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Option-Implied Asymmetry and Market Returns

Abstract

We propose a novel method to estimate risk-neutral quantiles that uses sorting

to minimize an objective function given by a convex combination of call and put

option prices over the range of available strike prices. We demonstrate that this new

method significantly improves the accuracy of quantile estimates relative to existing

approaches. We use the method to estimate a novel risk-neutral quantile-based

asymmetry measure (RNA-Q) from S&P 500 index options. In contrast to existing

risk-neutral skewness measures, we find that RNA-Q is significantly negatively linked

to future market excess returns at horizons ranging from one to twelve weeks. Our

findings suggest that ex-ante systematic asymmetry does matter when predicting

excess market returns.

Keywords: Model-free quantiles, asymmetry, skewness, forecasting, equity risk

premium
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1 Introduction

We propose a novel model-free approach to extract risk-neutral quantiles from option

prices that improves upon the most commonly used approach in the literature pioneered

by Breeden and Litzenberger (1978) and Banz and Miller (1978) resulting in more ac-

curate quantile estimates. We use risk-neutral quantiles from the tails of the risk-neutral

distribution to construct a quantile based measure of risk-neutral asymmetry (hereafter

denoted as RNA-Q). The leading term in RNA-Q is a quantile-based risk-neutral skew-

ness term. However, RNA-Q is also related to the higher order cumulants thus goes

beyond skewness in measuring asymmetry. We estimate RNA-Q using daily data on

S&P 500 index options and take RNA-Q to be a proxy for ex-ante market asymmetry.

We find that RNA-Q negatively predicts S&P 500 weekly excess returns at horizons

ranging from 1 to 12 weeks1. This result is robust to the inclusion of risk-neutral skew-

ness2 as a control along with other commonly used market return predictors such as

the variance risk premium. In particular, we find that RNA-Q contains information on

subsequent market returns when estimated with tail quantiles but not when RNA-Q is

estimated using the most extreme tail quantiles with probability levels in the range of

1% to 3% in the left tail and 97% to 99% in the right tail.

Return distribution asymmetry is typically summarised by skewness, the third mo-

ment of return, a natural extension to distributions based on mean and variance alone.

The three-moment CAPM of Kraus and Litzenberger (1976) concludes that systematic

skewness (also referred to as coskewness), and not idiosyncratic skewness, should be

priced in the cross-section of stock returns. Indeed, conditional coskewness is shown

1This result holds regardless of whether we average the RNA-Q value over each trading day in the
week or evaluate RNA-Q on the last trading day in the week

2We use the Bakshi, Kapadia, and Madan (2003) measure of risk-neutral skewness (denoted as RNS-
BKM). This can be used as an alternative proxy for ex-ante asymmetry. RNS-BKM, formulated on the
the model-free methodology of Bakshi and Madan (2000) and Carr and Madan (2001), is frequently
used to to proxy for ex-ante skewness in the literature. See, for example, Rehman and Vilkov (2012),
Chang, Christoffersen, and Jacobs (2013), Conrad, Dittmar, and Ghysels (2013), DeMiguel, Plyakha,
Uppal, and Vilkov (2013), Stilger, Kostakis, and Poon (2017), Chordia, Lin, and Xiang (2021), for a
small sample of papers that use BKM skewness.

3



to be priced in the cross-section of stock returns in Harvey and Siddique (2000). Fur-

thermore, both the static three-moment CAPM of Kraus and Litzenberger (1976) and

the dynamic quadratic pricing kernel in Harvey and Siddique (2000) imply that ex-ante

market skewness negatively predicts subsequent market excess returns. However, as far

as the authors are aware, this result has so far eluded the literature or results have been

very weak3. Jondeau, Zhang, and Zhu (2019) find that average cross-sectional skew-

ness negatively predicts subsequent market returns but that market skewness contains

no predictive power for market returns. Chang, Christoffersen, and Jacobs (2013) ex-

tract risk-neutral skewness (RNS) and risk-neutral kurtosis estimates using the approach

of Bakshi, Kapadia, and Madan (2003) (hereafter we abbreviate this RNS estimate as

RNS-BKM) from S&P 500 index options. Taking RNS-BKM as a proxy for ex-ante mar-

ket skewness, they find that stocks with higher exposure to innovations in RNS-BKM

generate lower returns on average. This further emphasises the negative link between

systematic skewness and the cross-section of stock returns.

A number of models that deviate from the respresentative agent/expected utility

framework conclude that idiosyncratic along with systematic skewness may be priced

(see, e.g., Mitton and Vorkink 2007, Brunnermeier, Gollier, and Parker 2007 and Barberis

and Huang 2008). A negative link between ex-ante total skewness, proxied by RNS-

BKM extacted from individual stock options, and subsequent stock returns is found

in Conrad, Dittmar, and Ghysels (2013) agreeing with the aforementioned theoretical

models. Boyer and Vorkink (2014) show that ex-ante total skewness in option returns is

strongly linked with subsequent negative average options returns. However, more recent

results demonstrate a positive link between total RNS and subsequent stock returns.

In particular, Chordia, Lin, and Xiang (2021), Stilger, Kostakis, and Poon (2017) and

3Chang, Zhang, and Zhao (2011) show that market skewness estimated with daily return data is
marginally significantly associated with subsequent monthly market returns. The skewness coefficient
is significantly negative for monthly and quarterly returns and (in)significantly positive for semi-annual
(annual) returns. However, their data sample from January 1996 to December 2005 is very short making
it difficult to draw robust conclusions, in particular, when using longer horizon overlapping holding
periods.

4



Rehman and Vilkov (2012) (Bali, Hu, and Murray 2014) show that there is a positive

link between ex-ante stock skewness and subsequent stock returns (ex-ante expected

stock returns derived from analyst expectations) using RNS-BKM as a proxy for ex-

ante skewness. Informed trading (Chordia, Lin, and Xiang 2021), low RNS stocks being

overpriced combined with limits to arbitrage (Stilger, Kostakis, and Poon 2017) along

with mispricing in the stock market (Rehman and Vilkov 2012) are shown to be the likely

reasons for the positive causal link between RNS and stock returns. The contradictory

results regarding the sign of the link between RNS and stock returns can be partially

explained by the formation period used to estimate RNS (Stilger, Kostakis, and Poon

2017). A positive link between RNS and stock returns ensues when the most recently

available end-of-month data for RNS is used, whereas a negative relation is found when

the RNS is averaged over a longer formation period4. Borochin, Chang, and Wu (2020)

also show that RNS extracted from short maturity options positively predicts stock

returns due to informed trading whereas, RNS extracted from longer maturity options

negatively predicts stock returns consistent with skewness preference.

Along with the mixed empirical results discussed above there are a number of argu-

ments against the use of skewness as a risk factor. Brockett and Kahane (1992) show that

skewness preference is not necessarily a consequence of expected utility maximization

for investors with utility functions that have a positive third derivative. The coskewness

risk premium reported in Harvey and Siddique (2000) weakens considerably when cubic

utility functions are restricted to display risk aversion over the full wealth domain (Post

and Levy 2005, Post, Van Vliet, and Levy 2008). Martin (2013) shows that higher order

cumulants/moments (not just the third moment) of the consumption growth process

make a significant contribution to the equity risk premium in a consumption-based asset

pricing model that allows for infrequent disasters. Jiang, Wu, Zhou, and Zhu (2020)

4For instance, in Conrad, Dittmar, and Ghysels (2013) stocks are sorted based on RNS-BKM averaged
over the proceeding quarter with stock returns evaluated at a quarterly holding period. This result is
also consistent with mean reversion in RNS.
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show that skewness is significantly negatively associated with subsequent stock returns

but only in periods of high volatility or high sentiment. Jiang, Wu, Zhou, and Zhu

(2020) show that their measure of asymmetry, which focuses on the asymmetry between

the probability of upside versus downside returns in excess of one standard deviation,

is more consistently negatively associated with subsequent stock returns than skewness.

This motivates us to assess whether a risk-neutral measure of systematic asymmetry,

that goes beyond skewness, is significantly linked to future market excess returns. Our

measure of asymmetry focuses on asymmetry in the risk-neutral quantiles located in the

tails of the distribution. Using the Cornish-Fisher (CF) expansion (Cornish and Fisher

1938, Abramowitz and Stegun 1972), we show that the leading term in our risk-neutral

asymmetry measure is equal to a quantile-based version of risk-neutral skewness but

that the asymmetry measure also depends on higher order standard cumulants.

We offer a number of contributions to the literature. First, we propose a new method

to estimate risk-neutral quantiles. Our method involves sorting an objective function

of option prices to the desired probability level α, whereas traditional methods (see,

e.g., Breeden and Litzenberger 1978) estimate risk-neutral quantiles by sorting an ob-

jective function of first derivatives of option prices. Sorting option prices, rather than

first derivatives of option prices, turns out to be crucial in reducing standard errors of

risk-neutral quantile estimates. Breeden and Litzenberger (1978) risk-neutral quantiles

estimated with nonparametric methods will have larger asymptotic variance compared to

quantiles estimated with our approach. This is because our approach sidesteps the need

for differentiation and thus avoids the “curse of differentiation”5. Second, we demon-

strate the superiority of our method to extract risk-neutral quantiles relative to the

existing method with Monte Carlo experiments. We mimic S&P 500 index option price

quote conditions at different dates in the sample and show that risk-neutral quantiles

5The curse of differentiation refers to the fact that functions are estimated more accurately than
function derivatives when using nonparametric methods (see, e.g., Fan and Gijbels 1996, Aı̈t-Sahalia
and Duarte 2003, and Bondarenko 2003).

6



have lower standard errors and do not suffer from quantile crossing (when extracted

quantiles are nonmonotonic in the probability level α) unlike the existing approach.

Third, we construct a novel measure of risk-neutral asymmetry that we refer to as a

standardised symmetric quantile sum (SSQS) and estimate SSQS using S&P 500 index

options. SSQS measures the relative asymmetry in the distance between the right strike

price to the forward price and the left strike price to the forward price in a zero cost

risk reversal consisting of a long position in a binary call option and a short position in

binary put option. Using the CF expansion, we show that SSQS is related to a quantile-

based risk-neutral asymmetry measure (RNA-Q) that has a leading skewness term along

with higher order terms related to higher order cumulants/moments. Fourth, we provide

theoretical motivation that excess market returns are decreasing in RNA-Q in a two-

period representative investor skewness aware CARA economy. Fifth, we show that

RNA-Q negatively predicts future excess market returns. This is in contrast to existing

measures of risk-neutral skewness, such as the measure proposed in Bakshi, Kapadia,

and Madan (2003), where there is no significant relation between RNS-BKM and future

excess market returns. As a result we show that ex-ante systematic asymmetry does

matter in the prediction of market excess returns. This result is robust to a number of

alternative option implied predictors of market returns popular in the literature.

The remainder of this article proceeds as follows. Section 2 provides more background

on option implied measures of asymmetry and tail risk. Section 3 introduces our novel

method to estimate risk-neutral quantiles and outlines, with Monte Carlo experiments,

how this novel method results in more accurate quantiles relative to existing methods.

Section 4 introduces our novel measure of risk-neutral asymmetry and links this risk-

neutral asymmetry to RNA-Q. Section 5 provides theoretical motivation. Section 6

outlines the S&P 500 index options data and the method used to augment the strike

price in order to extract risk-neutral quantiles. Section 7 reports empirical results and

the final section concludes.
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2 Background

Option markets facilitate the pricing of elementary contingent claims (Arrow 1951;

Debreu 1952) along the state dimension, spanning and augmenting the payoff space

of financial markets (Ross 1976). Option prices at different strikes contain refined in-

formation on state variables that define the opportunity set of investors (Merton 1973).

Exploiting different characteristics of risk-neutral and physical return processes, under

certain circumstances, options can be used for direct inference on risk premiums, i.e.,

the wedge between two conditional expectations, for risk factors that are traditionally

considered unspanned. For instance, Bollerslev, Tauchen, and Zhou (2009) show that the

difference between the risk-neutral and physical conditional variances of equity returns,

the variance risk premium (VRP), is a proxy for the volatility of a time-varying volatility

in the consumption growth process, which is an important risk factor that is priced in

the ERP. Bollerslev and Todorov (2011) find that short-term out-of-the-money (OTM)

options contain information on the “crash-o-phobia” that is effectively purged from the

compensation for a time-varying jump risk. The “crash-o-phobia” accounts for a large

fraction of the ERP and the VRP (as defined in Carr and Wu 2009). Furthermore, under

the assumption that the physical large jump intensity process is symmetric, combined

with the empirical evidence that the risk-neutral right jump tail is negligible, Bollerslev,

Todorov, and Xu (2015) show that the risk-neutral negative jump variation approximates

the “crash-o-phobia” and helps explain the ERP predictability by the VRP.

Whilst investors may pay a premium for stocks with positive asymmetrical return dis-

tributions, investors have an aversion to negative asymmetry as more negatively skewed

stocks are more likely to be subject to left tail disaster risk. The quantile-based RNA

measure we propose is more closely related to option implied measures of disaster risk

than RNS-BKM as we use tail quantiles to extract RNA-Q. Furthermore, RNA-Q en-

capsulates higher order standard cumulants that are important in capturing the shape of
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the return distribution. Options provide an alternative means of estimating time-varying

economic disaster risk without the need to consider a long time series to circumvent the

Peso problem or, as considered in Kelly and Jiang (2014), a large cross section of asset

returns. Furthermore, option-implied measures are real-time reflections of the current

states of the economy incorporating information on the conditional expectation of fu-

ture states. As a result, risk measures based on option prices are forward-looking and

potentially more informative than those estimated from historical data. However, option-

implied measures are risk-neutral therefore embed both the representative agent’s pref-

erences and subjective expectations with additional assumptions needed to disentangle

these components. Nonetheless, significant progress has been made in the literature

that allows for the recovery of either of these components from a risk-neutral distribu-

tion in a semi-model-free way (see, e.g., Ross 2015; Carr and Yu 2012; Martin 2017;

Jensen, Lando, and Pedersen 2019; Schneider and Trojani 2019; Kadan and Tang 2020;

Jackwerth and Menner 2020).

Certain issues arise when extracting option-implied information using model-free

measures or through, more technically, spanning (see Bakshi and Madan 2000). Option

prices are quoted in the market only for a finite strike range and over a discrete set of

strike prices. This renders inferences on risk-neutral distributions problematic, especially

at the tails (see, e.g., Jiang and Tian 2007; Figlewski 2009; Andersen, Bondarenko,

and Gonzalez-Perez 2015). Despite these limitations, the estimation of option-implied

distribution tails and disaster risk measures has been a topic of significant research

activity (see, e.g., Carr, Ellis, and Gupta 1998; Bollerslev and Todorov 2011; Du and

Kapadia 2012; Vilkov and Xiao 2013; Siriwardane 2015; Hao 2017; Lu and Murray

2019). The quantile-based RNA measure we propose is particularly sensitive to deep

out-of-the-money option prices. As a result, in the next section, we introduce a novel

method to estimate risk-neutral quantiles that is more robust to measurement error in

the tails than the existing quantile estimation approach.
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3 Model-Free Quantiles

In this section a novel method to estimate risk-neutral quantiles is introduced. Provided

the strike range is sufficient to encompass the quantiles to be estimated, this method

leads to risk-neutral quantile estimates that have smaller estimation errors relative to

existing procedures, particularly for quantiles in the tails of the distribution.

3.1 Definition

The method we propose to estimate risk-neutral quantiles is related to the objective

function introduced in quantile regression (see Koenker and Bassett 1978). We apply

the objective function under the context of option pricing.

Proposition 3.1. The α quantile for a risk-neutral distribution of horizon T , Qα,T , is

the solution to the following minimization problem

Qα,T = arg min
K∈K

(1− α)Put (K,T ) + αCall (K,T ) , (1)

where K denotes the strike price and K denotes the set of strike prices.

Proof. The objective function is a nonnegative weighted sum of convex functions given

the no-arbitrage condition, i.e., the second derivative of put or call prices with respect to

strike price is positive (see, e.g., Carr and Madan 2005). Hence, the objective function

is convex (see, e.g., Boyd and Vandenberghe 2004) and the first order condition with

respect to K gives a global solution:

∂

∂K

[
(1− α) e−rfT

∫ K

0
(K − S) dFT (S) + α e−rfT

∫ ∞

K
(S −K) dFT (S)

]
= 0

(1− α)FT (K) + α (FT (K)− 1) = 0

FT (K) = α
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where rf denotes the risk-free rate and FT (S) denotes the risk-neutral distribution func-

tion of the optioned asset price S for horizon T .

In Proposition 3.1, no assumption is made regarding the return generating process,

except for the implicit assumption of no-arbitrage and consequently the existence of

a risk-neutral measure. Thus, risk-neutral quantile estimates that are the solution of

Eq. (1) are model-free. In the following, we refer to risk-neutral quantiles estimated as

solutions to Eq. (1) as model-free quantiles (MFQs).

3.2 Illustrative Example

Our novel procedure to estimate risk-neutral quantiles is as follows. We first augment the

discrete set of available option price quotes to obtain a continuum of call and put option

prices over a high resolution grid of strike prices. We then solve the optimization problem

by finding the value on the x-axis (strike grid) that minimizes the objective function in

Eq. (1). We refer to this approach of finding the minimum as sorting as it does not require

information on the derivatives of the objective function. This optimization problem is

convex if the set of augmented high resolution chain of option prices is convex in the

strike price. This is equivalent to the principal of no-arbitrage holding for the augmented

high resolution chain of option prices. In practise, this requires that the input market

option price quotes are convex in strike and that the augmenting procedure preserves

this convexity. We return to this issue in Section 3.4.

Figure 1 illustrates the method by depicting the estimate for the risk-neutral price

quantile Qα when α = 5% under the Black-Scholes model. We set the underlying price

to 100, the risk-free rate to 0, time to maturity to 1 year, and volatility to 20%. The

top panel depicts the objective function of Eq. (1) and the solution that minimizes

the objective function by sorting where, for illustration purposes only, 106 strikes are

equally spaced between 50 and 150 (in a subsequent subsection we conduct Monte Carlo

experiments to assess the performance of the method using a set of option price quotes
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across the strike range that replicate index option market conditions). The bottom panel

depicts the cumulative distribution function of the log-normal distribution given these

parameters. Figure 1 shows the procedure delivers (almost) the exact Q5% which is

equal to 70.54. However, it should be noted that Proposition 3.1 is model-free hence our

procedure does not rely on the assumption that the underlying price follows geometric

Brownian motion.

[Figure 1 about here.]

