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1 Introduction

Investors are increasingly aware that climate change can pose significant investment risks that

should be integrated in their portfolio strategies.1 Regulators also recognize that financial institu-

tions are exposed to environmental risk factors and encourage them to quantify these risks. For

instance, new European regulations (IORP II) require pension funds to include climate risk in their

own-risk assessment. However, despite their efforts, investors struggle to fully grasp the potential

impact of climate change on the value of their portfolio and are searching for approaches to quantify

these risks (see, e.g., the survey evidence provided by Krueger, Sautner, and Starks (2020)).

Given the long-term nature of climate change, long-horizon investors such as pension funds

are concerned about its effects on asset returns and risk over longer holding periods. Estimating

the long-horizon climate risk exposure of assets is challenging because currently available historical

data samples may not include sufficient realizations of severe climate change effects and because of

substantial uncertainty about the long-horizon impact of climate change on asset prices. Stambaugh

summarizes this uncertainty by noting that when we “expand the horizon to the next several

decades, the possible effects of global warming range from negligible to catastrophic.”2

We address these issues by proposing a novel approach for measuring the impact of climate

change on long-horizon equity risk and portfolio choice that supplements historical data with prior

information derived from economic theory. We set up a Vector Autoregression (VAR) model to

analyze the long-run dynamics of equity returns and include temperature as a predictor in the VAR

to proxy for climate risk. Since the frequency and impact of past climate-induced disasters may not

be representative of their future impact in a scenario of prolonged climate change, we estimate the

VAR parameters using a Bayesian approach that combines historical data with theoretical prior

beliefs about the impact of temperature change on return dynamics. We construct the model-based

prior following the method proposed by Avramov, Cederburg, and Lucivjanska (2018).3

1In his 2020 letter to CEOs available at www.blackrock.com/uk/individual/larry-fink-ceo-letter, Larry
Fink notes that “climate change is almost invariably the top issue that clients around the world raise with BlackRock.”

2This quote is from https://www.nytimes.com/2009/03/29/your-money/stocks-and-bonds/29stra.html.
3Avramov, Cederburg, and Lucivjanska (2018) point out that “asset pricing theory could provide additional

guidance about important aspects of the return process for which the sample evidence is not particularly informative.”

1

www.blackrock.com/uk/individual/larry-fink-ceo-letter
https://www.nytimes.com/2009/03/29/your-money/stocks-and-bonds/29stra.html


We elicit these beliefs from the temperature long-run risks (LRR-T) model of Bansal, Kiku, and

Ochoa (2019), in which rising temperatures influence asset prices by increasing the likelihood of

future climate-driven natural disasters that lower economic growth.4 Because of investors’ concerns

about the consequences of temperature increases for future growth, climate risk is reflected in

current asset prices even though the impact of climate change in historical data is limited.5 By

imposing a structure on the relation between temperature and returns, the LRR-T model provides

prior information about the impact of climate change on future return dynamics.

Our Bayesian approach to incorporating climate risk into portfolio choice has several advantages.

First, it allows for the accommodation of various views about the impact of climate change on

return dynamics. We consider four different investor types. The dogmatic investor is convinced

that climate change affects returns in the way implied by the temperature long-run risks model and

assigns full weight to the model-based prior belief. The agnostic investor has no prior views about

the effect of temperature change on future returns and lets the data speak by giving full weight

to the return dynamics implied by the data. The Bayesian investor has faith in her prior beliefs

derived from economic theory, but is aware that these beliefs may be inaccurate and updates them

based on observed data. In our implementation, she assigns equal weights to the LRR-T prior and

the data. For comparison, we also consider a Bayesian investor with prior beliefs derived from the

original LRR model of Bansal and Yaron (2004) that does not feature climate change. We quantify

the effect of these prior beliefs on the perceived riskiness of stock markets over different holding

periods and on the optimal portfolio choice for long-term investors.

Second, the Bayesian framework allows us to assess the impact of uncertainty about the financial

impact of climate change on optimal portfolio choice. We explicitly incorporate parameter uncer-

4Colacito, Hoffmann, and Phan (2019) show that rising temperatures can reduce U.S. economic growth by up to
one-third over the next century. Dell, Jones, and Olken (2012) find that a temperature increase of 1 degree Celsius in
a given year reduces economic growth in poor countries by 1.3 percentage points on average. Dell, Jones, and Olken
(2014) provide an overview of work on the economic impact of temperature change.

5The LRR-T model captures the effect of physical climate risk on economic growth and asset prices, i.e., the
systematic risk resulting from more frequent extreme weather events due to climate change. Investment portfolios
can also be exposed to transition risks that arise when moving towards a low-carbon economy. Temperature change
can affect these transition risks by increasing the likelihood of changes in government policies that increase a company’s
cost of doing business or decrease its asset values, such as the introduction of a carbon tax or the risk of stranded
assets when known fossil fuel reserves cannot be burned. Although these transition risks are not explicitly captured
by the LRR-T model, they are incorporated in our analysis to the extent that they are reflected in past return data.
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tainty into the portfolio optimization by integrating over the posterior distribution of parameters in

the return-forecasting model to form a predictive distribution for returns. In contrast, traditional

frequentist methods treat the point estimates of the model parameters as known, thereby com-

pletely ignoring estimation risk. To quantify the effect of parameter uncertainty, we compare the

portfolios formed based on the predictive distributions with and without parameter uncertainty.

Our main results are as follows. First, we show that Bayesian investors with beliefs formed based

on the temperature long-run risks model perceive stocks to be much riskier over longer horizons

than investors with uninformative beliefs or investors with prior beliefs based on the original LRR

model that does not incorporate climate change. At a horizon of 10 years (25 years), the LRR-T

investors perceive the annualized variance to be 1.1 (1.4) times the one-year variance. For these

investors stocks therefore appear more volatile in the long run than in the short run. In contrast,

investors with uninformative priors or LRR priors perceive the annualized variance to be 0.50 or 0.75

times the one-year variance at a 25-year horizon, respectively, so for these investors stocks appear

safer in the long run. Investors with LRR-T priors consider stocks to be riskier over long holding

periods because climate change increases estimation risk and uncertainty about future returns and

weakens their beliefs in mean reversion. Intuitively, because shocks to temperature are persistent

in the LRR-T model, climate-induced disasters tend to occur in clusters during high-temperature

periods. The model therefore predicts that disasters are likely followed by other disasters, which

implies that negative shocks to consumption and dividends are more likely to be followed by further

negative shocks than by positive shocks, thereby reducing mean reversion in returns.

Second, we find that investors with LRR-T beliefs predict higher equity risk premia at all

horizons than investors with LRR beliefs or investors with uninformative priors about the VAR

parameters. The higher equity risk premium is mainly due to lower risk-free returns. In particular,

because in the LRR-T model disasters have a long-lasting effect on future economic growth, agents

increase their precautionary savings and have higher demand for the risk-free asset, which lowers its

return. Because the risk-free rate is persistent and temperature is expected to keep increasing in the

future, LRR-T investors predict decreasing risk-free returns over the horizon. In contrast, investors

who base their forecasts purely on historical data expect risk-free rates to increase over time from
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their current low levels to their historical average. LRR-T investors further predict that market

returns decrease with the horizon because rising temperatures increase the likelihood of disasters

that depress stock markets. However, because the decrease in market returns is more than offset

by the decrease in risk-free returns, the market risk premium increases with the horizon.

Third, we show that incorporating prior information about the impact of climate change on

asset prices has a significant impact on the optimal portfolio choice of long-horizon buy-and-hold

investors who allocate wealth between the market portfolio of stocks and the risk-free asset. Because

the higher equity premium does not fully offset the perceived increase in long-horizon equity risk,

investors with LRR-T beliefs allocate much less capital to equities at long horizons than investors

with no prior views on the impact of climate change. For a horizon of 25 years, the equity allocation

of LRR-T investors is 10 percentage points lower than that of the other investors. We further find

that for all investor types, the optimal allocation to stocks starts to decrease for horizons longer

than 10 years due to increased parameter uncertainty, corroborating the conclusion of previous

work that it is important to account for parameter uncertainty when forming optimal portfolios.6

Our work adds to the growing literature that studies how climate change affects asset prices.7

Existing work shows that asset prices are affected by carbon emissions (Bolton and Kacperczyk

(2021, 2022), Ilhan, Sautner, and Vilkov (2021)), temperature increases (Balvers, Du, and Zhao

(2017), Barnett (2021), Addoum, Ng, and Ortiz-Bobea (2020), Kumar, Xin, and Zhang (2019)),

drought periods (Hong, Li, and Xu (2019)), and broader climate-related disasters (Correa, He,

Herpfer, and Lel (2021), Huynh and Xia (2021)). Whereas these papers focus on the consequences

of climate change for short-term asset returns, we study its implications for long-term returns.

Our paper also contributes to the literature on the term structure of equity risk and its im-

plications for optimal portfolio choice. Barberis (2000) finds that equity risk decreases with the

horizon in the presence of mean reversion in stock returns. As a result, long-term investors should

have a higher allocation to stocks than short-term investors (Campbell, Chan, and Viceira (2003),

Campbell and Viceira (2005)). However, Pastor and Stambaugh (2012) and Johannes, Korteweg,

6See, e.g., Kandel and Stambaugh (1996), Barberis (2000), Pastor and Stambaugh (2012), Johannes, Korteweg,
and Polson (2014).

7Giglio, Kelly, and Stroebel (2021) provide a recent overview of the climate finance literature.
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and Polson (2014) demonstrate that stocks become riskier over longer horizons because the effect

of mean reversion is more than offset by estimation risk and uncertainty about current and fu-

ture expected returns. Avramov, Cederburg, and Lucivjanska (2018) and Carvalho, Lopes, and

McCulloch (2018) show that the term structure of predictive variance crucially depends on the

economic model used to form prior beliefs about return dynamics. We contribute to this literature

by incorporating climate change as a new source of long-horizon risk and by studying its impact

on long-horizon portfolio choice.

The paper proceeds as follows. Section 2 introduces our approach for modeling the impact of

climate change on stock return dynamics. Section 3 explains how we elicit prior beliefs about return

dynamics from the LRR-T model. Section 4 presents the long-horizon risk and return forecasts

and the implications of climate change for optimal portfolio choice. Section 5 concludes.

2 Long-horizon return dynamics and portfolio choice

2.1 Predictive vector autoregression framework

We estimate a first-order Vector Autoregression (VAR) model to analyze the long-horizon dynamics

of equity risk and returns, as is common in the literature (e.g., Barberis (2000) and Campbell,

Chan, and Viceira (2003)). To capture climate risk, we augment the model with the temperature

anomaly, defined as the deviation of the temperature in a specific period from the long-term average

temperature calculated over a base period. The VAR structure therefore incorporates information

about the impact of temperature on future stock returns. Specifically, the VAR model is given by



ri,t+1

pt+1 − dt+1

rf,t+1

Tt+1


= a+B


pt − dt

rf,t

Tt

+ εt+1, εt+1 ∼ N(0,Σ), (1)

where ri,t+1 is the log return on the market portfolio of stocks, pt+1−dt+1 is the log price-dividend

ratio of the market portfolio, rf,t+1 is the risk-free rate, and Tt+1 is the temperature anomaly.
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The first equation in the VAR system models expected stock market returns as a function of the

predictor or state variables. The other equations specify the dynamics of the predictor variables.

The price-dividend ratio is commonly used as a return predictor in prior work (e.g., Fama and

French (1988), Campbell and Shiller (1988)). The inclusion of the price-dividend ratio and the

risk-free rate in the VAR is also motivated by the temperature long-run risks (LRR-T) model

discussed in Section 3, which implies that both variables are directly related to expected stock

market returns. The LRR-T model also predicts that the temperature anomaly is a useful state

variable for predicting future returns.

2.2 Predictive VAR estimation

We estimate the predictive VAR in Equation (1) using Bayesian methods that incorporate prior

information about the VAR parameters. Most important for our purposes, the Bayesian approach

allows for the accommodation of different views about the impact of climate change on the dynamics

of asset returns and state variables. In the paper, we consider four types of investors with different

prior beliefs about the VAR parameters. Table 1 summarizes the different investor types.

The first investor is the agnostic investor who has no prior views about the relation between

the predictors and future asset returns and assigns full weight to the return dynamics implied by

the historical data. For this investor we specify an uninformative prior for the VAR parameters

and estimate the VAR following the standard approach of Barberis (2000).

The second investor type is the dogmatic investor who forms beliefs about the VAR parameters

based on the implications of an asset pricing model. In our implementation, investors elicit prior

beliefs about the joint dynamics of returns and predictor variables from the temperature long-

run risks (LRR-T) model. The dogmatic investor does not use any information embedded in the

historical data and therefore gives full weight to the dynamics implied by the model-based prior.

