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Abstract

High sentiment predicts lower market returns, higher arbitrage returns, and lower

transaction costs. We propose a shrinkage methodology that exploits this empirical

evidence to construct mean-variance portfolios. Exploiting the eigenvalue decom-

position of the covariance matrix of stock returns, we show that mean-variance

portfolio performance is the sum of two components: a market and an arbitrage

component. Shrinking the sample covariance matrix toward the identity in the con-

struction of mean-variance portfolios gives more relevance to the market component

as the shrinkage intensity increases. We time the exposure to each component by

shrinking more (less) when sentiment is low (high), which provides sizable economic

gains even net of transaction costs.
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1 Introduction

The seminal work of Markowitz (1952) provides an intuitive mathematical framework

to construct well-diversified portfolios and is the cornerstone for the classic capital asset

pricing model of Sharpe (1964) and Lintner (1965). These highly influential papers rely

on the assumptions that investors know the true distributional properties of asset returns,

are rational, and have homogeneous beliefs. While these assumptions provide a tractable

framework to construct equilibrium models, they represent an important challenge for

the practical implementation of mean-variance portfolios. In this paper, we address these

limitations and propose a framework to account for parameter uncertainty and behavioral

biases in the construction of optimal portfolios.

There is an extensive literature on portfolio selection documenting the large negative

impact that parameter uncertainty has on the performance of optimal mean-variance

portfolios (Michaud, 1989; DeMiguel, Garlappi, and Uppal, 2009b). Shrinking the sample

covariance matrix of stock returns is a popular approach to overcome this challenge,

and one breakthrough in this discipline is the work of Ledoit and Wolf (2004). Their

proposed shrinkage estimator is a linear combination of the sample covariance matrix

and the identity matrix, and has been very successful at improving the out-of-sample

performance of diversified portfolios (DeMiguel, Garlappi, Nogales, and Uppal, 2009a).

A key element of a shrinkage estimator is the intensity with which the sample esti-

mator is shrunk toward the chosen target (DeMiguel, Martin-Utrera, and Nogales, 2013).

The calibration of this shrinkage intensity typically relies on statistical rather than eco-

nomic arguments; for example, Ledoit andWolf (2004) calibrate this intensity to minimize

the mean squared error of the covariance matrix. In this paper, we instead investigate the

economic gains of a mean-variance portfolio that exploits a shrinkage covariance matrix

whose calibration is based on an economically motivated criterion.

The shrinkage method we propose hinges on the eigenvalue decomposition of the

covariance matrix of stock returns used in the construction of mean-variance portfolios.

Using this decomposition, we show that the performance of mean-variance portfolios
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can be characterized as the sum of two components: the performance of the market

portfolio and the performance of an arbitrage portfolio. In our theory, the performance

of the market portfolio is defined by the first principal component of stock returns, and

the performance of the arbitrage portfolio is defined by the remaining lower-variance

principal components.

We show theoretically that shrinking the covariance matrix toward the identity gives

more relevance to the market component, and this relevance increases with the degree of

shrinkage. We then calibrate the shrinkage intensity, and thus the exposure to the mar-

ket and arbitrage portfolios, from the level of investor sentiment in the economy, which

Baker and Wurgler (2007) define as the demand for risky assets not justified by the evi-

dence at hand. Specifically, we build on the empirical and theoretical evidence that while

market performance is negatively correlated with investor sentiment, the performance

of arbitrage portfolios correlates positively with sentiment (Stambaugh, Yu, and Yuan,

2012; Huang, Jiang, Tu, and Zhou, 2015). Accordingly, the method we propose assigns a

higher shrinkage intensity when investor sentiment is low and a more moderate shrinkage

intensity when sentiment is high, that is, we shrink against sentiment.

The proposed methodology does not only allow us to time the return premia of the

market and arbitrage portfolios, but it also allows us to exploit the relation between

market liquidity an investor sentiment highlighted by Baker and Stein (2004). In par-

ticular, Baker and Stein (2004) show that high-sentiment periods are associated with

higher-liquidity periods and vice versa. Therefore, our shrinkage approach that tilts the

performance of mean-variance portfolios toward the market during times of low sentiment

is sensible because it harvests a larger premium from the market and because it allows

us to tilt our portfolio toward a low-turnover strategy when liquidity decreases.

To set the stage for our novel methodology, we first examine the empirical relationship

between investor sentiment and portfolio returns. As a proxy for investor sentiment, we

use the sentiment index proposed by Huang et al. (2015).1 We document that investor

1The Huang et al. (2015) sentiment index builds on the work of Baker and Wurgler (2006). In par-
ticular, they extract a latent variable using the same sentiment proxies for investor sentiment. However,
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sentiment correlates negatively with market returns and positively with arbitrage returns.

The top panel in Figure 1 shows that from July 1965 to December 2018, the annualized

Sharpe ratio of the market portfolio in low-sentiment regimes is about one, whereas that

in high-sentiment months is about −0.05.

To evaluate the relationship between sentiment and arbitrage returns, we consider

prominent arbitrage factor strategies: value (HML), profitability (RMW), investment

(CMA), and the optimal long-short mean-variance portfolio that combines all the neces-

sary portfolios for the construction of the HML, RMW, and CMA factors. The top panel

in Figure 1 shows that in high-sentiment months, the arbitrage portfolios deliver an an-

nualized Sharpe ratio of 0.60, 0.63, 0.95, and 1.43, respectively. In low-sentiment months,

the arbitrage portfolios deliver a substantially lower annualized Sharpe ratio of 0.11, 0.12,

−0.04, and 0.60, respectively.2 In addition, the bottom panel in Figure 1 shows that the

CAPM alphas of these arbitrage portfolios are dramatically lower during low-sentiment

months. Accordingly, the empirical evidence suggests that the economic gains relative to

the market from exploiting arbitrage strategies are small during low-sentiment periods.

We argue that this insight has important implications for portfolio construction.

Our paper makes three contributions to the portfolio selection literature. First, we use

the eigenvalue decomposition of the covariance matrix to demonstrate that the squared

Sharpe ratio of the mean-variance portfolio can be decomposed as the sum of the squared

Sharpe ratio of the market and the squared Sharpe ratio of an arbitrage portfolio. In ad-

dition, we show that the contribution of the market (arbitrage) portfolio to the squared

Sharpe ratio of the mean-variance portfolio is equal to the squared correlation between

the returns of the market (arbitrage) portfolio and those of the mean-variance portfo-

lio. We exploit this result to show that one can shrink the covariance matrix toward

unlike Baker and Wurgler (2006), Huang et al. (2015) do not extract the latent sentiment index as the
first principal component, and instead they use partial least squares. The advantage of this method over
principal components is that it is designed to extract the unobservable sentiment component that better
explains stock returns. In unreported results, we confirm that our results are robust to using the Baker
and Wurgler (2006) sentiment index.

2In Section A of the Internet Appendix, we present a theoretical model of the economy with investor
sentiment that captures those empirical findings in Figure 1.
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Figure 1: Sentiment and portfolio returns

This figure illustrates the relationship between investor sentiment and portfolio returns. The top
panel depicts the annualized Sharpe ratio of five portfolios: 1) the market portfolio, 2) the value
factor (HML), 3) the profitability factor (RMW), 4) the investment factor (CMA), and 5) the
optimal mean-variance portfolio that combines all the portfolios used in the construction of the
HML, RMW and CMA factors, subject to the constraint that the weights of the portfolio add up
to zero, and considering a risk-aversion coefficient of five. The bottom panel depicts the monthly
CAPM alphas of the non-market factors. The figure depicts the performance of these portfolios in
high- and low-sentiment regimes. Like Barroso and Detzel (2021), we define high-sentiment regimes
as those years for which the sentiment index at the end of the prior year is above its median value
for the entire sample. The monthly factor returns and sentiment index span the period July 1965
through December 2018.
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the identity matrix, as in Ledoit and Wolf (2004), and increase the correlation between

the mean-variance portfolio and the market portfolio. Accordingly, employing a shrink-

age covariance matrix allows us to strike a balance between the underlying market and

arbitrage components that determine the performance of the mean-variance portfolio.

Our second contribution is to propose a novel shrinkage technique for the covariance

matrix of stock returns that relies on economic instead of statistical arguments. Our

method relies on the estimate of the probability that the market will deliver a positive

excess return next period, which we determine from a logistic regression that utilizes
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investor sentiment as our forecasting variable. We then use this probability to linearly

interpolate the desired correlation between the market and the mean-variance portfolio

that exploits a shrinkage covariance matrix. Under this approach, if investor sentiment

predicts that the probability of having a positive market excess return is high, our pro-

posed methodology imposes a high correlation between the market and the mean-variance

portfolio. To achieve the desired correlation, we use our analytical expression for the cor-

relation between the market and the shrinkage mean-variance portfolio to obtain the

shrinkage intensity that provides that correlation.

Our third contribution is to validate the performance of our proposed shrinkage

methodology for portfolio selection across six empirical datasets. Our analysis shows

that the median outperformance in terms of annualized Sharpe ratio of the shrinking-

against-sentiment (SAS) portfolio relative to the benchmark mean-variance portfolios

is about 15%. The excellent performance of the SAS portfolios does not come at the

expense of higher turnover. Indeed, we show that the median turnover increase required

by the benchmark mean-variance portfolios relative to the SAS portfolio is about 450%.

This results in a more considerable outperformance of the SAS portfolio relative to the

benchmark mean-variance portfolios in the presence of transaction costs. For instance, for

transaction costs of 50 basis points, the median outperformance in terms of annualized

Sharpe ratio of the SAS portfolio relative to the benchmark mean-variance portfolios is

about 37%, and 66% relative to the equally weighted portfolio. Accordingly, shrinking

against sentiment is an economically motivated approach to portfolio selection that brings

sizable performance gains both in the absence and in the presence of trading costs.

We then provide further intuition on why shrinking against sentiment is a good

investment approach. First, we run time-series regressions of SAS portfolio returns on the

market conditional on lagged sentiment. These regressions show that the SAS portfolio

has a larger exposure to the market than competing mean-variance portfolios, which

allows our SAS portfolio to harvest a larger market premium. However, the SAS portfolio

strategically reduces its market beta when sentiment increases and thus when market

returns are low. Second, we run time-series predictive regressions of stock-level bid-ask
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spreads on lagged sentiment and find that higher sentiment predicts lower bid-ask spreads,

consistent with Baker and Stein (2004). Therefore, shrinking against sentiment allows us

to strategically tilt our mean-variance portfolio toward the market portfolio when the

market premium is high and liquidity is low, which allows us to harvest higher return at

substantially lower turnover and trading costs than standard mean-variance portfolios.