3.3 Discussion

In their seminal paper Breeden and Litzenberger (1978) (hereafter BL) show that the

pricing of elementary contingent claims (or Arrow-Debreu securities) is equivalent to

solving second partial derivatives of a European call option pricing function with re-

spect to strike prices. Inherent in this result is the connection between a risk-neutral

cumulative distribution function (RN-CDF) and first partial derivatives of a European

call or put option pricing function with respect to strike prices (see, e.g., Figlewski 2009)

given by

F (K) = erfT
∂ Call (K,T )

∂K
+ 1 , or (2)

F (K) = erfT
∂ Put (K,T )

∂K
, (3)

where F (K) denotes the RN-CDF of the optioned asset price and we have suppressed the

dependence on maturity T to save on notation. To estimate quantiles with the BL ap-

proach (hereafter referred to as BLQs), the RN-CDF is first estimated by differentiation

and then the quantile Qα is given by the solution to:

Qα = arg min
K∈K

|F (K)− α|.
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As F (K) can be estimated with a chain of call or put options using either Eq. (2) or

Eq. (3), BLQs can be obtained using either:

Qα = arg min
K∈K

|erfT ∂ Call (K,T )

∂K
+ 1− α| , or (4)

Qα = arg min
K∈K

|erfT ∂ Put (K,T )

∂K
− α| . (5)

The inputs to the model-free quantile estimator proposed in Eq. (1) are option prices,

which renders Eq. (1) more flexible when used in practice compared to the BL approach.

By applying put-call parity to Eq. (1), the quantile extraction method can be rewritten

either as:

Qα = arg min
K∈K

Call (K,T )− (1− α)
(
S − e−rfTK

)
, or (6)

Qα = arg min
K∈K

Put (K,T ) + α
(
S − e−rfTK

)
. (7)

Comparing Eq. (6) with Eq. (4) or Eq. (7) with Eq. (5) we see that the MFQ

method requires minimising an objective function based on option prices whereas the

BLQ method requires minimising an objective function based on the first derivative of

option prices. In theory when an infinite number of market option price quotes are

available over the strike range, the BLQ and MFQ solutions will coincide. Figure 2

depicts the two objective functions along with the corresponding quantiles when option

prices are assumed to follow a Black-Scholes model. The spot price is S = 100, the

interest rate is r = 0, the dividend yield is q = 0, the time-to-maturity is T = 1, and

volatility is σ = 0.20. The set of strike prices ranges from 10 to 100 in steps of 0.01 index

points. The true Black-Scholes quantiles at 1%, 5% and 10% are, respectively, 61.55,

70.54 and 75.85. The MFQ and BLQ estimates coincide in this case at, respectively,

61.55, 70.54, and 75.86.

[Figure 2 about here.]
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In practise option price quotes are observed with measurement error due to discrete-

ness of prices, asynchronous trading, bid-ask spreads and variation in liquidity across

moneyness. Furthermore, option price quotes are available at a finite number of strike

prices and over a finite strike range. As a result, to estimate quantiles the discrete

set of option price quotes must be augmented to obtain a continuum of call and put

option prices on a high resolution grid of strike prices. BLQs and MFQs will coincide

if a parametric model is used to augment the set of available option price quotes to a

high resolution grid, as shown above for the case of the Black-Scholes model. However,

BLQs and MFQs will not necessarily coincide if nonparametric methods are used to aug-

ment the set of available option price quotes. BLQs require nonparametric derivative

estimates whereas only level estimates are needed for MFQs. As nonparametric level

estimates have lower asymptotic variance than nonparametric derivative estimates (see,

e.g., Fan and Gijbels 1996), MFQs will be more accurate than BLQs.

Nonparametric estimators are commonly used for inference on risk-neutral distribu-

tions (see, e.g., Aı̈t-Sahalia and Lo 1998; Aı̈t-Sahalia and Duarte 2003; Fengler and Hin

2015; Ludwig 2015). Compared with parametric models, nonparametric estimators are

not subject to misspecification errors thus, naturally complement model-free measures

that require stringent conditions on the set of strike prices but (almost) no assumptions

on underlying return distributions. Nevertheless, nonparametric estimates in general

converge much slower than those of parametric models. The rate of convergence is even

slower when estimating derivatives, which is anecdotally known as the “curse of dif-

ferentiation” (as previously discussed in Section 1). It is also cumbersome to impose

no-arbitrage conditions on nonparametric estimators. For these reasons, nonparametric

inferences in the literature are mostly conducted on risk-neutral distributions of market

indices, e.g., the S&P 500 index, where there is usually a large number of option price

quotes available over different strikes at a given maturity. Moreover, when using the

BLQ method (Eq. (4) or Eq. (5)) to estimate risk-neutral quantiles, a nonparametric

14



estimator with an objective function that is designed to optimize the goodness-of-fit of

levels (option market prices) as opposed to first derivatives is first applied to augment

existing strike prices6. Proposition 3.1 accommodates the use of sorting or differenti-

ation methods to estimate risk-neutral quantiles, whereas when differentiation followed

by sorting is used to solve risk-neutral quantiles (based on Breeden and Litzenberger

1978), this inevitably exposes the quantile estimates to higher standard errors by lower-

ing the rate of convergence. Moreover, MFQs are always monotonically increasing with

α, even when the strike augmentation procedure does not guarantee convexity. To see

this, we note that when α is increased in either Eq. (6) or Eq. (7) this rotates the object-

ive function clock-wise. Given a solution to the objective function Qα1 at a given value

of α1, a new solution Qα2 at α2, where α2 > α1, will either be larger or remain at the

current solution, regardless of whether the strike augmentation procedure (smoother) is

locally concave or convex. Quantile crossing can happen under BLQs when the strike

augmentation procedure does not guarantee convexity.

3.4 Monte Carlo Experiments

To illustrate the improved convergence properties of MFQs we conduct a number of

Monte Carlo experiments. We simulate a chain of noisy Black-Scholes out-of-the-money

(OTM) call option prices and OTM put option prices using the approach in Bondarenko

(2003). The noise in the option price is assumed to be a uniform random variable

with a spread equal to half the maximal allowable spread according to CBOE rules

(see Appendix A for more details). We calculate ITM option prices from OTM option

prices using put-call parity. As the maximum allowable spread increases with the bid

quote of the option price, options that are close to the money (further from the money)

6The goodness of fit of a nonparametric linear estimator amongst other linear estimators can be
measured by the linear minimax efficiency (see, e.g., Fan and Gijbels 1996). In particular, local linear
and quadratic regression estimators achieve the optimal linear minimax efficiency for the C2 (twice
continuously differentiable) class on estimating interior levels and slopes, respectively. The C2 class is a
bottom line requirement for modelling option prices, such that elementary contingent claim prices exist
(see, e.g., Breeden and Litzenberger 1978; Härdle and Hlávka 2009).
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will have higher (lower) measurement error. As we only simulate OTM options in this

experiment, options that are closer to the money have the highest prices and hence the

highest measurement error in absolute terms. Whereas, the measurement error in far

OTM simulated option prices is larger in relative terms.

Table 1 depicts results from a Monte Carlo simulation where we compare model-

free quantiles (MFQs) estimated using the approach in Eq. (1) with the Breeden and

Litzenberger (1978) approach (BLQs). It should be noted that BLQs are also model-free

estimates. In this table we deliberately do not preprocess the simulated noisy option

prices to impose convexity with respect to strike prices. In the next table we do consider

the impact of ensuring that the input option data is convex in the strike price. We

replicate the conditions of the S&P 500 index near maturity chain of options on the

most recently available data in our sample which corresponds to June 28, 2019. In this

case there are a large number of option price quotes available over a wide range of strike

prices. On this day, there were 160 different strike prices ranging from a minimum strike

price of 2310 to a maximum strike price of 3155. Most option price quotes are spaced

at uniform intervals of 5 index points, although the 2nd, 5th, 6th, 7th, and 8th furthest

OTM put option price quotes are 10 index points away from their nearest neighbours to

the left. In the interests of replicating the experiments, we round down the inputs to the

Black-Scholes model. As a result we use the following inputs to simulate Black-Scholes

option prices: spot price S = 2942, interest rate r = 0.02, dividend yield q = 0.02, and

time-to-maturity T = 0.08. We use a single implied volatility from the option quote

with a strike price that is the closest to the forward price, i.e. an ATM forward implied

volatility σ = 0.13 .

[Table 1 about here]

Panel A of Table 1 compares the performance of MFQs to BLQs when the coarse

grid option price chain is interpolated with cubic splines, with no smoothing applied, to
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obtain a fine resolution grid of option prices. We first convert the noisy OTM put (call)

option prices to ITM call (put) option prices. We then combine the simulated OTM put

(call) option prices with ITM put (call) options prices so that we have a full chain of put

(call) option prices across the strike range. We use a cubic spline to interpolate the chain

of simulated noisy call option prices at a very fine grid of strike prices with a uniform

interval of 0.01 index points, where the original set of available option price quotes has a

strike interval of 5 (or 10) index points. We separately interpolate the chain of simulated

noisy put option prices. For MFQs, we form the objective function given in Eq. (1) for

a given probability level α and find, by sorting, the point on the x-axis that minimizes

this objective function. This point also determines the quantile corresponding to the

probability level α. For BLQs, we numerically differentiate the fine grid of call option

prices with respect to the strike price to estimate the CDF according to equation Eq. (2)

and find, by sorting, the quantile on the CDF x-axis corresponding to the probability

level α on the y-axis. We estimate MFQs and BLQs for α = 1%, 2%, . . . , 99%. We also

report the root mean square error, given by

RMSE =

√∑
α

(
Q̂α −QBS

α

)2
(8)

for α = 1%, 2%, . . . , 99%, where Q̂(α) are the estimated quantiles using either MFQs

or BLQs and QBS(α) are the true Black-Scholes quantiles. This measures, for one

simulation of an option price chain, the deviation of estimated quantiles from Black-

Scholes quantiles at 99 different quantile values. We then average the RMSE over all

simulations.

As is clear from the results in Panel A of Table 1, MFQs have lower standard errors

than BLQs when using cubic splines to interpolate the noisy option price chain. In

particular, the standard errors are approximately 10 times lower at the 1% to 5% left

tail quantiles and more than 3 times lower at the 95% to 99% right tail quantiles. The
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mean RMSE is 34.162 index points for the BLQ method and 7.835 index points for the

MFQ method. The ratio of the mean RMSEs is 4.360 meaning that the BLQ method

results in over 4 times higher RMSE than the MFQ method over the entire range of

quantiles estimated. Figure 3(a) depicts the simulation with the highest RMSE value

for the BLQ method and demonstrates the poor performance of BLQs relative to MFQs,

particularly at the lower left quantiles. It is clear that BLQs result in quantile crossing

whereas MFQs do not. Figure 3(b) depicts a typical simulation where it is still clear that

BLQs are considerably more noisy than MFQs. We do not plot the simulation with the

highest RMSE for the MFQ method but it should be noted that this simulation results

in even higher RMSE for the BLQ method.

[Figure 3 about here.]

Panel B of Table 1 depicts results from a Monte Carlo simulation that compares

MFQs and BLQs but where a nonparametric smoothing method is used to augment the

noisy option price chain. We simulate market option prices with measurement error as

before. However, we use a nonparametric local linear regression (LLR) method (see, e.g.,

Aı̈t-Sahalia and Duarte 2003) to generate option prices at a high resolution grid of strike

prices, with a strike interval of 0.01 index points, by smoothly approximating the chain

of low resolution noisy option prices. We do this separately for the call and put option

price chain. We use a Gaussian kernel and, for each simulation, the optimal bandwidth

for LLR is chosen by leave-one-out least squares cross-validation (LSCV) using the chain

of call option prices7. The use of LSCV in nonparametric physical quantile estimation

is shown to be asymptotically optimal under certain conditions in Li, Lin, and Racine

(2013). We estimate MFQs as previously outlined but using the two smoothed high

resolution option price chains (separately smoothed call and put chains) as opposed to

7In further experiments we selected the optimal bandwidth using only OTM call option prices and
OTM put option prices but the results are very similar to the results when using call option prices alone
and are omitted to save space.
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the cubic spline interpolated option price chains. To estimate BLQs with LLR we do not

need to numerically differentiate the call option chain with respect to the strike price

as we use the slope coefficient from LLR as the estimate of the first derivative for each

grid point. However, the standard error for higher order derivatives is larger than for

level estimates in local polynomial regression (see Eq. (3.7) Fan and Gijbels 1996 where

it is shown that the asymptotic conditional variance of a LPR derivative estimate, m(v),

increases with v, the order of the derivative, with a denominator proportional to h1+2v

where h is the grid spacing with h → 0 in the asymptotic analysis, see also Eq. (3.16)

Aı̈t-Sahalia and Duarte 2003). Thus, even though we are using an estimate of the slope

from the LLR output, we still expect MFQs to be more accurate than BLQs due to the

“curse of differentiation”8.

The results in Panel B of Table 1 demonstrate a marked improvement in BLQs

compared to the previous case in Panel A when no smoothing is applied to the option

price chains. This is to be expected as numerical differentiation of noisy data amplifies

the noise (see, e.g., Ahnert and Abel 2007 and Ling 2006). However, MFQs still have

lower standard errors, in particular, at the more extreme quantiles of 1% to 5% and 95%

to 99%. The mean RMSE is 9.277 index points for the BLQ method and 6.578 index

points for the MFQ method. The ratio of the mean RMSEs is 1.41 meaning that the

BLQ method has an average RMSE that is approximately 41% higher than the average

RMSE for the MFQ method across all the quantiles evaluated. Figure 3(c) depicts the

simulation that results in the highest RMSE value for the BLQ method. This highlights

the potential inaccuracies of BLQs, in particular, at the left most extreme strike prices

even after smoothing is applied. In this simulation, where the leftmost OTM put option

prices have larger measurement error by chance, MFQs are much more accurate than

BLQs in capturing the left most quantiles. Figure 3(d) depicts a more typical simulation

8Unlike the curse of dimensionality that only has serious practical implications once the dimension
of the problem is ≥ 4, the curse of differentiation applies even when comparing first derivative estimates
to level estimates.
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where BLQs and MFQs are so close that they are indistinguishable to the eye in the

plot.

In Panel C of Table 1 we use local quadratic regression (LQR) to augment the noisy

option price chain. The optimal order of the polynomial to use in LPR is k + 1 when

estimating a derivative of a function of order k, based on asymptotic analysis (see, e.g.,

Fan and Gijbels 1996). As a result we assess the performance of LQR given that we

estimate a first order derivative in BLQs. As with LLR we use leave-one-out LSCV to

select the bandwidth. The accuracy of the BLQ method deteriorates when LQR is used

in place of LLR. The mean RMSE value rises to 19.045 index points for LQR relative to

9.277 index points under LLR and 34.162 index points under cubic splines. The accuracy

of the the MFQ method also decreases when LLR is replaced with LQR but not nearly

as drastically as that of the BLQ method. The mean RMSE value for the MFQ method

is 7.375 index points under LQR which is higher than the mean RMSE value of 6.578 of

the MFQ method under LLR but lower than the mean RMSE value of 7.835 when using

the MFQ method with cubic splines. Furthermore, MFQs have lower standard errors

than BLQs, in particular, at the more extreme quantiles of 1% to 5% and 95% to 99%.

In agreement with Aı̈t-Sahalia and Duarte (2003) we find that asymptotic theory is not

necessarily a good guide to follow when dealing with sample sizes typically encountered

in index options markets.

The “curse of differentiation” applies to any nonparametric method (see, e.g., Stone

1982). This is highlighted in Panel D of Table 1 where we use cubic B-splines to smooth

option price chains. We use leave-one-out LSCV to choose the number of interior knots

in the B-spline. The interior knots are placed in the strike domain to divide the strike

price grid into uniform partitions. For example, when nk interior knots are used, knots

are placed to divide the strike domain into 1+nk uniform partitions. As with the cubic

spline, LLR and LQR approaches, MFQs are more accurate than BLQs. MFQs have

lower standard errors at the more extreme quantiles of 1% to 3% and 97% to 99%. The
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mean RMSE is 5.29 index points for the BLQ method and 5.22 index points for the MFQ

method. The ratio of the mean RMSEs is 1.01 thus, the BLQ method is 1% less accurate

than the MFQ method in terms of average RMSEs. Figure 3(e) depicts the simulation

that results in the highest RMSE for BLQs. This figure highlights the problem that the

BLQ method has at the left tail of the distribution as the B-spline fits the left boundary

of the data. Not only do we observe quantile crossing, but the quantile estimates in

the lower left tail are often 200 index points away from the true quantile value. This

particular simulation causes problems for the BLQ method at the left tail but the MFQ

method performs well and MFQs are more accurate than BLQs in capturing the left

tail quantiles. Figure 3(f) depicts a typical simulation in terms of RMSEs and, even in

this average simulation, MFQs are more accurate than BLQs at the left extreme strike

prices.

In Table 2 we repeat the simulations in Table 1 but preprocess the simulated noisy

option price data to ensure that the option prices are convex with respect to the strike

price. We use the constrained least squares approach of Aı̈t-Sahalia and Duarte (2003)

to effectively clean (or “convexify”) the noisy option price input data to ensure it is

convex in strike price. Panel A of Table 2 reports results when cubic splines are used to

augment the strike space. As cubic splines do not necessarily preserve convexity, we note

that the resulting augmented high resolution option price chains will not necessarily be

convex in strike, even though the coarse grid of input option prices are convex in strike.

BLQs are much better behaved using preprocessed convex data with cubic splines. The

mean RMSE value falls from 34.16 index points in Panel A of Table 1 to 8.27 index

points in Panel A of Table 2 when the input data is cleaned. However, it should be

noted that MFQs remain more accurate with a mean RMSE value that is 9% lower

than the corresponding value for BLQs. Panel B and C of Table 2 report results when

LLR and LQR are used, respectively, to augment the strike space. LLR preserves the

convexity of the input option prices, as shown in Aı̈t-Sahalia and Duarte (2003), so that
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the augmented high resolution option price chains remain convex in strike price. As a

result we see a marked improvement in BLQ performance relative to their performance

in Panel A. Under LLR, MFQs have mean RMSE values that are 0.4% lower than the

corresponding values for BLQs when using leave-one-out LSCV to select the bandwidth.

Preprocessing the input option data to ensure it is convex in strike along with the use

of a convexity preserving smoothing process results in improved performance for BLQs

however, MFQs are still marginally more accurate as evidenced by mean RMSE values.

