)− bg,n · ωg,n · (dpg,n − dps,n)

− bs,f · ωs,f · (dps,f − dps,n)− be · (de− dps,n).
(35)

Because the non-food good sector and the food-service sector have small expen-
diture share in the consumption portfolio, the evolution of expenditure share
is non-trivial. I use the sample-average expenditure share, multiplied by the
cyclical term in the time-series of expenditure share, for the estimation of Table
(8). I use the size, profitability, investment and momentum portfolios as testing
assets, for the estimation of Table (8). As illustrated in Figure (A.1), this group
of testing assets has avoids the weak identification from the weak covariance
(risk-loading).

When dissecting the non-durable Good sector into the Food-Good category
and the Non-Food Good category, I observe the risk-price for the Food-Good
bg,f = −78.77 and the risk-price for the Non-Food Good bg,n = −93.24 are
quantitatively similar. When dissecting the non-durable Service sector into
the Food-Service category and the Non-Food Service category, I observe the
risk-price for the Food-Good bs,f = 290.57, while the risk-price for the Non-
Food Service bs,n = −34.09 with non-trivial inaccuracy. Therefore, separating
the Food-Service category and the Non-Food Service category improves the
asset pricing model, by distinguishing the consumption sectors with different
risk-price. When considering the Food-Good category, the Non-Food Good
category, Food-Service category and the Non-Food Service category together,
we still observe the similar risk price between the Food-Good category and the
Non-Food Good category, and the largely positive risk price for the Food-Service
category.

This is qualitatively consistent with the empirical evidence in (Comin et al.,
2021), where the service sector is more superior (luxury) than the manufactur-
ing sector (here, it is the non-Food Good category). Further, (Comin et al.,
2021) concludes the manufacturing sector is more superior (luxury) than the
agricultural sector (here, it is the Food Good category), while I arrive to this
conclusion when admitting the 4 consumption categories together.
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In the online appendix Table (A.9), I provide the point estimate for the risk
price using the Industry-30 portfolios. Positions of the Food-Good category,
the Non-Food Good category, Food-Service category and the Non-Food Service
category are qualitatively similar with the estimation of Table (8). In the online
appendix Table (A.10), I provide the point estimate for the risk price using the
diverse equity portfolios and the original time series of expenditure share. Po-
sitions of the Food-Good category, the Non-Food Good category, Food-Service
category and the Non-Food Service category are qualitatively similar with the
estimation of Table (8), when the deflator is chosen as the bottom-service cate-
gory. In the online appendix Table (A.11), I provide the point estimate for the
risk price using the Size-BM 25 portfolios. For the estimation when separating
the Food-Service category and the Non-Food Service category. it is quantitative
similar with the estimation of Table (8) 18.

As we allow the more detailed consumption sectors, the point estimate for
the risk price of relative expenditure be stays in the range (20, 30), quantitatively
close with the simple economy of two-sectors. Moreover, the identity of H.D.0
indirect utility function be = −

∑J
j=1(bj − 1) ·ωj loosely hold when we consider

the more detailed consumption sectors 19.

4.2 Long-run Shift of Risk Premium

When the excess return are correlated with the change of relative expenditure
growth and the relative good price,

Rek,t+1 − Et[Rek,t+1]

=βk,e · (det+1 − Et [det+1]) +
∑
j

βk,j · (dpj,t+1 − Et [dpj,t+1]) + νk,t+1,
(36)

Cross-section time-series average return is decomposed as

1

T
·
T∑
t=1

Rek,t+1 =λ(ω̃T ) · ~β +
1

T
·
T∑
t=1

εk,t+1. (37)

where the risk-premium contingent on the share path ω̃T is

λ(ω̃T ) =
1

T
·
T∑
t=1

[
be(ωt) b1(ωt) · · · bJ−1(ωt)

]
· Σ. (38)

I use notation be(ω) = be
1−be·µe−

∑
j bj ·ωj,t·µj

and bj(ω) =
bj ·ωj,t

1−be·µe−
∑
j bj ·ωj,t·µj

.

This is the time-series average risk-premium as in the Fama-Macbeth two-step
regression.

18However, when separating the Food-Good category and the Non-Food Good category,
the testing assets of Size-BM 25 portfolios provides insufficient instruments for the Non-Food
Good category.

19The expenditure share in the Food-Good category ωg,f ≈ 0.15, the Non-Food Good
category ωg,n ≈ 0.2, Food-Service category ωs,f ≈ 0.15 and the Non-Food Service category
ωs,n ≈ 0.50.
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Figure (4) shows that the change of conditional expected return is positively
correlated with the factor-loading of relative good price. The positive correlation
also exists in size-sorted portfolios among value firms and the Fama-French
industry portfolios. I illustrate the distribution of factor-loading and the change
of risk premium, in Figure (A.3) and Figure (A.2) in the Figure appendix.

Figure 4: Conditional Expected Return: Factor-loading

[—See the Figure appendix—]

Table (9) lists the estimation of risk price and risk premium during the
time-interval: (a) 1935-1989; (b) 1950-2005; (c) 1965-2019. I construct the
early sample with equal length of the benchmark sample. For the consistent
testing assets during the three time blocks, I use the Size-BM 25 portfolios. In
Panel (A), we can’t observe the decline of risk price bg for the relative good
price. On the other side, we observe the rough decline of risk premium λg from
the time-interval 1935-1989 toward the time-interval 1950-2005, the empirically
significant decline of risk premium λg from the time-interval 1950-2005 toward
the time-interval 1965-2019. Identifying the long-run shift of risk-premium is
empirically challenging given the short history of NIPA statistics. Although
Table (9) is not rigorous identification, it provides corroborative evidence for
the theoretical prediction of structural transformation induced by the economic
growth in the asset pricing market. In the online appendix, Table A.8 reports

Table 9: Long-run Shift of Risk Premium

[—See the Table appendix—]

the similar estimation with Table (9) using the good, Food-service and non-Food
service sector. The observation for the good sector is qualitatively similar with
Table (9). However, the early time-series of Food-service with respect to the
non-Food service is qualitatively different with the recent time-series, especially
in the volatility of time-series. As such, I didn’t observe comparable estimation
for the Food-service sector, among the three time-intervals.

Figure (5) shows the distribution of factor loading in the diverse equity port-
folios. In particular, the size premium is mainly contributed by the dispersion
in factor loading of relative price. As the share of good declines, risk premium
contributed by the relative price no longer dominates the risk premium con-
tributed by the relative expenditure. This provides an alternative explanation
for the diminished size premium.

Figure 5: Distribution of Covariance: Cross-section Anomalies

[—See the Figure appendix—]

Theoretically, if the risk premium contributed by the relative good price
decays, lowering the risk-exposure toward the relative good price, increasing the
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risk-exposure toward the relative expenditure will maintains the high Sharpe-
ratio. In other words, the frontier of Sharpe-ratio has been shifting, and this
incremental shift is predictable as the economy technology growth keeps forward.

Figure (6) shows the distribution of factor loading in the industry portfolios.
The equity portfolio constructed based on the cross-section anomalies manually
discovered the stable exposure toward the pricing kernel. Portfolios have positive
risk-exposure toward the positive risk-premium in relative expenditure, and the
negative risk-exposure toward the negative risk-premium in relative good price.
Compared to the anomaly portfolios, heuristic industry portfolios performs poor
because they don’t simultaneously exploit the positive risk-premium in relative
expenditure and the negative risk-premium in relative good price.

Figure 6: Distribution of Covariance: Fama-French 30 Industries

[—See the Figure appendix—]

5 Aggregation

In this part, I discuss the price-decomposition of pricing kernel in the heterogeneous-
agent economy. In this economy, the consumer n has indirect utility function
V (n)(~P ,E(n)) for intra-temporal consumption decision. Hereafter, I don’t ex-
plicitly specify the CRRA functional form because it is incorporated by the
general functional form V (n)(~P ,E(n)). Consumer (n) has the labor endowment

{`(n)
t }, initial endowment of financial security ~θ

(n)
0 .

Definition 3. The price system (P, P s) and the consumption allocation C̃ con-
stitutes the (Heterogeneous Consumer) Competitive Equilibrium if

1. C̃(n) solves problem

U0(~θ
(n)
0 ) = sup

C̃,θ̃

lim
T→∞

E[

T∑
t=1

βt · u(n)(~Ct)]

s.t.
∑
k

θk,t · (P sk,t +Dk,t) + wt · `(n)
t =

∑
j

Pj,t · Cj,t +
∑
k

θk,t+1 · P sk,t,

Cj,t ≥ 0;
∑
k

θk,t+1 · P sk,t ≥ a.

(P.1-HA)

2. commodity market (j, t) clears in the demand side
∑
n∈N C

(n)
j,t = Cj,t.

3. commodity market clears in the supply side, labor market clear, given the
model specification of producers;

4. financial security market clears, given the model specification of foreign
borrowing and lending.
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At the equilibrium path {~P ∗, E∗, λ∗}, DEV (n)(~P ∗, E(n),∗) is the marginal
utility of consumption expenditure E(n). I choose the consumer (1) as the
benchmark consumer for the aggregation analysis. Construct the Negishi-weight
α(1) = 1, and

α∗(n) =
DEV (1)(~P ∗, E(1),∗)

DEV (n)(~P ∗, E(n),∗)
. (39)

The distribution of expenditure {E(n),∗}(n) solves the auxiliary-optimization
problem,

V (~P ,E;α) ≡ max
E

1

N
·
∑
n∈N

α(n) · V (n)(~P ,E(n))

s.t.
1

N
·
∑
n∈N

E(n) ≤ E.

(SP.1)

I denote the aggregate consumption spending on the equilibrium path as E∗ =
1
N ·
∑
n∈N E

(n),∗.

Theorem 2. In the economy where price system (P,M) and quantity system
({c̃(n)}n∈N , {˜̀(n)}n∈N ) constitute a Competitive Equilibrium for N heteroge-
neous consumers with preference {�(n)}, there exists a Representative Con-
sumer with preference �N such that

� price system (P,M) and quantity system (
∑
n∈N c̃

(n),
∑
n∈N

˜̀(n)) consti-
tute a Competitive Equilibrium for N homogeneous consumers with pref-
erence �N .

The indirect utility function of the Representative Consumer is V (~P ,E;α) with
the Negishi weight constructed in equation (39). Along the equilibrium path, the
Representative Consumer has identical marginal utility of expenditure with the
Benchmark Consumer

DEV (~P ∗,E∗;α) = DEV (1)(~P ∗, E(1),∗), (40)

and the absolute expenditure share of artificial consumer V (~P ∗,E∗;α) is iden-
tical with observed aggregate expenditure share,

~ω(~P ∗,E∗;α) =
∑
n∈N

E(n),∗∑
m∈N E

(m),∗ · ~ω
(n)(~P ∗, E(n),∗) (41)

The weight αn reflects the shadow price of consumer (n)’s budget constraint
in the Competitive Equilibrium. If we take the aggregation consumption bundle
as if the Representative Consumer’s choice, the Negishi weight works as if it
is the “Taste” of representative consumer over individual consumers. Recall
we use the expenditure share over commodities to reveal the single-consumer’s
preference over consumption bundle. Here, we use the expenditure allocation
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across consumers to reveal the Representative Consumer’s social preference over
individual consumers.

By constructing the representative consumers consistent with the aggregate
consumption expenditure and the fluctuation of SDF, the representative con-
sumer’s indirect utility function also reveals the financial market SDF {Mt}.
Decomposition of indirect utility function in Section (2) is non-parametric, so
previous analysis holds in the heterogeneous-consumer economy. This allows the
economist to track the marginal utility of investor even if we fail to explicitly
identify who is the unconstrained financial market investor.

In the economy with additive utility flow, where the financial market is
complete for the consumer, {α∗(n)}n is invariant along the equilibrium path
20. In other words, in the economy with perfect risk-sharing, we have fixed
Negishi weight 21. The numerator DEV (1)(~P ∗, E(1),∗) in the Negishi weight
can’t be removed, because we require the Representative Consumer’s welfare
comparable with the benchmark consumer (1). Only in this way, fluctuation
of Representative Consumer’s welfare is meaningful for tracking the financial
market SDF.

Corollary 2. Given invariant distribution of Negishi-weight {α∗(n)}n along
the equilibrium path, the log-change in real marginal utility of expenditure for
the representative consumer approximately equals

dm̃ = −
J∑
j=1

bj(α) · ωj · (dpj − dpJ)− be(α) · (de− dpJ) + o(h). (42)

where α is the artificial Negishi-weight, ~ω is the aggregate expenditure share,
e is the (log) aggregate total consumption expenditure, and the vector b(α) is
written with aggregate expenditure share ~ω and representative consumer’s price-
elasticity η

bj(α) =− [
DEV (α) · E

V (α)
+ 1] +

J∑
i=1

ηj,i(α),

be(α) =[
DEV (α) · E

V (α)
+ 1] + 1−

J∑
j=1

ωj ·
J∑
i=1

ηj,i(α).

(43)

In the economy with generalized consumption preference, the representative
consumer implied by the competitive equilibrium outcome might depart from
the individual consumer, in the sense that the functional form of indirect util-
ity function is different. This result departs from (Jackson and Yariv, 2019),

20Along the equilibrium path, {α∗(n)}n might vary, if the economy has idiosyncratic labor
endownment or non-trivial wealth-constraint.

21The international finance literature often consider the integrated economy with fixed
Negishi weight. I depart from the Constant Social Planner’s problem because the consumption
allocation is implemented by the financial market and the commodity market. On the equi-
librium path, the aggregate wealth allocation might be inconsistent with the Representative
Consumer constructed from the intra-temporal consumption allocation.
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because I don’t pursue the similarity in the functional form of utility function.
This result departs from (Baqaee and Burstein, 2021b), because I recover the
Representative Consumer using the approach of “revealed social preference”. I
only require the consistent marginal utility of aggregate spending and the con-
sistent aggregate consumption portfolio. Because I impose less restriction for
the Representative Consumer, the aggregate wealth (positions of financial secu-
rity) might be inconsistent with the Representative Consumer constructed from
intra-temporal consumption allocation.

