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Option-Implied Asymmetry and Market Returns

Abstract

We propose a novel method to estimate risk-neutral quantiles that uses sorting
to minimize an objective function given by a convex combination of call and put
option prices over the range of available strike prices. We demonstrate that this new
method significantly improves the accuracy of quantile estimates relative to existing
approaches. We use the method to estimate a novel risk-neutral quantile-based
asymmetry measure (RNA-Q) from S&P 500 index options. In contrast to existing
risk-neutral skewness measures, we find that RNA-Q is significantly negatively linked
to future market excess returns at horizons ranging from one to twelve weeks. Our
findings suggest that ex-ante systematic asymmetry does matter when predicting

excess market returns.
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1 Introduction

We propose a novel model-free approach to extract risk-neutral quantiles from option
prices that improves upon the most commonly used approach in the literature pioneered
by Breeden and Litzenberger (1978) and Banz and Miller (1978) resulting in more ac-
curate quantile estimates. We use risk-neutral quantiles from the tails of the risk-neutral
distribution to construct a quantile based measure of risk-neutral asymmetry (hereafter
denoted as RNA-Q). The leading term in RNA-Q is a quantile-based risk-neutral skew-
ness term. However, RNA-Q is also related to the higher order cumulants thus goes
beyond skewness in measuring asymmetry. We estimate RNA-Q using daily data on
S&P 500 index options and take RNA-Q to be a proxy for ex-ante market asymmetry.
We find that RNA-Q negatively predicts S&P 500 weekly excess returns at horizons
ranging from 1 to 12 weeks!. This result is robust to the inclusion of risk-neutral skew-
ness® as a control along with other commonly used market return predictors such as
the variance risk premium. In particular, we find that RNA-Q contains information on
subsequent market returns when estimated with tail quantiles but not when RNA-Q is
estimated using the most extreme tail quantiles with probability levels in the range of
1% to 3% in the left tail and 97% to 99% in the right tail.

Return distribution asymmetry is typically summarised by skewness, the third mo-
ment of return, a natural extension to distributions based on mean and variance alone.
The three-moment CAPM of Kraus and Litzenberger (1976) concludes that systematic
skewness (also referred to as coskewness), and not idiosyncratic skewness, should be

priced in the cross-section of stock returns. Indeed, conditional coskewness is shown

!This result holds regardless of whether we average the RNA-Q value over each trading day in the
week or evaluate RNA-Q on the last trading day in the week

*We use the Bakshi, Kapadia, and Madan (2003) measure of risk-neutral skewness (denoted as RNS-
BKM). This can be used as an alternative proxy for ex-ante asymmetry. RNS-BKM, formulated on the
the model-free methodology of Bakshi and Madan (2000) and Carr and Madan (2001), is frequently
used to to proxy for ex-ante skewness in the literature. See, for example, Rehman and Vilkov (2012),
Chang, Christoffersen, and Jacobs (2013), Conrad, Dittmar, and Ghysels (2013), DeMiguel, Plyakha,
Uppal, and Vilkov (2013), Stilger, Kostakis, and Poon (2017), Chordia, Lin, and Xiang (2021), for a
small sample of papers that use BKM skewness.



to be priced in the cross-section of stock returns in Harvey and Siddique (2000). Fur-
thermore, both the static three-moment CAPM of Kraus and Litzenberger (1976) and
the dynamic quadratic pricing kernel in Harvey and Siddique (2000) imply that ex-ante
market skewness negatively predicts subsequent market excess returns. However, as far
as the authors are aware, this result has so far eluded the literature or results have been
very weak®. Jondeau, Zhang, and Zhu (2019) find that average cross-sectional skew-
ness negatively predicts subsequent market returns but that market skewness contains
no predictive power for market returns. Chang, Christoffersen, and Jacobs (2013) ex-
tract risk-neutral skewness (RNS) and risk-neutral kurtosis estimates using the approach
of Bakshi, Kapadia, and Madan (2003) (hereafter we abbreviate this RNS estimate as
RNS-BKM) from S&P 500 index options. Taking RNS-BKM as a proxy for ex-ante mar-
ket skewness, they find that stocks with higher exposure to innovations in RNS-BKM
generate lower returns on average. This further emphasises the negative link between
systematic skewness and the cross-section of stock returns.

A number of models that deviate from the respresentative agent/expected utility
framework conclude that idiosyncratic along with systematic skewness may be priced
(see, e.g., Mitton and Vorkink 2007, Brunnermeier, Gollier, and Parker 2007 and Barberis
and Huang 2008). A negative link between ex-ante total skewness, proxied by RNS-
BKM extacted from individual stock options, and subsequent stock returns is found
in Conrad, Dittmar, and Ghysels (2013) agreeing with the aforementioned theoretical
models. Boyer and Vorkink (2014) show that ex-ante total skewness in option returns is
strongly linked with subsequent negative average options returns. However, more recent
results demonstrate a positive link between total RNS and subsequent stock returns.

In particular, Chordia, Lin, and Xiang (2021), Stilger, Kostakis, and Poon (2017) and

3Chang, Zhang, and Zhao (2011) show that market skewness estimated with daily return data is
marginally significantly associated with subsequent monthly market returns. The skewness coefficient
is significantly negative for monthly and quarterly returns and (in)significantly positive for semi-annual
(annual) returns. However, their data sample from January 1996 to December 2005 is very short making
it difficult to draw robust conclusions, in particular, when using longer horizon overlapping holding
periods.



Rehman and Vilkov (2012) (Bali, Hu, and Murray 2014) show that there is a positive
link between ex-ante stock skewness and subsequent stock returns (ex-ante expected
stock returns derived from analyst expectations) using RNS-BKM as a proxy for ex-
ante skewness. Informed trading (Chordia, Lin, and Xiang 2021), low RNS stocks being
overpriced combined with limits to arbitrage (Stilger, Kostakis, and Poon 2017) along
with mispricing in the stock market (Rehman and Vilkov 2012) are shown to be the likely
reasons for the positive causal link between RNS and stock returns. The contradictory
results regarding the sign of the link between RNS and stock returns can be partially
explained by the formation period used to estimate RNS (Stilger, Kostakis, and Poon
2017). A positive link between RNS and stock returns ensues when the most recently
available end-of-month data for RNS is used, whereas a negative relation is found when
the RNS is averaged over a longer formation period*. Borochin, Chang, and Wu (2020)
also show that RNS extracted from short maturity options positively predicts stock
returns due to informed trading whereas, RNS extracted from longer maturity options
negatively predicts stock returns consistent with skewness preference.

Along with the mixed empirical results discussed above there are a number of argu-
ments against the use of skewness as a risk factor. Brockett and Kahane (1992) show that
skewness preference is not necessarily a consequence of expected utility maximization
for investors with utility functions that have a positive third derivative. The coskewness
risk premium reported in Harvey and Siddique (2000) weakens considerably when cubic
utility functions are restricted to display risk aversion over the full wealth domain (Post
and Levy 2005, Post, Van Vliet, and Levy 2008). Martin (2013) shows that higher order
cumulants/moments (not just the third moment) of the consumption growth process
make a significant contribution to the equity risk premium in a consumption-based asset

pricing model that allows for infrequent disasters. Jiang, Wu, Zhou, and Zhu (2020)

4For instance, in Conrad, Dittmar, and Ghysels (2013) stocks are sorted based on RNS-BKM averaged
over the proceeding quarter with stock returns evaluated at a quarterly holding period. This result is
also consistent with mean reversion in RNS.



show that skewness is significantly negatively associated with subsequent stock returns
but only in periods of high volatility or high sentiment. Jiang, Wu, Zhou, and Zhu
(2020) show that their measure of asymmetry, which focuses on the asymmetry between
the probability of upside versus downside returns in excess of one standard deviation,
is more consistently negatively associated with subsequent stock returns than skewness.
This motivates us to assess whether a risk-neutral measure of systematic asymmetry,
that goes beyond skewness, is significantly linked to future market excess returns. Our
measure of asymmetry focuses on asymmetry in the risk-neutral quantiles located in the
tails of the distribution. Using the Cornish-Fisher (CF) expansion (Cornish and Fisher
1938, Abramowitz and Stegun 1972), we show that the leading term in our risk-neutral
asymmetry measure is equal to a quantile-based version of risk-neutral skewness but
that the asymmetry measure also depends on higher order standard cumulants.

We offer a number of contributions to the literature. First, we propose a new method
to estimate risk-neutral quantiles. Our method involves sorting an objective function
of option prices to the desired probability level a, whereas traditional methods (see,
e.g., Breeden and Litzenberger 1978) estimate risk-neutral quantiles by sorting an ob-
jective function of first derivatives of option prices. Sorting option prices, rather than
first derivatives of option prices, turns out to be crucial in reducing standard errors of
risk-neutral quantile estimates. Breeden and Litzenberger (1978) risk-neutral quantiles
estimated with nonparametric methods will have larger asymptotic variance compared to
quantiles estimated with our approach. This is because our approach sidesteps the need

for differentiation and thus avoids the “curse of differentiation”®.

Second, we demon-
strate the superiority of our method to extract risk-neutral quantiles relative to the
existing method with Monte Carlo experiments. We mimic S&P 500 index option price

quote conditions at different dates in the sample and show that risk-neutral quantiles

5The curse of differentiation refers to the fact that functions are estimated more accurately than
function derivatives when using nonparametric methods (see, e.g., Fan and Gijbels 1996, Ait-Sahalia
and Duarte 2003, and Bondarenko 2003).



have lower standard errors and do not suffer from quantile crossing (when extracted
quantiles are nonmonotonic in the probability level «) unlike the existing approach.
Third, we construct a novel measure of risk-neutral asymmetry that we refer to as a
standardised symmetric quantile sum (SSQS) and estimate SSQS using S&P 500 index
options. SSQS measures the relative asymmetry in the distance between the right strike
price to the forward price and the left strike price to the forward price in a zero cost
risk reversal consisting of a long position in a binary call option and a short position in
binary put option. Using the CF expansion, we show that SSQS is related to a quantile-
based risk-neutral asymmetry measure (RNA-Q) that has a leading skewness term along
with higher order terms related to higher order cumulants/moments. Fourth, we provide
theoretical motivation that excess market returns are decreasing in RNA-Q in a two-
period representative investor skewness aware CARA economy. Fifth, we show that
RNA-Q negatively predicts future excess market returns. This is in contrast to existing
measures of risk-neutral skewness, such as the measure proposed in Bakshi, Kapadia,
and Madan (2003), where there is no significant relation between RNS-BKM and future
excess market returns. As a result we show that ex-ante systematic asymmetry does
matter in the prediction of market excess returns. This result is robust to a number of
alternative option implied predictors of market returns popular in the literature.

The remainder of this article proceeds as follows. Section 2 provides more background
on option implied measures of asymmetry and tail risk. Section 3 introduces our novel
method to estimate risk-neutral quantiles and outlines, with Monte Carlo experiments,
how this novel method results in more accurate quantiles relative to existing methods.
Section 4 introduces our novel measure of risk-neutral asymmetry and links this risk-
neutral asymmetry to RNA-Q. Section 5 provides theoretical motivation. Section 6
outlines the S&P 500 index options data and the method used to augment the strike
price in order to extract risk-neutral quantiles. Section 7 reports empirical results and

the final section concludes.



2 Background

Option markets facilitate the pricing of elementary contingent claims (Arrow 1951;
Debreu 1952) along the state dimension, spanning and augmenting the payoff space
of financial markets (Ross 1976). Option prices at different strikes contain refined in-
formation on state variables that define the opportunity set of investors (Merton 1973).
Exploiting different characteristics of risk-neutral and physical return processes, under
certain circumstances, options can be used for direct inference on risk premiums, i.e.,
the wedge between two conditional expectations, for risk factors that are traditionally
considered unspanned. For instance, Bollerslev, Tauchen, and Zhou (2009) show that the
difference between the risk-neutral and physical conditional variances of equity returns,
the variance risk premium (VRP), is a proxy for the volatility of a time-varying volatility
in the consumption growth process, which is an important risk factor that is priced in
the ERP. Bollerslev and Todorov (2011) find that short-term out-of-the-money (OTM)
options contain information on the “crash-o-phobia” that is effectively purged from the
compensation for a time-varying jump risk. The “crash-o-phobia” accounts for a large
fraction of the ERP and the VRP (as defined in Carr and Wu 2009). Furthermore, under
the assumption that the physical large jump intensity process is symmetric, combined
with the empirical evidence that the risk-neutral right jump tail is negligible, Bollerslev,
Todorov, and Xu (2015) show that the risk-neutral negative jump variation approximates
the “crash-o-phobia” and helps explain the ERP predictability by the VRP.

Whilst investors may pay a premium for stocks with positive asymmetrical return dis-
tributions, investors have an aversion to negative asymmetry as more negatively skewed
stocks are more likely to be subject to left tail disaster risk. The quantile-based RNA
measure we propose is more closely related to option implied measures of disaster risk
than RNS-BKM as we use tail quantiles to extract RNA-Q. Furthermore, RNA-Q en-

capsulates higher order standard cumulants that are important in capturing the shape of



the return distribution. Options provide an alternative means of estimating time-varying
economic disaster risk without the need to consider a long time series to circumvent the
Peso problem or, as considered in Kelly and Jiang (2014), a large cross section of asset
returns. Furthermore, option-implied measures are real-time reflections of the current
states of the economy incorporating information on the conditional expectation of fu-
ture states. As a result, risk measures based on option prices are forward-looking and
potentially more informative than those estimated from historical data. However, option-
implied measures are risk-neutral therefore embed both the representative agent’s pref-
erences and subjective expectations with additional assumptions needed to disentangle
these components. Nonetheless, significant progress has been made in the literature
that allows for the recovery of either of these components from a risk-neutral distribu-
tion in a semi-model-free way (see, e.g., Ross 2015; Carr and Yu 2012; Martin 2017;
Jensen, Lando, and Pedersen 2019; Schneider and Trojani 2019; Kadan and Tang 2020;
Jackwerth and Menner 2020).

