
Characteristics are Covariances? A Comment on Instrumented Principal
Component Analysis

Lars Hornufa,∗, Gerrit Liedtkea, Thorsten Poddiga, Christian Fieberga

aUniversity of Bremen, Bremen, Germany

Abstract

For more than thirty years now, there is an ongoing debate of whether the relationship between firm char-

acteristics and stock returns is due to covariances with common risk factors or due to the characteristics

themselves. In their paper “Characteristics are covariances: A unified model of risk and return”, Kelly,

Pruitt, and Su (2019) (KPS) propose a new factor modeling approach, called Instrumented Principal Com-

ponent Analysis (IPCA). IPCA aims to find a reduced-form factor model by mapping a large number of

firm characteristics to either risk factor exposures or an anomaly intercept, depending on whether return

variation associated with firm characteristics is due to covariances with common risk factors or due to the

characteristics themselves. Accordingly, the authors claim that IPCA can contribute to the ongoing “char-

acteristics vs. covariances” debate. They find that a five-factor model without anomaly intercept explains

the cross section of stock returns, and thus, the characteristics/expected returns relationship is due to co-

variances with common risk factors. We present analytical and simulation-based evidence that IPCA cannot

reliably distinguish between the covariances and characteristics story. If IPCA estimates fewer factors than

there are in the true model, the anomaly intercept subsumes the explanatory power of the omitted factors.

Conversely, if IPCA estimates more factors than there are in the true model, covariances with risk factors

subsume the explanatory power of a potential anomaly intercept. We refer to these observations as “beta-

eating” and “alpha-eating”, respectively. However, even though IPCA cannot identify the true model (i.e.,

whether covariances or characteristics explain returns), IPCA always identifies a model that has equivalent

performance, making IPCA an upstanding tool for describing returns.
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1. Introduction

Contrary to the presumption of the Capital Asset Pricing Model (CAPM), the literature identified more

than 400 firm characteristics that appear to explain the cross section of (stock) returns (Hou et al., 2020),

with a rising tendency (Harvey et al., 2016). Since these return driving phenomenons are not explained by

the CAPM, they are referred to as “anomalies”. At least since the literature has discovered such “anomalous

returns”, the literature questions what causes them. Some argue that these patterns may be found due to

statistical biases, e.g., selection or survivorship bias (Kothari et al., 1995), or data mining (Lo and MacKinlay,

1990; Harvey et al., 2016). McLean and Pontiff (2016) and Jacobs and Müller (2020) find that the return

variation associated with some characteristics vanishes in post-sample or post-publication periods, i.e., they

are in-sample phenomenons. Furthermore, some anomalies are close cousins and do not provide incremental

information (Green et al., 2017). Although some empirical studies might be biased, some anomalies do not

disappear and resist the aforementioned explanations, resulting in characteristic-based return predictability

(e.g., Lewellen, 2015; Gu et al., 2020).

There are two common theories about what causes these “anomalous returns”, and even after thirty

years, research cannot clearly answer the question. On the one hand, researchers argue that characteristics

proxy for asset’s covariances with common risk factors. For example, firms with high book-to-market equity

ratios are more likely to be distressed and are therefore riskier, resulting in higher loadings on a common (un-

observed) distress factor. Thus, the “anomalous returns” associated with different levels of book-to-market

equity ratios are compensations for bearing systematic risk (e.g., Fama and French, 1993). Another fraction

of researchers claims that “anomalous returns” are due to the characteristics themselves, i.e., anomalies

represent mispricing, as a result of investors’ over- or underreaction to (fundamental) information (e.g.,

De Bondt and Thaler, 1987; Lakonishok et al., 1994). To catch up with the example above, firms with

high book-to-market equity ratios (so-called value stocks) tend to have poor past earnings growth. On the

contrary, firms with low book-to-market equity ratios (so-called growth stocks) have strong past earnings

growth. Investors incorrectly extrapolate past earnings; therefore, they are overly optimistic about well-

performing firms (growth) and overly pessimistic about those that performed poorly (value). As a result,

growth stocks have irrationally high prices, while value stocks have irrationally low prices. The correction of

this mispricing results in low returns for growth and high returns for value stocks (Lakonishok et al., 1994).

A first test for distinguishing between the covariance- or characteristic-based explanation is proposed

by Daniel and Titman (1997) and Daniel et al. (2001). They sort stocks into portfolios based on firm

characteristics and loadings on common factors to test for return variation associated with characteristics

that is orthogonal to risk factor loadings. They find that characteristics drive the return variation, not the

covariance with common factors. However, Davis et al. (2000) present contrary findings when extending the

sample period. A major drawback of the Daniel and Titman (1997) approach is that is suffers considerably
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from the curse of dimensionality. According to Green et al. (2017), the relationship between returns and

firm characteristics is multidimensional. When sorting assets into portfolios based on multiple characteristics

and/or factor loadings, the portfolios are not sufficiently diversified, making this approach infeasible.

Kelly, Pruitt, and Su (2019) (KPS) propose a new method, called Instrumented Principal Component

Analysis (IPCA), which aims to map a potentially large number of characteristics to either risk factor expo-

sures (beta) or an “anomaly intercept” (alpha). More precisely, IPCA identifies common latent factors from

the covariance matrix of asset returns and allows factor loadings to depend on observable firm characteristics.

If characteristics proxy for the compensation for bearing systematic risk,1 IPCA identifies the corresponding

(latent) risk factors and the conditional loadings (i.e., betas). If the characteristic story is true, IPCA will

additionally find a significant (conditional) alpha, given some latent factors. They fit beta-only (i.e., only

allowing for beta) and alpha-beta (i.e., allowing for alpha and beta) IPCA specifications to empirical stock

return data and find that a beta-only model with five factors explains the same amount of variation as the

alpha-beta model. They present a hypothesis test for testing the null hypothesis that characteristics do not

align with alpha and find that the alpha-beta model is rejected in favor of the beta-only model if at least five

factors are included. Accordingly, they conclude that characteristics proxy for the covariance to common

risk factors and that there are no “anomalous returns” in the sense that the characteristics themselves drive

the returns. In a recent application, Buechner and Kelly (2021) apply IPCA to option prices and find that

a three-factor model without alpha best explains option prices. Kelly et al. (2021) find that a beta-only

five-factor IPCA is sufficient for explaining the cross section of bond returns. These results suggest that not

only stock returns but also option and bond returns are driven by covariances.

However, despite KPS demonstrate that IPCA outperforms existing asset pricing models, they do not

present evidence that IPCA can truly differentiate between covariances and characteristics. Therefore, this

paper aims to test for the validity of their findings in two ways. First, we present analytical evidence that

IPCA can always find a covariance-only- or characteristic-only-based explanation for returns if IPCA is

misspecified. Second, we simulate asset return data according to different data generating processes (DGPs)

that correspond to the covariance and/or characteristic story, respectively. Specifically, we create data

according to a 1) multifactor model (i.e., covariance-only world), 2) characteristic model (i.e., characteristic-

only world), and 3) a hybrid of a multifactor and characteristic model (i.e., covariance-characteristic world).

For each of these simulated data sets, we fit three IPCA versions, one allowing for beta only, one allowing

for alpha only, and a third one that allows for both alpha and beta. We use the asset pricing test proposed

by KPS to test if IPCA can reliably identify the true model.

Our findings can be summarized as follows. First, if IPCA estimates the same number of factors as exist

1According to KPS, the term “risk” refers to statistical covariation in asset returns and is, therefore, not restricted to shocks
to economic fundamentals (e.g., shocks to productive technologies). Thus, the term “risk” also includes market-wide behavioral
shocks (e.g., changes in investor preferences).
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in the true model, IPCA correctly identifies the true model and the relevant characteristics. Second, if IPCA

estimates more factors than there are in the true model, we observe an “alpha-eating” effect, that is, factor

exposures subsume the return variation that is actually attributable to an anomaly intercept. The “alpha-

eating” effect biases the results such that the asset pricing test proposed by KPS fails to reject the null

hypothesis of a zero anomaly alpha, resulting in distorted conclusions when trying to distinguish between

the covariances and characteristics story. Conversely, if IPCA allows for alpha and the number of estimated

factors is below the number of true factors, a “beta-eating” effect occurs. That is, alpha subsumes some

explanatory power of the omitted factors. All these findings combined we find that IPCA cannot reliably

distinguish between covariances and characteristics because either the “alpha-eating” or the “beta-eating”

effect will distort the results. By the nature of the test specification proposed in KPS, one will always

find that covariances explain returns if a sufficient number of factors is included. Therefore, IPCA cannot

provide an answer to the “characteristics vs. covariance” debate. Although IPCA may fail to identify the

true model, it always finds a model that yields the same performance, making it a useful tool in, e.g., asset

return prediction.

This paper is structured as follows. In Section 2, we introduce the general IPCA model and decompose the

model to analytically derive the “beta-eating” and “alpha-eating” effect. Section 3 presents our simulation

study. Section 4 concludes the paper.

2. A Model for the cross section of returns

The central IPCA specification presented in KPS assumes that asset (excess) returns are generated

according to a linear multifactor model as described in equation (1)

ri,t+1 = αi,t + βi,tft+1 + εi,t+1 (1)

with ri,t+1 being the (excess) return of asset i at time t + 1, ft+1 is a K × 1 vector of contemporaneous

(latent) factor realizations, with K denoting the number of factors, βi,t is a corresponding 1×K vector of

(conditional) factor loadings (i.e., betas), αi,t is a (conditional) intercept (i.e., alpha), and εi,t+1 is the residual

return of asset i at time t+ 1. It is assumed that there is an L× 1 vector of asset’s firm characteristics zi,t

(with L denoting the number of firm characteristics) at time t that is informative about either the alpha,

the betas, or both. Accordingly, the alpha and the betas are conditional on observed characteristics, as

described in equations (2) and (3), respectively:

αi,t = z
′

i,tΓα + να,i,t (2)
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and

βi,t = z
′

i,tΓβ + νβ,i,t (3)

with Γα and Γβ denoting an L× 1 vector and an L×K matrix of characteristic coefficients for the alpha

and the betas, respectively. The terms να,i,t and νβ,i,t describe errors in the alpha or beta estimates that

are uncorrelated with the firm characteristics. KPS point out that if all coefficients of Γα are zero, this does

not imply that there are no alphas in general but it means that alphas are not linked to firm characteristics

and therefore no “anomalous returns” exist.

Without loss of generality, we can decompose asset (excess) returns as described in equation (1) into

expected returns Et [ri,t+1] and short-term return innovations r̃i,t+1. Specifically, we divide the return that

is due to the (latent) factors into constant factor premia λ and stochastic factor innovations f̃t+1. Equation

(4) presents the reformulated general IPCA model:

ri,t+1 = αi,t + βi,tλ︸ ︷︷ ︸
Et [ri,t+1]

+βi,tf̃t+1 + εi,t+1︸ ︷︷ ︸
r̃i,t+1

(4)

where Et [ri,t+1] denotes the expectation in t for the return of asset i at time t + 1 and r̃i,t+1 denotes the

corresponding (unexpected) return innovation. The conditional alpha and conditional betas are defined as

in the equations (2) and (3), respectively. The return innovations r̃i,t+1 can be further decomposed into

systematic return innovations βi,tf̃t+1 that explain the (systematic) covariance matrix across asset returns

and idiosyncratic innovations εi,t+1.

The term Et [ri,t+1] is of central interest in asset pricing studies and subject to the question of whether

expected returns are explained by covariances to common risk factors (i.e., βi,t) or characteristics (i.e.,

αi,t). According to equation (4), three possible explanations for expected returns can be identified. First,

in a covariance-only world, characteristics do not contribute to expected returns and are therefore fully

described by covariances to common risk factors (i.e., Γα = 0 and λ 6= 0). Second, the true DGP may be

a characteristic-only world in which the characteristics itself explain expected returns and covariances to

common risk factors at most explain short-term return innovations (i.e., Γα 6= 0 and λ = 0). Last, asset

returns may be generated according to a hybrid covariance-characteristic world, in which both covariances

and characteristics drive expected returns (i.e., Γα 6= 0 and λ 6= 0). Note that for each hypothetical world, we

assume that there are systematic innovations in returns, otherwise assets are cross-sectionally uncorrelated.

Thus, there are nonzero betas on common risk factors; however these factors do not necessarily have nonzero

premia. In the following, we analytically show how IPCA misspecification can bias the results, leading to

erroneous conclusions regarding the covariance-characteristics story.
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2.1. Beta-eating

We begin by showing how a misspecification of IPCA can lead to erroneous conclusions in a covariance-

only world, that is, only covariances to priced factors drive expected returns. The DGP is described in

equation (5):

ri,t+1 = βi,tλ︸ ︷︷ ︸
Et [ri,t+1]

+βi,tf̃t+1 + εi,t+1︸ ︷︷ ︸
r̃i,t+1

(5)

Inserting equation (3) into (5), the DGP can be written as:

ri,t+1 = z
′

i,tΓβλ+ z
′

i,tΓβ f̃t+1 + εi,t+1 (6)

Denote Γ∗
α as the estimate of the characteristic coefficients for the conditional alpha, obtained from

an alpha-only IPCA, that is, an IPCA that estimates no factors but only a conditional alpha. Because

the alpha-only IPCA assumes a constant environment (i.e., alpha has no innovations), IPCA cannot model

systematic return innovations βi,tf̃t+1. We therefore restrict attention to the expected return component,

which is of central interest in asset pricing studies, that is:

Et [ri,t+1] = z
′

i,tΓβλ (7)

IPCA can find an alpha-only description of expected returns that satisfies:

Et [ri,t+1] = z
′

i,tΓβλ=̂z
′

i,tΓ
∗
α (8)

if

Γβλ=̂Γ∗
α (9)

The linear system of equations is uniquely determined if the l-th element 1, . . . , L of Γ∗
α is chosen such that

it equals the product of the l-th row of Γβ and the vector of factor premia λ. Accordingly, a true covariance-

only world can always be transformed into an equivalent indistinguishable characteristic-only world. As a

result, the effect a characteristic has on the expected returns is captured, but it is not possible to distinguish

whether this effect is due to the beta or to the characteristic itself. We refer to this effect as “beta-eating”.