The methodology proposed in this paper shares elements with the literature on con-

ditional mean-variance portfolios. Ferson and Siegel (2001) show how to construct the

unconditionally optimal portfolio weights of mean-variance investors exploiting condi-

tioning information. They show that the optimal portfolio depends on conditional mean

and covariances, which are a function of state variables. Brandt and Santa-Clara (2006)

show how to explicitly incorporate conditioning information in the construction of an op-

timal mean-variance portfolio. Their proposed method assumes that the optimal vector

of portfolio weights is a function of a set of common state variables such as the dividend

yield or short-term interest rates. Similar to these papers, our work exploits conditioning

information (i.e., investor sentiment) in the construction of mean-variance portfolios. A

distinctive feature of our work is that we exploit conditioning information only to estimate

the shrinkage covariance matrix used in the construction of mean-variance portfolios.

Our work is closely related to the literature on shrinkage estimators in portfolio

optimization.3 Ledoit and Wolf (2003) propose a class of linear shrinkage estimators for

the covariance matrix that combines the sample covariance matrix with the CAPM-

implied covariance matrix of stock returns. Ledoit and Wolf (2004) propose another

linear shrinkage estimator that combines the sample covariance matrix with a multiple

of the identity matrix. This estimator improves the out-of-sample performance of mean-

variance portfolios (DeMiguel et al., 2009a). Ledoit and Wolf (2017, 2020) introduce

3Other methodologies than shrinkage exist to alleviate the impact of parameter uncertainty, such
as Bayesian approaches with diffuse priors (Klein and Bawa, 1976; Brown, 1978), priors based on asset
pricing models (MacKinlay and Pastor, 2000; Pastor, 2000; Pastor and Stambaugh, 2000), priors based
on economic objectives (Tu and Zhou, 2010), portfolio combinations (Tu and Zhou, 2011; Kan and Zhou,
2007; Kan, Wang, and Zhou, 2021), robust optimization methods (Goldfarb and Iyengar, 2003; Garlappi,
Uppal, and Wang, 2007), mean-variance timing rules (Kirby and Ostdiek, 2012), and methods based on
imposing constraints (Best and Grauer, 1992; Jagannathan and Ma, 2003; DeMiguel et al., 2009a).
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a class of nonlinear shrinkage methods for the covariance matrix of stock returns that

dominates linear shrinkage.4 A key differentiating feature between our work and the

aforementioned papers is that while they use statistical arguments to define the optimal

degree of shrinkage, we introduce an economically motivated criterion based on sentiment

to shrink the covariance matrix of stock returns.

Our work is also related to the literature on investor sentiment and asset prices;

see, for instance, Yu and Yuan (2011), Stambaugh et al. (2012), Huang et al. (2015),

and Shen, Yu, and Zhao (2017). These papers characterize the empirical and theoretical

relationship between investor sentiment and asset prices. In particular, they show that

the level of investor sentiment predicts market (arbitrage) returns negatively (positively).

We complement and substantiate the findings in these papers and show in Section 2

that sentiment has a long-lasting effect on returns across several arbitrage portfolios,

subsamples, and international markets. Moreover, unlike these papers, our focus is on

portfolio optimization, and we introduce a simple approach to accommodate investor

sentiment in the construction of optimal mean-variance portfolios.

Other papers use the eigenvalue decomposition of the covariance matrix to charac-

terize portfolio performance. Pedersen, Babu, and Levine (2021) map the optimal mean-

variance portfolio in the space of eigenvectors to provide a battery of solutions to mitigate

the impact of estimation error. Zhao, Chakrabarti, and Muthuraman (2019) decompose

the global-minimum-variance portfolio as a linear combination of a signal-only and a

noise-only portfolio that are constructed from high-variance and low-variance principal

components, respectively. Lassance, DeMiguel, and Vrins (2022) characterize portfolio

weights as a linear combination of factor exposures defined by the principal and inde-

pendent components of stock returns. In this paper, we use the eigenvalue decomposition

of the covariance matrix to decompose the performance of the shrinkage mean-variance

portfolio into that of the market and arbitrage portfolios, which are driven by the first

and remaining principal components, respectively. Our objective with this decomposi-

4See Ledoit and Wolf (2022) for an excellent review of the literature on shrinkage estimators.
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tion is to blend machine learning methods with economic theory by exploiting investor

sentiment in the construction of mean-variance portfolios.5

Raponi, Uppal, and Zaffaroni (2020) and Kelly, Malamud, and Pedersen (2021) also

characterize the performance of optimal portfolios as the sum of two components: an

“alpha” component and a “beta” component. While the alpha and beta components are

defined differently in the two papers, they both originate from linear trading strategies

that invest in a number of predictive characteristics. In contrast, the decomposition of

the performance of shrinkage mean-variance portfolios that we present in this paper relies

on the eigenvalue decomposition of the covariance matrix of stock returns. Raponi et al.

(2020) improve portfolio performance by correcting the misspecification of the alpha and

beta components, while Kelly et al. (2021) do so by constraining the norm of a matrix

that determines portfolio weights from exposures to characteristics. Unlike these two

papers, we propose a shrinkage method that exploits sentiment to establish an optimal

exposure to the two components that define the performance of mean-variance portfolios.

2 Sentiment and stock returns

To set the stage for our main contribution, here we reproduce and substantiate the

results in the existing literature that document a strong relation between stock returns

and investor sentiment. Baker and Wurgler (2007) define investor sentiment as “the belief

about future cash flows and investment risks that is not justified by the facts at hand.” We

measure investor sentiment with the Huang et al. (2015) sentiment index and study how it

affects the returns of several portfolios.6 We consider five portfolios, which are the Fama-

5Our work is also related to the recent strand of the literature that focuses on the application of
machine learning methods for asset pricing; see, for instance, Feng, Giglio, and Xiu (2020), Freyberger,
Neuhierl, and Weber (2020), Gu, Kelly, and Xiu (2020), Kozak, Nagel, and Santosh (2020), and Bryz-
galova, Pelger, and Zhu (2020). The shrinkage method presented in this paper can be linked to the ma-
chine learning literature. In particular, shrinkage estimators are a form of regularization (DeMiguel et al.,
2009a), which is a widely used technique in machine learning (Schlkopf, Smola, and Bach, 2018). Unlike
the aforementioned papers, whose objective is to characterize the cross-section, we combine shrinkage
methods with economic theory to design profitable mean-variance portfolios.

6Huang et al. (2015) extract a latent sentiment variable from five sentiment proxies used in Baker
and Wurgler (2006) using partial least squares (PLS). The five proxies are the closed-end fund discount,
the number of IPOs, the first-day returns on IPOs, the share of equity issues, and the dividend premium.
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French market portfolio and four prominent long-short portfolios from the empirical asset

pricing literature: 1) the value factor (HML), 2) the profitability factor (RMW), 3) the

investment factor (CMA), and 4) the optimal mean-variance portfolio7 that combines

all the characteristic portfolios used in the construction of the HML, RMW and CMA

factors, subject to the constraint that the weights of the portfolio add up to zero.8 We

provide evidence on the relation between sentiment and stock returns in the U.S. in

Section 2.1, and show that the results are robust to considering different subsamples

and international returns in Section 2.2. In Section A of the Internet Appendix, we also

provide theoretical support for the relation between investor sentiment and stock returns

with a model of the economy in which investors have heterogeneous beliefs similar to

that considered by Hong and Sraer (2016).

2.1 U.S. evidence

Figure 1 depicts the annualized Sharpe ratio of the five portfolios in high and low-

sentiment months. We observe that while the performance of the market portfolio is

the strongest in low-sentiment regimes, the performance of the four arbitrage portfolios

is the strongest in high-sentiment regimes. These results illustrate the negative (positive)

relation between sentiment and market (arbitrage) returns.

In addition, Table 1 reports the intercept and slope coefficients of long-run predictive

regressions of the cumulative returns of a particular portfolio strategy on lagged values of

sentiment. The results in this table show that while the slope coefficient of the sentiment

variable is negative and statistically significant for the market, it is positive and statisti-

cally significant for the considered arbitrage portfolio returns. The slope coefficients are

significant at different horizons. In particular, sentiment can have statistically significant

7Throughout the analysis, we consider an investor with a risk-aversion coefficient of γ = 5.
8The characteristic portfolios that produce the HML, RMW and CMA factors are the small-value,

big-value, small-growth, big-growth, small-robust, big-robust, small-weak, big-weak, small-conservative,
big-conservative, small-aggressive, and big-aggressive portfolios, all of which can be downloaded from
Kenneth French’s website.

9



effects on the returns of portfolio strategies for up to two years. In summary, Table 1

documents that sentiment can have long-lasting effects on stock returns.

These results are consistent with the literature. Huang et al. (2015) document that

investor sentiment is negatively correlated with future market returns, and Stambaugh

et al. (2012) find that the returns of arbitrage portfolios are stronger after episodes of

high investor sentiment. In addition to the results offered by Huang et al. (2015) and

Stambaugh et al. (2012), we document that investor sentiment has long-lasting effects on

both market returns and arbitrage returns.

2.2 Subsamples and international evidence

We now provide additional evidence on the relation between investor sentiment and stock

returns. First, we study the robustness of the results in the previous section to different

subsamples. In particular, we split the sample into two periods of equal length: 1) July

1965 - March 1992, and 2) April 1992 - December 2018. Figure 2 depicts the annualized

Sharpe ratio in these two different periods of the five portfolios considered in the analysis.

Figure 2 shows that the results are consistent with those in Figure 1. The market

portfolio delivers an annualized Sharpe ratio of about 0.38 and 1.18 in low-sentiment

regimes for the first and second subperiods, respectively. On the contrary, the market

Sharpe ratios in high-sentiment regimes for the same subperiods are about 0.15 and

−0.05, respectively. The impact of investor sentiment on arbitrage portfolio returns (i.e.,

HML, RMW, CMA, and MVE) is similar in the subsample analysis to that in the entire

sample. In particular, arbitrage portfolios consistently deliver better performance in high-

sentiment regimes. For instance, for the first subperiod, the MVE portfolio delivers a

Sharpe ratio in high-sentiment regimes that is 17% higher than that in low-sentiment

regimes. In the second subperiod, the difference is even larger and the MVE portfolio

delivers a Sharpe ratio in high-sentiment regimes that is over four times larger than that

in low-sentiment regimes. These results suggest that the negative (positive) correlation

between market (arbitrage) returns and sentiment is more prominent in recent periods.
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Figure 2: Sentiment and returns: subsample analysis

This figure depicts the annualized Sharpe ratio in two different periods of five portfolios: 1) the
market portfolio, 2) the value factor (HML), 3) the profitability factor (RMW), 4) the investment
factor (CMA), and 5) the optimal mean-variance portfolio that combines all the portfolios used in
the construction of the HML, RMW and CMA factors, subject to the constraint that the weights
of the portfolio add up to zero, and considering a risk-aversion coefficient of five. The figure depicts
the performance of these portfolios in high- and low-sentiment regimes. Like Barroso and Detzel
(2021), we define high-sentiment regimes as those years for which the sentiment index at end of the
prior year is above its median value for the entire sample.
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Figure 3: Sentiment and returns: international evidence

This figure depicts the annualized Sharpe ratio in international equity markets of five portfolios: 1)
the market portfolio, 2) the value factor (HML), 3) the profitability factor (RMW), 4) the investment
factor (CMA), and 5) the optimal mean-variance portfolio that combines all the portfolios used in
the construction of the HML, RMW and CMA factors, subject to the constraint that the weights of
the portfolio add up to zero, and considering a risk-aversion coefficient of five. The figure depicts the
performance of these portfolios in high- and low-sentiment regimes. Like Barroso and Detzel (2021), we
define high-sentiment regimes as those years for which the sentiment index at end of the prior year is
above its median value for the entire sample. The market and arbitrage portfolio returns are obtained
from six different international equity markets: 1) Asian countries excluding Japan, 2) Japan, 3) North
America, 4) developed countries excluding the US, 5) Europe, and 6) emerging markets. The monthly
market and factor returns are downloaded from Kenneth French’s website and span the 28-year period
from July 1990 to December 2018.
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One concern is that the results presented in the previous section are sample-specific,

and hence the relation between sentiment and stock returns is spurious (Fama, 1998).