Because the LRR-T model does not yield a closed-form expression for the VAR parameters, we

implement the procedure of Del Negro and Schorfheide (2004) and Avramov, Cederburg, and Lu-

civjanska (2018) to construct the model-based prior distributions for the VAR parameters. We first

simulate quarterly stock returns, price-dividend ratios, risk-free rates, and temperature anomalies
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from the LRR-T model. Conceptually, we form the model-based prior by estimating the VAR using

the simulated data. Specifically, for each variable we simulate 250,000 time series of 292 quarters

to match the length of our historical sample (1947Q1-2019Q4). We then estimate the population

moments of the variables in the VAR model by calculating the averages of the sample moments

across the 250,000 simulations. We use these population moments to construct the model-based

prior distribution for the VAR parameters. Intuitively, the dogmatic investor forms the model-

based prior based on a pseudosample of data from the LRR-T model that has the same size as the

historical data. Following Avramov, Cederburg, and Lucivjanska (2018), we control the precision of

the prior belief by scaling the population moments to match the length of our sample period. The

investor with the model-based prior therefore allows for potential misspecification of the LRR-T

model, such that ex ante she does not know the parameters of the VAR model with certainty.

The third investor we consider is the Bayesian LRR-T investor who combines information

from the LRR-T based prior and historical data to make inferences about long-horizon risk and

return. This investor essentially shrinks the VAR parameters estimated using historical data to the

VAR parameters implied by the LRR-T model. By scaling the population moments in the prior

distribution, we let the investor assign equal weight to the prior and the historical data. Further

details about the VAR estimation procedure are provided in Section A.3 of the Online Appendix.

The fourth investor type is the Bayesian LRR investor who derives prior beliefs about the VAR

parameters from the LRR model of Bansal and Yaron (2004) that does not incorporate climate

risk and updates these beliefs upon observing the historical data. This investor completely ignores

the impact of climate change on return dynamics and therefore does not include the temperature

anomaly as a predictor in the VAR in Equation (1). The Bayesian investor with LRR beliefs forms

the benchmark for the Bayesian investor with LRR-T beliefs. By comparing the results for these

two investor types we can examine the effect of accounting for temperature change on inferences

about long-horizon return dynamics and on the optimal portfolio choice of long-term investors.

Apart from having different beliefs about the parameters of the VAR model, the four investors

also differ in terms of the predictor values they use for making out-of-sample forecasts at the end of

the sample period. We allow for these differences to ensure that the predictor values used by each
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investor are consistent with her views about the relative informativeness of the sample data and

the model-based prior. The agnostic investor constructs forecasts based on the mean values of the

price-dividend ratio (p/d) and risk-free rate (rf ) observed over the last five years of the historical

sample. We use the five-year average instead of the end-of-sample value to smooth out short-term

fluctuations in the predictors that are uninformative for long-horizon dynamics. The dogmatic

investor makes forecasts based on the mean value of p/d and rf computed over the last five years

of data simulated from the LRR-T model.8 The Bayesian LRR(-T) investor forms forecasts based

on the simple average of the five-year mean of p/d and rf implied by the LRR(-T) model and their

five-year sample mean. All investors except for the Bayesian LRR investor generate forecasts based

on the average temperature anomaly observed over the last five years in the sample and use the

exogenous process described in the next section to project future temperature changes.

[Table 1 about here.]

2.3 Climate change scenario

The standard VAR framework is useful for modeling the dynamics of asset returns and financial

state variables. However, it is less suitable for modeling climate change because the state variables

included in the VAR have no direct theoretical link to future temperature. Figure 1 illustrates this

point by plotting the temperature anomaly forecasts implied by the VAR models corresponding

to each investor type. These projected temperature paths are not in line with climate change

scenarios constructed by the IPCC (2021). For example, the intermediate climate change scenario

of the IPCC (SSP2-4.5) predicts global warming of 2 degrees Celsius for the mid-term period 2041-

2060 that corresponds to the end of our 25-year forecast horizon. In fact, the two VAR models

estimated using historical data predict the temperature anomaly to decrease over the next 25 years.

The LRR-T model does project rising temperatures but the magnitude of the increase is smaller

than in most climate change scenarios deemed plausible by the IPCC and agencies such as NASA.9

We therefore disregard the temperature forecasts implied by the VARs and specify an exogenous

8As an alternative, we also considered forecasts based on the population means of p/d and rf computed from the
250,000 simulations of the LRR-T model. This yields similar conclusions.

9See, e.g., the climate projections of the NASA Ames Research Center at https://www.nasa.gov/nex/gddp.
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temperature process that is consistent with the intermediate climate change scenario of the IPCC.

Using the same temperature projection for all investor types also ensures that differences in results

across investors are purely driven by their different views about the impact of climate change on

future returns and not by differences in temperature forecasts. We thus assume that all investors

know the true parameters of the process that governs temperature change and do not disagree

about the existence of climate change, but have different beliefs about its economic impact.10

We model the future temperature anomaly using the following autoregressive process:

Tt+1 = γ + ρTt + ηt+1, ηt+1 ∼ N(0, σ2η), (2)

with ρ set equal to the persistence of the temperature process in the LRR-T model (0.9971) and

γ chosen such that the temperature anomaly at the end of our forecast horizon (k=100 quarters)

is equal to 2 degrees.11 We set σ2η equal to 0.001 to match the very likely (5 - 95%) range of the

temperature anomaly in the intermediate scenario defined by the IPCC for the mid-term period

2041-2060.12 We simulate 250,000 future temperature anomaly paths based on Equation (2). Figure

1 plots the mean and the 5% and 95% percentile values of these simulated trajectories.

[Figure 1 about here.]

2.4 Long-horizon risk and return

We draw the parameters of the predictive VAR in Equation (1) from their posterior VAR distribu-

tion in Appendix A.3. We compute the predictive variance of returns conditional on each of these

draws of the VAR parameters and the observations of the state variables at time t. The predictive

variance for the k-period return from time N to time N + k can be decomposed as:

Var(ri,N,N+k | DN ) = E[Var(ri,N,N+k | Θ, DN |DN ] + Var[E(ri,N,N+k | Θ, DN |DN ], (3)

10Our framework can be generalized to account for uncertainty about the parameters of the temperature process.
We do not incorporate this type of parameter uncertainty because our goal is to study the long-horizon implications
of different beliefs about the economic impact of climate change rather than the magnitude of this change.

11In particular, we specify γ = (TN+100 − ρ100T̄N−19,N ) × (1 − ρ)/(1 − ρ100), with TN+100 set equal to 2 and
T̄N−19,N equal to 1.18, which is the average temperature anomaly over the last five years (20 quarters) in our sample.

12The IPCC (2021) reports a best estimate of 2 degrees Celsius with a very likely range of 1.6 to 2.5 degrees.
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where ri,N,N+k = ri,N+1 + · · · + ri,N+k is the cumulative log return on asset i over horizon k, Θ

denotes the set of parameters in the VAR model in Equation (1) and DN is the data observable

at time N . The first term is the expectation of the conditional variance of k-period returns. The

second term is the variance of the conditional expected k-period return implied by the VAR, which

accounts for uncertainty about the VAR parameters. This term captures the notion that investors

perceive returns to be riskier because they do not know the true values of the VAR parameters.

Avramov, Cederburg, and Lucivjanska (2018) demonstrate that the conditional variance of

long-horizon asset returns in the predictive VAR framework can be written as:

Var(ri,N,N+k | DN )

= E[kσ2ri | DN ]︸ ︷︷ ︸
i.i.d. uncertainty

+E

k−1∑
j=1

2bri(I −Bx)−1(I −Bj
x)Σxri | DN


︸ ︷︷ ︸

mean reversion

+ E

k−1∑
j=1

(bri(I −Bx)−1(I −Bj
x))Σx(bri(I −Bx)−1(I −Bj

x))′ | DN


︸ ︷︷ ︸

uncertainty about future expected returns

+ Var
[
kari + bri(I −Bx)−1

(
(kI − (I −Bx)−1(I −Bk

x))ax + (I −Bk
x)x

(l)
N

)
| DN

]
︸ ︷︷ ︸

estimation risk

,

(4)

where x
(l)
N corresponds to the predictor values used by investor type l for constructing out-of-sample

forecasts at time N , as described in Section 2.2. The elements of the set of VAR parameters a, B,

and Σ in Equation (1) are defined as follows:

a =

[
ari a

′
x

]′
, ax =

[
apd arf aT

]′
,

B =

bri
Bx

 , bri =

[
bri,pd bri,rf bri,T

]
, Bx =


bpd,pd bpd,rf bpd,T

brf ,pd brf ,rf brf ,T

bT,pd bT,rf bT,T

 ,
(5)
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and

Σ =

σ2ri Σ′xri

Σxri Σx

 , Σxri =


σri,pd

σri,rf

σri,T

 , Σx =


σ2pd σpd,rf σpd,T

σrf ,pd σ
2
rf
σ′rf ,T

σT,pd σT,rf σ
2
T

 . (6)

The conditional variance in Equation (4) consists of four components.13 The first term captures

the uncertainty from i.i.d. shocks and contributes the same variance per period at all investment

horizons, i.e., the variance of the cumulative k-period return increase linearly with k. The second

term reflects mean reversion in returns that arises when a negative shock to returns is offset by

positive shocks to expected returns and vice versa, thereby reducing long-horizon variance. The

third term reflects the uncertainty about future expected returns that contributes positively to

predictive variance and increases with the horizon k. This component is due to time variation in

conditional expected returns and exists even if investors would know the model parameters.14

The fourth and last term can be interpreted as estimation risk and reflects the fact that investors

do not know the values of the parameters governing the joint dynamics of returns and predictors.

Estimation risk contributes positively to the predictive variance and its impact increases with the

horizon. The Bayesian framework explicitly accounts for the effect of parameter uncertainty on

predictive variance by integrating over the posterior distribution of parameters in the VAR model

to form a predictive distribution for returns. In contrast, in traditional frequentist methods, the

point estimates of the model parameters are treated as known, thereby ignoring estimation risk.

As pointed out by Pastor and Stambaugh (2012), parameter uncertainty plays a role in all four

components in Equation (4). The first three terms are expectations of quantities that are random

due to uncertainty about the values of the underlying VAR parameters.15 The last term only

13The sum of the first three terms on the right-hand side of Equation (4) corresponds to E[Var(ri,N,N+k |
Θ, DN |DN ] in Equation (3) and the fourth term corresponds to Var[E(ri,N,N+k | Θ, DN |DN ] in that equation.

14As noted by Pastor and Stambaugh (2012) and Avramov, Cederburg, and Lucivjanska (2018), mean reversion
requires time variation in expected returns. The negative effect of mean reversion on long-horizon predictive variance
is therefore at least partially offset by the positive effect of uncertainty about future expected returns.

15In particular, each term is the expectation of a function of the parameters. When the posterior distribution of
these functions is skewed, the posterior mean can be significantly affected by less likely extreme parameter values.
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depends on parameter uncertainty and would be zero if investors knew the true parameters.16

We study the changes to the variance over the horizon by analyzing the variance ratio VRk,i =

Var(ri,N,N+k|DN )
kVar(ri,N,N+1|DN ) and its underlying components.17

We also analyze the long-horizon returns implied by the VAR by sampling returns on the risky

asset and the risk-free asset from the predictive distribution. We simulate 250,000 future return

paths of length k conditional on the draws of the VAR parameters and the state variables observable

at time t and calculate predictive returns as the simple average of the simulated return paths.

2.5 Optimal portfolio choice

We construct optimal portfolios for long-only buy-and-hold investors. The investment universe

consists of the market portfolio of stocks and the risk-free asset. In contrast to Barberis (2000) and

Pastor and Stambaugh (2012) who assume that the real return on the riskless asset is constant and

known to the investor, we explicitly account for reinvestment risk and uncertainty about the future

risk-free rate. Because of this roll-over risk, T-bills become increasingly risky when the investment

horizon grows. By accounting for time variation in the real risk-free rate we also capture horizon

effects in correlations between the risk-free asset and the risky asset that can have a substantial

impact on the optimal asset allocation of long-term investors (see, e.g., Campbell and Viceira (2005)

and Hoevenaars, Molenaar, Schotman, and Steenkamp (2014)).

We construct optimal portfolios for various investment horizons k by maximizing expected

utility with respect to the predictive distribution of future returns. Formally, at time N the

investor maximizes expected utility over terminal wealth k periods in the future conditional on the

data observable up to time N :

max
wN

EN [U(WN+k)|DN ], (7)

where WN+k is the end-of-period wealth given by WN+k = w′NRN,N+k, with wN the vector of

optimal portfolio weights and RN,N+k the vector of cumulative gross returns.