Certain issues arise when extracting option-implied information using model-free
measures or through, more technically, spanning (see Bakshi and Madan 2000). Option
prices are quoted in the market only for a finite strike range and over a discrete set of
strike prices. This renders inferences on risk-neutral distributions problematic, especially
at the tails (see, e.g., Jiang and Tian 2007; Figlewski 2009; Andersen, Bondarenko,
and Gonzalez-Perez 2015). Despite these limitations, the estimation of option-implied
distribution tails and disaster risk measures has been a topic of significant research
activity (see, e.g., Carr, Ellis, and Gupta 1998; Bollerslev and Todorov 2011; Du and
Kapadia 2012; Vilkov and Xiao 2013; Siriwardane 2015; Hao 2017; Lu and Murray
2019). The quantile-based RNA measure we propose is particularly sensitive to deep
out-of-the-money option prices. As a result, in the next section, we introduce a novel
method to estimate risk-neutral quantiles that is more robust to measurement error in

the tails than the existing quantile estimation approach.



3 Model-Free Quantiles

In this section a novel method to estimate risk-neutral quantiles is introduced. Provided
the strike range is sufficient to encompass the quantiles to be estimated, this method
leads to risk-neutral quantile estimates that have smaller estimation errors relative to

existing procedures, particularly for quantiles in the tails of the distribution.

3.1 Definition

The method we propose to estimate risk-neutral quantiles is related to the objective
function introduced in quantile regression (see Koenker and Bassett 1978). We apply

the objective function under the context of option pricing.
Proposition 3.1. The o quantile for a risk-neutral distribution of horizon T', Qa,T, 15
the solution to the following minimization problem

Qa1 = arg ?i% (1—a)Put(K,T)+aCall (K,T), (1)
€

where K denotes the strike price and K denotes the set of strike prices.

Proof. The objective function is a nonnegative weighted sum of convex functions given
the no-arbitrage condition, i.e., the second derivative of put or call prices with respect to
strike price is positive (see, e.g., Carr and Madan 2005). Hence, the objective function
is convex (see, e.g., Boyd and Vandenberghe 2004) and the first order condition with

respect to K gives a global solution:

K 0
2 [(1-@ e—TfT/O (K = $)aFr(s) +ac™" [ (5~ K)dPr(s)| = 0

(1 - ) Fp(K) + a (Fp(K) — 1) = 0

FT(K) (6]
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where 7; denotes the risk-free rate and Fr(S) denotes the risk-neutral distribution func-

tion of the optioned asset price S for horizon T'. O

In Proposition 3.1, no assumption is made regarding the return generating process,
except for the implicit assumption of no-arbitrage and consequently the existence of
a risk-neutral measure. Thus, risk-neutral quantile estimates that are the solution of
Eq. (1) are model-free. In the following, we refer to risk-neutral quantiles estimated as

solutions to Eq. (1) as model-free quantiles (MFQs).

3.2 Illustrative Example

Our novel procedure to estimate risk-neutral quantiles is as follows. We first augment the
discrete set of available option price quotes to obtain a continuum of call and put option
prices over a high resolution grid of strike prices. We then solve the optimization problem
by finding the value on the z-axis (strike grid) that minimizes the objective function in
Eq. (1). We refer to this approach of finding the minimum as sorting as it does not require
information on the derivatives of the objective function. This optimization problem is
convex if the set of augmented high resolution chain of option prices is convex in the
strike price. This is equivalent to the principal of no-arbitrage holding for the augmented
high resolution chain of option prices. In practise, this requires that the input market
option price quotes are convex in strike and that the augmenting procedure preserves
this convexity. We return to this issue in Section 3.4.

Figure 1 illustrates the method by depicting the estimate for the risk-neutral price
quantile o, when o = 5% under the Black-Scholes model. We set the underlying price
to 100, the risk-free rate to 0, time to maturity to 1 year, and volatility to 20%. The
top panel depicts the objective function of Eq. (1) and the solution that minimizes
the objective function by sorting where, for illustration purposes only, 10° strikes are
equally spaced between 50 and 150 (in a subsequent subsection we conduct Monte Carlo

experiments to assess the performance of the method using a set of option price quotes

11



across the strike range that replicate index option market conditions). The bottom panel
depicts the cumulative distribution function of the log-normal distribution given these
parameters. Figure 1 shows the procedure delivers (almost) the exact (55 which is
equal to 70.54. However, it should be noted that Proposition 3.1 is model-free hence our
procedure does not rely on the assumption that the underlying price follows geometric

Brownian motion.

[Figure 1 about here.]

3.3 Discussion

In their seminal paper Breeden and Litzenberger (1978) (hereafter BL) show that the
pricing of elementary contingent claims (or Arrow-Debreu securities) is equivalent to
solving second partial derivatives of a European call option pricing function with re-
spect to strike prices. Inherent in this result is the connection between a risk-neutral
cumulative distribution function (RN-CDF) and first partial derivatives of a European
call or put option pricing function with respect to strike prices (see, e.g., Figlewski 2009)

given by

i erfT(?Call (K, T)

F(K) K +1, or (2)
F(K) = eTfTaP“;g{’T) : (3)

where F'(K') denotes the RN-CDF of the optioned asset price and we have suppressed the
dependence on maturity 7' to save on notation. To estimate quantiles with the BL ap-
proach (hereafter referred to as BLQs), the RN-CDF is first estimated by differentiation

and then the quantile ), is given by the solution to:

Qo = arg min | F (K) — of.

12



As F (K) can be estimated with a chain of call or put options using either Eq. (2) or

Eq. (3), BLQs can be obtained using either:

70Call (K,T)

Qo = arg in [e'f OK +1-af, or ()
0 Put (K, T)
= in e T2 22V ")
Qo = arg min |e 5K al. (5)

The inputs to the model-free quantile estimator proposed in Eq. (1) are option prices,
which renders Eq. (1) more flexible when used in practice compared to the BL approach.
By applying put-call parity to Eq. (1), the quantile extraction method can be rewritten

either as:

Qo = arglr?i% Call(K,T) - (1—a) (S—e"TK), or (6)
€
— 2 _ T
Qa arg min Put (K,T)+a (S—e K) . (7)

Comparing Eq. (6) with Eq. (4) or Eq. (7) with Eq. (5) we see that the MFQ
method requires minimising an objective function based on option prices whereas the
BLQ method requires minimising an objective function based on the first derivative of
option prices. In theory when an infinite number of market option price quotes are
available over the strike range, the BLQ and MFQ solutions will coincide. Figure 2
depicts the two objective functions along with the corresponding quantiles when option
prices are assumed to follow a Black-Scholes model. The spot price is S = 100, the
interest rate is r = 0, the dividend yield is ¢ = 0, the time-to-maturity is 7' = 1, and
volatility is o = 0.20. The set of strike prices ranges from 10 to 100 in steps of 0.01 index
points. The true Black-Scholes quantiles at 1%, 5% and 10% are, respectively, 61.55,
70.54 and 75.85. The MFQ and BLQ estimates coincide in this case at, respectively,
61.55, 70.54, and 75.86.

[Figure 2 about here.]
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In practise option price quotes are observed with measurement error due to discrete-
ness of prices, asynchronous trading, bid-ask spreads and variation in liquidity across
moneyness. Furthermore, option price quotes are available at a finite number of strike
prices and over a finite strike range. As a result, to estimate quantiles the discrete
set of option price quotes must be augmented to obtain a continuum of call and put
option prices on a high resolution grid of strike prices. BLQs and MFQs will coincide
if a parametric model is used to augment the set of available option price quotes to a
high resolution grid, as shown above for the case of the Black-Scholes model. However,
BLQs and MFQs will not necessarily coincide if nonparametric methods are used to aug-
ment the set of available option price quotes. BLQs require nonparametric derivative
estimates whereas only level estimates are needed for MFQs. As nonparametric level
estimates have lower asymptotic variance than nonparametric derivative estimates (see,
e.g., Fan and Gijbels 1996), MFQs will be more accurate than BLQs.

Nonparametric estimators are commonly used for inference on risk-neutral distribu-
tions (see, e.g., Ait-Sahalia and Lo 1998; Ait-Sahalia and Duarte 2003; Fengler and Hin
2015; Ludwig 2015). Compared with parametric models, nonparametric estimators are
not subject to misspecification errors thus, naturally complement model-free measures
that require stringent conditions on the set of strike prices but (almost) no assumptions
on underlying return distributions. Nevertheless, nonparametric estimates in general
converge much slower than those of parametric models. The rate of convergence is even
slower when estimating derivatives, which is anecdotally known as the “curse of dif-
ferentiation” (as previously discussed in Section 1). It is also cumbersome to impose
no-arbitrage conditions on nonparametric estimators. For these reasons, nonparametric
inferences in the literature are mostly conducted on risk-neutral distributions of market
indices, e.g., the S&P 500 index, where there is usually a large number of option price
quotes available over different strikes at a given maturity. Moreover, when using the

BLQ method (Eq. (4) or Eq. (5)) to estimate risk-neutral quantiles, a nonparametric

14



estimator with an objective function that is designed to optimize the goodness-of-fit of
levels (option market prices) as opposed to first derivatives is first applied to augment

existing strike prices®

. Proposition 3.1 accommodates the use of sorting or differenti-
ation methods to estimate risk-neutral quantiles, whereas when differentiation followed
by sorting is used to solve risk-neutral quantiles (based on Breeden and Litzenberger
1978), this inevitably exposes the quantile estimates to higher standard errors by lower-
ing the rate of convergence. Moreover, MFQs are always monotonically increasing with
a, even when the strike augmentation procedure does not guarantee convexity. To see
this, we note that when « is increased in either Eq. (6) or Eq. (7) this rotates the object-
ive function clock-wise. Given a solution to the objective function @Q),, at a given value
of a1, a new solution @), at as, where as > aq, will either be larger or remain at the
current solution, regardless of whether the strike augmentation procedure (smoother) is

locally concave or convex. Quantile crossing can happen under BLQs when the strike

augmentation procedure does not guarantee convexity.

3.4 Monte Carlo Experiments

To illustrate the improved convergence properties of MFQs we conduct a number of
Monte Carlo experiments. We simulate a chain of noisy Black-Scholes out-of-the-money
(OTM) call option prices and OTM put option prices using the approach in Bondarenko
(2003). The noise in the option price is assumed to be a uniform random variable
with a spread equal to half the maximal allowable spread according to CBOE rules
(see Appendix A for more details). We calculate ITM option prices from OTM option
prices using put-call parity. As the maximum allowable spread increases with the bid

quote of the option price, options that are close to the money (further from the money)

5The goodness of fit of a nonparametric linear estimator amongst other linear estimators can be
measured by the linear minimax efficiency (see, e.g., Fan and Gijbels 1996). In particular, local linear
and quadratic regression estimators achieve the optimal linear minimax efficiency for the C> (twice
continuously differentiable) class on estimating interior levels and slopes, respectively. The C5 class is a
bottom line requirement for modelling option prices, such that elementary contingent claim prices exist
(see, e.g., Breeden and Litzenberger 1978; Hardle and Hldvka 2009).

15



will have higher (lower) measurement error. As we only simulate OTM options in this
experiment, options that are closer to the money have the highest prices and hence the
highest measurement error in absolute terms. Whereas, the measurement error in far
OTM simulated option prices is larger in relative terms.

Table 1 depicts results from a Monte Carlo simulation where we compare model-
free quantiles (MFQs) estimated using the approach in Eq. (1) with the Breeden and
Litzenberger (1978) approach (BLQs). It should be noted that BLQs are also model-free
estimates. In this table we deliberately do not preprocess the simulated noisy option
prices to impose convexity with respect to strike prices. In the next table we do consider
the impact of ensuring that the input option data is convex in the strike price. We
replicate the conditions of the S&P 500 index near maturity chain of options on the
most recently available data in our sample which corresponds to June 28, 2019. In this
case there are a large number of option price quotes available over a wide range of strike
prices. On this day, there were 160 different strike prices ranging from a minimum strike
price of 2310 to a maximum strike price of 3155. Most option price quotes are spaced
at uniform intervals of 5 index points, although the 2", 5% 6th 7t and 8™ furthest
OTM put option price quotes are 10 index points away from their nearest neighbours to
the left. In the interests of replicating the experiments, we round down the inputs to the
Black-Scholes model. As a result we use the following inputs to simulate Black-Scholes
option prices: spot price S = 2942, interest rate r = 0.02, dividend yield ¢ = 0.02, and
time-to-maturity 7" = 0.08. We use a single implied volatility from the option quote
with a strike price that is the closest to the forward price, i.e. an ATM forward implied

volatility o = 0.13 .
[Table 1 about here]

Panel A of Table 1 compares the performance of MFQs to BLQs when the coarse

grid option price chain is interpolated with cubic splines, with no smoothing applied, to
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obtain a fine resolution grid of option prices. We first convert the noisy OTM put (call)
option prices to ITM call (put) option prices. We then combine the simulated OTM put
(call) option prices with ITM put (call) options prices so that we have a full chain of put
(call) option prices across the strike range. We use a cubic spline to interpolate the chain
of simulated noisy call option prices at a very fine grid of strike prices with a uniform
interval of 0.01 index points, where the original set of available option price quotes has a
strike interval of 5 (or 10) index points. We separately interpolate the chain of simulated
noisy put option prices. For MFQs, we form the objective function given in Eq. (1) for
a given probability level « and find, by sorting, the point on the z-axis that minimizes
this objective function. This point also determines the quantile corresponding to the
probability level a. For BLQs, we numerically differentiate the fine grid of call option
prices with respect to the strike price to estimate the CDF according to equation Eq. (2)
and find, by sorting, the quantile on the CDF z-axis corresponding to the probability
level o on the y-axis. We estimate MFQs and BLQs for o = 1%, 2%, ...,99%. We also

report the root mean square error, given by

RMSE = \/Z (Gu—2s)’ (8)

for o = 1%,2%, ...,99%, where Q(c) are the estimated quantiles using either MFQs
or BLQs and QP%(a) are the true Black-Scholes quantiles. This measures, for one
simulation of an option price chain, the deviation of estimated quantiles from Black-
Scholes quantiles at 99 different quantile values. We then average the RMSE over all
simulations.