To tackle this concern, Baker, Wurgler, and Yuan (2012) show that sentiment demand

correlates with stock returns also in other countries. We provide supporting evidence

for the findings of Baker et al. (2012) in international equity markets in Figure 3. This
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figure shows that sentiment, measured with the Huang et al. (2015) sentiment index,9

correlates with market and arbitrage returns in six different international equity markets.

In particular, market returns are remarkably higher during low-sentiment regimes across

the six different international equity markets. The international evidence for the relation

between sentiment and arbitrage returns is equally strong as that in the US. We observe

that in all six international markets, the performance of the MVE arbitrage portfolio

that combines HML, RMW, and CMA is stronger during high-sentiment regimes.

Overall, there is a strong evidence, robust to different subsamples and across inter-

national equity markets, that investor sentiment correlates negatively with future market

returns and positively with future arbitrage returns. In this paper, we exploit this finding

to construct shrinkage mean-variance portfolios with improved performance.

3 A decomposition of mean-variance portfolios

In this section, we show that the performance of the optimal mean-variance portfolio can

be decomposed as the sum of the performance of the market and an arbitrage portfolio.

Given the empirical evidence presented in Section 2, this decomposition allows us to

split the performance of the mean-variance portfolio into a component that is negatively

correlated with sentiment (the market) and a component that is positively correlated

with sentiment (the arbitrage portfolio). We also show how one can control the exposure

of the mean-variance portfolio to the market and the arbitrage portfolios by shrinking

the covariance matrix of stock returns.

9While the Huang et al. (2015) sentiment index is constructed with US sentiment proxies, interna-
tional sentiment variables are highly correlated, and therefore the U.S. sentiment variable can be used
as a proxy for a global sentiment variable. In particular, Baker et al. (2012) document that the U.S. and
a global sentiment index have a correlation of nearly 90%.
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3.1 Market, arbitrage, and mean-variance portfolios

We begin by laying out the notation we use in the next sections. First, we define the

market portfolio as the equally weighted portfolio of all stocks in the investment universe,

wM = ι/N, (1)

where ι is an N -dimensional vector of ones. Second, we define the arbitrage portfolio as

the long-short portfolio maximizing mean-variance utility:10

wA = argmax
w

w⊤µ− γ

2
w⊤Σw s.t. w⊤ι = 0,

where µ and Σ are the vector of means and covariance matrix of stock returns in excess

of the risk-free rate, respectively, and γ is the investor’s risk-aversion coefficient. The

solution to the arbitrage portfolio is

wA =
1

γ
Σ−1(µ− µgι), (2)

where µg =
ι⊤Σ−1µ
ι⊤Σ−1ι

is the average return of the global-minimum-variance portfolio. Third,

the optimal mean-variance portfolio is defined as the unconstrained portfolio maximizing

mean-variance utility, which has the well-known solution

w⋆ =
1

γ
Σ−1µ. (3)

3.2 The effect of sentiment on mean-variance performance

We now decompose the mean-variance portfolio squared Sharpe ratio into a market and

an arbitrage component. The general definition of portfolio’s w squared Sharpe ratio is

SR2(w) =
E(w⊤R)2

Var(w⊤R)
=

(w⊤µ)2

w⊤Σw
, (4)

10This is the MVE arbitrage portfolio in Section 2 that optimally combines the portfolios used in the
construction of the HML, RMW and CMA factors.
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where R is the vector of stock returns in excess of the risk-free rate. It is well known that

the squared Sharpe ratio of the mean-variance portfolio (3) is

SR2(w⋆) = µ⊤Σ−1µ. (5)

We make the following simplifying assumption to decompose the mean-variance portfolio

squared Sharpe ratio in (5) as the sum of two components.

Assumption 1 The first eigenvector of the covariance matrix of stock returns, Σ, is

proportional to the equally weighted market portfolio, v1 = ι/
√
N .

Assumption 1 is mild from an empirical standpoint; we confirm in unreported results

that the first principal component extracted from the empirical datasets considered in

this paper has a correlation of about 99% with the returns of the equally weighted market

portfolio. Moreover, under Assumption 1 it is straightforward to show that the arbitrage

portfolio (2) is orthogonal to the market portfolio, i.e., w⊤
AwM = 0. Under Assumption 1

the market portfolio is the component that explains most of the time-series variability

of stock returns, and therefore the dynamics of arbitrage portfolio returns should be

explained by lower-variance principal components because the arbitrage portfolio is or-

thogonal to the market. Indeed, in the following proposition, we explicitly show that the

performance of the mean-variance portfolio in (5) can be decomposed as the sum of a

market and an arbitrage component.

Proposition 1 Let Assumption 1 hold. Then, the following holds:

1. The squared Sharpe ratio of the mean-variance portfolio in (3) can be decomposed

as the sum of the squared Sharpe ratios of the equally weighted market portfolio and

the arbitrage portfolio in (2):

SR2(w⋆) = SR2(wM) + SR2(wA), (6)

where

SR2(wM) =
µ2
PC1

σ2
PC1

, (7)
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SR2(wA) =
N∑
i=2

µ2
PCi

σ2
PCi

, (8)

with µPCi
= v⊤i µ and σ2

PCi
= v⊤i Σvi being the average return and variance of the ith

principal component of stock returns, respectively, and vi the ith eigenvector of Σ.

2. The contributions of the market and arbitrage portfolios to the squared Sharpe ratio

of the mean-variance portfolio are equal to the squared correlations between their

returns:

SR2(wM)

SR2(w⋆)
= Corr2

(
w⊤

MR, (w⋆)⊤R
)
, (9)

SR2(wA)

SR2(w⋆)
= Corr2

(
w⊤

AR, (w⋆)⊤R
)
= 1− Corr2

(
w⊤

MR, (w⋆)⊤R
)
. (10)

Proposition 1 shows that the mean-variance portfolio performance is the sum of the

market and the arbitrage portfolio performance. Moreover, Proposition 1 shows that

the market (arbitrage portfolio) contribution to the squared Sharpe ratio of the mean-

variance portfolio is equal to the squared correlation between the returns of the market

(arbitrage portfolio) and those of the mean-variance portfolio. This result is intrigu-

ing because the level of investor sentiment in the economy has two opposing effects

in mean-variance portfolios. On the one hand, it reduces the Sharpe ratio of the mar-

ket component, and on the other hand, it increases the Sharpe ratio of the arbitrage

component. Therefore, it is of interest to develop methods to tilt the performance of

mean-variance portfolios toward the market (arbitrage) component when investor senti-

ment is low (high). In the next section, we show that exploiting a particular shrinkage

covariance matrix in the construction of mean-variance portfolios allows us to strike a

balance between the market and the arbitrage components.

3.3 Shrinking the covariance matrix

Shrinking the covariance matrix is a powerful method to improve the out-of-sample per-

formance of mean-variance portfolios in the presence of parameter uncertainty. In this
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section, we explain how one can balance the relative importance of the market and the

arbitrage components in the performance of a mean-variance portfolio by shrinking the

covariance matrix of stock returns. First, let us define the shrinkage covariance matrix of

stock returns as in Ledoit and Wolf (2004):

Σsh = (1− a)Σ + aνIN , (11)

where a is the shrinkage intensity, ν is a positive scaling parameter, and IN is the identity

matrix of order N . The eigenvalue decomposition of the shrinkage covariance matrix is

Σsh = V ((1− a)D + aνIN)V
⊤, (12)

where D and V are the eigenvalue and eigenvector matrices that define the covariance

matrix Σ = V D V ⊤. This identity implies that the eigenvectors of matrices Σ and Σsh

are identical, however the eigenvalues of matrix Σsh are defined by a convex combination

of the eigenvalue matrices D and νIN . Using the shrinkage covariance matrix (12) instead

of the covariance matrix Σ gives the shrinkage arbitrage portfolio,

wSA =
1

γ
Σ−1

sh

(
µ− ι⊤Σ−1

sh µ

ι⊤Σ−1
sh ι

ι

)
. (13)

and the shrinkage mean-variance portfolio,

w⋆
S =

1

γ
Σ−1

sh µ, (14)

In the next proposition, we derive analytical expressions for the Sharpe ratios of the mar-

ket portfolio, the shrinkage arbitrage portfolio, and the shrinkage mean-variance portfolio.

Proposition 2 Let Assumption 1 hold. Then, the squared Sharpe ratios of the mar-

ket portfolio, the shrinkage arbitrage portfolio in (13), and the shrinkage mean-variance

portfolio in (14) are

SR2(wM) = Sa(1, 1), (15)

SR2(wSA) = Sa(2, N), (16)

SR2(w⋆
S) = Sa(1, N), (17)
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Figure 4: Impact of shrinkage intensity on squared Sharpe ratio

This figure depicts the monthly squared Sharpe ratio of the shrinkage mean-variance portfolio w⋆
S

in (14), the equally weighted market portfolio wM , and the shrinkage arbitrage portfolio wSA in (13)
as a function of the shrinkage intensity a defining the shrinkage covariance matrix in (11). The
Sharpe ratios are computed using the results in Proposition 2. We construct the portfolios using
the sample moments from the dataset of monthly returns on the 25 portfolios of stocks sorted on
size and book-to-market downloaded from Kenneth French’s website spanning July 1965 through
December 2018. The value of ν for the shrinkage covariance matrix is equal to the cross-sectional
average of the variance of the 25 portfolio returns.
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where

Sa(j, n) =

(
n∑

i=j

µ2
PCi

(1− a)σ2
PCi

+ aν

)2( n∑
i=j

µ2
PCi

σ2
PCi

((1− a)σ2
PCi

+ aν)2

)−1

. (18)

When the shrinkage intensity a is zero, we recover the decomposition of the mean-

variance portfolio performance in Proposition 1. For a shrinkage intensity a > 0, the

squared Sharpe ratios of the arbitrage and mean-variance portfolios change with a. Fig-

ure 4 depicts the Sharpe ratio of the shrinkage mean-variance portfolio w⋆
S in (14), the

equally weighted market portfolio wM , and the shrinkage arbitrage portfolio wSA in (13)

as a function of the shrinkage intensity a. We calibrate µ and Σ with the sample moments

from the dataset of 25 portfolios of stocks sorted on size and book-to-market. The figure
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shows that when the shrinkage intensity a is zero, the arbitrage portfolio has the largest

contribution to the squared Sharpe ratio of the mean-variance portfolio. However, as the

shrinkage intensity increases, the squared Sharpe ratio of the mean-variance portfolio

gets closer to that of the market portfolio, and they are nearly equal when a = 1. A

fundamental insight from this figure is that shrinking the covariance matrix mutes the

impact of low-variance principal components and, in the limit when a = 1, the shrinkage

mean-variance portfolio performance is nearly identical to that of the market.

