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1 Introduction

Estimation of covariance matrices is a ubiquitous problem in multivariate statistical analysis,

which has applications in many fields including finance, economics, meteorology, climate

research, spectroscopy, signal processing, pattern recognition, and genomics. In finance,

covariance matrix estimates capture the dependencies between asset returns – a critical

input for portfolio optimization and risk management. Many other techniques also rely

on covariance matrix estimates, such as regression analysis, discriminant analysis, principal

component analysis, and canonical correlation analysis.

Traditional estimation of the sample covariance matrix is known to perform poorly when

the number of variables, N , is large compared to the number of observations, T . As the

concentration ratio N/T grows, there are simply too many parameters relative to the avail-

able data points and the eigenstructure of the sample covariance matrix gets distorted in

the sense that the sample eigenvalues are more spread out than the population ones; see

Johnstone (2001). The most egregious case occurs as N/T > 1, which causes the sample

covariance matrix to become singular (non-invertible). By continuity, this matrix becomes

ill-conditioned (i.e., its inverse incurs large estimation errors) as N gets closer to T .

In such situations, it is desirable to find alternative estimates that are more accurate

and better conditioned than the sample covariance matrix. Regularization methods for

large covariance matrices can be divided into two broad categories: (i) methods that aim

to improve efficiency and obtain well-conditioned matrices, and (ii) methods that introduce

sparsity (off-diagonal zeros) by imposing special structures on the covariance matrix or its

inverse (the precision matrix). The first group includes linear shrinkage (Ledoit and Wolf,

2003, 2004), non-linear shrinkage (Ledoit and Wolf, 2012), condition-number regularization

(Won et al., 2013), and split-sample regularization (Abadir et al., 2014). Methods that

impose special structure include banding or tapering (Bickel and Levina, 2008b; Wu and

Pourahmadi, 2009) and thresholding (Bickel and Levina, 2008a; Cai and Liu, 2011; El Karoui,

2008; Rothman et al., 2009), which involves setting to zero the off-diagonal entries of the

covariance matrix that are in absolute value below a certain data-dependent threshold.

Bailey, Pesaran, and Smith (2019), hereafter BPS, develop an alternative thresholding
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approach using a multiple hypothesis testing procedure to assess the statistical significance of

the elements of the sample correlation matrix; see also El Karoui (2008, p. 2748) who suggests

a similar approach. The idea is to test all pairwise correlations simultaneously, and then to

set to zero the elements that are not statistically significant. As with other thresholding

methods, this multiple testing approach preserves the symmetry of the covariance matrix

but it does not ensure its positive definiteness. BPS resolve this issue with an additional

linear shrinkage step, whereby the correlation matrix estimator is shrunk towards the identity

matrix to ensure positive definiteness. It must be emphasized that the BPS approach for

reducing the number of spurious correlations is also of interest in the classical low N, large

T setting.

The simultaneous testing of all pairwise correlations gives rise to a multiple comparisons

problem. Indeed if the multiplicity of inferences is not taken into account, then the prob-

ability that some of the true null hypotheses (of zero correlation) are rejected by chance

alone may be unduly large; see Hochberg and Tamhane (1987) and Hsu (1996) for textbook

treatments of multiple comparisons. A usual objective in multiple testing is to control the

familywise error rate (FWER), which is defined as the probability of rejecting at least one

true null hypothesis. BPS use ideas from the multiple testing literature, but from the get-

go they state in their introduction (p. 508) that they “will not be particularly concerned

with controlling the overall size of the joint N(N − 1)/2 tests” of zero pairwise correlations.

The simulation evidence presented in this paper reveals that the empirical FWER with BPS

thresholding can be severely inflated, resulting in far too many spurious rejections of the null

hypothesis of zero correlation. This over-rejection problem is exacerbated by the presence

of heavy tails, which obviously defeats the purpose of achieving sparsity.

In this paper, the BPS multiple testing regularization approach is extended so that: (i)

it is applicable to financial stock returns, and (ii) it achieves control of the FWER. The

theory in BPS assumes that the variables are independent over time, which is not tenable

with stock returns. Indeed the independence assumption rules out the possibility of time-

varying conditional variances and covariances – a well-known feature of financial returns

(Cont, 2001). In turn, the presence of such effects gives rise to heavy tails and potential

outliers in the distribution of returns. The methods in this paper are developed in a general
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framework that allows for the presence of heavy tails and multivariate GARCH-type effects

of unknown form. These robust methods achieve control of the FWER, meaning that more

spurious correlations are detected and greater sparsity is induced. Simulation studies reveal

that the power of the new test procedures is as good as that of the (FWER-adjusted) BPS

tests.

Of course, the payoff from multiple testing regularization increases with the true degree of

sparsity in the population covariance matrix. In a portfolio context, it is interesting to note

that this regularization approach provides a measure of diversification when the asset returns

tend to be positively correlated. Indeed the induced sparsity is expected to be proportional

to the level of portfolio diversification, since in this case a well-diversified portfolio is precisely

one in which the constituent assets demonstrate little or no correlation.

The rest of this paper is organized as follows. Section 2 presents the BPS multiple testing

regularization approach. Section 3 establishes the financial context and Section 4 develops

the multiple testing procedures. Section 5 presents the results of simulation studies that

compare the performance of the new regularization method to BPS and other covariance

matrix estimators. Section 6 further illustrates the large-scale inference approach with an

application to portfolio optimization using the 100 holdings of the Invesco S&P 500 Low

Volatility ETF. Section 7 offers some concluding remarks.

2 Multiple testing regularization

Consider a sample covariance matrix Σ̂ = [σ̂ij]N×N based a data sample of size T , and let Γ̂ =

[ρ̂ij]N×N denote the corresponding correlation matrix with typical element ρ̂ij = σ̂ij/
√
σ̂iiσ̂jj.

As usual the sample covariance and correlation matrices are related via Γ̂ = D̂−1/2Σ̂D̂−1/2,

where D̂ = diag(σ̂2
1,1, ..., σ̂

2
N,N). The BPS regularization strategy aims to improve Γ̂ by

testing the family of K = N(N − 1)/2 individual hypotheses Hi,j in the setting

Hi,j : σij = 0 versus H ′i,j : σij 6= 0, (1)
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for i = 1, ..., N − 1 and j = i + 1, ..., N , while controlling the FWER; i.e., the probability

of at least one Type I error. The elements that are found to be statistically insignificant

are then set to zero. Instead of covariances, BPS prefer to base inference on the sample

correlations since they are all on the same scale. This leads to multiple testing procedures

that are balanced in the sense that all constituent tests have about the same power. Note

that the entries of the sample correlation matrix are intrinsically dependent even if the

original observations are independent.

There are two types of FWER control. To introduce these, define an index k taking

values in the set K = {1, ..., K} as i = 1, ..., N − 1 and j = i + 1, ..., N so that H1 =

H1,2, H2 = H1,3, ... HK = HN−1,N . Furthermore, let K0 = {k : Hk is true} denote the

index set of true hypotheses. Given the nominal significance level α ∈ (0, 1), the FWER

is said to be controlled in the weak sense when Pr
(
Reject at least one Hk |

⋂
k∈KHk

)
≤ α,

where the conditioning is on the complete null hypothesis that K0 = K. Strong controls is

achieved when Pr
(
Reject at least one Hk, k ∈ K0 |

⋂
k∈K0

Hk

)
≤ α, regardless of the partial

null hypothesis (i.e., the particular subset of hypotheses that happens to be true). See

Hochberg and Tamhane (1987) and Hsu (1996) for a more detailed discussion of error rate

control.

As a simple illustration of the multiple testing problem, consider T = 100 random draws

from the multivariate normal distribution N(0, IN), where IN is the N ×N identity matrix.

The multiplicity effect can be appreciated through the FWER and the per-family error rate

(PFER), though not really a rate, defined as the expected number of Type I errors (Ge et al.,

2003). Algorithm 1 (presented in Section 4.1) yields exact tests of the K null hypotheses

in (1), without multiplicity adjustments. Using that algorithm with α = 5% for increasing

values of N , the empirical PFER and FWER (in percentages) are found to be:1

N 2 5 10 15

K 1 10 45 105

PFER 4.9 50.4 230.7 528.5

FWER 4.9 41.7 90.5 99.7

1Specifically, these results are obtained using Algorithm 1 with α = 0.05, B = 100, and repeating the
simulation experiment 1000 times for each considered value of N .
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These results show that it is misleading to use the conventional 5% cutoff for p-values to find

statistically significant correlations, since the variables are mutually independent by con-

struction. Indeed, if the 5% cutoff is used, it becomes certain that far too many correlations

will be spuriously declared significant as N grows beyond 2. The takeaway message is that

it is inappropriate to use p-values that are not adjusted for the multiplicity effect.

The BPS thresholding estimator, denoted here by Γ̂BPS, has entries computed as

ρ̂BPS,ij = ρ̂ij1
{
|ρ̂ij| > T−1/2cα(N)

}
, (2)

wherein 1{·} denotes the indicator function. The critical value cα(N) appearing in (2) is

given by

cα(N) = Φ−1
(

1− α

2f(N)

)
, (3)

where Φ−1(·) is the quantile function of a standard normal variate and f(N) is a general

function of N chosen to ensure FWER ≤ α in the strong sense. Observe that the term

T−1/2cα(N) in (2) is a ‘universal’ threshold value in that it applies to each off-diagonal

element of the correlation matrix Γ̂.

Among other asymptotic properties, BPS show that Γ̂BPS converges to the true Γ as the

sample size grows. As one expects, the payoff in terms of noise reduction with this approach

increases with the actual number of zeros in Γ.