As is clear from the results in Panel A of Table 1, MFQs have lower standard errors
than BLQs when using cubic splines to interpolate the noisy option price chain. In
particular, the standard errors are approximately 10 times lower at the 1% to 5% left

tail quantiles and more than 3 times lower at the 95% to 99% right tail quantiles. The
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mean RMSE is 34.162 index points for the BLQ method and 7.835 index points for the
MFQ method. The ratio of the mean RMSEs is 4.360 meaning that the BLQ method
results in over 4 times higher RMSE than the MFQ method over the entire range of
quantiles estimated. Figure 3(a) depicts the simulation with the highest RMSE value
for the BLQ method and demonstrates the poor performance of BLQs relative to MFQs,
particularly at the lower left quantiles. It is clear that BLQs result in quantile crossing
whereas MFQs do not. Figure 3(b) depicts a typical simulation where it is still clear that
BLQs are considerably more noisy than MFQs. We do not plot the simulation with the
highest RMSE for the MFQ method but it should be noted that this simulation results

in even higher RMSE for the BLQ method.
[Figure 3 about here.]

Panel B of Table 1 depicts results from a Monte Carlo simulation that compares
MFQs and BLQs but where a nonparametric smoothing method is used to augment the
noisy option price chain. We simulate market option prices with measurement error as
before. However, we use a nonparametric local linear regression (LLR) method (see, e.g.,
Ait-Sahalia and Duarte 2003) to generate option prices at a high resolution grid of strike
prices, with a strike interval of 0.01 index points, by smoothly approximating the chain
of low resolution noisy option prices. We do this separately for the call and put option
price chain. We use a Gaussian kernel and, for each simulation, the optimal bandwidth
for LLR is chosen by leave-one-out least squares cross-validation (LSCV) using the chain
of call option prices”. The use of LSCV in nonparametric physical quantile estimation
is shown to be asymptotically optimal under certain conditions in Li, Lin, and Racine
(2013). We estimate MFQs as previously outlined but using the two smoothed high

resolution option price chains (separately smoothed call and put chains) as opposed to

"In further experiments we selected the optimal bandwidth using only OTM call option prices and
OTM put option prices but the results are very similar to the results when using call option prices alone
and are omitted to save space.
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the cubic spline interpolated option price chains. To estimate BLQs with LLR we do not
need to numerically differentiate the call option chain with respect to the strike price
as we use the slope coefficient from LLR as the estimate of the first derivative for each
grid point. However, the standard error for higher order derivatives is larger than for
level estimates in local polynomial regression (see Eq. (3.7) Fan and Gijbels 1996 where
it is shown that the asymptotic conditional variance of a LPR derivative estimate, m®),
increases with v, the order of the derivative, with a denominator proportional to h'+2?
where h is the grid spacing with A — 0 in the asymptotic analysis, see also Eq. (3.16)
Ait-Sahalia and Duarte 2003). Thus, even though we are using an estimate of the slope
from the LLR output, we still expect MFQs to be more accurate than BLQs due to the
“curse of differentiation”®.

The results in Panel B of Table 1 demonstrate a marked improvement in BLQs
compared to the previous case in Panel A when no smoothing is applied to the option
price chains. This is to be expected as numerical differentiation of noisy data amplifies
the noise (see, e.g., Ahnert and Abel 2007 and Ling 2006). However, MFQs still have
lower standard errors, in particular, at the more extreme quantiles of 1% to 5% and 95%
to 99%. The mean RMSE is 9.277 index points for the BLQ method and 6.578 index
points for the MFQ method. The ratio of the mean RMSEs is 1.41 meaning that the
BLQ method has an average RMSE that is approximately 41% higher than the average
RMSE for the MFQ method across all the quantiles evaluated. Figure 3(c) depicts the
simulation that results in the highest RMSE value for the BLQ method. This highlights
the potential inaccuracies of BLQs, in particular, at the left most extreme strike prices
even after smoothing is applied. In this simulation, where the leftmost OTM put option
prices have larger measurement error by chance, MFQs are much more accurate than

BLQs in capturing the left most quantiles. Figure 3(d) depicts a more typical simulation

8Unlike the curse of dimensionality that only has serious practical implications once the dimension
of the problem is > 4, the curse of differentiation applies even when comparing first derivative estimates
to level estimates.
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where BLQs and MFQs are so close that they are indistinguishable to the eye in the
plot.

In Panel C of Table 1 we use local quadratic regression (LQR) to augment the noisy
option price chain. The optimal order of the polynomial to use in LPR is k£ 4+ 1 when
estimating a derivative of a function of order k, based on asymptotic analysis (see, e.g.,
Fan and Gijbels 1996). As a result we assess the performance of LQR given that we
estimate a first order derivative in BLQs. As with LLR we use leave-one-out LSCV to
select the bandwidth. The accuracy of the BLQ method deteriorates when LQR is used
in place of LLR. The mean RMSE value rises to 19.045 index points for LQR relative to
9.277 index points under LLR and 34.162 index points under cubic splines. The accuracy
of the the MFQ method also decreases when LLR is replaced with LQR but not nearly
as drastically as that of the BLQ method. The mean RMSE value for the MFQ method
is 7.375 index points under LQR which is higher than the mean RMSE value of 6.578 of
the MFQ method under LLR but lower than the mean RMSE value of 7.835 when using
the MFQ method with cubic splines. Furthermore, MFQs have lower standard errors
than BLQs, in particular, at the more extreme quantiles of 1% to 5% and 95% to 99%.
In agreement with Ait-Sahalia and Duarte (2003) we find that asymptotic theory is not
necessarily a good guide to follow when dealing with sample sizes typically encountered
in index options markets.

The “curse of differentiation” applies to any nonparametric method (see, e.g., Stone
1982). This is highlighted in Panel D of Table 1 where we use cubic B-splines to smooth
option price chains. We use leave-one-out LSCV to choose the number of interior knots
in the B-spline. The interior knots are placed in the strike domain to divide the strike
price grid into uniform partitions. For example, when ny interior knots are used, knots
are placed to divide the strike domain into 1+ nj uniform partitions. As with the cubic
spline, LLR and LQR approaches, MFQs are more accurate than BLQs. MFQs have

lower standard errors at the more extreme quantiles of 1% to 3% and 97% to 99%. The
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mean RMSE is 5.29 index points for the BLQ method and 5.22 index points for the MFQ
method. The ratio of the mean RMSEs is 1.01 thus, the BLQ method is 1% less accurate
than the MFQ method in terms of average RMSEs. Figure 3(e) depicts the simulation
that results in the highest RMSE for BLQs. This figure highlights the problem that the
BLQ method has at the left tail of the distribution as the B-spline fits the left boundary
of the data. Not only do we observe quantile crossing, but the quantile estimates in
the lower left tail are often 200 index points away from the true quantile value. This
particular simulation causes problems for the BLQ method at the left tail but the MFQ
method performs well and MFQs are more accurate than BLQs in capturing the left
tail quantiles. Figure 3(f) depicts a typical simulation in terms of RMSEs and, even in
this average simulation, MFQs are more accurate than BLQs at the left extreme strike
prices.

In Table 2 we repeat the simulations in Table 1 but preprocess the simulated noisy
option price data to ensure that the option prices are convex with respect to the strike
price. We use the constrained least squares approach of Ait-Sahalia and Duarte (2003)
to effectively clean (or “convexify”) the noisy option price input data to ensure it is
convex in strike price. Panel A of Table 2 reports results when cubic splines are used to
augment the strike space. As cubic splines do not necessarily preserve convexity, we note
that the resulting augmented high resolution option price chains will not necessarily be
convex in strike, even though the coarse grid of input option prices are convex in strike.
BLQs are much better behaved using preprocessed convex data with cubic splines. The
mean RMSE value falls from 34.16 index points in Panel A of Table 1 to 8.27 index
points in Panel A of Table 2 when the input data is cleaned. However, it should be
noted that MFQs remain more accurate with a mean RMSE value that is 9% lower
than the corresponding value for BLQs. Panel B and C of Table 2 report results when
LLR and LQR are used, respectively, to augment the strike space. LLR preserves the

convexity of the input option prices, as shown in Ait-Sahalia and Duarte (2003), so that
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the augmented high resolution option price chains remain convex in strike price. As a
result we see a marked improvement in BLQ performance relative to their performance
in Panel A. Under LLR, MFQs have mean RMSE values that are 0.4% lower than the
corresponding values for BLQs when using leave-one-out LSCV to select the bandwidth.
Preprocessing the input option data to ensure it is convex in strike along with the use
of a convexity preserving smoothing process results in improved performance for BLQs
however, MFQs are still marginally more accurate as evidenced by mean RMSE values.

LQR is not guaranteed to preserve convexity. However, according to asymptotic
analysis, local regression with a polynomial of order 2 is optimal when estimating the first
derivative required for BLQs. The former effect outweighs the latter in our experiments
as LQR quantiles are less accurate than LLR quantiles under both the BLQ and MFQ
method. Furthermore, the difference in performance between BLQs and MFQs widens
with BLQs having mean RMSE values that are 7% higher than the corresponding values
for MFQs compared to only 0.4% higher under LLR. Panel D of Table 2 report results
when smoothing B-splines are used to augment the strike space. The number of knots are
chosen by leave-one-out LSCV. Here we see that that the combination of preprocessing
data along with smoothing the data with B-splines actually increases the mean RMSE
values relative to the case where no preprocessing occurs in Table 1. For example, BLQs
have a mean RMSE value equal to 5.29 index points in Panel D of Table 1. This increases
to 7.22 index points in Panel D of Table 2. Similarly, MFQs have a mean RMSE value
equal to 5.22 index points in Panel D of Table 1 which increases to 6.88 index points in
Panel D of Table 2. In this case, the data is over smoothed when preprocessing along
with smoothing B-splines are used to extract quantiles whether BLQs or MFQs are used.
Despite the drop in performance induced by using convexity preprocessing before the

application of smoothing B-splines, MFQs remain more accurate than BLQs.

[Table 2 about here]
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We repeat the above experiments using a two-state mixture lognormal model (see,
e.g., Bahra 1997 and Melick and Thomas 1997) to generate option prices that are a
closer match to market prices. We do this both without and with preprocessing of input
option prices to ensure convexity. We also conduct additional simulations replicating
S&P 500 index option market conditions on a date approximately half way through our
sample (July 30, 2007) and on an earlier date in our sample (July 30, 1999). In these
cases there are, respectively, 52 and 30 unique strike option price quotes available. In
the vast majority of cases the MFQ method outperforms the BLQ method with lower
mean RMSEs and lower standard errors. Further discussion is deferred to Appendix A.
In the next section we introduce a quantile-based measure of risk-neutral asymmetry

that we link to skewness and higher order moments via the CF expansion.

4 Quantiles-Based Measures of Risk-Neutral Asymmetry

In this section we propose a novel measure of return asymmetry that we refer to as stand-
ardised symmetric quantile sums (SSQS). We then introduce a quantile-based asymmetry
measure that is based on a CF expansion of SSQS.

Using the CF expansion up to third order (see, e.g., Cornish and Fisher 1938 and
Abramowitz and Stegun 1972), we write return quantiles, ¢, (7;), in terms of standard

normal quantiles, z,, as follows:

da(rs) = u(rr) + 007z + golre) (22 = 1) ()

where 7 is the return at horizon 7 = T — ¢, p(r;), o(r;) and y(r;) are, respectively,
the mean, standard deviation and skewness of the return distribution at horizon 7. We

then write risk-neutral price quantiles Q,(S;) in terms of risk-neutral return quantiles
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as follows:

InQ4(Sr) =In Sy + ga(rs)
~1InSy+ wu(ry) + o(rs)za + éU(TT) (Zi - 1) v(r7)

=InFr+o0(ry)za + éa(m) (22 = 1) ~(rr) 9)

using the fact that the log forward price is given by In F; = In Sy + p(r;) with p(r;) =
(r —q) 7. Let opgar denote the risk-neutral standard deviation which we estimate using

the method in Bakshi, Kapadia, and Madan (2003). We define SSQS as follows:

In (Qa(S5r)/F) + I (Q1-a(5r)/F)

oprM(Tr)

(Zi - 1) 7(TT) (11)

SSQSu(ry) =

for a € [0,50%), where Eq. (11) is derived by substituting Eq. (9) for both o and 1 — «
into Eq. (10). SSQS measures the asymmetry in the distance of the right strike price (1-«
quantile) from the forward price and the left strike (« quantile) from the forward price in
a zero cost binary option risk reversal?. The asymmetry measure is expressed in terms of
returns relative to the forward price required to obtain (pay) a dollar payoff conditional
on the right 1 —« (left o) quantile being reached at horizon 7 by the underlying optioned
asset. We further standardise to units of risk-neutral standard deviation to purge the
impact that standard deviation has on quantiles (see Eq. (9)).

For a given quantile level «, the term multiplying skewness in Eq. (11) is a fixed
scaling factor. To obtain a quantile-based risk-neutral asymmetry estimate (RNA-Q)

with skewness as the leading term we then invert Eq. (11) to express skewness v(r;) as

9This implicitly assumes that left quantile is negative and the right quantile is positive.
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a function of SSQSq(rr):

RNA-Qu(rr) :i=~(r;) = (Z23_1)SSQS&(7’T). (12)

The relation between RNA-Q and SSQS is not defined when z, = %1, corresponding to
a =~ 16%. The denominator term 22 — 1 = 0 when z, = +1. Hence, RNA-Q should only
be used for quantiles that are more (less) than one standard deviation away from the
mean. In the appendix we show that RNA-Q also depends on higher order cumulants
when higher order CF expansions are used.