2.2. Alpha-eating

Next, we assume that asset returns are generated according to a characteristic-only world but we note that

the derivations equivalently hold for a covariance-characteristic model. The DGP is presented in equation

(10). Note that we assume that there may be (latent) factors that drive systematic return innovations,
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although they are unpriced, i.e., they have factor premia of zero, and thus do not explain expected returns:

ri,t+1 = αi,t︸︷︷︸
Et [ri,t+1]

+βi,tf̃t+1 + εi,t+1︸ ︷︷ ︸
r̃i,t+1

(10)

Inserting equations (2) and (3) into (10), the DGP can be written as

ri,t+1 = z
′

i,tΓα + z
′

i,tΓβ f̃t+1 + εi,t+1 (11)

Denote Γ∗
β , λ∗, and f̃∗

t as beta-only IPCA estimates of characteristic coefficients for the betas, factor premia,

and factor innovations, respectively, a beta-only IPCA can find an equivalent description of equation (11)

without alpha:

ri,t+1 = z
′

i,tΓ
∗
βλ

∗ + z
′

i,tΓ
∗
β f̃

∗
t+1 + εi,t+1 (12)

if

Γα=̂Γ∗
βλ

∗ (13)

Denote Γα,l as the true characteristic coefficient for the alpha of the l-th characteristic, Γ∗
β,l,j as the

estimated characteristic coefficient for the j-th beta of the l-th characteristic, and λ∗j as the estimated factor

premium of factor j. The linear system of equations to obtain a decomposition of Γα into Γ∗
β and λ∗ can

be written as follows:

Γα,1 = Γ∗
β,1,1λ

∗
1 + Γ∗

β,1,2λ
∗
2 + . . . + Γ∗

β,1,Kλ
∗
K

Γα,2 = Γ∗
β,2,1λ

∗
1 + Γ∗

β,2,2λ
∗
2 + . . . + Γ∗

β,2,Kλ
∗
K

...

Γα,L = Γ∗
β,L,1λ

∗
1 + Γ∗

β,L,2λ
∗
2 + . . . + Γ∗

β,L,Kλ
∗
K

(14)

The system of linear equations is characterized by L equations, with L being the number of characteristics.

Since we assume that latent factors drive systematic return innovations, the coefficients Γ∗
β are fixed and

are therefore no free parameters. Accordingly, there are only K free parameters, i.e., the factor premia λ∗,

with K denoting the number of factors.

Depending on the (unknown) rank r∗ of the system of linear equations and the specification of the IPCA,

we can differentiate three cases which produce different outcomes. First, if the rank of the system exceeds

the number of estimated IPCA factors (K < r∗), the system is underdetermined, hence no solution exists.

Accordingly, IPCA cannot find a full beta-only description of expected returns. Second, if the number of

IPCA factors equals the rank of the system (K = r∗), there is an exact solution. Third, if the number of

factors exceeds the rank(K > r∗), then the system of equations is overdetermined, and therefore an infinite
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number of solutions exists. Thus, we expect an “alpha-eating” effect if a beta-only IPCA estimates at least

K = r∗ factors, resulting in a covariance-only explanation of expected returns.

3. Simulation study

After analytically showing under which conditions either an alpha-eating or beta-eating effect can occur

when estimating IPCA, we conduct a simulation study to demonstrate these effects. We describe the creation

of the simulation data in Section 3.1. Section 3.2 briefly reviews the estimation of IPCA and Section 3.3

presents the results. We conclude the simulation study with a discussion on the results and their implications

for empirical asset pricing research.

3.1. Simulation data

This section describes our simulation setup in more detail. For a simulation setting that is close to real-

world applications, we simulate asset return data using empirical data for calibration purposes. However,

we note that the calibration with respect to empirical data serves to work with realistic values and does

not qualitatively affect the results. Specifically, we use the empirical U.S. equity data set studied in KPS to

calibrate our simulation parameters. We generate asset returns for N = 4100 assets and T = 1200 periods.2

Additionally, we set the number of true factors to K = 2 and the number of simulated characteristics to

L = 10.3 We obtain some calibration parameters directly from the empirical data while others are obtained

by estimating an IPCA with two factors and alpha on the empirical data.

The simulation of asset returns divides into five steps, i.e., 1) simulation of characteristics zi,t, 2) simu-

lation of conditional alphas αi,t and betas βi,t, 3) simulation of factor returns ft, 4) simulation of residual

returns εi,t+1, and 5) determination of asset (excess) returns ri,t+1 by putting all components together ac-

cording to equation (4). To set up a simulation most easy and comfortable for the IPCA, we keep the DGPs

as simple as possible (e.g., we do not assume vector autoregressive residuals, time-varying factor premia,

etc.).

3.1.1. Simulation of characteristics

We simulate L = 10 characteristics and assume for interpretation purposes that two of them are perfect

proxies for the true betas on two simulated factors. This simplifies verifying whether IPCA can replicate

2These numbers are based on the empirical sample size of the U.S. equity market. According to Jensen et al. (2021), the
average number of stocks in the U.S. is roughly 4100 with a maximum history of approximately 1200 months. In Appendix A,
we also simulate asset return data that matches the time series and cross section of other developed markets.

3Based on a similar setting, Kelly et al. (2020) provide simulation evidence that IPCA’s estimation errors are well-
approximated with a normal distribution, which allows assuming normality for confidence intervals and hypothesis tests.
However, they do not test the ability of the IPCA to distinguish between covariances and characteristics.
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the true betas or not, and thus increases interpretability of the simulation results. The characteristics are

assumed to follow a vector autoregressive (VAR) process of order one according to equation (15):

zi,t = z0,i + Φ1,izi,t−1 + ui,t (15)

The term z0,i is an L × 1 vector of constants for each characteristic, Φ1,i is a L × L matrix of VAR(1)

coefficients, and ui,t is a L×1 vector of characteristic innovations. To set up the simulation, we assume that

the vector of constants is zero and that the characteristics follow a near unit process, determined by Φ1,i

which is a diagonal matrix with all diagonal elements equal 0.999 for all assets i = 1, . . . , N . Characteristic

innovations are drawn from a multivariate normal distribution with zero mean and covariance matrix Σz:

ui,t ∼ N (0,Σz) (16)

The L×L covariance matrix Σz is obtained by
(
ss

′
)
�Ω with s denoting an L× 1 vector of the standard

deviations of the innovations and � denoting element-wise multiplication. We assume that the innovations

have unit variance, i.e., s = 1. The term Ω denotes an L×L correlation matrix that we can manipulate to

obtain specific properties of our simulated data set. We begin with a simulation for which we assume that

characteristics are uncorrelated, therefore Ω is set to an identity matrix.

After simulating autocorrelated characteristics according to equation (15), we rescale them to match the

properties of the empirical characteristics. Specifically, we calibrate the means and standard deviations of

the first eight simulated characteristics by obtaining the time series averages of the cross sectional means

and standard deviations of empirical characteristics. We use those eight empirical characteristics that have

the largest estimated slopes (in absolute terms), obtained from univariate Fama-MacBeth (FM) regressions

with intercept, i.e., (slopes in brackets) bid-ask spread (0.0680), short-term reversal (-0.0547), idiosyncratic

volatility with respect to the Fama-French 3-factor model (-0.0338), capital intensity (0.0258), return on

assets (0.0099), ratio of change in property, plants, and equipment to the change in total assets (0.0098),

price relative to its 52-week high (0.0091), and intermediate momentum (0.0066).4 Because we assume

that characteristics nine and ten are perfect proxies for the betas on two common factors, we calibrate

these characteristics with respect to the estimated betas obtained from a two-factor alpha-beta IPCA on

empirical data. We obtain the time series averages of the cross sectional means and standard deviations

of these (individual asset) betas and use them for calibration. Table 1 presents the calibration parameters

used for our simulation. The column “Mu” refers to the mean and “Sigma” is the standard deviation of the

characteristics.5

4We point out again that the actual values of the simulation parameters do not qualitatively affect the results.
5Note that these values serve to work with realistic values and do not qualitatively affect the results. In unreported results,

we find that the results are robust to the scaling and assumed autocorrelation of the characteristics.
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Mu Sigma

Z1 0.0574 0.0280
Z2 0.0113 0.1762
Z3 0.0390 0.0217
Z4 0.0451 0.0120
Z5 -0.0309 0.0772
Z6 0.1064 0.1295
Z7 0.6894 0.1693
Z8 0.0577 0.3874
Z9 0.4916 0.1334
Z10 -0.5362 0.1032

Table 1: Target values for simulated characteristics
This table reports the target values used for calibration of the simulated characteristics. The column “Mu” refers to the averages
and “Sigma” are the average standard deviations of the characteristics. The term Zl refers to the l-th characteristic (l =
1, . . . , 10). The first eight characteristics are calibrated with respect to empirical characteristics and the last two characteristics
are calibrated to the estimated IPCA betas obtained from a two-factor IPCA analysis on empirical U.S. data. All target values
are the same for each simulated data set. In our initial setup, we assume a correlation of zero between the characteristics.

3.1.2. Simulation of alpha and beta

The specification of Γα and Γβ is central to our simulation because this allows us to distinguish between

a covariance-only, characteristic-only, or a covariance-characteristic world. We note that, even if only char-

acteristics determine expected returns (i.e., characteristic-only world), we assume that factor innovations

explain systematic return innovations. Otherwise, we could not model a covariance structure between the

assets. Accordingly, in the characteristic-only world, risk factors do not explain (long-term) expected returns

but the (short-term) covariance structure of the assets.

Table 2 shows the true Γα and Γβ coefficients of all simulated worlds. Assuming a covariance-only world,

all entries of Γα are set to zero such that “anomaly returns” do not exist. For the characteristic-only and

covariance-characteristic world, we assume that the Γα coefficients on the first and second characteristics

are nonzero, while those for the other characteristics are always zero. We obtain calibration parameters for

the nonzero entries by running univariate Fama-MacBeth (FM) regressions (with intercept) of the returns

of the U.S. stock returns on the firm characteristics. We calculate the average slopes and calibrate the Γα

coefficients on the first and second characteristic with respect to the two highest (in absolute terms) FM-

coefficients, i.e., bid-ask spread (0.0680) and short-term reversal (-0.0547), respectively. Because we assume

that the characteristics nine and ten are perfectly correlated with the first and second beta, respectively, we

set the corresponding Γβ coefficients of these characteristics to one. The remaining entries are set to zero.

We note that the Γβ coefficients for all DGPs are the same because in the characteristic-only world, we still

allow for betas to describe the covariance of the returns. However, the three worlds differ in the calculation

of the factor returns, which we discuss next.
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Covariance-Only Characteristic-Only Covariance-Characteristic
Γα Γβ,1 Γβ,2 Γα Γβ,1 Γβ,2 Γα Γβ,1 Γβ,2

Z1 0.0000 0.0000 0.0000 0.0680 0.0000 0.0000 0.0680 0.0000 0.0000
Z2 0.0000 0.0000 0.0000 -0.0547 0.0000 0.0000 -0.0547 0.0000 0.0000
Z3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Z4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Z5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Z6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Z7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Z8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Z9 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000
Z10 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000

Table 2: Simulation values for Γα and Γβ
This table reports the target values of the Γα and Γβ coefficients for each simulated data set, i.e., covariance-only, characteristic-
only, and covariance-characteristic. Γα denotes the characteristic coefficients for the anomaly intercept, Γβ,1 are the charac-
teristic coefficients for the beta on the first factor, and Γβ,2 are the characteristic coefficients for the beta on the second
factor.

3.1.3. Simulation of factor returns

According to equation (4), factor returns have two components, i.e., a (long-term) factor premium λ

and (short-term) factor innovations f̃t+1. Despite the assumption that a constant factor premia may be

restrictive and oversimplified for modeling financial markets,6 we do not assume time-varying factor premia.

Otherwise, IPCA might not be able to distinguish between time-varying factor premia and stochastic factor

innovations. We assume that the factor innovations have zero mean and do not follow a time-dependent

process. Therefore, we can simulate factor returns by drawing them from a multivariate normal distribution

according to equation (17):

ft+1 ∼ N (µf ,Σf ) (17)

with ft+1 denoting the K × 1 vector of factor returns, µf is a K × 1 vector of factor means that equals the

factor premia λ, and Σf is the K ×K covariance matrix of the factor innovations.

If we do not allow for priced factors (i.e., characteristic-only world), we set the factor means µf = λ = 0.

Otherwise, we calibrate the factor means with respect to the estimated premia of the factors obtained from

a two-factor IPCA analysis on the U.S. equity data set. Specifically, we calculate the time series averages

of the factors (i.e., 0.0331 and 0.0145) and use these as calibration values for the simulated factor returns.

We assume that the covariance matrix of factor innovations Σf is a diagonal matrix with diagonal elements

calibrated with respect to the time series standard deviations of the estimated IPCA factors (i.e., 0.1031

and 0.0653). Assuming that Σf is diagonal implies that the factors are orthogonal. This assumption is in

line with the IPCA algorithm because IPCA always extracts orthogonal factors. The target values for each

6For example, Ilmanen et al. (2021) find time-varying risk premia for empirical factors that may be conditional on macroe-
conomic state variables. Daniel and Titman (1997) point out the idea that the actual premium of a factor may depend on past
factor innovations, thus leading to time-varying factor premia.
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simulated data set are reported in Table 3. Note that we also have factor innovations in the characteristic-

only world but factor premia of zero.

Covariance-Only Characteristic-Only Covariance-Characteristic

Factor Mu Sigma Mu Sigma Mu Sigma

f1 0.0331 0.1031 0.0000 0.1031 0.0331 0.1031
f2 0.0145 0.0653 0.0000 0.0653 0.0145 0.0653

Table 3: Target values for factor returns
This table reports the target values for the factor returns obtained from a two-factor IPCA on the empirical U.S. equity data
set. The column “Mu” refers to the average of the factors (i.e., factor premium) and “Sigma” refers to the standard deviation
of the factor returns (i.e., standard deviation of factor innovations).