2.1 Positive definiteness

As with other thresholding methods, the matrix Γ̂BPS obtained via (2) is not necessarily

positive definite. BPS solve this problem by shrinking Γ̂BPS towards IN , the N ×N identity

matrix. Their shrinkage upon multiple testing correlation matrix estimator is given by

Γ̂BPS(ξ) = ξIN + (1− ξ)Γ̂BPS, (4)

with the shrinkage parameter ξ ∈ (ξ0, 1], where ξ0 is the minimum value of ξ that produces

a non-singular Γ̂BPS(ξ0) matrix. Note that by shrinking towards the identity matrix, the

resulting correlation matrix preserves the zeros achieved in Γ̂BPS and its diagonal elements
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do not deviate from unity. The computation of (4) is made operational by replacing ξ by ξ∗,

which is found numerically as

ξ∗ = arg min
ξ0+ε≤ξ≤1

∥∥∥Γ̂−10 − Γ̂−1BPS(ξ)
∥∥∥2
F
,

where ‖A‖F denotes the Frobenius of A, ε is a small positive constant, and Γ̂0 is a reference

matrix.2 This reference matrix is also found by shrinkage as

Γ̂0 = θ̂∗IN + (1− θ̂∗)Γ̂,

where

θ̂∗ = 1−

∑∑
i 6=j

ρ̂ij

[
ρ̂ij −

ρ̂ij(1−ρ̂2ij)
2T

]
1
T

∑∑
i 6=j

(1− ρ̂2ij)2 +
∑∑
i 6=j

[
ρ̂ij −

ρ̂ij(1−ρ̂2ij)
2T

]2 ,
with the proviso that if θ̂∗ < 0 then θ̂∗ is set to 0, and if θ̂∗ > 1 then it is set to 1.3 The

resulting covariance matrix is given by

Σ̂BPS(ξ∗) = D̂1/2Γ̂BPS(ξ∗)D̂1/2,

where Γ̂BPS(ξ∗) corresponds to (4) evaluated with ξ∗.

3 Financial context

Consider a diversified mix of N financial assets with time-t returns rt = (r1,t, ..., rN,t)
′ and

let It = (r′t, r
′
t−1, ...)

′. The returns are decomposed as

rt = µt + εt,

εt = Σ
1/2
t zt,

(5)

2Recall that for a matrix A its Frobenius norm is given by ‖A‖F =
√

Tr(A′A), where Tr(·) returns the
matrix trace.

3The quantity θ̂∗ is an estimate of the optimal value of the shrinkage parameter that minimizes E‖Γ̂0 −
Γ‖F , assuming that the first two moments of the distribution of Γ̂ exist; see BPS for additional details.
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where µt = E(rt |xt, It−1;θ) is a specified model with parameters θ for the conditional

expectation of rt, given some explanatory variables xt and past returns It−1. The error εt =

(ε1,t, ..., εN,t)
′ in (5) consists of an innovation vector zt satisfying Assumption 1 below, and an

unspecified N ×N “square root” matrix Σ
1/2
t such that Σ

1/2
t Σ

1/2
t = E(εtε

′
t |xt, It−1). This

framework is compatible with several popular models of time-varying covariances, such as

multivariate GARCH models (Silvennoinen and Teräsvirta, 2009) and multivariate stochastic

volatility models (Chib et al., 2009).

Assumption 1. The innovations {zt}t are independently (but not necessarily identically)

distributed according to spherically symmetric distributions, with moments E(zt |xt, It−1) =

0 and E(ztz
′
t |xt, It−1) = IN for each t.

This assumption means that zt admits the stochastic representation zt
d
= Hzt, where the

symbol
d
= stands for an equality in distribution and H is any N ×N orthogonal matrix such

that H′H = HH′ = IN . This class includes the multivariate standard normal, Student-t, and

logistic distributions, among many others; see Fang et al. (1990) for an in-depth treatment

of spherically symmetric distributions.

When zt has a well-defined density, then Assumption 1 is equivalent to assuming that

the conditional distribution of rt is elliptically symmetric, meaning that its density has the

form |Σ−1/2t |g((rt − µt)′Σ−1t (rt − µt)) for some non-negative scalar function g(·). Ellipti-

cally symmetric distributions play a very important role in mean-variance analysis because

they guarantee full compatibility with expected utility maximization regardless of investor

preferences (Berk, 1997; Chamberlain, 1983; Owen and Rabinovitch, 1983).

In the context of (5), the complete null hypothesis is formally stated as

H0 : Σ
1/2
t = D

1/2
t , (6)

for each t, where D
1/2
t is a diagonal matrix (i.e., with zeros outside the main diagonal).

Observe that conditional heteroskedasticity is permitted under H0, i.e., the diagonal elements

of D
1/2
t may be time-varying. It is easy to see that when Assumption 1 holds and H0 is true,
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the error vector εt = (ε1,t, ..., εN,t)
′ becomes sign-symmetric (Serfling, 2006) in the sense that

εt
d
= Sεt,

for all N ×N diagonal matrices S with ±1 on the diagonal.

Assumption 2. The unconditional covariance matrix Σ = E (εtε
′
t) exists.

With this assumption the sign-symmetry condition (εit, εjt)
d
= (±εit,±εjt) implies σij = 0,

for i 6= j, where σij is the (i, j)th element of Σ (Randles and Wolfe, 1979, Lemma 1.3.28).

4 Multiple testing procedures

Assume momentarily that the value of θ in (5) is known so that µt is also known. For

instance with daily returns it is often reasonable to assume that µt = 0. The case of

unknown location parameters will be dealt with in Section 4.5.

Given the values of µt, centred returns can then be defined as yt = rt−µt = (y1,t, ..., yN,t)
′,

for t = 1, ..., T , and these have the same properties as εt. The time series of centred returns

are collected into Y = [y1, ...,yT ]′. Following BPS, inference is based on the pairwise cor-

relations ρ̂ij = σ̂ij/
√
σ̂iiσ̂jj that constitute the matrix Γ̂ = [ρ̂ij]N×N . This matrix can

be obtained from the familiar relationship Γ̂ = D̂−1/2Σ̂D̂−1/2 with D̂ = diag(σ̂2
1,1, ..., σ̂

2
N,N),

where the variances and covariances about the origin are computed as σ̂ij = T−1
∑T

t=1 yi,tyj,t,

for i, j = 1, ..., N .

Let S̃t = diag(s̃1,t, ..., s̃N,t), for t = 1, ..., T , where s̃i,t are independent Rademacher ran-

dom draws such that Pr(s̃i,t = 1) = Pr(s̃i,t = −1) = 1/2, for each i, t. An artificial sample

Ỹ = [ỹ1, ..., ỹT ]′ with ỹt = (ỹ1,t, ..., ỹN,t)
′ is then defined as

Ỹ =
[
S̃1y1, ..., S̃TyT

]′
. (7)

If Assumption 1 holds and H0 is true, then Y
d
= Ỹ, for each of the 2NT possible matrix

realizations of Ỹ, given |Y|. Here |Y| is the matrix of entrywise absolute values of Y. For a
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given artificial sample Ỹ, let Γ̃ = [ρ̃ij]N×N denote the associated correlation matrix compris-

ing the pairwise correlations about the origin ρ̃ij = σ̃ij/
√
σ̃iiσ̃jj, where σ̃ij = T−1

∑T
t=1 ỹi,tỹj,t.

Proposition 1. Suppose that (5) holds along with Assumption 1, and consider Ỹ generated

according to (7). If H0 in (6) is true, then Pr(Γ̂ = Γ̃ | |Y|) = 1/2NT . Furthermore under

Assumption 2, E(ỹi,tỹj,t | |Y|) = 0, for i 6= j.

From Theorem 1.3.7 in Randles and Wolfe (1979) it is known that if Y
d
= Ỹ and F(·) is a

measurable function (possibly vector-valued) defined on the common support of Y and Ỹ,

then F(Y)
d
= F(Ỹ). The fact that the 2NT possible values (not necessarily distinct) of Γ̃

are equally likely values for Γ̂ follows by taking F(·) to be the covariance function. Observe

that (7) conditions on the absolute values of yi,t, since only their signs are randomized. The

zero covariance property in Proposition 1 follows from the independence of the Rademacher

draws used to generate Ỹ.

Proposition 1 shows that Γ̂ is conditionally pivotal under H0, meaning that its sign-

randomization distribution does not depend on any nuisance parameters. In principle, criti-

cal values could be found from the conditional distribution of Γ̂ derived from the 2NT equally

likely values represented by Γ̃. Determination of this distribution from a complete enumer-

ation of all possible realizations of Γ̂ is obviously impractical. To circumvent this problem

and still obtain exact p-values, the Monte Carlo test technique (Barnard, 1963; Birnbaum,

1974; Dwass, 1957) is used in the algorithms presented next.

4.1 Unadjusted p-values

It is useful to first describe how to obtain the Monte Carlo p-values without multiplicity

adjustments, even if they are not used subsequently for multiple testing regularization. Note

that sampling according to (7) yields a discrete distribution of Γ̃ values, which means that

ties among the resampled values can occur, at least theoretically. Following Dufour (2006),

these are dealt with by working with lexicographic (tie-breaking) ranks. Algorithm 1 details

the steps to obtain the unadjusted Monte Carlo p-values.

Algorithm 1 (Unadjusted Monte Carlo p-values).
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1. Choose B so that αB is an integer, where α ∈ (0, 1) is the desired significance level.

2. For b = 1, ..., B − 1, repeat the following steps:

(a) Generate an artificial data sample Ỹb according to (7).

(b) Compute the associated matrix of correlations about the origin Γ̃b = [ρ̃ij,b]N×N .

3. Upon completion, create the pairs (ρ̃ij,1,1 ), ..., (ρ̃ij,B−1, uB−1), (ρ̂ij, uB), where ub ∼

U(0, 1), b = 1, ..., B. Next, compute the lexicographic rank of |ρ̂ij| among the |ρ̃ij|’s as

RU
B(|ρ̂ij|) = 1 +

B−1∑
b=1

1 {|ρ̂ij| > |ρ̃ij,b|}+
B−1∑
b=1

1 {|ρ̂ij| = |ρ̃ij,b|}1 {uB > ub} .

4. The unadjusted Monte Carlo p-values are then given by

p̃U(|ρ̂ij|) =
B −RU

B(|ρ̂ij|) + 1

B
,

for i = 1, ..., N − 1, and j = i+ 1, ..., N.

Proposition 2. Suppose that (5) holds along with Assumptions 1 and 2. Then the Monte

Carlo p-values computed according to Algorithm 1 are such that Pr(p̃U(|ρ̂ij|) ≤ α |H0) = α,

for 1 ≤ i < j ≤ N .

This result follows from Proposition 2.4 in Dufour (2006) on the validity of Monte Carlo

tests for general statistics; see also Lemma 1 in Romano and Wolf (2005). The key is the

recognition that the pairs (ρ̃ij,1, u1), ..., (ρ̃ij,B−1, uB−1), (ρ̂ij, uB) are exchangeable under H0.