RNA-Q deviates from the robust measure of asymmetry proposed in Hinkley (1975)
(a generalisation of which is proposed in Groeneveld and Meeden 1984 and used in
Ghysels, Plazzi, and Valkanov 2016) as RNA-Q uses the risk-neutral standard deviation
as the denominator as opposed to the interquantile range. Both SSQS and RNA-Q can
be viewed as alternative measures of asymmetry in a risk-neutral return distribution that
are more robust to outliers than the usual moment based skewness measure. Related
asymmetry measures of return distributions under the physical measure are studied in
Ghysels, Plazzi, and Valkanov (2016) and Jiang, Wu, Zhou, and Zhu (2020). Ghysels,
Plazzi, and Valkanov (2016) use a quantile-based measure of asymmetry and link this
measure to physical skewness using the CF expansion. Using their quantile-based skew-
ness measure, Ghysels, Plazzi, and Valkanov (2016) show that international portfolios
with larger weights in emerging market indices have significantly positive skewness which
increases the certainty equivalent gains of these portfolios. As mentioned previously, Ji-
ang, Wu, Zhou, and Zhu (2020) propose a measure of asymmetry given by the difference
in the upside and downside tail probabilities that stock returns exceed a one standard
deviation move, and an entropy scaled version of this measure. They find that their
tail based asymmetry measure (estimated using historical density functions on single

stocks) results in stronger cross-sectional pricing effects than skewness. This suggests
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that tail focused measures of asymmetry can be useful in empirical studies. Further-
more, the theoretical argument used in Jiang, Wu, Zhou, and Zhu (2020) to motivate the
pricing of asymmetry shows that market risk-neutral asymmetry, as opposed to single
stock physical asymmetry measure, is priced. However, physical asymmetry measures
are used in their cross-sectional pricing analysis. This provides motivation to assess
whether our risk-neutral ex-ante measure of asymmetry, RNA-Q, predicts excess market
returns. Before progressing to empirical results, we provide a different theoretical argu-
ment to that in Jiang, Wu, Zhou, and Zhu (2020) although both approaches amount to
the same conclusion: that the equity risk premium is a declining function of risk-neutral

asymmetry in a skewness aware economy.

5 Theoretical Motivation

To motivate our following empirical results we show that the ERP is a decreasing mono-
tonic function of RNA-Q using the Smooth Half Normal (SHN)-CARA economy of
de Roon and Karehnke (2017). Combining the SHN density function with a represent-
ative investor CARA economy, de Roon and Karehnke (2017) show that the ERP is a
decreasing function of physical skewness and examine the variation of optimal portfolio
weights as a function of skewness. We derive the risk-neutral density function and closed
form expressions for RNA-Q in a SHN-CARA economy.

The SHN density function is given by:

Af(zsm,sy) if 2 <m,
g9(x) =
Xof(x;m,sg) if x> m.
where f(x; iz, 0,) is the normal density function with mean u, and standard deviation

0z, A1 and A9 are chosen to ensure the density function is continuous and integrates to

one, and where s1, so and m are chosen to match the mean pu, variance o and skewness
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7 of the excess return distribution. Following de Roon and Karehnke (2017) we assume
a two period economy with a representative investor that maximizes a CARA utility
function u(zx) = —e~0wo(147r ) where 6 is the risk aversion coefficient, wp the initial
wealth, r¢ is the risk-free rate and x is the excess return with x ~ SHN (i, 0,7). The
risk-neutral density g*(z) is related to the physical density function (subject to conditions

such as complete and frictionless markets) as follows:

Fp) — (147 +2))g(x)
90) = Tty 4 2)9(@)

The resulting risk-neutral density function is given by:

N f(asm — Owgs?, s1)  if 2 < m,

g (x) =
sf(x;m — Owgs3, so) if > m.
where
e
o = 3 (udsd),

c=Ac1® (9’[0081) + Agca (1 - (911)082))

for i = 1,2 and where ®(z) denotes the standard normal CDF.

Left tail physical quantiles for the SHN density function are given in de Roon and
Karehnke (2017). For completeness, we present left and right tail physical quantiles
below along with risk-neutral quantiles, as derived in this paper, in a SHN-CARA eco-

nomy:

qg:q)<)%>31+m7 Q1—a:q)<1_)%>32+m7
g = (%) s1+m —Owos?, q¢f_,=® (1 - %) s9 +m — Qwps3,
1
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where g, (¢) denotes the physical (risk-neutral) quantile. Hence, the risk-neutral asym-
metry measure SSQS is given by:

1
SSQS, = — <¢’ <Oi> s1+ @ <1 - Oi) 59 — Owo(st + s3) + 2 (m — rf)>
o* Al A5

where « is the quantile probability level (e.g., « = 5%) and where o* is the risk-neutral
standard deviation (the formula for ¢*? is given in Appendix B). In a SHN-CARA
economy, the risk-neutral standard deviation ¢* is different to o when physical skewness
v # 0. The VRP, defined as VRP = 0*? — 0?2, is positive for negative skewness, negative
for positive skewness and zero for zero skewness. However, the variation in ¢* with
skewness does not alter the fact that the ERP is negatively related to the RNA-Q in
a SHN-CARA economy using realistic parameter values as depicted below. Finally,

RNA-Q is given by:

3
RNA—Qa - (2(217_1)55625&

We use the same parameters as de Roon and Karehnke (2017) for ease of comparison.
Assume excess returns have a mean pu = 7.28%, a standard deviation o = 14.96% and
physical skewness is varied from —0.95 to 0.8. We use an initial wealth wg = 1 and a
risk-free rate ry = 0. When skewness is zero the risk aversion parameter that results in
the investor being fully invested in the risky asset is given by § = 3.2829 and, following
de Roon and Karehnke (2017), we round 6 to 3.25. Figure 5 presents results for the
SHN-CARA economy. Panel (a) depicts the physical and risk-neutral density functions
for a single skewness value of -0.5. Panel (b) depicts the ERP versus physical skewness
with a clear negative link from skewness to ERP replicating the result in de Roon and
Karehnke (2017). Panel (c) shows the variation of RNA-Q and quantile-based physical
asymmetry (PA-Q) with physical skewness. As expected both RNA-Q and PA-Q are

increasing functions of physical skewness with RNA-Q more sensitive to skewness than
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PA-Q. Finally, panel (d) illustrates the monotonic negative link from RNA-Q to ERP.
[Figure 5 about here.]

The above analysis can also be applied to the case of a representative investor with an
S-shaped utility function (in place of a CARA utility function) along with a probability
weighting scheme, that puts more weight on the tail probabilities, as in the Cumulative
Prospect Theory (CPT) of Tversky and Kahneman (1992). Barberis and Huang (2008)
use the CPT approach to motivate investor skewness preference. de Roon and Karehnke
(2017) examine the relation between the ERP/optimal portfolio weights and physical
skewness in such a SHN-CPT economy. Using the SHN-CPT economy with the same
parameters as de Roon and Karehnke (2017), we find that the ERP is also a decreasing
monotonic function of RNA-Q'Y with an even stronger negative link between ERP and
RNA-Q relative to the link in the SHN-CARA economy. Thus, a monotonic negative
association from RNA-Q to the ERP can be motivated using either a SHN-CARA or
SHN-CPT economy.

6 Data and Strike Augmentation

In this section we outline the data and method used to estimate a time series of risk-
neutral quantiles for the S&P 500 index. This panel of quantiles is then used to construct

RNA-Qs along with control option implied predictors.

6.1 Data

The option data we use is from OptionMetrics. The sample period is from January
4, 1996 to June 28, 2019. We focus on constant 30-day risk-neutral quantiles which

can be estimated using the most liquid options. We filter the S&P 500 index options

0Details are omitted to save space but are available upon request.
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sample following the VIX methodology!!. Prior to October 6, 2014, a near-term (with
at least one week to maturity) and a next-term SPX option chains are included in the
sample. Since then, the sample also includes Friday settled Weeklys'? and contains two
option chains with more than 23 days but no more than 37 days to maturity. We adjust
maturities of options to distinguish between AM and PM settlements. The AM settled
SPX options are counted one day less than the PM settled SPXW options. For SPX
options, we use settlement dates as opposed to expiration dates to calculate maturities.
The sample is further cleaned by eliminating any zero bid quotes, and by excluding any
further OTM options once two zero bid quotes are encountered. In particular, we define
an at-the-money (ATM) option by its strike price that equals to the futures price!3. We
obtain realized variance data from the Oxford-Man Institute of Quantitative Finance
with daily data available from January 2000 to the end of our sample. Prior to 2000,
we estimate S&P 500 realized variance using the daily sum of 5-minute squared returns
of the SPDR S&P 500 ETF Trust (ticker SPY) extracted from the NYSE Trade and
Quote (TAQ) database. We estimate 5-minute squared returns using mid-quote prices
from 09:30 to 16:00 along with the previous overnight close-to-open squared return from
16:00 to 09:30. We obtain data on the left tail jump variation (LJV) and the risk-neutral
probability of a 10% drop in the S&P 500 from tailindex.com (see Andersen and Todorov
2019).

See the VIX white paper and Information Circular 1C14-075 from CBOE for further information.

12 A number of steps are taken to ensure a smooth transition to Weekly options including taking into
account CBOE expiry adjustments due to holidays to identify Friday settled Weeklys using the SPXW
symbol prefix in OptionMetrics IvyDB. Further detail is available from the authors upon request.

13We use the futures price provided by OptionMetrics directly which is different from the futures price
calculated according to the CBOE methodology. Occasionally, the OptionMetrics futures price field
has missing records for some option strikes. We backfill these missing records using valid futures price
records that match the date and expiration fields of the missing records. Further detail on the difference
between the OptionMetrics and CBOE futures prices can be found in the OptionMetrics manual and
the VIX white paper.
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6.2 Augmenting the Strike Space

We use smoothing cubic B-splines to obtain call and put option prices over a fine grid
of strike prices. The number of knots in the B-spline is selected by LSCV and is applied
separately for both the near and far maturity option chains in each date in the sample to
obtain a constant maturity 30-day set of quantiles for each date. We have also tested the
use of cubic-splines, LLR, LQR and the semi-parametric approach proposed in Figlewski
(2009)'* to augment the space of strike prices. However, we use cubic B-splines in the
following empirical analysis given the robust performance of this method in the Monte
Carlo simulations in Section 3.4. It must be noted that the subsequent empirical analysis
of risk-neutral quantiles, quantile-based risk-neutral skewness measures, and market re-
turn predictive regression results are not overly sensitive to the choice of method used to
augment the strike space provided quantiles are estimated with the model-free method
proposed in this paper.

For each date within the sample, and for a given maturity, we first discard deep
OTM options using a minimum bid cutoff of 50 cents. We combine put and call samples
by retaining OTM and ATM options. We retain bid, ask, and mid quotes and use mid
quotes to augment the strike price. Figure 4 illustrates the steps that are taken to
estimate the 5% and 1% price quantiles on a single day. We demonstrate these steps
using a sample of options that belong to the near-term chain of the S&P 500 index from
two different dates: June 28, 2019 and January 17, 1996. The top left panel depicts
mid-quote market prices for call and put options along with cubic B-spline smoothed
option prices on June 28, 2019. The top right panel panel depicts the objective functions
used to estimate model-free quantiles at a = 1%, 5% and 10%. The vertical line on both

plots depicts the 1%, 5% and 10% quantiles, where the solution to the minimization

Y“This procedure uses a two-piece quartic polynomial that smoothly passes through bid-ask spreads
of option IVs converted from option market prices using the Black-Scholes formula thus is not strictly
nonparametric. Figlewski’s procedure is used to estimate a time series of RN-PDF's in Birru and Figlewski
(2012) and a time series of RN-CDFs in Linn, Shive, and Shumway (2018).
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problem is found by sorting. The bottom left and right panels of Figure 4 depict the

same plots for January 17, 1996.
[Figure 4 about here.]

We estimate risk-neutral price quantiles, Q4 (S7), on each sample date, for near- and
next-term option chains separately, and for a = 1% to 99% in increments of 1% from
January 1996 to June 2019'°. We linearly interpolate two estimates from the near- and

next-term option chains to obtain constant 30-day quantile estimates.

7 Empirical Results

In this section we report summary statistics, the correlation coefficient matrix, in-sample
and out-of sample predictive regression results that assess the performance of RNA-Q in
predicting market excess returns. To summarise results in a more succinct manner and
to ensure stable estimates, we average the RNA-Q estimates over a range of o values,
similar to the approaches of Groeneveld and Meeden (1984) and Ghysels, Plazzi, and
Valkanov (2016) where quantile based measures of asymmetry are integrated over a.
We focus on a values ranging from 1% to 10% to ensure we are far from the region
of o where the CF approximation break downs (o ~ 16%). We first consider a range
based tail RNA-Q measure by averaging RNA-Q,, over the range o € [1%, 2%, ..., 10%)],
denoted by RNA-Q1_19. We further breakdown this RNA-Q measure by focusing on an

extreme tail range, RNA-Q;_3, an intermediate tail range, RNA-Q4_7, and a moderate

150ur quantile estimates are based on a continuum of options augmented using cubic B-splines. We
intentionally do not append risk-neutral tails that can be modelled using Generalised Extreme Value
distributions, see for example Figlewski 2009. The reason is twofold. First, we would like to highlight
another advantage of the proposed MFQ method, that is, model-free quantiles always converge to the
smallest or largest option strikes when the solution for a fixed « is beyond the finite strike range quoted
in the market. Second, there are a number of dates on which the quantile estimates (either near or far
maturity or both) are equal to the smallest or largest strikes in the market (hence the true quantile
exceeds these strikes). We restrict our attention to a € [1%,99%] in the empirical study as a trade-off
between capturing the tails of a risk-neutral distribution and not using quantiles that regularly lie outside
the strike range.
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tail range, RNA-Qg_19. In the remainder of the empirical section we use weekly data
extracted every Wednesday, as is standard in the literature (see, for example, Figlewski

2018), by taking the average value from the previous Thursday to the current Wednesday.