We now study more formally the impact of the shrinkage intensity a on the contribu-

tion of the market and shrinkage arbitrage portfolios to the performance of the shrinkage

mean-variance portfolio. Specifically, in the next proposition we derive closed-form ex-

pressions for the correlation between the returns of the shrinkage mean-variance portfolio

and the returns of the market and shrinkage arbitrage portfolios. Similar to Proposition 1,

we show that the two squared correlations sum up to one for any shrinkage intensity a,

and thus the market and arbitrage components fully determine the performance of the

shrinkage mean-variance portfolio.

Proposition 3 Let Assumption 1 hold. Then, the squared correlations between the return

of the shrinkage mean-variance portfolio and that of the market portfolio and the shrinkage

arbitrage portfolio are

Corr2
(
w⊤

MR, (w⋆
S)

⊤R
)
=

µ2
PC1

σ2
PC1

µ2
PC1

σ2
PC1

+
∑N

i=2 µ
2
PCi

σ2
PCi

(
(1−a)σ2

PC1
+aν

(1−a)σ2
PCi

+aν

)2 , (19)

Corr2
(
w⊤

SAR, (w⋆
S)

⊤R
)
= 1− Corr2

(
w⊤

MR, (w⋆
S)

⊤R
)
, (20)

respectively. Moreover, the squared correlation with the market, Corr2
(
w⊤

MR, (w⋆
S)

⊤R
)
, is

increasing in the shrinkage intensity a, and the squared correlation with the shrinkage

arbitrage portfolio, Corr2
(
w⊤

SAR, (w⋆
S)

⊤R
)
, is decreasing in a.

Proposition 3 shows that shrinking the covariance matrix toward the identity allows

us to control the exposure of mean-variance portfolios to the market and arbitrage port-
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Figure 5: Correlation with market and arbitrage portfolios

This figure depicts the correlation between the returns of the shrinkage mean-variance portfolio w⋆
S

in (14) and the returns of the equally weighted market portfolio wM and the shrinkage arbitrage
portfolio wSA in (13) as a function of the shrinkage intensity a defining the shrinkage covariance
matrix in (11). The correlations are computed using the results in Proposition 3. We construct the
portfolios using the sample moments from the dataset of monthly returns on the 25 portfolios of
stocks sorted on size and book-to-market downloaded from Kenneth French’s website spanning July
1965 through December 2018. The value of ν for the shrinkage covariance matrix is equal to the
cross-sectional average of the variance of the 25 portfolio returns.
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folios. In particular, the larger the shrinkage intensity a, the larger (lower) the correlation

between market (arbitrage) returns and shrinkage mean-variance portfolio returns.

Figure 5 depicts the correlation between the returns of the shrinkage mean-variance

portfolio in (14) and the returns of the equally weighted market portfolio and the shrink-

age arbitrage portfolio as a function of the shrinkage intensity a using the results in

Proposition 3. We calibrate µ and Σ with the sample moments from the dataset of 25

portfolios of stocks sorted on size and book-to-market. The figure shows that the corre-

lation between the market and the shrinkage mean-variance portfolio is 31% when the

shrinkage intensity a is zero, but it increases to almost 100% when a is equal to one. On
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the other hand, the correlation with the shrinkage arbitrage portfolio is 95% when the

shrinkage intensity a is zero, but it decreases to 6.7% when a is equal to one.

The results presented in this section demonstrate the role of shrinkage on mean-

variance portfolio performance. In the next section, we show how to account for investor

sentiment in the construction of shrinkage mean-variance portfolios.

4 Shrinking against sentiment (SAS)

The empirical analysis presented in Section 2 documents a strong negative (positive)

relationship between investor sentiment and market (arbitrage) portfolio returns. In this

section, we illustrate the economic gains that a mean-variance investor can obtain by

exploiting the empirical connection between investor sentiment and the performance of

the market and arbitrage portfolios. In Section 4.1, we exploit the theory developed in

Section 3 to incorporate investor sentiment in the construction of shrinkage covariance

matrices for portfolio selection. Section 4.2 describes the data used in the empirical

analysis and Section 4.3 documents the performance gains of our proposed methodology.

4.1 Shrinkage criterion

Our proposed mean-variance portfolio shrinks against sentiment (SAS) by applying a

higher (lower) shrinkage intensity when sentiment is low (high). The criterion we pro-

pose in this section exploits classification methods to map sentiment onto a probability

space. A popular classification method in the statistical learning literature is logistic re-

gression (Hastie, Tibshirani, Friedman, and Franklin, 2009). In the simplest setting, a

logistic regression estimates the probability of a particular event happening given some

information (e.g., P (tomorrow rains | today is sunny)). In particular, given the level of

investor sentiment at time t, our objective is to estimate the probability that the market

delivers a positive excess return over the next period (i.e., rMKT
t+1 > 0). The probability

of this event happening determines the relevance of the market component in the over-

all performance of the mean-variance portfolio. We define the probability of the event
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rMKT
t+1 > 0 as

p = P
(
Yt+1 = 1

∣∣ Sentimentt
)
, where Yt+1 =

{
1 if rMKT

t+1 > 0,
0 otherwise.

(21)

The above probability is conditioned on lagged sentiment, which is used in the following

logistic function:

p = P
(
Yt+1 = 1

∣∣ Sentimentt
)
=

eβ0+β1Sentimentt

1 + eβ0+β1Sentimentt
. (22)

The coefficients β0 and β1 in (22) can be easily estimated via maximum likelihood; see,

for instance, James, Witten, Hastie, and Tibshirani (2013).

Our method then exploits the estimate of probability p to back out the value of

the shrinkage intensity a applied to the covariance matrix. We achieve this by using

p to determine the desired correlation between the market and the shrinkage mean-

variance portfolio. If the level of investor sentiment predicts that the probability p of

having a positive market excess return is high (low), our approach imposes a high (low)

correlation between the market and the shrinkage mean-variance portfolio. This is, our

proposed method shrinks against sentiment.

More precisely, we use the predicted probability p that the market will deliver a

positive return using the logistic function (22) to linearly interpolate the correlation

between the return of the market and that of the shrinkage mean-variance portfolio:

Corr(p) = (1− p) Corr0 + pCorr1, (23)

where Corr0 and Corr1 are the correlations between the market and the shrinkage mean-

variance portfolio in Proposition 3 when the shrinkage intensity a is zero and one, re-

spectively. Then, using our theoretical result in Proposition 3, we can back out the value

of the shrinkage intensity a from Corr(p). To the best of our knowledge, our paper is

the first to propose a shrinkage criterion for the covariance matrix of stock returns based

on economic arguments instead of statistical arguments, which is the standard approach

adopted in the construction of shrinkage matrices.
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Figure 6: Shrinkage intensity and sentiment demand

This figure depicts the shrinking-against-sentiment shrinkage intensity obtained from the procedure
described in Section 4.1 constructed from a dataset of 25 portfolios of stocks sorted on size and
book-to-market that we download from Kenneth French’s website, together with the investor senti-
ment variable proposed by Huang et al. (2015). The gray bars correspond to the NBER recession periods.

Figure 6 documents the relationship between the Huang et al. (2015) sentiment index

and the proposed SAS shrinkage intensity a obtained from the dataset of 25 portfolios of

stocks sorted on size and book-to-market. We observe that the shrinkage intensity has a

substantially negative correlation with investor sentiment of −74%.

4.2 Data

We proxy for investor sentiment using the Huang et al. (2015) sentiment index, which

we download from Guofu Zhou’s website.11 The sentiment index spans the period July

1965−December 2018, and it is a composite of five individual sentiment variables: the

closed-end fund discount, the number of IPOs, the first-day returns on IPOs, the share

11We thank Guofu Zhou for making his data publicly available in his website.
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of equity issues, and the dividend premium. The sentiment index is a latent variable

extracted through partial least squares.

We use the monthly excess returns of six datasets. The first four datasets are down-

loaded from Kenneth French’s website: (i) 10 momentum portfolios (10MOM ) from July

1965 to December 2018, (ii) 25 portfolios sorted on size and book-to-market (25SBTM )

from July 1965 to December 2018, (iii) 25 portfolios sorted on operating profitability

and investment (25OPINV ) from July 1965 to December 2018, (iv) 49 industry portfo-

lios (49IND) from July 1969 to December 2018. The last two datasets come from the

23 anomalies considered by Novy-Marx and Velikov (2016) and are downloaded from

Robert Novy-Marx’s website: (v) the long and short legs of eight low-turnover anomalies

(16ANOM ) from July 1965 to December 2013 and (vi) the long and short legs of all the

23 anomalies (46ANOM ) from July 1973 to December 2013.12

4.3 Out-of-sample performance

In this section, we assess the out-of-sample performance of SAS portfolios and several

benchmark portfolios.

4.3.1 Methodology

For each dataset containing a total of T monthly observations, we construct portfolios

every month with an expanding window of M + t − 1 observations, where M = 120

and t = 1, . . . , T −M .13 Then, for each estimated portfolio, we evaluate its performance

using the next-month return observation at time M + t. We continue this process for

all t = 1, . . . , T − M monthly observations. The analysis in this section focuses on the

12We thank Kenneth French and Robert Novy-Marx for making their data publicly available.
13In unreported results, we confirm that the findings in this section are robust to considering a rolling

window of M = 120 observations instead of the expanding window approach we adopt here. Expanding
windows have the benefit of delivering better estimates of mean returns, which typically require long
time series to obtain accurate predictions (Merton, 1980).
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tangency mean-variance portfolio, which is defined as14

w⋆ =
Σ−1µ

|ι⊤Σ−1µ|
, (24)

where µ and Σ are the vector of means and covariance matrix of stock returns in excess

of the risk-free rate, respectively, and ι is an N -dimensional vector of ones. A key element

in this formulation is the covariance matrix Σ. Our analysis focuses on different portfolio

strategies that estimate the covariance matrix in different ways. Below, we provide a list

of the five different methods we consider for the estimation of the covariance matrix:

1. The shrinkage covariance matrix in Equation (11) that shrinks the sample covari-

ance matrix toward the identity, where the shrinkage intensity a is estimated from

the shrinking-against-sentiment methodology in Section 4.1. Plugging this matrix

in (24) delivers the SAS portfolio.