This implies that Pr(RU
B(|ρ̂ij|) = b) = 1/B, for b = 1, ..., B, when H0 holds true. In words,

this simply says that the lexicographic rank of exchangeable random variables are uniformly

distributed over the integers 1, ..., B. The Monte Carlo p-values have the usual interpretation:

p̃U(|ρ̂ij|) is the proportion of |ρ̃ij| values as extreme or more extreme than the observed |ρ̂ij|

value in its resampling distribution. See Dufour and Khalaf (2001) and Kiviet (2011, Ch. 6)

for a general overview of the Monte Carlo test technique and further references.
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4.2 Single-step adjusted p-values

Westfall and Young (1993) propose several resampling-based methods to adjust p-values so

as to account for multiplicity. Adjusted p-values are defined as the smallest significance

level for which one still rejects an individual hypothesis Hi,j, given a particular multiple test

procedure. Adapting their single-step max-t adjusted p-values to the present context yields

the definition

pSS(|ρ̂ij|) = Pr

(
max

1≤i<j≤N
|ρ̃ij| ≥ |ρ̂ij|

∣∣H0

)
, (8)

where H0 is the complete null hypothesis in (6) that all the covariances are zero; see Westfall

and Young (1993, Section 2.3.2). In words, this says that the single-step (SS) adjusted

p-value is the probability that the maximum absolute correlation in the artificial data is

greater than the observed absolute correlation in the actual data. Let m̂ = max1≤i<j≤N |ρ̂ij|

and note that m̂
d
= m̃, where m̃ = max1≤i<j≤N |ρ̃ij| is computed from an artificial sample Ỹ.

Algorithm 2 exploits this result in order to compute the Monte Carlo version of (8).

Algorithm 2 (Single-step adjusted Monte Carlo p-values).

1. Choose B so that αB is an integer, where α ∈ (0, 1) is the desired FWER.

2. For b = 1, ..., B − 1, repeat the following steps:

(a) Generate an artificial data sample Ỹb according to (7).

(b) Compute the associated matrix of correlations about the origin Γ̃b = [ρ̃ij,b]N×N .

(c) Find m̃b = max1≤i<j≤N |ρ̃ij,b|

3. Next, create the pairs (m̃1, u1), ..., (m̃B−1, uB−1), (ρ̂ij, uB), where ub ∼ U(0, 1), b =

1, ..., B, and compute the lexicographic rank of |ρ̂ij| among the m̃b’s as

RSS
B (|ρ̂ij|) = 1 +

B−1∑
b=1

1 {|ρ̂ij| > m̃b}+
B−1∑
b=1

1 {|ρ̂ij| = m̃b}1 {uB > ub} .

4. The SS adjusted Monte Carlo p-values are given by

p̃SS(|ρ̂ij|) =
B −RSS

B (|ρ̂ij|) + 1

B
,
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for i = 1, ..., N − 1, and j = i+ 1, ..., N.

Since the SS adjusted p-values in Algorithm 2 are computed under the complete null

hypothesis H0 (meaning that all Hi,j are true), it should not be surprising that the FWER

is controlled. Indeed if the null hypothesis Hi,j is rejected when p̃SS(|ρ̂ij|) ≤ α, then

Pr (Reject at least one Hi,j |H0) = Pr (At least one p̃SS(|ρ̂ij|) ≤ α |H0)

= Pr

(
min

1≤i<j≤N
p̃SS(|ρ̂ij|) ≤ α |H0

)
≤ Pr (p̃SS(|ρ̂ij|) ≤ α |H0) ,

where the last line follows from the fact that min1≤i<j≤N p̃SS(|ρ̂ij|) ≤ p̃SS(|ρ̂ij|). Ap-

plying Algorithm 1 with the statistic max1≤i<j≤N |ρ̂ij| yields the unadjusted p-value

p̃U (max1≤i<j≤N |ρ̂ij|). If the same artificial samples Ỹb, b = 1, ..., B − 1, and uniform draws

ub, b = 1, ..., B, are used in Algorithms 1 and 2, then

p̃SS (|ρ̂ij|) ≤ p̃U

(
max

1≤i<j≤N
|ρ̂ij|

)
,

by virtue of the fact that |ρ̂ij| ≤ max1≤i<j≤N |ρ̂ij|. And since Algorithm 1 guarantees

Pr (p̃U (max1≤i<j≤N |ρ̂ij|) ≤ α) = α under H0, it follows that Algorithm 2 controls the FWER

in the weak sense; i.e., Pr (min1≤i<j≤N p̃SS(|ρ̂ij|) ≤ α |H0) ≤ α.

The proof in Westfall and Young (1993, p. 53) that their SS adjusted p-values control

the FWER in the strong sense relies heavily on the assumption of subset pivotality. That

is, they assume that the joint distribution of unadjusted p-values under any partial null

hypothesis is identical to that under the complete null hypothesis. As noted by Westfall

and Young (1993, p. 42, Example 2.2) and Romano and Wolf (2005, Example 7), this

assumption fails in the context of testing pairwise correlations. However, subset pivotality

is not a necessary condition for strong control; see, for example, Romano and Wolf (2005),

Westfall and Troendle (2008), and Goeman and Solari (2010).

To prove that the SS adjusted p-values computed according to Algorithm 2 achieve strong

control of the FWER, recall from Section 2 that Hk corresponds to Hi,j and K0 refers to the

set of true null hypotheses. Accordingly, let p̃U(|ρ̂k|) = p̃U(|ρ̂ij|) and p̃SS(|ρ̂k|) = p̃SS(|ρ̂ij|),
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where ρ̂1 = ρ̂1,2, ρ̂2 = ρ̂1,3, ... , ρ̂K = ρ̂N−1,N . From the logical implication {H0 is true} ⇒

{
⋂
k∈K0

Hk is true}, for every possible choice K0, it follows that

Pr

(
min
k∈K0

p̃SS(|ρ̂k|) > α |
⋂
k∈K0

Hk

)
≥ Pr

(
min
k∈K0

p̃SS(|ρ̂k|) > α |H0

)
. (9)

Note also that mink∈K p̃SS(|ρ̂k|) ≤ mink∈K0 p̃SS(|ρ̂k|), since K0 ⊆ K, and hence

Pr

(
min
k∈K0

p̃SS(|ρ̂k|) > α |H0

)
≥ Pr

(
min
k∈K

p̃SS(|ρ̂k|) > α |H0

)
. (10)

Combining (9) and (10) yields

Pr

(
min
k∈K0

p̃SS(|ρ̂k|) > α |
⋂
k∈K0

Hk

)
≥ Pr

(
min
k∈K

p̃SS(|ρ̂k|) > α |H0

)

or equivalently

Pr

(
min
k∈K0

p̃SS(|ρ̂k|) ≤ α |
⋂
k∈K0

Hk

)
≤ Pr

(
min
k∈K

p̃SS(|ρ̂k|) ≤ α |H0

)
.

The left-hand side equals Pr
(
Reject at least one Hk, k ∈ K0 |

⋂
k∈K0

Hk

)
, while the right-

hand side is ≤ α by virtue of weak control. Therefore, the probability of a false rejection

occurring under
⋂
k∈K0

Hk is bounded above by the probability of a false rejection under H0.

This also shows that the SS procedure becomes more conservative as K0 shrinks.

4.3 Step-down adjusted p-values

A disconcerting feature of (8) is that all p-values are adjusted according to the distribution

of the maximum absolute correlation. Potentially less conservative p-values may be obtained

from step-down adjustments that result in uniformly smaller p-values, while retaining the

same protection against Type I errors. With the absolute correlations ρ̂1, ..., ρ̂K , let the

ordered test statistics have index values π1, ..., πK so that |ρ̂π1| ≥ |ρ̂π2| ≥ ... ≥ |ρ̂πK |. In the

present context, the Westfall and Young (1993) step-down (SD) max-t adjusted p-values can
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be defined as

pSD(|ρ̂π1|) = Pr

(
max

k=1,...,K
|ρ̃πk | ≥ |ρ̂π1| |H0

)
,

pSD(|ρ̂π2|) = max

[
pSD(|ρ̂π1|), Pr

(
max

k=2,...,K
|ρ̃πk | ≥ |ρ̂π2| |H0

)]
,

...

pSD(|ρ̂π` |) = max

[
pSD(|ρ̂π`−1

|), Pr

(
max

k=`,...,K
|ρ̃πk | ≥ |ρ̂π`| |H0

)]
,

...

pSD(|ρ̂πK |) = max
[
pSD(|ρ̂πK−1

|), Pr (|ρ̃πK | ≥ |ρ̂πK | |H0)
]
,

(11)

with the sequence of index values π1, ..., πK held fixed.4 Instead of adjusting all p-values ac-

cording to the distribution of the maximum absolute correlation, this approach only adjusts

the p-value of |ρ̂π1| using this distribution. The remaining p-values are then adjusted accord-

ing to smaller and smaller sets of p-values. This approach can yield power improvements

since the SD p-values are uniformly smaller than their SS counterparts. Based on Westfall

and Young (1993, Algorithm 4.1, pp. 116–117) and Ge et al. (2003, Box 2), Algorithm 3

shows how to compute the Monte Carlo version of the SD p-values in (11).

Algorithm 3 (Step-down adjusted Monte Carlo p-values).

1. With the actual data, get the index values π1, ..., πK that define the ordering |ρ̂π1| ≥

|ρ̂π2 | ≥ ... ≥ |ρ̂πK |.

2. Choose B so that αB is an integer, where α ∈ (0, 1) is the desired FWER.

3. For b = 1, ..., B − 1, repeat the following steps:

(a) Generate an artificial data sample Ỹb, according to (7).

(b) Compute the associated matrix of correlations about the origin Γ̃b = [ρ̃ij,k]N×N .

4That is, the adjustments are made by “stepping down” from the largest test statistic to the smallest.
Romano and Wolf (2005) discuss the idealized step-down method; see also Romano and Wolf (2016). That
method is not feasible with the developed resampling scheme since it is not possible to generate artificial
data that obey the null hypothesis for each possible intersection of true null hypotheses.
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(c) Find the simulated successive maxima as

m̃K,b = |ρ̃πK ,b|,

m̃k,b = max
(
m̃k+1,b, |ρ̃πk,b|

)
, for k = K − 1, ..., 1.

4. Create the pairs (m̃1, u1), ..., (m̃B−1, uB−1), (ρ̂πk , uB), where as before ub ∼ U(0, 1),

b = 1, ..., B, and compute the lexicographic rank of |ρ̂πk | among the m̃k,b’s as

RSD
B (|ρ̂πk |) = 1 +

B−1∑
b=1

1 {|ρ̂πk | > m̃k,b}+
B−1∑
b=1

1 {|ρ̂πk | = m̃k,b}1 {uB > ub} .