7.1 Summary Statistics and Correlations

Panel A of Table 3 reports summary statistics for the weekly quantile based skew-
ness measure RNA-Q, estimated using a single quantile value for each tail with a@ =
1%, ...,10% for the left tail and 1 — a = 99%,...,90% for the right tail. RNA-Q,
have mean values that vary from -1.37 (o = 2%) to -1.15 (o = 9%) compared to the
mean value of RNS-BKM of -1.69 (see Panel B). The standard deviation of the RNA-Q,
measures vary from 0.26 (o = 2%) to 0.44 (o« = 10%) compared to a standard deviation
of 0.67 for RNS-BKM. The AR(1) coefficients for the RNA-Q, measures vary from 0.80
(a=1%) t0 0.67 (o = 2%) with the AR(1) coefficients approximately equal to 0.7 for the
other RNA-Q,, values. This compares to a highly persistent AR(1) coefficient of 0.94 for
RNS-BKM. Also reported are the summary statistics for the different averaged RNA-Q
estimates. Similar to single quantile pair estimates of RNA-Q,, the averaged RNA-Q
mean values have higher means and lower standard deviations than the corresponding
mean and standard deviation of RNS-BKM. The AR(1) coefficients for the range based
RNA-Q measures are between 0.76 (for RNA-Q;_19) and 0.71 (for RNA-Qg_1¢).

[Table 3 about here.]

Panel B of Table 3 reports summary statistics for the controls used in predictive
regressions. The use of 0%, as an ERP predictor is motivated by a Merton type ERP
expression, where the instantaneous ERP is a linear function of instantaneous variance

see, e.g., Merton an ochrane . e also use Martin s model-
M 1980 and Coch 2009)16. We al Martin (2017)’ del

16The VIX? is a forward-looking measure of integrated variance, which coincides with the risk-neutral
BKM variance, 0% s, under a diffusion model (see, e.g., Du and Kapadia 2012). Summary statistics
and predictive regressions that follow are very similar if we replace 0% 5y with VIX? thus VIX? summary
statistics are not reported.
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free measure of total variance times the gross risk-free rate of return, Ry - SVIX 2 as
a lower bound for the ERP that we denote as LB-SVIX. ID is the implied dividend
yield of the S&P 500 index taken from OptionMetrics IvyDB. The implied dividend
yield has been shown to predict market returns in Bilson, Kang, and Luo (2015) and
Golez (2014)'7. We also use volume and open interest weighted IV spreads, denoted
respectively as VWVS and OWVS, put forth in Atilgan, Bali, and Demirtas (2015) as
a measure of information flow from options markets to stock markets. These measures
capture differences between OTM put option IVs and OTM call option IVs and are shown
to be significant in predicting daily and weekly market excess returns. We consider ex-
post realized variance (using the most recent 22 trading days) as a potential predictor
of the ERP, as RV is shown to be a significant predictor of the ERP in Atilgan, Bali,
and Demirtas (2015). We also use the lagged ERP as a control to account for possible
serial correlation in weekly excess returns. We use the variance risk premium, VRP, as
in Bollerslev, Tauchen, and Zhou (2009), that has been shown to be a robust predictor
of market excess returns at three month horizons and longer. We define the VRP as:
VRP, = IV, — RV, where we use implied variance IV; = O'%KM’L‘ and where RV; =
ex-post 22-day realized variance. A related control we consider is the left risk-neutral
jump variation (LJV) component of the VRP as proposed in Bollerslev and Todorov
(2014). LJV is a component of the VRP that compensates investors for bearing jump
risk. Bollerslev, Todorov, and Xu (2015) show that LJV extracted from short term
deep-out-of-the money options (maturity between 8 and 45 days) is highly significant
in predicting aggregate market returns. Using the same methodology, Andersen and
Todorov (2019) construct a risk-neutral probability of a 10% stock market plunge over

the next week using short term deep OTM options. Given the relationship of this variable

17Strictly speaking, Golez (2014) uses a corrected dividend price ratio to predict market returns that
adjusts the dividend price ratio to account for time-varying dividend growth rates, where the latter is
estimated as the difference between the implied dividend yield and the dividend price ratio. As a result,
the corrected dividend price ratio is positively correlated with the implied dividend yield. Hence, we use
the latter as a predictor.
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to option implied asymmetry we use it as a control denoted by Probability Drop (PD).
Finally, we use an option implied version of the extreme tail difference (ETD) measure
as used in Jiang, Wu, Zhou, and Zhu (2020) on single stocks. We define ETD as:
ETDy = Pyt — Paownt, where Py, (Pgown) is the risk-neutral probability of excess
market returns being higher (less) than a one standard deviation move over the next
month. All option implied controls are averaged over the week to be consistent with
our use of RNA-Q'®. This means that the VRP we use is based on an implied variance
that is averaged over the week and a realized variance that is the sum of the previous
22-days. We also tested a VRP where the implied variance is extracted on the final day
of the week and averaged over the previous 22-days, with the same 22-day rolling sum
for RV as before, and results are unchanged.

The mean 30-day risk-neutral variance, RNV-BKM, is 0.39% (equivalent to an an-
nualised risk-neutral variance/volatility of 4.67%/21.61%) and is very close to the mean
of Martin’s lower bound LB-SVIX of 0.35% (equivalent to an annualised mean lower
bound of 4.18%). The mean volatility spreads (both volume and open interest weighted)
are approximately 10%, meaning OTM put IV is on average 10% higher than ATM
call IV. The mean 1D is 1.79% with a standard deviation of 0.49%. The mean of the
weekly frequency 1-month ERP (weekly ERP scaled to a one month horizon by mul-
tiplying by 4) is 0.48% (annualised mean of 5.68%) and has a standard deviation of
9.17%. Not reported are longer horizon ERP statistics whose one-month means remain
relatively constant but where the one-month standard deviation falls with increasing
horizons. For instance, the mean of the 4-week horizon ERP is 0.47% with a standard
deviation of 4.32%. The mean RV is 0.25% (corresponding to an annualized realized
variance/volatility of 3.04%/17.42%). The mean VRP is 0.136% (this corresponds to
annualized difference in implied and realized standard deviation of 4.18%). The mean

ETD is -4.37% meaning that the risk-neutral probability of a one standard deviation

18Results are very similar when controls are extracted on the final day of the week as opposed to using
the estimate averaged over the week and are available upon request.
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downward move is on average 4.37% higher than the corresponding risk-neutral prob-
ability of a one standard deviation upward move. The mean LJV value is 7.52 and
the mean PD value is 72%. The AR(1) coefficients for the volatility spread measures
(0.74 for VWVS and 0.76 for OWVS), the VRP (0.80), ETD (0.70) and LJV (0.83) are
similar to the averaged RNA-Q measures. These are considerably lower than the AR(1)
coefficients of the other controls. These AR(1) coefficients are, respectively, 0.94 for
RNS-BKM, 0.95 for both RNV-BKM and LB-SVIX, 0.99 for ID, 0.95 for RV and 0.98
for PD.

Table 4 reports correlations of the quantile based RNA-Q measures that are averaged
over different ranges of quantiles, along with the controls used in predictive regressions.
RNA-Q;_3 has a correlation of 0.64 (0.41) with RNA-Q4—7 (RNA-Qg_19) which, al-
though statistically significant at 1%, is sufficiently low to suggest that these RNA-Q
measures may pick up different facets of the RN density tail behaviour. The correla-
tion between RNA-Q4_7 and RNA-Qg_1¢ is quite high at 0.82 suggesting that the most
extreme tail skewness, RNA-Q;_3, behaves separately from the intermediate and mod-
erate tail average range RNA-Q values, RNA-Q4_7 and RNA-Qg_19. This is expected
as the variation in the most extreme tail skewness measure, RNA-Q;_3, depends on the
variation in the most extreme strike prices for deep OTM options that make it past the

VIX filtering rules.

[Table 4 about here.]

The correlations of RNS-BKM with quantile based RNA-Q values are generally far
less than 1 with a value of 0.38 for RNA-Qq_3, 0.12 for RNA-Q4_7, 0 for RNA-Qg_10 and
0.15 for the overall tail average RNA-Qi_19. Thus, the quantile based RNA-Q values are
very distinct from the standard measure of RNS with the most extreme average RNA-Q
value, RNA-Q;_3, exhibiting the highest correlation with RNS-BKM, although this is

still far from 1 at 0.38. This can be seen as evidence that RNS-BKM is sensitive to strike
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range variation.

An interesting point to note is that the correlation between RNS-BKM and RNV-
BKM (RV) is statistically significantly positive at 0.23 (0.17). This is the opposite to
what we would expect if we interpret RNS-BKM as a tail risk measure. Intuitively, one
would expect a skewness based tail risk measure to become more negative (tail risk in-
creases) as variance increases. This is exactly what we find with quantile based RNA-Q
measures. The correlations between RNA-Q and RNV-BKM (RV) are statistically signi-
ficantly negative for RNA-Q1_19, RNA-Q4_7 and RNA-Qg_1¢, although the correlation
between RNV-BKM (RV) and RNA-Q;_3 is statistically insignificant at -0.04 (-0.03).
Thus, the positive relation between the standard RN measures of skewness and variance
(realized variance) is reversed when using quantile-based RN measures of asymmetry.

With the exception of the most extreme average RNA-Q;_3 measure, there is a sig-
nificant positive (negative) correlation between the other RNA-Q measures and contem-
poraneous ERP (one-week ahead ERP) at a significance level of 5% (5%) for RNA-Q4_7
and 1% (10%) for RNA-Q_10. A similar (but reverse) pattern is observed for the VRP.
The correlation between the VRP and contemporaneous ERP (one-week ahead ERP)
is statistically significantly negative (positive) at the 1% level. The correlation of ID
with ERP and one-week ahead ERP remains the same with a correlation value of 5%
that is statistically significant at the 10% significance level. The AR(1) coefficient of
ID is particularly high at 0.99 and is the likely reason for this persistence in correlation
values. Also worth noting is the high positive correlation of ETD with RNA-Q across all
averaged ranges. This is to be expected as both RNA-Q and ETD are measures of risk-
neutral asymmetry. LJV and PD are both significantly negatively correlated with the
different RNA-Q measures. Downside risk-neutral asymmetry is high when LJV (PD) is
high and this corresponds to low values for RNA-Q. Hence, these negative correlations
are expected although are sufficiently far from one to suggest that LJV and PD contain

different information to RNA-Q. Finally, we note that LJV and PD are highly correlated
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with the risk-neutral variance measures of RNV-BKM and LB.

7.2 Univariate Predictive Regressions

We run a sequence of univariate predictive regressions, using excess returns of the S&P

500 index as the dependent variable and RNA-Q as the independent variable as follows:

4

E (Tt,t+h - T£t+h> = o + 51 X RNA-Qt,a + €t t1h, (13)

where 7, 445, is the return on the S&P 500 index from ¢ to ¢ 4 h, h represents the forecast
horizon that ranges from 1 week to 12 weeks in increments of one week and « represents
the range of quantiles used to estimate RNA-Q. Weekly market excess returns are scaled
to a one month horizon so that predictive regression coefficients are comparable across

different return horizons. The risk-free rate, r is observed at t and matures at ¢t + h.

tt+h
We calculate risk-free rates using the zero curve provided by OptionMetrics which is
derived from ICE IBA LIBOR rates and settlement prices of CME Eurodollar futures.
The zero curve is discrete thus we use a piecewise cubic Hermite interpolating polynomial
to back out 1-week to 12-week risk-free rates that match the return horizon rt7t+h19.
RNA-Q¢, denotes the quantile-based RNA-Q measures observed at time ¢. These are
categorised into the overall tail RNA-Q measure for a € [1%, ..., 10%)], the most extreme
tail RNA-Q measure for o € [1%,2%,3%)]|, the medium tail RNA-Q measure for o €
[4%, 6%, 7%], and the moderate tail RNA-Q measure for o € [8%, 9%, 10%]. The overlap
in weekly observed variables generates a high degree of positive autocorrelation which
biases the standard error estimates downwards. To account for this, we report Newey-
West standard error estimates in the regression analysis using a lag length equal to two

times the overlap in the excess returns (see Bollerslev, Tauchen, and Zhou 2009).

Table 5 presents results for in-sample univariate predictive regressions on market

19We also use daily risk-free rates from Kenneth French’s data library and aggregate these daily risk-
free rate to weekly values in the calculation of excess returns. Results using risk-free rates from Kenneth
French’s data library are very similar to the results reported here using LIBOR rates.
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excess returns. Reported are beta coefficient estimates (1) for regressors, standard-
ised beta coefficient estimates which are scaled by standard deviations of regressors,
t-statistics based on Newey-West standard errors allowing for a lag equal to the two
times the overlap in the dependent variable, corresponding p-values, and adjusted RZs.
Panel A reports results where the RNA-(Q measures are averaged over each day of the
week and Panel B reports results where the RNA-Q measures are extracted on the final

day of the week.
[Table 5 about here.]

Focusing on Panel A we observe that RNA-Q1_19 (RNA-Q4_7) significantly negat-
ively predicts future market excess returns at all horizons bar the first week (all horizons)
as expected from the skewness aware asset pricing model used in Section 5. There is
no significant link between RNS-BKM and subsequent market returns confirming previ-
ous results that this standard RN measure of skewness does not predict market excess
returns. This is not expected from the skewness aware asset pricing model we use.
However, RNS-BKM is noisier than the RNA-Q measures with a full-sample standard
deviation of 0.67 versus a standard deviation of 0.31 for RNA-Q4_7. Furthermore, in
unreported simulation results, similar to those conducted in Jiang and Tian (2005) and
Jiang and Tian (2007) for risk-neutral variance, we find that RNS-BKM is very sensitive
to tail truncation when a finite strike range is used to compute RNS-BKM?°. However,
quantile-based measures of risk-neutral asymmetry are not dependent on the strike range
as long as the strike range covers the quantiles under consideration.