LQR is not guaranteed to preserve convexity. However, according to asymptotic

analysis, local regression with a polynomial of order 2 is optimal when estimating the first

derivative required for BLQs. The former effect outweighs the latter in our experiments

as LQR quantiles are less accurate than LLR quantiles under both the BLQ and MFQ

method. Furthermore, the difference in performance between BLQs and MFQs widens

with BLQs having mean RMSE values that are 7% higher than the corresponding values

for MFQs compared to only 0.4% higher under LLR. Panel D of Table 2 report results

when smoothing B-splines are used to augment the strike space. The number of knots are

chosen by leave-one-out LSCV. Here we see that that the combination of preprocessing

data along with smoothing the data with B-splines actually increases the mean RMSE

values relative to the case where no preprocessing occurs in Table 1. For example, BLQs

have a mean RMSE value equal to 5.29 index points in Panel D of Table 1. This increases

to 7.22 index points in Panel D of Table 2. Similarly, MFQs have a mean RMSE value

equal to 5.22 index points in Panel D of Table 1 which increases to 6.88 index points in

Panel D of Table 2. In this case, the data is over smoothed when preprocessing along

with smoothing B-splines are used to extract quantiles whether BLQs or MFQs are used.

Despite the drop in performance induced by using convexity preprocessing before the

application of smoothing B-splines, MFQs remain more accurate than BLQs.

[Table 2 about here]
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We repeat the above experiments using a two-state mixture lognormal model (see,

e.g., Bahra 1997 and Melick and Thomas 1997) to generate option prices that are a

closer match to market prices. We do this both without and with preprocessing of input

option prices to ensure convexity. We also conduct additional simulations replicating

S&P 500 index option market conditions on a date approximately half way through our

sample (July 30, 2007) and on an earlier date in our sample (July 30, 1999). In these

cases there are, respectively, 52 and 30 unique strike option price quotes available. In

the vast majority of cases the MFQ method outperforms the BLQ method with lower

mean RMSEs and lower standard errors. Further discussion is deferred to Appendix A.

In the next section we introduce a quantile-based measure of risk-neutral asymmetry

that we link to skewness and higher order moments via the CF expansion.

4 Quantiles-Based Measures of Risk-Neutral Asymmetry

In this section we propose a novel measure of return asymmetry that we refer to as stand-

ardised symmetric quantile sums (SSQS). We then introduce a quantile-based asymmetry

measure that is based on a CF expansion of SSQS.

Using the CF expansion up to third order (see, e.g., Cornish and Fisher 1938 and

Abramowitz and Stegun 1972), we write return quantiles, qα(rτ ), in terms of standard

normal quantiles, zα, as follows:

qα(rτ ) ≈ µ(rτ ) + σ(rτ )zα +
1

6
σ(rτ )

(
z2α − 1

)
γ(rτ )

where rτ is the return at horizon τ = T − t, µ(rτ ), σ(rτ ) and γ(rτ ) are, respectively,

the mean, standard deviation and skewness of the return distribution at horizon τ . We

then write risk-neutral price quantiles Qα(Sτ ) in terms of risk-neutral return quantiles
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as follows:

lnQα(Sτ ) = lnS0 + qα(rτ )

≈ lnS0 + µ(rτ ) + σ(rτ )zα +
1

6
σ(rτ )

(
z2α − 1

)
γ(rτ )

= lnFτ + σ(rτ )zα +
1

6
σ(rτ )

(
z2α − 1

)
γ(rτ ) (9)

using the fact that the log forward price is given by lnFτ = lnS0 + µ(rτ ) with µ(rτ ) =

(r − q) τ . Let σBKM denote the risk-neutral standard deviation which we estimate using

the method in Bakshi, Kapadia, and Madan (2003). We define SSQS as follows:

SSQSα(rτ ) =
ln (Qα(Sτ )/F ) + ln (Q1−α(Sτ )/F )

σBKM (rτ )
(10)

≈ 1

3

(
z2α − 1

)
γ(rτ ) (11)

for α ∈ [0, 50%), where Eq. (11) is derived by substituting Eq. (9) for both α and 1− α

into Eq. (10). SSQS measures the asymmetry in the distance of the right strike price (1-α

quantile) from the forward price and the left strike (α quantile) from the forward price in

a zero cost binary option risk reversal9. The asymmetry measure is expressed in terms of

returns relative to the forward price required to obtain (pay) a dollar payoff conditional

on the right 1−α (left α) quantile being reached at horizon τ by the underlying optioned

asset. We further standardise to units of risk-neutral standard deviation to purge the

impact that standard deviation has on quantiles (see Eq. (9)).

For a given quantile level α, the term multiplying skewness in Eq. (11) is a fixed

scaling factor. To obtain a quantile-based risk-neutral asymmetry estimate (RNA-Q)

with skewness as the leading term we then invert Eq. (11) to express skewness γ(rτ ) as

9This implicitly assumes that left quantile is negative and the right quantile is positive.
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a function of SSQSα(rτ ):

RNA-Qα(rτ ) := γ(rτ ) ≈
3

(z2α − 1)
SSQSα(rτ ). (12)

The relation between RNA-Q and SSQS is not defined when zα = ±1, corresponding to

α ≈ 16%. The denominator term z2α− 1 = 0 when zα = ±1. Hence, RNA-Q should only

be used for quantiles that are more (less) than one standard deviation away from the

mean. In the appendix we show that RNA-Q also depends on higher order cumulants

when higher order CF expansions are used.

RNA-Q deviates from the robust measure of asymmetry proposed in Hinkley (1975)

(a generalisation of which is proposed in Groeneveld and Meeden 1984 and used in

Ghysels, Plazzi, and Valkanov 2016) as RNA-Q uses the risk-neutral standard deviation

as the denominator as opposed to the interquantile range. Both SSQS and RNA-Q can

be viewed as alternative measures of asymmetry in a risk-neutral return distribution that

are more robust to outliers than the usual moment based skewness measure. Related

asymmetry measures of return distributions under the physical measure are studied in

Ghysels, Plazzi, and Valkanov (2016) and Jiang, Wu, Zhou, and Zhu (2020). Ghysels,

Plazzi, and Valkanov (2016) use a quantile-based measure of asymmetry and link this

measure to physical skewness using the CF expansion. Using their quantile-based skew-

ness measure, Ghysels, Plazzi, and Valkanov (2016) show that international portfolios

with larger weights in emerging market indices have significantly positive skewness which

increases the certainty equivalent gains of these portfolios. As mentioned previously, Ji-

ang, Wu, Zhou, and Zhu (2020) propose a measure of asymmetry given by the difference

in the upside and downside tail probabilities that stock returns exceed a one standard

deviation move, and an entropy scaled version of this measure. They find that their

tail based asymmetry measure (estimated using historical density functions on single

stocks) results in stronger cross-sectional pricing effects than skewness. This suggests
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that tail focused measures of asymmetry can be useful in empirical studies. Further-

more, the theoretical argument used in Jiang, Wu, Zhou, and Zhu (2020) to motivate the

pricing of asymmetry shows that market risk-neutral asymmetry, as opposed to single

stock physical asymmetry measure, is priced. However, physical asymmetry measures

are used in their cross-sectional pricing analysis. This provides motivation to assess

whether our risk-neutral ex-ante measure of asymmetry, RNA-Q, predicts excess market

returns. Before progressing to empirical results, we provide a different theoretical argu-

ment to that in Jiang, Wu, Zhou, and Zhu (2020) although both approaches amount to

the same conclusion: that the equity risk premium is a declining function of risk-neutral

asymmetry in a skewness aware economy.

5 Theoretical Motivation

To motivate our following empirical results we show that the ERP is a decreasing mono-

tonic function of RNA-Q using the Smooth Half Normal (SHN)-CARA economy of

de Roon and Karehnke (2017). Combining the SHN density function with a represent-

ative investor CARA economy, de Roon and Karehnke (2017) show that the ERP is a

decreasing function of physical skewness and examine the variation of optimal portfolio

weights as a function of skewness. We derive the risk-neutral density function and closed

form expressions for RNA-Q in a SHN-CARA economy.

The SHN density function is given by:

g(x) =

 λ1f(x;m, s1) if x ≤ m,

λ2f(x;m, s2) if x > m.

where f(x;µx, σx) is the normal density function with mean µx and standard deviation

σx, λ1 and λ2 are chosen to ensure the density function is continuous and integrates to

one, and where s1, s2 and m are chosen to match the mean µ, variance σ and skewness
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γ of the excess return distribution. Following de Roon and Karehnke (2017) we assume

a two period economy with a representative investor that maximizes a CARA utility

function u(x) = −e−θw0(1+rf+x) where θ is the risk aversion coefficient, w0 the initial

wealth, rf is the risk-free rate and x is the excess return with x ∼ SHN(µ, σ, γ). The

risk-neutral density g∗(x) is related to the physical density function (subject to conditions

such as complete and frictionless markets) as follows:

g∗(x) =
u′((1 + rf + x))g(x)∫∞

−∞ u′((1 + rf + x))g(x)

The resulting risk-neutral density function is given by:

g∗(x) =

 λ∗
1f(x;m− θw0s

2
1, s1) if x ≤ m,

λ∗
2f(x;m− θw0s

2
2, s2) if x > m.

where

λ∗
i = λi

ci
c
,

ci = e
1
2(θ

2w2
0s

2
i ),

c = λ1c1Φ (θw0s1) + λ2c2 (1− Φ (θw0s2))

for i = 1, 2 and where Φ(x) denotes the standard normal CDF.

Left tail physical quantiles for the SHN density function are given in de Roon and

Karehnke (2017). For completeness, we present left and right tail physical quantiles

below along with risk-neutral quantiles, as derived in this paper, in a SHN-CARA eco-

nomy:

qα = Φ
(

α
λ1

)
s1 +m, q1−α = Φ

(
1− α

λ2

)
s2 +m,

q∗α = Φ
(

α
λ∗
1

)
s1 +m− θw0s

2
1, q∗1−α = Φ

(
1− α

λ∗
2

)
s2 +m− θw0s

2
2,
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where qα (q∗α) denotes the physical (risk-neutral) quantile. Hence, the risk-neutral asym-

metry measure SSQS is given by:

SSQSα =
1

σ∗

(
Φ

(
α

λ∗
1

)
s1 +Φ

(
1− α

λ∗
2

)
s2 − θw0(s

2
1 + s22) + 2 (m− rf )

)

where α is the quantile probability level (e.g., α = 5%) and where σ∗ is the risk-neutral

standard deviation (the formula for σ∗2 is given in Appendix B). In a SHN-CARA

economy, the risk-neutral standard deviation σ∗ is different to σ when physical skewness

γ ̸= 0. The VRP, defined as V RP = σ∗2−σ2, is positive for negative skewness, negative

for positive skewness and zero for zero skewness. However, the variation in σ∗ with

skewness does not alter the fact that the ERP is negatively related to the RNA-Q in

a SHN-CARA economy using realistic parameter values as depicted below. Finally,

RNA-Q is given by:

RNA-Qα =
3

(z2α − 1)
SSQSα.

We use the same parameters as de Roon and Karehnke (2017) for ease of comparison.

Assume excess returns have a mean µ = 7.28%, a standard deviation σ = 14.96% and

physical skewness is varied from −0.95 to 0.8. We use an initial wealth w0 = 1 and a

risk-free rate rf = 0. When skewness is zero the risk aversion parameter that results in

the investor being fully invested in the risky asset is given by θ = 3.2829 and, following

de Roon and Karehnke (2017), we round θ to 3.25. Figure 5 presents results for the

SHN-CARA economy. Panel (a) depicts the physical and risk-neutral density functions

for a single skewness value of -0.5. Panel (b) depicts the ERP versus physical skewness

with a clear negative link from skewness to ERP replicating the result in de Roon and

Karehnke (2017). Panel (c) shows the variation of RNA-Q and quantile-based physical

asymmetry (PA-Q) with physical skewness. As expected both RNA-Q and PA-Q are

increasing functions of physical skewness with RNA-Q more sensitive to skewness than
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PA-Q. Finally, panel (d) illustrates the monotonic negative link from RNA-Q to ERP.

[Figure 5 about here.]

The above analysis can also be applied to the case of a representative investor with an

S-shaped utility function (in place of a CARA utility function) along with a probability

weighting scheme, that puts more weight on the tail probabilities, as in the Cumulative

Prospect Theory (CPT) of Tversky and Kahneman (1992). Barberis and Huang (2008)

use the CPT approach to motivate investor skewness preference. de Roon and Karehnke

(2017) examine the relation between the ERP/optimal portfolio weights and physical

skewness in such a SHN-CPT economy. Using the SHN-CPT economy with the same

parameters as de Roon and Karehnke (2017), we find that the ERP is also a decreasing

monotonic function of RNA-Q10 with an even stronger negative link between ERP and

RNA-Q relative to the link in the SHN-CARA economy. Thus, a monotonic negative

association from RNA-Q to the ERP can be motivated using either a SHN-CARA or

SHN-CPT economy.

6 Data and Strike Augmentation

In this section we outline the data and method used to estimate a time series of risk-

neutral quantiles for the S&P 500 index. This panel of quantiles is then used to construct

RNA-Qs along with control option implied predictors.

6.1 Data

The option data we use is from OptionMetrics. The sample period is from January

4, 1996 to June 28, 2019. We focus on constant 30-day risk-neutral quantiles which

can be estimated using the most liquid options. We filter the S&P 500 index options

10Details are omitted to save space but are available upon request.
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sample following the VIX methodology11. Prior to October 6, 2014, a near-term (with

at least one week to maturity) and a next-term SPX option chains are included in the

sample. Since then, the sample also includes Friday settled Weeklys12 and contains two

option chains with more than 23 days but no more than 37 days to maturity. We adjust

maturities of options to distinguish between AM and PM settlements. The AM settled

SPX options are counted one day less than the PM settled SPXW options. For SPX

options, we use settlement dates as opposed to expiration dates to calculate maturities.

The sample is further cleaned by eliminating any zero bid quotes, and by excluding any

further OTM options once two zero bid quotes are encountered. In particular, we define

an at-the-money (ATM) option by its strike price that equals to the futures price13. We

obtain realized variance data from the Oxford-Man Institute of Quantitative Finance

with daily data available from January 2000 to the end of our sample. Prior to 2000,

we estimate S&P 500 realized variance using the daily sum of 5-minute squared returns

of the SPDR S&P 500 ETF Trust (ticker SPY) extracted from the NYSE Trade and

Quote (TAQ) database. We estimate 5-minute squared returns using mid-quote prices

from 09:30 to 16:00 along with the previous overnight close-to-open squared return from

16:00 to 09:30. We obtain data on the left tail jump variation (LJV) and the risk-neutral

probability of a 10% drop in the S&P 500 from tailindex.com (see Andersen and Todorov

2019).

11See the VIX white paper and Information Circular IC14-075 from CBOE for further information.
12A number of steps are taken to ensure a smooth transition to Weekly options including taking into

account CBOE expiry adjustments due to holidays to identify Friday settled Weeklys using the SPXW
symbol prefix in OptionMetrics IvyDB. Further detail is available from the authors upon request.

13We use the futures price provided by OptionMetrics directly which is different from the futures price
calculated according to the CBOE methodology. Occasionally, the OptionMetrics futures price field
has missing records for some option strikes. We backfill these missing records using valid futures price
records that match the date and expiration fields of the missing records. Further detail on the difference
between the OptionMetrics and CBOE futures prices can be found in the OptionMetrics manual and
the VIX white paper.
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6.2 Augmenting the Strike Space

We use smoothing cubic B-splines to obtain call and put option prices over a fine grid

of strike prices. The number of knots in the B-spline is selected by LSCV and is applied

separately for both the near and far maturity option chains in each date in the sample to

obtain a constant maturity 30-day set of quantiles for each date. We have also tested the

use of cubic-splines, LLR, LQR and the semi-parametric approach proposed in Figlewski

(2009)14 to augment the space of strike prices. However, we use cubic B-splines in the

following empirical analysis given the robust performance of this method in the Monte

Carlo simulations in Section 3.4. It must be noted that the subsequent empirical analysis

of risk-neutral quantiles, quantile-based risk-neutral skewness measures, and market re-

turn predictive regression results are not overly sensitive to the choice of method used to

augment the strike space provided quantiles are estimated with the model-free method

proposed in this paper.

For each date within the sample, and for a given maturity, we first discard deep

OTM options using a minimum bid cutoff of 50 cents. We combine put and call samples

by retaining OTM and ATM options. We retain bid, ask, and mid quotes and use mid

quotes to augment the strike price. Figure 4 illustrates the steps that are taken to

estimate the 5% and 1% price quantiles on a single day. We demonstrate these steps

using a sample of options that belong to the near-term chain of the S&P 500 index from

two different dates: June 28, 2019 and January 17, 1996. The top left panel depicts

mid-quote market prices for call and put options along with cubic B-spline smoothed

option prices on June 28, 2019. The top right panel panel depicts the objective functions

used to estimate model-free quantiles at α = 1%, 5% and 10%. The vertical line on both

plots depicts the 1%, 5% and 10% quantiles, where the solution to the minimization

14This procedure uses a two-piece quartic polynomial that smoothly passes through bid-ask spreads
of option IVs converted from option market prices using the Black-Scholes formula thus is not strictly
nonparametric. Figlewski’s procedure is used to estimate a time series of RN-PDFs in Birru and Figlewski
(2012) and a time series of RN-CDFs in Linn, Shive, and Shumway (2018).
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problem is found by sorting. The bottom left and right panels of Figure 4 depict the

same plots for January 17, 1996.

[Figure 4 about here.]

We estimate risk-neutral price quantiles, Qα (Sτ ), on each sample date, for near- and

next-term option chains separately, and for α = 1% to 99% in increments of 1% from

January 1996 to June 201915. We linearly interpolate two estimates from the near- and

next-term option chains to obtain constant 30-day quantile estimates.

7 Empirical Results

In this section we report summary statistics, the correlation coefficient matrix, in-sample

and out-of sample predictive regression results that assess the performance of RNA-Q in

predicting market excess returns. To summarise results in a more succinct manner and

to ensure stable estimates, we average the RNA-Q estimates over a range of α values,

similar to the approaches of Groeneveld and Meeden (1984) and Ghysels, Plazzi, and

Valkanov (2016) where quantile based measures of asymmetry are integrated over α.