5. The SD adjusted Monte Carlo p-values are given by

p̃SD(|ρ̂πk |) =
B −RSD

B (|ρ̂πk |) + 1

B
, for k = 1, ..., K,

with monotonicity of the p-values enforced by setting5

p̃SD(|ρ̂π1|)← p̃SD(|ρ̂π1|),

p̃SD(|ρ̂πk |)← max
(
p̃SD(|ρ̂πk−1

|), p̃SD(|ρ̂πk |)
)
, for k = 2, ..., K.

6. In terms of the original matrix indices, the p-values are recovered as p̃SD(|ρ̂ij|) =

p̃SD(|ρ̂πk |) by reversing the mapping (i, j) 7→ k.

To see that Algorithm 3 achieves weak control of the FWER, note the equivalence

{Reject at least one Hi,j} ⇐⇒ {p̃SD(|ρ̂π1 |) ≤ α}

and the inequalities

p̃SD(|ρ̂π1|) ≤ p̃SD(|ρ̂πk |) ≤ p̃U( max
k=1,...,K

|ρ̂πk |),

conditional on the same underlying Ỹb, b = 1, ..., B − 1, and ub, b = 1, ..., B, be-

ing used in Algorithms 1 and 3. It follows that Pr
(
Reject at least one Hi,j |H0

)
≤

5This step ensures that the adjusted p-values have the same step-down monotonicity as the original
statistics; i.e., smaller p-values are associated with larger values of the |ρ̂k| statistics.
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Pr
(
p̃U(maxk=1,...,K |ρ̂πk |) ≤ α |H0

)
= α, where the last equality holds by virtue of Algo-

rithm 1.

For the proof of strong control, let k∗ be the smallest index among the monotonicity en-

forced p-values in Step 5 of Algorithm 3 where a true hypothesis is rejected. By construction,

p̃SD(|ρ̂π1 |) ≤ p̃SD(|ρ̂πk∗ |) and this implies

Pr

(
p̃SD(|ρ̂πk∗ |) > α |

⋂
k∈K0

Hk

)
≥ Pr

(
p̃SD(|ρ̂π1|) > α |

⋂
k∈K0

Hk

)
. (12)

As seen before {H0 is true} ⇒ {
⋂
k∈K0

Hk is true}, for every possible choice K0 of true null

hypotheses, which here implies

Pr

(
p̃SD(|ρ̂π1|) > α |

⋂
k∈K0

Hk

)
≥ Pr (p̃SD(|ρ̂π1 |) > α |H0) . (13)

From (12) and (13), one obtains

Pr

(
p̃SD(|ρ̂πk∗ |) > α |

⋂
k∈K0

Hk

)
≥ Pr (p̃SD(|ρ̂π1|) > α |H0) ,

or equivalently

Pr

(
p̃SD(|ρ̂πk∗ |) ≤ α |

⋂
k∈K0

Hk

)
≤ Pr (p̃SD(|ρ̂π1|) ≤ α |H0) ,

where the right-hand side is ≤ α by weak control of the SD adjusted Monte Carlo p-values.

Once again, the probability of a false rejection occurring under
⋂
k∈K0

Hk (the left-hand side)

is bounded above by the probability of a false rejection under H0.

Remark that since p̃SD(|ρ̂ij|) ≤ p̃SS(|ρ̂ij|), given the same underlying randomization (i.e.,

the same artificial samples Ỹb, b = 1, ..., B − 1 and uniform draws ub, b = 1, ..., B) in

Algorithms 2 and 3, the SD adjustments will tend to be less conservative than their SS

counterparts as the set K0 shrinks.
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4.4 Correlation estimators

The next step in the construction of the proposed multiple testing regularized estimators is to

set to zero the statistically insignificant entries of the sample correlation matrix Γ̂ = [ρ̂ij]N×N ,

defined previously. Let p̃•(|ρ̂ij|) represent either p̃SS(|ρ̂ij|) or p̃SD(|ρ̂ij|) computed according

to Algorithms 2 and 3, respectively. The corresponding correlation estimator Γ̂• = [ρ̂•,ij]N×N

has entries given by

ρ̂•,ij = ρ̂ij1
{
p̃•(|ρ̂ij|) ≤ α

}
. (14)

These adjustments to the sample correlation matrix are made for i = 1, ..., N − 1 and

j = i + 1, ..., N ; the diagonal elements of Γ̂• are obviously set as ρ̂i,i = 1; and symmetry

is imposed by setting ρ̂j,i = ρ̂ij. In contrast to the ‘universal’ threshold value used in (3)

for each of the pairwise correlations, note the adaptive nature of (14) that makes entrywise

threshold adjustments to the correlation matrix.

Proceeding to the shrinkage step in (4) of the BPS approach with Γ̂• instead of Γ̂BPS yields

the positive definite correlation matrix estimator Γ̂•(ξ
∗) = ξ∗IN + (1 − ξ∗)Γ̂•, where ξ∗ =

arg minξ0+ε≤ξ≤1

∥∥∥Γ̂−10 − Γ̂−1• (ξ)
∥∥∥2
F
, and the associated covariance matrix estimator Σ̂•(ξ

∗) =

D̂1/2Γ̂•(ξ
∗)D̂1/2.

4.5 Unknown location parameters

When the parameters comprising θ in (5) are unknown, it will be assumed that they can

be estimated consistently at least under H0. Denote by θ̂ the consistent estimator of θ,

and let µ̂t = E(rt |xt, It−1; θ̂). The Monte Carlo procedures proceed as before except that

ŷt = rt − µ̂t replaces yt. Let the correlations estimated on the basis of Ŷ = [ŷ1, ..., ŷT ]′ be

written as ρ̂ij(θ̂).

Proposition 3. Suppose that (5) holds along with Assumptions 1–2, and that θ̂
p→ θ under

H0. Then the Monte Carlo p-values computed according to Algorithm 1 are asymptotically

valid in the sense that Pr(p̃(|ρ̂ij(θ̂)|) ≤ α |H0) = α + op(1), for 1 ≤ i < j ≤ N , as T

increases.

This proposition follows from Theorem 3 in Toulis and Bean (2021) and its intuition is
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obvious: the Monte Carlo p-values are a function of only Ŷ, and the consistency of θ̂ implies

that Ŷ → Y as T → ∞. An immediate corollary is that the SS and SD adjusted p-values

computed according to Algorithms 2 and 3 are also asymptotically valid.

5 Simulation studies

This section studies the performance of the proposed Monte Carlo regularized covariance

estimators, with the BPS approach serving as the natural benchmark for comparisons. For

this purpose, the data-generating process for daily returns rt = (r1,t, ..., rN,t)
′ is specified as

a CCC model (Bollerslev, 1990) of the form

rt = µ+ Σ
1/2
t zt,

Σt = D
1/2
t ΓD

1/2
t ,

where Dt = diag(σ2
1,t, ..., σ

2
N,t) is an N×N diagonal matrix comprising the time-t conditional

variances, and Γ is a constant conditional correlation (CCC) matrix. The vector µ is set to

zero, but this is not assumed known and the multiple testing procedures are applied with

yt = rt− r̄, where r̄ is the vector of sample means. The conditional variances comprising Dt

evolve according to the standard GARCH model σ2
i,t = θ0 + θ1r

2
i,t−1 + θ2σ

2
i,t−1 with common

parameters across assets set as θ0 = 0.01, θ1 = 0.1, and θ2 = 0.85. These are typical

values found with daily returns data. The innovation terms zi,t are i.i.d. according either

to a standard normal distribution; or a heavier-tailed t-distribution with 12 or 6 degrees of

freedom.

The correlation structure is defined as follows. Given a value 0 ≤ δ ≤ 1, the vector c =

(c1, ..., cN)′ is filled in with Nc = bδNc non-zero elements drawn from a uniform distribution

U(−1, 1), and the remaining N −Nc elements are set to zero. The positions of the zero and

non-zero elements within c are random. Following BPS, this vector is then used to obtain a

well-defined correlation matrix as

Γ = IN + cc′ − diag(cc′).
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The complete null hypothesis in (6) is thus represented by δ = 0 and increasing the value of

δ towards 1 results in a smaller set K0 of true hypotheses. With Γ in hand, the unconditional

covariance matrix is then found as Σ = D1/2ΓD1/2, where D = diag(σ2
1, ..., σ

2
N) with σ2

i =

θ0/(1− θ1 − θ2), for i = 1, ..., N.

Two choices are used to complete the definition of the universal critical value in (3). First

f(N) = N(N − 1)/2, which corresponds to the Bonferroni rule; and second f(N) = N2,

as suggested by BPS. In the tables presented next the results based on these choices are

labelled BPS1 and BPS2, respectively. The number of Monte Carlo replications for the SS

and SD methods is set with B = 100 and all the tests are conducted with α = 0.05.

5.1 Numerical results

Table 1 reports the empirical probability of rejecting at least one individual hypothesis Hi,j

when N = 30, 100, and 200 assets, and with samples of size T = 60, 120, and 240. The

empirical FWER in Panels A and B is based on counting occurrences of at least one true

Hi,j being rejected, whereas the empirical measure of disjunctive power (Bretz et al., 2010,

Section 2.1.1) in Panel C is based on counting occurrences of at least one false Hi,j being

rejected. Under the complete null hypothesis (δ = 0) the SS and SD methods have identical

rejection rates, indicated on the lines labelled SS/SD in Panel A. It is seen that the SS

(SD) method does a good job at keeping the FWER close to the desired 5% value in that

case. These methods are seen in Panel B to also maintain control of the FWER in the

strong sense. Comparing Panels A and B shows that the SS and SD methods become more

conservative when the number of true null hypotheses diminishes (δ increasing), as expected

from the developed theory. The BPS method also achieves good control of the FWER

under normality. However when the error terms are non-normal, the BPS approach tends

to spuriously over-reject.

Table 1 reveals that the BPS over-rejection problem worsens as: (i) the degree of tail

heaviness increases (from t12 to t6 errors), (ii) N increases, and (iii) T increases. The most

egregious instance occurs with T = 240 where the FWER of BPS1 and BPS2 attains 99%

when N = 200 under t6 errors. This makes clear that finite-sample FWER control with the

BPS thresholding estimator based on cα(N) in (3) is heavily dependent on normality, even
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as the sample size T increases.

Therefore in order to ensure a fair comparison, all the power results for the BPS approach

are based on FWER-adjusted critical values. Panel C of Table 1 shows the power of the

three multiple testing procedures when δ = 0.1. Note that BPS1 and BPS2 have identical

size-adjusted power, reported on the lines labelled BPS. The results in Table 1 show that

the disjunctive power of SS (SD) is quite close to that of BPS. As expected power increases

with T and N , and decreases as tail heaviness increases.