The construction of Negishi weight departs from (Saez and Stantcheva, 2016)
and (Bhandari et al., 2021). Both (Saez and Stantcheva, 2016) and (Bhandari
et al., 2021) use the marginal utility of consumption as the denominator of
Negishi weight. In (Saez and Stantcheva, 2016), the numerator of the Negishi
weight is chosen to be consistent with the optimal fiscal tax transfer. In (Bhan-
dari et al., 2021), the numerator is the average marginal utility of consumption
across consumers. Compared with (Saez and Stantcheva, 2016) and (Bhan-
dari et al., 2021), I use benchmark consumer’s marginal utility as the numer-
ator, this ensures the reverse-engineered representative consumer has identical
marginal utility with the financial market investor. To be clear, my construc-
tion of Negishi weight is the result implied by consumption allocation in a com-
petitive equilibrium. I don’t rely on the government or other legal authority
assigning the consumption across consumers directly.

The generalized decomposition of SDF in the Corollary (2) is helpful for
connecting this paper with previous empirical results of consumption-based as-
set pricing models. Typical consumption-based asset pricing models directly
assume the representative consumer is well-defined. Some of these models work
well to some extent, in the sense that we established the consensus that aggre-
gate consumption quantity helps explaining the expected returns. Corollary (2)
attempts to establish the equivalence between the economy with heterogeneous-
consumers, and an artificial economy with representative consumer. Therefore,
the empirical analysis in this article serves under the assumption of the Corol-
lary (2). Although Corollary (2) puts strong assumptions over the distribution
of Negishi weight, it serves as the benchmark to compare the true data and
hypothetically ideal economy.

6 Discussion

6.1 Price versus Quantity

In the economy with Heterogeneous Consumers, decomposition of Indirect
Utility Function allows reverse-engineering the representative consumer. In par-
ticular, in the economy with perfect risk-sharing, price-elasticity of consistent
representative consumer is approximately weighted price-elasticity, given gen-
eral consumption preference. On the other hand, when using the direct utility
function to describe the consumption preference, the direct utility function of
effective Representative Consumer also takes the weighted formula, using the
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effective Negishi-weight constructed in Equation (39) . Under the assumption
of time-invariant effective Representative Consumer, estimating the SDF using
the consumption quantities is identical with estimating the SDF using the con-
sumption prices. In Table 2, we observe the improvement of model-fit from the
model of nondurable consumption quantity “C-ND” toward the model of rela-
tive good price and relative expenditure “P-ND”. This can be purely driven by
a more detailed specification of consumption sectors.

Table (10) investigates whether the decomposition of Indirect Utility Func-
tion has different empirical implication when we allow more detailed specifi-
cation of consumption sectors in the quantity-based consumption asset pricing
models. As shown in the estimation named “DU” (direct utility function), when
using the “chained-quantity” of good and service as the time-series factors for
the linear SDF, the point estimate of first-stage is inaccurate. Although non-
parametric decomposition with Direct Utility function and the decomposition
with Indirect Utility function are theoretically equivalent, the approximation
error of model are empirically different. When using the non-parametric decom-
position with Indirect Utility function, consumption expenditure share provides
the sufficient statistic of impact from the change of consumption price, while
this is infeasible when decomposing the Direct Utility function.

When using the aggregate consumption data to approximate the SDF, the
equivalence between non-parametric decomposition with Direct Utility function
and the decomposition with Indirect Utility function deeply relies on the well-
defined Representative Consumer. Accuracy for the SDF with Direct Utility
function is fatally reduced when we fail to track the marginal investor in the
financial market. If we write down the SDF in the fluctuation of quantities and
shares

dm̃ =−
J∑
j=1

bj(~P ,E) · ωj · (dpj − dpJ)− be(~P ,E) · (de− dpJ) + o(h)

=−
J∑
j=1

bj(~P ,E) · ωj · [(d logωj − d logωJ)− (dCj − dCJ)]

− be(~P ,E) · (de− dpJ) + o(h).

We need to accurately track the time-series of {d logωj}j for the marginal in-
vestor in the financial market 22. This is difficult in the practice of financial

22One would doubt the construction of price index in the NIPA consumption data: effec-
tively we are using the change of aggregate consumption quantities and aggregate consumption
shares. Here, we want to be careful with the so-called “Quantity” for consumption sectors in
the NIPA statistic. The bureau of statistics first collect the nominal revenues, and nominal
expenditures when accounting for the output and consumption. In their sample of economy
activities, the staff in bureau of statistics the infer the change of price. Next they construct
the price index using the classic formula of sufficient statistics. As the final step, the quantity
is derived by the nominal time-series and the price indice. In short words, the nominal time-
series and the price indice are the direct observation of economy status, while the implied
quantities are the derived statistics. The “Quantity” of “Food-at-Home” in NIPA table is
not comparable with the “Tons” of apple consumed, or the “Calories” of food contained.
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institutions.
I further investigate whether the Stone-Geary preference provides a good

description, as specified in (Lochstoer, 2009). In the Column “Good”, I assume
zero habit in the good sector u(Cg, Cs) = Cαg · (Cs − Xs)

1−α, decompose the
pricing kernel as

dm̃ ≈ −ag · dqg − as · (dps − dpg). (44)

The point estimate is in-significant in the first-stage estimate. In the Column
“Service”, I assume zero habit in the service sector u(Cg, Cs) = (Cg − Xg)

α ·
C1−α
s , decompose the pricing kernel as

dm̃ ≈ −ag · (dpg − dps)− as · dqs. (45)

The point estimate for as is 22.31 with considerable accuracy in the first-stage
estimate, consistent with (Lochstoer, 2009). In addition, the model fitness
is comparable with the previous exercise of pricing kernel decomposed from
the Indirect Utility Function. Applying Stone-Geary Preference requires the
researchers to identify which is the sector with near-zero consumption habit.
Therefore, given more consumption data in the future, if researchers want to
extend the pricing kernel for more granular consumption structure, they need to
carefully explore the structure of habits for the consumption hierarchy is more
subtle.

As in Table 6, I extend the estimation for three-sector economy: Good,Food-
Service,Non-Food Service. The Stone-Geary preference is extended correspond-
ingly

� The Food-Service sector has zero consumption-habit,

u(Cg, Cs,f , Cs,n) = (Cg −Xg)
αg · C1−α

s,f · (Cs,n −Xs,n)αs,n .

� The Non-Food Service sector has zero consumption-habit,

u(Cg, Cs,f , Cs,n) = (Cg −Xg)
αg · (Cs,f −Xs,f )αs,f · C1−α

s,n .

In Column “Food”, the estimation assumes the food-service with zero-habit, for
the relative price of non-food service with respect to food service pn,f , the risk
price is significantly positive, while the typical Stone-Geary preference predicts
the negative risk price. In Column “Non-Food”, I consider the non-food service
category with zero-habit, for the relative price of good with respect to non-food
service pg,n, the absolute value of risk price is larger than that of quantity growth
in non-food service qn. However, the typical Stone-Geary preference predicts
the risk price pg,n in smaller magnitude.

Table 10: Quantity Index

[—See the Table appendix—]
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In summary, although the Stone-Geary preference qualitatively captures the
essence of non-homothetic preference. it also raises quantitative doubts in the
aggregate consumption data. Because Stone-Geary preference is a special case
for non-homothetic preference, if the financial economist meets difficulty in iden-
tifying the structure of consumption-habit, she can skip identifying the structure
of consumption-habit, by using the sufficient-statistic of expenditure share in
decomposing the Indirect Utility Function. Further, because we simply use
the level of absolute expenditure share as the sufficient statistics, the require-
ment is loose for accurately measuring the expenditure. This explains why the
superior empirical performance of SDF decomposed from the indirect utility
function, using the fluctuation of relative consumption prices and aggregate ex-
penditure. Overall, the general IDU decomposition would be more flexible than
fully-parameterized Stone-Geary preference.

6.2 Excessive Necessity Premium

The exact aggregation of price-elasticity relies on the stylized economy envi-
ronment, here I simply documents the quantitative gap between the aggregate-
elasticity measured from the financial asset returns and the micro-elasticity.

In the estimation with aggregate consumption data, for the pair good-to-
service, the Engel-slope implied by the risk price is

be+bg−1
ωs

, roughly in the
parameter interval (−65,−70). In the parallel research, I estimate the Engel
slope of good-to-service share for synthetic households constructed from Con-
sumer Expenditure Survey. Estimated Engel slope ESg,s ≈ −0.49. This es-
timate is consistent with the estimate of (Boppart, 2014) and (Comin et al.,
2021), where the quantitative magnitude of expenditure effect (income effect) is
small. Though the price-elasticity identified from financial market pricing kernel
indeed quantitatively departs from the micro price-elasticity, the sign of Engel
slope is consistent with the risk price in my previous estimate. The alignment
of Engel slope is also observed in the pair of Food-Service and Good. Estimated
Engel slope for the pair of FoodService-Good is ESfs,g ≈ 0.8.

Several important assumptions worth further investigation to explain this
quantitative tension.

The distribution of effective Negishi weights are assumed to be invariant, for
a well-defined time-invariant effective Representative Consumer. If the macro
primitive shocks leads the both the fluctuation of consumption price, and the
distribution of consumption expenditure, we would witness significant distortion
of aggregate price elasticity.

Commodity price is assumed to be identical across consumers. In reality,
geographical price dispersion of service sector can be non-trivial 23. Location-
specific service price can introduce another layer of consumer-level idiosyncratic
risk. In particular, individual consumer is unlikely to separate the local price
shock and the aggregate price shock. Given the financial market plays non-

23Though I aggregate the restaurant dining, entertainment and other sub-industries into
the main service sector, this effort might have limited role.
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trivial role in information aggregation, it is reasonable to see the over-reaction
of SDF toward the consumption price fluctuation.

Analysis of aggregating price-elasticity is much more complicated for the
economy environment with recursive utility function. It is almost impossible to
deliver analytical aggregation result with recursive utility function. Exploring
the channel of long-run risk helps address the quantitative puzzles. Since direct
inference is almost impossible, I expect the quantitative investigation to be done
in the future research.

7 Conclusion

Pricing kernel decomposed with indirect utility function allows the financial
economist to evaluate the risk price of consumption price in equity market. The
approximated SDF with relative prices improves the model-fit of financial-asset
Euler Equation, compared with traded-factor asset pricing model and simple
consumption-based asset pricing model.

Due to the non-parametric connection between intra-temporal consumption
choice and the inter-temporal financial wealth management, there exists exact
identity between the price-elasticity of relative expenditure share and the risk
price of consumption price. In particular, the risk price of necessity commodity
price is in larger magnitude. Qualitatively, this prediction holds in the estimated
aggregate pricing kernel.

From estimation of aggregate pricing kernel and micro-elasticity, I docu-
ment the quantitative gap between the aggregate price-elasticity implied by the
financial pricing kernel and the micro elasticity in consumers’ expenditure share.
Under stylized economy environment, aggregate price-elasticity is non-trivial ag-
gregation of consumers’ price-elasticity. It requests further research examine the
satisfactory quantitative explanation in realistic economy environment, under
the moment restriction of cross-section consumption distribution.

33



References

[1] Hengjie Ai, Mariano Massimiliano Croce, and Kai Li. Toward a quantita-
tive general equilibrium asset pricing model with intangible capital. The
Review of Financial Studies, 26(2):491–530, 2013.

[2] Yacine Ait-Sahalia, Jonathan A Parker, and Motohiro Yogo. Luxury goods
and the equity premium. The Journal of Finance, 59(6):2959–3004, 2004.

[3] David Rezza Baqaee and Ariel Burstein. Welfare and output with income
effects and demand instability. Technical report, National Bureau of Eco-
nomic Research, 2021a.

[4] David Rezza Baqaee and Ariel Burstein. Aggregate welfare and output
with heterogeneous agents. Unpublished Note, 2021b.

[5] David Rezza Baqaee and Emmanuel Farhi. The macroeconomic impact
of microeconomic shocks: beyond hulten’s theorem. Econometrica, 87(4):
1155–1203, 2019.

[6] Frederico Belo. Production-based measures of risk for asset pricing. Journal
of Monetary Economics, 57(2):146–163, 2010.

[7] Frederico Belo, Vito D Gala, Juliana Salomao, and Maria Ana Vitorino.
Decomposing firm value. Journal of Financial Economics, 2021.

[8] Anmol Bhandari, David Evans, Mikhail Golosov, and Thomas J Sargent.
Inequality, business cycles, and monetary-fiscal policy. Econometrica, 89
(6):2559–2599, 2021.

[9] Richard Blundell, Martin Browning, and Costas Meghir. Consumer demand
and the life-cycle allocation of household expenditures. The Review of
Economic Studies, 61(1):57–80, 1994.

[10] Timo Boppart. Structural change and the Kaldor facts in a growth model
with relative price effects and non-Gorman preferences. Econometrica, 82
(6):2167–2196, 2014.

[11] John H Cochrane. A cross-sectional test of an investment-based asset pric-
ing model. Journal of Political Economy, 104(3):572–621, 1996.

[12] Diego Comin, Danial Lashkari, and Mart́ı Mestieri. Structural change with
long-run income and price effects. Econometrica, 89(1):311–374, 2021.

[13] Nicolas Crouzet and Janice C Eberly. Rents and intangible capital: A q+
framework. Technical report, National Bureau of Economic Research, 2021.

[14] Angus Deaton and John Muellbauer. An almost ideal demand system. The
American economic review, 70(3):312–326, 1980.

34



[15] Robert F Dittmar, Christian Schlag, and Julian Thimme. Non-
substitutable consumption growth risk. Available at SSRN 3289249, 2020.