We focus on α values ranging from 1% to 10% to ensure we are far from the region

of α where the CF approximation break downs (α ≈ 16%). We first consider a range

based tail RNA-Q measure by averaging RNA-Qα over the range α ∈ [1%, 2%, . . . , 10%],

denoted by RNA-Q1−10. We further breakdown this RNA-Q measure by focusing on an

extreme tail range, RNA-Q1−3, an intermediate tail range, RNA-Q4−7, and a moderate

15Our quantile estimates are based on a continuum of options augmented using cubic B-splines. We
intentionally do not append risk-neutral tails that can be modelled using Generalised Extreme Value
distributions, see for example Figlewski 2009. The reason is twofold. First, we would like to highlight
another advantage of the proposed MFQ method, that is, model-free quantiles always converge to the
smallest or largest option strikes when the solution for a fixed α is beyond the finite strike range quoted
in the market. Second, there are a number of dates on which the quantile estimates (either near or far
maturity or both) are equal to the smallest or largest strikes in the market (hence the true quantile
exceeds these strikes). We restrict our attention to α ∈ [1%, 99%] in the empirical study as a trade-off
between capturing the tails of a risk-neutral distribution and not using quantiles that regularly lie outside
the strike range.
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tail range, RNA-Q8−10. In the remainder of the empirical section we use weekly data

extracted every Wednesday, as is standard in the literature (see, for example, Figlewski

2018), by taking the average value from the previous Thursday to the current Wednesday.

7.1 Summary Statistics and Correlations

Panel A of Table 3 reports summary statistics for the weekly quantile based skew-

ness measure RNA-Qα estimated using a single quantile value for each tail with α =

1%, . . . , 10% for the left tail and 1 − α = 99%, . . . , 90% for the right tail. RNA-Qα

have mean values that vary from -1.37 (α = 2%) to -1.15 (α = 9%) compared to the

mean value of RNS-BKM of -1.69 (see Panel B). The standard deviation of the RNA-Qα

measures vary from 0.26 (α = 2%) to 0.44 (α = 10%) compared to a standard deviation

of 0.67 for RNS-BKM. The AR(1) coefficients for the RNA-Qα measures vary from 0.80

(α = 1%) to 0.67 (α = 2%) with the AR(1) coefficients approximately equal to 0.7 for the

other RNA-Qα values. This compares to a highly persistent AR(1) coefficient of 0.94 for

RNS-BKM. Also reported are the summary statistics for the different averaged RNA-Q

estimates. Similar to single quantile pair estimates of RNA-Qα, the averaged RNA-Q

mean values have higher means and lower standard deviations than the corresponding

mean and standard deviation of RNS-BKM. The AR(1) coefficients for the range based

RNA-Q measures are between 0.76 (for RNA-Q1−10) and 0.71 (for RNA-Q8−10).

[Table 3 about here.]

Panel B of Table 3 reports summary statistics for the controls used in predictive

regressions. The use of σ2
BKM as an ERP predictor is motivated by a Merton type ERP

expression, where the instantaneous ERP is a linear function of instantaneous variance

(see, e.g., Merton 1980 and Cochrane 2009)16. We also use Martin (2017)’s model-

16The VIX2 is a forward-looking measure of integrated variance, which coincides with the risk-neutral
BKM variance, σ2

BKM , under a diffusion model (see, e.g., Du and Kapadia 2012). Summary statistics
and predictive regressions that follow are very similar if we replace σ2

BKM with VIX2 thus VIX2 summary
statistics are not reported.
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free measure of total variance times the gross risk-free rate of return, Rf · SV IX2, as

a lower bound for the ERP that we denote as LB-SVIX. ID is the implied dividend

yield of the S&P 500 index taken from OptionMetrics IvyDB. The implied dividend

yield has been shown to predict market returns in Bilson, Kang, and Luo (2015) and

Golez (2014)17. We also use volume and open interest weighted IV spreads, denoted

respectively as VWVS and OWVS, put forth in Atilgan, Bali, and Demirtas (2015) as

a measure of information flow from options markets to stock markets. These measures

capture differences between OTM put option IVs and OTM call option IVs and are shown

to be significant in predicting daily and weekly market excess returns. We consider ex-

post realized variance (using the most recent 22 trading days) as a potential predictor

of the ERP, as RV is shown to be a significant predictor of the ERP in Atilgan, Bali,

and Demirtas (2015). We also use the lagged ERP as a control to account for possible

serial correlation in weekly excess returns. We use the variance risk premium, VRP, as

in Bollerslev, Tauchen, and Zhou (2009), that has been shown to be a robust predictor

of market excess returns at three month horizons and longer. We define the VRP as:

V RPt = IVt − RVt where we use implied variance IVt = σ2
BKM,t and where RVt =

ex-post 22-day realized variance. A related control we consider is the left risk-neutral

jump variation (LJV) component of the VRP as proposed in Bollerslev and Todorov

(2014). LJV is a component of the VRP that compensates investors for bearing jump

risk. Bollerslev, Todorov, and Xu (2015) show that LJV extracted from short term

deep-out-of-the money options (maturity between 8 and 45 days) is highly significant

in predicting aggregate market returns. Using the same methodology, Andersen and

Todorov (2019) construct a risk-neutral probability of a 10% stock market plunge over

the next week using short term deep OTM options. Given the relationship of this variable

17Strictly speaking, Golez (2014) uses a corrected dividend price ratio to predict market returns that
adjusts the dividend price ratio to account for time-varying dividend growth rates, where the latter is
estimated as the difference between the implied dividend yield and the dividend price ratio. As a result,
the corrected dividend price ratio is positively correlated with the implied dividend yield. Hence, we use
the latter as a predictor.
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to option implied asymmetry we use it as a control denoted by Probability Drop (PD).

Finally, we use an option implied version of the extreme tail difference (ETD) measure

as used in Jiang, Wu, Zhou, and Zhu (2020) on single stocks. We define ETD as:

ETDt = Pup,t − Pdown,t, where Pup (Pdown) is the risk-neutral probability of excess

market returns being higher (less) than a one standard deviation move over the next

month. All option implied controls are averaged over the week to be consistent with

our use of RNA-Q18. This means that the VRP we use is based on an implied variance

that is averaged over the week and a realized variance that is the sum of the previous

22-days. We also tested a VRP where the implied variance is extracted on the final day

of the week and averaged over the previous 22-days, with the same 22-day rolling sum

for RV as before, and results are unchanged.

The mean 30-day risk-neutral variance, RNV-BKM, is 0.39% (equivalent to an an-

nualised risk-neutral variance/volatility of 4.67%/21.61%) and is very close to the mean

of Martin’s lower bound LB-SVIX of 0.35% (equivalent to an annualised mean lower

bound of 4.18%). The mean volatility spreads (both volume and open interest weighted)

are approximately 10%, meaning OTM put IV is on average 10% higher than ATM

call IV. The mean ID is 1.79% with a standard deviation of 0.49%. The mean of the

weekly frequency 1-month ERP (weekly ERP scaled to a one month horizon by mul-

tiplying by 4) is 0.48% (annualised mean of 5.68%) and has a standard deviation of

9.17%. Not reported are longer horizon ERP statistics whose one-month means remain

relatively constant but where the one-month standard deviation falls with increasing

horizons. For instance, the mean of the 4-week horizon ERP is 0.47% with a standard

deviation of 4.32%. The mean RV is 0.25% (corresponding to an annualized realized

variance/volatility of 3.04%/17.42%). The mean VRP is 0.136% (this corresponds to

annualized difference in implied and realized standard deviation of 4.18%). The mean

ETD is -4.37% meaning that the risk-neutral probability of a one standard deviation

18Results are very similar when controls are extracted on the final day of the week as opposed to using
the estimate averaged over the week and are available upon request.

35



downward move is on average 4.37% higher than the corresponding risk-neutral prob-

ability of a one standard deviation upward move. The mean LJV value is 7.52 and

the mean PD value is 72%. The AR(1) coefficients for the volatility spread measures

(0.74 for VWVS and 0.76 for OWVS), the VRP (0.80), ETD (0.70) and LJV (0.83) are

similar to the averaged RNA-Q measures. These are considerably lower than the AR(1)

coefficients of the other controls. These AR(1) coefficients are, respectively, 0.94 for

RNS-BKM, 0.95 for both RNV-BKM and LB-SVIX, 0.99 for ID, 0.95 for RV and 0.98

for PD.

Table 4 reports correlations of the quantile based RNA-Q measures that are averaged

over different ranges of quantiles, along with the controls used in predictive regressions.

RNA-Q1−3 has a correlation of 0.64 (0.41) with RNA-Q4−7 (RNA-Q8−10) which, al-

though statistically significant at 1%, is sufficiently low to suggest that these RNA-Q

measures may pick up different facets of the RN density tail behaviour. The correla-

tion between RNA-Q4−7 and RNA-Q8−10 is quite high at 0.82 suggesting that the most

extreme tail skewness, RNA-Q1−3, behaves separately from the intermediate and mod-

erate tail average range RNA-Q values, RNA-Q4−7 and RNA-Q8−10. This is expected

as the variation in the most extreme tail skewness measure, RNA-Q1−3, depends on the

variation in the most extreme strike prices for deep OTM options that make it past the

VIX filtering rules.

[Table 4 about here.]

The correlations of RNS-BKM with quantile based RNA-Q values are generally far

less than 1 with a value of 0.38 for RNA-Q1−3, 0.12 for RNA-Q4−7, 0 for RNA-Q8−10 and

0.15 for the overall tail average RNA-Q1−10. Thus, the quantile based RNA-Q values are

very distinct from the standard measure of RNS with the most extreme average RNA-Q

value, RNA-Q1−3, exhibiting the highest correlation with RNS-BKM, although this is

still far from 1 at 0.38. This can be seen as evidence that RNS-BKM is sensitive to strike
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range variation.

An interesting point to note is that the correlation between RNS-BKM and RNV-

BKM (RV) is statistically significantly positive at 0.23 (0.17). This is the opposite to

what we would expect if we interpret RNS-BKM as a tail risk measure. Intuitively, one

would expect a skewness based tail risk measure to become more negative (tail risk in-

creases) as variance increases. This is exactly what we find with quantile based RNA-Q

measures. The correlations between RNA-Q and RNV-BKM (RV) are statistically signi-

ficantly negative for RNA-Q1−10, RNA-Q4−7 and RNA-Q8−10, although the correlation

between RNV-BKM (RV) and RNA-Q1−3 is statistically insignificant at -0.04 (-0.03).

Thus, the positive relation between the standard RN measures of skewness and variance

(realized variance) is reversed when using quantile-based RN measures of asymmetry.

With the exception of the most extreme average RNA-Q1−3 measure, there is a sig-

nificant positive (negative) correlation between the other RNA-Q measures and contem-

poraneous ERP (one-week ahead ERP) at a significance level of 5% (5%) for RNA-Q4−7

and 1% (10%) for RNA-Q1−10. A similar (but reverse) pattern is observed for the VRP.

The correlation between the VRP and contemporaneous ERP (one-week ahead ERP)

is statistically significantly negative (positive) at the 1% level. The correlation of ID

with ERP and one-week ahead ERP remains the same with a correlation value of 5%

that is statistically significant at the 10% significance level. The AR(1) coefficient of

ID is particularly high at 0.99 and is the likely reason for this persistence in correlation

values. Also worth noting is the high positive correlation of ETD with RNA-Q across all

averaged ranges. This is to be expected as both RNA-Q and ETD are measures of risk-

neutral asymmetry. LJV and PD are both significantly negatively correlated with the

different RNA-Q measures. Downside risk-neutral asymmetry is high when LJV (PD) is

high and this corresponds to low values for RNA-Q. Hence, these negative correlations

are expected although are sufficiently far from one to suggest that LJV and PD contain

different information to RNA-Q. Finally, we note that LJV and PD are highly correlated
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with the risk-neutral variance measures of RNV-BKM and LB.

7.2 Univariate Predictive Regressions

We run a sequence of univariate predictive regressions, using excess returns of the S&P

500 index as the dependent variable and RNA-Q as the independent variable as follows:

4

h

(
rt,t+h − rft,t+h

)
= β0 + β1 ×RNA-Qt,α + ϵt,t+h, (13)

where rt,t+h is the return on the S&P 500 index from t to t+h, h represents the forecast

horizon that ranges from 1 week to 12 weeks in increments of one week and α represents

the range of quantiles used to estimate RNA-Q. Weekly market excess returns are scaled

to a one month horizon so that predictive regression coefficients are comparable across

different return horizons. The risk-free rate, rft,t+h, is observed at t and matures at t+h.

We calculate risk-free rates using the zero curve provided by OptionMetrics which is

derived from ICE IBA LIBOR rates and settlement prices of CME Eurodollar futures.

The zero curve is discrete thus we use a piecewise cubic Hermite interpolating polynomial

to back out 1-week to 12-week risk-free rates that match the return horizon rt,t+h
19.

RNA-Qt,α denotes the quantile-based RNA-Q measures observed at time t. These are

categorised into the overall tail RNA-Q measure for α ∈ [1%, . . . , 10%], the most extreme

tail RNA-Q measure for α ∈ [1%, 2%, 3%], the medium tail RNA-Q measure for α ∈

[4%, 6%, 7%], and the moderate tail RNA-Q measure for α ∈ [8%, 9%, 10%]. The overlap

in weekly observed variables generates a high degree of positive autocorrelation which

biases the standard error estimates downwards. To account for this, we report Newey-

West standard error estimates in the regression analysis using a lag length equal to two

times the overlap in the excess returns (see Bollerslev, Tauchen, and Zhou 2009).

Table 5 presents results for in-sample univariate predictive regressions on market

19We also use daily risk-free rates from Kenneth French’s data library and aggregate these daily risk-
free rate to weekly values in the calculation of excess returns. Results using risk-free rates from Kenneth
French’s data library are very similar to the results reported here using LIBOR rates.
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excess returns. Reported are beta coefficient estimates (β1) for regressors, standard-

ised beta coefficient estimates which are scaled by standard deviations of regressors,

t-statistics based on Newey-West standard errors allowing for a lag equal to the two

times the overlap in the dependent variable, corresponding p-values, and adjusted R2s.

Panel A reports results where the RNA-Q measures are averaged over each day of the

week and Panel B reports results where the RNA-Q measures are extracted on the final

day of the week.

[Table 5 about here.]

Focusing on Panel A we observe that RNA-Q1−10 (RNA-Q4−7) significantly negat-

ively predicts future market excess returns at all horizons bar the first week (all horizons)

as expected from the skewness aware asset pricing model used in Section 5. There is

no significant link between RNS-BKM and subsequent market returns confirming previ-

ous results that this standard RN measure of skewness does not predict market excess

returns. This is not expected from the skewness aware asset pricing model we use.

However, RNS-BKM is noisier than the RNA-Q measures with a full-sample standard

deviation of 0.67 versus a standard deviation of 0.31 for RNA-Q4−7. Furthermore, in

unreported simulation results, similar to those conducted in Jiang and Tian (2005) and

Jiang and Tian (2007) for risk-neutral variance, we find that RNS-BKM is very sensitive

to tail truncation when a finite strike range is used to compute RNS-BKM20. However,

quantile-based measures of risk-neutral asymmetry are not dependent on the strike range

as long as the strike range covers the quantiles under consideration.

The statistical significance associated with RNA-Q1−10 is marginal at the 10% level

for horizons 2W to 3W and 11W to 12W with significance peaking at the 5% level at

20We use the CGMY model of Carr, Geman, Madan, and Yor (2002) to simulate a chain of call and
put options with model parameters taken from the paper. We simulate discrete strike prices with a
truncated strike range that we vary from the minimum to the maximum observed strike range in our
sample. We find that RNS-BKM is particularly sensitive to left strike truncation using the negatively
skewed CGMY density function.
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intermediate horizons of between 4W and 10W inclusive. RNA-Q4−7 is statistically sig-

nificant at the 5% level for 1W to 4W and 9W to 11W horizons, 1% at horizons of 5W

to 8W and is marginal at 10% at 12W. Andersen, Fusari, and Todorov (2020) find that

a proxy for the time-varying left jump tail risk predicts future weekly returns of inter-

national equity market indices at longer horizons of more than 10 weeks. Interpreting

RNA-Q as a tail risk measure, it is no surprise that the RNA-Q measures perform well

at intermediate to longer horizon return forecasting. However, RNA-Q4−7 also signific-

antly predicts market excess returns at shorter horizons, in particular, 1W ahead excess

returns. Using RNA-Q4−7, the t-statistic on 1W excess returns is -2.23. Since there is

no overlap in 1W market returns, this t-statistic is not subject to the econometric issue

that impact standard errors when forecasting overlapping returns as discussed in Hodrick

(1992). The standardised beta coefficient shows that a one standard deviation increase

in RNA-Q4−7 results in a 61 basis points decrease in market excess returns (7.32% an-

nualised) at the 1-week horizon, which is extremely significant from an economic point

of view. The standardised beta coefficients decrease gradually to approximately 50 basis

points (bps) (6% annualised) at intermediate horizons and approximately 40 bps (4.8%

annualised) at the longer horizons of 11-weeks but remain economically significant. The

corresponding values for standardised betas of RNA-Q1−10 are 44 bps (5.3% annualised)

at the 1-week horizon decreasing gradually to 30 bps (3.6% annualised) at the longest

12W horizon. Thus, RNA-Q1−10 is also economically significant in predicting market

excess returns but the statistical and economic significance of RNA-Q1−10 is always

weaker than that of RNA-Q4−7 at each forecast horizon considered. The extreme tail

RNA-Q measure, RNA-Q1−3, does not predict market excess returns at any horizon.

The extreme left (α = 1%) and right (1 − α = 99%) tails are highly correlated with

the minimum and maximum strike prices that satisfy the VIX filtering rules. As a res-

ult, RNA-Q1−3 often reflects the extreme strike price quotes as opposed to the ex-ante

asymmetry in the underlying market return distribution. This is analogous to results
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in Andersen, Bondarenko, and Gonzalez-Perez (2015) where a high frequency measure

of the VIX may change, not due to changes in underlying volatility, but as a result of

the changes in the range of option price quotes used to calculate the VIX. Andersen,

Bondarenko, and Gonzalez-Perez (2015) propose using a more consistent corridor volat-

ility index that truncates the option price quotes used to calculate implied volatility at

a range that is more coherent over time. Our RNA-Q measures automatically create

such a consistent range by fixing the probability levels α and 1−α at which we examine

quantile variation over time. The moderate tail RNA-Q measure, RNA-Q8−10, predicts

market excess returns at horizons of 4W to 9W inclusive but the predictions are always

weaker than the medium tail RNA-Q measure, RNA-Q4−7, and the overall tail RNA-Q

measure, RNA-Q1−10. Thus, the 4%-7% regions of the left and right tails are sufficiently

far away from the extreme strike price quotes to not be overly effected by changes in

extreme strike price quotes but are still sufficiently far enough out in the tail to capture

extreme asymmetric moves that investors are mindful of.