3.1.4. Simulation of Residual Returns

We assume that the residual returns εi,t+1 are multivariate normally distributed according to equation

(18):

εt+1 ∼ N (µε,Σε) (18)

with εt+1 denoting the N × 1 vector of residual returns. The distribution of εt+1 is characterized by the

N × 1 vector of expected residual returns µε and the N × N covariance matrix Σε. For simplicity, we

assume that all assets have the same expected residual return of zero, i.e., µε = 0. Σε is a diagonal matrix

with diagonal elements σε for all assets, i.e., the residuals are uncorrelated. We calibrate σε with respect to

the results obtained from our IPCA analysis on empirical data. That is, we obtain fitted (individual) asset

returns from IPCA and calculate the cross sectional average of the standard deviations of the residuals.

Thus, we set all diagonal elements of Σε to 0.1629.

After we have obtained all simulated characteristics, conditional alphas and betas, factor returns, and

residual returns, we put all components together and calculate asset returns as in equation (4).

3.2. Methodology

3.2.1. Estimation

This section briefly reviews the estimation procedure of the latent factors f̂t+1 and the Γ̂α,β =
[
Γ̂α, Γ̂β

]
coefficients as discussed in KPS. Note that we differentiate between simulation parameters and (estimated)

IPCA parameters by ˆ(•). For each simulated data set (i.e., covariance-only world, characteristic-only world,

and covariance-characteristic world), we fit 1) a beta-only IPCA that estimates only betas and no alpha

(i.e., Γ̂α = 0, Γ̂β 6= 0), 2) an alpha-only IPCA that estimates alpha but no betas (i.e., Γ̂α 6= 0, Γ̂β = 0), and

3) an “unrestricted” IPCA that estimates both alpha and betas (i.e., Γ̂α 6= 0, Γ̂β 6= 0). For specifications

that estimate betas and thus factors, we estimate models with K = 1, . . . , 6 factors.
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IPCA finds estimates f̂t+1 and Γ̂α,β according to a least squares criterion as described in equation (19):

min
Γα,β ,F

=

T−1∑
t=1

(rt+1 −ZtΓα,βft+1)
′
(rt+1 −ZtΓα,βft+1) (19)

with Zt denoting an N × L matrix of asset-level characteristics, ft is a K × 1 vector of contemporaneous

factor realizations, and F denotes the K × T matrix of stacked factor realizations. Note that for simplicity,

the factors include a constant factor if IPCA allows for an anomaly alpha. Since there is no closed-form

solution for equation (19), KPS propose an alternating least squares algorithm to solve numerically for f̂t+1

and Γ̂α,β . Given an initial estimate for the latent factors, the Γ̂α,β coefficients are obtained by a pooled

ordinary least squares regression (POLS) of the asset returns on the firm characteristics interacted with the

estimated factors (and a constant factor if IPCA allows for alpha):

vec
(
Γ̂

′

α,β

)
=

(
T−1∑
t=1

Z
′

tZt ⊗ f̂t+1f̂
′

t+1

)−1(T−1∑
t=1

[
Zt ⊗ f̂t+1

]′
rt+1

)
(20)

with ⊗ denoting the Kronecker product. For a beta-only IPCA, the estimates Γ̂α,β are arranged as an

(LK) × 1 vector; therefore, the vector has to be reshaped into an L ×K matrix. However, if IPCA allows

for alpha, the vector is of dimension (L(K + 1)) × 1 and has to be reshaped into an L × 1 vector and an

L×K matrix of Γ̂α and Γ̂β coefficients, respectively. Given the Γ̂α,β estimates, the (non-constant) factors

are updated via cross-sectional regressions of the asset returns in excess of the “anomaly return” on the

conditional betas as described in equation (21):

f̂t+1 =
(
Γ̂

′

βZ
′

tZtΓ̂β

)−1 (
Γ̂

′

βZ
′

t

(
rt+1 −Z

′

tΓ̂α

))
∀t (21)

with Z
′

tΓ̂α denoting the “anomaly returns”. However, if IPCA does not allow for an anomaly alpha, the

update rule in equation (21) reduces to cross-sectional regressions of the asset returns on the conditional

betas.

KPS suggest to create “characteristic-managed portfolios” for accelerating computational performance

and for dealing with the missing-value problem in the return and characteristic matrices of the individ-

ual assets. Characteristic-managed portfolios are simply the asset-level characteristics interacted with the

corresponding returns as defined in equation (22):

xt+1 =
Z

′

trt+1

Nt+1
(22)

with xt+1 denoting an L × 1 vector of characteristic-managed portfolio returns and Nt+1 denoting the

number of non-missing observations at month t + 1. The l-th element in xt+1 is the portfolio return at
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t + 1, with asset weights determined by the l-th characteristic. Similarly, missing values in the matrix of

firm characteristics are eliminated by defining a matrix of cross-products of the characteristics:

Wt =
Z

′

tZt
Nt+1

(23)

with Wt denoting an L × L matrix of cross-products of non-missing characteristics. Wt is non-changing

during the numerical optimization and therefore replaces Z
′

tZt in equations (20) and (21). The returns on

characteristic-managed portfolios replace Z
′

trt+1 such that IPCA estimates for f̂t+1 and Γ̂α,β are obtained

by:

vec
(
Γ̂

′

α,β

)
=

(
T−1∑
t=1

Nt+1

(
Wt ⊗ f̂t+1f̂

′

t+1

))−1(T−1∑
t=1

Nt+1

[
xt+1 ⊗ f̂t+1

])
(24)

and

f̂t+1 =
(
Γ̂

′

βWtΓ̂β

)−1 (
Γ̂β

(
xt+1 −WtΓ̂α

))
∀t (25)

KPS propose a two-step estimation of the unrestricted alpha-beta IPCA. In the first step, a beta-only

IPCA is estimated to obtain estimates for Γ̂β . In the second step, the estimated Γ̂β coefficients are used as

initial values to estimate an alpha-beta IPCA. If there is a superior alpha-beta description of asset returns

different from the beta-only world, IPCA will estimate a nonzero anomaly alpha.

3.2.2. Validation

The performance evaluation is threefold. First, we compare the performance of the IPCA specifications

on each simulated data set by using the uncentered R2’s as defined in KPS. The R2
total is a measure for the

overall explanatory power for asset returns, i.e., it measures the fraction of return variance explained by

conditional loadings and contemporaneous factor realizations:

R2
total = 1−

∑
i,t

(
ri,t+1 −

(
α̂i,t + f̂t+1β̂i,t

))2

∑
i,t r

2
i,t+1

(26)

with α̂i,t and β̂i,t denoting the estimates of the conditional alpha and the conditional betas as defined in

equations (2) and (3), respectively. A second measure is the R2
pred that quantifies the explanatory power for

expected returns E [ri,t+1]:

R2
pred = 1−

∑
i,t

(
ri,t+1 −

(
α̂i,t + λ̂β̂i,t

))2

∑
i,t r

2
i,t+1

(27)

with λ̂ denoting an estimate for the factor premia (i.e., the time series average of the factors).

Second, to test whether there is a significant anomaly intercept given a set of K common factors, we use

the statistical test proposed by KPS for testing the null hypothesis that all elements of Γ̂α equal zero, i.e.,
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alpha does not depend on characteristics. Thus, we test the null hypothesis:

H0 : Γα = 0

against the alternative:

H1 : Γα 6= 0

KPS first estimate the alpha-beta (i.e., unrestricted) IPCA to obtain estimates for the Γ̂α vector and

calculate the test statistic as the sum of squared elements in Γ̂α:

Wα = Γ̂
′

αΓ̂α (28)

They obtain a distribution of Wα under the null hypothesis using a “residual bootstrap” procedure. Their

residual bootstrap is based on resampling characteristic-managed portfolio returns as described in equation

(29):

xbt = WtΓ̂βft+1 + d̃t+1 (29)

with xbt denoting an L × 1 vector of resampled characteristic-managed portfolio returns of bootstrap b =

1, . . . , 1000. The first part of equation (29) are the fitted returns obtained from the beta-only IPCA. The

second term d̃t+1 is an L×1 vector of residuals obtained from the alpha-beta IPCA, multiplied with a Student

t random variable with unit variance and five degrees of freedom.7 Using the bootstrapped samples, they

re-estimate the alpha-beta IPCA and calculate the sum of squared elements in Γ̂bα as described in equation

(28). The p-values are calculated as the fraction of bootstrapped W b
α statistics that exceed the value of Wα

from the original data set. They reject the null hypothesis if the p-value is below the 1 percent significance

level, otherwise they accept the null hypothesis.

3.3. Simulation results

3.3.1. Covariance-only world

In our first simulation setup, we assume that asset returns are fully described by covariances to (two)

priced risk factors and no anomaly alpha exists. As shown in Table 3, the true factor premia are λ1 = 0.0331

and λ2 = 0.0145, respectively, and the corresponding Γβ coefficients to Z9 and Z10 are one. Accordingly,

the asset pricing test should identify the beta-only IPCA as the true model and the IPCA should return

appropriate estimates of the factor premia, Γα, and Γβ coefficients.

In Table 4 we report the performance evaluation metrics as defined in equations (26) and (27) for

individual asset returns rt (Panel A) and characteristic-managed portfolio returns xt (Panel B). We also

7Multiplying the residuals with a random t variable improves efficiency of bootstrapping in heteroskedastic data (Gonçalves
and Kilian, 2004; Kelly et al., 2019).
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report the sum of squared Γ̂α coefficients, denoted as Wα, and the corresponding bootstrapped p-values

of the asset pricing test for testing the null hypothesis of an anomaly intercepts equal to zero (Panel C).

The results of the asset pricing test in Panel C suggest that the null hypothesis cannot be rejected at the

1 percent level if IPCA estimates at least two factors (p-value = 23.0), suggesting that the test correctly

identifies the true model, if IPCA estimates at least as many factors as there are in the true model.

The result of the asset pricing test that there is a significant anomaly alpha if IPCA estimates only

one factor indicates an “beta-eating” effect, as shown in Section 2.1. The effect is also reflected in the

performance measures presented in Panels A and B. The correctly specified two-factor beta-only IPCA

achieves a R2
total of 13.9 percent and a R2

pred of 0.31 percent at the asset-level. Not surprisingly, the one-

factor beta-only IPCA has lower model performance, as a result of the omitted factor. However, estimating

only one factor and additionally allowing for alpha increases the R2
pred to 0.31 percent, which equals that of

the true model. Thus, IPCA compensates for the omitted factor by estimating a non-zero anomaly intercept.

Even if IPCA estimates no factors (i.e., alpha-only IPCA), IPCA achieves the same R2
pred suggesting that

alpha is sufficient for describing expected returns. From the analytical analysis in Section 2.1, these findings

were to be expected.

IPCA Beta Alpha-Beta Alpha

K 1 2 3 4 5 6 1 2 3 4 5 6 0

Panel A: Individual assets (rt)
R2
total 13.6 13.9 13.9 14.0 14.0 14.0 13.6 13.9 13.9 14.0 14.0 14.0 0.31

R2
pred 0.27 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31

Panel B: Managed portfolios (xt)
R2
total 99.9 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 1.84

R2
pred 1.83 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84

Panel C: Asset pricing test
Wα 0.07 0.01 0.00 0.00 0.00 0.00
p-value 0.00 23.0 50.4 71.5 33.1 95.8

Table 4: IPCA model performance (covariance-only world)
Panel A and B report the performance evaluation metrics R2

total and R2
pred for individual assets (rt) and characteristic-managed

portfolios (xt), respectively, using a simulated covariance-only data set. Panel C reports the sum of squared elements in Γ̂α
(Wα) (multiplied by 100 for presentation purposes) and bootstrapped p-values in percent for testing the null hypothesis of

Γ̂α = 0. The column “Beta” refers to an IPCA without alpha, “Alpha-Beta” refers to an IPCA with both alpha and beta, and
“Alpha” is an IPCA that only estimates alpha and no betas.

To gain additional insights from the estimated IPCA specifications, Table 5 reports the estimated factor

premia (i.e., the time series average of the estimated factors) and Table 6 reports the corresponding Γ̂β

coefficients. If a factor premium significantly differs from zero at the 1 percent level, we print the respective

premium in bold letters. In the two-factor beta-only IPCA, the estimated factor premia are λ̂1 = 0.0333

and λ̂2 = 0.0124, which are close to the true factor premia of λ1 = 0.0331 and λ2 = 0.0145, respectively
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(see Table 3). As assumed in the underlying DGP, the corresponding Γ̂β coefficients (i.e., Γ̂β,9,1 and Γ̂β,10,1)

are close to one, which confirms the findings that the IPCA identifies the true model, if IPCA is correctly

specified.8

K λ̂1 λ̂2 λ̂3 λ̂4 λ̂5 λ̂6

Panel A: Beta-Only IPCA

1 0.0138
2 0.0333 0.0124
3 0.0262 0.0200 0.0126
4 0.0064 0.0323 0.0125 0.0005
5 0.0051 0.0188 0.0267 0.0123 0.0001
6 0.0045 0.0125 0.0302 0.0121 0.0017 0.0006

Panel B: Alpha-Beta IPCA

1 0.0236
2 0.0319 0.0122
3 0.0237 0.0225 0.0128
4 0.0028 0.0329 0.0125 0.0009
5 0.0022 0.0168 0.0285 0.0121 0.0011
6 0.0022 0.0118 0.0309 0.0122 0.0019 0.0003

Table 5: Estimated factor premia (covariance-only world)
The table reports the estimated factor premia of the beta-only and alpha-beta IPCA specifications, assuming a covariance-only
world. If the factor premium significantly differs from zero at the 1 percent level, we print the premium in bold letters.