[16] Bjørn Eraker, Ivan Shaliastovich, and Wenyu Wang. Durable goods, infla-
tion risk, and equilibrium asset prices. The Review of Financial Studies,
29(1):193–231, 2016.

[17] Jack Favilukis and Xiaoji Lin. Does wage rigidity make firms riskier? ev-
idence from long-horizon return predictability. Journal of Monetary Eco-
nomics, 78:80–95, 2016.

[18] Xavier Gabaix. The granular origins of aggregate fluctuations. Economet-
rica, 79(3):733–772, 2011.

[19] Jonathon Hazell, Juan Herreno, Emi Nakamura, and Jón Steinsson. The
slope of the Phillips curve: evidence from US states. working paper, 2020.

[20] Kewei Hou and Mathijs A Van Dijk. Resurrecting the size effect: Firm size,
profitability shocks, and expected stock returns. The Review of Financial
Studies, 32(7):2850–2889, 2019.

[21] Hendrik S Houthakker. The pareto distribution and the cobb-douglas pro-
duction function in activity analysis. The Review of Economic Studies, 23
(1):27–31, 1955.

[22] Charles R Hulten. Divisia index numbers. Econometrica: Journal of the
Econometric Society, pages 1017–1025, 1973.

[23] Matthew O Jackson and Leeat Yariv. The non-existence of representative
agents. Available at SSRN 2684776, 2019.

[24] Timothy C Johnson. Commodity dependence and aggregate risk. Technical
report, Working Paper, 2011.

[25] Ricardo Lagos. A model of TFP. The Review of Economic Studies, 73(4):
983–1007, 2006.

[26] David Levhari. A note on houthakker’s aggregate production function in
a multifirm industry. Econometrica: journal of the Econometric Society,
pages 151–154, 1968.

[27] Jonathan Lewellen, Stefan Nagel, and Jay Shanken. A skeptical appraisal
of asset pricing tests. Journal of Financial Economics, 96(2):175–194, 2010.

[28] Lars Ljungqvist and Thomas J Sargent. Recursive Macroeconomic Theory.
MIT Press, 3 edition, 2012.

[29] Lars A Lochstoer. Expected returns and the business cycle: Heterogeneous
goods and time-varying risk aversion. The Review of Financial Studies, 22
(12):5251–5294, 2009.

35



[30] Marc J Melitz. The impact of trade on intra-industry reallocations and
aggregate industry productivity. Econometrica, 71(6):1695–1725, 2003.

[31] Michio Morishima. A few suggestions on the theory of elasticity. Keizai
Hyoron (Economic Review), 16:144–150, 1967.

[32] John Muellbauer. Community preferences and the representative consumer.
Econometrica: Journal of the Econometric Society, pages 979–999, 1976.

[33] Emi Nakamura. Pass-through in retail and wholesale. American Economic
Review, 98(2):430–37, 2008.
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A Figure

Figure 1: Plot of Price Indice

Description: The X-axis is time-axis, the first row of figure plots the annual
log change of relative good price with respect to the service price dpg−dps. The
second row of figure plots the annual log change of nominal good price dpg. The
third row of figure plots the annual log change of nominal service price dps. The
red thick line plots the price index using the definition of sectors described in
sector 3. The dark dashed line plots the price index using the original definition
of sectors in NIPA.
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Figure 2: Fitness of Asset Pricing Models

Description: The X-axis is the model-predicted excess return, ET [−dm ·
Rek,t+1]. The Y-axis is the average excess return in sample, ET [Rek,t+1]. The
dark-green dots are Size-BM portfolios. The green dots are Profitability-
Investment portfolios. The light-green dots are Momentum portfolios.
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Figure 3: Factor-Loading of Benchmark Model

Description: The X-axis is risk-exposure from the Fama-Macbeth 2-step re-
gression, ~β. The Y-axis is the average excess return in sample, ET [Rek,t+1].
The dark-green dots are Size-BM portfolios. The green dots are Profitability-
Investment portfolios. The light-green dots are Momentum portfolios.
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Figure 4: Conditional Expected Return: Factor-loading

Description: The X-axis is risk-exposure from the Fama-Macbeth 2-step re-
gression, ~β. The Y-axis is the change of 15-year average excess return between
the sample start and the sample end, ET [Rek,t+1] − E0[Rek,t+1]. The dark-red
dots are Size portfolios. The light-red dots are Profitability portfolios. The
dark-green dots are BM portfolios. The green dots are Investment portfolios.
The light-green dots are Momentum portfolios.
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Figure 5: Distribution of Covariance: Cross-section Anomalies

Description: The X-axis is risk-exposure from the Fama-Macbeth 2-step re-
gression, ~β. The Y-axis is the average excess return in sample, ET [Rek,t+1].
The dark-green dots are Size-BM portfolios. The green dots are Profitability-
Investment portfolios. The light-green dots are Momentum portfolios.
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Figure 6: Distribution of Covariance: Fama-French 30 Industries

Description: The X-axis is risk-exposure from the Fama-Macbeth 2-step re-
gression, ~β. The Y-axis is the average excess return in sample, ET [Rek,t+1].
The dark-green dots are Size-BM portfolios. The green dots are Profitability-
Investment portfolios. The light-green dots are Momentum portfolios.

43



B Table

44



Table 1: Descriptive Statistic

Description: Time span of sample is during 1965-2019. All the standard error
are Newey-West adjusted with two-year lag. The VIX time series is available
during 1990-2019. Standard errors are in parenthesis. T-stat is in brackets.

Panel (a): Time Series - Statistic

Mean(pct) SE(pct) AR(1)

de 1.27 1.28 0.36
(s.e.)[t] ( 0.21) ( 0.13) [ 3.06]
dp -1.33 1.38 0.47
(s.e.)[t] ( 0.24) ( 0.23) [ 3.52]

Panel (b): Business Cycle - Correlation

MKT Hour Output

Corr(z,dpg/s) -0.35 0.01 0.01
[t] [ -2.35] [ 0.06] [ 0.03]

VIX EP-Y10 CAY

Corr(z,dpg/s) 0.13 0.22 -0.21
[t] [ 0.73] [ 2.08] [ -1.05]
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Table 2: Model Fitness

Description: The model-fit of asset pricing models with traded factors are
reported in the 2nd column and 3rd column. The 2nd column uses the single
MKT factor. The 3rd column uses the Fama-French 5-factors. The model-fit of
models with change of consumption quantities are reported in the 4th column
and the 5th column. The 4th column uses the change of quantity index in the
nondurable consumption sector. The 5th column augments the 6th column with
the quantity change in the durable stock. The model-fit of asset pricing models
with change of relative prices are reported in the 6th column and the 7th column.
The 6th column uses the change of relative good price, the change of relative
expenditure in the nondurable consumption sector, with deflator as the service
price. The 7th column augments the 6th column with the quantity change in the
durable stock. Construction of durable stock, quantity index and price index
are decribed in Section (3). In Panel (A), statistics of model-fit are reported for
the GMM estimation outcome. Construction of MAPE (Mean Absolute Pric-
ing Error), RMSE (Root Mean Square Error), CV-R2 (Campbell-Vuolteenaho
R2) and J-pval (p-value for the J-stat) are decribed in Section (3). In Panel
(B), statistics of model-fit are reported for the Fama-Macbeth two-step regres-
sion. Fama-Macbeth regression estimate the time-series average risk premium
in the 1st step. Definition of time-series average risk premium are described in
the online estimation appendix. OLS-R2 calculate the Fama-Macbeth two-step
regression without intercept term in the 2nd step, and similarly for GLS-R2.
COLS-R2 calculate the Fama-Macbeth two-step regression with intercept term
in the 2nd step, and similarly for CGLS-R2.

Model Fitness

Traded Factors Quantities Relative Prices
CAPM FF-5 C-ND C-D P-ND P-D

Panel (A): GMM

MAPE 1.93 1.68 0.84 0.80 0.39 0.26
RMSE 2.94 2.68 1.19 1.16 0.47 0.37
CV-R2 -0.43 -0.19 0.77 0.78 0.96 0.98
J-pval 93.71 81.78 96.17 92.35 91.97 90.43

Panel (B): Fama-Macbeth Two-step Regression

OLS-R2 -0.58 -0.38 -9.64 0.14 0.51 0.52
GLS-R2 -0.02 0.01 0.02 0.02 0.01 0.03
COLS-R2 0.14 0.66 0.53 0.56 0.58 0.58
CGLS-R2 0.01 0.03 0.08 0.09 0.06 0.09
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Table 3: Parameters

Description: This table reports the point estimate of risk price in GMM es-
timation, the estimate of risk premium in Fama-Macbeth two-step regression.
Sample is during 1965-2019. Panel (A-C) reports the estimate of GMM estima-

tion. Risk Price reports the vector ~b. Estimation uses the asset pricing model
with relative prices “P-ND”. Estimation are reported for different setups of
testing assets. In the 2nd column and the 3rd column, teststing assets Mix 30
uses the size, BM ratio, profitability, investment and momentum portfoliors. In
the 4th column and the 5th column, teststing assets Size-BM 25 uses the 25
portfolios double sorted based on size and BM ratio. In the 6th column and the
7th column, teststing assets Industry 30 uses the 30-industry portfolios. All
testing assets are from the Data Library of Kenneth French. In constructiong
the weight matrix for GMM, “1st-Stage” uses the Identity Matrix, “2nd-Stage”
uses the asymptotical variance of “1st-Stage” estimatin. Stationary covariance
matrix of moments are assumed. T-stat is reported in brackets. Description of
statistics in Table (2) applies.

Specification of Testing Assets

Mix 30 Size-BM 25 Industry 30

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

be 28.87 29.77 30.05 33.72 33.27 33.88
[t] [ 1.69] [ 24.18] [ 2.61] [ 13.06] [ 4.38] [ 24.98]
bg -72.10 -72.61 -68.26 -63.83 -69.95 -67.92
[t] [ -2.23 ] [ -22.26 ] [ -2.90 ] [ -11.68 ] [ -3.04 ] [ -17.21]

Panel (B): Stats of GMM

MAPE 0.39 0.38 0.84
RMSE 0.47 0.51 0.99
CV-R2 0.96 0.96 0.78
J-pval 91.97 81.48 94.03

Panel (C): Test Statistic

Test-t [ -12.23] [ -4.24] [ -7.34]
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Table 3: Parameters, Continued

Description: Panel (D-E) reports the estimate of Fama-Macbeth two-step
regression. Risk Premium reports the time-series average risk premium in
sample. In 2nd Column, 4th Column, and 6th Column, risk premium are esti-
mated under the assumption of zero pricing error. Estimation of risk premium
is without the intercept term in the 2nd step of regression. In 3rd Column,
5th Column, and 7th Column, risk premium are estimated with the intercept
term in the 2nd step of regression. T-stat is reported in brackets. Calculation
of t-stat the simple standard error. Description of statistics in Table (2) applies.

Specification of Testing Assets

Mix 30 Size-BM 25 Industry 30

Panel (D): Risk Premium
without with without with without with

λe 0.84 0.98 0.38 0.43 -0.06 -0.19
[t] [ 1.92] [ 2.26] [ 0.55] [ 0.64] [ -0.17] [ -0.59]
λg -1.73 -1.09 -1.56 -1.28 -1.43 -0.20
[t] [ -4.15] [ -2.02] [ -4.19] [ -2.50] [ -3.34] [ -0.50]

α - 3.51 - 1.99 - 6.96
[t] - [ 1.13] - [ 0.63] - [ 2.62]

Panel (E): Stats of Two-step Regression

OLS-R2 0.51 0.63 -1.49
GLS-R2 0.01 -0.38 -0.10
COLS-R2 0.58 0.67 0.10
CGLS-R2 0.06 0.01 0.06

48



Table 4: Subgroup of Testing Assets

Description: This table reports the point estimate for the vector ~b using differ-
ent setups of testing assets. “Size-BM” uses the 5 size, 5 BM ratio portfoliors.
“Profit-IK” uses the 5 profitability, and 5 investment portfoliors. “Momentum
10” uses the 10 momentum portfoliors. All testing assets are from the Data
Library of Kenneth French. Other description in Table (3) applies.

Specification of Testing Assets

Size-BM Profit-IK Momentum

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

be 25.15 28.65 40.79 42.74 28.93 22.55
[t] [ 2.05] [ 4.57] [ 2.74] [ 5.41] [ 1.50] [ 4.24]
bg -71.94 -62.63 -62.93 -72.75 -75.93 -87.51
[t] [ -3.11 ] [ -5.97 ] [ -1.90 ] [ -5.00 ] [ -2.07 ] [ -5.89]

Panel (B): Stats of GMM

MAPE 0.33 0.36 0.24
RMSE 0.41 0.42 0.34
CV-R2 0.92 0.88 0.99
J-pval 25.15 45.58 15.08

Panel (C): Test Statistic

Test-t [ -2.43] [ -1.52] [ -3.51]
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Table 4: Subgroup of Testing Assets, Continued

Description: This table reports the point estimate for the vector ~b using differ-
ent setups of testing assets. “Size-BM” uses the 5 size, 5 BM ratio portfoliors.
“Profit-IK” uses the 5 profitability, and 5 investment portfoliors. “Momentum
10” uses the 10 momentum portfoliors. All testing assets are from the Data
Library of Kenneth French. Other description in Table (3) applies.