2. The shrinkage covariance matrix proposed by Ledoit and Wolf (2004). This matrix

shrinks the sample covariance matrix toward the identity to minimize its mean-

squared error. Plugging this matrix in (24) delivers the MV-1N portfolio.

3. The shrinkage covariance matrix proposed by Ledoit and Wolf (2003). This matrix

shrinks the sample covariance matrix toward the CAPM-implied covariance matrix.

Plugging this matrix in (24) delivers the MV-MKT portfolio.

4. The nonlinear shrinkage covariance matrix proposed by Ledoit and Wolf (2020).

The previous two shrinkage matrices proposed by Ledoit and Wolf are linear com-

binations of the sample covariance matrix and a target matrix. In Ledoit and Wolf

(2020), the authors propose a nonlinear shrinkage covariance matrix calibrated to

optimize the out-of-sample mean-variance portfolio performance; see also Ledoit

and Wolf (2017). Plugging this matrix in (24) delivers the MV-NL portfolio.

14We only scale the tangency portfolio in (24) when the denominator |ι⊤Σ−1µ| is larger than one.
This procedure helps avoid excessive leverage and extreme portfolio weights (Kirby and Ostdiek, 2012)
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5. The covariance matrix proposed by Chen and Yuan (2016) that relies on principal

component analysis. The authors consider the tangency portfolio in (24) and esti-

mate the inverse covariance matrix Σ−1 by VKD
−1
K V ⊤

K , where VK and DK are the

eigenvectors and eigenvalues matrices when keeping only the first K ≤ N princi-

pal components. The number K is determined via the popular method of Bai and

Ng (2002), which is consistent in high dimension.15 Plugging this matrix in (24)

delivers the MV-PCA portfolio.

In addition to the mean-variance portfolios that exploit different estimates of the

covariance matrix, we study the performance of two simple low-turnover strategies. First,

the reward-to-risk (RTR) timing strategy of Kirby and Ostdiek (2012, Equation (13)),

which corresponds to the tangency portfolio in (24) with all covariances set equal to

zero and mean returns µi replaced by max(0, µi). Second, the equally weighted portfolio,

which is the market portfolio in our theory of Section 3 and corresponds to the tangency

portfolio in (24) when all means, variances, and covariances are the same across assets.

DeMiguel et al. (2009b) argue that the benefits of optimal diversification can be offset

by estimation errors. Therefore, the näıve portfolio that assigns an equal weight to each

asset emerges as a key benchmark in the assessment of portfolio strategies.

4.3.2 Out-of-sample results

Table 2 reports the annualized out-of-sample Sharpe ratios of the SAS portfolio and the

six benchmarks across the six datasets described in Section 4.2. The table shows that

SAS portfolios deliver a good performance. In particular, the median outperformance of

the SAS portfolio across the six datasets is about 28%, 37%, 31%, and 8% relative to the

MV-1N, MV-MKT, MV-NL, and MV-PCA mean-variance portfolios, respectively. The

improvement is even larger relative to the two simple RTR and 1/N policies, for which

the median outperformance is about 44% and 78%, respectively. The good performance

of the SAS portfolios does not come at the expense of higher turnover. On the contrary,

15As in Bai and Ng (2002) and Chen and Yuan (2016), we impose a maximum value of K = 8.
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the turnover of the SAS portfolio is the lowest among the competing mean-variance

portfolios.16 More precisely, the median turnover increase required by the benchmark

mean-variance portfolios relative to the SAS portfolio is about 450%.17

The fact that SAS portfolios do not require much trading to harvest high risk-

adjusted returns implies that their performance is likely to survive the impact of trans-

action costs. To address this issue, we compute the Sharpe ratio of the SAS portfolio

and the six benchmarks net of proportional transaction costs. We define the net return

of portfolio strategy p estimated with historical return data up to time t as

rpt+1 =

(
1− κ

N∑
i=1

∣∣wp
i,t − wp

i,(t−1)+

∣∣
︸ ︷︷ ︸

Portfolio turnover

)(
1 + (wp

t )
⊤rt+1

)
− 1, (25)

where rt+1 is the N -dimensional vector of excess returns at time t+1, wp
t is the portfolio

strategy p estimated with historical return data up to time t, wi,(t−1)+ is the portfolio

weight in stock i at time t before rebalancing, and κ is the level of proportional trans-

action costs. Table 3 reports the annualized Sharpe ratio net of proportional transaction

costs of the different portfolio strategies. Similar to Barroso and Saxena (2022), we con-

sider proportional transaction costs of κ = 10, 30, and 50 basis points. The analysis in

this table strengthens the relative performance of the SAS portfolio. We see that as the

level of proportional transaction costs increases, the annualized Sharpe ratio of the dif-

ferent portfolios strategies deteriorates. However, the impact of transaction costs on the

performance of SAS portfolios is much softer. For instance, for κ = 50 basis points as in

DeMiguel et al. (2009b), the median outperformance in terms of annualized Sharpe ratio

of the SAS portfolio relative to the benchmark mean-variance portfolios is about 36%.

Moreover, even though the RTR and 1/N portfolios only require a very small turnover,

16In unreported results, we find that the lower turnover of the SAS portfolio comes from a more
intensive shrinkage of the sample covariance matrix of returns relative to the benchmarks.

17The increase in turnover is particularly substantial for the 46ANOM dataset. However, even without
the 46ANOM dataset the median turnover increase required by the benchmark mean-variance portfolios
relative to the SAS portfolio is about 435%.
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the median outperformance in terms of annualized Sharpe ratio of the SAS portfolio

relative to the RTR and 1/N portfolios is about 34% and 66%, respectively.

5 Understanding the performance of SAS portfolios

This section provides intuition about the good out-of-sample performance of SAS port-

folios. First, we run conditional time-series regressions of SAS portfolio returns on the

market to explore the sources of the good performance of our proposed SAS portfolios.

5.1 Time-varying exposure to the market

Here we study the performance of SAS portfolios using conditional time-series regressions.

In particular, we regress the out-of-sample returns of SAS portfolios on market returns,

and we allow for the slope coefficient to vary over time with investor sentiment. That is,

rSAS
t = α + (β0 + β1 Sentimentt−1)︸ ︷︷ ︸

βt

rMKT
t + ϵt, (26)

where Sentimentt is the Huang et al. (2015) sentiment index. Regression model (26)

allows us to capture the time-varying market beta of SAS portfolios. Table 4 reports the

intercept, slope coefficients, and t-statistics from the conditional time-series regression.

For comparison purposes, we report the results for both the SAS portfolio and the mean-

variance portfolio that exploits the Ledoit and Wolf (2004) covariance matrix, which

appears with the acronym MV-1N.

We observe that in five out of the six datasets, the systematic risk of SAS portfo-

lios decreases when sentiment increases (i.e., β1 < 0), and it is statistically or nearly

statistically significant in four of these datasets. Similarly, the conditional market betas

of MV-1N portfolios also decrease with sentiment in the same datasets, however their

statistical significance is systematically lower. In general, the correlation between any

mean-variance portfolio with the market should decrease when market returns are lower,
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Figure 7: Conditional market betas

This figure depicts the conditional CAPM market beta, βt in Equation (26), of the SAS portfolio for
the dataset of 25 portfolios of stocks sorted on size and book-to-market described in Section 4.2. For
comparison purposes, the figure also depicts the market beta of the mean-variance portfolio exploiting
the Ledoit and Wolf (2004) shrinkage covariance matrix, which appears with the acronym MV-1N. The
figure also depicts the Huang et al. (2015) sentiment index (right axis).

which typically happens when sentiment increases.18 This implies that mean-variance

portfolios reduce the exposure to the market as investor sentiment increases.

The main insight obtained from Table 4 is highlighted in Figure 7, which shows the

substantial time-varying nature of market betas, βt in Equation (26), of mean-variance

portfolios for the 25SBTM dataset. First, the figure shows that both mean-variance port-

folio betas have a strong negative correlation with investor sentiment. In particular,

as sentiment increases, market beta decreases. Interestingly, the market beta of mean-

variance portfolios can be negative when investor sentiment is large and therefore when

market returns are prone to be low or even negative. However, our SAS portfolio typically

keeps a higher exposure to the market than that of the MV-1N portfolio, as evidenced

18More formally, Equation (19) shows that the correlation between the return of any shrinkage mean-
variance portfolio and the market portfolio decreases with the mean return of the first principal compo-
nent, µPC1 , which is proportional to the mean return of the market portfolio under Assumption 1.

29



by the systematically larger β0’s in Table 4. The higher average market beta allows SAS

portfolios to harvest a larger premium from the market than that of the MV-1N portfolio,

which is particularly useful when sentiment is low and market returns are high.

The higher average market beta of SAS portfolios is also an important distinction

relative to the benchmark mean-variance portfolios because it reduces transaction costs.

Indeed, as noted in Proposition 3, one can achieve less exposure to the market by reducing

the shrinkage intensity of the covariance matrix, however this gives a higher relevance

to the arbitrage component, which requires a higher turnover and transaction costs than

the market portfolio. We study the trading-cost benefits of our SAS portfolio approach

in more detail in the next section.

5.2 Additional reason to shrink against sentiment

Baker and Stein (2004) argue that investor sentiment is positively related to market

liquidity. We now confirm that sentiment predicts liquidity and therefore our shrinkage

approach allows us to tilt our portfolio towards the market when liquidity is low and vice

versa, which reduces transaction costs. To address this issue, we estimate stock-level bid-

ask spreads using the two-day corrected method proposed in Abdi and Ranaldo (2017)

and also used by DeMiguel, Martin-Utrera, Nogales, and Uppal (2020, Appendix IA.1).19

For each stock i in month t, we define its corresponding bid-ask spread as

ŝi,t =
1

D

D∑
d=1

ŝi,d, ŝi,d =
√

max{4(ci,d − ηi,d)(ci,d − ηi,d+1), 0}, (27)

where D is the number of days in month t, ŝi,d is the two-day bid-ask spread estimate,

ci,d is the closing log-price on day d, and ηi,d is the mid-range log-price on day d; that is,

the mean of daily high and low log-prices.