16Pastor and Stambaugh (2012) consider an additional source of long-horizon variance that captures uncertainty
about the current value of expected returns when predictors are imperfect. We adopt the Bayesian framework of
Avramov, Cederburg, and Lucivjanska (2018) that does not incorporate this additional uncertainty component.

17We scale each of these components by kVar(ri,N,N+1 | DN ) to determine their contribution to the variance ratio.
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We assume that investors have power utility of the form18

U(WN+k) =
W 1−A
N+k

1−A
. (8)

We set the risk aversion parameter A equal to 5. We use the numerical approach described in Online

Appendix B.1 to compute the optimal weights for investment horizon k, which ranges from 1 to

100 quarters. In short, we use a grid search over possible portfolio weights to find the weights that

yield the highest average utility over 250,000 return paths of length k sampled from the predictive

distribution of returns.

3 Incorporating model-based prior information

3.1 Temperature long-run risks model

Theoretical beliefs about our VAR parameters are based on an adjusted version of the LRR-T

model of Bansal, Kiku, and Ochoa (2019). The LRR-T model imposes a structure on the relation

between the temperature anomaly and financial market variables such as stock market returns and

price-dividend ratios. The representative investor with Epstein and Zin (1989) recursive preferences

optimizes lifetime utility

Ut =

[
(1− δ)C

1−γ
θ

t + δ(Et[U
1−γ
t+1 ])

1
θ

] θ
1−γ

, (9)

with Ct aggregate consumption at time t, δ ∈ (0, 1) the investor time preference, γ the coefficient

of relative risk aversion, θ = 1−γ
1− 1

ψ

, and ψ the elasticity of intertemporal substitution (EIS). The log

of aggregate consumption growth (∆ct+1 = log(Ct+1/Ct)) and the log dividend growth of portfolio

18Power (CRRA) utility is commonly assumed in previous work, e.g., Balduzzi and Lynch (1999), Barberis (2000),
Jurek and Viceira (2011), Pastor and Stambaugh (2012), Diris, Palm, and Schotman (2014), Hoevenaars, Molenaar,
Schotman, and Steenkamp (2014), Johannes, Korteweg, and Polson (2014), Carvalho, Lopes, and McCulloch (2018).
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i (∆dt+1,i = log(Dt+1,i/Dt,i)) follow

∆ct+1 = µc + σtηt+1 +Xt+1,

∆dt+1,i = µd + πdσtηt+1 + φiXt+1 + ϕdσtut+1,

σ2t+1 = σ̄2 + ν(σ2t − σ̄2) + σwwt+1,

ηt+1, ut+1, wt+1 ∼ i.i.d. N(0, 1),

(10)

with mutually independent shocks ηt+1, ut+1, and wt+1 scaled by time-varying volatility σt. Xt+1 is

the adverse economic impact of temperature-driven disasters on consumption and dividend growth,

based on a disaster process Ñt with Poisson distributed increments as

Xt+1 = ρXt + d∆Ñt+1,

∆Ñt+1 ∼ Poisson(λt = ∆t(λ0 + λ1Tt)),

(11)

where ρ < 1 is the persistence of economic disaster impact, d < 0 is the initial disaster-related

growth shock to consumption and dividends, and Tt is the temperature anomaly, which is driven

by the atmospheric carbon concentration εt:

Tt+1 = χεt+1,

εt+1 = νεεt + µε + Θ(µc + σtηt+1) + σζζt+1,

ζt+1 ∼ i.i.d. N(0, 1).

(12)

This structure allows for a feedback loop between consumption growth and the atmospheric carbon

concentration, by including µc and ηt+1 in the process for the latter. We assume that the log of the

wealth-consumption ratio zt and the log of the price-dividend ratio of portfolio i, zt,i, are given as

zt(,i) = A0(,i) +A1(,i)Tt +A2(,i)Xt +A3(,i)σ
2
t . (13)

The analytical solution for the price-dividend and wealth-consumption ratios, using the Campbell

and Shiller (1988) decomposition, is presented in Appendix A.1. We discuss the adjustments made
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to the LRR-T model of Bansal, Kiku, and Ochoa (2019) in Appendix A.2.

3.2 Data

Market returns, dividend growth, and price-dividend ratios are from the Irrational Exuberance

dataset available on Robert Shiller’s website.19 As a proxy for market returns we use the monthly

real log returns including dividends on the S&P 500 index. Dividend growth is the log difference

of the monthly real dividends on the index. The price-dividend ratio is the log difference between

the S&P 500’s price and the monthly dividend payment on the index.

Monthly ex-ante real risk-free returns are constructed following Beeler and Campbell (2012).

We use the seasonally unadjusted consumer price index (CPI) from the Bureau of Labor Statistics

to construct quarterly and yearly inflation as the log difference between the CPI levels at the end

of the current period and the end of the previous period. To construct ex post real risk-free yields

we subtract the quarterly log inflation from the log CRSP Treasuries three month risk-free yields.

Ex ante risk-free rates are the predicted value from the regression of ex post real risk-free yields on

an intercept, nominal risk-free yields and the annual log inflation divided by four.

We obtain the U.S. temperature anomaly from the nClimDiv dataset of the National Oceanic

and Atmospheric Administration (NOAA).20 The monthly temperature anomaly is defined as the

temperature in a given month minus the average temperature in that same month over the base

period 1901-1946. This base period is chosen to end just before our sample to avoid any look-

ahead bias. We convert the temperature anomaly to degrees Celsius as in Bansal, Kiku, and Ochoa

(2019) and compute the quarterly anomaly as the average of the monthly anomalies in each quarter.

Consumption data is obtained from the National Income and Product Accounts (NIPA). Quarterly

per capita real consumption growth is the seasonally-adjusted aggregate nominal consumption

expenditures on nondurables and services (NIPA Table 2.3.5), adjusted with the price deflator

series (NIPA Table 2.3.4) and divided by population size (NIPA Table 2.1). Consumption growth

is quarterly because monthly consumption data is unavailable for the early years of our sample.

All other variables are monthly and time-aggregated to a quarterly frequency using the approach

19http://www.econ.yale.edu/~shiller/data.htm.
20https://www.ncdc.noaa.gov/cag/national/time-series.
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of Bansal, Kiku, and Yaron (2016).

The sample period is 1947-2019. This starting date follows Beeler and Campbell (2012) and

Barnett (2021) and balances the need for a longer sample to make more accurate long-term return

forecasts with the fact that data from periods preceding the general awareness of climate change is

likely uninformative about the impact of climate change on long-horizon return dynamics.

3.3 Model calibrations

Table 2 reports parameter values from our calibration of the LRR-T model. This calibration

is chosen to match the first and second moments of consumption growth, dividend growth, the

price-dividend ratio, the market return, and the risk-free rate over our sample period 1947-2019.

In this calibration, the temperature anomaly is zero in expectation at the start of the simulated

sample, with a long-term temperature expectation that is one degree Celsius higher. This one-

degree temperature increase is in line with the smoothed temperature increase reported by the

NOAA, which rises from 0.1 over the period 1943-1947 to 1.18 over the period 2015-2019.

[Table 2 about here.]

The first and second moments of observed consumption growth, dividend growth, price-dividend

ratios, and returns in the data are compared with the implications from the LRR-T model calibra-

tions in Table 3. As a benchmark we also report the moments implied by the LRR model of Bansal

and Yaron (2004) and Bansal, Kiku, and Yaron (2012) that does not feature climate risk.21 The

moments from the LRR(-T) models are the medians from 250,000 simulations, each consisting of

936 monthly observations to match the length of our historical sample 1947-2019 after a burn-in

period of 60 months. The monthly data is time-aggregated to quarterly values. The calibrated

LRR-T model fits the data well in most aspects, similar to the original LRR model. There are two

moments for which the model does not match the data.

First, as is commonly observed with LRR models (e.g., Beeler and Campbell (2012)), the

implied price-dividend ratio level and variance is too low. For example, Bansal, Kiku, and Yaron

21We recalibrate some parameters in the Bansal, Kiku, and Yaron (2012) configuration to better match the
observed data moments in our sample. Specifically, we set ρ = 0.981, µd = 0.0021, φ = 2.0, π = 2.0, and ϕ = 5.0.
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(2012) report expected price-dividend ratios 9% below the data estimate in their LRR population

moments, comparable to our results. Second, the expected temperature anomaly is higher in the

LRR-T simulations than observed in our sample. This is driven by the concave increase in the

LRR-T autoregressive structure for the temperature level, whereas historical temperature increases

are more linear. Therefore, the temperature anomaly in the early years of our LRR-T simulations

is higher than in the corresponding decades in the data.

[Table 3 about here.]

3.4 Model implied risk premia

With the calibrations for the LRR(-T) models, the theoretical market risk premium for the LRR

and LRR-T models can be decomposed. The market risk premium in the LRR-T model equals

lnEt[Rm,t+1]− rf,t = −Covt(mt+1 − Et[mt+1], rm,t+1 − Et[rm,t+1])

= ληβm,ησ
2
t︸ ︷︷ ︸

growth premium

+ λζβm,ζσ
2
ζ︸ ︷︷ ︸

temp premium

+ λwβm,wσ
2
w︸ ︷︷ ︸

volatility premium

+λXβm,X(λ0∆t+ λ1∆tTt)︸ ︷︷ ︸
disaster premium

,

(14)

with the derivation and analytical solutions for lambdas and betas given in Appendix A.1.

There are four components of the market risk premium. The first term, related to shocks ηt,

is the growth premium, as it is directly related to shock to consumption growth. The second

component is the temperature premium, related to the uncertainty in the temperature process that

impacts the future expected disaster-occurrence. Note that this term is related to the uncertainty in

the temperature process, not to the actual temperature level. Therefore, even when the temperature

anomaly is forecasted to decrease, this premium will remain stable as a reward for the risk of future

changes in the number of expected disasters. Third, we have a volatility risk premium that affects

the time-varying volatility of shocks to consumption growth. Finally, the last component is the

disaster premium, which is based on the variance of the current disaster process, that is in turn a

function of the temperature anomaly. Because of this final component, higher temperature levels

increase the market risk premium directly.
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Comparing the LRR and LRR-T risk premia, we see a similar structure, but the focus clearly

changes to a climate related risk premium in the latter model. In the LRR model, the risk pre-

mium has three components: short-run risk, long-term growth risk, and volatility risk. The first

component has the same structure in the LRR and LRR-T models, and corresponds to the growth

premium discussed above. The long-term growth risk is related to the exposure to shocks in the

persistent component of the LRR model, and as such comparable with the disaster premium in the

LRR-T model. Finally, volatility risk impacts the risk premium in two ways in the normal LRR

model: by introducing (short-term) noise in the direct shock to consumption growth η, and by

affecting the size of the shock to the persistent component. The first aspects of the volatility risk

corresponds to the same component of the LRR-T risk premium. The second aspect is comparable

to the LRR-T temperature premium, which is based on the noise in the temperature anomaly, a

measure for the future expected disaster shock impact.

Based on our calibrations, we find that our LRR model implies that 17% of our risk premium

is driven by short-term risk, 32% by long-term growth risk, and 51% by long-run volatility risk.

In the LRR-T model, 8% of the risk premium is driven by the growth premium, 63% by the

temperature premium and 29% by the disaster premium. The volatility risk premium has negligible

impact on the risk premium, since it only adds noise to the short-term consumption growth shocks.

However, it is useful to have time-varying volatility in the model to better match the second

moment of the market return in our LRR-T calibration. There are two main takeaways from

this decomposition. First, the LRR-T risk premia are driven by components that are, in their

structure, similar and comparable to what the LRR model implies. Second, temperature levels

and climate-related disasters are a very important part of the financial implications of the LRR-T

model.

3.5 Model simulations

To illustrate how temperatures impact financial performance in the LRR-T model we show a single

simulation from our calibrated model in Figure 2. In this simulation we see that temperatures

increase over the sample (in line with the calibrated trend), with quite some variance in the tem-
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perature process as is observed in the historical data. In expectation, temperature anomalies start

at 0 and increase to 1, but we observe both much higher and lower temperature anomalies in the

simulation, with a coincidental low temperature anomaly at the end of our simulated sample.

With increases in temperatures, the expected occurrence of future disasters that affect future

consumption and dividend growth rates also goes up. Price-dividend ratios and risk-free rates

respond to these expected future adverse events with immediately decreases that are mostly visible

in the price-dividend ratio. Climate disasters start occurring after roughly 250 months in this

simulation, most clearly visible in the risk-free rate.22 These disasters have an immediate and

persistent impact on risk-free rates and price-dividend ratios. For risk-free rates, persistent impact

is caused by the slow response of the wealth-consumption ratio to disasters.23 In market returns,

we do not observe persistent impact of disasters, as decreasing prices keep future market returns

relatively stable. There is, however, significant transitory impact from climate disasters on market

returns, as the most negative market returns observed in our simulation are caused by disasters.