Specification of Testing Assets

Size-BM Profit-IK Momentum

Panel (D): Risk Premium
without with without with without with

λe 0.16 0.12 -0.66 -0.33 1.38 1.71
[t] [ 0.29] [ 0.22] [ -0.95] [ -0.50] [ 2.62] [ 2.94]
λg -1.51 -1.03 -1.42 0.39 -2.13 -0.41
[t] [ -3.66] [ -1.75] [ -3.27] [ 0.53] [ -4.64] [ -0.40]

α - 2.85 - 8.87 - 8.69
[t] - [ 0.87] - [ 2.18] - [ 1.85]

Panel (E): Stats of Two-step Regression

OLS-R2 0.65 -0.48 0.81
GLS-R2 0.18 -0.57 0.18
COLS-R2 0.85 0.06 0.86
CGLS-R2 0.25 0.28 0.44
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Table 5: Price Index

Description: This table reports the point estimate for the vector ~b using differ-
ent setups of testing assets. “Fisher” constructs the Fisher-index as the sector-
level price, the implied price deflator from chained quantity index. “Tornqvist”
constructs the Tornqvist Index as sector-level price, the implied price deflator
from expenditure-share weighted index. “Simple” uses the average change of
sub-category price index in each sector. All estimation use the “Mix 30” port-
folios as the testing assets. Other description in Table (3) applies.

Risk Price

Fisher Tornqvist Simple
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

be 28.87 29.77 26.05 27.12 16.92 17.47
[t] [ 1.69] [ 24.18] [ 1.38] [ 19.30] [ 0.86] [ 10.95]
bg -72.10 -72.61 -71.63 -70.05 -87.67 -85.88
[t] [ -2.23 ] [ -22.26 ] [ -4.86 ] [ -51.77 ] [ -2.14 ] [ -24.50]

Table 6: Consumption Sector

Description: This table reports the point estimate for the vector ~b using
different setups of testing assets. “Benchmark” constructs the price in non-
durable good-service sector, where Energy and Housing are excluded. “NIPA-
Nondurable” constructs the price in nondurable good sector and service sector,
using NIPA definition. “NIPA-Good” constructs the price in good sector and
service sector, using NIPA definition. All estimation use the “Mix 30” portfolios
as the testing assets. Other description in Table (3) applies.

Risk Price

Benchmark NIPA-Nondurable NIPA-Good
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

be 28.87 29.77 36.54 37.41 25.81 25.28
[t] [ 1.69] [ 24.18] [ 4.75] [ 29.66] [ 2.69] [ 14.61]
bg -72.10 -72.61 -72.01 -72.20 -61.28 -63.29
[t] [ -2.23 ] [ -22.26 ] [ -2.36 ] [ -14.13 ] [ -2.46 ] [ -18.15]
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Table 7: Alternal Estimation for Parameters

Description: This table reports the point estimate for the vector ~b using dif-
ferent pricing kernels with different deflators. “Service” uses the pricing kernel
of relative expendture and relative good price, with respect to the service price.
“Good” uses the pricing kernel of relative expendture and relative service price,
with respect to the good price. “Expenditure” uses the pricing kernel of rela-
tive good price and relative service price, with respect to the expenditure. All
estimation use the “Mix 30” portfolios as the testing assets. Other description
in Table (3) applies.

Risk Price

Service Good Expenditure
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

be 28.87 29.77 27.03 26.64
[t] [ 1.69] [ 24.18] [ 1.40] [ 23.41]
bg -72.10 -72.61 -72.97 -71.72
[t] [ -2.23 ] [ -22.26 ] [ -2.33 ] [ -17.36]
bs 6.12 6.71 -0.66 -4.27
[t] [ 0.11 ] [ 2.12 ] [ -0.02 ] [ -1.03]
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Table 8: Detailed Consumption Sectors

Description: This table reports the estimation using multiple consumption
sectors. Sample is during 1965-2019. Panel (A) reports the point estimate for

the vector ~b using GMM estimation. “Good” considers the Food-good category
and non-Food good category. “Service” considers the Food-service category
and non-Food service category. “All” considers the four categories: Food-good,
non-Food good, Food-service and the non-Food service. de use the nominal
expenditure as the deflator, dp use the bottom-category price as the deflator.
Estimation use the 5-size, 5-profitability, 5-investment and 10-momentum port-
foliors. The expenditure in each sector is detrended. Other description in Table
(2) and Table (3) applies.

Risk Price

Good Service All

bg,f -78.77 -79.06 bg -109.81 -109.76 bg,f -133.35 -133.16
[t] [ -1.57] [ -1.58] [t] [ -4.01] [ -4.00] [t] [ -3.05] [ -3.04]
bg,n -93.24 -92.69 bg,n -82.39 -81.43
[t] [ -2.05] [ -2.04] [t] [ -1.48] [ -1.48]

bs 19.78 bs,f 290.57 290.16 bs,f 324.37 321.90
[t] [ 1.14] [t] [ 2.14] [ 2.11] [t] [ 2.25] [ 2.23]

bs,n -34.09 bs,n -50.74
[t] [ -1.22] [t] [ -1.38]

be 22.37 be 24.33 be 26.91
[t] [ 2.60] [t] [ 2.84] [t] [ 2.61]

Deflator

de dps de dps,n de dps,n

GMM statistic

MAPE 0.32 0.32 0.22 0.22 0.23 0.24
RMSE 0.40 0.40 0.31 0.31 0.28 0.29

Cohen-R2 0.98 0.98 0.99 0.99 0.99 0.99
J-pval 76.44 76.33 78.57 78.72 72.36 72.70
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Table 8: Detailed Consumption Sectors, Continued

Description: Panel (B) reports the estimation of risk premium (without inter-
cept term) using multiple consumption sectors. Other description in Table (2)
and Table (3) applies.

Risk Premium

Good Service All

λg,f -3.56 -2.67 λg -2.58 -2.06 λg,f -2.87 -2.90
[t] [ -4.76] [ -4.38] [t] [ -4.00] [ -4.44] [t] [ -3.97] [ -4.33]
λg,n -2.06 -1.18 λg,n -1.49 -1.52
[t] [ -4.17] [ -3.87] [t] [ -2.84] [ -4.23]

λs -0.89 λs,f -2.21 -1.69 λs,f -1.91 -1.94
[t] [ -2.34] [t] [ -4.24] [ -2.88] [t] [ -3.84] [ -4.27]

λs,n -0.52 λs,n 0.03
[t] [ -0.78] [t] [ 0.08]

λe 0.89 λe 0.52 λe -0.03
[t] [ 2.34] [t] [ 0.78] [t] [ -0.08]

Deflator

de dps de dps,n de dps,n

Fama-Macbeth Two-step Statistic

OLS-R2 0.57 0.57 0.57 0.57 0.61 0.61
GLS-R2 -0.01 -0.01 -0.00 -0.00 0.03 0.03

54



Table 8: Detailed Consumption Sectors, Continued

Description: Panel (C) reports the estimation of risk premium (with intercept
term) using multiple consumption sectors. Other description in Table (2) and
Table (3) applies.

Risk Premium

Good Service All

λg,f -2.20 -1.52 λg -2.44 -1.52 λg,f -1.26 -1.14
[t] [ -2.28] [ -1.62] [t] [ -3.45] [ -2.67] [t] [ -1.53] [ -1.38]
λg,n -1.73 -1.05 λg,n -1.43 -1.32
[t] [ -3.48] [ -3.10] [t] [ -2.72] [ -3.46]

λs -0.68 λs,f -1.91 -0.99 λs,f -0.86 -0.75
[t] [ -2.06] [t] [ -3.36] [ -2.35] [t] [ -2.05] [ -0.08]

λs,n -0.92 λs,n -0.11
[t] [ -1.71] [t] [ -0.31]

λe 0.68 λe 0.92 λe 0.11
[t] [ 2.06] [t] [ 1.71] [t] [ 0.31]

α 4.38 4.38 α 2.75 2.75 α 5.96 5.96
[t] [ 1.32] [ 1.32] [t] [ 0.95] [ 0.95] [t] [ 1.98] [ 1.98]

Deflator

de dps de dps,n de dps,n

Fama-Macbeth Two-step Statistic

COLS-R2 0.65 0.65 0.60 0.60 0.72 0.72
CGLS-R2 0.06 0.06 0.05 0.05 0.09 0.09
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Table 9: Long-run Shift of Risk Premium

Description: This table reports the point estimate for the vector ~b in different
time blocks, using the asset pricing model “P-ND” with relative prices in the
good-service two-sectors. All estimation use the “Size-BM 25” portfolios as the
testing assets.

Risk Price

1935-1989 1950-2005 1965-2019

Panel (A): Parameters
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

be 31.77 31.76 35.00 40.13 30.05 33.72
[t] [ 3.78] [ 24.78] [ 3.05] [ 12.55] [ 2.61] [ 13.06]
bg -47.95 -46.15 -66.87 -63.51 -68.26 -63.83
[t] [ -2.69 ] [ -10.83 ] [ -2.92 ] [ -13.40 ] [ -2.90 ] [ -11.68]

Panel (B): Stats of GMM

MAPE 0.70 0.33 0.38
RMSE 0.95 0.39 0.51
CV-R2 0.92 0.98 0.96
J-pval 82.47 96.62 81.48

Panel (C): Test Statistic

Test-t [ -3.33] [ -3.61] [ -4.24]

56



Table 9: Long-run Shift of Risk Premium, Continued

Description: This table reports the estimate for the risk premium in different
time blocks, using the asset pricing model “P-ND” with relative prices in the
good-service two-sectors. All estimation use the “Size-BM 25” portfolios as the
testing assets.

Risk Premium

1935-1989 1950-2005 1965-2019

Panel (D): Risk Premium
without with without with without with

λe 1.54 2.61 0.13 1.42 0.38 0.43
[t] [ 2.34] [ 3.81] [ 0.14] [ 1.52] [ 0.55] [ 0.64]
λg -3.38 0.54 -2.98 -1.41 -1.56 -1.28
[t] [ -2.69] [ 0.63] [ -4.35] [ -2.37] [ -4.19] [ -2.50]

α - 9.92 - 6.99 - 1.99
[t] - [ 3.73] - [ 2.66] - [ 0.63]

Panel (E): Stats of Two-step Regression

OLS-R2 -0.09 0.38 0.63
GLS-R2 -0.07 0.13 -0.38
COLS-R2 0.74 0.82 0.67
CGLS-R2 0.06 0.16 0.01
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Table 10: Quantity Index

Description: This table reports the point estimate for the vector ~b using dif-
ferent pricing kernels. “DU” uses the quantity growth of nondurable good and
service. “Stone-Geary” uses the quantity growth of zero-habit sector, and the
growth of relative prices, 1st-stage estimation outcome are reported. The sector
with zero-habit is denoted with subscript h. In “SG-2”, the zero-habit sector
is either the good sector or the service sector. In “SG-3”, the zero-habit sector
is either the Food-service sector or the non-Food service sector. All estimation
use the “Mix 30” portfolios as the testing assets. Other description in Table (2)
and Table (3) applies.

Risk Price

DU SG-2 SG-3
1st-Stage 2nd-Stage Good Service Food Non-Food

qg 50.20 41.92 qg 34.76
[t] [ 0.99] [ 5.48] [t] [ 1.27]
qs 1.59 6.30 qs 22.31 qh 19.67 21.00
[t] [ 0.04] [ 1.24] [t] [ 1.61] [t] [ 2.50] [ 2.45]

pg,s pg,s -13.01 -22.37 pg,h -50.27 -36.29
[t] [t] [ -0.47] [ -1.29] [t] [ -3.77] [ -2.22]

pn,h 67.03
[t] [ 3.64]
pf,h -3.43
[t] [ -0.34]

GMM statistic

MAE 0.64 0.48 0.40 0.39 0.31
RMSE 0.81 0.61 0.48 0.49 0.44
CV-R2 0.89 0.94 0.96 0.96 0.97
J-pval 91.69 91.48 92.58 92.53 90.69

Fama-Macbeth Two-step Statistic

OLS-R2 -0.07 0.45 0.41 0.45 0.52
GLS-R2 0.02 -0.01 0.04 0.00 0.08

COLS-R2 0.54 0.47 0.61 0.46 0.65
CGLS-R2 0.11 0.04 0.10 0.04 0.14
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C Notation

For consistent notation, I use the upper-case character for the nominal price
and the nominal expenditure. I use the lower-case character for the log nominal
price pj = log(Pj), and the log expenditure e = log(E).

I use notationDjf as the derivative of function f with respect to j-th element.
I use Dj,if as the second-order derivatives of function f , where Dj,if = DiDjf .
I denote the matrix of second-order derivatives as Hf where Hf j,i = Dj,if . I
denote the first-order difference of variable x as dx = x′ − x.

Definition 1. Define the absolute share of j-th sector as ωj,

ωj ≡
Pj · Cj
E

.

Define the relative expenditure share between the k-th sector and the j-th
sector as Sk,j,

Sk,j ≡
ωk
ωj
.

Define the core-IDU as the value of IDU given price vector P and 1 unit
consumption spending E,

V ∗(P ) ≡ V (P, 1).

Define the (k, j)-pair price elasticity as ηk,j,

ηk,j ≡ −
Dk,jV ∗(E−1 · P )

DkV ∗(E−1 · P )
· (E−1 · Pj).

I use the core-IDU function V ∗(p) = V (p, 1) to simplify the notation. The
budget set is Homogeneous of Degree Zero,~C ∈ X |

∑
j∈J

(k · Pj) · Cj ≤ k · E

 =

~C ∈ X |
∑
j∈J

Pj · Cj ≤ E

 , k > 0.

Because the budget set is H.D.0, when the consumption spending is positive, the
the core-IDU function V ∗ and the indirect utility function V has relationship as
V (P,E) = V ∗(E−1 · P ). Thorough this article, I require the core-IDU function
V ∗ with continuous third-order derivatives.

Definition 2. Define the real Stochastic Discount Factor M̃ as

M̃(~Pt, Et) ≡ V (~Pt, Et)
−γ · DEV (~Pt, Et) · PJ,t. (4)

Definition 3. The price system (P, P s) and the consumption allocation C̃ con-
stitutes the (Heterogeneous Consumer) Competitive Equilibrium if
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1. C̃(n) solves problem

U0(~θ
(n)
0 ) = sup

C̃,θ̃

lim
T→∞

E[

T∑
t=1

βt · u(n)(~Ct)]

s.t.
∑
k

θk,t · (P sk,t +Dk,t) + wt · `(n)
t =

∑
j

Pj,t · Cj,t +
∑
k

θk,t+1 · P sk,t,

Cj,t ≥ 0;
∑
k

θk,t+1 · P sk,t ≥ a.