The performance of the multiple testing methods is further examined by computing the

true positive rate, defined as

TPR(Σ̂,Σ) =

∑N−1
i=1

∑N
j=i+1 1{σ̂ij 6= 0 and σij 6= 0}∑N−1
i=1

∑N
j=i+1 1{σij 6= 0}

.

Table 2 reports the average TPR in percentage when δ = 0.1, 0.5, and 0.9. Specifically,

the lines labelled BPS report TPR(Σ̂BPS(ξ∗),Σ), while lines labelled SS and SD report

TPR(Σ̂SS(ξ∗),Σ) and TPR(Σ̂SD(ξ∗),Σ), respectively. Obviously, the value of ξ∗ is recom-

puted in each case. As expected Table 2 reveals that, all else equal, the TPR performance

generally improves as: (i) tail heaviness decreases towards normality; (ii) δ increases away

from zero; (iii) T increases; and (iv) N decreases. The TPR with the SS method is lower

than with the BPS and SD methods. Observe that the TPRs achieved with SD and BPS

are very close indeed, and that SD tends to deliver a relatively better TPR as tail heaviness

increases.

Table 3 reports the average Frobenius norm of the matrix losses ∆(Σ̂,Σ) = Σ̂ − Σ for

the covariance matrix estimators obtained from the (FWER-adjusted) BPS method, and

from the SS and SD methods. It is immediately clear that these three methods result in

similar losses. To further the comparisons, Table 4 reports the Frobenius norm losses for

the sample covariance matrix and two shrinkage covariance matrix estimators. The latter

are based on the linear shrinkage (LS) method of Ledoit and Wolf (2004) that shrinks the

sample covariance matrix towards the identity matrix, and the second one uses the non-linear

shrinkage (NLS) estimator proposed by Ledoit and Wolf (2015).6

6Specifically, the Ledoit-Wolf shrinkage covariance matrix estimates are computed with the
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Comparing Tables 3 and 4 reveals that the NLS method results in the smallest losses when

the innovations are Gaussian. Under the heavier-tailed t12 and t6 distributions, however, the

LS method tends to do better at least when T = 60 (Panel A) and when δ = 0.1 (i.e.,

when there are few non-zero correlations). As δ increases to 0.5 and 0.9, the multiple testing

regularized covariance matrix estimators (BPS, SS, SD) tend to yield the smallest norm

losses. This becomes particularly apparent for larger values of the (N, T ) pair in Panels B

and C of Tables 2 and 3. Of course, the FWER-adjusted BPS method is not feasible in

practice. It is merely used here as a benchmark for the SS and SD methods.

6 Application to portfolio optimization

The proposed multiple testing regularization method is further illustrated in this section with

an application to portfolio optimization using the N = 100 holdings of the Invesco S&P 500

Low Volatility ETF (fund ticker: SPLV) as of May 28, 2021. Table A1 in the Appendix lists

these 100 holdings of SPLV. This ETF invests at least 90% of its total assets in the securities

that comprise the S&P 500 Low Volatility Index, which consists of the 100 securities from

the S&P 500 with the lowest realized volatility over the past 12 months. Volatility is defined

as the standard deviation of the security’s daily price returns, in local currency, over the

prior one year of trading days. The index constituents are weighted relative to the inverse

of their corresponding volatility, with the least volatile stocks receiving the highest weights.

Price data on the SPLV securities were obtained from Yahoo Finance and returns were

computed as ri,t = (pi,t−pi,t−1)/pi,t−1, for i = 1, ..., N , where pi,t is the adjusted (for splits and

dividend and/or capital gain distributions) closing price for asset i on day t. The resulting

time series of T = 2095 daily returns cover the period from February 4, 2013 to May 28,

2021. Table A1 gives the mean and standard deviation of the return series for each asset

over the full sample period. Although the sample correlation matrix is too big to be shown,

it is sufficient to note that none of its entries is negative.

The S&P 500 Low Volatility Index does not consider correlation among stocks, which

means that SPLV is a basket of low-volatility securities, not a global minimum variance

linshrink cov and nlshrink cov commands available with the R ‘nlshrink’ package.
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(GMV) portfolio. Consider an investor whose objective is indeed to achieve a GMV portfolio

with the 100 SPLV holdings. The GMV portfolio selection problem is well suited for the

evaluation of covariance matrix estimators since it does not depend on expected returns.

Any other point on the efficient frontier would put some emphasis on forecasts of expected

returns (Chan et al., 1999).

To state the problem more formally, let tb refer to the day when the portfolio is initially

formed and subsequent rebalancing days. On those days, the investor uses the returns over

the past L days to estimate the covariance matrix. In the simplest case, this estimate is

given by the rolling-window sample covariance matrix

Σ̂tb =
1

L

tb∑
t=tb−L+1

(rt − r̄t) (rt − r̄t)
′ , (15)

where r̄t = L−1
∑tb

t=tb−L+1 rt. The investor then uses the covariance matrix estimate to find

the GMV portfolio. This portfolio is found by solving the problem

min
ω

ω′Σω

subject to ι′ω = 1,

(16)

with the assignment Σ ← Σ̂tb , and where ι denotes an N × 1 vector of ones. The ana-

lytical solution to this problem yields the GMV portfolio weights ω̂tb = (ω1,tb , ..., ωN,tb)′ =

(ι′Σ̂−1tb ι)
−1ι′Σ̂−1tb . The initialization tb ← L references the day when the portfolio is first

formed. This portfolio is then held for H days and the resulting realized out-of-sample port-

folio returns are ω̂′tbrτ , for τ = tb + 1, ..., tb + H. After its initial formation, the portfolio

is rebalanced on days tb ← tb + H. Rebalancing consists of finding new GMV weights by

solving (16) with the updated covariance matrix estimate.

The sample covariance matrix in (15) is a natural benchmark to compare results obtained

with the multiple testing regularization approaches, namely BPS1, BPS2, SS, and SD, which

proceed by testing the significance of the 4950 distinct covariances in the rolling-window

scheme.7 Those approaches are further compared to the portfolio optimization results ob-

7The nominal FWER is set to α = 5% and B − 1 = 999 resampling draws are used in the computation
of the Monte Carlo p-values.
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tained by two direct shrinkage estimators. The first is the linear method of Ledoit and

Wolf (2004) that shrinks the sample covariance matrix towards the identity matrix, and the

second one uses the non-linear shrinkage estimator proposed by Ledoit and Wolf (2015).8

Following the rolling-window scheme in (15), all the considered covariance matrix estima-

tors are based on the past L days of (demeaned) returns whenever the portfolio weights are

computed. Finally the performance evaluation also includes the equally weighted portfolio,

which bypasses (16) altogether and simply sets ω̂i,tb = 1/N. This naive portfolio strategy is

a standard benchmark for comparisons; see DeMiguel et al. (2009) and Kirby and Ostdiek

(2012), among others.

Note that there is no estimation risk associated with the naive diversification strategy,

which helps reduce the portfolio turnover (i.e., the fraction of invested wealth that is traded

in a given period). On the contrary, active stratgeies that generate high turnover will suffer

more in the presence of transaction costs. To see the impact of transaction costs, note that

for every dollar invested in the portfolio at time tb, there are ω̂i,tb
∏t

τ=tb+1(1 + ri,τ ) dollars

invested in asset i at time t, for t > tb and as long as the portfolio is not rebalanced. Hence,

at any time t until the the next rebalancing occurs, the actual weight of asset i in the portfolio

is

ω∗i,t =
ω̂i,tb

∏t
τ=tb+1(1 + ri,τ )∑N

i=1 ω̂i,tb
∏t

τ=tb+1(1 + ri,τ )
.

When rebalancing occurs, the portfolio turnover can be defined as TOt =
∑N

i=1 |ω̂i,t − ω∗i,t|,

where ω̂i,t is the updated weight for asset i at rebalancing time t = tb. Denoting by κ the

transaction cost in proportion to the amount of wealth invested, the proportional cost of

rebalancing all the portfolio positions is TCt = κTOt when t = tb. Therefore, starting with

tb ← L and a normalized inital wealth of Wtb = 1 on that first day, wealth subsequently

evolves according to

Wt+1 =


Wt

(
1 +

∑N
i=1 ω̂i,tri,t+1

)
(1− TCt) , when t = tb,

Wt

(
1 +

∑N
i=1 ω

∗
i,tri,t+1

)
, when t 6= tb,

8Specifically, the Ledoit-Wolf shrinkage covariance matrix estimates are computed with the
linshrink cov and nlshrink cov commands available with the R ‘nlshrink’ package.
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for t = L, ..., T − 1, with the updating rule tb ← tb + H to determine the rebalancing days.

The out-of-sample portfolio return net of transaction costs is then given by (Wt+1−Wt)/Wt.

To see the impact of transaction costs, results are presented with κ first set to zero and then

to 25 basis points (bps).9

For each portfolio strategy, the resulting out-of-sample daily returns are used to compute:

(i) the mean return (annualized by multiplying by 252); (ii) the standard deviation of returns

(annualized by multiplying by
√

252); and (iii) the information ratio (IR) given as the annu-

alized mean divided by the annualized standard deviation. As Engle et al. (2019) argue, the

most important performance measure in the context of GMV portfolios is the out-of-sample

standard deviation. Indeed, the GMV portfolio is meant to minimize the portfolio variance

and thus the standard deviation. Any portfolio pursuing the GMV objective should therefore

be evaluated primarily by the standard deviation it achieves out of sample. While a high

mean and IR are naturally desirable, they should be considered of secondary importance

when judging a covariance matrix estimator. In addition to the active strategies that involve

rebalancing the portfolio periodically, the performance measures are also computed for the

passive investment strategy in which the investor simply buys and holds shares of the SPLV

exchange traded fund.

Tables 5 and 6 present the results with κ = 0 and κ = 25 bps, respectively. When N > L,

the sample covariance matrix is singular. Those cases are indicated with n/a in the tables.

Note also that the performance of the passive SPLV strategy does not depend on H, but

it does depend on L since the first day of the trading period is set equal to February 4,

2013 + (L− 1) trading days. The main findings with respect to the out-of-sample standard

deviation are summarized as follows:

1. When L = 60 the NLS portfolio achieves the lowest standard deviation for all consid-

ered holding periods, H. Even as the estimation window grows to L = 120, 240, the

NLS portfolio tends to perform well when H = 60 and when there are no transaction

costs (Table 5).