Overall, the market risk premium increases after disaster occurrence, because risk-free returns are

persistently lower while the market rebounds quickly after the initial transitory shock.

[Figure 2 about here.]

The population moments from 250,000 simulations of the baseline LRR-T model imply the

VAR structure shown in Table B1 in Online Appendix B.2. Note that in this estimation, all

coefficients are significant by construction, since we base the VAR in this table on the population

moments from the model without allowing for misspecification. First, relations between market

returns and financial state variables are as expected. Increases in price-dividend ratios decrease

expected market returns and increases in risk-free rates increase expected market returns. This

VAR structure differs from previous literature by the inclusion of the temperature anomaly as a

predictive variable. Temperature levels have a strong negative impact on next period expected

market returns. The coefficient from market returns on the temperature anomaly is economically

22In this particular simulation path, we observe disasters relatively late by coincidence. In expectation we would
observe roughly one disaster each every 100 months. Overall, there are 10 disasters in this simulation, which is what
we would expect.

23The stability of the wealth-consumption ratio, especially in a long-run risks setting, is also documented by Lustig,
Van Nieuwerburgh, and Verdelhan (2013).
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large: a temperature anomaly of 1 degree Celsius implies that quarterly expected market returns

are decreased by 0.61%, or 2.4% annually. A one standard deviation shock to the temperature

anomaly decreases quarterly expected market returns by 0.51%, or 2% annually. This initial impact

on market returns is partly offset in long-horizon forecasts, because the temperature increase also

decreases price-dividend ratios, but that effect is smaller. The temperature anomaly is highly

persistent, which is implied by the LRR-T model because we calibrate a positive trend in the

temperature levels. Overall, this VAR shows that the LRR-T model indeed imposes a structure on

the impact of temperature levels on equity risk and return.

4 Empirical results

Thus far we have examined the effect of climate change on financial markets through the lens of the

LRR-T model. We now discuss how these theoretical implications affect the empirical estimates of

a Bayesian investor who combines the market portfolio with a risk-free asset.

4.1 Predictive regressions

We estimate the quarterly predictive VAR from Equation (1) on the sample from 1947Q1 to 2019Q4

for four investor types. The first three investor types are the agnostic (data-based) investor, the

dogmatist (climate risk believer) investor, and the Bayesian LRR-T investor discussed in Section

2.1. Finally, we analyze a benchmark Bayesian LRR investor that forms prior beliefs based on the

LRR model without climate change. Table 4 shows the posterior mean of 250,000 draws of the

VAR coefficients for these investor types, along with their posterior t-statistics.

In panel A of Table 4, we show the posterior VAR for the agnostic investor, based on historical

data with the temperature anomaly as a state variable. From the coefficient estimates we observe

that price-dividend ratios have negative forecasting power on market returns, while increases in

risk-free yields imply higher market returns, as expected. We observe statistically insignificant

coefficient estimates on the temperature anomaly. This could be a result of large uncertainty about

the impact of climate change on financial markets, because of parameter uncertainty or unavail-

ability of sufficient disasters in historical data. This uncertainty is one of the key reasons to take
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prior beliefs into account in a Bayesian setting, which helps estimation precision. On the other

hand, the coefficient estimates on the temperature anomaly are economically very meaningful. A

one standard deviation shock to the temperature anomaly implies a 0.74% change in the forecasted

quarterly market return, or almost 3% annually. Based on forecasts for future temperature anoma-

lies of up to two degrees Celsius, impact of temperatures on market returns would be even larger,

especially in long-horizon forecasts. Other than market returns, financials are not strongly affected

by temperatures in the data. The temperature process itself is included for completeness but not

used for forecasts, where an exogenous temperature process is used, as discussed in Section 2.3.

The opposite perspective is a dogmatist investor that bases her beliefs about the VAR model

completely on the LRR-T prior. Panel B of Table 4 reports the posterior VAR for this climate

risk believer. The VAR coefficients are almost identical to the population estimates for the VAR

parameters reported in Table B1. As before, we observe a negative loading from market returns

on the temperature anomaly. In the LRR-T model, increasing temperatures decrease the price-

dividend ratio, increasing market returns. However, this effect is offset by the realisation of large

negative returns around climate disasters, which occur more often with high temperature levels.

In our simulations, the second effect is stronger. The difference with the population estimates

are in the decreased statistical significance of the results. We introduce model misspecification in

these estimates to match the information in the prior beliefs to the historical data sample from

1947Q1 to 2019Q4, as described in Section 2.1. Because of the noise in the agnostic VAR based

on historical data, this results in large uncertainty in the VAR of the dogmatic investor as well.

However, we still observe economically meaningful negative impact from increased temperatures

on financial outcomes.

Comparing panels A and B, it is clear that historical data and economic theory have opposing

implications about the impact of climate change on financial performance, which makes it useful

to include both views in a Bayesian analysis. A key difference between the agnostic and dogmatist

investors is that the former does not show a relation between both the price-dividend ratio and

risk-free returns and the temperature anomaly, while this relation is reasonably strong for the latter.

This is driven by the impact of climate disasters on risk-free returns in the LRR-T model. In that
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model, disasters result in additional savings, decreasing risk-free returns.

Panel C of Table 4 reports the posterior VAR for the Bayesian investor that gives equal weights

to implications from historical data (panel A) and the baseline LRR-T prior (panel B). As expected,

the posterior coefficients and correlations of this VAR are generally in between the reported values

in panel A and panel B. Since panels A and B present opposite results, the Bayesian investor

has a relatively small loading on the temperature anomaly, which is visible in the small absolute

posterior coefficients. This small coefficient does have significant impact on predictive distributions

of market returns, especially for long-horizons. Small changes in the predictive VAR parameters

become increasingly important after several quarterly forecasts.

Finally, panel D of Table 4 is the benchmark Bayesian LRR investor who combines return

dynamics implied by historical data with those implied by the LRR prior. As expected, the general

structure of the VAR is very similar to Panel C, the only real difference is the fact that the

temperature anomaly is not included in the model. Therefore, comparing the forecasts from this

investor with the implications from the Bayesian LRR-T investor highlights the impact of the

temperature anomaly on our models, instead of other differences in the LRR and LRR-T models.

[Table 4 about here.]

4.2 Long-horizon risk

We now use the 250,000 draws of the VAR coefficients around their posterior mean in Table 4 to

forecast long-horizon variance of market returns. For this, we combine draws of the coefficients with

the exogenous temperature process discussed in Section 2.3 in the long-horizon variance formula

from Equation (4) to forecast variance ratios for horizons up to 100 quarters. In Figure 3, the per

period variance by horizon is given for the agnostic (data-based), dogmatic (LRR-T based), and

Bayesian LRR and LRR-T investors (combining data with model based priors).

Within a few quarters, the variance ratios quickly diverge. In the data, we find strong mean re-

version, which is also documented by, among others, Barberis (2000) and Siegel (2014). Intuitively,

current low (high) returns are offset by future high (low) returns, because of predictability in re-

turns in the data combined with negative correlation between current and future returns. Therefore,
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variance ratios quickly decrease when the horizon gets longer. As opposed to earlier work, the large

coefficient from market returns on the temperature anomaly increases the uncertainty about future

expected returns for the agnostic investor, as the future temperature level is highly uncertain. At

the longest horizon of our forecasts, the decrease in the additional mean reversion combined with

the continuously increasing uncertainty about future expected returns increases the variance ratio

again, as compared to horizons between 50 and 75 quarters. Overall, the variance ratios over the

horizon of our agnostic investor is similar to the results in Avramov, Cederburg, and Lucivjanska

(2018), but increased predictability in our setting from including the temperature anomaly in our

model increases both mean reversion and uncertainty about future expected returns.

At first sight on the overall variance ratios, the benchmark LRR Bayesian investor seems to

be close to the data-based agnostic investor. However, the underlying components driving long-

horizon variance for these two investors are very different. The key difference is that the data

implies stronger predictability from the price-dividend ratio, which increases both mean reversion

and uncertainty about future expected return compared to the Bayesian LRR investor.

The dogmatic investor with its LRR-T prior shows very high long-horizon variance ratios, with

per period market volatility predicted up to 2.75 times higher than the one-quarter ahead forecast.

There are two key drivers of the difference with the agnostic investor. First, mean reversion

is weaker. Intuitively, mean reversion decreases because current low returns caused by climate-

induced disasters are followed by future low returns caused by even more disasters. This effect is

driven by the fact that disasters in the LRR-T simulations occur in clusters, in periods with high

temperature levels. Therefore, the negative correlation between current and future returns that is

needed for mean reversion is much weaker than in the data. Second, estimation risk has increased

significantly, because the disasters in the LRR-T simulations increase the uncertainty around the

parameter estimates.

Influenced by the LRR-T prior, the LRR-T Bayesian investor has relatively high variance ratios,

monotonically increasing with the investment horizon. At the longest horizon of 100 quarters, the

variance ratio of the LRR-T Bayesian investor is twice as large as that of the benchmark LRR

Bayesian and the agnostic investors. The underlying components of the variance ratio are between
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what is implied by the data and the prior beliefs, except for the uncertainty about future expected

returns. Lower uncertainty is driven by the relatively small coefficient from market returns on

the temperature anomaly for the Bayesian investor, a logical result from the opposite signs of

corresponding coefficient for the agnostic and dogmatic investors. Even though the coefficient on

the temperature anomaly is smaller for the LRR-T Bayesian investor, the inclusion of temperatures

in the model is sufficient to increase uncertainty about future expected returns compared to the

benchmark LRR investor.

[Figure 3 about here.]

For our asset allocation decision, the riskiness of the short-term bond returns is also relevant to

consider. We assume that our short-term bond is risk-free in the sense that there is no credit risk.

However, over longer horizons, reinvestment (roll-over) risk affects investments that are risk-free

in the short run. The variance of the risk-free return relative to the risk of the market return is

presented in Figure B1 in Online Appendix B.2. For all models, risk-free returns have more variance

with longer horizons, as reinvestment risk increases with the horizon. Both the data and the LRR-T

based models imply similar relative riskiness between risk-free and market returns. The Bayesian

LRR investor forecasts less reinvestment risk for the risk-free asset. This observation aligns with

the calibration moments in Table 3, where LRR based risk-free return simulations are less volatile

than in the data and the LRR-T model.

Overall, including climate change through LRR-T prior beliefs results in higher predictive long

horizon risk for the LRR-T Bayesian investor investing the market portfolio. This effect is large,

with long-run variances up to twice as high as as the benchmark LRR Bayesian investor. Next to

market returns, the LRR-T Bayesian investor also predicts more reinvestment risk in the risk-free

asset.

4.3 Long-horizon returns

Predictive returns also differ significantly for the four different investors and by horizon. Figure

4 shows the average forecast of risk-free returns, market returns and market risk premium from
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250,000 simulated return paths. Each return path is forecasted from a draw of the VAR poste-

rior distribution for each investor type to account for parameter uncertainty, combined with the

exogenous temperature process discussed in Section 2.3.

The risk-free return forecasts are initially all very similar and close to zero, in line with the

current observed short-term T-bill rate. With forecasts over the horizon, we see opposite trends

for the agnostic and dogmatic investors. Forecasts from the data push long-term risk-free returns

towards the historical average, which is higher than the current risk-free rate levels. In the LRR-T

model, however, future temperature increases decrease the risk-free rate. This reflects the negative

impact that climate disasters have on the risk-free returns in the LRR-T simulations. Disasters

persistently affect future consumption and dividend growth and agents save to offset this, increasing

the demand for the risk-free asset, decreasing its return. Since the risk-free rate is very persistent

and temperatures keep increasing in our forecasts, the dogmatic investor predicts decreasing risk-

free returns over our horizon. We note that this decrease is not set to continue indefinitely if one

extends the horizon, since risk-free rates are not 100% persistent and climate models generally do

not forecast unbounded temperature increases. The LRR-T Bayesian investor forecasts risk-free

returns in between the data and the LRR-T model. Without temperature increases in the model,

the benchmark LRR Bayesian investor forecasts risk-free returns similar to the agnostic investor.

The predictive market returns reported in Figure 4 are very similar for the agnostic and LRR

Bayesian investors, both increasing by horizon. The agnostic investor has positive VAR coefficients

from market returns on the temperature anomaly and the risk-free returns, as visible in panel A

of Table 4. The increase in predictive market returns over the horizon is, therefore, driven by

the increase in predictive risk-free returns and the increasing temperature levels in the exogenous

temperature process. For the LRR Bayesian investor, temperatures are not included in the model.

However, a similar horizon pattern for predictive market returns is driven by a larger loading on

the increasing risk-free returns, as visible in panel D of the same table.