(P.1-HA)

2. commodity market (j, t) clears in the demand side
∑
n∈N C

(n)
j,t = Cj,t.

3. commodity market clears in the supply side, labor market clear, given the
model specification of producers;

4. financial security market clears, given the model specification of foreign
borrowing and lending.

D Approximation

D.1 Relative Share

Proposition 2. Given Sk,j is non-trivial constant, the log-change of relative
share is decomposed into the price effect and the income effect,

dsk,j =(1− ηk,k + ηj,k) · dpk − (1− ηj,j + ηk,j) · dpj −
∑
i 6=k,j

(ηk,i − ηj,i) · dpi

+
∑
i

(ηk,i − ηj,i) · de+ o(h).

(27)

with sk,j = log(Sk,j), h = (dp,de) and dsk,j = sk,j(p + dp, e + de) − sk,j(p, e).
The term o(h) is higher-order in h in the sense that lim||h||→0

o(h)
||h|| = 0 under

sup-norm ||h|| ≡ supj |hj |.

Proof. By Taylor’s Theorem, for sk,j with continuous second-order derivatives
in neighborhood of a = (p, e), there exists θ ∈ [0, 1] such that

sk,j(a+ h)− sk,j(a) =Dsk,j(a) · h+
1

2
· hT · Hsk,j(a+ θ · h) · h (46)

Denote the term o(h; a) = 1
2 ·h

T ·sk,j(a+θ·h)·h. The term o(h; a) is higher-order

in h in the sense that given the sup-norm ||h|| ≡ supj |hj |, lim||h||→0
o(h;a)
||h|| = 0

for arbitrary a.
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Given the optimal consumption bundle is unique, the Roy Identity tells us
that absolute share ω can be written as

ωj =
Pj · Cj
E

=
Pj · DjV ∗∑
i Pi · DiV ∗

. (47)

Replacing the absolute share ωk and ωj , the log of relative expenditure share
satisfies

sk,j = log(
ωk
ωj

)

= log(Pk) + log[−DkV ∗]− log(Pj)− log[−DjV ∗].
(48)

Now I explicitly decompose the term Dsk,j(a)·h. Recall the first-order derivative

of composition satisfies D[log ◦f(a)] = Df(a)
f(a) . Recall a = (~p, e) and h = (~pB −

~p, eB − e), the term Dsk,j(a) · h is decomposed as below,

Dsk,j(a) · h =(pk,B − pk)− (pj,B − pj)

+[

J∑
i=1

Dk,iV ∗ · (E−1 · Pi) · (pi,B − pi)

+

J∑
i=1

Dk,iV ∗ · (−E−1 · Pi) · (eB − e)] · [DkV ∗]−1

−[

J∑
i=1

Dj,iV ∗ · (E−1 · Pi) · (pi,B − pi)

+

J∑
i=1

Dj,iV ∗ · (−E−1 · Pi) · (eB − e)] · [DjV ∗]−1.

(49)

I use the matrix of price elasticity η(~P ,E) at (~P ,E). For succinct notation,

I use η as the local price elasticity. Substituting ηk,i = −Dk,iV
∗

DkV ∗ · (E
−1 ·Pj) and

ηj,i = −Dj,iV
∗

DjV ∗ · (E
−1 · Pj), the equation (46) is written as

sk,j(a+ h)− sk,j(a) =(1− ηk,k + ηj,k) · (pk,B − pk)− (1− ηj,j + ηk,j) · (pj,B − pj)

−
∑
i 6=k,j

(ηk,i − ηj,i) · (pi,B − pi)

+
∑
i

(ηk,i − ηj,i) · (eB − e)

+
1

2
· hT · Hsk,j(a+ θ · h)

Sk,j(a)
· h

(50)

For simple notation, I denote the first-order difference using dsk,j = sk,j(a +
h) − sk,j(a), dpk = pk,B − pk and de = eB − e, so the equation (46) reads as
equation (27).
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D.2 Dynamic Decision with IDU

Lemma 1. Define the problem (P.1) as

U0(~θ0) = sup
C̃,θ̃

lim
T→∞

E[

T∑
t=1

βt · u(~Ct)]

s.t.
∑
k

θk,t · (P sk,t +Dk,t) + wt · `t =
∑
j

Pj,t · Cj,t +
∑
k

θk,t+1 · P sk,t,

Cj,t ≥ 0;
∑
k

θk,t+1 · P sk,t ≥ a.

(P.1)

Define the problem (P.2) as

V
New

0 (~θ0) = sup
Ẽ,θ̃

lim
T→∞

E[

T∑
t=1

βt · v(~Pt, Et)]

s.t.
∑
k

θk,t · (P sk,t +Dk,t) + wt · `t = Et +
∑
k

θk,t+1 · P sk,t,

Et ≥ 0;
∑
k

θk,t+1 · P sk,t ≥ a.

(P.2)

Optimization problems (P.1) yields equivalent value as the optimization problem
(P.2). For each optimal policy C∗ in problem (P.1), E∗ such that

E∗t =
∑
j∈J

Pj,t · C∗j,t, ∀t, zt (2)

is an optimal policy in the optimization problem (P.2).

Proof. Following Theorem 7.6 and Theorem 9.2 in (Stokey, 1989), I require
Assumption 9.1-9.2 in (Stokey, 1989) to ensure the proper measure space and
the well-defined optimal consumption plan for the optimization problem (P.1).
Similar assumptions are required to ensure the proper measure space and the
well-defined optimal expenditure plan for the optimization problem (P.2). Here,
I focus on comparing value and the optimal plan in problem (P.1) and problem
(P.2).
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Step 1: Construct problem (P.3) with psuedo constraints,

V 0(~θ0) = sup
Ẽ,C̃,θ̃

lim
T→∞

E[

T∑
t=1

βt · u(~Ct)]

s.t.
∑
j

Pj,t · Cj,t ≤ Et,∑
k

θk,t · (P sk,t +Dk,t) + wt · `t =
∑
j

Pj,t · Cj,t +
∑
k

θk,t+1 · P sk,t,

Cj,t ≥ 0;
∑
k

θk,t+1 · P sk,t ≥ a.

(P.3)

I verify Problem (P.2) generates lower value than problem (P.3),

V
New

0 (~θ0) ≤ V 0(~θ0).

To see this is true, I construct the auxiliary consumption bundle implied by the
optimal expenditure plan E∗ in problem (P.2),

CE∗j,t (zt) =
E∗t (zt)

Pj,t(zt)
· Pj,t(z

t) · DjV ∗(E∗t (zt)−1 · ~Pt(zt))∑
i Pi,t(z

t) · DiV ∗(E∗t (zt)−1 · ~Pt(zt))
. (51)

By construction of consumption plan CE∗, for all (t, z), H.D.0 core-IDU V ∗

ensures that ∑
j∈J

Pj,t(z
t) · CE∗j,t (zt) = E∗t (zt).

Notice that V [~Pt(z
t), E∗t (zt)] = V ∗([E∗t (zt)]−1 · ~Pt(zt)) = g(~CE∗t (zt)) at each

time-state node, so the objective function values are identical. I construct the
plan of financial security θ̃E∗ exactly the same as the financial wealth plan in
problem (P.2). As the consequence, for all (t, zt),∑

j∈J
Pj,t(z

t) · CE∗j,t (zt) +
∑
k

θE∗k,t+1 · P sk,t =
∑
k

θE∗k,t · (P sk,t +Dk,t) + wt · `t.

Therefore, the plan (C̃E∗, Ẽ∗, θ̃E∗) is feasible in Problem (P.3). For arbitrary
feasible expenditure plan of problem (P.2), a feasible plan can be constructed
in the similar way, so I conclude problem (P.2) generates (weakly) lower value
than the problem (P.3).

Recall that Problem (P.3) adds additional constraints to the Problem (P.1),
so Problem (P.3) generates (weakly) lower value than Problem (P.1). Overall, I
conclude problem (P.2) generates lower value than the problem (P.1).

Step 2: I verify U0(~θ0) ≤ V 0(~θ0). Construct the implied expenditure plan
EC∗ from the optimal consumption plan C∗ in problem (P.1),

EC∗t (zt) =
∑
j∈J

Pj,t(z
t) · C∗j,t(zt).
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Again, the exact inter-temporal budget constraints implies V [~Pt(z
t), EC∗t (zt)] =

V ∗(EC∗t (zt)−1 · ~Pt(zt)) = g(~c∗t (z
t)) at each time-state node, so objective func-

tion values are identical. A financial portfolio plan θ̃C∗ can be constructed
exactly the same as the financial wealth plan in problem (P.2). Therefore, the
plan (ẼC∗, θ̃C∗) is feasible in Problem (P.2). Given the enlarged feasible set
of expenditure plan, I conclude Problem (P.1) generates lower value than the
Problem (P.2).

Step 3: Combine step (1) and step (2), we conclude

U0(~θ0) = V 0(~θ0).

Furthermore, for each optimal policy c∗ in problem (P.1), EC∗ such that

EC∗t (zt) =
∑
j∈J

Pj,t(z
t) · C∗j,t(zt), ,∀t, z (52)

is also an optimal policy in the optimization problem (P.2). To see this is true,

recall the optimal value U0(~θ0) is attained by the consumption plan C∗, so EC∗

attains the optimal value V 0(~θ0). In the symmetric argument, for each optimal
policy E∗ in problem (P.1), CE∗ such that

CE∗j,t (zt) =
E∗t (zt)

Pj,t(zt)
· Pj,t(z

t) · DjV ∗(E∗t (zt)−1 · ~Pt(zt))∑
i Pi,t(z

t) · DiV ∗(E∗t (zt)−1 · ~Pt(zt))
. (53)

is also an optimal policy in the optimization problem (P.1).

D.3 Stochastic Discount Factor

Lemma 2. For the pair of sectors (i, j),

ηj,i = ηi,j ·
ωi
ωj
. (54)

Proof. By Theorem 9.41 in (Rudin,1964), Di,jV ∗ = Dj,iV ∗ as V ∗ has continuous
second-order derivatives. Recall the definition of price-elasticity,

ηi,j = −Di,jV
∗

DiV ∗
· (E−1 · Pj).

Switching the direction of sub-scripts yields the equation of price elasticity,

ηj,i = ηi,j ·
DiV ∗

DjV ∗
· E
−1 · Pi

E−1 · Pj
= ηi,j ·

ωi
ωj
. (55)

Theorem 1. First-Order Approximated SDF is

dm̃ = −
J∑
j=1

bj(~P ,E) · ωj · (dpj − dpJ)− be(~P ,E) · (de− dpJ) + o(h). (5)
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with high-order term o(h) for h = max{{dpj}j ,de}. The risk price vector b is

bj(~P ,E) =− [γ · DEV (~P ,E) · E
V (~P ,E)

+ 1] +

J∑
i=1

ηj,i(~P ,E),

be(~P ,E) =−
J∑
j=1

[bj(~P ,E)− 1] · ωj .

(6)

Proof. By the Taylor’s Theorem, in the neighborhood of a = (~p, e), there exists
θ ∈ [0, 1] such that

m̃(a+ h)− m̃(a) = Dm̃(a) · h+
1

2
· hT · Hm̃(a+ θ · h) · h. (56)

The log of real Stochastic Discount Factor M̃ satisfies

m̃ =− γ · log[V ∗] + log[

J∑
j=1

DjV ∗ · (−E−2) · Pj ] + log(PJ). (57)

Now I explicitly decompose the term Dm̃(a) ·h. Recall the first-order derivative

of composition satisfies D[log ◦f(a)] = Df(a)
f(a) . The term Dm̃(a) · h − dpJ is

decomposed as below,

Dm̃(a) · h− dpJ = −γ · [V ∗]−1·[
J∑
j=1

DjV ∗ · E−1 · Pj · dpj

+

J∑
j=1

DjV ∗ · (−E−2) · Pj · de]

+[

J∑
j=1

DjV ∗ · (−E−2) · Pj ]−1·[
J∑
j=1

DjV ∗ · (−E−2) · dpj

+

J∑
j=1

DjV ∗ · (2 · E−3) · Pj · de]

+[

J∑
j=1

DjV ∗ · (−E−2) · Pj ]−1·[
J∑
j=1

J∑
i=1

Dj,iV ∗ · (−E−3) · Pj · dpi

+

J∑
j=1

J∑
i=1

Dj,iV ∗ · E−4 · Pj · Pi · de].

(58)
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Denote A =
∑J
j=1DjV ∗ · Pj . Replacing the formulas

DEV (~P ,E) =

J∑
j=1

DjV ∗ · (−E−2) · Pj ,

Vj(~P ,E) =DjV ∗ · E−1,

ωk =
Pk · DkV ∗∑J
j=1DjV ∗ · Pj

,

yields the simplified Dm̃(a) · h− dpJ as below,

Dm̃(a) · h− dpJ

= −γ · [V ∗]−1·[
J∑
j=1

ωj ·A · E−1 · dpj +A · (−E−1) · de]

+[A · (−E−2)]−1·[
J∑
j=1

ωj ·A · (−E−2) · dpj +A · (2 · E−2) · de]

+[A · (−E−2)]−1·[
J∑
j=1

J∑
i=1

Dj,iV ∗ · (−E−3) · Pj · Pi · dpi

+

J∑
j=1

J∑
i=1

Dj,iV ∗ · E−3 · Pj · Pi ·
de

e
].

(59)

We further replace the formula with the price-elasticity η,

Dj,iV ∗ · E−3 · Pj · Pi =DjV ∗ · Pj ·
Dj,iV ∗ · E−3 · Pj · Pi

DjV ∗ · Pj

=ωj ·A · (−E−2) · Dj,iV
∗ · Pi

DjV ∗ · E
=ωj ·A · (−E−2) · (−ηj,i).