8According to the findings in Table 4, including additional factors does not affect IPCA’s performance. However, estimating
more factors makes the interpretation of the model more difficult. First, the influence of a truly relevant characteristic seems
to be divided among several betas. Considering the results for the three-factor IPCA, the characteristic nine has large Γ̂β
coefficients for the first and second beta of 0.75 and 0.66, respectively. Thus, the estimation results are not robust to a larger
number of factors. Second, IPCA estimates “pseudo-betas” (and thus “pseudo-factors”) when including more factors than

exist in the true model. For example, in the three-factor beta-only IPCA, the fourth characteristic has a large Γ̂β coefficient
of 0.66 on the second beta. Since the corresponding factor premium significantly differs from zero, it appears that the fourth
characteristic is relevant for explaining asset returns. Although these issues do not affect the model performance, they may
make model interpretation more difficult and possibly hinder the identification of the true model.
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IPCA Beta Alpha-Beta

K 1 2 3 4 5 6 1 2 3 4 5 6

Γ̂β,1,1 -0.02 -0.00 -0.12 -0.20 -0.18 -0.16 -0.02 -0.00 -0.11 -0.20 -0.18 -0.16

Γ̂β,2,1 0.01 0.01 0.02 -0.04 -0.04 -0.03 0.01 0.01 0.02 -0.04 -0.04 -0.03

Γ̂β,3,1 -0.00 0.01 0.16 0.08 0.39 0.35 -0.00 0.01 0.15 0.08 0.39 0.36

Γ̂β,4,1 -0.11 -0.13 -0.61 -0.95 -0.89 -0.91 -0.12 -0.16 -0.59 -0.95 -0.89 -0.90

Γ̂β,5,1 -0.02 -0.01 -0.15 -0.09 -0.06 -0.06 -0.02 -0.01 -0.14 -0.09 -0.07 -0.06

Γ̂β,6,1 -0.01 -0.01 -0.01 -0.01 0.00 0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.01

Γ̂β,7,1 -0.00 0.00 0.04 0.05 0.04 0.04 0.00 0.00 0.03 0.05 0.04 0.04

Γ̂β,8,1 -0.00 -0.00 -0.01 -0.01 -0.01 -0.01 -0.00 -0.00 -0.01 -0.01 -0.01 -0.01

Γ̂β,9,1 0.92 0.99 0.75 0.19 0.15 0.15 0.91 0.99 0.77 0.20 0.15 0.15

Γ̂β,10,1 -0.37 0.04 0.04 -0.01 0.01 0.01 -0.41 0.03 0.04 -0.01 0.01 0.01

Γ̂β,1,2 0.04 0.17 0.06 -0.05 -0.00 0.04 0.18 0.07 -0.05 -0.00

Γ̂β,2,2 -0.00 -0.02 0.02 -0.02 -0.02 -0.00 -0.02 0.02 -0.02 -0.02

Γ̂β,3,2 0.04 -0.22 -0.02 -0.77 -0.86 0.04 -0.24 -0.02 -0.77 -0.86

Γ̂β,4,2 -0.02 0.66 0.18 -0.22 -0.26 -0.05 0.68 0.18 -0.23 -0.26

Γ̂β,5,2 0.02 0.20 0.03 -0.04 -0.03 0.03 0.21 0.03 -0.04 -0.03

Γ̂β,6,2 -0.00 0.00 -0.01 -0.04 -0.03 -0.00 0.00 -0.01 -0.03 -0.03

Γ̂β,7,2 0.00 -0.05 -0.02 0.02 0.03 0.00 -0.05 -0.02 0.02 0.03

Γ̂β,8,2 0.00 0.01 0.00 -0.00 -0.01 0.00 0.01 0.00 -0.00 -0.01

Γ̂β,9,2 -0.04 0.66 0.98 0.59 0.43 -0.04 0.63 0.98 0.59 0.43

Γ̂β,10,2 1.00 -0.01 0.04 -0.05 -0.05 1.00 -0.01 0.04 -0.05 -0.05

Γ̂β,1,3 0.05 0.03 0.10 0.05 0.05 0.04 0.11 0.04

Γ̂β,2,3 -0.00 0.02 0.03 0.02 -0.00 0.02 0.04 0.02

Γ̂β,3,3 0.02 0.09 0.50 0.35 0.01 0.09 0.49 0.36

Γ̂β,4,3 0.02 -0.02 0.32 0.27 0.02 -0.02 0.32 0.27

Γ̂β,5,3 0.04 -0.02 0.05 0.03 0.05 -0.02 0.06 0.03

Γ̂β,6,3 -0.00 -0.00 0.02 0.00 -0.00 -0.00 0.02 0.00

Γ̂β,7,3 -0.00 0.00 -0.03 -0.03 -0.00 0.00 -0.03 -0.03

Γ̂β,8,3 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01

Γ̂β,9,3 -0.03 -0.04 0.79 0.89 -0.03 -0.04 0.79 0.89

Γ̂β,10,3 1.00 0.99 0.09 0.07 1.00 0.99 0.08 0.07

Γ̂β,1,4 0.09 0.03 0.09 -0.09 0.03 0.10

Γ̂β,2,4 -0.26 0.00 0.01 0.26 0.01 0.01

Γ̂β,3,4 -0.73 -0.08 -0.06 0.73 -0.08 -0.06

Γ̂β,4,4 -0.13 -0.04 -0.04 0.13 -0.04 -0.04

Γ̂β,5,4 0.60 -0.00 0.02 -0.60 -0.00 0.03

Γ̂β,6,4 -0.00 -0.01 0.00 0.00 -0.01 0.00

Γ̂β,7,4 -0.05 0.01 0.01 0.05 0.01 0.01

Γ̂β,8,4 -0.01 0.00 -0.01 0.01 0.00 -0.01

Γ̂β,9,4 -0.02 -0.04 -0.04 0.02 -0.04 -0.04

Γ̂β,10,4 0.07 0.99 0.99 -0.07 0.99 0.99

Γ̂β,1,5 0.18 -0.80 -0.17 -0.81

Γ̂β,2,5 -0.35 -0.00 0.35 -0.00

Γ̂β,3,5 -0.03 -0.03 0.03 -0.03

Γ̂β,4,5 -0.11 0.17 0.11 0.17

Γ̂β,5,5 0.91 -0.55 -0.91 -0.53

Γ̂β,6,5 0.04 -0.15 -0.03 -0.15

Γ̂β,7,5 -0.10 0.00 0.10 -0.00

Γ̂β,8,5 -0.01 0.10 0.01 0.10

Γ̂β,9,5 -0.01 0.01 0.01 0.01

Γ̂β,10,5 -0.01 0.09 0.01 0.10

Γ̂β,1,6 -0.46 -0.44

Γ̂β,2,6 -0.48 -0.47

Γ̂β,3,6 -0.03 -0.03

Γ̂β,4,6 0.03 0.03

Γ̂β,5,6 0.73 0.74

Γ̂β,6,6 -0.09 -0.08

Γ̂β,7,6 -0.13 -0.13

Γ̂β,8,6 0.08 0.08

Γ̂β,9,6 0.01 0.00

Γ̂β,10,6 0.03 0.03

Table 6: Estimated Γ̂β coefficients (covariance-only world)

This table reports the estimated Γ̂β coefficients for the beta-only and alpha-beta (i.e., unrestricted) IPCA, respectively, using

a simulated covariance-only data set. The term Γ̂β,l,j denotes the estimated coefficient of the l-th characteristic for the beta
on the j-th factor.
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The results in Table 4 show that a one-factor alpha-beta IPCA and an alpha-only IPCA have the same

explanatory power for expected returns as the true two-factor beta-only IPCA. In Section 2.1, we show that

this is the case if the l-th element in Γ̂α is chosen such that it equals the product of the l-th row of the true Γβ

and the vector of true factor premia λ that is not explained by the estimated betas and factor premia. Table

7 presents the estimated Γ̂α coefficients for the alpha-beta and alpha-only ICPA. In the alpha-only IPCA,

the Γ̂α coefficients to these characteristics are very close to the calibrated factor premia presented in Table

3. Specifically, the Γ̂α coefficient on characteristic nine is 0.0336 and the coefficient on characteristic ten is

0.0138. This is because we assigned Γβ coefficients of one to these characteristics. Therefore, the alpha-only

IPCA identifies the true factor premia but assigns them to alpha. By doing this, an alpha-only IPCA can

fully describe expected returns but not the covariance among the assets. Even in the misspecified one-factor

unrestricted IPCA, the Γ̂α coefficients to characteristics nine and ten are nonzero (i.e., 0.0114 and 0.0235).

Thus, IPCA assigns components of both characteristics (i.e., true betas) to the anomaly intercept that are

important for modeling expected returns but that cannot be explained by a single beta on a common factor.

IPCA Alpha-Beta Alpha

K 1 2 3 4 5 6 0

Γ̂α,1 0.0010 -0.0000 -0.0018 -0.0018 -0.0018 0.0002 -0.0020

Γ̂α,2 -0.0002 -0.0002 -0.0000 -0.0011 -0.0012 -0.0005 0.0002

Γ̂α,3 0.0007 0.0002 0.0025 -0.0002 0.0001 0.0000 -0.0030

Γ̂α,4 0.0064 0.0092 0.0019 0.0005 0.0004 0.0000 0.0024

Γ̂α,5 0.0001 -0.0004 -0.0025 -0.0003 -0.0000 -0.0002 -0.0007

Γ̂α,6 -0.0006 -0.0005 -0.0006 -0.0006 -0.0006 -0.0002 -0.0007

Γ̂α,7 -0.0004 -0.0004 0.0001 -0.0000 -0.0001 0.0001 -0.0006

Γ̂α,8 0.0003 0.0003 0.0002 0.0002 0.0002 -0.0001 0.0001

Γ̂α,9 0.0114 0.0014 0.0002 0.0001 0.0001 0.0000 0.0336

Γ̂α,10 0.0235 0.0005 0.0002 0.0001 0.0001 -0.0000 0.0138

Table 7: Estimated Γ̂α coefficients (covariance-only world)

This table reports the estimated Γ̂α coefficients for the alpha-beta (i.e., unrestricted) and alpha-only IPCA, using a simulated

covariance-only data set. The term Γ̂α,l denotes the estimated coefficient of the l-th characteristic for the alpha.

3.3.2. Characteristic-only world

Next, we simulate asset returns assuming that the expected returns are fully determined by the charac-

teristics themselves. The betas only describe systematic covariances among the assets. Accordingly, the true

IPCA model is the alpha-beta IPCA with two factors, where the factor premia are zero. The performance

measures and the results of the asset pricing test are reported in Table 8.

The asset pricing test in Panel C indicates that there is a significant anomaly alpha after controlling for

one or two factors (p-value = 0.00). However, the magnitude of the Γ̂α coefficients, measured by the sum of

squared elements Wα, declines with every additional factor and the null hypothesis of an anomaly intercept

equal to zero cannot be rejected at the 1 percent level if IPCA estimates at least three factors (p-value =
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9.40). Thus, the asset pricing test of KPS concludes that asset returns are determined by covariances, not

characteristics, if IPCA estimates at least three factors.

This finding shows that there is an “alpha-eating” effect, which we derived in Section 2.2. There we

showed that there is a beta-only explanation for expected returns once the number of estimated factors equals

or exceeds the number of characteristics. If the number of factors is below the number of characteristics,

then no solution exists and IPCA only finds a least-squares approximation. However, this least-squares

approximation is already sufficient for the asset pricing test to fail to reject the null hypothesis of a zero

anomaly alpha. The decreasing test statistic Wα indicates that the approximation improves with increasing

number of factors. In the extreme case K = L (unreported) the alpha disappears entirely.

The true IPCA (i.e., two factors and unrestricted) achieves a R2
total of 13.3 percent and a R2

pred of 0.35

percent for individual assets. Omitting one or even both factors results in a decline in the R2
total to 13.0

or 0.35 percent, respectively, but does not affect the R2
pred. This is to be expected because, according to

the underlying DGP, the betas should not explain expected returns but only covariances among the assets.

However, the one- or two-factor beta-only IPCA cannot describe expected returns, as indicated by the

relatively low R2
pred of 0.04 and 0.20 percent, respectively, compared to 0.35 percent achieved by the true

alpha-beta IPCA. When including a third factor, the R2
pred for the beta-only IPCA increases to 0.35 percent,

which is equivalent to that of the true model. Thus, IPCA attributes the explanatory power of the missing

alpha to the betas, indicating an “alpha-eating” effect. This “alpha-eating” effect is evident not only in the

beta-only IPCA, but also in the alpha-beta IPCA, as indicated by the declining sum of squared elements in

Γ̂α with an increasing number of factors.

IPCA Beta Alpha-Beta Alpha

K 1 2 3 4 5 6 1 2 3 4 5 6 0

Panel A: Individual assets (rt)
R2
total 12.7 13.0 13.3 13.4 13.4 13.4 13.0 13.3 13.3 13.4 13.4 13.4 0.35

R2
pred 0.04 0.20 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

Panel B: Managed portfolios (xt)
R2
total 99.8 99.9 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 0.35

R2
pred 0.28 0.32 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

Panel C: Asset pricing test
Wα 0.76 0.76 0.64 0.50 0.40 0.27
p-value 0.00 0.00 9.40 6.60 6.30 45.0

Table 8: IPCA model performance (characteristic-only world)
Panel A and B report the performance evaluation metrics R2

total and R2
pred for individual assets (rt) and characteristic-managed

portfolios (xt), respectively, using a simulated characteristic-only data set. Panel C reports the sum of squared elements in Γ̂α
(Wα) (multiplied by 100 for presentation purposes) and bootstrapped p-values in percent for the test of Γ̂α = 0. The column
“Beta” refers to an IPCA without alpha, “Alpha-Beta” refers to an IPCA with both alpha and beta, and “Alpha” is an IPCA
that only estimates alpha and no betas.
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Again, we analyze the IPCA results in more detail by reporting the estimated factor premia, the Γ̂β ,

and the Γ̂α coefficients. According to the true DGP, we expect factor premia not distinguishable from zero,

Γ̂β coefficients of one for the characteristics nine and ten, and Γ̂α coefficients of 0.0680 and -0.0543 for the

characteristics one and two. All other Γ̂α,β coefficients should be zero. Estimating a one-factor IPCA, the

estimated factor premium is not significant at the 1 percent level for both the beta-only and alpha-beta

IPCA. However, the factor premium of the second factor in the alpha-beta IPCA is statistically significant

at the 1 percent level but small in magnitude; therefore not economically significant. However, the picture is

different for the beta-only IPCA. The premia of λ̂1 = 0.0390 and λ̂2 = 0.0426 are statistically significant and

large in magnitude, which already here indicates the existence of the “alpha-eating” effect. When estimating

three (or more) factors in the alpha-beta IPCA, the most factor premia become distinguishable from zero,

supporting the finding that IPCA constructs a covariance-based explanation for asset returns.