Panel B of Table 5 shows that results generally weaken slightly relative to Panel A

when we use the most recently available RNA-Q values to predict subsequent weekly

market returns as opposed to using RNA-Q values that have been averaged over the five

days in the week. The relative strengths of the various predictors are the same as in

Panel A with end of week RNA-Q4−7 remaining the strongest predictor of subsequent

returns relative to the other skewness measures extracted at end of week.

Next we turn our attention to other potential ERP predictors frequently used in

the literature. Table 6 presents results for in-sample univariate predictive regressions of

market excess returns using the series of controls introduced in Section 7.2.

[Table 6 about here.]

The risk-neutral variance, RNV-BKM, and Martin’s lower bound, LB-SVIX, are not

significantly associated with the ERP at any horizon considered21. VWVS and OWVS

21This does not necessarily contradict the results in Martin 2017 where the null hypothesis that β1 = 1
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positively forecast S&P 500 index returns during the sample period we study. However,

the beta coefficient estimates are only marginally statistically significant at 10% at longer

horizons of 9W (8W) and higher for VWVS (OWVS)22. The positive association between

VS and subsequent market excess return we find agrees with the interpretation of VS as

a tail risk measure as opposed to an information based interpretation of VS. The implied

dividend yield, ID, positively forecasts market excess returns, with the t-statistic rising

above 2 at return horizons of 6 weeks and higher. The adjusted R2s in these regressions

are particularly high at longer horizons reaching a maximum of 5.50% at 12 weeks. It

must be noted that the persistence of ID, as measured by the AR(1) coefficient, is 0.99

and is much higher than the persistence of the RNA-Qmeasures. Therefore, the problems

associated with highly persistent regressors in long horizon forecasts documented in

Boudoukh, Richardson, and Whitelaw (2008) are less likely to be an issue with RNA-Qs

than they are with implied dividend yields. Higher values of RV and lagged ERP are

associated with lower values of subsequent ERP demonstrating, respectively, the leverage

effect and negative serial correlation. However, there is no significant association between

RV or lagged ERP and subsequent ERP. The VRP positively forecasts market excess

returns but the t-statistics rise above 2 at horizons of 9 weeks to 11 weeks. In predictive

regressions of Bollerslev, Tauchen, and Zhou (2009), the VRP is also positively linked

to future excess returns and attains its highest significance at a 3-month return horizon

using monthly frequency returns over a sample period of January 1990 to December

2007. In our sample of January 1996 to June 2019, using weekly frequency returns,

we find the VRP attains its highest significance at intermediate to long horizons of 9

to 11 weeks. Thus, our results are similar, but not identical, to those in Bollerslev,

is not rejected in predictive regressions.
22These results are in contrast to those found in Atilgan, Bali, and Demirtas (2015), where both VWVS

and OWVS negatively forecast S&P 500 index returns at daily and weekly horizons with informed trading
found to be the main explanation. Atilgan, Bali, and Demirtas (2015) study a shorter sample period
from January 4, 1996 to September 10, 2008. A potential explanation for the positive relation between
VS and future market returns found in this article is that equity option markets have become much
larger in notional value since 2009, therefore leading information priced into options by informed traders
is no longer present in IV measures, such as VWVS and OWVS.
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Tauchen, and Zhou (2009). This is to be expected given the differences in the frequency

of returns, the different sample period used and the different data used to construct the

realized variance. We find that ETD is significantly negatively linked to excess returns

at horizons of 3W and higher with a significance level of 5% attained at horizons of 5W

and higher. These results are similar to those we find for the RNA-Q measures which is

to be expected given both ETD and RNA-Q are risk-neutral asymmetry measures that

focus on the tails of the distribution. Finally, we find LJV and PD are not significant in

predicting excess returns over the sample period considered.

7.3 Bivariate Predictive Regressions

In the following bivariate predictive regressions we focus on the RNA-Q measure that

results in the most robust ERP predictor, RNA-Q4−7. The results are quantitatively and

qualitatively similar, although a little weaker, if we use RNA-Q1−10 in place of RNA-

Q4−7. Table 7 presents results on bivariate predictive regressions using RNA-Q4−7 along

with a single control to jointly predict future market excess returns using regressions of

the following form:

4

h

(
rt,t+h − rft,t+h

)
= β0 + β1 ×RNA-Qt,4-7 + β2 ×Xt + ϵt,t+h, (14)

where Xt is the control variable observed at time t.

The intermediate tail RNA-Q measure, RNA-Q4−7, is robust to the inclusion of the

control predictors. The t-statistic on the RNA-Q4−7 coefficient remains below -2 at

all horizons, with the exception of 12-week (11- and 12-week), when using RNS-BKM,

RNV-BKM, LB, RV, or ERP-lag (LJV or PD) as a control. The t-statistic on the

RNA-Q4−7 coefficient remains below -2 for horizons 1W to 8W when either of the IV

spread measures is used as a control, 2W to 9W when implied dividend yield is used

as a control and 2W to 10W when the VRP is used as a control. The t-statistic on
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RNA-Q4−7 increases above -2 but remains close to -2 with the inclusion of ETD as a

second predictor. However, the correlation between ETD and RNA4−7 is 62% as both

variables are measures of risk-neutral asymmetry thus the inclusion of ETD in a bivariate

regression is expected to reduce the impact of RNA-Q4−7 on the ERP.

The only control variables with beta coefficient t-statistics greater than 2 in the

presence of RNA-Q4−7 are ID at horizons of 7W and up and the VRP at horizons of 7W

to 9W. The implied dividend yield, ID, and the variance risk premium, VRP, have AR(1)

coefficients of 0.99 and 0.80, respectively, compared to 0.74 for RNA-Q4−7. As previously

noted the high persistence of ID, in particular, could lead to inference problems for this

potential predictor (e.g., see Boudoukh, Richardson, and Whitelaw 2008). The control

coefficient on ETD is not significant when ETD is used along with RNA-Q4−7 to predict

the ERP. Thus, the information in RNA-Q4−7 is not captured by other commonly used

predictors that are shown in the literature to be significant in predicting the ERP.

[Table 7 about here.]

7.4 Out-of-Sample Tests

Table 8 reports out-of-sample (OS) predictive regression statistics on subsequent market

excess returns. The statistics reported are OS adjusted R2s calculated as 1−(1−R2
OS)×

T−1
T−k−1 , where R2

OS is calculated as

R2
OS = 1−

∑T
t=1 (yt − ŷt)

2∑T
t=1 (yt − ȳt)

2
.

T is the number of OS forecasts, k is the number of predictive variables, yt is the

predicted variable, ŷt is the forecast based on a predictive model that is estimated using

predictive variables through the period t − 1, and ȳt is the forecast based on a nested

model that restricts the coefficient on the assessed predictive variable to be 0. The nested

model uses the historical average ERP to predict the next period ERP. We also report OS
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adjusted R2 from restricted regressions, as in Campbell and Thompson (2008) (hereafter

referred to as CT OS adjusted R2), where the coefficient on the labelled predictor in

the regression tables is restricted to be non-negative and, if the forecast is still negative,

a second restriction is applied replacing the forecast with 0. Given the theoretical and

empirical link between RNA-Q4−7 and the ERP is negative, we use negative RNA-Q4−7

in the CT OS tests to ensure the association between the regressor (-RNA-Q4−7) and

regressand (ERP) is positive. OS significance is assessed using a one-sided t-test on the

mean squared prediction error (MSPE)-adjusted statistic from Clark and West (2007).

We apply this test taking into account the autocorrelation in forecast errors by using

Newey-West standard error estimates with lags set equal to 2 times the overlap in h-

horizon returns in calculating t-statistics. Forecasts are made on a recursive basis with

an initial estimation window set equal to 120 weeks, where the window expands with

the full sample size equal to 1,225 weeks. One-sided t-statistics for the MSPE-adjusted

statistic, with the null of equal MSPE, are reported in the table. For large enough

sample sizes, as applies in our case, standard normal critical values can be used and we

can reject the null at 10%/5%/1% if the t-statistic > 1.282/1.645/2.33, respectively.

[Table 8 about here.]

In these OS tests, we consider RNA-Q4−7 and the three strongest controls from the

in-sample tests: ID, VRP and ETD. Table 8 documents significant OS predictability of

market excess returns using RNA-Q4−7 at all forecast horizons. The statistical signi-

ficance is 5% at all horizons. The OS adjusted R2 peaks at 2.6% at the 8W forecast

horizon. The CT OS adjusted R2s are generally lower than the unrestricted OS adjusted

R2s with the exception of the 1 week horizon. ID is insignificant for forecast horizons of

1 and 2 weeks, marginally significant at the 10% level for a forecast horizon of 3 weeks,

and is significant at 5% for horizons of 4 weeks and higher. The OS R2 and CT OS R2

values for ID are higher than the respective values for RNA-Q4−7 at all forecast horizons
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however, it must be noted that this may partly stem from the highly persistent nature of

ID and the impact this may have on longer horizon predictive regressions (as previously

discussed in the in-sample results). When ID is used to predict the ERP, CT OS R2s

are higher (lower) than OS R2s at shorter (longer) horizons with the crossover occurring

at 5W. The variance risk premium, VRP, is insignificant in forecasting the ERP out-of-

sample for forecast horizons of 1 to 6 weeks, is significant at the 5% level at horizons of

7W, 8W and 12W and is significant at the 1% level at 9W, 10W and 11W. The OS R2

(CT OS R2) values for the VRP are lower than the respective values for RNA-Q4−7 at

all forecast horizons (forecast horizons from 1 week to 8 week). When the VRP is used

to predict the ERP, CT OS R2s are higher than OS R2s at all forecast horizons. As

with RNA-Q4−7, we use the negative value of ETD to forecast the ERP out-of-sample

to ensure a positive link between the regressor (-ETD) and the regressand (ERP) in the

CT OS tests. ETD is not significant in ERP out-of-sample forecasts for horizons of 1W

to 3W, is significant at the 5% level at horizons of 4W to 8W and 11W to 12W, and is

significant at the 1% level at horizons of 9W and 10W. As with the VRP, the restric-

ted OS CT forecasts result in higher adjusted OS R2s than the unrestricted forecasts

across all horizons. ETD has lower OS adjusted R2 than RNA-Q4−7 at all horizons and

lower (higher) CT OS adjusted R2 than RNA-Q4−7 at horizons of 1W to 7W (8W to

12W). These results demonstrate that the in-sample results also hold out-of-sample with

RNA-Q4−7 remaining a strong ERP predictor outperforming ETD and on-par with the

performance of the VRP and ID but with better persistence properties than ID.

8 Conclusion

In this article we introduce a novel approach to estimate risk-neutral quantiles that

results in more accurate risk-neutral quantile estimates relative to existing quantile es-

timation procedures. We apply the method to S&P 500 index options to estimate a
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time series of risk-neutral quantiles. We use these quantiles to construct a novel quantile

based risk-neutral asymmetry measure RNA-Q. We show that RNA-Q constructed from

quantiles in the left and right tails (with the exception of the most extreme quantiles)

predicts market excess returns and is robust to a number of alternative option implied

and other commonly used ERP predictors. Further research could focus on whether

risk-neutral asymmetry predicts excess returns in an international setting and the con-

struction of a dynamic economy in which conditional risk-neutral asymmetry predicts

the ERP.
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Table 3: Summary Statistics

Panel A: RNA-Q

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q1−10 Q1−3 Q4−7 Q8−10

count 1226 1226 1226 1226 1226 1226 1226 1226 1226 1226 1226 1226 1226 1226
mean -1.344 -1.372 -1.306 -1.240 -1.198 -1.175 -1.161 -1.154 -1.151 -1.156 -1.226 -1.341 -1.194 -1.154
std 0.300 0.256 0.284 0.307 0.319 0.325 0.338 0.360 0.394 0.444 0.278 0.244 0.309 0.396
min -2.175 -2.406 -2.759 -2.996 -3.163 -3.224 -2.984 -3.109 -3.268 -3.358 -2.931 -2.401 -3.092 -3.245
25% -1.550 -1.534 -1.483 -1.435 -1.404 -1.396 -1.387 -1.400 -1.420 -1.459 -1.417 -1.503 -1.398 -1.424
50% -1.375 -1.382 -1.312 -1.248 -1.205 -1.172 -1.149 -1.140 -1.138 -1.141 -1.226 -1.360 -1.204 -1.144
75% -1.131 -1.199 -1.114 -1.033 -0.986 -0.949 -0.927 -0.893 -0.872 -0.843 -1.030 -1.168 -0.983 -0.873
max -0.101 -0.272 -0.449 -0.207 -0.118 -0.123 -0.147 -0.091 0.052 0.225 -0.314 -0.274 -0.149 0.062
AR1 0.797 0.676 0.684 0.705 0.714 0.723 0.712 0.705 0.706 0.700 0.756 0.752 0.739 0.709

Panel B: Controls

RNS-BKM RNV-BKM LB-SVIX VWVS OWVS ID ERP RV VRP ETD LJV PD
×100 ×100 ×100 ×100 ×100 ×100 ×100 ×100 ×100 ×100

count 1226 1226 1226 1226 1226 1226 1225 1226 1226 1226 1226 1222
mean -1.692 0.389 0.348 9.826 10.062 1.787 0.482 0.253 0.136 -4.365 7.524 0.728
std 0.674 0.411 0.340 2.108 2.098 0.488 9.166 0.403 0.233 2.364 3.268 0.496
min -4.881 0.070 0.063 1.785 2.962 0.000 -65.624 0.012 -2.997 -13.228 1.498 0.132
25% -1.925 0.166 0.153 8.437 8.593 1.564 -3.945 0.072 0.070 -6.050 5.618 0.406
50% -1.550 0.282 0.260 9.949 10.138 1.899 1.197 0.139 0.119 -4.310 6.772 0.569
75% -1.247 0.456 0.413 11.316 11.507 2.107 5.533 0.261 0.201 -2.764 8.671 0.879
max -0.628 4.786 3.512 16.453 16.350 2.850 40.797 4.529 1.549 7.567 30.872 3.130
AR1 0.938 0.948 0.952 0.742 0.760 0.988 -0.067 0.952 0.801 0.698 0.826 0.975

Panel A reports the summary statistics for the RN quantile-based skewness estimates for quantiles
α ∈ {1%, . . . , 10%} and the averaged RNA-Q estimates over ranges α ∈ {1%, 2%, 3%} , α ∈
{4%, 5%, 6%, 7%} , α ∈ {8%, 9%, 10%} and α ∈ {1%, . . . , 10%}. Panel B reports summary stat-
istics for the controls used in predictive regressions. RNS-BKM and RNV-BKM are, respectively,
the RN skewness and variance measures of Bakshi, Kapadia, and Madan (2003). LB-SVIX is
the lower bound on the annualised 30-day ERP of Martin (2017). VWVS and OWVS are, re-
spectively, volume and open interest weighted implied volatility (IV) spreads used in Atilgan,
Bali, and Demirtas (2015), where the IV spread is the difference between out-of-the-money put
IVs and at-the-money call IVs. ID is the implied dividend yield of the S&P 500 index extracted
from OptionMetrics. ERP is the realized excess return on the S&P 500 index that we use as
a proxy for the equity risk premium. RV is 22-day realized variance. VRP is the difference
between one-month implied variance, RNV-BKM, and realized variance, RV. LJV is the left tail
jump variation component of the VRP as in Bollerslev, Todorov, and Xu (2015) and PD is the
risk-neutral probability of a 10% stock market drop over the next week (Andersen and Todorov
2019). ETD is a risk-neutral version of the extreme tail difference measure of Jiang, Wu, Zhou,
and Zhu (2020) estimated using SP 500 index options.

58



T
ab

le
4:

C
or
re
la
ti
on

M
at
ri
x

R
N
A
-Q

1
−
3

R
N
A
-Q

4
−
7

R
N
A
-Q

8
−
1
0

R
N
S
-B

K
M

R
N
V
-B

K
M

L
B
-S
V
IX

V
W

V
S

O
W

V
S

ID
E
R
P
-1
w

E
R
P
-c

R
V

V
R
P

E
T
D

L
J
V

P
D

R
N
A
-Q

1
−
1
0

0.
7
2*

**
0.
96

**
*

0.
9*

**
0.
15

**
*

-0
.2
6*

**
-0
.2
4*

**
-0
.4
2*

**
-0
.4
1*

**
-0
.1
4*

**
-0
.0
5*

0.
08

**
*

-0
.2
1
**

*
-0
.0
8
**

*
0.
72

*
**

-0
.2
8
**

*
-0
.3
2
**

*
R
N
A
-Q

1
−
3

0.
64

**
*

0.
41

**
*

0.
38

**
*

-0
.0
4

-0
.0
2

-0
.5
5*

**
-0
.5
**

*
-0
.1
2*

**
-0
.0
1

-0
.0
5*

-0
.0
3

-0
.0
1

0.
5
8*

*
*

-0
.3
3*

**
-0
.1
4*

**
R
N
A
-Q

4
−
7

0.
82

**
*

0.
12

**
*

-0
.2
3*

**
-0
.2
2*

**
-0
.3
5*

**
-0
.3
3*

**
-0
.1
7*

**
-0
.0
7*

*
0.
06

**
-0
.2
**

*
-0
.0
7
**

0.
62

*
**

-0
.2
1
**

*
-0
.3
*
**

R
N
A
-Q

8
−
1
0

-0
.0

-0
.3
3*

**
-0
.3
2*

**
-0
.2
9*

**
-0
.3
**

*
-0
.0
7*

*
-0
.0
4

0.
15

**
*

-0
.2
7
**

*
-0
.1
2*

**
0.
6
9*

**
-0
.2
4
**

*
-0
.3
5
**

*
R
N
S
-B

K
M

0.
23

**
*

0.
26

**
*

-0
.6
5*

**
-0
.6
3*

**
-0
.0
6*

*
-0
.0

-0
.0
3

0.
17

**
*

0
.1
1*

*
*

0.
4
0*

**
-0
.1
9
**

*
0.
2
8*

**
R
N
V
-B

K
M

1.
0*

**
0.
05

*
0.
06

**
-0
.1
6*

**
0.
02

-0
.1
5*

**
0.
84

*
**

0
.3
2
**

*
-0
.1
6*

*
*

0
.7
1
**

*
0
.7
6
**

*
L
B

0.
02

0.
03

-0
.1
7*

**
0.
02

-0
.1
5*

**
0.
83

**
*

0
.3
3
**

*
-0
.1
4*

**
0.
6
9*

*
*

0.
7
8*

**
V
W

V
S

0.
91

**
*

0.
15

**
*

0.
03

-0
.0
5*

0.
03

0
.0
4

-0
.6
1
**

*
0.
41

*
**

0
.0
5
*

O
W

V
S

0.
08

**
*

0.
02

-0
.1
1*

**
0.
01

0.
08

*
**

-0
.6
0
**

*
0
.4
**

*
0
.0
3

ID
0.
05

*
0.
05

*
-0
.2
2*

*
*

0
.0
9
**

*
-0
.1
3*

**
-0
.0
2

-0
.1
1
**

*
E
R
P
-1
w

-0
.0
7*

*
-0
.0
2

0.
0
8*

**
-0
.0
4

0.
0
1

0.
0
1

E
R
P
-c

-0
.0
6
**

-0
.1
6
**

*
0.
0
9*

**
-0
.1
1
**

*
-0
.0
1

R
V

-0
.2
5*

**
-0
.1
1*

**
0
.5
8
**

*
0.
6
**

*
V
R
P

-0
.0
8
**

*
0.
2
4*

**
0.
32

*
**

E
T
D

-0
.1
**

*
-0
.0
9
**

*
L
J
V

0.
5
2*

*
*

T
h
is

ta
b
le

re
p
or
ts

th
e
co
rr
el
at
io
n
s
an

d
as
so
ci
at
ed

si
g
n
ifi
ca
n
ce

le
ve
ls

fo
r
th
e
av
er
a
g
ed

R
N
A
-Q

es
ti
m
a
te
s
a
n
d
th
e
co
n
tr
o
l
va
ri
a
b
le
s
u
se
d

in
p
re
d
ic
ti
v
e
re
gr
es
si
on

s.
T
h
e
co
n
tr
ol
s
ar
e
d
efi
n
ed

in
T
a
b
le

3
.
E
R
P
-c

is
th
e
co
n
te
m
p
o
ra
n
eo
u
s
eq
u
it
y
ri
sk

p
re
m
iu
m

a
n
d
E
R
P
-1
w

is
th
e

on
e-
w
ee
k
ah

ea
d
eq
u
it
y
ri
sk

p
re
m
iu
m
.