The term Dm̃(a) · h− dpJ is further simplified as

Dm̃(a) · h− dpJ =− γ · A · E
−1

V ∗
· (

J∑
j=1

ωj · dpj − de) + (

J∑
j=1

ωj · dpj − de)− de

−
J∑
j=1

ωj · (
J∑
i=1

ηj,i · dpi −
J∑
i=1

ηj,i · de).

(60)

After replacing A·E−1

V ∗ = −DEV (~P ,E)·E
V (~P ,E)

, the term Dm̃(a) · h is further simplified
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as

Dm̃(a) · h =− γ · −DEV (~P ,E) · E
V (~P ,E)

· (
J∑
j=1

ωj · dpj − de) + (

J∑
j=1

ωj · dpj − de)

− (de− dpJ)−
J∑
j=1

ωj · (
J∑
i=1

ηj,i · dpi −
J∑
i=1

ηj,i · de).

(61)

Recall Lemma (2), in the pair (i, j), switching the direction of sub-scripts yields
the equation of price elasticity,

ηj,i = ηi,j ·
ωi
ωj
. (62)

This further implies the risk price of consumption category j with

J∑
i=1

ωi · ηi,j =

J∑
i=1

ωj · ηj,i = ωj ·
J∑
i=1

ηj,i. (63)

The term Dm̃(a) · h is further simplified as

Dm̃(a) · h =− γ · −DEV (~P ,E) · E
V (~P ,E)

· (
J∑
j=1

ωj · dpj − de) + (

J∑
j=1

ωj · dpj − de)

− (de− dpJ)−
J∑
i=1

ωi · (
J∑
j=1

ηi,j · dpi −
J∑
j=1

ηi,j · de).

(64)

Hence, the First-Order Approximated Linear SDF is

dm̃ = −
J∑
j=1

bj · ωj · dpj − be · de+ dpJ + o(h).

has risk price ~b as

bj =− [γ · DEV (~P ,E) · E
V (~P ,E)

+ 1] +

J∑
k=1

ηj,k, (65)

be =[γ · DEV (~P ,E) · E
V (~P ,E)

+ 1] + 1−
J∑
j=1

ωj ·
J∑
k=1

ηj,k. (66)

By construction, absolute consumption shares add-up to 1,

J∑
j=1

ωj = 1.
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Therefore, the risk price vector b satisfies

J∑
j=1

ωj · bj + be = 1. (67)

Considering the relative change using the deflator PJ , the First-Order Approx-
imated Linear SDF is

dm̃ = −
J∑
j=1

bj · ωj · (dpj − dpJ)− be · (de− dpJ) + o(h).

Proposition 3. Define the Engel Slope for the sector pair (k, j) as

ESk,j(~P ,E) = lim
de→0

sk,j(p, e+ de)− sk,j(p, e)
de

, (28)

the risk price vector satisfies

bk − bj = ESk,j(~P ,E). (29)

Proof. Recall the Proposition (2),

ESk,j(~P ,E) =

J∑
i=1

ηk,i(~P ,E)−
J∑
i=1

ηj,i(~P ,E). (68)

Theorem (1) tells us,

bk − bj =

J∑
i=1

ηk,i(~P ,E)−
J∑
i=1

ηj,i(~P ,E). (69)

So we arrive to bk − bj = ESk,j(~P ,E).
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Proposition 1. Given the security k and the security f , real total return R̃k,t→t′

and R̃f,t→t′ satisfy

E[
M̃t′

M̃t

· (R̃k,t→t′ − R̃f,t→t′)|It] = 0. (8)

Proof. I refer the standard argument as in Chapter 13, (Ljungqvist and Sargent,
2012). The Lagrangian for the consumption allocation problem is

L0(~θ0, λ0, ν0, ν
e
0) = sup

Ẽ,θ̃,λ̃t,ν̃t,ν̃et

lim
T→∞

{βT+1 · E
[∑

k

Pk,T+1 · Dev(~PT , ET )]

+E
[ T∑
t=1

βt · [v(~Pt, Et) + λt · ( budget constraint)

+ νt · (bounded total wealth)

+ νet · (non-negative spending)]
]
}.
(L.1)

Here, the budget constraint reads as∑
k

θk,t · (P sk,t +Dk,t) + wt · `t = Et +
∑
k

θk,t+1 · P sk,t.

The bounded total wealth constraint reads as∑
k

θk,t+1 · P sk,t ≥ a.

Given limE→0Dev(~P ,E) = −∞, the shadow price νet ≡ 0. Optimal position in
k-th financial security θ̃k implies the motion equation of shadow price λ̃t

βt · µ(zt) · [λt(zt) + ηt(z
t)] · P sk,t(zt)

=
∑

zt+1|zt
βt+1 · µ(zt+1) · λt+1(zt+1) · [P sk,t+1(zt+1) +Dk,t+1(zt+1)]. (70)

Optimal consumption spending Ẽ implies the equation for the shadow price λt
and marginal utility of expenditure,

λt(z
t) =Dev(~Pt(z

t), Et(z
t)). (71)

Similarly, at the succeeding time-state zt+1, the FOC of consumption spending
also holds

λt+1(zt+1) =Dev(~Pt+1(zt+1), Et+1(zt+1)).

For short notation, I use Devt(zt) for Dev(~Pt(z
t), Et(z

t)). Substituting FOCs
of consumption spending into the equation of shadow price (70) yields,

[Devt(zt) + ηt(z
t)] · P sk,t(zt)

=
∑

zt+1|zt
β · µ(zt+1, zt+1|zt) · Devt+1(zt+1) · [P sk,t+1(zt+1) +Dk,t+1(zt+1)]. (72)
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If household is unconstrained ηt(z
t) = 0, this equation is

1 =β · E[
Devt+1(zt+1)

Devt(zt)
·
P sk,t+1(zt+1) +Dk,t+1(zt+1)

P sk,t(z
t)

|zt]. (73)

Denote the deflated total return for financial asset k as

R̃k,t→t+1(zt+1) =
[P sk,t+1(zt+1) +Dk,t+1(zt+1)]/PJ,t+1(zt+1)

P sk,t(z
t)/PJ,t(zt)

.

I conclude E[β· M̃t+1

M̃t
·R̃k,t→t+1|It] = 1. The similar argument can be constructed

for arbitrary finite time-interval (t, t′), hence optimal financial wealth allocation
implies the Euler equation for the deflated total return of financial asset k

E[βt
′−t · M̃t′

M̃t

· R̃k,t→t′ |It] = 1. (74)

Similarly, there exists the Euler equation of financial asset f ,

E[βt
′−t · M̃t′

M̃t

· R̃f,t→t′ |It] = 1. (75)

Given the expectation operator is linear operator, the spread of deflated total
return satisfies

E[βt
′−t · M̃t′

M̃t

· (R̃k,t→t′ − R̃f,t→t′)|It] = 0. (76)

Removing the constant non-zero term βt
′−t gives us the Euler equation across

financial assets

E[
M̃t′

M̃t

· (R̃k,t→t′ − R̃f,t→t′)|It] = 0. (77)

Corollary 1. Given the security k and the security f , total return Rk,t→t′ and
Rf,t→t′ satisfy

E[
M̃t′

M̃t

· (Rk,t→t′ −Rf,t→t′)|It] ≈ 0. (9)

Proof. Recall the return spread across pairs of financial assets approximately
equals the spread of deflated total return,

Rk,t→t′ −Rf,t→t′ ≈ R̃k,t→t′ − R̃f,t→t′ , (78)

so the equation of real current pricing kernel is written as

E[
M̃t′

M̃t

· (Rk,t→t′ −Rf,t→t′)|It] ≈ 0. (79)
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E Aggregation

E.1 Proper Negishi Weight

Lemma 3. At (~P ∗,E∗), artificial consumer has marginal utility of expenditure
equivalent with the benchmark-consumer (1)

DEV (~P ∗,E∗;α) = DEV (1)(~P ∗, E(1),∗) (80)

Proof. By construction of V (~P ,E;α),

V (~P ,E;α) = max
s∈4N−1

1

N
·
∑
n∈N

α(n) · V (n)(~P , s(n) · E)

s.t.
∑
n∈N

s(n) ≤ 1.
(81)

In addition, optimal solution satisfies s∗(n) = E(n),∗

E .
By the envelope theorem,

DEV (~P ∗,E∗;α) =DE

[
1

N
·
∑
n∈N

α(n) · V (n)(~P ∗, s∗(n) · E)

]

=
1

N
·
∑
n∈N

α(n) · DEV (n)(~P ∗, s∗(n) · E)

=
1

N
·
∑
n∈N

α(n) · DEV (n)(~P ∗, E(n),∗)

(82)

By construction of Negishi-weight α,

1

N
·
∑
n∈N

α(n) · DEV (n)(~P ∗, E(n),∗) = DEV (1)(~P ∗, E(1),∗). (83)

Therefore, I conclude

DEV (~P ∗,E∗;α) = DEV (1)(~P ∗, E(1),∗).

E.2 Absolute Share

Lemma 4. At (~P ∗,E∗), absolute expenditure share of artificial consumer V (~P ∗,E∗;α)
is identical with aggregate expenditure share on the equilibrium path,

~ω(~P ∗,E∗;α) =
∑
n∈N

E(n),∗∑
m∈N E

(m),∗ · ~ω
(n)(~P ∗, E(n),∗) (84)
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Proof. Recall the Roy identity,

ω
(n)
j (~P ,E(n)) = − DjV

(n)(~P ,E(n))

DEV (n)(~P ,E(n))
· Pj
E(n)

. (85)

Hence, I can simplify the formula as below∑
n∈N

E(n),∗∑
m∈N E

(m),∗ · ω
(n)
j (~P ∗, E(n),∗)

=−
∑
n∈N

E(n),∗∑
m∈N E

(m),∗ ·
DjV (n)(~P ∗, E(n),∗)

DEV (n)(~P ∗, E(n),∗)
·

P ∗j
E(n),∗

=−
∑
n∈N

P ∗j∑
m∈N E

(m),∗ ·
DjV (n)(~P ∗, E(n),∗)

DEV (n)(~P ∗, E(n),∗)

(86)

By the Roy Identity, absolute expenditure share of artificial consumer V (~P ∗,E∗;α)
is

ωj(~P
∗,E∗;α) = − DjV (~P ∗,E∗;α)

DEV (~P ∗,E∗;α)
· Pj
E∗

. (87)

By the envelope theorem,

DjV (~P ∗,E∗;α) =
1

N
·
∑
n∈N

α(n) · DjV (n)(~P ∗, E(n),∗). (88)

I derive the formula α(n)

DEV (~P∗,E∗;α)
as

α(n)

DEV (~P ∗,E∗;α)
=
DEV (1)(~P ∗, E(1),∗)

DEV (n)(~P ∗, E(n),∗)
· 1

DEV (~P ∗,E∗;α)

=
DEV (1)(~P ∗, E(1),∗)

DEV (n)(~P ∗, E(n),∗)
· 1

DEV (1)(~P ∗, E(1),∗)

=
1

DEV (n)(~P ∗, E(n),∗)
.

(89)

The first equality comes from the definition of Proper Negeishi weight α∗(n) =
DEV (1)(~P∗,E(1),∗)

DEV (n)(~P∗,E(n),∗)
. The second equality comes from Lemma 3, DEV (~P ∗,E∗;α) =

DEV (1)(~P ∗, E(1),∗).
I simplify the formula below

DjV (~P ∗,E∗;α)

DEV (~P ∗,E∗;α)
=

1
N ·
∑
n∈N α(n) · DjV (n)(~P ∗, E(n),∗)

DEV (1)(~P ∗, E(1),∗)

=
1

N
·
∑
n∈N

1

DEV (n)(~P ∗, E(n),∗)
· DjV (n)(~P ∗, E(n),∗).

(90)
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The first equality substitutes the formula DjV (~P ∗,E∗;α) with equation (88).

The second equality substitutes the formula α(n)

DEV (~P∗,E∗;α)
with equation (89).

Therefore, absolute expenditure share of artificial consumer V (~P ∗,E∗;α) is
simplified as

ωj(~P
∗,E∗;α) = − 1

N
·
∑
n∈N

DjV (n)(~P ∗, E(n),∗)

DEV (n)(~P ∗, E(n),∗)
· Pj
E∗

. (91)

By construction of E∗, ∑
m∈N

E(m),∗ = N · E∗,

Replacing ω
(n)
j (~P ,E(n)) = − DjV

(n)(~P ,E(n))

DEV (n)(~P ,E(n))
· Pj
E(n) , I close the proof with

ωj(~P
∗,E∗;α) =−

∑
n∈N

P ∗j∑
m∈N E

(m),∗ ·
DjV (n)(~P ∗, E(n),∗)

DEV (n)(~P ∗, E(n),∗)

=
∑
n∈N

P ∗j∑
m∈N E

(m),∗ · ω
(n)
j (~P ∗, E(n),∗) · E

(n),∗

P ∗j

=
∑
n∈N

E(n),∗∑
m∈N E

(m),∗ · ω
(n)
j (~P ∗, E(n),∗).

E.3 Effective Representative Consumer

Theorem 2. In the economy where price system (P,M) and quantity system
({c̃(n)}n∈N , {˜̀(n)}n∈N ) constitute a Competitive Equilibrium for N heteroge-
neous consumers with preference {�(n)}, there exists a Representative Con-
sumer with preference �N such that

� price system (P,M) and quantity system (
∑
n∈N c̃

(n),
∑
n∈N

˜̀(n)) consti-
tute a Competitive Equilibrium for N homogeneous consumers with pref-
erence �N .