9French (2008) estimates the cost of trading stocks listed on the NYSE, AMEX, and NASDAQ, including
total commissions, bid-ask spreads, and other costs investors pay for trading services. He finds that these
costs have dropped significantly over time “from 146 basis points in 1980 to a tiny 11 basis points in 2006.”
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2. As the length of the estimation window L grows to 120 and 240, the SS and SD

portfolios are seen to perform better. In particular, when L = 240 (third column) the

SS portfolio delivers the smallest out-of-sample standard deviation for holding periods

H = 120, 240, both in the absence of transactions costs (Table 5) and in the presence

of proportional transactions costs of κ = 25 bps (Table 6).

Figures 1 (for κ = 0) and 2 (for κ = 25 bps) show the growth of 1 dollar invested according

to the various portfolio strategies over the trading period from January 15, 2014 to May 28,

2021. The depicted scenarios in those figures correspond, respectively, to the cases in Tables

4 and 5 where L = 240, H = 120 trading days. The GMV portfolio using the SD covariance

matrix (solid black line in each subfigure) is seen to yield higher growth in comparison to

the other portfolio strategies. A comparison of Figures 1 and 2 shows the eroding effects of

transactions costs on wealth growth. For instance, in the absence of transaction costs the

wealth growth in Figure 1 (c) from the SD strategy clearly outpaces the wealth growth from

naive portfolio strategy. The introduction of transactions costs is seen in Figure 2 (c) to

shrink the gap between those two wealth growth paths.

The erosion of wealth growth seen in Figure 2 is primarily caused by turnover. Figure 3

shows the amount of portfolio turnover (defined previously as TOt) generated by the various

strategies, given that the estimation window is of length L = 240 and the holding period

is H = 120 trading days, as before. As expected, the naive portfolio is seen in Figure 3

(c) to have near zero turnover After that, the next lowest turnover is obtained from the SS

strategy (solid black line in each subfigure). Observe in Figure 3 that the turnover from

the SD strategy is the one that remains closest to that of the SS strategy. The next lowest

turnover comes from BPS, while all the other portfolio strategies generate greater turnover.

Further insight into these results can be gleaned from Figure 4, which shows the number of

statistically significant covariances (out of 4950) detected by the multiple testing procedures

each time the portfolio is rebalanced. The solid black line in Figure 4 shows that the SS

procedure sets to zero the greatest number of covariances, which explains the low standard

deviations seen in Tables 4 and 5 when L = 240 and H = 120, 240. In contrast, the BPS

approach rejects the null hypothesis far more often and thus declares the greatest number

of non-zero covariances. Given the over-rejection problem seen in Table 1 with the BPS
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approach, it is quite likely that many of these rejections are spurious in nature. Recall that

in comparison to the SS adjustments, the SD approach improves power while retaining the

same FWER protection. This makes SD a “Goldilocks” solution, whose number of declared

non-zero covariances appears in Figure 4 between SS and BPS. Striking this balance results

in the greater wealth growth seen in Figures 1 and 2.

Finally note that Figure 4 provides a gauge of the portfolio’s overall diversification pro-

file, which improves when there are fewer significant correlations among these assets that

generally tend to move in the same direction.

7 Concluding remarks

This paper has developed a Monte Carlo resampling method to regularize stock return covari-

ance matrices. Following BPS, the method begins by testing the significance of the pairwise

correlations and then sets to zero the sample correlations whose multiplicity adjusted p-

values fall above the specified threshold level. A subsequent shrinkage step ensures that the

final covariance matrix estimate is positive definite and well conditioned, while preserving

the zeros achieved by thresholding.

The multiple testing procedures developed in this paper have two important advantages

compared to the BPS approach. First, they achieve control of the traditional FWER, which

is defined as the probability of falsely rejecting one or more true null hypotheses. When the

conditional location is known, the FWER is controlled exactly in finite samples under any

partial configuration of true and false null hypotheses. This strong control of the FWER

holds asymptotically when the conditional location parameters are consistently estimated.

The second advantage is that the proposed resampling approach allows for the presence

of heavy tails and multivariate GARCH-type effects, which are prominent features of stock

returns. Indeed the Monte Carlo resampling scheme proceeds conditional on the absolute

values of the error terms, since only their signs are randomized. The Lehmann and Stein

(1949) impossibility theorem shows that such sign-based tests are the only ones that yield

valid inference in the presence of non-normalities and heteroskedasticity of unknown form;

see also Dufour (2003) for more on this point.
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In exploratory research, control of the FWER may be too stringent. That is, if it is only

necessary to have no more than a certain number or a certain proportion of errors, then the

use of the FWER may not be appropriate. In such cases, the FWER can be replaced by

the k-FWER, defined in Lehmann and Romano (2005) as the probability of k or more false

rejections. Another proposal is to control the false discovery proportion (FDP), defined as

the number of false rejections divided by the total number of rejections. (If no hypotheses

are rejected, then the FDP is defined to be 0.) The false discovery rate (FDR) proposed by

Benjamini and Hochberg (1995) corresponds to the expected value of FDP. Following the

approaches in Korn et al. (2004) for the k-FWER and FDP and in Ge et al. (2008) for the

FDR, the method developed in this paper can be extended to control these alternatives to

the traditional FWER.
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Table 1. Empirical probability of rejecting at least one Hi,j

Normal t12 t6

N = 30 100 200 N = 30 100 200 N = 30 100 200

Panel A: FWER (δ = 0)
T = 60

BPS1 3.4 1.5 0.5 9.7 9.7 8.9 36.8 48.4 49.7
BPS2 1.5 0.6 0.1 5.3 5.0 4.4 25.8 34.5 37.2
SS/SD 6.6 6.8 5.4 5.4 6.7 5.9 5.3 6.2 5.8
T = 120

BPS1 3.0 3.4 3.0 18.5 25.3 34.1 62.4 84.5 92.0
BPS2 1.1 1.3 0.9 11.1 15.6 23.1 50.3 74.2 84.7
SS/SD 4.6 5.7 5.8 4.7 5.2 5.4 4.5 6.0 5.1
T = 240

BPS1 5.3 5.8 4.4 25.8 43.8 59.6 78.1 97.4 99.8
BPS2 2.7 3.4 2.6 15.9 30.1 46.0 68.4 93.9 99.0
SS/SD 6.5 6.3 5.6 5.1 4.4 5.9 5.5 4.6 6.3

Panel B: FWER (δ = 0.5)
T = 60

BPS1 1.9 0.9 0.4 7.2 6.3 5.9 31.4 37.6 39.0
BPS2 0.7 0.6 0.1 3.7 3.7 2.3 22.1 26.3 28.3
SS 0.6 0.9 0.3 2.3 1.1 0.8 2.7 2.5 1.8
SD 3.6 3.4 2.3 4.0 3.7 3.1 4.1 4.2 4.2
T = 120

BPS1 2.8 1.8 1.4 14.3 19.9 26.1 52.2 74.1 85.0
BPS2 1.2 1.1 0.6 8.4 13.2 16.8 39.2 64.6 76.2
SS 1.2 0.1 0.0 1.8 0.8 0.8 2.0 2.6 1.8
SD 3.8 3.8 3.0 3.9 3.2 4.2 3.6 5.1 3.7
T = 240

BPS1 2.7 3.8 3.9 20.2 35.6 44.2 69.0 93.1 98.7
BPS2 1.4 1.3 1.8 13.1 24.9 31.8 58.3 88.0 96.6
SS 1.2 0.1 0.2 1.4 0.7 0.6 2.0 2.1 1.8
SD 3.6 4.5 3.4 4.4 3.8 3.2 3.5 3.8 4.7

Panel C: Power (δ = 0.1)
T = 60

BPS 40.7 92.0 99.6 39.0 87.8 98.3 26.9 76.1 92.3
SS/SD 42.6 92.2 99.6 39.8 88.6 98.8 31.6 81.4 95.8
T = 120

BPS 58.0 97.9 100.0 48.4 96.2 99.9 34.6 86.9 98.4
SS/SD 56.8 98.3 100.0 48.6 96.4 99.9 39.6 91.1 99.2
T = 240

BPS 72.2 99.6 100.0 64.1 99.3 100.0 46.7 93.2 99.4
SS/SD 72.4 99.6 100.0 65.8 99.2 100.0 51.2 95.9 99.7

Notes: Panels A and B report the empirical FWER of the multiple testing procedures, while
Panel C reports their power, in percentages given a nominal FWER α = 5%. The power results
of BPS1 and BPS2, reported on the lines labelled BPS, are based on FWER-adjusted critical
values. 28



Table 2. True positive rates

Normal t12 t6

δ = 0.1 0.5 0.9 δ = 0.1 0.5 0.9 δ = 0.1 0.5 0.9

Panel A: T = 60
N = 30

BPS 16.8 17.3 17.5 16.0 15.5 15.5 9.9 9.8 10.1
SS 17.3 15.3 13.1 16.3 13.8 11.7 11.9 10.3 9.2
SD 17.5 17.6 17.4 16.5 15.9 15.6 12.0 11.7 11.8
N = 100

BPS 13.8 13.5 13.7 10.8 10.7 10.7 6.4 6.4 6.3
SS 13.5 10.1 8.3 11.3 8.7 7.2 8.3 6.9 5.8
SD 13.9 13.2 12.7 11.5 11.1 10.5 8.6 8.3 8.0
N = 200

BPS 12.3 12.1 12.2 9.0 8.9 8.8 4.5 4.4 4.4
SS 11.6 8.1 6.6 9.3 6.8 5.5 6.7 5.2 4.3
SD 12.2 11.5 10.7 9.7 9.2 8.6 6.9 6.5 6.3

Panel B: T = 120
N = 30

BPS 29.2 29.6 29.5 22.2 24.3 24.5 14.5 16.1 16.1
SS 28.3 25.7 22.8 22.3 21.7 19.5 17.3 16.9 15.2
SD 28.5 29.1 29.0 22.4 24.3 24.7 17.4 18.8 19.1
N = 100

BPS 23.8 23.9 24.0 18.4 18.6 18.9 9.8 9.8 9.6
SS 23.7 19.2 16.6 18.8 15.9 14.0 13.3 11.7 10.5
SD 24.1 24.0 23.7 19.0 19.2 19.4 13.6 13.6 13.5
N = 200

BPS 22.2 22.0 21.9 16.4 16.2 16.2 7.7 7.6 7.7
SS 21.6 16.3 14.1 16.8 13.4 11.7 11.1 9.4 8.5
SD 22.3 21.8 21.3 17.3 17.0 16.9 11.3 11.1 11.2

Panel C: T = 240
N = 30

BPS 41.5 40.9 40.9 34.4 33.6 33.4 21.3 21.7 21.9
SS 41.5 37.5 34.0 35.2 31.4 28.4 24.3 22.8 21.3
SD 41.6 41.2 41.6 35.3 34.8 35.2 24.5 25.1 26.0
N = 100

BPS 34.3 35.3 35.1 29.0 28.8 28.3 14.5 14.6 14.6
SS 34.2 29.9 26.9 28.8 25.1 22.3 18.2 16.5 15.3
SD 34.7 35.6 35.6 29.4 29.5 29.2 18.5 18.8 19.1
N = 200

BPS 33.2 33.2 33.3 24.9 24.7 24.8 12.0 12.1 12.0
SS 32.2 26.2 23.9 25.4 21.3 19.5 15.1 13.8 12.8
SD 33.2 33.1 33.2 26.0 25.9 26.1 15.4 15.8 15.9

Notes: This table reports the true positive rates for Σ, in percentages, achieved by the multiple
testing regularized covariance matrix estimators. The results for BPS are based on FWER-
adjusted critical values.