The statistical significance associated with RNA-Q1_1¢ is marginal at the 10% level

for horizons 2W to 3W and 11W to 12W with significance peaking at the 5% level at

20We use the CGMY model of Carr, Geman, Madan, and Yor (2002) to simulate a chain of call and
put options with model parameters taken from the paper. We simulate discrete strike prices with a
truncated strike range that we vary from the minimum to the maximum observed strike range in our
sample. We find that RNS-BKM is particularly sensitive to left strike truncation using the negatively
skewed CGMY density function.
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intermediate horizons of between 4W and 10W inclusive. RNA-Q4_7 is statistically sig-
nificant at the 5% level for 1IW to 4W and 9W to 11W horizons, 1% at horizons of 5W
to 8W and is marginal at 10% at 12W. Andersen, Fusari, and Todorov (2020) find that
a proxy for the time-varying left jump tail risk predicts future weekly returns of inter-
national equity market indices at longer horizons of more than 10 weeks. Interpreting
RNA-Q as a tail risk measure, it is no surprise that the RNA-Q measures perform well
at intermediate to longer horizon return forecasting. However, RNA-Q4_7 also signific-
antly predicts market excess returns at shorter horizons, in particular, 1W ahead excess
returns. Using RNA-Q,_7, the t-statistic on 1W excess returns is -2.23. Since there is
no overlap in 1W market returns, this ¢-statistic is not subject to the econometric issue
that impact standard errors when forecasting overlapping returns as discussed in Hodrick
(1992). The standardised beta coefficient shows that a one standard deviation increase
in RNA-Q4_7 results in a 61 basis points decrease in market excess returns (7.32% an-
nualised) at the 1-week horizon, which is extremely significant from an economic point
of view. The standardised beta coefficients decrease gradually to approximately 50 basis
points (bps) (6% annualised) at intermediate horizons and approximately 40 bps (4.8%
annualised) at the longer horizons of 11-weeks but remain economically significant. The
corresponding values for standardised betas of RNA-Q;_1¢ are 44 bps (5.3% annualised)
at the 1-week horizon decreasing gradually to 30 bps (3.6% annualised) at the longest
12W horizon. Thus, RNA-Q;_1g is also economically significant in predicting market
excess returns but the statistical and economic significance of RNA-Q_19 is always
weaker than that of RNA-Q4_7 at each forecast horizon considered. The extreme tail
RNA-Q measure, RNA-Q;_3, does not predict market excess returns at any horizon.
The extreme left (« = 1%) and right (1 — o = 99%) tails are highly correlated with
the minimum and maximum strike prices that satisfy the VIX filtering rules. As a res-
ult, RNA-Q_3 often reflects the extreme strike price quotes as opposed to the ex-ante

asymmetry in the underlying market return distribution. This is analogous to results

40



in Andersen, Bondarenko, and Gonzalez-Perez (2015) where a high frequency measure
of the VIX may change, not due to changes in underlying volatility, but as a result of
the changes in the range of option price quotes used to calculate the VIX. Andersen,
Bondarenko, and Gonzalez-Perez (2015) propose using a more consistent corridor volat-
ility index that truncates the option price quotes used to calculate implied volatility at
a range that is more coherent over time. Our RNA-Q measures automatically create
such a consistent range by fixing the probability levels a and 1 — « at which we examine
quantile variation over time. The moderate tail RNA-Q measure, RNA-Qg_19, predicts
market excess returns at horizons of 4W to 9W inclusive but the predictions are always
weaker than the medium tail RNA-Q measure, RNA-Qg_7, and the overall tail RNA-Q
measure, RNA-Q1_19. Thus, the 4%-7% regions of the left and right tails are sufficiently
far away from the extreme strike price quotes to not be overly effected by changes in
extreme strike price quotes but are still sufficiently far enough out in the tail to capture
extreme asymmetric moves that investors are mindful of.

Panel B of Table 5 shows that results generally weaken slightly relative to Panel A
when we use the most recently available RNA-Q values to predict subsequent weekly
market returns as opposed to using RNA-Q values that have been averaged over the five
days in the week. The relative strengths of the various predictors are the same as in
Panel A with end of week RNA-Q4_7 remaining the strongest predictor of subsequent
returns relative to the other skewness measures extracted at end of week.

Next we turn our attention to other potential ERP predictors frequently used in
the literature. Table 6 presents results for in-sample univariate predictive regressions of

market excess returns using the series of controls introduced in Section 7.2.
[Table 6 about here.]

The risk-neutral variance, RNV-BKM, and Martin’s lower bound, LB-SVIX, are not

significantly associated with the ERP at any horizon considered?’. VWVS and OWVS

21This does not necessarily contradict the results in Martin 2017 where the null hypothesis that 8; = 1
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positively forecast S&P 500 index returns during the sample period we study. However,
the beta coefficient estimates are only marginally statistically significant at 10% at longer
horizons of 9W (8W) and higher for VWVS (OWVS)?2. The positive association between
VS and subsequent market excess return we find agrees with the interpretation of VS as
a tail risk measure as opposed to an information based interpretation of VS. The implied
dividend yield, ID, positively forecasts market excess returns, with the t-statistic rising
above 2 at return horizons of 6 weeks and higher. The adjusted R?s in these regressions
are particularly high at longer horizons reaching a maximum of 5.50% at 12 weeks. It
must be noted that the persistence of ID, as measured by the AR(1) coefficient, is 0.99
and is much higher than the persistence of the RNA-Q measures. Therefore, the problems
associated with highly persistent regressors in long horizon forecasts documented in
Boudoukh, Richardson, and Whitelaw (2008) are less likely to be an issue with RNA-Qs
than they are with implied dividend yields. Higher values of RV and lagged ERP are
associated with lower values of subsequent ERP demonstrating, respectively, the leverage
effect and negative serial correlation. However, there is no significant association between
RV or lagged ERP and subsequent ERP. The VRP positively forecasts market excess
returns but the ¢-statistics rise above 2 at horizons of 9 weeks to 11 weeks. In predictive
regressions of Bollerslev, Tauchen, and Zhou (2009), the VRP is also positively linked
to future excess returns and attains its highest significance at a 3-month return horizon
using monthly frequency returns over a sample period of January 1990 to December
2007. In our sample of January 1996 to June 2019, using weekly frequency returns,
we find the VRP attains its highest significance at intermediate to long horizons of 9

to 11 weeks. Thus, our results are similar, but not identical, to those in Bollerslev,

is not rejected in predictive regressions.

22These results are in contrast to those found in Atilgan, Bali, and Demirtas (2015), where both VWVS
and OWVS negatively forecast S&P 500 index returns at daily and weekly horizons with informed trading
found to be the main explanation. Atilgan, Bali, and Demirtas (2015) study a shorter sample period
from January 4, 1996 to September 10, 2008. A potential explanation for the positive relation between
VS and future market returns found in this article is that equity option markets have become much
larger in notional value since 2009, therefore leading information priced into options by informed traders
is no longer present in IV measures, such as VWVS and OWVS.
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Tauchen, and Zhou (2009). This is to be expected given the differences in the frequency
of returns, the different sample period used and the different data used to construct the
realized variance. We find that ETD is significantly negatively linked to excess returns
at horizons of 3W and higher with a significance level of 5% attained at horizons of 5W
and higher. These results are similar to those we find for the RNA-Q measures which is
to be expected given both ETD and RNA-Q are risk-neutral asymmetry measures that
focus on the tails of the distribution. Finally, we find LJV and PD are not significant in

predicting excess returns over the sample period considered.

7.3 Bivariate Predictive Regressions

In the following bivariate predictive regressions we focus on the RNA-Q measure that
results in the most robust ERP predictor, RNA-Q4_7. The results are quantitatively and
qualitatively similar, although a little weaker, if we use RNA-Q1_19 in place of RNA-
Q4_7. Table 7 presents results on bivariate predictive regressions using RNA-Q4_7 along
with a single control to jointly predict future market excess returns using regressions of

the following form:

(Tt,t+h - T,fiHh) = Bo+ B1 X RNA-Qt a7+ B2 X Xy + €1 44hs (14)

SIS

where X; is the control variable observed at time ¢.

The intermediate tail RNA-Q measure, RNA-Q4_7, is robust to the inclusion of the
control predictors. The t-statistic on the RNA-Q4_7 coefficient remains below -2 at
all horizons, with the exception of 12-week (11- and 12-week), when using RNS-BKM,
RNV-BKM, LB, RV, or ERP-lag (LJV or PD) as a control. The t-statistic on the
RNA-Q4_7 coefficient remains below -2 for horizons 1W to 8W when either of the IV
spread measures is used as a control, 2W to 9W when implied dividend yield is used

as a control and 2W to 10W when the VRP is used as a control. The t-statistic on
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RNA-Q4_7 increases above -2 but remains close to -2 with the inclusion of ETD as a
second predictor. However, the correlation between ETD and RNA, 7 is 62% as both
variables are measures of risk-neutral asymmetry thus the inclusion of ETD in a bivariate
regression is expected to reduce the impact of RNA-Q4_7 on the ERP.

The only control variables with beta coefficient t-statistics greater than 2 in the
presence of RNA-Q4_7 are ID at horizons of 7TW and up and the VRP at horizons of 7TW
to 9W. The implied dividend yield, ID, and the variance risk premium, VRP, have AR(1)
coefficients of 0.99 and 0.80, respectively, compared to 0.74 for RNA-Q4_7. As previously
noted the high persistence of ID, in particular, could lead to inference problems for this
potential predictor (e.g., see Boudoukh, Richardson, and Whitelaw 2008). The control
coefficient on ETD is not significant when ETD is used along with RNA-Q4_7 to predict
the ERP. Thus, the information in RNA-Q4_7 is not captured by other commonly used

predictors that are shown in the literature to be significant in predicting the ERP.

[Table 7 about here.]

7.4 Out-of-Sample Tests

Table 8 reports out-of-sample (OS) predictive regression statistics on subsequent market
excess returns. The statistics reported are OS adjusted R?s calculated as 1—(1— R% ) X

%, where R%) g is calculated as

T o2
Zt:l (yt - yt)

R2OS = 1 - .
Zthl (ys — ﬂt)2

T is the number of OS forecasts, k is the number of predictive variables, y; is the
predicted variable, g is the forecast based on a predictive model that is estimated using
predictive variables through the period ¢ — 1, and % is the forecast based on a nested
model that restricts the coefficient on the assessed predictive variable to be 0. The nested

model uses the historical average ERP to predict the next period ERP. We also report OS
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adjusted R? from restricted regressions, as in Campbell and Thompson (2008) (hereafter
referred to as CT OS adjusted R?), where the coefficient on the labelled predictor in
the regression tables is restricted to be non-negative and, if the forecast is still negative,
a second restriction is applied replacing the forecast with 0. Given the theoretical and
empirical link between RNA-Q4_7 and the ERP is negative, we use negative RNA-Q4_7
in the CT OS tests to ensure the association between the regressor (-RNA-Q4_7) and
regressand (ERP) is positive. OS significance is assessed using a one-sided t-test on the
mean squared prediction error (MSPE)-adjusted statistic from Clark and West (2007).
We apply this test taking into account the autocorrelation in forecast errors by using
Newey-West standard error estimates with lags set equal to 2 times the overlap in h-
horizon returns in calculating t-statistics. Forecasts are made on a recursive basis with
an initial estimation window set equal to 120 weeks, where the window expands with
the full sample size equal to 1,225 weeks. One-sided t-statistics for the MSPE-adjusted
statistic, with the null of equal MSPE, are reported in the table. For large enough
sample sizes, as applies in our case, standard normal critical values can be used and we

can reject the null at 10%/5% /1% if the t-statistic > 1.282/1.645/2.33, respectively.
[Table 8 about here.]

In these OS tests, we consider RNA-Q4_7 and the three strongest controls from the
in-sample tests: ID, VRP and ETD. Table 8 documents significant OS predictability of
market excess returns using RNA-Q4_7 at all forecast horizons. The statistical signi-
ficance is 5% at all horizons. The OS adjusted R? peaks at 2.6% at the 8W forecast
horizon. The CT OS adjusted R?s are generally lower than the unrestricted OS adjusted
R?s with the exception of the 1 week horizon. ID is insignificant for forecast horizons of
1 and 2 weeks, marginally significant at the 10% level for a forecast horizon of 3 weeks,
and is significant at 5% for horizons of 4 weeks and higher. The OS R? and CT OS R?

values for ID are higher than the respective values for RNA-Q4_7 at all forecast horizons
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however, it must be noted that this may partly stem from the highly persistent nature of
ID and the impact this may have on longer horizon predictive regressions (as previously
discussed in the in-sample results). When ID is used to predict the ERP, CT OS R?s
are higher (lower) than OS R2s at shorter (longer) horizons with the crossover occurring
at 5W. The variance risk premium, VRP, is insignificant in forecasting the ERP out-of-
sample for forecast horizons of 1 to 6 weeks, is significant at the 5% level at horizons of
7W, 8W and 12W and is significant at the 1% level at 9W, 10W and 11W. The OS R?
(CT OS R?) values for the VRP are lower than the respective values for RNA-Q4_7 at
all forecast horizons (forecast horizons from 1 week to 8 week). When the VRP is used
to predict the ERP, CT OS R?s are higher than OS R?s at all forecast horizons. As
with RNA-Q4_7, we use the negative value of ETD to forecast the ERP out-of-sample
to ensure a positive link between the regressor (-ETD) and the regressand (ERP) in the
CT OS tests. ETD is not significant in ERP out-of-sample forecasts for horizons of 1W
to 3W, is significant at the 5% level at horizons of 4W to 8W and 11W to 12W, and is
significant at the 1% level at horizons of 9W and 10W. As with the VRP, the restric-
ted OS CT forecasts result in higher adjusted OS R2s than the unrestricted forecasts
across all horizons. ETD has lower OS adjusted R? than RNA-Q,_7 at all horizons and
lower (higher) CT OS adjusted R? than RNA-Q4_7 at horizons of 1W to 7TW (8W to
12W). These results demonstrate that the in-sample results also hold out-of-sample with
RNA-Q4_7 remaining a strong ERP predictor outperforming ETD and on-par with the

performance of the VRP and ID but with better persistence properties than ID.