The indirect utility function of the Representative Consumer is V (~P ,E;α) with
the Negishi weight constructed in equation (39). Along the equilibrium path, the
Representative Consumer has identical marginal utility of expenditure with the
Benchmark Consumer

DEV (~P ∗,E∗;α) = DEV (1)(~P ∗, E(1),∗), (40)

and the absolute expenditure share of artificial consumer V (~P ∗,E∗;α) is iden-
tical with observed aggregate expenditure share,

~ω(~P ∗,E∗;α) =
∑
n∈N

E(n),∗∑
m∈N E

(m),∗ · ~ω
(n)(~P ∗, E(n),∗) (41)
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Proof. The construction of representative consumer is completed after I verify
the Lemma 3 and the Lemma 4.

Corollary 2. Given invariant distribution of Negishi-weight {α∗(n)}n along
the equilibrium path, the log-change in real marginal utility of expenditure for
the representative consumer approximately equals

dm̃ = −
J∑
j=1

bj(α) · ωj · (dpj − dpJ)− be(α) · (de− dpJ) + o(h). (42)

where α is the artificial Negishi-weight, ~ω is the aggregate expenditure share,
e is the (log) aggregate total consumption expenditure, and the vector b(α) is
written with aggregate expenditure share ~ω and representative consumer’s price-
elasticity η

bj(α) =− [
DEV (α) · E

V (α)
+ 1] +

J∑
i=1

ηj,i(α),

be(α) =[
DEV (α) · E

V (α)
+ 1] + 1−

J∑
j=1

ωj ·
J∑
i=1

ηj,i(α).

(43)

Proof. Recall Lemma 3,

DEV (~P ∗,E∗;α) = DEV (1)(~P ∗, E(1),∗).

Recall the benchmark consumer’s interior expenditure decision implies,

DEV (1)(~P ∗, E(1),∗) = M.

Therefore, the financial market SDF {Mt(z
t)} can be measured by the marginal

utility of constructed aggregate consumer,

Mt(z
t) = DEV (~P ∗t (zt, {zt(n)}),E

∗
t (z

t, {zt(n)});α)

Recall the definition of real SDF,

d log(M̃) = d log[DEV (α) · PJ ]. (92)

First-order approximation of log[DEV (α) · PJ ] is similar with the analysis of
representative consumer under the special case γ = 1. From Lemma 4, it is
legitimate to replace the expenditure share implied by the artificial-consumer
with

~ω(~P ∗,E∗;α) =
∑
n∈N

E(n),∗∑
m∈N E

(m),∗ · ~ω
(n)(~P ∗, E(n),∗),

at each time-state node along the equilibrium path. So I close the proof.

74



F Online Figure Appendix

Figure A.1: Factor-Loading of Detailed Consumption Sectors

Description: The X-axis is risk-exposure from the Fama-Macbeth 2-step re-
gression ~β, for estimation “All” with deflator de in Table (8). The Y-axis is the
risk-exposure toward the Food-Service sector dps,f − de. The dark-green dots
are Size-BM portfolios. The green dots are Profitability-Investment portfolios.
The light-green dots are Momentum portfolios.
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Figure A.2: Conditional Expected Return: Size-BM 25 Portfolios

Description: The X-axis is risk-exposure from the Fama-Macbeth 2-step re-
gression, ~β. The Y-axis is the change of 15-year average excess return between
the sample start and the sample end, ET [Rek,t+1] − E0[Rek,t+1]. Portfolios are
grouped into 5 groups, based on the Book-to-Market ratio. The red dots are
Growth portfolios. The cyan dots are Value portfolios. Other colors are ex-
plained in the legend box.
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Figure A.3: Conditional Expected Return: Fama-Frech 30 Industry Portfolios

Description: The X-axis is risk-exposure from the Fama-Macbeth
2-step regression, ~β. The Y-axis is the change of 15-year av-
erage excess return between the sample start and the sample end,
ET [Rek,t+1] − E0[Rek,t+1]. The red dots are Final Consumption sectors:
”Food”,”Beer”,”Games”,”Clths”,”Hlth”,”Servs”,”Meals”. The light-green dots
are Intermediate sectors: ”Chems”,”Txtls”,”FabPr”,”Carry”,”Trans”. Other
industry sectors are dark-green dots.
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Table A.2: Pairwise Correlation

Description: Time span of sample is during 1965-2019. Correlation coefficient
are computed for the relative price x and the relative good price, with respect
to the service price. Standard error is in parenthesis.

Business Cycle - Correlation

PCE Good Dur Good

Corr(dpx/s,dpg/s) 0.58 0.55 0.14
(s.e) ( 0.10) ( 0.11) ( 0.08)

Vehicle Furniture Rec Vehicle

Corr(dpx/s,dpg/s) 0.06 0.27 0.12
(s.e) ( 0.18) ( 0.08) ( 0.12)

Other DurGood (NIPA) NDur Good Food

Corr(dpx/s,dpg/s) 0.30 0.61 0.92
(s.e) ( 0.12) ( 0.12) ( 0.05)

Clothes Gasoline Other NDurGood

Corr(dpx/s,dpg/s) 0.32 0.15 0.36
(s.e) ( 0.09) ( 0.15) ( 0.13)

(NIPA) Serv House Util

Corr(dpx/s,dpg/s) 0.10 0.05 -0.04
(s.e) ( 0.06) ( 0.07) ( 0.11)

Health Transport Recreation

Corr(dpx/s,dpg/s) -0.13 0.27 0.23
(s.e) ( 0.08) ( 0.12) ( 0.17)

FoodAway Finance Other Service

Corr(dpx/s,dpg/s) 0.45 -0.23 0.28
(s.e) ( 0.09) ( 0.12) ( 0.12)
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Table A.3: Dicker-Fuller Test

Description: Time span of sample is during 1965-2019. Dicker-Fuller test
is implemented for the relative price with respect to the service sector price.
P-value is reported in brackets.

Dicker-Fuller Test

NDur Good Wage Dur Good

px/s 1.00 1.00 0.00
[p] [ 0.00] [ 0.01] [ 0.17]
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Table A.4: Parameters, 1935-2019

Description: This table reports the estimation during the time-interval 1935-
2019. In the 2nd column and the 3rd column, teststing assets Mix 20 uses the
size, BM ratio, and momentum portfoliors. Panel (A-C) reports the estimate
of GMM estimation. Other description of statistics in Table (2) and Table 3
applies.

Specification of Testing Assets

Mix 20 Size-BM 25 Industry 30

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

be 22.67 22.76 31.40 37.30 35.72 32.54
[t] [ 1.54] [ 6.72] [ 3.17] [ 10.06] [ 3.71] [ 12.06]
bg -89.34 -87.75 -68.76 -69.77 -69.03 -66.67
[t] [ -1.96 ] [ -9.75 ] [ -3.14 ] [ -12.89 ] [ -4.48 ] [ -19.39]

Panel (B): Stats of GMM

MAPE 0.33 0.58 0.92
RMSE 0.45 0.75 1.25
CV-R2 0.98 0.92 0.47
J-pval 66.95 78.78 84.30

Panel (C): Test Statistic

Test-t [ -5.94] [ -5.10] [ -9.76]

82



Table A.4: Parameters, 1935-2019

Description: This table reports the estimation during the time-interval 1935-
2019. Panel (D-E) reports the estimate of Fama-Macbeth two-step regression.
In the 2nd column and the 3rd column, teststing assets Mix 20 uses the size,
BM ratio, and momentum portfoliors. Other description of statistics in Table
(2) and Table (3) applies.

Specification of Testing Assets

Mix 20 Size-BM 25 Industry 30

Panel (D): Risk Premium
without with without with without with

λe -0.43 0.66 0.63 1.68 -1.13 -0.09
[t] [ -0.52] [ 1.09] [ 1.02] [ 2.84] [ -2.57] [ -0.21]
λg -5.33 -3.37 -4.21 -0.71 -4.38 -0.49
[t] [ -4.12] [ -2.93] [ -4.04] [ -0.96] [ -4.70] [ -0.83]

α - 3.31 - 8.36 - 9.37
[t] - [ 1.20] - [ 3.91] - [ 4.48]

Panel (E): Stats of Two-step Regression

OLS-R2 0.76 -0.01 -7.61
GLS-R2 -0.06 -0.32 -0.48
COLS-R2 0.79 0.68 0.09
CGLS-R2 0.11 0.04 0.07
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Table A.5: Parameters, Detrended Share

Description: This table reports the estimation using the detrended expenditure
share ω̃g. The log expenditure share of good sector, log(ωg), is detrended in
annual frequency during the sample period 1965-2019. Cyclical term is recovered
as with exponential calculation. Detrended expenditure share ω̃g use the cyclical
term multiplied by the in-sample average of expenditure share. Panel (A-C)
reports the estimate of GMM estimation. Other description of statistics in
Table (2) and Table (3) applies.

Specification of Testing Assets

Mix 30 Size-BM 25 Industry 30

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

be 27.15 26.96 24.11 25.02 30.05 29.81
[t] [ 1.51] [ 25.18] [ 1.72] [ 12.50] [ 4.14] [ 24.53]
bg -77.02 -76.45 -77.65 -73.80 -76.74 -74.06
[t] [ -2.37 ] [ -27.79 ] [ -3.01 ] [ -18.10 ] [ -3.36 ] [ -24.13]

Panel (B): Stats of GMM

MAPE 0.37 0.35 0.81
RMSE 0.45 0.46 1.00
CV-R2 0.97 0.96 0.78
J-pval 92.08 79.50 94.56

Panel (C): Test Statistic

Test-t [ -15.64] [ -9.39] [ -11.63]
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Table A.6: Parameters, Constant Share

Description: This table reports the estimation using the in-sample average of
expenditure share ωg, during the sample period 1965-2019. Panel (A-C) reports
the estimate of GMM estimation. Other description of statistics in Table (2)
and Table (3) applies.

Specification of Testing Assets

Mix 30 Size-BM 25 Industry 30

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

be 27.16 26.97 24.10 25.00 29.98 29.78
[t] [ 1.51] [ 25.09] [ 1.71] [ 12.49] [ 4.11] [ 24.30]
bg -77.10 -76.59 -77.79 -73.95 -76.91 -74.20
[t] [ -2.37 ] [ -27.34 ] [ -3.00 ] [ -17.69 ] [ -3.35 ] [ -23.38]

Panel (B): Stats of GMM

MAPE 0.37 0.35 0.82
RMSE 0.45 0.46 1.00
CV-R2 0.97 0.96 0.78
J-pval 92.07 79.55 94.52

Panel (C): Test Statistic

Test-t [ -15.50] [ -9.23] [ -11.33]
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Table A.7: Parameters, Fama-French 5-factor Model

Description: This table reports the estimation using Fama-French 5-Factor
Model “FF-5” during the time-interval 1965-2019. Panel (A-C) reports the
estimate of GMM estimation. Other description of statistics in Table (2) and
Table (3) applies.

Specification of Testing Assets

Mix 30 Size-BM 25 Industry 30

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

bMKT 2.54 2.65 2.51 2.65 2.64 2.78
[t] [ 3.53] [ 7.00] [ 4.41] [ 10.07] [ 4.02] [ 7.94]
bSize 0.41 0.58 1.28 1.21 0.88 0.68
[t] [ 0.29] [ 0.67] [ 1.32] [ 2.95] [ 0.69] [ 1.45]
bBM -2.13 -2.34 -2.33 -1.87 -5.86 -4.88
[t] [ -0.94] [ -3.14] [ -1.11] [ -3.03] [ -2.13] [ -6.31]
bProfit 0.22 0.65 5.80 6.29 5.18 5.30
[t] [ 0.09] [ 0.88] [ 2.40] [ 9.29] [ 2.96] [ 10.63]
bInvest 7.49 7.61 7.13 7.47 9.36 8.21
[t] [ 2.78] [ 9.42] [ 3.21] [ 10.86] [ 2.05] [ 6.91]

Panel (B): Stats of GMM

MAPE 1.68 0.65 1.09
RMSE 2.68 0.81 1.37
CV-R2 -0.19 0.89 0.59
J-pval 81.78 60.15 84.45
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Table A.7: Parameters, Fama-French 5-factor Model

Description: This table reports the estimation using Fama-French 5-Factor
Model “FF-5” during the time-interval 1965-2019. Panel (D-E) reports the
estimate of Fama-Macbeth two-step regression. Other description of statistics
in Table (2) and Table (3) applies.

Specification of Testing Assets

Mix 30 Size-BM 25 Industry 30

Panel (D): Risk Premium
without with without with without with

λMKT 7.58 -18.13 7.05 -4.52 8.33 1.09
[t] [ 2.97] [ -3.18] [ 2.73] [ -1.01] [ 3.19] [ 0.20]
λSize 1.25 3.31 3.22 2.91 0.31 1.19
[t] [ 0.65] [ 1.75] [ 1.68] [ 1.52] [ 0.13] [ 0.45]
λBM 1.83 1.25 4.03 4.15 -3.69 -3.42
[t] [ 0.90] [ 0.61] [ 2.06] [ 2.12] [ -1.52] [ -1.39]
λProfit 1.53 0.31 2.34 -0.30 2.06 2.14
[t] [ 1.15] [ 0.23] [ 1.28] [ -0.15] [ 0.92] [ 0.96]
λInvest -4.50 -0.26 3.15 3.75 -0.42 -0.68
[t] [ -2.64] [ -0.18] [ 1.93] [ 2.28] [ -0.17] [ -0.28]

α - 24.39 - 11.26 - 6.75
[t] - [ 4.98] - [ 3.30] - [ 1.58]

Panel (E): Stats of Two-step Regression

OLS-R2 -0.38 0.70 0.12
GLS-R2 0.01 -0.18 0.09
COLS-R2 0.66 0.74 0.43
CGLS-R2 0.03 0.10 0.13
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Table A.8: Subgroup of Testing Assets, Fama-French 5-factor Model

Description: This table reports the point estimate for the vector ~b using differ-
ent setups of testing assets. “Size-BM” uses the 5 size, 5 BM ratio portfoliors.
“Profit-IK” uses the 5 profitability, and 5 investment portfoliors. “Momentum
10” uses the 10 momentum portfoliors. All testing assets are from the Data
Library of Kenneth French. Other description in Table (3) applies.