K λ̂1 λ̂2 λ̂3 λ̂4 λ̂5 λ̂6

Panel A: Beta-only IPCA

1 0.0049
2 0.0390 0.0426
3 0.0008 0.0877 0.0091
4 0.0063 0.0835 0.0179 0.0203
5 0.0034 0.0859 0.0113 0.0073 0.0133
6 0.0263 0.0015 0.0824 0.0089 0.0015 0.0129

Panel B: Alpha-Beta IPCA

1 0.0031
2 0.0003 0.0070
3 0.0016 0.0334 0.0107
4 0.0007 0.0446 0.0235 0.0129
5 0.0074 0.0008 0.0567 0.0202 0.0045
6 0.0229 0.0122 0.0604 0.0198 0.0145 0.0063

Table 9: Estimated factor premia (characteristic-only world)
The table reports the estimated factor premia of the beta-only and alpha-beta IPCA specifications, assuming a characteristic-
only world. If the factor premium significantly differs from zero at the 1 percent level, we print the premium in bold letters.

Table 10 presents the corresponding Γ̂β coefficients. In the true two-factor alpha-beta IPCA, the Γ̂β

coefficients on characteristics nine and ten are close to one and those to all other characteristics are close to

zero. Even if the factor premium of the second factor (λ2 = 0.0070) is statistically significant, it is very small

and may not be economically significant. Therefore, the IPCA correctly identifies the true model. However,

when estimating three factors and alpha, the Γ̂β coefficient of the first characteristic on the second beta

increases (Γ̂β,1,2) and the corresponding factor premium is large in magnitude (λ2 = 0.0334), suggesting

that the relationship between the second characteristic and returns is described by conditional betas, not

by the characteristic itself. This erroneous conclusion is the result of the “alpha-eating” effect that becomes

stronger with additional factors.
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The “alpha-eating” effect already appears in the two-factor beta-only IPCA. Here, the coefficients of

both the first and second characteristics to the first (i.e., Γ̂β,1,1 = 0.27 and Γ̂β,2,1 = -0.21) and second beta

(i.e., Γ̂β,1,2 = 0.50 and Γ̂β,2,2 = -0.45) are large, while the coefficient of characteristic ten for the second beta

(i.e., Γ̂β,10,2 = -0.70) is smaller than assumed in the true DGP, suggesting that IPCA fails to identify the

true betas because the betas eat the alpha. However, two factors are not enough to eat up all the alpha, as

indicated by the relatively low R2
pred reported in Table 8. As described in Section 2.2, this is because the

system of equations is underdetermined with L = 10 equations and only two optimizable parameters. In

the three-factor beta-only IPCA, the system is still underdetermined but the least squares approximation

is sufficient for filtering the relevant characteristics out of the noisy characteristics, resulting in a good

description of expected returns.
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IPCA Beta Alpha-Beta

K 1 2 3 4 5 6 1 2 3 4 5 6

Γ̂β,1,1 0.01 0.27 0.01 0.07 0.04 0.44 0.04 0.01 0.02 0.02 0.25 0.18

Γ̂β,2,1 -0.04 -0.21 -0.01 -0.03 -0.01 -0.10 0.01 -0.01 0.00 0.01 0.02 -0.04

Γ̂β,3,1 -0.01 -0.01 -0.01 0.05 0.08 0.58 0.00 -0.01 0.05 0.08 0.57 -0.40

Γ̂β,4,1 -0.02 0.05 -0.01 0.02 0.01 -0.67 0.02 -0.01 0.02 0.01 -0.78 0.89

Γ̂β,5,1 0.01 -0.00 0.00 0.02 0.01 0.05 -0.00 0.00 0.01 0.01 0.03 -0.03

Γ̂β,6,1 0.01 -0.00 0.00 0.00 0.01 0.05 -0.01 0.00 -0.00 0.01 0.04 -0.01

Γ̂β,7,1 0.00 -0.00 0.00 -0.00 -0.00 -0.05 -0.00 0.00 -0.00 -0.00 -0.04 -0.01

Γ̂β,8,1 -0.00 0.00 -0.00 0.00 0.00 0.02 0.00 -0.00 0.00 0.00 0.02 -0.01

Γ̂β,9,1 0.93 -0.94 1.00 -0.99 -0.99 0.03 -0.93 1.00 -1.00 -0.99 0.04 -0.04

Γ̂β,10,1 -0.38 0.03 0.07 -0.05 -0.05 -0.02 0.37 0.07 -0.06 -0.06 -0.04 0.06

Γ̂β,1,2 0.50 0.78 0.81 0.82 0.02 0.10 0.51 0.63 0.01 0.19

Γ̂β,2,2 -0.45 -0.61 -0.51 -0.52 -0.00 0.00 -0.01 -0.02 0.01 -0.00

Γ̂β,3,2 -0.04 -0.06 0.17 0.03 0.06 -0.01 0.64 0.40 0.07 0.15

Γ̂β,4,2 0.05 0.10 0.13 0.16 0.03 0.03 0.26 0.43 0.01 -0.01

Γ̂β,5,2 0.01 0.00 0.09 0.10 0.01 -0.00 0.26 0.36 0.01 0.02

Γ̂β,6,2 0.02 0.00 0.03 -0.00 0.00 -0.02 0.07 0.00 0.00 0.01

Γ̂β,7,2 0.00 -0.00 0.00 -0.00 0.00 -0.01 0.01 -0.00 -0.00 -0.02

Γ̂β,8,2 0.00 -0.00 -0.01 -0.01 0.00 -0.00 -0.04 -0.05 0.00 0.00

Γ̂β,9,2 0.22 -0.02 0.07 0.04 -1.00 -0.07 0.03 0.03 -1.00 -0.97

Γ̂β,10,2 -0.70 0.10 0.14 0.11 -0.05 0.99 0.44 0.37 -0.06 -0.04

Γ̂β,1,3 0.04 0.07 -0.01 0.73 0.17 0.23 0.79 0.89

Γ̂β,2,3 -0.11 -0.23 -0.11 -0.52 -0.01 -0.02 -0.02 -0.03

Γ̂β,3,3 -0.00 -0.20 -0.93 -0.24 0.36 -0.85 0.07 0.35

Γ̂β,4,3 -0.02 -0.04 0.09 0.35 0.11 0.38 0.31 -0.02

Γ̂β,5,3 0.01 -0.07 -0.02 0.09 0.15 0.18 0.44 0.08

Γ̂β,6,3 0.02 -0.00 -0.17 -0.04 0.05 -0.19 -0.09 0.03

Γ̂β,7,3 0.01 0.00 -0.02 0.01 0.01 -0.03 -0.03 -0.11

Γ̂β,8,3 0.00 0.01 0.02 -0.02 -0.02 -0.01 -0.04 0.02

Γ̂β,9,3 0.07 0.05 -0.06 0.00 0.08 -0.06 0.01 0.23

Γ̂β,10,3 -0.99 -0.95 -0.29 0.10 -0.89 -0.09 0.27 0.10

Γ̂β,1,4 -0.04 0.06 0.05 0.19 0.28 0.26

Γ̂β,2,4 -0.35 -0.09 -0.10 -0.01 -0.01 -0.02

Γ̂β,3,4 -0.83 0.29 -0.40 0.24 -0.45 -0.48

Γ̂β,4,4 -0.09 -0.05 -0.28 0.15 -0.20 -0.22

Γ̂β,5,4 -0.30 0.01 -0.03 0.17 0.17 0.02

Γ̂β,6,4 -0.09 0.07 -0.08 0.03 -0.14 -0.12

Γ̂β,7,4 -0.02 0.01 -0.03 0.01 -0.05 -0.08

Γ̂β,8,4 0.05 -0.00 0.02 -0.02 0.01 0.03

Γ̂β,9,4 -0.06 0.08 0.02 0.08 0.01 0.01

Γ̂β,10,4 0.28 -0.94 -0.86 -0.92 -0.79 -0.79

Γ̂β,1,5 -0.20 -0.02 0.07 0.20

Γ̂β,2,5 -0.56 -0.02 0.00 -0.00

Γ̂β,3,5 -0.00 0.63 -0.65 -0.65

Γ̂β,4,5 -0.43 0.56 -0.49 -0.37

Γ̂β,5,5 -0.65 0.09 -0.05 0.00

Γ̂β,6,5 0.16 0.16 -0.17 -0.18

Γ̂β,7,5 0.01 0.08 -0.07 -0.07

Γ̂β,8,5 0.08 -0.05 0.04 0.03

Γ̂β,9,5 -0.01 0.08 -0.08 -0.09

Γ̂β,10,5 0.06 -0.49 0.54 0.60

Γ̂β,1,6 -0.29 0.06

Γ̂β,2,6 -0.62 -0.04

Γ̂β,3,6 0.09 0.00

Γ̂β,4,6 -0.06 -0.05

Γ̂β,5,6 -0.68 -0.95

Γ̂β,6,6 0.22 0.22

Γ̂β,7,6 0.05 -0.16

Γ̂β,8,6 0.06 0.14

Γ̂β,9,6 -0.00 -0.00

Γ̂β,10,6 0.03 -0.00

Table 10: Γ̂β coefficients (characteristic-only world)

This table reports the estimated Γ̂β coefficients for the beta-only and alpha-beta (i.e., unrestricted) IPCA, respectively, using

a simulated characteristic-only data set. The term Γ̂β,l,j denotes the estimated coefficient of the l-th characteristic for the beta
on the j-th factor.
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Table 11 reports the Γ̂α coefficients for the alpha-beta and alpha-only IPCA. We note that the true

coefficients for the first and second characteristic are 0.0680 and -0.0547, respectively, while those for the

other characteristics are zero (see Table 2). When estimating an alpha-only or unrestricted IPCA with up to

two factors, the estimated coefficients are very close to the true coefficients. However, there is large decrease

in the magnitude of the Γ̂α coefficient of the first characteristic when including a third factor.9 This is in

line with the findings from Table 10 that reports increasing Γ̂β coefficients on the first characteristic when

increasing the number of IPCA factors.

IPCA Alpha-Beta Alpha

K 1 2 3 4 5 6 0

Γ̂α,1 0.0680 0.0675 0.0493 0.0324 0.0155 -0.0006 0.0673

Γ̂α,2 -0.0543 -0.0543 -0.0540 -0.0528 -0.0530 -0.0508 -0.0542

Γ̂α,3 -0.0049 -0.0047 -0.0302 -0.0060 -0.0015 -0.0003 -0.0058

Γ̂α,4 0.0065 0.0063 -0.0033 -0.0234 0.0018 -0.0021 0.0068

Γ̂α,5 -0.0001 -0.0000 -0.0105 -0.0224 -0.0283 0.0008 -0.0000

Γ̂α,6 0.0006 0.0006 -0.0023 0.0044 0.0092 0.0024 0.0005

Γ̂α,7 -0.0000 0.0000 -0.0003 0.0005 0.0035 0.0104 0.0001

Γ̂α,8 -0.0000 -0.0000 0.0016 0.0026 0.0018 -0.0030 -0.0000

Γ̂α,9 0.0017 -0.0002 -0.0006 -0.0005 -0.0003 -0.0004 -0.0009

Γ̂α,10 -0.0020 -0.0069 -0.0051 -0.0024 -0.0015 0.0003 -0.0006

Table 11: Γ̂α coefficients (characteristic-only world)

This table reports the estimated Γ̂α coefficients for the alpha-beta (i.e., unrestricted) and alpha-only IPCA, using a simulated

characteristic-only data set. The term Γ̂α,l denotes the estimated coefficient of the l-th characteristic for the alpha.

3.3.3. Covariance-characteristic world

In the previous analyses, we showed that there is an “alpha-eating” effect in a characteristic-only world

if IPCA omits the alpha. The “alpha-eating’ effect is also present when estimating an alpha-beta IPCA

with more factors than actually exist in the true model. However, if the IPCA includes an intercept but

estimates fewer factors, the alpha eats beta. Table 12 repeats our analyses for a hybrid world in which both

covariances and characteristics drive expected asset returns. Accordingly, the true model is the unrestricted

IPCA with two priced factors.

The results of the asset pricing test reported in Table 12 suggest that the null hypothesis for the one- and

two-factor models can be rejected at the 1 percent level (p-value = 0.00). However, as in the characteristic-

only world, including additional factors changes the results. The null hypothesis cannot be rejected at any

conventional significance level if IPCA estimates at least three factors (p-value = 29.1), suggesting that the

characteristic-return relationship is described by covariances, not by the characteristics themselves. This

finding supports the “alpha-eating” effect we derive in Section 2.2 and also find in Section 3.3.2.

9At the same time, the coefficient on the third characteristic increases in magnitude to -0.0302. However, the average
correlation of the first and third characteristic is only 0.0052. Accordingly, we can rule out the possibility that the third
characteristic subsumes the explanatory power of the first characteristic.
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The three-factor beta-only IPCA achieves the same performance as the true two-factor alpha-beta IPCA.

However, only including alpha and no factors yields the same R2
pred of 0.83 percent as for the true model,

suggesting once more that alpha is sufficient for modeling expected returns.

IPCA Beta Alpha-Beta Alpha

K 1 2 3 4 5 6 1 2 3 4 5 6 0

Panel A: Individual assets (rt)
R2
total 13.6 14.1 14.3 14.3 14.3 14.4 14.0 14.3 14.3 14.3 14.3 14.4 0.83

R2
pred 0.51 0.75 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83

Panel B: Managed portfolios (xt)
R2
total 99.8 99.9 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 3.51

R2
pred 3.43 3.49 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51

Panel C: Asset pricing test
Wα 0.81 0.71 0.61 0.32 0.32 0.17
p-value 0.00 0.00 29.1 52.5 15.0 49.9

Table 12: IPCA model performance (covariance-characteristic world)
Panel A and B report the performance evaluation metrics R2

total and R2
pred for individual assets (rt) and characteristic-managed

portfolios (xt), respectively, using a simulated covariance-characteristic data set. Panel C reports the sum of squared elements

in Γ̂α (Wα) (multiplied by 100 for presentation purposes) and bootstrapped p-values in percent for the test of Γ̂α = 0. The
column “Beta” refers to an IPCA without alpha, “Alpha-Beta” refers to an IPCA with both alpha and beta, and “Alpha” is
an IPCA that only estimates alpha and no betas.