The most surprising of the return forecasts is the quick increase in the short-term market returns

expected by the dogmatic investor. This is a direct result of the implementation of an exogenous

temperature process, where the starting value of our out-of-sample temperature anomaly is the
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recently observed level in the data. This temperature level is higher than in the LRR-T simulated

data used by the dogmatic investor, which is why there is a jump in the temperature levels from

the in-sample estimation to the out-of-sample forecasts. This initial jump in our forecasts quickly

decreases the price-dividend ratio, resulting in a sharp increase in expected market returns. We

do not feel that this is a realistic forecast and, therefore, do not conclude anything from the first

ten quarters of the LRR-T prior forecasts.24 At longer horizons, increasing temperatures combined

with decreasing risk-free returns drive expected market returns down. This corresponds well to

the observed negative disaster-related returns in the LRR-T simulations, as presented in Figure 2

above.

The market returns predicted by the LRR-T Bayesian investor are stable over the horizon, as

increased temperatures balance the negative impact from decreases in the risk-free returns. In other

words, the direct impact from the forecasted temperature increase on market returns is offset by

its indirect impact on market return through the risk-free asset.

All four models imply that the market risk premium increases with the investment horizon,

although the underlying mechanism differs. The agnostic investor forecasts increasing market

returns with the horizon, mainly driven by decreasing price-dividend ratios towards the historical

average and increasing temperatures. The LRR Bayesian benchmark investor shows similar risk

premium forecasts, at a lower level because of slightly higher risk-free returns. For the dogmatic

and LRR-T Bayesian investors, decreasing risk-free rates are an important aspect of the increasing

risk premium over the horizon. While the horizon effects for the market risk premium are similar

for all models, the risk premia are at different levels.

[Figure 4 about here.]

Finally, we discuss the correlations of the returns on the risk-free asset and the market portfolio.

Figure 5 documents that for all our investors these returns start relatively uncorrelated and increase

over the horizon. This increased correlation is mainly driven by the positive coefficient from market

24One could argue that this result implies that the exogenous temperature process should not be the same for all
our models. However, we believe that it is more important to keep future temperature processes similar to compare
the differences in the implications of climate change between the models than to make these short-term market return
forecasts more stable.
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returns on lagged risk-free returns in the VAR models of Table 4.

[Figure 5 about here.]

Overall, the LRR-T Bayesian investor predicts higher market risk premia over all investment

horizons than the agnostic and LRR Bayesian investors. This effect is driven by predictive risk-free

returns that decrease over the horizon, combined with relatively high short-term market return

predictions.

4.4 Portfolio choice

We have now documented two key results. First, the LRR-T Bayesian investor predicts significantly

higher long-horizon riskiness of the market portfolio than our benchmark LRR Bayesian investor,

because of the uncertainty in the temperature anomaly forecast and increased estimation risk.

Second, including beliefs from the LRR-T model results in higher predictive market risk premia,

because forecasted climate-related decreases in consumption growth negatively affect long-horizon

risk-free returns. Next to these key results, the LRR-T model implies relatively more reinvestment

risk and higher correlations between market and risk-free returns than in the data. These results

each have implications for portfolio choice, as we discuss in this section.

We analyze a long-only investor that can invest in the market portfolio and a risk-free asset

with reinvestment risk. The top panel of Figure 6 shows the optimal allocation to equities for

the agnostic, dogmatic, and Bayesian investors. The optimal weight in equities increases quickly

with the investment horizon for the agnostic investor, because there is very strong mean reversion

in the related predictive VAR. At the longest horizon market returns become riskier again and

predictive risk-free returns become higher, which brings the optimal weight to the market portfolios

down. The dogmatic investor initially sees a quick increase in the optimal allocation to the market

portfolio driven by the sharp increase in the market risk premium, a consequence of our exogenous

temperature process. Over the horizon, the dogmatic investor keeps allocating less and less to the

market because the perceived long-horizon risk of the market portfolio increases quickly.

As expected, the allocation to the market portfolio of the LRR-T Bayesian investor is in between

the allocations of the agnostic and dogmatic investors. Comparing the LRR-T and LRR Bayesian
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investors, we find that the inclusion of the temperature anomaly in the model has economically

meaningful impact on optimal portfolios, which changes over the horizon. The investor with LRR-T

prior beliefs has higher weights to equities than the LRR Bayesian investor for horizons of up to

roughly 25 quarters, with the opposite result for longer investments horizons. This is mainly driven

by the two key results discussed above: the inclusion of climate change in the model implies higher

market risk premia for all horizons, but risk increases considerably over the horizon. Therefore,

the allocation is initially higher, but becomes lower when the increased risk outweighs the higher

market risk premium. Especially in the long run, these differences are economically meaningful:

the optimal weights to equities are roughly 20% lower for the LRR-T Bayesian investor that invests

for 100 quarters, compared to the benchmark LRR Bayesian investor.

The riskiness of the market portfolio and the risk-free asset are affected very differently by

parameter uncertainty. In Hoevenaars, Molenaar, Schotman, and Steenkamp (2014), parameter

uncertainty does not have significant impact on portfolio choice, but with the inclusion of the

temperature anomaly in our model we find higher estimation risk for equities. Reinvestment risk

of risk-free returns is, on the other hand, mainly driven by uncertainty about future expected

returns, because of the loadings from risk-free returns on the temperature anomaly. Therefore, when

parameter uncertainty is accounted for, equity returns become considerably more risky, relative to

risk-free returns. The longer the investment horizon, the more important the inclusion of parameter

uncertainty becomes for our portfolio choice. In the bottom panel of Figure 6, we therefore observe

similar weights to the market portfolio for short horizons with and without parameter uncertainty,

but significantly lower allocations to equities in the long run. The differences between the allocations

of the different investors are similar to before, with the same key results driving the allocation over

the horizon.

[Figure 6 about here.]

4.5 Alternative climate change scenarios

In this section, we examine the impact of two alternative climate scenarios on the long-horizon

risk-return tradeoff and optimal portfolio choice. The first alternative scenario assumes that the
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temperature anomaly increases to 4 degrees Celsius at the end of the forecast horizon (100 quarters

from now), rather than to 2 degrees as assumed in the base case scenario described in Section 2.3. In

the second scenario the temperature anomaly still increases to 2 degrees, but the uncertainty about

the future temperature path is increased. In particular, we set σ2η in Equation (2) equal to 0.06

to match the historical volatility of the temperature anomaly. Recall that in the default scenario,

we set σ2η equal to 0.001 to match the uncertainty around the expected temperature anomaly in

the IPCC forecasts. In other words, in the baseline scenario the variance is chosen to match the

uncertainty around the expectation (standard error of the mean), which is much lower than the

historical volatility of the temperature anomaly that we match in the alternative scenario.

For each climate scenario, we construct the predictive variances, predictive returns, and optimal

portfolio weights for different horizons. We focus on the Bayesian LRR-T investor. Figure 7 shows

that in the scenario with the higher temperature increase, we observe a sharp increase in the per-

ceived riskiness of equity at long horizons. For an investment horizon of 100 quarters, the variance

ratio goes up from 1.39 in the base case scenario to 1.95 in this alternative scenario. The variance

decomposition shows that this increase is driven by higher estimation risk. As shown in Equation

(4), the impact of parameter uncertainty increases for larger values of the predictor variables, in-

cluding the temperature anomaly. We also find higher variance ratios in the scenario with higher

uncertainty about the future temperature anomaly. As expected, the variance decomposition shows

that this increase is due to greater uncertainty about future expected returns. In both alternative

scenarios stocks thus appear riskier to long-term investors than in the default temperature scenario,

but the increase in predictive variance is attributable to different factors.

[Figure 7 about here.]

Figure 8 shows that in the high-temperature scenario, the predictive equity risk premium is

higher than in the baseline scenario, particularly at long horizons. This pattern is consistent with

the implication of the temperature long-run risks model that higher temperatures raise the equity

premium by increasing the disaster premium (see Equation (14)). In contrast, we do not observe

higher equity premiums in the scenario with more uncertainty about future temperature paths.
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Although temperature volatility carries a positive risk premium in the LRR-T model under Epstein-

Zin preferences, Bansal, Kiku, and Ochoa (2019) point out that this premium vanishes under CRRA

utility. Because we construct optimal portfolios for investors with CRRA preferences, we do not

include temperature volatility as a return predictor in the VAR model.

[Figure 8 about here.]

Figure 9 illustrates the consequences of the changes in the term structure of predictive risk and

return for portfolio choice.25 Because in the high temperature scenario the increase in the perceived

riskiness of equity at long horizons is offset by the increase in the anticipated equity risk premium,

the optimal allocation to equity is very similar to the allocation in the base case scenario. The

optimal allocation to equity is somewhat lower in the high temperature uncertainty scenario due

to the increase in risk without a corresponding increase in risk premiums. In all three temperature

scenarios, the optimal allocation to equities decreases sharply with the investment horizon.

[Figure 9 about here.]

5 Conclusion

We propose a new approach for measuring the impact of climate change on long-term equity returns

and portfolio choice. Since past data is not very informative about the impact of climate change on

future stock returns, we estimate the parameters of the return-forecasting model using a Bayesian

approach that complements historical data with prior information about return dynamics implied

by a temperature long-run risks (LRR-T) model. The model predicts that rising temperatures affect

asset prices by increasing the likelihood of climate-driven disasters that lower economic growth. For

comparison, we also consider investors with uninformative priors who base their forecasts purely

on historical data and investors with beliefs derived from the long-run risks (LRR) model that does

not feature climate change. We study the effect of these different beliefs on the perceived riskiness

of equities over various holding periods and on the optimal portfolio choice for long-term investors.

25Figures B2 and B3 in the Online Appendix show that the alternative specifications of the temperature process
also affect the relative riskiness of the market portfolio and the risk-free asset and the predictive correlations between
the returns on both assets.
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We document three key findings. First, we show that investors with beliefs formed based on

the temperature long-run risks model perceive stocks to be much riskier over longer horizons than

investors with uninformative beliefs or investors with prior beliefs based on the original LRR model

that does not incorporate climate change. For investors with LRR-T beliefs, stocks appear more

volatility in the long run than in the short run because climate change increases estimation risk and

uncertainty about future returns and weakens their beliefs in mean reversion. In contrast, investors

with uninformative priors or LRR priors view stocks as safer in the long run.

Second, LRR-T investors predicts higher equity risk premia at all horizons than investors with

LRR beliefs or investors with uninformative priors. The higher equity risk premium is mainly

due to lower risk-free returns. In particular, because in the LRR-T model disasters have a long-

lasting effect on future economic growth, agents increase their precautionary savings and have

higher demand for the risk-free asset, which lowers its return. LRR-T investors further predict

that market returns decrease with the horizon because rising temperatures increase the likelihood

of disasters that depress stock markets. However, because the decrease in market returns is more

than offset by the decrease in risk-free returns, the market risk premium increases with the horizon.

Third, we show that including prior information about the effect of climate change on asset

prices has a significant impact on the optimal portfolio choice of long-horizon investors who allocate

wealth between the market portfolio and the risk-free asset. Because the higher equity premium

does not fully offset the perceived increase in long-horizon equity risk, investors with LRR-T beliefs

allocate much less capital to equities at long horizons than investors with no prior views on the

impact of climate change. We further find that for all investor types, the optimal allocation to

stocks starts to decrease for horizons longer than 10 years due to increased parameter uncertainty.

Overall, our results demonstrate that incorporating prior information about the impact of cli-

mate change on return dynamics can have a significant impact on the perceived riskiness of stocks

and the asset allocation of long-horizon investors. Our framework can be readily extended to ex-

amine the portfolio implications of other asset pricing models that include climate risk. Extending

the analysis to a dynamic portfolio strategy provides another fruitful avenue for future work.
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A Appendix

A.1 Solution to temperature long-run risks model

The intertemporal marginal rate of substitution (IMRS) equals

mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1)rt+1,c, (A.1)

where θ = 1−γ
1− 1

ψ

.

A.1.1 The wealth-consumption ratio

We use the Euler equation,

Et[exp(mt+1 + rt+1,c)] = 1, (A.2)

to solve the wealth-consumption ratio zt from Equation (13), filling in the IMRS from Equation

(A.1) and the Campbell-Shiller decomposition for the return on the consumption asset, rt+1,c =

κ0 + ∆ct+1 + κ1zt+1 − zt. We find

mt+1 + rt+1,c = θ log δ + θκ0 + θ(κ1 − 1)A0 + (1− γ + θκ1A1χΘ)µc + θκ1A1χµε

+ (1− γ + θκ1A1χΘ)σtηt+1 + θκ1A1χσζζt+1 + θ(κ1ν − 1)A3σ
2
t

+ θκ1(1− ν)A3σ̄
2 + θκ1A3σwwt+1 + ((1− γ)ρ+ θ(κ1ρ− 1)A2)Xt

+ (1− γ + θκ1A2)d∆Nt+1 + θ(κ1νε − 1)A1Tt.