Specification of Testing Assets

Size-BM Profit-IK Momentum

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

bMKT 2.27 2.40 2.71 2.55 7.79 2.48
[t] [ 2.76] [ 4.48] [ 3.24] [ 4.44] [ 1.26] [ 3.00]
bSize 0.24 0.91 1.28 1.16 -7.88 -0.83
[t] [ 0.19] [ 1.29] [ 0.58] [ 0.74] [ -0.39] [ -0.38]
bBM 2.89 0.64 -7.79 -7.44 -42.66 -7.29
[t] [ 1.01] [ 0.40] [ -1.58] [ -2.07] [ -2.82] [ -2.38]
bProfit 1.71 3.79 5.94 5.59 -0.60 5.17
[t] [ 0.54] [ 1.47] [ 4.24] [ 4.85] [ -0.02] [ 2.25]
bInvest -2.14 2.64 12.55 11.88 68.70 14.64
[t] [ -0.44] [ 1.19] [ 2.20] [ 2.94] [ 2.42] [ 3.31]

Panel (B): Stats of GMM

MAPE 0.35 0.11 2.36
RMSE 0.40 0.14 2.89
CV-R2 0.93 0.99 0.36
J-pval 14.51 91.86 1.90
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Table A.8: Subgroup of Testing Assets, Fama-French 5-factor Model

Description: This table reports the point estimate for the vector ~b using differ-
ent setups of testing assets. “Size-BM” uses the 5 size, 5 BM ratio portfoliors.
“Profit-IK” uses the 5 profitability, and 5 investment portfoliors. “Momentum
10” uses the 10 momentum portfoliors. All testing assets are from the Data
Library of Kenneth French. Other description in Table (3) applies.

Specification of Testing Assets

Size-BM Profit-IK Momentum

Panel (D): Risk Premium
without with without with without with

λMKT 7.58 -18.13 7.05 -4.52 8.33 1.09
[t] [ 2.97] [ -3.18] [ 2.73] [ -1.01] [ 3.19] [ 0.20]
λSize 1.25 3.31 3.22 2.91 0.31 1.19
[t] [ 0.65] [ 1.75] [ 1.68] [ 1.52] [ 0.13] [ 0.45]
λBM 1.83 1.25 4.03 4.15 -3.69 -3.42
[t] [ 0.90] [ 0.61] [ 2.06] [ 2.12] [ -1.52] [ -1.39]
λProfit 1.53 0.31 2.34 -0.30 2.06 2.14
[t] [ 1.15] [ 0.23] [ 1.28] [ -0.15] [ 0.92] [ 0.96]
λInvest -4.50 -0.26 3.15 3.75 -0.42 -0.68
[t] [ -2.64] [ -0.18] [ 1.93] [ 2.28] [ -0.17] [ -0.28]

α - 24.39 - 11.26 - 6.75
[t] - [ 4.98] - [ 3.30] - [ 1.58]

Panel (E): Stats of Two-step Regression

OLS-R2 0.91 0.96 0.48
GLS-R2 0.47 0.92 0.05
COLS-R2 0.91 0.98 0.81
CGLS-R2 0.51 0.96 0.18
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Table A.9: Detailed Consumption Sector: “Industry 30” portfolios

Description: This table reports the point estimate for the vector ~b using mul-
tiple consumption sectors . “Good” considers the Food-good category and non-
Food good category. “Service” considers the Food-service category and non-
Food service category. “All” considers the four categories: Food-good, non-Food
good, Food-service and the non-Food service. All estimation use the “Industry
30” portfolios as the testing assets. Other description in Table (8) applies.

Risk Price

Good Service All

bg,f -79.68 -80.43 bg -103.82 -103.72 bg,f -119.13 -125.14
[t] [ -2.63] [ -2.64] [t] [ -3.70] [ -3.70] [t] [ -2.77] [ -3.13]
bg,n -90.33 -88.11 bg,n -83.63 -65.14
[t] [ -1.42] [ -1.36] [t] [ -1.74] [ -1.38]

bs 14.09 bs,f 204.61 204.25 bs,f 198.67 188.83
[t] [ 0.34] [t] [ 1.28] [ 1.28] [t] [ 1.34] [ 1.32]

bs,n -10.72 bs,n -12.47
[t] [ -0.52] [t] [ -0.34]

be 25.76 be 21.31 be 23.59
[t] [ 1.78] [t] [ 2.93] [t] [ 3.35]

Deflator

de dps de dps,n de dps,n

GMM statistic

MAE 0.82 0.82 0.63 0.64 0.69 0.69
RMSE 1.01 1.02 0.77 0.78 0.83 0.84

Cohen-R2 0.77 0.77 0.87 0.87 0.85 0.85
J-pval 90.38 90.42 91.87 91.86 88.52 87.65
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Table A.10: Detailed Consumption Sector: “MIX 25” portfolios

Description: This table reports the point estimate for the vector ~b using mul-
tiple consumption sectors. “Good” considers the Food-good category and non-
Food good category. “Service” considers the Food-service category and non-
Food service category. “All” considers the four categories: Food-good, non-Food
good, Food-service and the non-Food service. Estimation Estimation use the
5-size, 5-profitability, 5-investment and 10-momentum portfoliors. The expen-
diture in each sector is not detrended. Other description in Table (8) applies.

Risk Price

Good Service All

bg,f -84.13 -74.16 bg -74.08 -84.57 bg,f -76.20 -100.17
[t] [ -1.56] [ -1.52] [t] [ -3.21] [ -3.40] [t] [ -1.07] [ -2.29]
bg,n -36.13 -79.03 bg,n -27.72 -54.46
[t] [ -0.47] [ -1.47] [t] [ -0.33] [ -0.81]

bs -22.36 bs,f 15.95 183.49 bs,f -84.23 204.28
[t] [ -0.56] [t] [ 0.07] [ 1.25] [t] [ -0.42] [ 1.55]

bs,n -7.27 bs,n -13.97
[t] [ -0.11] [t] [ -0.23]

be 26.10 be 30.23 be 33.64
[t] [ 2.56] [t] [ 4.10] [t] [ 2.81]

Deflator

de dps de dps,n de dps,n

GMM statistic

MAPE 0.41 0.35 0.42 0.28 0.40 0.29
RMSE 0.51 0.44 0.52 0.38 0.50 0.36

Cohen-R2 0.96 0.97 0.96 0.98 0.96 0.98
J-pval 71.30 74.68 76.37 73.07 67.67 70.57
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Table A.11: Detailed Consumption Sector: “Size-BM 25” portfolios

Description: This table reports the point estimate for the vector ~b using mul-
tiple consumption sectors. “Good” considers the Food-good category and non-
Food good category. “Service” considers the Food-service category and non-
Food service category. “All” considers the four categories: Food-good, non-Food
good, Food-service and the non-Food service. All estimation use the “Size-BM
25” portfolios as the testing assets. Other description in Table (8) applies.

Risk Price

Good Service All

bg,f -97.85 -97.74 bg -105.11 -104.85 bg,f 9.99 -1.99
[t] [ -1.54] [ -1.54] [t] [ -4.18] [ -4.17] [t] [ 0.07] [ -0.01]
bg,n -39.07 -39.44 bg,n -121.33 -116.76
[t] [ -0.40] [ -0.41] [t] [ -0.73] [ -0.76]

bs -3.85 bs,f 285.61 283.18 bs,f -416.25 -354.44
[t] [ -0.08] [t] [ 2.01] [ 1.96] [t] [ -0.97] [ -0.91]

bs,n -42.14 bs,n 122.69
[t] [ -1.83] [t] [ 1.08]

be 28.52 be 27.09 be 17.10
[t] [ 1.55] [t] [ 4.34] [t] [ 0.98]

Deflator

de dps de dps,n de dps,n

GMM statistic

MAE 0.36 0.36 0.32 0.32 0.65 0.61
RMSE 0.48 0.48 0.41 0.41 0.85 0.79

Cohen-R2 0.96 0.96 0.97 0.97 0.88 0.90
J-pval 76.15 76.28 79.53 79.51 73.36 74.78
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Table A.11: Detailed Consumption Sector: “Size-BM 25” portfolios

Description: This table reports the estimate of risk premium (without intercept
term) using multiple consumption sectors. “Good” considers the Food-good
category and non-Food good category. “Service” considers the Food-service
category and non-Food service category. “All” considers the four categories:
Food-good, non-Food good, Food-service and the non-Food service. All estima-
tion use the “Size-BM 25” portfolios as the testing assets. Other description in
Table (8) applies.

Risk Premium

Good Service All

λg,f -3.03 -2.20 λg -1.21 -1.76 λg,f -2.26 -2.57
[t] [ -3.36] [ -4.16] [t] [ -1.74] [ -4.06] [t] [ -2.63] [ -4.46]
λg,n -1.11 -0.29 λg,n -0.39 -0.70
[t] [ -1.46] [ -0.68] [t] [ -0.63] [ -1.34]

λs -0.82 λs,f -1.47 -2.02 λs,f -1.54 -1.85
[t] [ -1.16] [t] [ -2.30] [ -4.83] [t] [ -2.45] [ -4.73]

λs,n 0.55 λs,n 0.31
[t] [ 0.91] [t] [ 0.58]

λe 0.82 λe -0.55 λe -0.31
[t] [ 1.16] [t] [ -0.91] [t] [ -0.58]

Deflator

de dps de dps,n de dps,n

Fama-Macbeth Two-step Statistic

OLS-R2 0.68 0.68 0.78 0.78 0.79 0.79
GLS-R2 -0.22 -0.22 -0.28 -0.28 -0.17 -0.17
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Table A.11: Detailed Consumption Sector: “Size-BM 25” portfolios

Description: This table reports the estimate of risk premium (with intercept
term) using multiple consumption sectors. “Good” considers the Food-good
category and non-Food good category. “Service” considers the Food-service
category and non-Food service category. “All” considers the four categories:
Food-good, non-Food good, Food-service and the non-Food service. All estima-
tion use the “Size-BM 25” portfolios as the testing assets. Other description in
Table (8) applies.

Risk Premium

Good Service All

λg,f -2.83 -2.08 λg -1.17 -1.66 λg,f -2.29 -2.59
[t] [ -2.65] [ -2.58] [t] [ -1.51] [ -2.81] [t] [ -2.20] [ -3.07]
λg,n -1.09 -0.33 λg,n -0.39 -0.69
[t] [ -1.40] [ -1.11] [t] [ -0.63] [ -1.75]

λs -0.75 λs,f -1.43 -1.91 λs,f -1.56 -1.86
[t] [ -1.16] [t] [ -1.96] [ -4.01] [t] [ -2.16] [ -0.58]

λs,n 0.49 λs,n 0.30
[t] [ 1.01] [t] [ 0.59]

λe 0.75 λe -0.49 λe -0.30
[t] [ 1.16] [t] [ -1.01] [t] [ -0.59]

α 0.67 0.67 α 0.60 0.60 α -0.13 -0.13
[t] [ 0.21] [ 0.21] [t] [ 0.19] [ 0.19] [t] [ -0.04] [ -0.04]

Deflator

de dps de dps,n de dps,n

Fama-Macbeth Two-step Statistic

COLS-R2 0.68 0.68 0.79 0.79 0.79 0.79
CGLS-R2 0.07 0.07 0.05 0.05 0.13 0.13
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Table A.12: Long-run Shift of Risk Premium: with Detailed Service Sector

Description: This table reports the estimate for the risk premium in different
time blocks, for three categories: good, Food-service and the non-Food service.
All estimation use the “Momentum-10” and “Industry-30” portfolios as the
testing assets. Expenditure share is detrended.

Risk Premium

1950-2019 1950-2005 1965-2019

Panel (A): Parameters
without with without with without with

λe -1.05 0.17 -0.72 -0.09 0.05 0.18
[t] [ -2.14] [ 0.42] [ -1.38] [ -0.18] [ 0.15] [ 0.55]
λg -3.45 -1.24 -3.06 -0.42 -1.88 -0.77
[t] [ -5.30] [ -2.66] [ -3.87] [ -0.79] [ -3.80] [ -1.93]
λfserv -1.93 -0.49 -1.54 0.16 -0.91 -0.42
[t] [ -4.61] [ -1.25] [ -3.03] [ 0.44] [ -2.88] [ -1.23]

α - 7.70 - 8.52 - 5.25
[t] - [ 3.85] - [ 4.14] - [ 2.46]

Panel (C): Stats of Two-step Regression

OLS-R2 -1.21 -1.15 -0.28
GLS-R2 -0.14 0.07 -0.10
COLS-R2 0.35 0.13 0.18
CGLS-R2 0.11 0.13 0.08
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Table A.12: Long-run Shift of Risk Premium: with Detailed Service Sector

Description: This table reports the point estimate for the vector ~b in different
time blocks, for three categories: good, Food-service and the non-Food service.
All estimation use the “Momentum-10” and “Industry-30” as the testing assets.
Expenditure share is detrended.

Risk Price

1950-2019 1950-2005 1965-2019

Panel (A): Parameters
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

be 19.57 19.87 23.77 23.91 18.33 18.29
[t] [ 3.15] [ 35.96] [ 6.93] [ 64.45] [ 2.68] [ 45.73]

bg -91.97 -88.80 -64.60 -64.00 -91.69 -89.29
[t] [ -2.93] [ -25.45] [ -5.43] [ -29.44] [ -2.54] [ -38.46]

bfserv 204.89 181.78 115.05 108.14 174.12 166.36
[t] [ 1.23] [ 8.29] [ 1.24] [ 7.06] [ 0.98] [ 16.74]

Panel (B): Stats of GMM

MAPE 0.43 0.36 0.48
RMSE 0.52 0.45 0.61
CV-R2 0.95 0.98 0.95
J-pval 96.43 99.50 99.45
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