59



T
ab

le
5:

P
re
d
ic
ti
v
e
R
eg
re
ss
io
n
R
es
u
lt
s

R
N
A
-Q

1
−
1
0

R
N
A
-Q

1
−
3

R
N
A
-Q

4
−
7

R
N
A
-Q

8
−
1
0

R
N
S
-B

K
M

B
et
a

B
et
a-
S
td

t-
st
a
t

p
-v
al

A
d
j-
R

2
B
et
a

B
et
a-
S
td

t-
st
at

p
-v
al

A
d
j-
R

2
B
et
a

B
et
a-
S
td

t-
st
at

p
-v
al

R
2

B
et
a

B
et
a-
S
td

t-
st
at

p
-v
al

A
d
j-
R

2
B
et
a

B
et
a-
S
td

t-
st
a
t

p
-v
a
l

A
d
j-
R

2

P
an

el
A
:
S
ke
w
n
es
s
va
lu
es

av
er
ag

ed
ov
er

w
ee
k

1W
-1
.5
76

-0
.4
39

-1
.5
79

0
.1
14

0.
00

1
-0
.3
48

-0
.0
85

-0
.2
81

0.
77

9
-0
.0
01

-1
.9
61

-0
.6
07

-2
.2
33

0.
02

6
0.
00

4
-0
.8
71

-0
.3
4
5

-1
.2
46

0.
21

3
0
.0
01

-0
.0
2
9

-0
.0
20

-0
.0
87

0.
93

1
-0
.0
0
1

2W
-1
.2
53

-0
.3
49

-1
.6
74

0
.0
94

0.
00
2

-0
.1
49

-0
.0
36

-0
.1
48

0.
88

2
-0
.0
01

-1
.6
53

-0
.5
12

-2
.4
93

0.
01

3
0.
00

6
-0
.6
64

-0
.2
6
3

-1
.2
83

0.
19

9
0
.0
01

-0
.0
5
5

-0
.0
37

-0
.1
90

0.
84

9
-0
.0
0
1

3W
-1
.2
24

-0
.3
41

-1
.7
99

0
.0
72

0.
00
4

0.
04
5

0.
01

1
0.
04
9

0.
96

1
-0
.0
01

-1
.6
04

-0
.4
96

-2
.5
14

0.
01

2
0.
00

9
-0
.7
29

-0
.2
8
9

-1
.5
78

0.
11

4
0
.0
02

-0
.0
1
9

-0
.0
13

-0
.0
69

0.
94

5
-0
.0
0
1

4W
-1
.3
15

-0
.3
66

-2
.0
42

0
.0
41

0.
00
6

-0
.1
97

-0
.0
48

-0
.2
28

0.
82

0
-0
.0
01

-1
.5
92

-0
.4
92

-2
.5
55

0.
01

1
0.
01

2
-0
.7
99

-0
.3
1
6

-1
.8
07

0.
07

1
0
.0
05

-0
.0
4
9

-0
.0
33

-0
.1
71

0.
86

4
-0
.0
0
1

5W
-1
.4
01

-0
.3
90

-2
.2
41

0
.0
25

0.
00
9

-0
.4
45

-0
.1
08

-0
.5
17

0.
60

5
-0
.0
00

-1
.6
30

-0
.5
04

-2
.6
21

0.
00

9
0.
01

6
-0
.8
16

-0
.3
2
3

-1
.9
53

0.
05

1
0
.0
06

-0
.0
5
7

-0
.0
38

-0
.1
93

0.
84

7
-0
.0
0
1

6W
-1
.4
44

-0
.4
02

-2
.3
83

0
.0
17

0.
01
2

-0
.5
72

-0
.1
39

-0
.6
66

0.
50

5
0.
00

1
-1
.6
12

-0
.4
99

-2
.6
22

0.
00

9
0.
01

9
-0
.8
53

-0
.3
3
8

-2
.1
61

0.
03

1
0
.0
08

-0
.0
8
2

-0
.0
55

-0
.2
73

0.
78

5
-0
.0
0
1

7W
-1
.4
71

-0
.4
10

-2
.4
43

0
.0
15

0.
01
5

-0
.7
47

-0
.1
82

-0
.8
77

0.
38

0
0.
00

2
-1
.6
31

-0
.5
05

-2
.6
88

0.
00

7
0.
02

2
-0
.8
15

-0
.3
2
3

-2
.1
20

0.
03

4
0
.0
09

-0
.1
2
2

-0
.0
82

-0
.4
02

0.
68

8
-0
.0
0
0

8W
-1
.4
41

-0
.4
01

-2
.3
95

0
.0
17

0.
01
6

-0
.9
42

-0
.2
29

-1
.1
27

0.
26

0
0.
00

5
-1
.6
10

-0
.4
98

-2
.6
52

0.
00

8
0.
02

6
-0
.7
09

-0
.2
8
1

-1
.8
64

0.
06

2
0
.0
08

-0
.1
7
4

-0
.1
17

-0
.5
71

0.
56

8
0.
0
01

9W
-1
.3
59

-0
.3
78

-2
.2
41

0
.0
25

0.
01
7

-1
.0
38

-0
.2
53

-1
.2
32

0.
21

8
0.
00

7
-1
.4
69

-0
.4
54

-2
.4
30

0.
01

5
0.
02

4
-0
.6
52

-0
.2
5
8

-1
.7
25

0.
08

5
0
.0
07

-0
.2
0
4

-0
.1
37

-0
.6
53

0.
51

4
0.
0
01

10
W

-1
.2
87

-0
.3
59

-2
.1
29

0
.0
33

0.
01
7

-1
.0
80

-0
.2
63

-1
.2
83

0.
19

9
0.
00

9
-1
.3
80

-0
.4
27

-2
.2
84

0.
02

2
0.
02

4
-0
.5
91

-0
.2
3
4

-1
.5
52

0.
12

1
0
.0
07

-0
.2
0
5

-0
.1
38

-0
.6
47

0.
51

7
0.
0
02

11
W

-1
.1
65

-0
.3
24

-1
.9
00

0
.0
57

0.
01
5

-0
.9
66

-0
.2
35

-1
.1
68

0.
24

3
0.
00

7
-1
.2
71

-0
.3
93

-2
.0
65

0.
03

9
0.
02

2
-0
.5
21

-0
.2
0
6

-1
.3
19

0.
18

7
0
.0
06

-0
.2
0
2

-0
.1
37

-0
.6
36

0.
52

5
0.
0
02

12
W

-1
.0
84

-0
.3
02

-1
.7
07

0
.0
88

0.
01
4

-0
.9
22

-0
.2
25

-1
.1
19

0.
26

3
0.
00

7
-1
.1
64

-0
.3
60

-1
.8
35

0.
06

7
0.
02

0
-0
.4
91

-0
.1
9
4

-1
.1
89

0.
23

4
0
.0
05

-0
.2
0
8

-0
.1
41

-0
.6
47

0.
51

7
0.
0
02

P
an

el
B
:
S
ke
w
n
es
s
va
lu
es

at
w
ee
k
en

d

1W
-1
.1
69

-0
.3
85

-1
.4
50

0
.1
47

0.
00

1
-0
.5
11

-0
.1
39

-0
.4
45

0.
65

7
-0
.0
01

-1
.0
36

-0
.3
86

-1
.4
68

0.
14

2
0.
00

1
-0
.7
94

-0
.3
9
2

-1
.4
53

0.
14

6
0
.0
01

0.
06

7
0
.0
47

0
.2
09

0.
83

5
-0
.0
01

2W
-1
.0
17

-0
.3
35

-1
.6
96

0.
09

0
0.
00

2
-0
.4
27

-0
.1
16

-0
.4
48

0.
65

4
-0
.0
00

-1
.1
17

-0
.4
16

-2
.1
26

0.
03

3
0.
00

4
-0
.5
32

-0
.2
6
3

-1
.3
13

0.
18

9
0
.0
01

-0
.0
4
0

-0
.0
28

-0
.1
41

0.
88

8
-0
.0
0
1

3W
-0
.5
49

-0
.1
81

-0
.9
60

0
.3
37

0.
00
0

0.
09
6

0.
02

6
0.
10
9

0.
91

3
-0
.0
01

-0
.7
75

-0
.2
89

-1
.5
41

0.
12

3
0.
00

2
-0
.2
54

-0
.1
2
6

-0
.6
53

0.
51

4
-0
.0
00

-0
.0
1
2

-0
.0
08

-0
.0
43

0.
96

6
-0
.0
0
1

4W
-0
.5
94

-0
.1
96

-1
.1
54

0
.2
48

0.
00
1

0.
04
0

0.
01

1
0.
04
9

0.
96

1
-0
.0
01

-0
.7
63

-0
.2
85

-1
.6
44

0.
10

0
0.
00

3
-0
.3
14

-0
.1
5
5

-0
.9
22

0.
35

7
0
.0
00

-0
.0
0
4

-0
.0
03

-0
.0
15

0.
98

8
-0
.0
0
1

5W
-0
.7
83

-0
.2
58

-1
.6
10

0
.1
07

0.
00
4

-0
.2
35

-0
.0
64

-0
.2
98

0.
76

6
-0
.0
01

-0
.8
97

-0
.3
34

-1
.9
60

0.
05

0
0.
00

7
-0
.4
10

-0
.2
0
3

-1
.2
93

0.
19

6
0
.0
02

-0
.0
3
2

-0
.0
22

-0
.1
17

0.
90

7
-0
.0
0
1

6W
-0
.8
82

-0
.2
91

-1
.9
03

0
.0
57

0.
00
6

-0
.3
48

-0
.0
94

-0
.4
62

0.
64

4
-0
.0
00

-0
.9
42

-0
.3
51

-2
.0
53

0.
04

0
0.
00

9
-0
.4
88

-0
.2
4
1

-1
.6
57

0.
09

7
0
.0
04

-0
.0
5
8

-0
.0
40

-0
.2
04

0.
83

9
-0
.0
0
1

7W
-0
.8
73

-0
.2
88

-2
.0
18

0
.0
44

0.
00
7

-0
.4
37

-0
.1
18

-0
.5
91

0.
55

5
0.
00

0
-0
.9
07

-0
.3
38

-2
.1
03

0.
03

5
0.
01

0
-0
.4
75

-0
.2
3
5

-1
.7
71

0.
07

6
0
.0
04

-0
.0
7
6

-0
.0
53

-0
.2
69

0.
78

8
-0
.0
0
1

8W
-0
.9
79

-0
.3
22

-2
.1
95

0
.0
28

0.
01
0

-0
.5
93

-0
.1
61

-0
.8
10

0.
41

8
0.
00

2
-1
.0
27

-0
.3
83

-2
.2
97

0.
02

2
0.
01

5
-0
.4
94

-0
.2
4
4

-1
.8
40

0.
06

6
0
.0
06

-0
.1
3
0

-0
.0
90

-0
.4
53

0.
65

1
0.
0
00

9W
-0
.9
74

-0
.3
21

-2
.2
13

0
.0
27

0.
01
2

-0
.7
60

-0
.2
06

-1
.0
44

0.
29

6
0.
00

4
-0
.9
75

-0
.3
63

-2
.2
17

0.
02

7
0.
01

5
-0
.4
76

-0
.2
3
5

-1
.8
29

0.
06

7
0
.0
06

-0
.1
6
6

-0
.1
15

-0
.5
72

0.
56

8
0.
0
01

10
W

-0
.9
97

-0
.3
29

-2
.2
32

0
.0
26

0.
01
4

-0
.8
14

-0
.2
20

-1
.1
25

0.
26

1
0.
00

6
-0
.9
78

-0
.3
64

-2
.2
15

0.
02

7
0.
01

7
-0
.4
92

-0
.2
4
3

-1
.8
65

0.
06

2
0
.0
07

-0
.1
8
0

-0
.1
25

-0
.6
08

0.
54

3
0.
0
01

11
W

-0
.9
34

-0
.3
08

-2
.1
48

0
.0
32

0.
01
3

-0
.8
34

-0
.2
26

-1
.1
90

0.
23

4
0.
00

7
-0
.9
14

-0
.3
41

-2
.1
19

0.
03

4
0.
01

7
-0
.4
40

-0
.2
1
7

-1
.6
23

0.
10

5
0
.0
06

-0
.1
9
7

-0
.1
37

-0
.6
63

0.
50

8
0.
0
02

12
W

-0
.8
19

-0
.2
70

-1
.7
65

0
.0
78

0.
01
1

-0
.7
32

-0
.1
98

-1
.0
59

0.
28

9
0.
00

6
-0
.7
89

-0
.2
94

-1
.7
37

0.
08

2
0.
01

3
-0
.3
96

-0
.1
9
6

-1
.3
92

0.
16

4
0
.0
05

-0
.1
8
8

-0
.1
31

-0
.6
29

0.
52

9
0.
0
02

T
ab

le
5
re
p
or
ts

p
re
d
ic
ti
ve

re
gr
es
si
on

re
su
lt
s
fo
r
h
-w

ee
k
a
h
ea
d
in
d
ex

re
tu
rn
s
u
si
n
g
R
N
A
-Q

1
−
1
0
,
R
N
A
-Q

1
−
3
,
R
N
A
-Q

4
−
7
,
R
N
A
-Q

8
−
1
0
,
a
n
d

R
N
S
-B

K
M

as
in
d
iv
id
u
al

p
re
d
ic
to
rs
.
T
h
e
t-
st
a
ti
st
ic
s
a
re

es
ti
m
a
te
d
u
si
n
g
N
ew

ey
-W

es
t
st
a
n
d
a
rd

er
ro
r
es
ti
m
a
te
s
a
ll
ow

in
g
fo
r
a
la
g
eq
u
a
l

to
tw

o
ti
m
es

th
e
ov
er
la
p
of

th
e
d
ep

en
d
en
t
va
ri
a
b
le
.
T
h
e
p
er
io
d
is

fr
o
m

J
a
n
u
a
ry

1
9
9
6
th
ro
u
g
h
J
u
n
e
2
0
1
9
,
a
n
d
th
e
fr
eq
u
en
cy

is
w
ee
k
ly
.

P
an

el
A

re
p
or
ts

re
su
lt
s
w
h
er
e
th
e
p
re
d
ic
to
r
h
as

b
ee
n
av
er
a
g
ed

ov
er

th
e
p
re
v
io
u
s
w
ee
k
.
P
a
n
el

B
re
p
o
rt
s
re
su
lt
s
w
h
er
e
th
e
p
re
d
ic
to
r
is

th
e
m
os
t
re
ce
n
tl
y
av
ai
la
b
le

p
re
d
ic
to
r
at

th
e
w
ee
k
en
d
p
ri
o
r
to

th
e
h
-w

ee
k
a
h
ea
d
re
tu
rn

h
o
ri
zo
n
.
S
m
o
o
th
in
g
cu
b
ic

B
-s
p
li
n
es

a
re

u
se
d
to

cr
ea
te

a
h
ig
h
re
so
lu
ti
on

gr
id

of
op

ti
on

p
ri
ce
s
ov
er

th
e
st
ri
ke

p
ri
ce

d
o
m
a
in
.