Now, let us define plt+1 as the lth cross-sectional percentile at time t + 1 of bid-ask

spreads. Then, we run the following regression model:

plt+1 = α + β Sentimentt + ϵt+1, (28)

19We download daily price data from CRSP.
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Figure 8: Turnover of market and arbitrage portfolios

This figure depicts the average monthly turnover of the equally weighted market portfolio and
the arbitrage portfolio in Equation (2) using a risk-aversion coefficient of five. The table depicts
the turnover of these portfolios across the six datasets described in Section 4.2 and following the
rebalancing methodology in Section 4.3.1.

where Sentimentt is the sentiment index in month t. Table 5 shows that the slope coeffi-

cient, β, is negative and statistically significant across all the cross-sectional percentiles

we consider. This implies that sentiment can predict next-period liquidity, and therefore,

that shrinking against sentiment allows us to strategically tilt our mean-variance port-

folio toward the market portfolio, which has a low turnover, when sentiment is low, and

thus, when liquidity decreases. Similarly, by shrinking against sentiment we can increase

the exposure of our mean-variance portfolio to the arbitrage component, which requires

a much higher turnover, when liquidity is high. Indeed, Figure 8 shows that the equally

weighted market portfolio has a dramatically lower turnover than the arbitrage portfolio.
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6 Conclusion

The real-time implementation of Markowitz mean-variance portfolio theory is challeng-

ing because optimal portfolios require the estimation of the covariance matrix of stock

returns as well as the vector of mean returns, and these estimates carry substantial sta-

tistical errors that can dramatically worsen the performance of mean-variance portfolios.

Shrinkage estimators of the covariance matrix are an effective and popular method to

mitigate the impact of statistical errors on mean-variance portfolio performance.

In this paper, we adopt this shrinkage approach and show that the performance of

the optimal mean-variance portfolio can be decomposed into that of two components:

the market portfolio and an arbitrage portfolio. The relevance of these two components

in the overall performance of mean-variance portfolios is linked to the shrinkage intensity

of the covariance matrix. More specifically, we show theoretically that by shrinking the

covariance matrix of returns toward the identity matrix as in Ledoit and Wolf (2004),

one can increase the relevance of the market component in the overall performance of

the mean-variance portfolio. On the other hand, by shrinking less, one can increase the

relevance of the arbitrage component in the overall performance.

Motivated by this decomposition of mean-variance portfolio performance, we intro-

duce a novel methodology to calibrate the shrinkage intensity in the covariance matrix of

stock returns, shrinking against sentiment, which shrinks more when investor sentiment

is low and vice versa. We show that investor sentiment predicts lower market returns,

higher arbitrage returns, and higher liquidity. Accordingly, our empirical results provide

evidence that shrinking against sentiment delivers important economic gains relative to

several benchmark portfolios both in the absence and in the presence of transaction costs.
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Tables

Table 1: Predicting returns with sentiment

This table reports the intercept, slope coefficient, and Newey-West t-statistics (in square brackets)
of long-run predictive regressions of the cumulative returns of a particular portfolio strategy on
sentiment. In particular, we report the slope coefficients of the model:

rft+1→t+k = α+ β Sentimentt + ϵt,

where rft+1→t+k are the cumulative returns of portfolio f during the period (t + 1, t + k), and
Sentimentt is the Huang et al. (2015) sentiment index at time t. We consider five portfolio strategies:
1) the Fama-French market portfolio, 2) the value factor (HML), 3) the profitability factor (RMW),
4) the investment factor (CMA), and 5) the optimal mean-variance portfolio that combines all the
portfolios used in the construction of the HML, RMW and CMA factors, subject to the constraint
that the weights of the portfolio add up to zero (MVE). The time period spans January 1965 to
December 2018.

1 month 1 quarter 1 year 2 years

Intercept Slope Intercept Slope Intercept Slope Intercept Slope

Market 0.005 −0.007 0.015 −0.019 0.063 −0.052 0.126 −0.049
[2.825] [−3.708] [3.442] [−4.391] [3.715] [−2.647] [3.870] [−1.599]

HML 0.003 0.004 0.010 0.011 0.038 0.039 0.079 0.046
[2.634] [2.702] [2.986] [2.792] [3.006] [3.038] [3.442] [2.254]

RMW 0.003 0.003 0.008 0.008 0.032 0.025 0.066 0.026
[2.884] [2.260] [3.277] [2.636] [3.167] [1.731] [3.416] [1.204]

CMA 0.003 0.003 0.009 0.010 0.035 0.037 0.072 0.058
[3.488] [3.050] [3.985] [3.186] [4.182] [4.911] [4.264] [3.870]

MVE 0.016 0.009 0.049 0.027 0.196 0.114 0.397 0.175
[7.342] [3.221] [8.195] [3.706] [7.289] [3.333] [6.546] [2.967]
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Table 2: Out-of-sample performance

This table reports the out-of-sample performance of the SAS portfolio and six benchmark portfolios:
the mean-variance portfolio constructed with the shrinkage covariance matrix proposed by Ledoit
and Wolf (2004) (MV-1N), the shrinkage covariance matrix proposed by Ledoit and Wolf (2003)
(MV-MKT), the shrinkage covariance matrix proposed by Ledoit and Wolf (2020) (MV-NL), the
principal-component-analysis covariance matrix proposed by Chen and Yuan (2016) (MV-PCA),
the reward-to-risk timing strategy of Kirby and Ostdiek (2012) (RTR), and the equally weighted
portfolio (1/N). Panel A reports the annualized out-of-sample Sharpe ratios of each portfolio, as well
as the p-values (in parenthesis) of the significance test of the difference of each portfolio’s Sharpe
ratio with that of the equally weighted portfolio. Panel B reports the average monthly turnover of
each portfolio. The six datasets are described in Section 4.2.

Policy 10MOM 25SBTM 25OPINV 49IND 16ANOM 46ANOM

Panel A: Sharpe ratios

SAS 0.88 0.78 0.86 0.41 1.05 2.18
(0.01) (0.10) (0.01) (0.79) (0.00) (0.00)

MV-1N 0.89 0.47 0.59 0.19 1.00 2.00
(0.02) (0.66) (0.39) (0.94) (0.01) (0.00)

MV-MKT 0.89 0.34 0.55 0.20 0.94 1.86
(0.02) (0.83) (0.45) (0.94) (0.02) (0.00)

MV-NL 0.94 0.47 0.58 0.21 0.93 2.08
(0.01) (0.66) (0.42) (0.94) (0.02) (0.00)

MV-PCA 0.95 0.85 0.81 0.07 0.96 1.52
(0.01) (0.06) (0.04) (1.00) (0.01) (0.00)

RTR 0.61 0.62 0.60 0.56 0.58 0.60
(0.00) (0.00) (0.00) (0.08) (0.00) (0.00)

1/N 0.45 0.56 0.53 0.53 0.45 0.36

Panel B: Turnover

SAS 0.27 0.48 0.40 0.33 0.45 0.53

MV-1N 1.73 2.11 1.66 2.51 1.68 12.56

MV-MKT 2.21 2.95 1.74 2.16 2.42 15.15

MV-NL 1.99 2.54 1.62 2.14 2.50 8.72

MV-PCA 2.31 0.90 0.33 0.32 0.84 1.63

RTR 0.05 0.04 0.04 0.05 0.05 0.04

1/N 0.04 0.04 0.04 0.05 0.04 0.04
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Table 3: Out-of-sample performance net of transaction costs

This table reports the out-of-sample performance of the SAS portfolio and six benchmark portfolios:
the mean-variance portfolio constructed with the shrinkage covariance matrix proposed by Ledoit
and Wolf (2004) (MV-1N), the shrinkage covariance matrix proposed by Ledoit and Wolf (2003)
(MV-MKT), the shrinkage covariance matrix proposed by Ledoit and Wolf (2020) (MV-NL), the
principal-component-analysis covariance matrix proposed by Chen and Yuan (2016) (MV-PCA), the
reward-to-risk timing strategy of Kirby and Ostdiek (2012) (RTR), and the equally weighted portfolio
(1/N). Panel A, B, and C report the annualized out-of-sample Sharpe ratios of each portfolio net of
proportional transaction costs of 10, 30, and 50 basis points, respectively, as well as the p-values (in
parenthesis) of the significance test of the difference of each portfolio’s Sharpe ratio with that of the
equally weighted portfolio. The six datasets are described in Section 4.2.

Policy 10MOM 25SBTM 25OPINV 49IND 16ANOM 46ANOM

Panel A: Sharpe ratios net of 10bps
SAS 0.87 0.76 0.84 0.39 1.03 2.16

(0.01) (0.15) (0.03) (0.79) (0.00) (0.00)

MV-1N 0.87 0.44 0.55 0.14 0.96 1.97
(0.03) (0.66) (0.45) (0.94) (0.03) (0.00)

MV-MKT 0.86 0.31 0.51 0.16 0.90 1.82
(0.04) (0.84) (0.51) (0.94) (0.05) (0.00)

MV-NL 0.91 0.42 0.54 0.17 0.89 2.03
(0.02) (0.69) (0.47) (0.93) (0.05) (0.00)

MV-PCA 0.92 0.82 0.79 0.05 0.93 1.50
(0.05) (0.22) (0.12) (0.02) (0.03) (0.00)

RTR 0.60 0.61 0.60 0.56 0.58 0.59
(0.00) (0.00) (0.00) (0.25) (0.00) (0.00)

1/N 0.45 0.56 0.53 0.53 0.45 0.36

Panel B: Sharpe ratios net of 30bps
SAS 0.84 0.72 0.80 0.35 0.99 2.12

(0.01) (0.19) (0.05) (0.85) (0.00) (0.00)

MV-1N 0.81 0.36 0.46 0.05 0.87 1.89
(0.05) (0.76) (0.60) (0.97) (0.05) (0.00)

MV-MKT 0.80 0.22 0.43 0.07 0.80 1.70
(0.06) (0.91) (0.66) (0.97) (0.09) (0.00)

MV-NL 0.86 0.34 0.46 0.09 0.79 1.93
(0.04) (0.80) (0.60) (0.96) (0.10) (0.00)

MV-PCA 0.86 0.76 0.74 0.02 0.87 1.45
(0.09) (0.28) (0.18) (0.01) (0.07) (0.00)

RTR 0.60 0.61 0.59 0.55 0.57 0.59
(0.00) (0.00) (0.00) (0.25) (0.00) (0.00)

1/N 0.45 0.55 0.52 0.52 0.45 0.35

Panel C: Sharpe ratios net of 50bps
SAS 0.82 0.68 0.76 0.30 0.95 2.08

(0.01) (0.25) (0.08) (0.90) (0.00) (0.00)

MV-1N 0.76 0.29 0.38 −0.05 0.79 1.78
(0.08) (0.84) (0.74) (0.99) (0.10) (0.00)

MV-MKT 0.74 0.14 0.35 −0.03 0.70 1.53
(0.10) (0.95) (0.77) (0.98) (0.17) (0.00)

MV-NL 0.80 0.24 0.39 −0.00 0.69 1.82
(0.06) (0.89) (0.71) (0.98) (0.18) (0.00)

MV-PCA 0.80 0.71 0.70 −0.02 0.81 1.40
(0.14) (0.44) (0.33) (0.00) (0.12) (0.00)

RTR 0.59 0.60 0.59 0.54 0.57 0.58
(0.00) (0.00) (0.00) (0.25) (0.00) (0.00)

1/N 0.44 0.55 0.52 0.51 0.44 0.34



Table 4: Time-series regressions

This table reports the intercept, slope coefficients, and Newey-West t-statistics (in square brackets)
from the conditional CAPM time-series regressions in Equation (26). We run time-series regressions
for the monthly out-of-sample returns of the SAS portfolio and the mean-variance portfolio that
exploits the Ledoit and Wolf (2004) shrinkage covariance matrix (MV-1N) across the six datasets
described in Section 4.2.