(A.3)

With the expectation

Et[mt+1 + rt+1,c] = θ log δ + θκ0 + θ(κ1 − 1)A0 + (1− γ + θκ1A1χΘ)µc + θκ1A1χµε

+ θ(κ1ν − 1)A3σ
2
t + θκ1(1− ν)A3σ̄

2 + ((1− γ)ρ+ θ(κ1ρ− 1)A2)Xt

+ (1− γ + θκ1A2)dλ0∆t+ ((1− γ + θκ1A2)dλ1∆t+ θ(κ1νε − 1)A1)Tt

(A.4)
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and variance

Vart(mt+1 + rt+1,c) = (1− γ + θκ1A1χΘ)2σ2t + (θκ1A1χ)2σ2ζ + (θκ1A3)
2σ2w

+ (1− γ + θκ1A2)
2d2λ0∆t+ (1− γ + θκ1A2)

2d2λ1∆tTt.

(A.5)

We now go back to the Euler equation from (A.2) and take logs and use Jensen’s inequality to find

the solution to the price-consumption ratio from Equation (13):

θ(1− κ1ν)A3 = 0.5(1− γ + θκ1A1χΘ)2,

θ(1− κ1ρ)A2 = (1− γ)ρ,

θ(1− κ1νε)A1 = (1− γ + θκ1A2)d

(
1 +

(1− γ + θκ1A2)d

2

)
λ1∆t,

(1− κ1)A0 = log δ + κ0 +

(
1− 1

ψ
+ κ1A1χΘ

)
µc + κ1A1χµε

+ κ1(1− ν)A3σ̄
2 + 0.5θ((κ1A1χ)2σ2ζ + (κ1A3)

2σ2w)

+

(
1− 1

ψ
+ κ1A2

)
d

(
1 +

(1− γ + θκ1A2)d

2

)
∆tλ0.

(A.6)

A.1.2 The risk-free rate

Again, we use the Euler equation to solve the risk-free rate. We start from the IMRS of Equation

(A.1) and fill in

mt+1 = θ log δ + (θ − 1)κ0 + (θ − 1)(κ1 − 1)A0 + ((θ − 1)κ1A1χΘ− γ)µc + (θ − 1)κ1A1χµε

+ (θ − 1)κ1A3(1− ν)σ̄2 + (θ − 1)κ1A1χσζζt+1 + (θ − 1)κ1A3σwwt+1

+ ((θ − 1)κ1A1χΘ− γ)σtηt+1 + (θ − 1)(κ1ν − 1)A3σ
2
t

+ ((θ − 1)(κ1ρ− 1)A2 − γρ)Xt + ((θ − 1)κ1A2 − γ)d∆Nt+1 + (θ − 1)(κ1νε − 1)A1Tt.

(A.7)
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We then have expectation

Et[mt+1 + rf,t] = rf,t + θ log δ + (θ − 1)κ0 + (θ − 1)(κ1 − 1)A0 + ((θ − 1)κ1A1χΘ− γ)µc

+ (θ − 1)κ1A1χµε + (θ − 1)κ1A3(1− ν)σ̄2 + (θ − 1)(κ1ν − 1)A3σ
2
t

+ ((θ − 1)(κ1ρ− 1)A2 − γρ)Xt + ((θ − 1)κ1A2 − γ)dλ0∆t

+ (((θ − 1)κ1A2 − γ)dλ1∆t+ (θ − 1)(κ1νε − 1)A1)Tt,

(A.8)

and variance

Vart(mt+1 + rf,t) = ((θ − 1)κ1A1χ)2σ2ζ + ((θ − 1)κ1A3)
2σ2w + ((θ − 1)κ1A1χΘ− γ)2σ2t

+ ((θ − 1)κ1A2 − γ)2d2λ0∆t+ ((θ − 1)κ1A2 − γ)2d2λ1∆tTt.

(A.9)

With the Euler equation, logs, and Jensen’s inequality we find

0 = Et[mt+1 + rf,t] + 0.5Vart(mt+1 + rf,t)

⇔ rf,t = rf − ((θ − 1)(κ1ρ− 1)A2 − γρ)Xt

−
(

((θ − 1)κ1A2 − γ)d

(
1 +

((θ − 1)κ1A2 − γ)d

2

)
λ1∆t+ (θ − 1)(κ1νε − 1)A1

)
Tt

− ((θ − 1)(κ1ν − 1)A3 + 0.5((θ − 1)κ1A1χΘ− γ)2)σ2t ,

rf = −θ log δ + γµc − (θ − 1)(κ0 + (κ1 − 1)A0 + κ1A1χΘµc)

− (θ − 1)(κ1A1χµε + κ1A3(1− ν)σ̄2)

− 0.5[((θ − 1)κ1A1χ)2σ2ζ + ((θ − 1)κ1A3)
2σ2w]

− ((θ − 1)κ1A2 − γ)d

(
1 +

((θ − 1)κ1A2 − γ)d

2

)
∆tλ0.

(A.10)

34



A.1.3 The price-dividend ratio

We similarly solve the price-dividend ratio of portfolio i, zt,i from Equation (13). The Campbell-

Shiller decomposition for the returns of portfolio i gives us

rt+1,i = κ0,i + ∆dt+1,i + κ1,izt+1,i − zt,i

= κ0,i + µd + (κ1,i − 1)A0,i + κ1,iA1,iχµε + κ1,iA1,iχΘµc

+ κ1,iA3,i(1− ν)σ̄2 + ϕdσtut+1 + (πd + κ1,iA1,iχΘ)σtηt+1 + κ1,iA1,iχσζζt+1

+ κ1,iA3,iσwwt+1 + (κ1,iνε − 1)A1,iTt + (φiρ+ (κ1,iρ− 1)A2,i)Xt

+ (φi + κ1,iA2,i)d∆Nt+1 +A3,i(κ1,iν − 1)σ2t

(A.11)

Combining this with the IMRS from Equation (A.7) we find the expectation

Et[mt+1 + rt+1,i] = θ log δ + (θ − 1)κ0 + κ0,i + (θ − 1)(κ1 − 1)A0 + (κ1,i − 1)A0,i + µd

+ (((θ − 1)κ1A1 + κ1,iA1,i)χΘ− γ)µc + ((θ − 1)κ1A1 + κ1,iA1,i)χµε

+ ((θ − 1)κ1A3 + κ1,iA3,i)(1− ν)σ̄2

+ ((θ − 1)(κ1ν − 1)A3 + (κ1,iν − 1)A3,i)σ
2
t

+ ((θ − 1)(κ1ρ− 1)A2 + (κ1,iρ− 1)A2,i + φiρ− γρ)Xt

+ [(θ − 1)(κ1νε − 1)A1 + (κ1,iνε − 1)A1,i

+ ((θ − 1)κ1A2 + κ1,iA2,i + φi − γ)dλ1∆t]Tt

+ ((θ − 1)κ1A2 + κ1,iA2,i + φi − γ)dλ0∆t,

(A.12)

and variance

Vart(mt+1 + rt+1,i) = ((θ − 1)κ1A3 + κ1,iA3,i)
2σ2w

+ ((θ − 1)κ1A1 + κ1,iA1,i)
2χ2σ2ζ

+ ϕ2
dσ

2
t + (((θ − 1)κ1A1 + κ1,iA1,i)χΘ + πd − γ)2σ2t

+ ((θ − 1)κ1A2 + κ1,iA2,i + φi − γ)2d2λ0∆t

+ ((θ − 1)κ1A2 + κ1,iA2,i + φi − γ)2d2λ1∆tTt.

(A.13)
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Which we fill in in the Euler equation and take logs to find

0 = logEt[exp(mt+1 + rt+1,i)] = Et[(mt+1 + rt+1,i)] + 0.5Vart(mt+1 + rt+1,i)

= θ log δ + (θ − 1)κ0 + κ0,i + (θ − 1)(κ1 − 1)A0 + (κ1,i − 1)A0,i + µd

+ (((θ − 1)κ1A1 + κ1,iA1,i)χΘ− γ)µc + ((θ − 1)κ1A1 + κ1,iA1,i)χµε

+ CN (1 + 0.5CN )λ0∆t+ ((θ − 1)κ1A3 + κ1,iA3,i)(1− ν)σ̄2

+ 0.5(((θ − 1)κ1A3 + κ1,iA3,i)
2σ2w + ((θ − 1)κ1A1 + κ1,iA1,i)

2χ2σ2ζ )

+ [(θ − 1)(κ1ν − 1)A3 + (κ1,iν − 1)A3,i

+ 0.5ϕ2
d + 0.5(((θ − 1)κ1A1 + κ1,iA1,i)χΘ + πd − γ)2]σ2t

+ ((θ − 1)(κ1ρ− 1)A2 + (κ1,iρ− 1)A2,i + φiρ− γρ)Xt

+ ((θ − 1)(κ1νε − 1)A1 + (κ1,iνε − 1)A1,i + CN (1 + 0.5CN )λ1∆t)Tt,

CN = ((θ − 1)κ1A2 + κ1,iA2,i + φi − γ)d.

(A.14)

We set all terms in front of Tt, Xt and σ2t to zero to solve for zt,i:

(1− κ1,iν)A3,i = 0.5(((θ − 1)κ1A1 + κ1,iA1,i)χΘ + πd − γ)2

+ 0.5ϕ2
d + (θ − 1)(κ1ν − 1)A3,

(1− κ1,iρ)A2,i = (θ − 1)(κ1ρ− 1)A2 + φiρ− γρ,

(1− κ1,iνε)A1,i = (θ − 1)(κ1νε − 1)A1 + CN (1 + 0.5CN )λ1∆t,

(1− κ1,i)A0,i = θ log δ + (θ − 1)κ0 + κ0,i + (θ − 1)(κ1 − 1)A0 + µd

+ (((θ − 1)κ1A1 + κ1,iA1,i)χΘ− γ)µc + ((θ − 1)κ1A1 + κ1,iA1,i)χµε

+ CN (1 + 0.5CN )λ0∆t+ ((θ − 1)κ1A3 + κ1,iA3,i)(1− ν)σ̄2

+ 0.5(((θ − 1)κ1A3 + κ1,iA3,i)
2σ2w + ((θ − 1)κ1A1 + κ1,iA1,i)

2χ2σ2ζ ),

CN = ((θ − 1)κ1A2 + κ1,iA2,i + φi − γ)d.

(A.15)
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A.1.4 The equity risk premium

As discussed by Bansal and Yaron (2004), the risk premium of any asset i is based on the covariance

between the unexpected returns and innovations in the SDF mt+1 as

lnEt[Ri,t+1]− rf,t = Et[ri,t+1 − rf,t] + 0.5Vart(ri,t+1) = −Covt(mt+1 −Et[mt+1], ri,t+1 −Et[ri,t+1]).

(A.16)

The innovation in the SDF based on Equation (A.1) equals

mt+1 − Et[mt+1] = −λησtηt+1 − λζσζζt+1 − λwσwwt+1 − λX(∆Nt+1 − (λ0∆t+ λ1∆tTt)), (A.17)

where

λη = γ + (1− θ)κ1A1χΘ,

λζ = (1− θ)κ1A1χ,

λw = (1− θ)κ1A3,

λX = (γ + (1− θ)κ1A2)d.

(A.18)

Based on Equation (A.11), the innovation in the return of portfolio i is given by

ri,t+1 − Et[ri,t+1] = ϕdσtut+1 + (πd + κ1,iA1,iχΘ)σtηt+1 + κ1,iA1,iχσζζt+1

+ κ1,iA3,iσwwt+1 + (φi + κ1,iA2,i)d(∆Nt+1 − (λ0∆t+ λ1∆tTt))

(A.19)

This brings us to the conditional risk premium of asset i:

lnEt[Ri,t+1]− rf,t = −Covt(mt+1 − Et[mt+1], ri,t+1 − Et[ri,t+1])

= ληβi,ησ
2
t + λζβi,ζσ

2
ζ + λwβi,wσ

2
w + λXβi,X(λ0∆t+ λ1∆tTt),

(A.20)
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where lambdas are given in Equation (A.18) and betas are

βi,η = πd + κ1,iA1,iχΘ,

βi,ζ = κ1,iA1,iχ,

βi,w = κ1,iA3,i,

βi,X = (φi + κ1,iA2,i)d.