60



T
ab

le
6:

P
re
d
ic
ti
v
e
R
eg
re
ss
io
n
R
es
u
lt
s:

C
on

tr
ol
s

B
et
a

B
et
a-
S
td

t-
st
at

p
-v
al

A
d
j-
R

2
B
et
a

B
et
a-
S
td

t-
st
at

p
-v
al

A
d
j-
R

2
B
et
a

B
et
a-
S
td

t-
st
at

p
-v
al

R
2

B
et
a

B
et
a
-S
td

t-
st
a
t

p
-v
a
l

A
d
j-
R

2

P
an

el
A

R
N
V
-B

K
M

L
B
-S
V
IX

V
W

V
S

O
W

V
S

1W
0.
46

6
0.
19

2
0.
36

5
0.
71

5
-0
.0
00

0.
60

3
0.
20

5
0.
39

5
0.
69

3
-0
.0
00

0.
11

5
0.
24

3
0.
75

5
0.
45

0
-0
.0
00

0.
09

6
0.
2
02

0.
66

5
0.
50

6
-0
.0
00

2W
0
.0
69

0.
02

8
0.
07

3
0.
94

2
-0
.0
01

0.
18

7
0.
06

4
0.
16

6
0.
86

8
-0
.0
01

0.
10

1
0.
21

4
0.
84

7
0.
39

7
0.
00

0
0.
07

4
0.
1
54

0.
65

4
0.
51

3
-0
.0
00

3W
-0
.0
03

-0
.0
01

-0
.0
03

0.
99

7
-0
.0
01

0.
10

6
0.
03

6
0.
10

8
0.
91

4
-0
.0
01

0.
08

4
0.
17

7
0.
79

1
0.
42

9
0.
00

0
0.
08

0
0.
1
68

0.
78

8
0.
43

1
0.
0
00

4W
0
.0
89

0.
03

7
0.
11

9
0.
90

5
-0
.0
01

0.
16

8
0.
05

7
0.
18

1
0.
85

7
-0
.0
01

0.
11

3
0.
23

8
1.
06

9
0.
28

5
0.
00

2
0.
11

9
0.
2
49

1.
18

5
0.
23

6
0.
0
03

5W
0
.0
93

0.
03

8
0.
13

2
0.
89

5
-0
.0
01

0.
15

5
0.
05

3
0.
17

7
0.
85

9
-0
.0
01

0.
12

8
0.
27

0
1.
23

2
0.
21

8
0.
00

4
0.
12

5
0.
2
62

1.
30

3
0.
19

2
0.
0
04

6W
0
.2
07

0.
08

5
0.
31

6
0.
75

2
-0
.0
00

0.
28

4
0.
09

7
0.
34

7
0.
72

9
-0
.0
00

0.
13

8
0.
29

2
1.
33

9
0.
18

1
0.
00

6
0.
12

9
0.
2
70

1.
38

8
0.
16

5
0.
0
05

7W
0
.2
52

0.
10

4
0.
39

3
0.
69

4
0.
00

0
0.
32

2
0.
10

9
0.
40

3
0.
68

7
0.
00

0
0.
14

3
0.
30

2
1.
38

8
0.
16

5
0.
00

8
0.
14

2
0.
2
97

1.
49

0
0.
13

6
0.
0
07

8W
0
.2
36

0.
09

7
0.
36

3
0.
71

6
0.
00

0
0.
29

4
0.
10

0
0.
36

6
0.
71

4
0.
00

0
0.
15

7
0.
33

1
1.
56

8
0.
11

7
0.
01

1
0.
15

9
0.
3
34

1.
68

6
0.
09

2
0.
0
11

9W
0
.2
55

0.
10

5
0.
38

6
0.
69

9
0.
00

1
0.
30

3
0.
10

3
0.
37

5
0.
70

7
0.
00

0
0.
17

0
0.
35

9
1.
68

7
0.
09

2
0.
01

5
0.
16

8
0.
3
52

1.
74

5
0.
08

1
0.
0
14

10
W

0.
24

0
0.
09

9
0.
36

1
0.
71

8
0.
00

0
0.
28

0
0.
09

5
0.
34

4
0.
73

1
0.
00

0
0.
17

5
0.
36

9
1.
78

2
0.
07

5
0.
01

8
0.
17

1
0.
3
59

1.
85

4
0.
06

4
0.
0
17

11
W

0.
17

5
0.
07

2
0.
25

9
0.
79

6
-0
.0
00

0.
20

8
0.
07

1
0.
25

2
0.
80

1
-0
.0
00

0.
17

9
0.
37

7
1.
88

3
0.
06

0
0.
02

0
0.
17

1
0.
3
59

1.
91

0
0.
05

6
0.
0
18

12
W

0.
13

4
0.
05

5
0.
19

7
0.
84

4
-0
.0
00

0.
15

9
0.
05

4
0.
19

1
0.
84

8
-0
.0
00

0.
18

3
0.
38

6
1.
93

1
0.
05

4
0.
02

3
0.
17

4
0.
3
66

1.
92

7
0.
05

4
0.
0
21

P
an

el
B

ID
R
V

E
R
P
-l
ag

V
R
P

1W
0.
92

2
0.
45

0
1.
34

4
0.
17

9
0.
00

2
-0
.5
20

-0
.2
10

-0
.3
71

0.
71

1
-0
.0
00

-0
.0
67

-0
.6
13

-1
.4
96

0.
13

5
0.
00

4
3.
02

5
0.
7
05

1.
55

3
0.
12

0
0.
0
05

2W
0
.9
63

0.
47

0
1.
70

1
0.
08

9
0.
00

5
-0
.5
55

-0
.2
24

-0
.5
69

0.
56

9
0.
00

0
-0
.0
40

-0
.3
65

-1
.5
31

0.
12

6
0.
00

3
1.
89

9
0.
4
43

1.
36

7
0.
17

2
0.
0
04

3W
0
.9
81

0.
47

9
1.
81

0
0.
07

0
0.
00

8
-0
.4
92

-0
.1
99

-0
.6
88

0.
49

2
0.
00

1
-0
.0
23

-0
.2
12

-1
.2
71

0.
20

4
0.
00

1
1.
49

1
0.
3
48

1.
55

0
0.
12

1
0.
0
04

4W
0
.9
81

0.
47

9
1.
86

7
0.
06

2
0.
01

1
-0
.3
94

-0
.1
59

-0
.6
13

0.
54

0
0.
00

1
-0
.0
14

-0
.1
32

-0
.8
22

0.
41

1
0.
00

0
1.
48

5
0.
3
46

1.
55

1
0.
12

1
0.
0
06

5W
0
.9
96

0.
48

7
1.
96

6
0.
04

9
0.
01

5
-0
.2
82

-0
.1
14

-0
.5
02

0.
61

6
0.
00

0
-0
.0
05

-0
.0
42

-0
.2
32

0.
81

6
-0
.0
01

1.
15

7
0.
2
70

1.
37

4
0.
16

9
0.
0
04

6W
1
.0
19

0.
49

8
2.
09

2
0.
03

6
0.
01

9
-0
.1
75

-0
.0
70

-0
.3
55

0.
72

2
-0
.0
00

0.
00

1
0.
00

9
0.
05

5
0.
95

6
-0
.0
01

1.
18

5
0.
2
76

1.
47

8
0.
14

0
0.
0
05

7W
1
.0
61

0.
51

8
2.
26

3
0.
02

4
0.
02

4
-0
.1
84

-0
.0
74

-0
.3
92

0.
69

5
-0
.0
00

-0
.0
16

-0
.1
49

-1
.3
05

0.
19

2
0.
00

1
1.
35

0
0.
3
15

1.
76

9
0.
07

7
0.
0
08

8W
1
.1
08

0.
54

1
2.
43

0
0.
01

5
0.
03

0
-0
.1
88

-0
.0
76

-0
.4
04

0.
68

6
-0
.0
00

-0
.0
11

-0
.1
00

-0
.9
70

0.
33

2
0.
00

0
1.
31

1
0.
3
06

1.
97

4
0.
04

8
0.
0
09

9W
1
.1
44

0.
55

9
2.
56

2
0.
01

0
0.
03

7
-0
.2
09

-0
.0
84

-0
.4
50

0.
65

3
0.
00

0
-0
.0
07

-0
.0
65

-0
.5
98

0.
55

0
-0
.0
00

1.
42

7
0.
3
33

2.
28

0
0.
02

3
0.
0
13

10
W

1.
17

3
0.
57

3
2.
66

5
0.
00

8
0.
04

3
-0
.2
55

-0
.1
03

-0
.5
33

0.
59

4
0.
00

1
-0
.0
08

-0
.0
75

-0
.7
95

0.
42

7
-0
.0
00

1.
51

9
0.
3
54

2.
35

1
0.
01

9
0.
0
16

11
W

1.
19

1
0.
58

1
2.
74

8
0.
00

6
0.
05

0
-0
.2
70

-0
.1
09

-0
.5
47

0.
58

4
0.
00

1
-0
.0
04

-0
.0
35

-0
.4
08

0.
68

3
-0
.0
01

1.
36

4
0.
3
18

2.
03

9
0.
04

1
0.
0
14

12
W

1.
19

7
0.
58

4
2.
80

7
0.
00

5
0.
05

5
-0
.2
59

-0
.1
05

-0
.5
07

0.
61

2
0.
00

1
-0
.0
07

-0
.0
68

-0
.9
07

0.
36

4
-0
.0
00

1.
20

4
0.
2
81

1.
71

6
0.
08

6
0.
0
12

P
an

el
B

E
T
D

L
J
V

P
D

1W
-0
.1
74

-0
.4
13

-1
.5
58

0.
11

9
0.
00

1
0.
02

2
0.
07

3
0.
17

6
0.
86

0
-0
.0
01

0.
21

4
0.
10

6
0.
27

6
0.
78

2
-0
.0
01

2W
-0
.1
26

-0
.2
99

-1
.5
34

0.
12

5
0.
00

1
-0
.0
20

-0
.0
66

-0
.2
08

0.
83

5
-0
.0
01

0.
27

9
0.
13

9
0.
48

0
0.
63

1
-0
.0
00

3W
-0
.1
29

-0
.3
06

-1
.7
39

0.
08

2
0.
00

3
-0
.0
27

-0
.0
87

-0
.3
16

0.
75

2
-0
.0
01

0.
45

7
0.
22

7
0.
89

6
0.
37

0
0.
00

1
4W

-0
.1
42

-0
.3
35

-1
.9
44

0.
05

2
0.
00

5
-0
.0
16

-0
.0
53

-0
.2
12

0.
83

2
-0
.0
01

0.
53

1
0.
26

4
1.
09

4
0.
27

4
0.
00

3
5W

-0
.1
40

-0
.3
32

-1
.9
69

0.
04

9
0.
00

7
-0
.0
08

-0
.0
27

-0
.1
16

0.
90

8
-0
.0
01

0.
59

4
0.
29

5
1.
25

7
0.
20

9
0.
00

5
6W

-0
.1
49

-0
.3
53

-2
.1
72

0.
03

0
0.
00

9
0.
00

8
0.
02

6
0.
11

6
0.
90

7
-0
.0
01

0.
63

3
0.
31

4
1.
35

8
0.
17

5
0.
00

7
7W

-0
.1
42

-0
.3
36

-2
.0
96

0.
03

6
0.
00

9
0.
02

8
0.
09

2
0.
42

8
0.
66

9
-0
.0
00

0.
61

6
0.
30

6
1.
32

4
0.
18

5
0.
00

8
8W

-0
.1
41

-0
.3
34

-2
.2
12

0.
02

7
0.
01

1
0.
04

5
0.
14

8
0.
70

9
0.
47

8
0.
00

1
0.
60

2
0.
29

9
1.
29

4
0.
19

6
0.
00

9
9W

-0
.1
45

-0
.3
43

-2
.3
19

0.
02

0
0.
01

3
0.
06

4
0.
20

8
0.
99

2
0.
32

1
0.
00

4
0.
55

9
0.
27

7
1.
20

7
0.
22

7
0.
00

8
10

W
-0
.1
37

-0
.3
24

-2
.2
41

0.
02

5
0.
01

3
0.
07

0
0.
22

7
1.
07

9
0.
28

1
0.
00

6
0.
49

5
0.
24

6
1.
06

4
0.
28

8
0.
00

7
11

W
-0
.1
31

-0
.3
09

-2
.1
97

0.
02

8
0.
01

3
0.
06

7
0.
21

9
1.
04

0
0.
29

8
0.
00

6
0.
45

7
0.
22

7
0.
99

1
0.
32

2
0.
00

7
12

W
-0
.1
33

-0
.3
14

-2
.2
21

0.
02

6
0.
01

5
0.
06

6
0.
21

6
1.
05

0
0.
29

4
0.
00

7
0.
43

9
0.
21

8
0.
98

6
0.
32

4
0.
00

7

T
ab

le
6
re
p
or
ts

p
re
d
ic
ti
ve

re
gr
es
si
on

re
su
lt
s
fo
r
h
-w

ee
k
a
h
ea
d
in
d
ex

re
tu
rn
s
u
si
n
g
th
e
co
n
tr
o
ls

a
s
in
d
iv
id
u
a
l
p
re
d
ic
to
rs
.
T
h
e
t-
st
a
ti
st
ic
s

ar
e
es
ti
m
at
ed

u
si
n
g
N
ew

ey
-W

es
t
st
an

d
ar
d
er
ro
r
es
ti
m
a
te
s
a
ll
ow

in
g
fo
r
a
la
g
eq
u
a
l
to

tw
o
ti
m
es

th
e
ov
er
la
p
o
f
th
e
d
ep

en
d
en
t
va
ri
a
b
le
.

T
h
e
p
er
io
d
is
fr
om

J
an

u
ar
y
19
96

th
ro
u
gh

J
u
n
e
20
1
9
,
a
n
d
th
e
fr
eq
u
en
cy

is
w
ee
k
ly
.
T
h
e
co
n
tr
o
ls
a
re

d
efi
n
ed

in
T
a
b
le

3
.
S
m
o
o
th
in
g
cu
b
ic

B
-s
p
li
n
es

ar
e
u
se
d
to

cr
ea
te

a
h
ig
h
re
so
lu
ti
on

gr
id

o
f
o
p
ti
o
n
p
ri
ce
s
ov
er

th
e
st
ri
ke

p
ri
ce

d
o
m
a
in

to
es
ti
m
a
te

o
p
ti
o
n
im

p
li
ed

p
re
d
ic
to
rs

su
ch

as
R
N
V
-B

K
M

an
d
L
B
-S
V
IX

.

61



Table 7: Bivariate Predictive Regressions

Panel A: t-statistic on RNA-Q4−7 coefficient

RNS-BKM RNV-BKM LB-SVIX VWVS OWVS ID RV ERP-lag VRP ETD LJV PD

1W -2.151 -2.067 -2.052 -2.035 -2.063 -1.857 -2.400 -2.041 -1.968 -1.666 -2.254 -2.176
2W -2.397 -2.417 -2.358 -2.293 -2.322 -2.045 -2.715 -2.213 -2.203 -2.046 -2.648 -2.324
3W -2.447 -2.448 -2.390 -2.333 -2.250 -2.121 -2.717 -2.295 -2.272 -1.933 -2.651 -2.156
4W -2.488 -2.432 -2.401 -2.185 -2.073 -2.192 -2.705 -2.395 -2.325 -1.725 -2.603 -2.155
5W -2.567 -2.529 -2.504 -2.195 -2.134 -2.268 -2.750 -2.535 -2.453 -1.794 -2.644 -2.244
6W -2.582 -2.494 -2.475 -2.187 -2.158 -2.285 -2.710 -2.572 -2.479 -1.721 -2.583 -2.256
7W -2.660 -2.521 -2.510 -2.296 -2.218 -2.342 -2.753 -2.576 -2.543 -1.949 -2.576 -2.331
8W -2.618 -2.503 -2.495 -2.282 -2.175 -2.296 -2.726 -2.574 -2.522 -2.002 -2.504 -2.328
9W -2.383 -2.292 -2.290 -1.958 -1.903 -2.040 -2.530 -2.371 -2.295 -1.689 -2.235 -2.150
10W -2.229 -2.176 -2.176 -1.780 -1.739 -1.876 -2.421 -2.225 -2.145 -1.589 -2.073 -2.066
11W -2.002 -2.012 -2.008 -1.528 -1.516 -1.662 -2.233 -2.034 -1.941 -1.395 -1.871 -1.880
12W -1.769 -1.806 -1.802 -1.277 -1.273 -1.447 -2.002 -1.791 -1.726 -1.118 -1.649 -1.655

Panel B: t-statistic on control coefficient

RNS-BKM RNV-BKM LB-SVIX VWVS OWVS ID RV ERP-lag VRP ETD LJV PD

1W 0.184 0.137 0.181 0.177 0.131 0.932 -0.581 -1.463 1.486 -0.258 -0.133 -0.197
2W 0.069 -0.191 -0.079 0.236 0.084 1.310 -0.816 -1.468 1.282 0.044 -0.565 -0.037
3W 0.202 -0.311 -0.175 0.075 0.150 1.478 -1.028 -1.160 1.433 -0.065 -0.711 0.338
4W 0.107 -0.221 -0.127 0.353 0.525 1.572 -0.997 -0.684 1.432 -0.283 -0.632 0.518
5W 0.093 -0.252 -0.168 0.489 0.565 1.673 -0.957 -0.092 1.232 -0.184 -0.574 0.663
6W 0.010 -0.099 -0.028 0.605 0.617 1.817 -0.877 0.226 1.334 -0.358 -0.357 0.772
7W -0.117 -0.038 0.011 0.653 0.743 1.983 -0.944 -1.069 1.644 -0.203 -0.073 0.720
8W -0.299 -0.061 -0.023 0.868 0.975 2.164 -0.964 -0.706 1.883 -0.245 0.197 0.699
9W -0.419 0.007 0.024 1.086 1.132 2.308 -0.970 -0.372 2.240 -0.621 0.534 0.668
10W -0.429 0.005 0.013 1.219 1.258 2.441 -1.022 -0.540 2.332 -0.608 0.657 0.555
11W -0.435 -0.069 -0.053 1.363 1.347 2.553 -0.986 -0.140 2.006 -0.690 0.655 0.521
12W -0.468 -0.104 -0.089 1.484 1.416 2.643 -0.895 -0.626 1.670 -0.979 0.695 0.547

This table reports predictive regression results for h-week ahead excess index returns using RNA-
Q and a single control in a bivariate regression. The period is from January 1996 through June
2019, and the frequency is weekly. The t-statistics are estimated using Newey-West standard
error estimates allowing for a lag equal to two times the overlap of the dependent variable. Panel
A reports the t-statistics for RNA-Q4−7 predictor when controls are used in bivariate predictive
regressions. Panel B reports t-statistics for the controls. The controls are defined in Table 3.
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Table 8: Out-Of-Sample Predictive Regressions

RNA-Q ID VRP ETD

Week OS R̄2 CT OS R̄2 CW t-stat OS R̄2 CT OS R̄2 CW t-stat OS R̄2 CT OS R̄2 CW t-stat OS R̄2 CT OS R̄2 CW t-stat

1W 0.001 0.003 1.746∗∗ -0.002 0.001 0.124 -0.001 0.002 0.620 -0.001 0.000 0.411
2W 0.003 0.003 2.068∗∗ 0.002 0.005 1.026 -0.002 0.002 0.464 -0.000 0.000 0.690
3W 0.007 0.005 2.045∗∗ 0.005 0.009 1.470∗ 0.000 0.001 1.033 0.001 0.003 1.199
4W 0.011 0.009 2.016∗∗ 0.009 0.011 1.670∗∗ 0.002 0.002 1.122 0.004 0.006 1.712∗∗