We turn our focus to the estimated factor premia and the Γ̂α and Γ̂β coefficients. Table 13 reports the

estimated factor premia for the beta-only and alpha-beta IPCA, respectively. The estimated premia for the

two-factor alpha-beta IPCA are close to those assumed in the true DGP (see Table 3). However, the beta-

only IPCA considerably overestimates the factor premia, indicating that the “alpha-eating” effect already

begins when estimating two factors. This is also reflected in the corresponding Γ̂β coefficients reported in

Table 14. Here, we observe the same as in Table 10, that is, the coefficients of both the first and second

characteristic to any beta are nonzero and those of characteristics nine and ten are not close to one. Thus,

IPCA cannot model the entire covariance of the returns because the betas eat the alpha.
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K λ̂1 λ̂2 λ̂3 λ̂4 λ̂5 λ̂6

Panel A: Beta-Only IPCA

1 0.0192
2 0.0768 0.0294
3 0.0702 0.0557 0.0221
4 0.0811 0.0008 0.0267 0.0348
5 0.0826 0.0000 0.0280 0.0006 0.0300
6 0.0844 0.0018 0.0262 0.0017 0.0061 0.0266

Panel B: Alpha-Beta IPCA

1 0.0226
2 0.0348 0.0157
3 0.0382 0.0197 0.0250
4 0.0661 0.0031 0.0163 0.0271
5 0.0681 0.0027 0.0230 0.0006 0.0154
6 0.0747 0.0015 0.0265 0.0002 0.0243 0.0043

Table 13: Estimated factor premia (covariance-characteristic world)
The table reports the estimated factor premia, calculated as the time series average of each factor. If a factor premium
significantly differs from zero at the 1 percent level, we print the premium in bold letters.
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IPCA Beta Alpha-Beta

K 1 2 3 4 5 6 1 2 3 4 5 6

Γ̂β,1,1 0.09 0.39 0.35 0.69 0.72 0.77 -0.04 0.00 0.01 0.57 0.61 0.68

Γ̂β,2,1 -0.12 -0.33 -0.30 -0.29 -0.29 -0.28 -0.01 -0.01 -0.06 -0.08 -0.08 -0.15

Γ̂β,3,1 -0.01 0.00 0.00 -0.11 -0.06 -0.13 -0.02 -0.01 0.08 -0.03 0.03 0.01

Γ̂β,4,1 -0.04 -0.01 -0.01 -0.35 -0.32 -0.24 -0.03 0.02 0.03 -0.51 -0.48 -0.38

Γ̂β,5,1 0.01 0.00 0.00 0.01 -0.01 0.00 0.01 0.01 -0.01 -0.01 -0.04 0.05

Γ̂β,6,1 0.00 -0.00 -0.00 0.03 0.03 0.01 0.00 -0.00 0.01 0.08 0.07 0.13

Γ̂β,7,1 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.01 -0.01 -0.02 0.05

Γ̂β,8,1 -0.00 -0.00 -0.00 -0.01 -0.01 -0.01 -0.00 0.00 -0.00 -0.03 -0.03 -0.03

Γ̂β,9,1 0.92 0.85 0.88 0.54 0.53 0.48 0.91 1.00 0.99 0.61 0.60 0.58

Γ̂β,10,1 -0.35 0.11 0.13 0.12 0.12 0.13 -0.41 0.09 0.09 0.13 0.14 0.13

Γ̂β,1,2 0.40 0.60 0.41 0.40 -0.40 0.09 0.10 0.43 0.43 -0.36

Γ̂β,2,2 -0.27 -0.47 0.00 0.01 -0.02 0.00 -0.07 0.02 0.02 -0.03

Γ̂β,3,2 0.03 0.03 -0.13 -0.16 0.19 0.02 0.15 -0.14 -0.16 0.24

Γ̂β,4,2 0.05 -0.01 -0.39 -0.40 0.30 0.09 0.10 -0.43 -0.43 0.49

Γ̂β,5,2 -0.01 -0.02 0.00 0.01 -0.02 0.00 -0.03 0.00 0.01 -0.02

Γ̂β,6,2 -0.01 -0.00 0.04 0.05 -0.03 -0.01 0.01 0.05 0.05 -0.05

Γ̂β,7,2 -0.00 -0.00 0.00 0.00 -0.01 -0.00 -0.02 0.00 0.00 0.00

Γ̂β,8,2 -0.00 -0.00 -0.02 -0.02 0.01 0.00 -0.01 -0.02 -0.02 0.02

Γ̂β,9,2 -0.39 -0.47 -0.81 -0.81 0.84 -0.09 -0.11 -0.78 -0.78 0.75

Γ̂β,10,2 0.78 0.44 0.01 0.00 -0.01 0.99 0.97 0.01 0.01 0.03

Γ̂β,1,3 0.30 0.08 0.28 0.28 0.08 0.03 0.29 0.42

Γ̂β,2,3 -0.32 -0.30 -0.23 -0.21 -0.45 -0.08 -0.09 -0.11

Γ̂β,3,3 -0.00 0.15 0.64 0.50 0.83 0.19 0.74 0.63

Γ̂β,4,3 -0.11 0.39 0.47 0.64 0.07 0.17 0.33 0.44

Γ̂β,5,3 -0.01 -0.02 -0.21 -0.16 -0.18 -0.03 -0.24 -0.12

Γ̂β,6,3 0.01 -0.04 -0.10 -0.13 0.12 0.00 -0.06 0.01

Γ̂β,7,3 0.00 -0.01 -0.05 -0.04 -0.08 -0.02 -0.07 0.04

Γ̂β,8,3 -0.00 0.01 0.01 0.02 -0.05 -0.01 -0.01 0.01

Γ̂β,9,3 -0.11 -0.17 -0.23 -0.22 -0.08 -0.10 -0.17 -0.31

Γ̂β,10,3 -0.88 0.84 0.35 0.36 -0.20 0.96 0.39 0.32

Γ̂β,1,4 0.18 0.18 0.06 0.11 0.17 0.17

Γ̂β,2,4 -0.67 -0.01 -0.03 -0.46 -0.02 -0.02

Γ̂β,3,4 0.21 0.36 0.74 0.81 0.35 0.34

Γ̂β,4,4 0.42 0.00 -0.41 0.01 0.00 -0.00

Γ̂β,5,4 -0.04 -0.15 -0.26 -0.18 -0.14 -0.13

Γ̂β,6,4 -0.04 -0.03 0.06 0.14 -0.02 -0.02

Γ̂β,7,4 -0.00 -0.03 -0.06 -0.07 -0.03 -0.03

Γ̂β,8,4 0.02 -0.00 -0.04 -0.05 -0.01 -0.00

Γ̂β,9,4 -0.16 0.01 -0.00 -0.09 0.01 0.01

Γ̂β,10,4 -0.52 -0.90 -0.45 -0.23 -0.91 -0.92

Γ̂β,1,5 -0.08 0.23 -0.38 -0.04

Γ̂β,2,5 -0.81 -0.09 -0.73 -0.62

Γ̂β,3,5 -0.37 -0.22 0.25 -0.15

Γ̂β,4,5 0.33 0.47 -0.35 0.23

Γ̂β,5,5 0.19 0.05 0.10 0.47

Γ̂β,6,5 0.02 -0.11 0.34 0.45

Γ̂β,7,5 0.06 0.02 -0.02 0.31

Γ̂β,8,5 0.03 0.04 -0.08 -0.00

Γ̂β,9,5 -0.13 -0.03 -0.05 -0.09

Γ̂β,10,5 -0.19 -0.81 0.02 -0.14

Γ̂β,1,6 -0.30 -0.40

Γ̂β,2,6 -0.92 -0.49

Γ̂β,3,6 -0.05 0.44

Γ̂β,4,6 -0.10 -0.52

Γ̂β,5,6 0.12 -0.21

Γ̂β,6,6 0.12 0.11

Γ̂β,7,6 0.04 -0.23

Γ̂β,8,6 -0.01 -0.09

Γ̂β,9,6 -0.11 -0.02

Γ̂β,10,6 -0.03 0.13

Table 14: Γ̂β coefficients (covariance-characteristic world)

This table reports the estimated Γ̂β coefficients for the beta-only and alpha-beta (i.e., unrestricted) IPCA, respectively, using

a simulated covariance-characteristic data set. The term Γ̂β,l,j denotes the estimated coefficient of the l-th characteristic for
the beta on the j-th factor.
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Table 15 reports the estimated Γ̂α coefficients for the alpha-beta and alpha-only IPCA specifications for

the covariance-characteristic world. From Table 12 we find that the alpha-only IPCA achieves the same

explanatory power for expected returns as the true two-factor alpha-beta IPCA. The alpha-only IPCA

estimates for the true Γα coefficients on the first and second characteristics (i.e., 0.0643 and -0.0549) are

very close to the true ones reported in Table 2. The coefficients for the characteristics three to eight are not

distinguishable from zero. However, the coefficients on characteristics nine and ten (i.e., 0.0334 and 0.0138)

are very close to the true factor premia of λ1 = 0.0331 and λ2 = 0.0145, supporting the finding that alpha

eats beta if IPCA estimates fewer factors than exist in the true model.

Including additional factors, we observe the same declining relationship between the Γ̂α coefficient of

the first characteristic with every additional factor as reported in Table 11. However, the magnitude of the

Γ̂α coefficient of the second characteristic also monotonically declines from two to six factors, although the

decrease is smaller than that of the coefficients of the first characteristic.

IPCA Alpha-Beta Alpha

K 1 2 3 4 5 6 0

Γ̂α,1 0.0665 0.0641 0.0609 0.0225 0.0217 0.0067 0.0643

Γ̂α,2 -0.0546 -0.0546 -0.0400 -0.0355 -0.0359 -0.0236 -0.0549

Γ̂α,3 0.0018 0.0013 -0.0258 -0.0217 -0.0215 -0.0151 0.0010

Γ̂α,4 -0.0031 -0.0061 -0.0088 0.0282 0.0281 0.0089 -0.0033

Γ̂α,5 -0.0012 -0.0014 0.0046 0.0055 0.0058 -0.0116 -0.0008

Γ̂α,6 -0.0002 0.0003 -0.0037 -0.0094 -0.0089 -0.0216 0.0001

Γ̂α,7 -0.0002 -0.0001 0.0024 0.0029 0.0030 -0.0119 -0.0003

Γ̂α,8 -0.0001 -0.0001 0.0014 0.0036 0.0035 0.0020 -0.0001

Γ̂α,9 0.0127 -0.0000 -0.0003 -0.0007 -0.0008 -0.0003 0.0334

Γ̂α,10 0.0231 -0.0049 -0.0039 -0.0043 -0.0042 -0.0014 0.0138

Table 15: Γ̂α coefficients (covariance-characteristic world)

This table reports the estimated Γ̂α coefficients for the alpha-beta (i.e., unrestricted) and alpha-only IPCA, using a simulated

covariance-characteristic data set. The term Γ̂α,l denotes the estimated coefficient of the l-th characteristic for the alpha.

3.4. Discussion

Both analytical evidence and simulation results suggest that IPCA cannot reliably distinguish between

covariances and characteristics. Adding more factors to the model, IPCA will always create a covariance-

based explanation of asset returns for which the asset pricing test cannot reject the null hypothesis of zero

alphas. Therefore the conclusion drawn by KPS, Buechner and Kelly (2021), and Kelly et al. (2021) that

only covariances explain stock, option, or bond returns may be inappropriate.

From our simulation, we find that the IPCA alpha is always sufficient for modeling expected returns,

irrespective of whether alpha determines returns or not. What is striking about the results in KPS is that

the R2
pred is always higher for the unrestricted IPCA. In Appendix B, we extend Table 1 in KPS by allowing

for an alpha-only IPCA. We find that the alpha-only IPCA achieves the highest R2
pred among all other IPCA
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specifications presented in KPS, i.e., 0.77 percent for individual stock returns and 2.67 percent for portfolio

returns. Thus, the effect that alpha is enough for modeling expected returns is not only a phenomenon from

our simulation but can also be observed on empirical data.

There is some indication that the empirical results presented in KPS may be subject to the “beta-eating”

or “alpha-eating” effect. In the simulation, we also find that as soon as the “alpha-eating” effect occurs, there

are large jumps in the R2
pred’s for the beta-only IPCA that close the gap between the R2

pred’s of the beta-only

and alpha-beta IPCA. For example, in the characteristic-only world (Table 8), the R2
pred’s are 0.04 percent

for the one-factor, 0.20 percent for the two-factor, and 0.35 percent for the three-factor models, respectively.

Such jumps can also be observed in the results presented in KPS. When increasing the number of factors from

four to five, the R2
pred increases from 0.41 to 0.69 percent for individual assets. For characteristic-managed

portfolios, there is also a large difference between the four- and five-factor specifications, i.e., 2.13 percent

for the four-factor and 2.41 percent for the five-factor model.10 From our simulation, we can provide two

possible explanations for these jumps. First, the alpha-beta (or alpha-only) IPCA have superior explanatory

power for returns in low-dimensional factor models because the alpha eats the beta. Thus, estimating the

fifth factor eliminates the “beta-eating” effect and IPCA identifies the true covariance-only model. Second,

a low-factor characteristic-only or covariance-characteristic model is the true model and five factors in KPS

are sufficient to capture the entire explanatory power of the omitted alpha (i.e., “alpha-eating” explanation).

However, both the “alpha-eating” and the “beta-eating” effect make it impossible for the IPCA to distinguish

between covariances and characteristics, therefore, the question of whether covariances, characteristics, or

both drive asset returns remains unanswered. Although IPCA does not give an answer to the debate, it is

a powerful tool for estimating returns. Even if misspecified, IPCA always finds a model with explanatory

power for returns that is equivalent to that of the true model.