29



Table 3. Frobenius norm losses of multiple testing regularized covariance matrix estimators

Normal t12 t6

δ = 0.1 0.5 0.9 δ = 0.1 0.5 0.9 δ = 0.1 0.5 0.9

Panel A: T = 60
N = 30

BPS 0.50 0.85 1.41 1.31 1.50 1.90 5.61 5.73 6.08
SS 0.50 0.87 1.48 1.31 1.51 1.94 5.60 5.72 6.02
SD 0.50 0.85 1.41 1.31 1.50 1.89 5.60 5.74 6.05
N = 100

BPS 1.05 2.95 5.38 2.60 3.81 5.85 10.88 11.05 12.13
SS 1.05 3.03 5.55 2.60 3.86 6.01 10.88 11.02 12.12
SD 1.05 2.95 5.41 2.60 3.80 5.86 10.88 11.01 12.05
N = 200

BPS 1.71 6.23 11.37 3.95 7.21 11.83 16.12 17.22 20.71
SS 1.71 6.35 11.58 3.95 7.31 12.03 16.10 17.18 20.73
SD 1.71 6.25 11.43 3.94 7.21 11.85 16.10 17.12 20.58

Panel B: T = 120
N = 30

BPS 0.41 0.68 1.15 1.53 1.66 1.86 10.65 10.79 10.83
SS 0.41 0.72 1.27 1.52 1.65 1.90 10.64 10.77 10.73
SD 0.41 0.69 1.16 1.52 1.65 1.86 10.64 10.82 10.84
N = 100

BPS 0.85 2.67 5.11 2.84 3.76 5.62 24.72 24.16 23.63
SS 0.85 2.79 5.32 2.84 3.81 5.81 24.72 24.10 23.55
SD 0.85 2.67 5.12 2.84 3.74 5.60 24.72 24.11 23.51
N = 200

BPS 1.45 5.91 11.06 4.28 7.12 11.53 37.20 36.13 38.02
SS 1.45 6.07 11.31 4.28 7.22 11.78 37.15 36.05 37.92
SD 1.45 5.92 11.08 4.28 7.09 11.50 37.14 36.04 37.84

Panel C: T = 240
N = 30

BPS 0.31 0.50 0.89 1.47 1.67 1.77 22.69 21.91 20.13
SS 0.31 0.52 1.03 1.47 1.64 1.77 22.67 21.85 19.90
SD 0.31 0.49 0.87 1.47 1.67 1.77 22.67 21.95 20.33
N = 100

BPS 0.63 2.34 4.77 2.86 3.50 5.21 61.07 58.71 60.64
SS 0.63 2.49 5.05 2.86 3.58 5.46 61.06 58.61 60.51
SD 0.63 2.32 4.75 2.86 3.48 5.16 61.06 58.77 60.56
N = 200

BPS 1.13 5.53 10.72 4.17 6.65 11.08 154.59 156.26 253.76
SS 1.14 5.77 11.06 4.16 6.79 11.37 154.58 156.18 252.66
SD 1.13 5.53 10.72 4.16 6.60 11.01 154.59 156.25 253.63

Notes: The results for BPS are based on FWER-adjusted critical values.
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Table 4. Frobenius norm losses of sample and shrinkage covariance matrix estimators

Normal t12 t6

δ = 0.1 0.5 0.9 δ = 0.1 0.5 0.9 δ = 0.1 0.5 0.9

Panel A: T = 60
N = 30

Sample 0.91 0.97 1.10 1.93 2.08 2.35 6.92 7.42 8.74
LS 0.30 0.74 1.02 0.99 1.41 1.89 4.69 5.42 6.96
NLS 0.32 0.67 0.95 1.19 1.55 1.99 5.75 6.42 7.97
N = 100

Sample 2.77 3.00 3.45 5.42 6.03 7.22 17.28 19.44 23.95
LS 0.70 2.37 3.25 1.84 3.82 5.72 8.20 11.69 17.63
NLS 0.68 1.92 2.86 2.42 3.97 5.82 12.14 15.31 20.87
N = 200

Sample 5.39 5.84 6.85 10.34 11.78 14.14 31.42 35.66 44.37
LS 1.34 4.72 6.46 2.80 7.36 11.20 11.35 19.19 31.30
NLS 1.20 3.68 5.64 3.99 7.51 11.31 20.18 26.73 37.86

Panel B: T = 120
N = 30

Sample 0.68 0.73 0.84 1.90 2.04 2.31 11.68 12.49 14.22
LS 0.27 0.62 0.81 1.27 1.61 2.01 9.52 10.48 12.38
NLS 0.29 0.55 0.75 1.44 1.71 2.08 10.84 11.76 13.64
N = 100

Sample 1.98 2.20 2.64 4.67 5.48 7.07 30.14 33.64 39.92
LS 0.65 1.96 2.57 2.18 4.01 6.07 20.92 25.44 33.03
NLS 0.60 1.53 2.28 2.67 4.12 6.17 26.03 30.26 37.40
N = 200

Sample 3.84 4.31 5.13 8.72 10.74 13.80 51.21 60.58 78.33
LS 1.27 3.83 5.02 3.26 7.68 11.69 29.62 42.23 63.43
NLS 1.05 2.90 4.39 4.27 7.81 11.90 41.43 53.01 72.97

Panel C: T = 240
N = 30

Sample 0.49 0.53 0.62 1.70 1.90 2.25 23.44 23.34 23.92
LS 0.22 0.49 0.61 1.31 1.64 2.06 21.29 21.31 22.05
NLS 0.23 0.41 0.56 1.42 1.70 2.11 22.85 22.82 23.51
N = 100

Sample 1.41 1.59 1.90 4.01 4.98 6.62 65.23 69.39 82.73
LS 0.59 1.51 1.89 2.39 4.08 5.98 55.70 61.17 74.99
NLS 0.49 1.15 1.68 2.74 4.13 6.07 62.16 66.85 80.78
N = 200

Sample 2.72 3.08 3.73 7.06 9.33 12.81 166.05 185.98 485.87
LS 1.17 2.93 3.72 3.46 7.43 11.49 140.13 162.52 456.15
NLS 0.83 2.17 3.26 4.16 7.49 11.66 158.43 179.88 480.35
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Table 5. Annualized portfolio performance measures with no transaction costs

L = 60 L = 120 L = 240

H = 60 120 240 H = 60 120 240 H = 60 120 240

Sample
Mean n/a n/a n/a 10.93 4.90 16.59 11.68 11.25 13.34
Std dev. n/a n/a n/a 25.72 32.72 29.14 15.88 18.26 19.01
IR n/a n/a n/a 0.42 0.14 0.56 0.73 0.61 0.70

SS
Mean 16.38 15.79 15.28 17.96 16.11 14.86 16.19 15.67 15.75
Std dev. 14.44 14.74 14.73 14.55 14.66 14.72 14.51 14.32 14.30
IR 1.13 1.07 1.03 1.23 1.09 1.00 1.11 1.09 1.10

SD
Mean 15.82 15.27 15.27 16.46 15.98 14.18 17.01 18.44 17.88
Std dev. 14.49 14.80 14.85 14.85 14.55 14.13 14.74 14.61 14.94
IR 1.09 1.03 1.02 1.10 1.09 1.00 1.15 1.26 1.19

BPS1

Mean 18.44 17.72 16.02 14.57 15.01 14.04 15.57 16.25 17.02
Std dev. 14.59 15.03 14.91 15.22 14.96 15.32 14.87 14.90 15.19
IR 1.26 1.17 1.07 0.95 1.00 0.91 1.04 1.09 1.12

BPS2

Mean 18.21 17.23 15.85 14.47 14.95 13.97 15.59 16.90 17.04
Std dev. 14.34 14.91 14.80 15.40 15.26 15.61 14.82 14.68 15.05
IR 1.27 1.15 1.07 0.93 0.97 0.89 1.05 1.15 1.13

LS
Mean 16.80 14.84 14.50 14.97 13.01 14.38 13.78 13.33 12.80
Std dev. 13.89 14.37 14.44 14.78 16.14 15.24 14.61 15.23 16.00
IR 1.20 1.03 1.00 1.01 0.80 0.94 0.94 0.87 0.79

NLS
Mean 15.04 14.45 14.27 14.75 14.52 13.86 14.03 13.77 13.40
Std dev. 13.74 14.16 14.21 14.45 15.39 14.99 14.41 15.05 15.75
IR 1.09 1.02 1.00 1.02 0.94 0.92 0.97 0.91 0.85

Naive
Mean 16.18 16.05 15.99 16.13 16.01 15.97 16.18 16.04 16.01
Std dev. 14.55 14.55 14.56 14.62 14.62 14.67 14.88 14.88 14.87
IR 1.11 1.10 1.09 1.10 1.09 1.08 1.08 1.07 1.07

SPLV Mean = 11.45 Mean = 11.63 Mean = 11.94
Std dev. = 15.93 Std dev. = 16.01 Std dev. = 16.32
IR = 0.71 IR = 0.72 IR = 0.73

Notes: This table reports annualized mean, standard deviation, and information ratio (IR) of the
out-of-sample returns (in percentage) achieved by various rolling-window portfolio strategies. L is the
length of the estimation window, while H is the length of the holding period until the next rebalancing.
The trading period is from February 4, 2013 + (L − 1) trading days to May 28, 2021. Bold entries
indicate the lowest standard deviation achieved, given L and H. The SPLV results do not depend on
H, since they correspond to a passive buy-and-hold strategy.
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Table 6. Annualized portfolio performance measures with proportional transaction costs of 25 bps