5W 0.016 0.010 2.093∗∗ 0.013 0.013 1.830∗∗ 0.000 0.001 0.919 0.006 0.008 1.919∗∗

6W 0.019 0.011 2.060∗∗ 0.017 0.016 1.947∗∗ 0.002 0.003 1.255 0.008 0.010 2.285∗∗

7W 0.023 0.011 2.094∗∗ 0.021 0.020 2.075∗∗ 0.005 0.005 1.719∗∗ 0.009 0.011 2.271∗∗

8W 0.026 0.011 2.081∗∗ 0.029 0.024 2.194∗∗ 0.007 0.008 2.074∗∗ 0.010 0.012 2.329∗∗

9W 0.024 0.007 1.947∗∗ 0.035 0.027 2.268∗∗ 0.011 0.012 2.348∗∗∗ 0.012 0.014 2.518∗∗∗

10W 0.024 0.006 1.879∗∗ 0.042 0.031 2.313∗∗ 0.015 0.015 2.522∗∗∗ 0.012 0.013 2.369∗∗∗

11W 0.022 0.002 1.729∗∗ 0.048 0.033 2.321∗∗ 0.012 0.014 2.443∗∗∗ 0.012 0.014 2.259∗∗

12W 0.020 -0.001 1.545∗ 0.053 0.035 2.310∗∗ 0.009 0.013 2.241∗∗ 0.013 0.015 2.268∗∗

This Table reports OS adjusted R2s (OS R̄2) and OS adjusted R2s from restricted regressions,
as in Campbell and Thompson (2008) (CT OS R̄2), where the coefficient on the predictor in the
regression is restricted to be non-negative and, if the forecast is still negative, a second restriction
is applied replacing the forecast with 0. Forecasts are made on a recursive basis with an initial
estimation window set equal to 120 weeks, where the full sample size is 1,225 weeks. The period
is from January 1996 through June 2019, and the frequency is weekly. The OS significance is
assessed using a one-sided t-test on the mean squared prediction error (MSPE)-adjusted statistic
in Clark and West (2007). We apply this test taking into account the autocorrelation in forecast
errors by using Newey-West standard error estimates with lags set equal to 2 times the overlaps
in calculating t-statistics. One-sided t-statistics for the MSPE-adjusted, for the null of equal
MSPE, are reported in the table. For large enough sample sizes, as applies in this case, standard
normal critical values can be used and we can reject the null at 10%/5%/1% if the t-statistic
> 1.282/1.645/2.33, respectively.
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Figure 2: Objective Functions

(a) BLQ (b) MFQ

This plot depicts the objective functions for the Breeden-Litzenberg quantile (BLQ) method and
the model-free quantile (MFQ) method along with the estimated quantiles at 1%, 5% and 10%.
BLQs and MFQs are estimated using Black-Scholes option prices. The spot price is S = 100, the
interest rate is r = 0, the dividend yield is q = 0, the time-to-maturity is T = 1, and volatility
is σ = 0.10. The strike prices range from 10 to 100 in steps of 0.01 index points.
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Figure 3: Quantiles with an Option Price Chain Interpolated by Cubic Splines

(a) BLQ Highest RMSE: Splines (b) BLQ Typical RMSE: Splines

(c) BLQ Highest RMSE: Local Linear Regression (d) BLQ Typical RMSE: Local Linear Regression

(e) BLQ Highest RMSE: Smoothing B-splines (f) BLQ Typical RMSE: Smoothing B-splines

This plot depicts the risk-neutral cumulative distribution function (RN-CDF) of the underlying
optioned asset price where quantiles are estimated using the model-free method and the Breeden-
Litzenberg method. BSQs are Black-Scholes quantiles calculated from the underlying log normal
distribution with no noise. BLQs are quantiles estimated with the Breeden-Litzenberg method
and MFQs are quantiles estimated with the model-free method. BLQs and MFQs use Black-
Scholes option prices with added noise to simulate measurement error. The simulated option
prices are available at discrete strike intervals depicted by the rug plot. The discrete option
price chain is interpolated with cubic splines in panels (a) and (b), smoothed with local linear
regression in panels (c) and (d) and smoothed with cubic B-splines in panels (e) and (f). Option
prices are simulated to replicate the conditions in our data sample for S&P 500 index options on
June 28, 2019. Option prices are available at 160 different strike prices ranging from a minimum
strike price of 2310 to a maximum strike price of 3155 and spaced at uniform intervals of 5
index points, with the exception of some deep OTM options that are spaced at 10 index points.
The spot price is S = 2942, the interest rate is r = 0.02, the dividend yield is q = 0.02, the
time-to-maturity is T = 0.08, and volatility is σ = 0.13.
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Figure 4: Risk-Neutral Quantile Estimation

(a) Interpolated Option Prices 2019 (b) Objective Function α = 0.01, 0.05 & 0.10

(c) Interpolated Option Prices 1996 (d) Objective Function α = 0.01, 0.05 & 0.10

This plot depicts the process used to construct the objective function and estimate risk-neutral
quantiles. The top left panel depicts mid-quote prices for call and put options along with the
B-spline interpolated option prices using S&P 500 index options on June 28, 2019 with 28 days
to maturity. The top right panel panel depicts the objective function used to estimate model-free
quantiles at α = 1%, 5% and 10%, where the vertical lines on both the top left and right panel
indicates these quantile. The bottom left and right panels depicts the same plots but using S&P
500 index options on January 17, 1996 with 29 days to maturity.
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Figure 5: Smooth Half Normal CARA Economy

(a) Density Functions (b) ERP vs PSkew

(c) RNA-Q vs PSkew (d) ERP vs RNA-Q

These plots summarize various aspects of the Smooth Half Normal CARA economy. We set
µ = 7.28%, σ = 14.98% and skewness varies from -0.95 to +0.8. Panel (a) depicts the physical
and risk-neutral density functions for a single skewness value of -0.5. Panel (b) depicts the ERP
versus physical skewness where skewness varies from -0.95 to 0.8. Panel (c) shows the variation
of RNA-Q and quantile-based physical asymmetry (PA-Q) with physical skewness and panel (d)
plots the ERP versus RNA-Q.
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Appendix A Monte Carlo Experiments

A.1 Option Prices with Simulated Measurement Error

We provide further detail on the method used to simulate measurement error in option

prices due to Bondarenko (2003). This approach sets the maximum strike dependent

spreads, s, according to the CBOE rule book and generates uniformly distributed meas-

urement error on [−0.5s, 0.5s] where s = qa− qb is the bid-ask spread and where (qb, qa)

are the concurrent bid and ask-quotes for the option price q. The value of the spread

depends on the moneyness of the option price quote q. Assuming s is proportional to the

maximum spread permitted by the exchange, Bondarenko (2003) constructs a function

M(q) to represent the maximum spread for the quote q. Specifically,

M(0) =
1

8
, M(2) =

1

4
, M(5) =

3

8
,

M(10) =
1

2
, M(20) =

3

4
,

M(q) = 1, q ≥ 50

Furthermore, M(q) is linearly interpolated for all q ∈ [0, 50]. As in Bondarenko (2003),

we simulate a chain of call and put option prices and use put-call parity to convert ITM

call (put) option prices to OTM put (call) option prices. Then we add measurement

error to OTM option prices only. This results in measurement error that is smaller in

absolute terms and larger in relative terms for far OTM option prices.

A.2 Further Monte Carlo Results

In this subsection of Appendix A we report further Monte Carlo simulation results on

the performance of MFQs versus BLQs. Table A1 repeats the simulations in Table 1

using a two-state mixture lognormal model denoted as LN2 (see, e.g., Bahra 1997 and

Melick and Thomas 1997) to generate option prices that are a closer match to market
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prices. The LN2 model consists of five parameters: p is the probability of being in state

1; µ1 and µ2 are the instantaneous drift of the asset price in states 1 and 2; and σ1 and

σ2 are the instantaneous volatility of the asset price in states 1 and 2. Furthermore, the

parameters should satisfy the following constraint so that the forward price from the LN2

model is equal to the market forward price: peµ1T+(1−p)eµ2T = e(r−q)T . We fit the LN2

model to the set of OTM call and put market prices available on June 28, 2019, imposing

the above constraint. This results in the following set of parameters for the LN2 model:

p = 0.8702, µ1 = 0.1286, µ2 = −0.8601, σ1 = 0.0929, σ2 = 0.2278. Furthermore, we

simulate the model with the following set of inputs: S = 2941.76, r = 0.0239, q = 0.0194,

and T = 0.076723. The results in Table A1 are quantitatively and qualitatively similar to

the results from Table 1. The MFQ method significantly outperforms the BLQ method

when cubic splines are used to interpolate noisy option price data (Panel A) or when

a LLR smoothing is applied as in Panel B where leave-one-out LSCV is used to select

the bandwidth. The MFQ method also outperforms the BLQ method in Panels C when

LQR smoothing is used and Panel D when cubic B-splines are used to smooth option

prices.

We also run a Monte Carlo experiment using the LN2 where noisy option prices are

preprocessed to be convex in the strike price with results presented in Table A2. MFQs

are more accurate than BLQs in the case of cubic splines, LLR, and LQR. However,

we find that BLQs are slightly more accurate than MFQs in terms of mean RMSE

in the case of cubic B-spline smoothing. Comparing mean RMSE values with values

in Panel D of Table A1, when cubic B-splines are used to smooth option prices that

are not preprocessed to be convex, we find that preprocessing combined with cubic B-

spline smoothing results in mean RMSE values that are approximately four times greater

relative to the case when cubic B-spline smoothing is used without preprocessing. In the

case of cubic B-splines, the experimental evidence suggests that preprocessing followed

23Unlike in the Black-Scholes case, we do not round down the inputs so that the constraint imposed
on the fitted parameters ensures no-arbitrage.
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by cubic B-spline smoothing results in less accurate quantiles when compared to simply

using cubic B-splines to smooth option prices. In this latter case, the MFQ method is

more accurate than the BLQ method.

In Table A3 we simulate S&P 500 index option market conditions on the July 30,

2007, for the near maturity option chain. We choose this date as it lies approximately

half way through our data sample. In this case we replicate conditions where a medium

number of option price quotes are available over a lower range of strike prices than in

the previous simulations. On this day, there were 52 different strike prices ranging from

a minimum strike price of 1290 to a maximum strike price of 1560. The left most four

options are spaced at intervals of 10 index points whereas all other options are spaced

at uniform intervals of 5 index points. The spot price is S = 1474, the interest rate is

r = 0.05, the dividend yield is q = 0.02, and the time-to-maturity is T = 0.05. We use

an ATM forward implied volatility of σ = 0.200 to simulate Black-Scholes model prices.

In all cases, the MFQ method is more accurate than the BLQ method.

In Table A4 we simulate S&P 500 index option market conditions on the July 30,

1999, for the near maturity option chain. We choose this date as it lies near the be-

ginning of our data sample. In this case we replicate conditions where a low number of

option price quotes are available over a short range of strike prices than in the previous

simulations. On this day, there were 30 different strike prices ranging from a minimum

strike price of 1125 to a maximum strike price of 1425. The left most eight option quotes

are spaced at intervals of 25 index points, then there is a gap of 20 index points to the

9th option quote with the remaining option quotes are spaced at uniform intervals of 5

index points. The spot price is S = 1329, the interest rate is r = 0.05, the dividend yield

is q = 0.01, the time-to-maturity is T = 0.05, and we use a single ATM forward implied

volatility of σ = 0.22 to simulate the Black-Scholes model prices. In all cases, the MFQ

method is more accurate than the BLQ method.
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Appendix B Risk-Neutral Mean and Variance in a Smooth

Half Normal CARA Economy

The smooth half normal (SHN) density function (see de Roon and Karehnke 2017) is

defined as follows:

g(x) =

 λ1f(x;m, s1) if x ≤ m,

λ2f(x;m, s2) if x > m.

where f(x;µx, σx) is the normal density function with mean µx and standard deviation

σx, λ1 and λ2 are chosen to ensure the density function is continuous and integrates to

one, and where s1, s2 and m are chosen to match the mean µ, variance σ and skewness

γ of the excess return distribution. Following de Roon and Karehnke (2017) we assume

a two period economy with a representative investor that maximizes a CARA utility

function u(x) = −e−θw0(1+rf+x) where θ is the risk aversion coefficient, w0 the initial

wealth, rf is the risk-free rate and x is the excess return with x ∼ SHN(µ, σ, γ). The

risk-neutral density g∗(x) is related to the physical density function (subject to conditions

such as complete and frictionless markets) as follows:

g∗(x) =
u′((1 + rf + x))g(x)∫∞

−∞ u′((1 + rf + x))g(x)

The resulting risk-neutral density function is given by:

g∗(x) =

 λ∗
1f(x;m− θw0s

2
1, s1) if x ≤ m,

λ∗
2f(x;m− θw0s

2
2, s2) if x > m.
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where

λ∗
i = λi

ci
c
,

ci = e
1
2(θ

2w2
0s

2
i ),

c = λ1c1Φ (θw0s1) + λ2c2 (1− Φ (θw0s2)) ,

for i = 1, 2 and where Φ(x) denotes the standard normal CDF. The risk-neutral condi-

tional means are given by:

E∗[x|x ≤ m] = m− θw0s
2
1 − s1

ϕ(θw0s1)

Φ(θw0s1)
,

E∗[x|x > m] = m− θw0s
2
2 + s2

ϕ(θw0s2)

1− Φ(θw0s2)
,

where ϕ(x) denotes the standard normal PDF. The corresponding risk-neutral probab-

ilities are given by:

Pr ∗[x ≤ m] = λ∗
1Φ(θw0s1),

Pr ∗[x > m] = λ∗
2 (1− Φ(θw0s2)) .

Hence, the risk-neutral mean is given by:

E∗[x] = E∗[x|x ≤ m] Pr ∗[x ≤ m] + E∗[x|x > m] Pr ∗[x > m]

= λ∗
1

(
m− θw0s

2
1

)
Φ(θw0s1)− λ∗

1s1ϕ(θw0s1)

+ λ∗
2

(
m− θw0s

2
2

)
(1− Φ(θw0s2)) + λ∗

2s2ϕ(θw0s2)
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The risk-neutral conditional expectations of the square of a SHN-CARA random variable

are given by:

E∗[x2|x ≤ m] =
(
m− θw0s

2
1

)2
+ s21 + s1

(
θw0s

2
1 − 2m

) ϕ(θw0s1)

Φ(θw0s1)
,

E∗[x2|x > m] =
(
m− θw0s

2
2

)2
+ s22 + s2

(
θw0s

2
2 + 2m

) ϕ(θw0s2)

1− Φ(θw0s2)
.

The risk-neutral conditional variances are given by:

V ∗[x|x ≤ m] = E∗[x2|x ≤ m]− E∗[x|x ≤ m]2,

V ∗[x|x > m] = E∗[x2|x > m]− E∗[x|x > m]2.

Using the law of total variance, the risk-neutral variance in a SHN-CARA economy is

given by:

V ∗[x] = V ∗[x|x ≤ m] Pr ∗[x ≤ m] + V ∗[x|x > m] Pr ∗[x > m]

+ (E∗[x|x ≤ m]− E∗[x|x > m])2 Pr ∗[x ≤ m] Pr ∗[x > m].

It is interesting to note that in a SHN-CARA economy the variance risk premium defined

as the difference between the risk-neutral and physical variance, V RP = V ∗[x] − V [x],

is positive when the physical skewness γ is negative, zero when γ = 0 and negative when

γ > 0. The fact that in a SHN-CARA economy the VRP is positive when skewness

is negative is in agreement with the stylised empirical facts of negative skewness and

positive VRP in major international equity markets.
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Appendix C Further Predictive Regression Results

In this section of the Appendix we report further predictive regression results. Table C1

presents predictive regression results similar to those in Table 5 but where the quantile

extraction method uses interpolating cubic-splines, as opposed to smoothing B-splines.

As can be seen from the table, the results are quantitatively and qualitatively similar to

the results in Table 5 highlighting that RNA-Qs are not overly sensitive to the procedure

used to extract quantiles provided we use the MFQ method.

Table C2 reports predictive regression results where, following robustness tests in

Table Martin (2017), we remove the period of the financial crisis from August 1, 2008

to July 31, 2009, in which variance spiked upwards, the stock market crashed and then

subsequently recovered strongly. As can be seen in C2, the results for RNA-Q become

even stronger when this period of the financial crisis is removed from the data sample.
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Appendix D Higher Order Cornish Fisher Expansion

The Cornish-Fisher (CF) expansion up to fifth order expresses a non-normal standard

quantile, w, in terms of a standard normal quantile, x, and the the distribution cumulants

κn as follows:

w ≈ x+ [γ1h1(x)]

+
[
γ2h2(x) + γ21h22(x)

]
+
[
γ3h3(x) + γ1γ2h12(x) + γ31h111(x)

]
+
[
γ4h4(x) + γ22h22(x) + γ1γ3h13(x) + γ21γ2h112(x) + γ41h1111(x)

]
where

x = Φ−1(α)

γr−2 =
κr

κ
r/2
2

; r ∈ {3, 4, . . .}

h1(x) =
1

6
He2(x)

h2(x) =
1

24
He3(x)

h11(x) = − 1

36
[2He3(x) + He1(x)]

h3(x) =
1

120
He4(x)

h12(x) = − 1

24
[He4(x) + He2(x)]

h111(x) =
1

324
[12He4(x) + 19He2(x)]

h4(x) =
1

720
He5(x)

h22(x) = − 1

384
[3He5(x) + 6He3(x) + 2He1(x)]

h13(x) = − 1

180
[2He5(x) + 3He3(x)]

h112(x) =
1

288
[14He5(x) + 37He3(x) + 8He1(x)]
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h1111(x) = − 1

7776
[252He5(x) + 832He3(x) + 227He1(x)]

where Hen(x) are he probabilist’s Hermite polynomials given by

Hen(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2

Hermite polynomials Hen(x) are even or odd functions depending on n with

Hen(−x) = (−1)nHen(−x)

The sum of two symmetric quantiles at, respectively, probability levels α and 1 − α is

given by wα+w1−α. This sum is a function of the odd Hermite polynomials as the even

Hermite polynomials cancel. Taking a fifth order expansion results in

wα + w1−α = 2
(
γ1h1(x) + γ3h3(x) + γ1γ2h12(x) + γ31h111(x)

)
Dividing across by 2h1(x) yields the measure of asymmetry we use in the paper that we

denote as RNA-Q

RNA-Q =
1

2h1(x)
(wα + w1−α)

= γ1 +
1

h1(x)

(
γ3h3(x) + γ1γ2h12(x) + γ31h111(x)

)
Along with skewness γ1, we see that higher order cumulants γ2 (kurtosis) and γ3 (fifth

order cumulant related to hyperskewness) also impact the asymmetry measure in the

fifth order expansion.
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