10MOM 25SBTM 25OPINV 49IND 16ANOM 46ANOM

SAS MV-1N SAS MV-1N SAS MV-1N SAS MV-1N SAS MV-1N SAS MV-1N

α (%) 0.05 0.10 0.04 0.11 0.04 0.09 0.01 0.04 0.04 0.11 0.29 1.07
[4.03] [5.07] [3.82] [5.71] [3.96] [3.90] [1.20] [1.69] [5.01] [5.74] [9.99] [13.46]

β0 3.74 1.52 3.55 1.92 3.53 2.01 4.84 2.80 2.82 1.65 4.07 −6.45
[10.58] [2.68] [11.21] [3.80] [10.94] [3.00] [12.85] [3.69] [11.15] [3.05] [4.50] [−2.86]

β1 −0.35 −0.42 −1.95 −2.12 −1.90 −2.58 0.21 1.96 −1.49 −2.52 −2.62 −3.99
[−0.82] [−0.71] [−5.51] [−4.10] [−3.57] [−2.84] [0.57] [2.48] [−4.94] [−3.95] [−1.72] [−1.13]

Table 5: Liquidity and sentiment

This table reports the intercept, slope coefficient, and Newey-West t-statistics (in square brackets)
of the time series regressions of cross-sectional measures of liquidity on lagged values of sentiment for
the period January 1965 to December 2018. In each column, we report the results for the regressions
of the cross-sectional 95, 75, 50, 25 and 5th percentiles of the estimate of bid-ask spreads in (27).
We regress each cross-sectional percentile on the prior-month value of the sentiment index proposed
by Huang et al. (2015).

P95 P75 P50 P25 P5

Intercept 404 171 97.9 55.1 23.2
[56.4] [63.1] [62.8] [53.7] [41.3]

Slope −25.3 −6.23 −3.23 −3.00 −2.20
[−3.43] [−2.21] [−2.00] [−2.84] [−4.20]
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Internet Appendix to

Shrinking Against Sentiment:
Exploiting Behavioral Biases in Portfolio Optimization



This internet appendix to the main paper contains two sections. Section A presents

a theoretical model of the economy with investor sentiment. Section B details the proofs

of all results in the paper and this appendix.

A A model of the economy with investor sentiment

In this section, we present a simple model similar to that considered by Hong and Sraer

(2016) that builds intuition for the empirical results exposed in Section 2 by analyzing

the theoretical relation between sentiment and asset prices in an economy where investors

have heterogeneous beliefs.

A.1 The economy

First, we present the assumptions that define the economy.

Assumption A.1 Let us assume an economy where:

1. Assets live for two periods, t and t+ 1.

2. There are N risky assets that pay random dividends at time t + 1. Dividends dt+1

follow the process

dt+1 = d+ u, (A.1)

where di > 0 for all i = 1, . . . , N and u follows a zero-mean multivariate distribution

with covariance matrix Σ.

3. All investors have mean-variance preferences with risk-aversion coefficient γ > 0.

4. A mass α ∈ [0, 1] of investors are optimistic about future cashflows. In particular,

optimistic investors believe expected future dividends are E[dt+1] = d+δ with δi ≥ 0

for all i = 1, . . . , N .

Assumption A.1 lays out the main features of an economy plagued by mean-variance

investors where a fraction α have optimistic expectations about future cashflows, while

the remaining fraction 1− α are sophisticated investors with unbiased beliefs.
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We assume there are only optimistic investors in the economy for tractability. How-

ever, this can be interpreted as the net effect of the excessive demand of risky assets

from optimistic investors and the low demand of risky assets from pessimistic investors.

The combination of investor disagreement and short-sale constraints leads to a situation

where only the optimistic demand prevails. Indeed, Hong and Sraer (2016) note that in

the presence of short-sale constraints, stocks subject to a higher level of disagreement are

only held by optimistic investors in equilibrium because, due to short-sale constraints, the

pessimistic investors are sidelined.20 This leads to a situation where equilibrium prices are

too high relative to the situation where all investors have homogeneous beliefs, and there

are no short-sale constraints (Miller, 1977). As explained below, this effect is the reason

why an increase of sentiment demand leads to lower market returns and an increase in

the returns delivered by arbitrage portfolios that exploit asset overpricing.

A.2 The effect of sentiment on market and arbitrage portfolios

The fraction α of optimistic investors can be understood as the level of sentiment demand.

We now show how the level of sentiment demand α affects the performance of the market

and arbitrage portfolios in the economy described in Assumption A.1. First, in the next

proposition, we derive the Sharpe ratio of the market portfolio that arises in equilibrium

of the economy.

Proposition A.1 Let Assumption A.1 hold. Then, in equilibrium, the Sharpe ratio of

the market portfolio wM is

SR(wM) = γσM − α

σM

w⊤
Mδ, (A.2)

where α is the mass of optimistic investors, δ is the sentiment demand vector, and σM =√
w⊤

MΣwM is the market volatility.

Proposition A.1 shows that the equilibrium Sharpe ratio of the market portfolio is

the sum of two terms: 1) the equilibrium Sharpe ratio when all investors in the market are

20It is straightforward to account for short-sale constraints at the expense of a more complex analysis.
For simplicity, we omit this restriction in the analysis presented in this section.
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rational (α = 0) and 2) a term that gets increasingly negative as the level of sentiment

demand α increases. In particular, Proposition A.1 shows that as the mass of sentiment

investors α in the economy increases, the market Sharpe ratio decreases, just like we

observe empirically in Section 2.

Next, we study the effect of sentiment demand on the performance of the arbitrage

portfolio wA defined in (2). Under Assumption 1, we can characterize theoretically the

positive relationship between the level of sentiment demand α and the Sharpe ratio of

the arbitrage portfolio wA. Specifically, in the assumed economy, the following holds.

Proposition A.2 Let Assumptions 1 and A.1 hold. Then, in equilibrium, the Sharpe

ratio of the arbitrage portfolio is

SR(wA) = α

√√√√ N∑
i=2

(
v⊤i δ
)2

σ2
PCi

, (A.3)

where α is the mass of optimistic investors, vi is the ith eigenvector of the covariance

matrix Σ, and σ2
PCi

= v⊤i Σvi is the variance of the ith principal component of returns.

Proposition A.2 characterizes the positive theoretical relationship between the level

of sentiment demand α and the performance of the mean-variance arbitrage portfolio.

In particular, the Sharpe ratio of the arbitrage portfolio is linear in α and attains its

lowest value, SR(wA) = 0, when α = 0. This theoretical prediction holds also in the

data. Specifically, in Section 2 we show that the mean-variance arbitrage portfolio that

combines all the portfolios used in the construction of the HML, RMW, and CMA factors

is positively correlated with sentiment and that changes in sentiment can have long-lasting

effects on the performance of the mean-variance arbitrage portfolio.
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B Proofs of all results

This section contains the proofs of all the propositions in the main body of the paper

and this internet appendix

Proof of Proposition 1

Using the eigenvalue decomposition of the covariance matrix, we can easily characterize

the squared Sharpe ratio of the mean-variance portfolio as the sum of the squared Sharpe

ratio of each of the principal components of stock returns. In particular, we can write the

covariance matrix Σ as

Σ = V DV ⊤, (A.4)

where D is a diagonal matrix whose ith element is the eigenvalue associated to the ith

principal component, and V is a matrix whose ith column vi is the eigenvector associated

to the ith principal component. Given this decomposition, it is straightforward to show

that the mean-variance portfolio’s squared Sharpe ratio is21

SR2(w⋆) =
N∑
i=1

µ2
PCi

σ2
PCi

, (A.5)

where µPCi
= v⊤i µ and σ2

PCi
= v⊤i Σvi are the average return and variance of the ith

principal component of stock returns, respectively.

Part 1. Given the eigenvalue decomposition of the Sharpe ratio of the mean-variance

portfolio in (A.5), we need to prove the equalities for the Sharpe ratio of the market and

arbitrage portfolios in Equations (7) and (8). Let us begin with the equally weighted

market portfolio, wM = ι/N . Under Assumption 1, the first eigenvector is v1 = ι/
√
N .

Consequently, the market average return and variance are

µM = w⊤
Mµ =

µ⊤v1√
N

=
µPC1√
N

, (A.6)

21This result is similar to the SDF-variance decomposition introduced by Kozak, Nagel, and Santosh
(2018, Equation (4)).
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σ2
M = w⊤

MΣwM =
v⊤1 V D V ⊤v1

N
=

σ2
PC1

N
, (A.7)

and the market Sharpe ratio is SR(wM) = µM/σM = µPC1/σPC1 , as in Equation (8).

Second, we derive the eigenvalue decomposition of the Sharpe ratio of the arbitrage

portfolio, wA in (2). The average return and variance of the arbitrage portfolio are

w⊤
Aµ =

1

γ
(µ− µgι)

⊤Σ−1µ, (A.8)

w⊤
AΣwA =

1

γ2
(µ− µgι)

⊤Σ−1(µ− µgι). (A.9)

Now, using the definition of µg =
ι⊤Σ−1µ
ι⊤Σ−1ι

, and plugging it into the above expressions, we

have

w⊤
Aµ =

1

γ

(
µ⊤Σ−1µ−

(
ι⊤Σ−1µ

)2
ι⊤Σ−1ι

)
and w⊤

AΣwA =
1

γ
w⊤

Aµ. (A.10)

Therefore, the squared Sharpe ratio of the arbitrage portfolio is

SR2(wA) =

(
w⊤

Aµ
)2

w⊤
AΣwA

= µ⊤Σ−1µ−
(
ι⊤Σ−1µ

)2
ι⊤Σ−1ι

. (A.11)

Let us now recall the eigenvalue decomposition of the covariance matrix as Σ = V D V ⊤,

where V is the matrix of the eigenvectors associated to the principal components of

stock returns, and D is a diagonal matrix that contains the eigenvalues associated to

each of the principal component of stock returns, sorted in decreasing order. We can use

the eigenvalue decomposition of the covariance matrix to further decompose the Sharpe

ratio of the arbitrage portfolio. In particular,

µ⊤Σ−1µ = µ⊤V D−1 V ⊤µ =
N∑
i=1

µ2
PCi

σ2
PCi

, (A.12)

ι⊤Σ−1µ =
√
Nv⊤1 V D−1 V ⊤µ =

√
N
µPC1

σ2
PC1

, (A.13)

ι⊤Σ−1ι = Nv⊤1 V D−1 V ⊤v1 =
N

σ2
PC1

, (A.14)
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where µPCi
= v⊤i µ and σ2

PCi
= v⊤i Σvi are the average return and variance of the ith prin-

cipal component. Plugging expressions (A.12)-(A.14) into (A.11), we obtain Equation (8),

which completes the proof.