8 Conclusion

In this article we introduce a novel approach to estimate risk-neutral quantiles that
results in more accurate risk-neutral quantile estimates relative to existing quantile es-

timation procedures. We apply the method to S&P 500 index options to estimate a
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time series of risk-neutral quantiles. We use these quantiles to construct a novel quantile
based risk-neutral asymmetry measure RNA-Q. We show that RNA-Q constructed from
quantiles in the left and right tails (with the exception of the most extreme quantiles)
predicts market excess returns and is robust to a number of alternative option implied
and other commonly used ERP predictors. Further research could focus on whether
risk-neutral asymmetry predicts excess returns in an international setting and the con-
struction of a dynamic economy in which conditional risk-neutral asymmetry predicts

the ERP.
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Table 3: Summary Statistics

Panel A: RNA-Q
Q1 Q2 Qs Qu Qs Qs Qr Qs Qo Qo Qi-10 Qi3 Qa7 Qs-10

count 1226 1226 1226 1226 1226 1226 1226 1226 1226 1226 1226 1226 1226 1226
mean -1.344 -1.372 -1.306 -1.240 -1.198 -1.175 -1.161 -1.154 -1.151 -1.156 -1.226 -1.341 -1.194 -1.154
std 0.300 0.256 0.284 0.307 0.319 0.325 0.338 0.360 0.394 0.444 0.278 0.244 0.309 0.396
min -2.175  -2.406 -2.759 -2.996 -3.163 -3.224 -2.984 -3.109 -3.268 -3.358 -2.931 -2.401 -3.092 -3.245
25%  -1.550 -1.534 -1.483 -1.435 -1.404 -1.396 -1.387 -1.400 -1.420 -1.459 -1.417 -1.503 -1.398 -1.424
50%  -1.375 -1.382 -1.312 -1.248 -1.205 -1.172 -1.149 -1.140 -1.138 -1.141 -1.226 -1.360 -1.204 -1.144
%  -1.131 -1.199 -1.114 -1.033 -0.986 -0.949 -0.927 -0.893 -0.872 -0.843 -1.030 -1.168 -0.983 -0.873
max -0.101 -0.272 -0.449 -0.207 -0.118 -0.123 -0.147 -0.091 0.052 0.225 -0.314 -0.274 -0.149 0.062
AR1 0.797 0.676 0.684 0.705 0.714 0.723 0.712 0.705 0.706 0.700 0.756 0.752 0.739  0.709

Panel B: Controls
RNS-BKM RNV-BKM LB-SVIX VWVS OWVS 1D ERP RV  VRP ETD LIV PD

x100 x100 x100 x100 %100 x100 x100 %100 x100 %100
count 1226 1226 1226 1226 1226 1226 1225 1226 1226 1226 1226 1222
mean -1.692 0.389 0.348 9.826  10.062 1.787 0.482 0.253 0.136 -4.365 7.524 0.728
std 0.674 0.411 0.340 2.108 2.098 0.488 9.166 0.403 0.233 2.364  3.268 0.496
min -4.881 0.070 0.063 1.785 2.962 0.000 -65.624 0.012 -2.997 -13.228  1.498 0.132
25% -1.925 0.166 0.153 8.437 8.593 1.564 -3.945 0.072 0.070 -6.050 5.618 0.406
50% -1.550 0.282 0.260 9.949  10.138 1.899 1.197 0.139 0.119 -4.310 6.772 0.569
75% -1.247 0.456 0413 11.316 11.507 2.107 5.533 0.261 0.201 -2.764 8.671 0.879
max -0.628 4.786 3.512  16.453 16.350 2.850 40.797 4.529  1.549 7.567 30.872 3.130
AR1 0.938 0.948 0.952 0.742 0.760 0.988 -0.067 0.952 0.801 0.698  0.826 0.975

Panel A reports the summary statistics for the RN quantile-based skewness estimates for quantiles
a € {1%,...,10%} and the averaged RNA-Q estimates over ranges a € {1%,2%,3%},a €
{4%,5%,6%, 7%} , o € {8%,9%,10%} and « € {1%,...,10%}. Panel B reports summary stat-
istics for the controls used in predictive regressions. RNS-BKM and RNV-BKM are, respectively,
the RN skewness and variance measures of Bakshi, Kapadia, and Madan (2003). LB-SVIX is
the lower bound on the annualised 30-day ERP of Martin (2017). VWVS and OWVS are, re-
spectively, volume and open interest weighted implied volatility (IV) spreads used in Atilgan,
Bali, and Demirtas (2015), where the IV spread is the difference between out-of-the-money put
IVs and at-the-money call IVs. ID is the implied dividend yield of the S&P 500 index extracted
from OptionMetrics. ERP is the realized excess return on the S&P 500 index that we use as
a proxy for the equity risk premium. RV is 22-day realized variance. VRP is the difference
between one-month implied variance, RNV-BKM), and realized variance, RV. LJV is the left tail
jump variation component of the VRP as in Bollerslev, Todorov, and Xu (2015) and PD is the
risk-neutral probability of a 10% stock market drop over the next week (Andersen and Todorov
2019). ETD is a risk-neutral version of the extreme tail difference measure of Jiang, Wu, Zhou,
and Zhu (2020) estimated using SP 500 index options.
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Table 7: Bivariate Predictive Regressions

Panel A: t-statistic on RNA-Qy_7 coefficient
RNS-BKM RNV-BKM LB-SVIX VWVS OWVS 1D RV ERP-lag VRP ETD LJV PD

1W -2.151 -2.067 -2.052 -2.035  -2.063 -1.857 -2.400 -2.041 -1.968 -1.666 -2.254 -2.176
2W -2.397 -2.417 -2.358 -2.293  -2.322 -2.045 -2.715  -2.213 -2.203 -2.046 -2.648 -2.324
3W -2.447 -2.448 -2.390 -2.333  -2.250  -2.121 -2.717  -2.295 -2.272 -1.933 -2.651 -2.156
AW -2.488 -2.432 -2.401 -2.185  -2.073 -2.192 -2.705 -2.395 -2.325 -1.725 -2.603 -2.155
5W -2.567 -2.529 -2.504 -2.195  -2.134  -2.268 -2.750  -2.535  -2.453 -1.794 -2.644 -2.244
6W -2.582 -2.494 -2.475 -2.187  -2.158 -2.285 -2.710  -2.572  -2479 -1.721 -2.583 -2.256
™W -2.660 -2.521 -2.510 -2.296  -2.218 -2.342 -2.753  -2.576  -2.543 -1.949 -2.576 -2.331
8W -2.618 -2.503 -2.495 -2.282  -2.175  -2.296 -2.726  -2.574  -2.522 -2.002 -2.504 -2.328
IW -2.383 -2.292 -2.290 -1.958  -1.903 -2.040 -2.530 -2.371 -2.295 -1.689 -2.235 -2.150
10W -2.229 -2.176 -2.176 -1.780  -1.739 -1.876 -2.421 -2.225 -2.145 -1.589 -2.073 -2.066
11W -2.002 -2.012 -2.008 -1.528  -1.516 -1.662 -2.233 -2.034 -1.941 -1.395 -1.871 -1.880
12W -1.769 -1.806 -1.802 -1.277  -1.273  -1.447 -2.002 -1.791 -1.726 -1.118 -1.649 -1.655

Panel B: t-statistic on control coefficient

RNS-BKM RNV-BKM LB-SVIX VWVS OWVS ID RV ERP-lag VRP ETD LJV PD

1w 0.184 0.137 0.181 0.177 0.131 0932 -0.581  -1.463 1.486 -0.258 -0.133 -0.197
2W 0.069 -0.191 -0.079 0.236 0.084 1.310 -0.816 -1.468 1.282  0.044 -0.565 -0.037
3W 0.202 -0.311 -0.175 0.075 0.150  1.478 -1.028  -1.160 1.433 -0.065 -0.711 0.338
4W 0.107 -0.221 -0.127 0.353 0.525  1.572 -0.997 -0.684 1.432  -0.283 -0.632 0.518
5W 0.093 -0.252 -0.168 0.489 0.565  1.673 -0.957  -0.092 1.232  -0.184 -0.574 0.663
6W 0.010 -0.099 -0.028 0.605 0.617  1.817 -0.877  0.226 1.334 -0.358 -0.357 0.772
T™W -0.117 -0.038 0.011 0.653 0.743 1983 -0.944 -1.069 1.644 -0.203 -0.073 0.720
8W -0.299 -0.061 -0.023 0.868 0975 2164 -0.964 -0.706 1.883 -0.245 0.197  0.699
IW -0.419 0.007 0.024 1.086 1.132 2308 -0.970 -0.372 2.240 -0.621 0.534  0.668
10W -0.429 0.005 0.013 1.219 1.258  2.441 -1.022  -0.540 2.332 -0.608 0.657 0.555
11W -0.435 -0.069 -0.053 1.363 1.347  2.553 -0.986  -0.140 2.006 -0.690 0.655 0.521
12W -0.468 -0.104 -0.089 1.484 1.416  2.643 -0.895 -0.626 1.670 -0.979 0.695  0.547

This table reports predictive regression results for h-week ahead excess index returns using RNA-
Q and a single control in a bivariate regression. The period is from January 1996 through June
2019, and the frequency is weekly. The t-statistics are estimated using Newey-West standard
error estimates allowing for a lag equal to two times the overlap of the dependent variable. Panel
A reports the t-statistics for RNA-Q4_7 predictor when controls are used in bivariate predictive
regressions. Panel B reports t-statistics for the controls. The controls are defined in Table 3.
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Table 8: Out-Of-Sample Predictive Regressions

RNA-Q 1D VRP ETD

Week OS R* CT OS R? CW t-stat | OS B2 CT OS R* CW t-stat | OS R* CT OS R? CW t-stat | OS B2 CT OS R* CW t-stat

1w 0.001 0.003 1.746** -0.002 0.001 0.124 -0.001 0.002 0.620 -0.001 0.000 0.411

2W 0.003 0.003 2.068** 0.002 0.005 1.026 -0.002 0.002 0.464 -0.000 0.000 0.690

3W 0.007 0.005 2.045** 0.005 0.009 1.470* 0.000 0.001 1.033 0.001 0.003 1.199

4W 0.011 0.009 2.016** 0.009 0.011 1.670** 0.002 0.002 1.122 0.004 0.006 1.712**
5W 0.016 0.010 2.093** 0.013 0.013 1.830"* 0.000 0.001 0.919 0.006 0.008 1.919**
6W 0.019 0.011 2.060** 0.017 0.016 1.947%* 0.002 0.003 1.255 0.008 0.010 2.285**
™W 0.023 0.011 2.094** 0.021 0.020 2.075** 0.005 0.005 1.719** 0.009 0.011 2.271**
8W 0.026 0.011 2.081** 0.029 0.024 2.194* 0.007 0.008 2.074** 0.010 0.012 2.329**
IW 0.024 0.007 1.947 0.035 0.027 2.268** 0.011 0.012 2.348*** 0.012 0.014 2.518**
10W  0.024 0.006 1.879** 0.042 0.031 2.313** 0.015 0.015 2.522*** 0.012 0.013 2.369**
11W  0.022 0.002 1.729** 0.048 0.033 2.321* 0.012 0.014 2.443** 0.012 0.014 2.259™
12W  0.020 -0.001 1.545* 0.053 0.035 2.310* 0.009 0.013 2.241** 0.013 0.015 2.268"

This Table reports OS adjusted R2s (OS R?) and OS adjusted R?s from restricted regressions,
as in Campbell and Thompson (2008) (CT OS R?), where the coefficient on the predictor in the
regression is restricted to be non-negative and, if the forecast is still negative, a second restriction
is applied replacing the forecast with 0. Forecasts are made on a recursive basis with an initial
estimation window set equal to 120 weeks, where the full sample size is 1,225 weeks. The period
is from January 1996 through June 2019, and the frequency is weekly. The OS significance is
assessed using a one-sided ¢-test on the mean squared prediction error (MSPE)-adjusted statistic
in Clark and West (2007). We apply this test taking into account the autocorrelation in forecast
errors by using Newey-West standard error estimates with lags set equal to 2 times the overlaps
in calculating t-statistics. One-sided t-statistics for the MSPE-adjusted, for the null of equal
MSPE, are reported in the table. For large enough sample sizes, as applies in this case, standard
normal critical values can be used and we can reject the null at 10%/5%/1% if the t-statistic
> 1.282/1.645/2.33, respectively.
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Figure 2: Objective Functions
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This plot depicts the objective functions for the Breeden-Litzenberg quantile (BL(Q)) method and
the model-free quantile (MFQ) method along with the estimated quantiles at 1%, 5% and 10%.
BLQs and MFQs are estimated using Black-Scholes option prices. The spot price is S = 100, the
interest rate is r = 0, the dividend yield is ¢ = 0, the time-to-maturity is 7' = 1, and volatility
is 0 = 0.10. The strike prices range from 10 to 100 in steps of 0.01 index points.
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Figure 3: Quantiles with an Option Price Chain Interpolated by Cubic Splines
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This plot depicts the risk-neutral cumulative distribution function (RN-CDF) of the underlying
optioned asset price where quantiles are estimated using the model-free method and the Breeden-
Litzenberg method. BSQs are Black-Scholes quantiles calculated from the underlying log normal
distribution with no noise. BLQs are quantiles estimated with the Breeden-Litzenberg method
and MFQs are quantiles estimated with the model-free method. BLQs and MFQs use Black-
Scholes option prices with added noise to simulate measurement error. The simulated option
prices are available at discrete strike intervals depicted by the rug plot. The discrete option
price chain is interpolated with cubic splines ifi6panels (a) and (b), smoothed with local linear
regression in panels (¢) and (d) and smoothed with cubic B-splines in panels (e) and (f). Option
prices are simulated to replicate the conditions in our data sample for S&P 500 index options on
June 28, 2019. Option prices are available at 160 different strike prices ranging from a minimum
strike price of 2310 to a maximum strike price of 3155 and spaced at uniform intervals of 5
index points, with the exception of some deep OTM options that are spaced at 10 index points.
The spot price is S = 2942, the interest rate is r = 0.02, the dividend yield is ¢ = 0.02, the
time-to-maturity is 7" = 0.08, and volatility is ¢ = 0.13.