(A.21)

A.1.5 Solving the fixed-point problem

The approximation constants κ0(,i) and κ1(,i) are defined as

κ0(,i) = log(1 + exp(z̄(i)))− κ1(,i)z̄(i),

κ1(,i) =
exp(z̄(i))

1 + exp(z̄(i))
,

(A.22)

where z̄(i) is the mean of the wealth-consumption ratio zt or price-dividend ratio of portfolio i,

zt,i. We solve the mean of these ratios by numerically (through iteration) solving the fixed point

problem

z̄(i) = A0(,i) +A1(,i)T̄t +A2(,i)X̄t +A3(,i)σ̄
2
t

= A0(,i) +A1(,i)

(
1

n
E0

[
n∑
t=1

Tt

])
+A2(,i)

(
1

n
E0

[
n∑
t=1

Xt

])
+A3(,i)σ̄t

2,
(A.23)

where the expected averages T̄t and X̄t over the sample from period t = 1 to t = n are given as

1

n
E0

[
n∑
t=1

Tt

]
=

(
T0
n
− χ(µε + Θµc)

n(1− νε)

)(
νε − νn+1

ε

1− νε

)
+
χ(µε + Θµc)

1− νε
,

1

n
E0

[
n∑
t=1

Xt

]
=

1

n

(
−X0 +

n∑
t=0

E0[Xt]

)

=
X0

n

(
ρ− ρn+1

1− ρ

)
+

1

n

(
d∆tλ0
1− ρ

+
d∆tλ1
1− ρ

χ(µε + Θµc)

1− νε

)(
n− ρ− ρn+1

1− ρ

)

+
1

nνε

 d∆tλ1

1−
(
ρ
νε

)
(T0 − χ(µε + Θµc)

1− νε

)(
1− νn+1

ε

1− νε
− 1− ρn+1

1− ρ

)
.

(A.24)

38



The sample used in our regressions starts in 1947Q1 and runs until 2019Q4, 292 observations of

quarterly data. In our simulations, we construct a similar sample. We simulate n = 939 months

of data, resulting in a sample of 292 quarters after we drop the first five years of our simulation

as burn-in and the last three months because of a lead in the risk-free yields. We calibrate the

model to set the expected starting temperature in our simulations to zero, i.e. E0[T60] = 0, based

on our burn-in of 60 months. The risk-free yields are led by one period, since the assumed absence

of credit risk implies that the risk-free return realized at the end of quarter Qi is already observed

in Qi−1.

A.2 Adjustments to the LRR-T model

The LRR-T model presented in Section 3.1 extends the LRR-T model of Bansal, Kiku, and Ochoa

(2019) in several ways. First, in Equation (10) we allow for more flexibility in the dividend process

by letting it have its own mean µd and own loading πd on the shock ηt+1, rather than tying these

parameters to the corresponding parameters in the consumption process. We further allow for

time-varying volatility of consumption and dividends as in Bansal and Yaron (2004).

Second, in Equation (11) we assume a persistence parameter ρ < 1 for the economic impact of

disasters X, instead of ρ = 1. We believe that it is reasonable that climate-related disasters have

a persistent impact on consumption and dividend growth, but that the impact is unlikely to be

permanent. In the same equation, we let the increments of the disaster process (∆Ñ) be Poisson

distributed, instead of the overall process Ñ . This adjustment makes the current disaster intensity

dependent on recent temperature levels instead of on the historical path of temperature growth.

Third, in Equation (12), we allow for a separate trend µε in the atmospheric carbon concentra-

tion to capture potential trends in emissions that are unrelated to consumption growth.

Fourth, in Equation (13), we allow the log wealth-consumption ratio zt and the log price-

dividend ratio zt,m to also depend on the time-varying variance σ2t and on the economic disaster

impact Xt. The dependence on σ2t directly follows from the inclusion of time-varying volatility

in Equation (10). We include Xt because disasters have a persistent impact on future dividend

growth, thereby lowering the wealth-consumption ratio and price-dividend ratio.
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A.3 Posterior VAR distributions

We adopt a Bayesian approach to estimate the predictive VAR model given by



ri,t+1

pt+1 − dt+1

rf,t

Tt+1


= C ′



1

pt − pd

rf,t−1

Tt


+ εt+1, εt+1 ∼ N(0,Σ). (A.25)

where C is the VAR coefficients matrix and Σ is the variance-covariance matrix of the residuals.

As shown in the Online Appendix of Avramov, Cederburg, and Lucivjanska (2018), the posterior

distribution of the VAR parameters with the model-based prior conditional on the set of parameters

of the asset pricing model ΘM and on the data observable up to time N , DN , is given by

Σ | DN ,ΘM ∼ IW ((ωM + ωD)N Σ̂(ΘM ), (ωM + ωD)N − 4),

C | Σ, DN ,ΘM ∼ N(Ĉ(ΘM ),Σ⊗ (ωMNΓ∗xx + ωDX
′X)−1),

(A.26)

in which

Σ̂(ΘM ) =
1

(ωM + ωD)N
[(ωMNΓ∗yy + ωDY

′Y )

− (ωMNΓ∗xy + ωDY
′X)(ωMNΓ∗xx + ωDX

′X)−1(ωMNΓ∗xy + ωDX
′Y )],

Ĉ(ΘM ) = (ωMNΓ∗xx + ωDX
′X)−1(ωMNΓ∗xy + ωDX

′Y ),

(A.27)

where N is the number of observations in our sample (292 quarters) and Γ∗xx, Γ∗xy, and Γ∗yy are the

population moments implied by the asset pricing models in Section 3.1, as defined in the Online

Appendix of Avramov, Cederburg, and Lucivjanska (2018). Finally, ωM
ωM+ωD

and ωD
ωM+ωD

are the

weights given to the model-based prior and the historical data, respectively. For the Bayesian

investors with prior beliefs elicited from the LRR or LRR-T model, we assign equal weights to the

informative prior and the sample data by setting ωM = ωD = 1. For the agnostic investor we set

ωM = 0 and ωD = 1. In this case, Equation (A.26) reduces to the posterior distribution corre-

sponding to the VAR estimated using historical data and an uninformative multivariate Jeffreys
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prior. For the dogmatic investor we set ωM = 1 and ωD = 0. Equation (A.26) then reduces to the

prior distribution implied by the long-run risks model.
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Figure 1: Temperature anomaly forecasts

This figure shows the temperature anomaly forecasts implied by the predictive VAR estimates in panels A-C of Table
4 and by the exogenous climate change process described in Section 2.3. The temperature anomaly is measured
in degrees Celsius and the horizon ranges from 1 to 100 quarters. The VARs are estimated using the historical
data and an uninformative prior (Data+uninf. prior), the historical data and an informative prior derived from the
temperature long-run risks model (Data + LRR-T prior), or the informative LRR-T prior alone (LRR-T prior). The
starting point for the forecasts is the average temperature anomaly observed over the last five years in the historical
sample (for the VAR model Data+uninf. prior and the exogenous scenario), the average temperature anomaly
observed over the last five years in the data simulated from the LRR-T model (for the VAR model LRR-T prior), and
the average of the five-year mean implied by the LRR-T model and the five-year sample mean (for the VAR model
Data + LRR-T prior). We simulate 250,000 future temperature anomaly paths based on each model and plot the
mean of these simulated trajectories. For the exogenous climate scenario we also show the 5% and 95% percentiles.
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Figure 2: Simulated path from LRR-T model

This figure shows a single simulated path from the LRR-T model using the parameter configuration in Table 2. The
stock market return (rm) is the log real return (including dividends) on the S&P 500 index (in %), the price-dividend
ratio (P/D) is the log difference between the S&P 500’s price and the monthly dividend payment on the index, the
risk-free rate (rf ) is the log ex-ante real risk-free rate, and the temperature anomaly (T ) is the temperature (in
degrees Celsius) in a given month minus the average temperature in that same month over the base period 1901-1946.
We simulate 250,000 samples with a length of 876 months to match the length of our 1947-2019 historical sample.
The simulation in the figure is randomly chosen from the 250,000 samples.
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Figure 3: Predictive variance ratios by investment horizon

This figure shows predictive variance ratios for returns on the stock market portfolio (top left) and the underlying
components related to mean reversion (top right), uncertainty about future expected returns (bottom left), and
estimation risk (bottom right). We plot four different variance ratios that are constructed based on the return
dynamics implied by the VAR model in Equation (1). VARs are estimated using the historical sample data and an
uninformative prior (Data+uninf. prior), the historical data and an informative prior derived from the temperature
long-run risks model (Data + LRR-T prior), the informative LRR-T prior alone (LRR-T prior), or the historical data
and an informative prior derived from the standard long-run risks model (Data + LRR prior). We decompose each
of the variance ratios into three parts according to Equation (4), using 250,000 draws from the posterior distribution
of the VAR parameters. The investment horizon ranges from 1 to 100 quarters.

Uncertainty future E(R) Estimation risk

Variance ratio Mean reversion

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

−1.0

−0.5

0.0

0.0

0.2

0.4

0.6

0.8

0.5

1.0

1.5

2.0

2.5

0.00

0.25

0.50

0.75

1.00

Horizon (quarters)

Model

Data + uninf. prior

Data + LRR−T prior

LRR−T prior 

Data + LRR prior

47



Figure 4: Predictive returns and risk premia by investment horizon

This figure shows forecasts of average risk-free returns, market returns, and market risk premia per quarter (in %),
for investment horizons ranging from 1 to 100 quarters. For each variable, we plot four different forecasts implied by
the VAR model in Equation (1). VARs are estimated using the historical sample data and an uninformative prior
(Data+uninf. prior), the historical data and an informative prior derived from the temperature long-run risks model
(Data + LRR-T prior), the informative LRR-T prior alone (LRR-T prior), or the historical data and an informative
prior derived from the standard long-run risks model (Data + LRR prior). The predictive returns are computed
based on 250,000 draws from the predictive distribution corresponding to each model. Specifically, we simulate
250,000 future return paths based on 250,000 draws from the posterior distribution of the VAR parameters. For each
of these return paths, we compute the simple average of the quarterly returns over each horizon. The forecasts shown
in the figure are the means of the average returns per quarter across the simulated return paths.
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Figure 5: Predictive correlations between risk-free asset and market portfolio

This figure shows predictive correlations between the returns on the risk-free asset and the returns on the market
portfolio, for horizons ranging from 1 to 100 quarters. The predictive correlations are based on the return dynamics
implied by the VAR in Equation (1). VARs are estimated using the historical sample data and an uninformative
prior (Data+uninf. prior), the historical data and an informative prior derived from the temperature long-run risks
model (Data + LRR-T prior), or the informative LRR-T prior alone (LRR-T prior). The predictive correlations are
computed based on 250,000 draws from the predictive distribution corresponding to each model. We simulate 250,000
future return paths based on 250,000 draws from the posterior distribution of the VAR parameters. For each of these
paths, we compute the correlation between the quarterly returns on the risk-free asset and the market portfolio over
each horizon. The correlations in the figure are the averages of the correlations across the simulations.
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Figure 6: Optimal portfolio weights by investment horizon

This figure shows optimal portfolio weights for an investor who allocates wealth between the market portfolio of
stocks and the risk-free asset, with an investment horizon ranging from 1 to 100 quarters. The plots show the optimal
allocation to the stock portfolio for a long-only buy-and-hold investor who has power utility with risk aversion A = 5.
The optimal weights are computed following the approach explained in Section 2.5, using the predictive return
distribution implied by the VAR model in Equation (1). VARs are estimated using the historical sample data and an
uninformative prior (Data+uninf. prior), the historical data and an informative prior derived from the temperature
long-run risks model (Data + LRR-T prior), the informative LRR-T prior alone (LRR-T prior), or the historical data
and an informative prior derived from the standard long-run risks model (Data + LRR prior). The optimal allocation
in the top panel ignores parameter uncertainty and is based on 250,000 samples from the predictive distribution with
the parameters of the predictive VAR model set equal to their posterior means. The optimal allocation in the bottom
panel accounts for parameter uncertainty and is based on 250,000 samples from the predictive distribution with the
parameters of the predictive VAR model drawn from their posterior distribution.
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Figure 7: Predictive variance ratios in alternative climate scenarios

This figure shows predictive variance ratios for returns on the stock market portfolio (top left) and the underlying
components related to mean reversion (top right), uncertainty about future expected returns (bottom left), and
estimation risk (bottom right). We plot three different variance ratios that are constructed based on the return
dynamics implied by the VAR model in Equation (1). All VARs are estimated using the historical data and an
informative prior derived from the temperature long-run risks model. We consider three different climate scenarios:
i) the default scenario described in 2.3 (Base case); ii) a scenario in which the temperature anomaly increases to 4
degrees at the end of the forecast horizon (High increase); iii) a scenario in which the volatility of the temperature
anomaly process in (2) matches the historical volatility (High uncertainty). We decompose each of the variance
ratios into three parts according to Equation (4), using 250,000 draws from the posterior distribution of the VAR
parameters. The investment horizon ranges from 1 to 100 quarters.
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Figure 8: Predictive returns and risk premia in alternative climate scenarios