Part 2. This result is a special case of the result in Proposition 3 when the shrinkage

intensity a = 0.

Proof of Proposition 2

The squared Sharpe ratio of the equally weighted market portfolio is independent of the

shrinkage intensity a and, as shown in (7), is given by SR2(wM) = µ2
PC1

/σ2
PC1

, which

corresponds to Sa(1, 1) in (18) for any value of a.

We turn next to the shrinkage mean-variance portfolio in (14), w⋆
S = 1

γ
Σ−1

sh µ, where

Σsh = V ((1− a)D + aνIN)V
⊤. Its average return is

(w⋆
S)

⊤µ =
1

γ
µ⊤V ((1− a)D + aνIN)

−1V ⊤µ =
1

γ

N∑
i=1

µ2
PCi

(1− a)σ2
PCi

+ aν
. (A.15)

Moreover, its variance is

(w⋆
S)

⊤Σw⋆
S =

1

γ2
µ⊤Σ−1

sh ΣΣ
−1
sh µ.

Given the eigenvalue decompositions of Σ and Σsh, we have that Σ−1
sh ΣΣ

−1
sh = V DaV

⊤,

where Da is a diagonal matrix with entries

(Da)ii =
σ2
PCi

((1− a)σ2
PCi

+ aν)2
. (A.16)

Therefore, the variance of the shrinkage mean-variance portfolio becomes

(w⋆
S)

⊤Σw⋆
S =

1

γ2

N∑
i=1

µ2
PCi

σ2
PCi

((1− a)σ2
PCi

+ aν)2
. (A.17)

Finally, using Equations (A.15)–(A.17), the squared Sharpe ratio of the shrinkage mean-

variance portfolio is

SR2(w⋆
S) =

((w⋆
S)

⊤µ)2

(w⋆
S)

⊤Σw⋆
S

= Sa(1, N), (A.18)
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where Sa is defined in (18).

A similar line of reasoning holds for the shrinkage arbitrage portfolio in (13),

wSA =
1

γ
Σ−1

sh

(
µ− ι⊤Σ−1

sh µ

ι⊤Σ−1
sh ι

ι

)
.

Under Assumption 1, it holds that
ι⊤Σ−1

sh µ

ι⊤Σ−1
sh ι

= µPC1/
√
N , and thus,

wSA =
1

γ
Σ−1

sh

(
µ− µPC1√

N
ι

)
. (A.19)

Therefore, the average return of the shrinkage arbitrage portfolio is

w⊤
SAµ =

1

γ

(
µ⊤Σ−1

sh µ− µ⊤Σ−1
sh ι

µPC1√
N

)
=

1

γ

N∑
i=2

µ2
PCi

(1− a)σPCi
+ aν

, (A.20)

which holds because µ⊤Σ−1
sh ι =

√
N

µPC1

(1−a)σPCi
+aν

under Assumption 1. Moreover, the vari-

ance of the shrinkage arbitrage portfolio is

w⊤
SAΣw

⊤
SA =

1

γ2

(
µ− µPC1√

N
ι

)⊤

Σ−1
sh ΣΣ

−1
sh

(
µ− µPC1√

N
ι

)

= (w⋆
S)

⊤Σw⋆
S +

1

γ2

(
µ2
PC1

N
ι⊤V DaV

⊤ι− 2
µPC1√
N

ι⊤V DaV
⊤µ

)

=
1

γ2

N∑
i=2

µ2
PCi

σ2
PCi

((1− a)σ2
PCi

+ aν)2
, (A.21)

where the diagonal matrix Da is defined in (A.16). The last equality in (A.21) holds

because, under Assumption 1,

ι⊤V DaV
⊤ι = N

σ2
PC1

((1− a)σ2
PCi

+ aν)2
and ι⊤V DaV

⊤µ =
√
N

µPC1σ
2
PC1

((1− a)σ2
PCi

+ aν)2
.

Finally, using Equations (A.20)–(A.21), the squared Sharpe ratio of the shrinkage arbi-

trage portfolio is

SR2(wSA) =
(w⊤

SAµ)
2

w⊤
SAΣwSA

= Sa(2, N), (A.22)

where Sa is defined in (18), which completes the proof.
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Proof of Proposition 3

Let us begin with the correlation between the returns of the market portfolio and those

of the shrinkage mean-variance portfolio. This correlation is

Corr(w⊤
MR, (w⋆

S)
⊤R) =

w⊤
MΣw⋆

S√
(w⊤

MΣwM)((w⋆
S)

⊤Σw⋆
S)
. (A.23)

The variance of wM and w⋆
S are given by Equations (A.7) and (A.17), respectively, and

thus we only need to treat the term w⊤
MΣw⋆

S, which under Assumption 1 simplifies to

w⊤
MΣw⋆

S =
1

γN
ι⊤ΣΣ−1

sh µ =
1

γ
√
N
v⊤1 V D̃aV

⊤µ,

where D̃a is a diagonal matrix with entries

(
D̃a

)
ii
=

σ2
PCi

(1− a)σ2
PCi

+ aν
.

Therefore, the quantity w⊤
MΣw⋆

S is

w⊤
MΣw⋆

S =
1

γ
√
N

µPC1σ
2
PC1

(1− a)σ2
PC1

+ aν
. (A.24)

Plugging (A.7), (A.17), and (A.24) into (A.23), we find that the squared correlation

between the returns of the market portfolio and those of the shrinkage mean-variance

portfolio is given by (19).

We turn next to the correlation between the returns of the shrinkage arbitrage port-

folio and those of the shrinkage mean-variance portfolio. This correlation is

Corr(w⊤
SAR, (w⋆

S)
⊤R) =

w⊤
SAΣw

⋆
S√

(w⊤
SAΣwSA)((w⋆

S)
⊤Σw⋆

S)
. (A.25)

The variance of wSA and w⋆
S are given by Equations (A.21) and (A.17), respectively, and

thus we only need to treat the term w⊤
SAΣw

⋆
S, which under Assumption 1 simplifies to

w⊤
SAΣw

⋆
S =

1

γ2

(
µ− µPC1√

N
ι

)⊤

Σ−1
sh ΣΣ

−1
sh µ.
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As shown in the proof of Proposition 2, we have decomposition Σ−1
sh ΣΣ

−1
sh = V DaV

⊤,

where Da is a diagonal matrix defined in (A.16). Using this result, the quantity w⊤
SAΣw

⋆
S

is

w⊤
SAΣw

⋆
S =

1

γ2

N∑
i=2

µ2
PCi

σ2
PCi

((1− a)σ2
PCi

+ aν)2
. (A.26)

Plugging (A.21), (A.17), and (A.26) into (A.25), we find that the correlation between

the returns of the shrinkage arbitrage portfolio and those of the shrinkage mean-variance

portfolio is given by (20).

Finally, we conclude the proof by showing that the squared correlation with the

market Corr2
(
w⊤

MR, (w⋆
S)

⊤R
)
, is increasing in the shrinkage intensity a, which implies

that the correlation with the shrinkage arbitrage portfolio is decreasing in a given that

the two squared correlations sum up to one in (20). Given Equation (19), to prove this

result it is sufficient to show that the quantity

(1− a)σ2
PC1

+ aν

(1− a)σ2
PCi

+ aν

is decreasing in a for all i = 2, . . . , N . The derivative of this quantity with respect to a is

∂

∂a

(1− a)σ2
PC1

+ aν

(1− a)σ2
PCi

+ aν
=

(ν − σ2
PC1

)((1− a)σ2
PCi

+ aν)− (ν − σ2
PCi

)((1− a)σ2
PC1

+ aν)

(((1− a)σ2
PCi

+ aν)2

and is negative under the condition

∂

∂a

(1− a)σ2
PC1

+ aν

(1− a)σ2
PCi

+ aν
≤ 0 ⇐⇒ σ2

PCi
≤ σ2

PC1
,

which holds indeed for all i = 2, . . . , N because the eigenvalues are sorted in decreasing

order, thus completing the proof.

Proof of Proposition A.1

The optimality conditions of the sophisticated and the optimistic investors give the fol-

lowing optimal mean-variance portfolios:

w⋆
l =

1

γ
Σ−1

(
El[dt+1]− Pt

)
, (A.27)
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where Pt is the vector of equilibrium prices and El[dt+1] for l = {s, o} is the vector of

expected cashflows for the sophisticated (s) and optimistic (o) investors. Under Assump-

tion A.1, the market clearing condition is

α

γ
Σ−1

(
d+ δ − Pt

)
+

1− α

γ
Σ−1

(
d− Pt

)
= wM , (A.28)

where wM is the market portfolio. From the clearing condition (A.28), the vector of

equilibrium prices Pt is

Pt = d− γβMσ2
M + αδ, (A.29)

where σ2
M = w⊤

MΣwM and βM = ΣwM

σ2
M

is the vector of market betas. Accordingly, the

vector of equilibrium average returns µ is

µ = E[Rt+1] = E[dt+1 − Pt] = d− Pt = γβMσ2
M − αδ. (A.30)

The first term in Equation (A.30) corresponds to the equilibrium average returns when

all investors in the market are rational (i.e., when α = 0), and the second element, αδ,

accounts for the effect that heterogeneous beliefs have on average returns. Finally, using

expression (A.30), we have that the market average return is µM = w⊤
Mµ = γσ2

M−αδ⊤wM ,

and dividing by the market volatility σM yields the market Sharpe ratio in Equation (A.2),

which completes the proof.

Proof of Proposition A.2

The vector of equilibrium average returns µ in the economy in Assumption A.1 is µ =

γβMσ2
M − αδ, as shown in Equation (A.30). Further, under Assumption 1, the Sharpe

ratio of the arbitrage portfolio admits the decomposition in Equation (8). Plugging µ

into this equation yields

SR(wA) =

√√√√ N∑
i=2

(
v⊤i (γβMσ2

M − αδ)
)2

σ2
PCi

, (A.31)

where vi is the ith eigenvector of the covariance matrix Σ. The result follows by noticing

that v⊤i βM = 0 for all i > 1 from the assumption that the first eigenvector is v1 = ι/
√
N ,

which completes the proof.
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