L = 60 L = 120 L = 240

H = 60 120 240 H = 60 120 240 H = 60 120 240

Sample
Mean n/a n/a n/a -7.95 -6.64 10.73 6.17 7.31 11.00
Std dev. n/a n/a n/a 27.45 33.56 29.41 15.98 18.29 19.12
IR n/a n/a n/a -0.28 -0.19 0.36 0.38 0.40 0.57

SS
Mean 15.04 15.12 14.92 16.34 15.14 14.24 14.78 14.69 15.16
Std dev. 14.47 14.75 14.73 14.58 14.68 14.70 14.52 14.32 14.33
IR 1.03 1.02 1.01 1.12 1.03 0.96 1.01 1.02 1.05

SD
Mean 14.09 14.41 14.83 14.20 14.68 13.43 15.11 17.13 17.09
Std dev. 14.53 14.82 14.86 14.91 14.56 14.12 14.77 14.64 14.98
IR 0.96 0.97 0.99 0.95 1.00 0.95 1.02 1.17 1.14

BPS1

Mean 16.04 16.57 15.46 11.80 13.25 13.03 13.12 14.66 16.13
Std dev. 14.65 15.06 14.92 15.28 15.01 15.33 14.89 14.91 15.23
IR 1.09 1.09 1.03 0.77 0.88 0.85 0.88 0.98 1.05

BPS2

Mean 16.03 16.15 15.37 11.81 13.24 12.96 13.22 15.36 16.15
Std dev. 14.39 14.94 14.81 15.46 15.31 15.62 14.84 14.70 15.09
IR 1.11 1.08 1.03 0.76 0.86 0.82 0.89 1.04 1.07

LS
Mean 12.35 12.54 13.26 10.81 10.10 12.81 10.73 11.05 11.30
Std dev. 14.03 14.47 14.48 14.88 16.21 15.26 14.64 15.24 16.07
IR 0.88 0.86 0.91 0.72 0.62 0.83 0.73 0.72 0.70

NLS
Mean 11.63 12.76 13.39 11.40 12.05 12.54 11.48 11.84 12.12
Std dev. 13.80 14.22 14.23 14.52 15.43 14.98 14.42 15.04 15.81
IR 0.84 0.89 0.94 0.78 0.78 0.83 0.79 0.78 0.76

Naive
Mean 16.09 15.98 15.93 16.04 15.94 15.91 16.09 15.97 15.95
Std dev. 14.56 14.55 14.57 14.62 14.62 14.67 14.88 14.88 14.87
IR 1.10 1.09 1.09 1.09 1.08 1.08 1.08 1.07 1.07

SPLV Mean = 11.45 Mean = 11.63 Mean = 11.94
Std dev. = 15.93 Std dev. = 16.01 Std dev. = 16.32
IR = 0.71 IR = 0.72 IR = 0.73

Notes: See notes of Table 5.
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Figure 1: Normalized wealth growth with no transaction costs
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This figure shows the growth of 1 dollar invested according to the various portfolio strategies over the trading
period from January 15, 2014 to May 28, 2021. The estimation window is of length L = 240 trading days and
the portfolios are held for H = 120 trading days until the next rebalancing. The SPLV results correspond
to a passive buy-and-hold strategy.
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Figure 2: Normalized wealth growth with proportional transaction costs of 25 bps

(a) SD and SS

2014 2016 2018 2020

1.
0

1.
5

2.
0

2.
5

3.
0

SD
SS

(b) SD, BPS2, and BPS1

2014 2016 2018 2020

1.
0

1.
5

2.
0

2.
5

3.
0

SD
BPS2

BPS1

(c) SD, Naive, SPLV, and Sample

2014 2016 2018 2020

1.
0

1.
5

2.
0

2.
5

3.
0

SD
Naive
SPLV
Sample

(d) SD, NLS, and LS

2014 2016 2018 2020

1.
0

1.
5

2.
0

2.
5

3.
0

SD
NLS
LS

See notes of Figure 1.
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Figure 3: Portfolio turnover, TOt
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This figure shows the amount of turnover generated by the various portfolio strategies over the trading period
from January 15, 2014 to May 28, 2021. The estimation window is of length L = 240 trading days and the
portfolios are held for H = 120 trading days until the next rebalancing.
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Figure 4: Number of significant covariances
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This figure shows the number of statistically significant covariances detected by the multiple testing proce-
dures over the trading period from January 15, 2014 to May 28, 2021. The estimation window is of length
L = 240 trading days and the portfolios are held for H = 120 trading days until the next rebalancing.
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Appendix

Table A1. List of SPLV fund holdings

Index Ticker Name Average return (%) Std dev. of returns (%)

1 CL Colgate-Palmolive Co 0.036 1.187

2 PG Procter & Gamble Co 0.045 1.145

3 PEP PepsiCo Inc 0.052 1.162

4 JNJ Johnson & Johnson 0.057 1.136

5 VZ Verizon Communications Inc 0.035 1.125

6 COST Costco Wholesale Corp 0.077 1.220

7 MDLZ Mondelez International Inc 0.056 1.385

8 HSY Hershey Co 0.055 1.354

9 MCD McDonald’s Corp 0.062 1.280

10 MMC Marsh & McLennan Cos Inc 0.079 1.218

11 WMT Walmart Inc 0.050 1.268

12 RSG Republic Services Inc 0.074 1.137

13 HRL Hormel Foods Corp 0.064 1.342

14 KMB Kimberly-Clark Corp 0.040 1.250

15 EXPD Expeditors International of Washington Inc 0.066 1.405

16 K Kellogg Co 0.026 1.304

17 WM Waste Management Inc 0.081 1.152

18 MKC McCormick & Co Inc 0.065 1.335

19 BRK/B Berkshire Hathaway Inc 0.059 1.215

20 MRK Merck & Co Inc 0.049 1.321

21 CMS CMS Energy Corp 0.063 1.281

22 GIS General Mills Inc 0.040 1.276

23 YUM Yum! Brands Inc 0.064 1.582

24 A Agilent Technologies Inc 0.085 1.566

25 ICE Intercontinental Exchange Inc 0.081 1.435

26 BAX Baxter International Inc 0.053 1.367

27 KO Coca-Cola Co 0.037 1.148

28 AEE Ameren Corp 0.068 1.374

29 XEL Xcel Energy Inc 0.065 1.274

30 LNT Alliant Energy Corp 0.064 1.287

31 WEC WEC Energy Group Inc 0.063 1.356

32 CHD Church & Dwight Co Inc 0.065 1.267

33 HD Home Depot Inc 0.093 1.452

34 AWK American Water Works Co Inc 0.084 1.361

35 AJG Arthur J Gallagher & Co 0.084 1.284

36 AEP American Electric Power Co Inc 0.053 1.269

37 NDAQ Nasdaq Inc 0.102 1.483

38 ARE Alexandria Real Estate Equities Inc 0.065 1.402

39 BMY Bristol-Myers Squibb Co 0.051 1.589

40 BR Broadridge Financial Solutions Inc 0.108 1.398

41 ED Consolidated Edison Inc 0.038 1.290

42 DUK Duke Energy Corp 0.043 1.276

43 SO Southern Co 0.044 1.345

Continued on next page

38



– continued from previous page

Index Ticker Name Average return (%) Std dev. of returns (%)

44 D Dominion Energy Inc 0.041 1.362

45 CERN Cerner Corp 0.042 1.529

46 CAG Conagra Brands Inc 0.042 1.616

47 BF/B Brown-Forman Corp 0.070 1.447

48 DG Dollar General Corp 0.086 1.611

49 ZTS Zoetis Inc 0.098 1.578

50 MNST Monster Beverage Corp 0.103 1.942

51 PM Philip Morris International Inc 0.033 1.424

52 SHW Sherwin-Williams Co 0.094 1.563

53 ORCL Oracle Corp 0.054 1.546

54 GRMN Garmin Ltd 0.091 1.698

55 PSA Public Storage 0.051 1.323

56 ORLY O’Reilly Automotive Inc 0.097 1.684

57 ROP Roper Technologies Inc 0.076 1.441

58 DRE Duke Realty Corp 0.078 1.512

59 DHR Danaher Corp 0.092 1.294

60 ITW Illinois Tool Works Inc 0.081 1.444

61 VRSN VeriSign Inc 0.088 1.572

62 ALL Allstate Corp 0.070 1.369

63 ES Eversource Energy 0.054 1.384

64 T AT&T Inc 0.021 1.285

65 ATO Atmos Energy Corp 0.065 1.342

66 CCI Crown Castle International Corp 0.069 1.435

67 LMT Lockheed Martin Corp 0.091 1.363

68 VRSK Verisk Analytics Inc 0.064 1.398

69 BDX Becton Dickinson and Co 0.065 1.340

70 V Visa Inc 0.098 1.547

71 AON Aon PLC 0.085 1.362

72 AME AMETEK Inc 0.070 1.523

73 MCO Moody’s Corp 0.106 1.737

74 PAYX Paychex Inc 0.076 1.449

75 IEX IDEX Corp 0.086 1.388

76 FAST Fastenal Co 0.060 1.704

77 MAA Mid-America Apartment Communities Inc 0.067 1.461

78 SJM J M Smucker Co 0.039 1.399

79 AZO AutoZone Inc 0.075 1.559

80 ABBV AbbVie Inc 0.085 1.775

81 MMM 3M Co 0.053 1.363

82 NOC Northrop Grumman Corp 0.100 1.448

83 ETR Entergy Corp 0.051 1.451

84 SPGI S&P Global Inc 0.107 1.638

85 DTE DTE Energy Co 0.060 1.403

86 GILD Gilead Sciences Inc 0.047 1.779

87 GWW WW Grainger Inc 0.058 1.748

88 UNH UnitedHealth Group Inc 0.115 1.631

Continued on next page
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– continued from previous page

Index Ticker Name Average return (%) Std dev. of returns (%)

89 CHTR Charter Communications Inc 0.120 1.780

90 ACN Accenture PLC 0.082 1.452

91 CMCSA Comcast Corp 0.070 1.494

92 PNW Pinnacle West Capital Corp 0.045 1.387

93 MO Altria Group Inc 0.047 1.377

94 DPZ Domino’s Pizza Inc 0.123 1.754

95 CPB Campbell Soup Co 0.035 1.496

96 ABT Abbott Laboratories 0.077 1.458

97 STE STERIS PLC 0.093 1.482

98 PFE Pfizer Inc 0.041 1.290

99 PGR Progressive Corp 0.092 1.345

100 BLL Ball Corp 0.075 1.500
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