Figure 4: Risk-Neutral Quantile Estimation
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This plot depicts the process used to construct the objective function and estimate risk-neutral
quantiles. The top left panel depicts mid-quote prices for call and put options along with the
B-spline interpolated option prices using S&P 500 index options on June 28, 2019 with 28 days
to maturity. The top right panel panel depicts the objective function used to estimate model-free
quantiles at o = 1%, 5% and 10%, where the vertical lines on both the top left and right panel
indicates these quantile. The bottom left and right panels depicts the same plots but using S&P
500 index options on January 17, 1996 with 29 days to maturity.
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Figure 5: Smooth Half Normal CARA Economy
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These plots summarize various aspects of the Smooth Half Normal CARA economy. We set
w="7.28%, 0 = 14.98% and skewness varies from -0.95 to +0.8. Panel (a) depicts the physical
and risk-neutral density functions for a single skewness value of -0.5. Panel (b) depicts the ERP
versus physical skewness where skewness varies from -0.95 to 0.8. Panel (c) shows the variation
of RNA-Q and quantile-based physical asymmetry (PA-Q) with physical skewness and panel (d)
plots the ERP versus RNA-Q.
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Appendix A Monte Carlo Experiments

A.1 Option Prices with Simulated Measurement Error

We provide further detail on the method used to simulate measurement error in option
prices due to Bondarenko (2003). This approach sets the maximum strike dependent
spreads, s, according to the CBOE rule book and generates uniformly distributed meas-
urement error on [—0.5s,0.55] where s = ¢® — ¢” is the bid-ask spread and where (¢°, ¢®)
are the concurrent bid and ask-quotes for the option price q. The value of the spread
depends on the moneyness of the option price quote q. Assuming s is proportional to the
maximum spread permitted by the exchange, Bondarenko (2003) constructs a function

M (q) to represent the maximum spread for the quote g. Specifically,

Furthermore, M (q) is linearly interpolated for all ¢ € [0, 50]. As in Bondarenko (2003),
we simulate a chain of call and put option prices and use put-call parity to convert ITM
call (put) option prices to OTM put (call) option prices. Then we add measurement
error to OTM option prices only. This results in measurement error that is smaller in

absolute terms and larger in relative terms for far OTM option prices.

A.2 Further Monte Carlo Results

In this subsection of Appendix A we report further Monte Carlo simulation results on
the performance of MFQs versus BLQs. Table Al repeats the simulations in Table 1
using a two-state mixture lognormal model denoted as LN2 (see, e.g., Bahra 1997 and

Melick and Thomas 1997) to generate option prices that are a closer match to market
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prices. The LN2 model consists of five parameters: p is the probability of being in state
1; 1 and po are the instantaneous drift of the asset price in states 1 and 2; and o7 and
o9 are the instantaneous volatility of the asset price in states 1 and 2. Furthermore, the
parameters should satisfy the following constraint so that the forward price from the LN2
model is equal to the market forward price: pet1” +(1—p)et2” = e(r=0T We fit the LN2
model to the set of OTM call and put market prices available on June 28, 2019, imposing
the above constraint. This results in the following set of parameters for the LN2 model:
p = 0.8702, 41 = 0.1286, uo = —0.8601,01 = 0.0929,0, = 0.2278. Furthermore, we
simulate the model with the following set of inputs: S = 2941.76,r = 0.0239, ¢ = 0.0194,
and T = 0.0767%%. The results in Table A1 are quantitatively and qualitatively similar to
the results from Table 1. The MFQ method significantly outperforms the BLQ method
when cubic splines are used to interpolate noisy option price data (Panel A) or when
a LLR smoothing is applied as in Panel B where leave-one-out LSCV is used to select
the bandwidth. The MFQ method also outperforms the BLQ method in Panels C when
LQR smoothing is used and Panel D when cubic B-splines are used to smooth option
prices.

We also run a Monte Carlo experiment using the LN2 where noisy option prices are
preprocessed to be convex in the strike price with results presented in Table A2. MFQs
are more accurate than BLQs in the case of cubic splines, LLR, and LQR. However,
we find that BLQs are slightly more accurate than MFQs in terms of mean RMSE
in the case of cubic B-spline smoothing. Comparing mean RMSE values with values
in Panel D of Table Al, when cubic B-splines are used to smooth option prices that
are not preprocessed to be convex, we find that preprocessing combined with cubic B-
spline smoothing results in mean RMSE values that are approximately four times greater
relative to the case when cubic B-spline smoothing is used without preprocessing. In the

case of cubic B-splines, the experimental evidence suggests that preprocessing followed

23Unlike in the Black-Scholes case, we do not round down the inputs so that the constraint imposed
on the fitted parameters ensures no-arbitrage.
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by cubic B-spline smoothing results in less accurate quantiles when compared to simply
using cubic B-splines to smooth option prices. In this latter case, the MFQ method is
more accurate than the BLQ method.

In Table A3 we simulate S&P 500 index option market conditions on the July 30,
2007, for the near maturity option chain. We choose this date as it lies approximately
half way through our data sample. In this case we replicate conditions where a medium
number of option price quotes are available over a lower range of strike prices than in
the previous simulations. On this day, there were 52 different strike prices ranging from
a minimum strike price of 1290 to a maximum strike price of 1560. The left most four
options are spaced at intervals of 10 index points whereas all other options are spaced
at uniform intervals of 5 index points. The spot price is S = 1474, the interest rate is
r = 0.05, the dividend yield is ¢ = 0.02, and the time-to-maturity is 7' = 0.05. We use
an ATM forward implied volatility of ¢ = 0.200 to simulate Black-Scholes model prices.
In all cases, the MFQ method is more accurate than the BLQ method.

In Table A4 we simulate S&P 500 index option market conditions on the July 30,
1999, for the near maturity option chain. We choose this date as it lies near the be-
ginning of our data sample. In this case we replicate conditions where a low number of
option price quotes are available over a short range of strike prices than in the previous
simulations. On this day, there were 30 different strike prices ranging from a minimum
strike price of 1125 to a maximum strike price of 1425. The left most eight option quotes
are spaced at intervals of 25 index points, then there is a gap of 20 index points to the
9th option quote with the remaining option quotes are spaced at uniform intervals of 5
index points. The spot price is .S = 1329, the interest rate is r = 0.05, the dividend yield
is ¢ = 0.01, the time-to-maturity is 7" = 0.05, and we use a single ATM forward implied
volatility of ¢ = 0.22 to simulate the Black-Scholes model prices. In all cases, the MFQ

method is more accurate than the BLQ method.
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Appendix B Risk-Neutral Mean and Variance in a Smooth
Half Normal CARA Economy

The smooth half normal (SHN) density function (see de Roon and Karehnke 2017) is
defined as follows:

Mf(zsm,sy) if e <m,

g9(x) =

Xof(xym,sy) if & > m.
where f(x; iz, 0,) is the normal density function with mean u, and standard deviation
0z, A1 and Ay are chosen to ensure the density function is continuous and integrates to
one, and where s1, s9 and m are chosen to match the mean p, variance o and skewness
«v of the excess return distribution. Following de Roon and Karehnke (2017) we assume
a two period economy with a representative investor that maximizes a CARA utility

—ew0(1477+2) where 0 is the risk aversion coefficient, wp the initial

function u(z) =
wealth, 7y is the risk-free rate and x is the excess return with  ~ SHN(u,0,7). The
risk-neutral density g*(z) is related to the physical density function (subject to conditions
such as complete and frictionless markets) as follows:

) u'((L+rp+x))g(x)

oo W((L+7p +))g()

The resulting risk-neutral density function is given by:

. Tf(mym — Owps?, s1) if @ <m,
g'(x) =
sf(z;m — Owgs3, so) if > m.
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where

C;
* (2
)\i = )\iia

C
1 2,,2 2
5(9 wosi)7

C; = ¢€

c=Mc1® (Hwosl) + Aoco (1 - & (911]082)) ,

for i = 1,2 and where ®(z) denotes the standard normal CDF. The risk-neutral condi-

tional means are given by:

d(Owosy)
E*lxle <ml=m— 2 _ g, 0L
[z]z < m] =m — Owpsy — s1 B(Guwost)’
d(Owos2)
E* = m — 2 R et S VA
[x|z > m] = m — Owyss + s2 1= B (0uwosy)’

where ¢(z) denotes the standard normal PDF. The corresponding risk-neutral probab-

ilities are given by:

Pr*[z < m] = A]®(Qwps1),

Pr*[z > m] = A5 (1 — ®(Qwpsz)) .
Hence, the risk-neutral mean is given by:

E*[z] = E*[z|z < m]Pr*lx < m]+ E*[z|x > m]Pr*z > m]
=] (m — Hwos%) O (Qwpsy) — Ajs10(0wpsy)

+ A5 (m — Owos3) (1 — ®(Owos2)) + Nssa¢(fwpss)
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The risk-neutral conditional expectations of the square of a SHN-CARA random variable

are given by:

Owpsy)

‘o’ < m] = (m — Bwos})” + 7 2 _ gn) 0wos1)

E*[2®|lz <m] = (m — Qwos])” + s7 + s1 (Qwpsi — 2m) U

E*[fCQ’LU > m] = (m — 9w033)2 + 8% + 59 (Hw(]s% + Qm) M
1-— @(911)082)

The risk-neutral conditional variances are given by:

V¥z|lr < m] = E*[2%|z < m] — E*[z]z < m)?,
V¥ x|z > m] = B*[2%|x > m] — E*[z]x > m]*.
Using the law of total variance, the risk-neutral variance in a SHN-CARA economy is

given by:

V¥ z] =V [z|z <m]Pr*lx <m]+ V¥ [z|x > m]Pr*[z > m)]

+ (E*[z]z < m] — E¥[z|z > m])* Pr*[z < m] Pr*[z > m).

It is interesting to note that in a SHN-CARA economy the variance risk premium defined
as the difference between the risk-neutral and physical variance, VRP = V*[z] — V[z],
is positive when the physical skewness « is negative, zero when v = 0 and negative when
v > 0. The fact that in a SHN-CARA economy the VRP is positive when skewness
is negative is in agreement with the stylised empirical facts of negative skewness and

positive VRP in major international equity markets.
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Appendix C Further Predictive Regression Results

In this section of the Appendix we report further predictive regression results. Table C1
presents predictive regression results similar to those in Table 5 but where the quantile
extraction method uses interpolating cubic-splines, as opposed to smoothing B-splines.
As can be seen from the table, the results are quantitatively and qualitatively similar to
the results in Table 5 highlighting that RNA-Qs are not overly sensitive to the procedure
used to extract quantiles provided we use the MFQ method.

Table C2 reports predictive regression results where, following robustness tests in
Table Martin (2017), we remove the period of the financial crisis from August 1, 2008
to July 31, 2009, in which variance spiked upwards, the stock market crashed and then
subsequently recovered strongly. As can be seen in C2, the results for RNA-Q become

even stronger when this period of the financial crisis is removed from the data sample.
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Appendix D Higher Order Cornish Fisher Expansion

The Cornish-Fisher (CF) expansion up to fifth order expresses a non-normal standard
quantile, w, in terms of a standard normal quantile, z, and the the distribution cumulants

Ky, as follows:

+ [mhi(2)]

+ [2ha(2) + ¥ haa(2)]

+ [v3hs(x) + y1y2h12(x) + P hin (2)]
+|

Yaha(z) + 3 hoo(x) + y3hs() + Viehiiz(z) +v1hi (2)]

where

M

Yres KZ;Q, ref{3,4,..}

h(z) = éHeg(l‘)

ha() = 5 Hes(r)
s () = 5 (2 () + He (2)

hs(w) = 1o Hea(a)
hia() = —5 [Hea(z) + Heo (1)
i () = 5y [12Hes(z) + 19Fes )]

ha(w) = =5 Hes (o)
hoa() = — = [3Fies () + 6Hes(r) + 2Fey 1)
his(z) = —% [2Hes (x) + 3Hes(z)]
hii2(z) = 288 [14Hes(x) 4+ 37Hes(z) + 8Hey ()]
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1
hllll(m) = *ﬁ [252H65($) + 832H63(IE) + 227Heq (33)]

where He,(z) are he probabilist’s Hermite polynomials given by

»

A L
He,(z) = (—1)"e™ dx”e_T

Hermite polynomials He,(z) are even or odd functions depending on n with
He,(—x) = (—1)"Hep(—x)

The sum of two symmetric quantiles at, respectively, probability levels o and 1 — « is
given by wq + wi_o. This sum is a function of the odd Hermite polynomials as the even

Hermite polynomials cancel. Taking a fifth order expansion results in
Wa + Wi—a = 2 (Y1h1(2) + v3h3(x) + 1172h12(2) + AP hi11(2))

Dividing across by 2hi(z) yields the measure of asymmetry we use in the paper that we

denote as RNA-Q

Along with skewness -1, we see that higher order cumulants v2 (kurtosis) and ~3 (fifth
order cumulant related to hyperskewness) also impact the asymmetry measure in the

fifth order expansion.
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