This figure shows forecasts of average risk-free returns, market returns, and market risk premia per quarter (in %),
for investment horizons ranging from 1 to 100 quarters. For each variable, we plot three different forecasts implied by
the VAR model in Equation (1). All VARs are estimated using the historical data and an informative prior derived
from the temperature long-run risks model. We consider three different climate scenarios: i) the default scenario
described in 2.3 (Base case); ii) a scenario in which the temperature anomaly increases to 4 degrees at the end of the
forecast horizon (High increase); iii) a scenario in which the volatility of the temperature anomaly process in (2)
matches the historical volatility (High uncertainty). The predictive returns are computed based on 250,000 draws
from the predictive distribution corresponding to each model. Specifically, we simulate 250,000 future return paths
based on 250,000 draws from the posterior distribution of the VAR parameters. For each of these return paths, we
compute the simple average of the quarterly returns over each horizon. The forecasts shown in the figure are the
means of the average returns per quarter across the simulated return paths.
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Figure 9: Optimal portfolio weights in alternative climate scenarios

This figure shows optimal portfolio weights for an investor who allocates wealth between the market portfolio of
stocks and the risk-free asset, with an investment horizon ranging from 1 to 100 quarters. The plots show the optimal
allocation to the stock portfolio for a long-only buy-and-hold investor who has power utility with risk aversion A = 5.
The optimal weights are computed following the approach explained in Section 2.5, using the predictive return
distribution implied by the VAR model in Equation (1). All VARs are estimated using the historical data and an
informative prior derived from the temperature long-run risks model. We consider three different climate scenarios:
i) the default scenario described in 2.3 (Base case); ii) a scenario in which the temperature anomaly increases to 4
degrees at the end of the forecast horizon (High increase); iii) a scenario in which the volatility of the temperature
anomaly process in (2) matches the historical volatility (High uncertainty). The optimal allocation accounts for
parameter uncertainty and is based on 250,000 samples from the predictive distribution with the parameters of the
predictive VAR model drawn from their posterior distribution.
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Table 2: Temperature long-run risks model parameters

This table presents the parameters for the temperature long-run risks (LRR-T) model:

∆ct+1 = µc + σtηt+1 +Xt+1

∆dt+1,i = µd + πdσtηt+1 + φiXt+1 + ϕdσtut+1

σ2
t+1 = σ̄2 + ν(σ2

t − σ̄2) + σwwt+1

Xt+1 = ρXt + d∆Nt+1,

∆Nt+1 ∼ Poisson(λt = ∆t(λ0 + λ1Tt))

Tt+1 = χεt+1

εt+1 = νεεt + µε + Θ(µc + σtηt+1) + σζζt+1,

where X is the adverse impact of temperature-driven disasters on consumption growth ∆c and dividend growth ∆d,
N is the disaster process, T is the temperature anomaly, and ε is the carbon concentration. All parameters are in
monthly terms. The preference parameters δ, γ, and ψ denote the investor’s risk aversion, elasticity of intertemporal
substitution (EIS), and time discount factor, respectively.

Preferences δ γ ψ
0.998 5 1.5

Consumption µc ρ d σ̄ ν σw
0.0052 0.99 −0.004166 0.0072 0.999 0.0000028

Dividends µd πd φi ϕd
0.0062 2.0 1.1 5.0

Temperature νe ε0 µε Θ σζ χ λ0 λ1
0.9971 −1 0.0095 1 0.5 0.2 0.075 0.075
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Table 3: Data moments and long-run risks moments

This table reports the first and second moments of market returns, risk-free rates, price-dividend ratios, consumption
and dividend growth, and the temperature anomaly. Returns and growth rates are in percentages and all moments
except for the temperature anomaly are in logs. The first column reports the historical moments from monthly
data time-aggregated to quarterly values from 1947Q1 to 2019Q4. The columns on the right show the population
moments implied by the LRR and LRR-T models. For each model, the moment reported is the median from 250,000
simulations, with each simulation matching the length of the 1947Q1-2019Q4 sample.

Moment Data LRR LRR-T

E(rm) 1.81 1.77 1.71
σ(rm) 7.25 8.00 8.17
E(rf ) 0.13 0.21 0.17
σ(rf ) 0.47 0.27 0.62
E(p− d) 4.89 4.45 4.42
σ(p− d) 0.44 0.16 0.23

E(∆c) 0.47 0.45 0.45
σ(∆c) 0.49 1.14 1.43
E(∆d) 0.66 0.63 0.62
σ(∆d) 1.94 5.83 5.90

E(T ) 0.33 0.65
σ(T ) 0.83 0.83
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Table 4: Predictive VAR estimates

This table reports the posterior means of the parameters for the first-order VAR model in Equation (1). The predictor
variables are the log price-dividend ratio (p−d), the log ex-ante real risk-free rate (rf ), and the temperature anomaly
(T ) measured in degrees Celsius. The log real return (including dividends) on the S&P 500 (rm) is modeled as a
function of these predictor variables. Panel A shows results for the VAR estimated using the historical sample data
and an uninformative prior. Panel B reports the VAR parameters implied by the temperature long-run risks (LRR-T)
prior. Panel C shows the posterior means for the VAR estimated using the sample data and the LRR-T prior. Panel
D reports the parameters for the VAR estimated using the sample data and the prior derived from the standard
long-run risks (LRR) model. The t-statistics in parentheses are based on the posterior standard deviations. The
sample period is 1947Q1-2019Q4.

Panel A: Data + uninformative prior

Intercept pt − dt rf,t Tt
rm,t+1 14.28 -2.63 0.81 0.89

(2.76) (-2.46) (0.87) (1.58)
pt+1 − dt+1 0.10 0.98 1.37 0.01

(1.79) (89.10) (1.44) (1.22)
rf,t+1 0.19 -0.03 0.89 0.01

(1.54) (-1.36) (40.83) (0.50)
Tt+1 -2.48 0.57 -11.36 0.19

(-4.65) (5.13) (-1.18) (3.23)

Panel B: LRR-T prior

Intercept pt − dt rf,t Tt
rm,t+1 32.05 -6.87 2.74 -0.61

(1.18) (-1.14) (2.29) (-0.49)
pt+1 − dt+1 0.93 0.79 3.31 -0.04

(4.86) (18.78) (3.93) (-4.09)
rf,t+1 0.36 -0.08 0.99 -0.03

(0.90) (-0.88) (56.52) (-1.48)
Tt+1 0.42 -0.09 0.97 0.98

(0.92) (-0.90) (0.47) (46.25)

Panel C: Data + LRR-T prior

Intercept pt − dt rf,t Tt
rm,t+1 7.11 -1.23 1.56 0.33

(1.90) (-1.54) (2.75) (0.90)
pt+1 − dt+1 0.05 0.99 0.76 0.00

(1.58) (141.86) (1.53) (0.71)
rf,t+1 -0.01 0.01 0.95 -0.02

(-0.16) (0.38) (87.39) (-2.34)
Tt+1 0.74 -0.12 -20.65 0.70

(2.44) (-1.87) (-4.43) (23.90)

Panel D: Data + LRR prior

Intercept pt − dt rf,t
rm,t+1 8.22 -1.43 1.48

(2.26) (-1.82) (1.84)
pt+1 − dt+1 0.05 0.99 1.22

(1.75) (146.40) (1.75)
rf,t+1 0.04 0.00 0.91

(0.57) (-0.30) (64.61)



B Online Appendix

B.1 Numerical procedure for optimal asset allocation

In this section we explain the numerical procedure used to solve the optimal asset allocation for the
long-only buy-and-hold investor. We first discuss how we sample return paths from the predictive
distribution and then explain how we calculate the optimal buy-and-hold portfolios.

Sampling from predictive distribution

We draw N∗ = 250, 000 sample paths of length K = 100 quarters from the predictive distribution
of asset returns and state variables by repeating the following two steps N times:

1. For each k in 1, . . . ,K, sample the asset returns and state variables in period k conditional
on each draw of the VAR parameters (a,B,Σ) from the posterior distribution and the values
of the state variables in period k− 1.26 For the initial period k = 1, condition on the average
value of the state variables p − d and rf over the last five years in the sample (for the VAR
model Data+uninf. prior), the population average of these state variables (for the model
LRR-T prior), or the mean of the five-year average and the population average (for the model
Data+LRR-T prior). For all models, the initial value for the state variable T is the average
temperature anomaly observed over the last five years in the sample. Future temperature
anomaly paths are simulated based on the exogenous process in Equation (2).

2. Re-sample the asset returns and state variables in period k if we draw a quarterly return on
the risk-free asset below −10%. This step is needed because the simple return drawn from
the predictive distribution can get arbitrarily close to -100% for each asset. In that case, the
expected utility of all possible portfolios is minus infinity and the maximization problem in
Equation (7) is no longer well defined. Imposing the restriction that the quarterly risk-free
rate is at least -10% ensures that expected utility is finite for at least some portfolios, because
it implies that the investor’s wealth will never go to zero if she invests a positive amount in
the risk-free asset. Because -10% is very far below the sample mean of the risk-free rate, this
lower bound is almost never hit in our simulations and re-sampling is almost never required.

Calculation of optimal buy-and-hold portfolio

After generating the N∗ return paths, we compute the optimal buy-and-hold portfolio as follows:

1. Construct a grid of portfolio weights. We invest long only, i.e., weights are between zero and
one, and use weight steps of 1% for our grid search.

2. Pick one set of portfolio weights from the grid and calculate the realized utility for all N∗

simulated return paths.

3. Approximate expected utility by computing the mean of these N realized utilities.

4. Repeat steps 2 and 3 for all portfolio weights on the grid. For each horizon k = 1, . . . ,K,
choose the weights that maximize expected utility.

26For the analysis that does not incorporate parameter uncertainty (top panel in Figure 6), returns and state
variables are simulated conditional on the posterior mean of the VAR parameters.
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B.2 Additional results

In this section we provide additional empirical results omitted from the paper for the sake of brevity.

Table B1: Population estimates for VAR parameters implied by LRR-T model

This table shows the model coefficients of the VAR from Equation (1) estimated on a very large set of 250,000
simulations from the LRR-T model. The model is estimated on a quarterly time interval and each simulation
matches the 1947Q1-2019Q4 sample period. Returns are in log percentages, the price-dividend ratio is in logs and
the temperature anomaly is in degrees Celsius.

Intercept pt − dt rf,t Tt
rm,t+1 32.07 -6.87 273.55 -0.61
pt+1 − dt+1 0.93 0.79 3.32 -0.04
rf,t+1 0.36 -0.08 99.04 -0.03
Tt+1 0.43 -0.09 1.01 0.98
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Figure B1: Relative variance of risk-free asset and market portfolio

This figure shows the term structure of predictive variances of returns on the risk-free asset (including roll-over risk)
divided by the predictive variances of returns on the market portfolio, for horizons ranging from 1 to 100 quarters. The
predictive variances are constructed based on the return dynamics implied by the VAR model in Equation (1). VARs
are estimated using the historical sample data and an uninformative prior (Data+uninf. prior), the historical data
and an informative prior derived from the temperature long-run risks model (Data + LRR-T prior), the informative
LRR-T prior alone (LRR-T prior), or the historical data and an informative prior derived from the standard long-run
risks model (Data + LRR prior).
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Figure B2: Relative variance in alternative climate scenarios

This figure shows the term structure of predictive variances of returns on the risk-free asset (including roll-over risk)
divided by the predictive variances of returns on the market portfolio, for horizons ranging from 1 to 100 quarters.
The predictive variances are constructed based on the return dynamics implied by the VAR model in Equation (1).
All VARs are estimated using the historical data and an informative prior derived from the temperature long-run
risks model. We consider three different climate scenarios: i) the default scenario described in 2.3 (Base case); ii) a
scenario in which the temperature anomaly increases to 4 degrees at the end of the forecast horizon (High increase);
iii) a scenario in which the volatility of the temperature anomaly process in (2) matches the historical volatility
(High uncertainty).
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Figure B3: Predictive correlations in alternative climate scenarios

This figure shows predictive correlations between the returns on the risk-free asset and the returns on the market
portfolio, for horizons ranging from 1 to 100 quarters. The predictive correlations are based on the return dynamics
implied by the VAR in Equation (1). All VARs are estimated using the historical data and an informative prior
derived from the temperature long-run risks model. We consider three different climate scenarios: i) the default
scenario described in 2.3 (Base case); ii) a scenario in which the temperature anomaly increases to 4 degrees at
the end of the forecast horizon (High increase); iii) a scenario in which the volatility of the temperature anomaly
process in (2) matches the historical volatility (High uncertainty). The predictive correlations are computed based
on 250,000 draws from the predictive distribution corresponding to each model. We simulate 250,000 future return
paths based on 250,000 draws from the posterior distribution of the VAR parameters. For each of these paths,
we compute the correlation between the quarterly returns on the risk-free asset and the market portfolio over each
horizon. The correlations in the figure are the averages of the correlations across the simulations.
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