Our simulation results are based on a single setup and one might argue that these findings only hold for

that particular experimental setup. In the appendix, we therefore present robustness analyses in which we

change the sample size, assume correlated characteristics and betas, and decrease and increase the anomaly

returns. We find that the results are qualitatively unchanged, that is, the “alpha-eating” and “beta-eating”

effects still occur.

4. Conclusion

Kelly et al. (2019), Buechner and Kelly (2021), and Kelly et al. (2021) perform IPCA on stock, option,

and bond return data, respectively, and conclude that returns are determined by covariances with common

risk factors and no “anomalous returns” due to characteristics exist. These findings are a response to the

10In Buechner and Kelly (2021), such a jump can also be observed for individual option returns, when increasing the number
of factors from three (R2

pred = 5.85) to four (R2
pred = 6.19).
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ongoing “covariance vs. characteristic” debate that has been extensively discussed in the literature over the

last thirty years. Presenting analytical evidence, we show that IPCA cannot reliably distinguish between

covariances and characteristics because the results may be subject to a “beta-eating” or “alpha-eating” effect.

We confirm this finding by simulating data according to a covariance-only world, a characteristic-only world,

and a covariance-characteristic world.

We find that a correctly specified IPCA, that is, an IPCA that estimates the correct number of factors

and estimates either alpha or betas or both, can identify the true model. Thus, the asset pricing test

proposed by KPS can correctly differentiate between covariances and characteristics. However, if the IPCA

is misspecified, then the IPCA will find a model that has the same performance, but the interpretation

becomes more difficult or even the wrong inferences are drawn. For example, omitting factors and allowing

for an anomaly alpha results in a “beta-eating” effect, meaning that alpha subsumes explanatory power of

returns that is actually attributable to betas. For example, an alpha-only IPCA identifies the true factor

premia and the true anomaly returns associated with the respective characteristics but cannot distinguish

between covariances or characteristics because it treats both as alpha. If IPCA estimates more factors than

exist in the true model and there are anomaly returns in the true model, there is an “alpha-eating” effect,

i.e., beta subsumes the returns associated with conditional alphas. This in turn makes anomaly returns

look like factor premia, resulting in the rejection of the characteristic story. KPS and Buechner and Kelly

(2021) do not address the question of how many factors are necessary to model asset prices. Instead, they

add factors to the model until the covariance-story is true, although the performance evaluation shows that

the alpha-beta IPCA has comparable or even superior model performance. This simulation study shows

that one can always generate a model that fits the covariance story that also has similar performance as the

possibly true characteristic model.

However, our simulation study cannot help to answer the question of whether covariances or character-

istics explain asset returns. Due to the “beta-eating” effect, alpha is always enough for modeling expected

returns, independent of the number of factors included. However, these superior fits that we also observe

for real-world data do not indicate that asset returns are driven by anomaly returns as shown in our sim-

ulation. The “beta-eating” effect will always subsume explanatory power of omitted betas. By contrast,

the “alpha-eating” effect will always create a covariance-based explanation of returns if IPCA estimates a

sufficient number of factors. Thus, both effects distort IPCA’s results.
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Appendix A. Robustness checks

The main results show that IPCA favors a covariance-only explanation for asset returns if IPCA estimates

a sufficient number of factors. However, the findings are based on a simple DGP with a time series and

cross section that matches that of the U.S. In this section, we change some settings of the initial simulation

setup to investigate the behavior of the IPCA when 1) varying the sample size, 2) allowing for correlated

characteristics, and 3) decreasing/increasing the anomaly returns.

Appendix A.1. Varying sample size

Most asset pricing studies are performed on the U.S. equity market, which is characterized by a large

time series and cross section. In our initial simulation setup, we study IPCA’s performance and ability to

distinguish between covariances and characteristics in an environment that matches the U.S. equity market.

In this analysis, we examine the extent to which the size of the time series or cross section changes the

results. To examine how decreasing the size of the time series dimension affects the estimation results, we

simulate data according to the Chinese equity market, which is characterized by a large cross section similar

to that of the U.S. equity market but has a much smaller time series (N = 3600 and T = 400). We examine

the extent to which the results change in dependence of decreasing the cross section by simulating data

according to the British (i.e., N = 1700, T = 400) and Spanish equity markets (i.e., N = 200, T = 400).11

All other simulation parameters are unchanged.

To save space, we only report the bootstrapped p-values of the asset pricing test for testing the null

hypothesis of a zero anomaly intercept against the alternative of a nonzero intercept. Panel A of Table A.16

reports the results for the “China-like” market. Assuming a covariance-only world, the null hypothesis of

a zero anomaly intercept is rejected at the 1 percent level if IPCA estimates only one factor (p-value =

0.70). However, estimating at least two factors, the test shows that the null hypothesis cannot be rejected,

suggesting that anomalous returns do not exist. Hence, the test correctly identifies the true model. This is

in line with the results from our initial setup presented in Table 4. Assuming either a characteristic-only

or a covariance-characteristic world, the test correctly rejects the null hypothesis if IPCA estimates at most

two factors. However, as in our initial simulation setup presented in Table 8 and Table 12, respectively, the

“alpha-eating” effect occurs so that the betas eat the alphas. As a consequence, ICPA cannot distinguish

between covariances and characteristics if at least three factors are included, resulting to an erroneous

acceptance of the zero anomaly return hypothesis. In summary, the results do not change by reducing

the time series dimension, provided the cross section remains large. Therefore, we next analyze how the

reduction of the size of the cross section affects the results.

11All numbers are based on those presented in the Jensen et al. (2021).
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Panel B presents the results for the “Britain-like” market, which is characterized by a time series as in

the Chinese market but a cross section of half the size of the cross section in China. Assuming a covariance-

only world, the asset pricing test cannot reject the null hypothesis at the 1 percent level for any number of

the IPCA factors, suggesting that anomalous returns do not exist. This is consistent with the underlying

DGP. For both the covariance-only and the covariance-characteristic worlds, the asset pricing test correctly

rejects the null hypothesis for the one- and two-factor model but not for models with additional factors.

These results suggest that both the “beta-eating” and “alpha-eating” effect are also existent here, with the

“alpha-eating” effect being more apparent.

Next, we further reduce the size of the cross section and simulate returns according to a “Spain-like”

market. The results are reported in Panel C. In the covariance-only world, the “beta-eating” effect we

observed for the one-factor IPCA does not seem to occur here. The asset pricing test cannot reject the

null hypothesis (p-value = 43.9), suggesting that the true covariance-only world is correctly identified. In

the characteristic-only world, the null hypothesis is rejected at the 1 percent level (p-value = 0.40) for the

one-factor model but not for the two- (or more) factor model (p-value = 7.40). This shows that IPCA

has even more problems to identify the true model when modeling a very small cross section. The results

for the covariance-characteristic world show more clearly that IPCA has problems with modeling a small

cross-section because the test can never identify the true model.

K 1 2 3 4 5 6

Panel A: China (N = 3600, T = 400)

Covariance-Only 0.70 94.7 85.7 78.4 96.4 85.2
Characteristic-Only 0.00 0.00 28.9 21.8 42.3 65.4
Covariance-Characteristic 0.00 0.00 11.9 34.0 14.0 2.50

Panel B: Great Britain (N = 1700, T = 400)

Covariance-Only 2.80 17.5 52.9 75.4 56.7 33.3
Characteristic-Only 0.00 0.10 17.8 87.2 96.9 40.5
Covariance-Characteristic 0.00 0.10 13.7 5.40 58.1 68.0

Panel B: Spain (N = 200, T = 400)

Covariance-Only 43.9 59.6 24.5 20.5 8.60 67.3
Characteristic-Only 0.40 7.40 99.9 98.6 69.2 11.5
Covariance-Characteristic 11.9 47.6 98.0 93.9 82.5 10.5

Table A.16: Varying sample size
This table reports the bootstrapped p-values of the asset pricing test suggested by KPS for asset return data simulated according
to three different DGPs, i.e., covariance-only world, characteristic-only world, and covariance characteristic world using different
sample sizes. The sample sizes are chosen according to real-world equity markets, i.e., China, Great Britain, and Spain. All
p-values are reported in percent.

To examine these results in more detail, Table A.17 reports the model performance of IPCA in a

covariance-characteristic “Spain-like” world. Once again, we find that only allowing for an IPCA alpha
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is sufficient for modeling expected returns, as indicated by the high R2
pred of 0.81 for the alpha-only IPCA.

However, the true model, i.e., alpha-beta IPCA with two factors, achieves a R2
total of 15.2 percent which is

lower than that of, for example, the six-factor alpha-beta IPCA of 17 percent. This finding suggests, that

IPCA requires more factors than there are in the true model to capture the entire covariation of the asset

returns.

IPCA Beta Alpha-Beta Alpha

K 1 2 3 4 5 6 1 2 3 4 5 6 0
Panel A: Individual assets (rt)
R2
total 14.1 15.0 15.6 16.1 16.6 17.0 14.4 15.2 15.7 16.2 16.6 17.0 0.81

R2
pred 0.50 0.72 0.80 0.80 0.80 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81

Panel B: Managed portfolios (xt)
R2
total 99.1 99.3 99.4 99.5 99.6 99.7 99.2 99.3 99.4 99.5 99.6 99.7 3.47

R2
pred 3.39 3.44 3.48 3.47 3.47 3.47 3.47 3.47 3.47 3.47 3.47 3.47 3.47

Panel C: Asset pricing test
Wα 0.51 0.54 0.28 0.27 0.22 0.22
p-value 11.9 47.6 98.0 93.9 82.5 10.5

Table A.17: IPCA model performance for a “Spain-like” world (covariance-characteristic world)
Panel A and B report the performance evaluation metrics R2

total and R2
pred for the “Spain-like” simulated data set for both

individual assets (rt) and characteristic-managed portfolios (xt), respectively. Panel C reports the sum of squared elements

in Γ̂α (Wα)(multiplied by 100 for presentation purposes) and bootstrapped p-values in percent for the test of Γ̂α = 0. The
column “Beta” refers to an IPCA without alpha, “Alpha-Beta” refers to an IPCA with both alpha and beta, and “Alpha” is
an IPCA that only estimates alpha and no betas.

The corresponding Γ̂β and Γ̂α coefficients are presented in Table A.18 and Table A.19, respectively.

According to the true DGP, the Γβ coefficients to characteristic nine and ten should be one. However, the

Γ̂β estimates for the true two-factor alpha-beta IPCA are far from one, or the influence of a true beta is

not clearly attributable to one IPCA beta. The ninth characteristic has coefficients of 0.46 and 0.80 for the

first and second IPCA beta, respectively. Characteristic ten has Γ̂β coefficients of 0.56 and -0.23. Therefore,

IPCA seems to fail to model the true betas, which may explain the relatively low R2
total of the correctly

specified IPCA in Table A.17.
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IPCA Beta Alpha-Beta

K 1 2 3 4 5 6 1 2 3 4 5 6

Γ̂β,1,1 -0.15 0.29 0.41 0.08 0.14 0.18 -0.19 -0.05 0.58 0.18 0.17 -0.06

Γ̂β,2,1 -0.04 -0.40 -0.20 -0.03 -0.02 -0.01 0.04 -0.07 -0.11 -0.03 -0.04 -0.01

Γ̂β,3,1 -0.04 0.28 -0.50 -0.42 -0.61 -0.41 -0.08 0.50 -0.53 -0.48 -0.50 -0.31

Γ̂β,4,1 -0.60 -0.26 -0.64 -0.89 -0.77 -0.88 -0.60 0.46 -0.55 -0.85 -0.84 -0.94

Γ̂β,5,1 -0.12 0.10 0.15 0.04 0.02 0.09 -0.12 0.00 0.20 0.07 0.07 0.07

Γ̂β,6,1 -0.01 0.02 0.06 -0.09 -0.05 -0.02 -0.01 -0.01 0.11 -0.06 -0.05 -0.02

Γ̂β,7,1 0.03 0.04 0.00 0.02 0.01 0.01 0.02 0.02 -0.02 0.01 0.01 0.04

Γ̂β,8,1 0.00 -0.00 0.03 -0.01 0.01 0.00 0.00 -0.03 0.03 0.00 0.00 0.01

Γ̂β,9,1 0.73 0.67 -0.17 0.02 0.04 0.03 0.71 0.46 -0.03 0.03 0.03 0.03

Γ̂β,10,1 -0.25 0.38 -0.27 -0.09 -0.07 -0.06 -0.28 0.56 -0.10 -0.08 -0.08 -0.05

Γ̂β,1,2 0.35 0.23 -0.43 -0.43 0.00 -0.20 0.22 0.75 0.02 -0.51

Γ̂β,2,2 -0.18 -0.40 0.07 -0.04 0.00 0.03 -0.15 -0.16 -0.03 0.05

Γ̂β,3,2 0.22 0.29 0.36 0.64 0.88 -0.04 0.25 -0.32 0.84 0.82

Γ̂β,4,2 0.50 -0.27 -0.22 -0.56 -0.39 -0.50 -0.07 0.33 -0.47 -0.24

Γ̂β,5,2 0.19 0.08 -0.14 0.05 0.23 -0.13 0.08 0.25 0.25 0.05

Γ̂β,6,2 0.02 0.02 -0.14 -0.24 0.02 -0.01 0.05 0.28 -0.03 0.05

Γ̂β,7,2 -0.01 0.04 0.04 0.07 0.04 0.02 0.01 -0.07 0.03 0.06

Γ̂β,8,2 -0.01 -0.01 -0.04 -0.08 -0.05 0.00 -0.01 0.06 -0.06 -0.02

Γ̂β,9,2 -0.49 0.70 0.71 0.14 0.01 0.80 0.78 -0.24 0.02 0.01

Γ̂β,10,2 0.52 0.37 0.30 -0.02 0.05 -0.23 0.49 0.01 0.03 0.05

Γ̂β,1,3 0.49 0.62 0.33 0.79 -0.46 0.25 0.81 0.79

Γ̂β,2,3 -0.29 -0.57 -0.35 -0.12 0.13 -0.16 -0.19 -0.15

Γ̂β,3,3 0.11 0.18 0.08 -0.01 -0.09 0.22 -0.01 0.43

Γ̂β,4,3 0.32 -0.04 -0.02 0.17 -0.44 -0.08 0.17 -0.17

Γ̂β,5,3 0.25 0.24 0.04 0.31 -0.22 0.11 0.35 0.37

Γ̂β,6,3 0.04 0.13 0.12 0.38 -0.06 0.08 0.31 0.02

Γ̂β,7,3 -0.01 0.02 0.02 -0.04 0.02 -0.00 -0.05 -0.03

Γ̂β,8,3 0.00 0.02 0.02 0.06 -0.00 -0.00 0.05 -0.04

Γ̂β,9,3 -0.52 0.25 0.71 -0.27 0.50 0.76 -0.23 -0.04

Γ̂β,10,3 0.48 0.35 0.49 0.09 -0.52 0.52 0.07 0.03

Γ̂β,1,4 0.12 0.50 0.16 -0.00 0.14 0.05

Γ̂β,2,4 -0.11 -0.49 -0.22 -0.05 -0.13 -0.09

Γ̂β,3,4 -0.13 0.28 -0.00 0.17 -0.02 0.01

Γ̂β,4,4 0.14 -0.14 0.03 -0.16 0.03 -0.01

Γ̂β,5,4 -0.09 0.37 -0.07 0.11 -0.04 -0.10

Γ̂β,6,4 0.25 0.05 0.11 -0.23 0.10 -0.00

Γ̂β,7,4 -0.02 0.02 0.01 0.03 -0.00 0.00

Γ̂β,8,4 0.07 -0.00 0.02 -0.06 0.02 -0.01

Γ̂β,9,4 0.55 -0.53 0.82 -0.57 0.85 0.88

Γ̂β,10,4 -0.75 -0.03 0.48 0.74 0.49 0.45

Γ̂β,1,5 0.10 -0.06 -0.09 -0.11

Γ̂β,2,5 -0.20 -0.84 -0.04 -0.18

Γ̂β,3,5 0.09 -0.02 -0.07 -0.14

Γ̂β,4,5 0.04 -0.01 -0.05 0.02

Γ̂β,5,5 -0.00 0.02 0.01 0.24

Γ̂β,6,5 0.25 -0.39 -0.28 0.70

Γ̂β,7,5 -0.01 0.09 0.03 0.03

Γ̂β,8,5 0.06 -0.05 -0.06 0.17

Γ̂β,9,5 0.39 -0.29 -0.44 -0.25

Γ̂β,10,5 -0.85 0.22 0.84 0.54

Γ̂β,1,6 0.07 0.01

Γ̂β,2,6 -0.40 -0.02

Γ̂β,3,6 0.07 0.02

Γ̂β,4,6 0.05 0.04

Γ̂β,5,6 -0.01 0.05

Γ̂β,6,6 0.14 0.61

Γ̂β,7,6 0.03 -0.03

Γ̂β,8,6 0.05 0.14

Γ̂β,9,6 0.34 0.36

Γ̂β,10,6 -0.83 -0.69

Table A.18: Γ̂β coefficients for a “Spain-like” world (covariance-characteristic world)

This table reports the estimated Γ̂β coefficients for for the beta-only and alpha-beta (i.e., unrestricted) IPCA, respectively,

using a “Spain-like” simulated data set. The term Γ̂β,l,j denotes the estimated coefficient of the l-th characteristic for the beta
on the j-th factor.
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Even the examination of the Γ̂α vectors in Table A.19 shows that IPCA cannot identify the correct

model. As a reminder, according to Table 2, the true Γα coefficients of the first and second characteristics

are 0.0680 and -0.0547, respectively, while the coefficients of all other characteristics are zero. However,

IPCA systematically underestimates the coefficients of the first characteristic, so that, for example, in the

correctly specified IPCA the coefficient is estimated as only half as large (i.e., Γ̂α,1 = 0.0333) as in the true

model. At the same time, the Γ̂α coefficient on the fourth characteristic, which is expected to be zero, is

-0.0296, although characteristic one and four are uncorrelated (the average correlation is only 0.0053). We

qualitatively observe the same for the alpha-only IPCA.

IPCA Alpha-Beta Alpha

K 1 2 3 4 5 6 0

Γ̂α,1 0.0293 0.0333 -0.0031 0.0038 -0.0020 -0.0029 0.0257

Γ̂α,2 -0.0555 -0.0546 -0.0440 -0.0441 -0.0437 -0.0441 -0.0541

Γ̂α,3 0.0158 0.0078 0.0189 0.0194 0.0022 0.0019 0.0063

Γ̂α,4 -0.0128 -0.0296 -0.0147 -0.0077 -0.0001 -0.0003 -0.0320

Γ̂α,5 0.0063 0.0074 -0.0066 -0.0061 -0.0135 -0.0130 0.0042

Γ̂α,6 0.0020 0.0024 -0.0040 -0.0018 -0.0060 -0.0043 0.0026

Γ̂α,7 0.0065 0.0063 0.0076 0.0071 0.0070 0.0069 0.0069

Γ̂α,8 0.0004 0.0009 -0.0002 0.0004 0.0006 0.0013 0.0006

Γ̂α,9 0.0117 -0.0024 -0.0105 -0.0064 -0.0029 -0.0031 0.0302

Γ̂α,10 0.0222 0.0152 -0.0055 -0.0141 -0.0057 -0.0052 0.0143

Table A.19: Γ̂α coefficients for a “Spain-like” world (covariance-characteristic world)

This table reports the estimated Γ̂α coefficients for each estimated IPCA, i.e., beta-only (“Beta”), unrestricted (“Alpha-Beta”),

and alpha-only (“Alpha”) using a “Spain-like” simulated data set. The term Γ̂α,l denotes the estimated coefficient of the l-th
characteristic for the alpha.

To summarize, decreasing the size of the time series does not much affect the results. However, the

problems that ICPA and hence the asset pricing test have in identifying the true model become more

pronounced as the cross-section size decreases.

Appendix A.2. Correlated Characteristics

In our initial simulation setup, we assume that the characteristics are mutually uncorrelated. However,

this assumption may be oversimplified, therefore we deviate from the assumption and allow for significant

correlations. Specifically, we are interested in the results of the IPCA in a covariance-characteristic world

in which a beta is highly correlated with a characteristic that proxies for alpha.12

Table A.20 presents the bootstrapped p-values of the asset pricing test for different correlation coefficients

of characteristics 1 and 10 (ρ1,10). To study the behavior of the IPCA at different correlation levels, we

successively increase the correlation coefficient between the characteristics from 0 to 0.9. We find that,

12In unreported results, we also tested for high correlations between a beta and an irrelevant characteristic and find that the
results are qualitatively unchanged.
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regardless of the level of correlation, the null hypothesis is correctly rejected at the 1 percent level if IPCA

estimates at most two factors. In our initial setup (i.e., ρ1,10 = 0), we find that the null hypothesis cannot

be rejected if IPCA estimates three factors (p = 29.1). However, allowing for correlation between beta and

one characteristic, we observe a monotonically declining p-value when increasing the correlation coefficient.

With four estimated factors, we observe the same monotonic decreasing p-values with increasing correlations,

however the null hypothesis can never be rejected here. The situation is different for the five- and six-factor

models. If the correlations are extremely high (i.e., ρ1,10 ≥ 0.7), then the IPCA recognizes that there is

significant anomaly alpha. To examine this in more detail, we report the associated test statistics, i.e., the

sum of squared elements in Γ̂α, in Table A.21. We find that the test statistic declines with every additional

factor, suggesting that the Γ̂α estimates are too small (note that the sum of squared elements in the true

Γα vector is 0.76). However, the magnitude of the Γ̂α coefficients does not differ between the four- and five-

factor model but the five-factor IPCA alpha becomes statistically significant. This indicates that although

the magnitude of the coefficients is small, the dispersion under the null hypothesis is decreased for the

five-factor model, thus making these small alphas statistically significant. Decreasing p-values despite an

increasing number of factors can also be observed in Buechner and Kelly (2021). We additionally perform

the asset pricing test assuming seven and eight factors, respectively, and find that the null hypothesis cannot

be rejected for any correlation level if at least seven factors are included. These results show that even if

unrealistically high correlations between betas and characteristics are assumed, the beta always eats up the

alpha, if a sufficient large number of factors is estimated.

K
ρ1,9 1 2 3 4 5 6 7 8

0.0 0.00 0.00 29.1 52.5 15.0 49.9 100.0 99.8
0.1 0.00 0.00 20.5 50.2 11.2 37.3 100.0 99.7
0.2 0.00 0.00 15.0 40.3 7.70 22.6 100.0 100.0
0.3 0.00 0.00 11.6 35.0 6.10 16.2 100.0 99.9
0.4 0.00 0.00 8.80 31.5 3.70 8.20 99.9 99.7
0.5 0.00 0.00 6.60 26.9 3.10 3.80 100.0 100.0
0.6 0.00 0.00 4.60 23.2 1.90 1.50 100.0 100.0
0.7 0.00 0.00 3.20 20.9 1.00 0.50 98.5 99.9
0.8 0.00 0.00 3.10 13.0 1.30 0.20 90.4 99.8
0.9 0.00 0.00 3.20 10.6 0.20 0.00 68.1 99.9

Table A.20: Bootstrapped p-values assuming correlated characteristics (covariance-characteristic world)
This table reports bootstrapped p-values from the asset pricing test for testing the null hypothesis of zero anomaly intercepts.
We assume a covariance-characteristic world and vary the correlation coefficients of the first and tenth characteristic from 0 to
0.9. All results are presented in percent.
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K
ρ1,9 1 2 3 4 5 6 7 8

0.0 0.81 0.71 0.61 0.32 0.32 0.17 0.02 0.02
0.1 0.81 0.72 0.64 0.33 0.33 0.19 0.02 0.02
0.2 0.82 0.72 0.68 0.37 0.37 0.24 0.02 0.02
0.3 0.82 0.72 0.68 0.37 0.37 0.24 0.02 0.02
0.4 0.82 0.73 0.69 0.38 0.38 0.25 0.02 0.02
0.5 0.82 0.73 0.71 0.39 0.39 0.27 0.02 0.02
0.6 0.82 0.73 0.72 0.41 0.40 0.30 0.03 0.02
0.7 0.82 0.74 0.73 0.42 0.42 0.34 0.05 0.02
0.8 0.83 0.74 0.74 0.44 0.44 0.39 0.08 0.02
0.9 0.82 0.74 0.74 0.47 0.47 0.44 0.12 0.03

Table A.21: Test statistics assuming correlated characteristics (covariance-characteristic world)
This table reports the test statistics from the asset pricing test for testing the null hypothesis of zero anomaly intercepts. We
assume a covariance-characteristic world and vary the correlation coefficients of the first and tenth characteristic from 0 to 0.9.
The test statistic Wα is the sum of squared elements in Γ̂α. For representation purposes, we multiply the test statistic by 100.

Appendix A.3. Varying anomaly returns

We calibrated the anomaly returns with respect to univariate Fama-MacBeth regressions of the empirical

U.S. returns on the corresponding firm characteristics. However, these anomaly returns may be too high

for simulating real-world asset returns. Therefore, we shrink the Γα coefficients to 10 percent of the values

from our initial setup and simulate asset return data according to a covariance-characteristic world. Thus,

the Γα coefficients for the first and second characteristics are 0.0068 and -0.0054, respectively. We keep all

other simulation parameters as in our initial simulation setup.

Table A.22 presents the results. Again, we observe in Panel C that Wα, i.e., the sum of squared elements

in Γ̂α, declines with every additional factor. If IPCA estimates at least two factors, the null hypothesis of

zero anomaly intercepts is not rejected. As opposed to the results of our initial setting, the asset pricing

test cannot reliably identify the true two-factor model with alpha because the betas already subsumed the

alpha when allowing for two factors (p-value = 25.1). Thus, we conclude that the “alpha-eating” effect is

more pronounced if the anomaly returns are smaller.
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IPCA Beta Alpha-Beta Alpha

K 1 2 3 4 5 6 1 2 3 4 5 6 0
Panel A: Individual assets (rt)
R2
total 13.5 13.8 13.9 13.9 13.9 13.9 13.5 13.8 13.9 13.9 13.9 13.9 0.33

R2
pred 0.29 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

Panel B: Managed portfolios (xt)
R2
total 99.9 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 1.99

R2
pred 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99

Panel C: Asset pricing test
Wα 0.08 0.01 0.01 0.00 0.00 0.00
p-value 0.00 25.1 66.5 98.9 97.0 91.8

Table A.22: Reduced Γα coefficients (covariance-characteristic world)
Panel A and B report the performance evaluation metrics R2

total and R2
pred for individual assets (rt) and characteristic-managed

portfolios (xt), respectively, using a simulated covariance-characteristic data set assuming smaller true Γα coefficients. Panel

C reports the sum of squared elements in Γ̂α (Wα) (multiplied by 100 for presentation purposes) and bootstrapped p-values

in percent for the test of Γ̂α = 0. The column “Beta” refers to an IPCA without alpha, “Alpha-Beta” refers to an IPCA with
both alpha and beta, and “Alpha” is an IPCA that only estimates alpha and no betas.

Next, we make it easier for IPCA and simulate data according to a setting in which we scale the anomaly

returns upwards. For this purpose, we multiply the Γα coefficients of our initial setup by 10 and obtain

coefficients of 0.6804 and -0.5473. We use unrealistic large values for the Γα coefficients to make it as easy

as possible for IPCA to identify the anomaly returns. The results for the covariance-characteristic world are

reported in Table A.23.

The results of the asset pricing test (Panel C) are qualitatively similar to those presented in Table 12,

i.e., the null hypothesis is (correctly) rejected at the 1 percent level if IPCA estimates at most two factors

but the null cannot be rejected when allowing for additional factors. The true two-factor alpha-beta IPCA

achieves an R2
pred of 27 percent which is also achieved when excluding the intercept (i.e., beta-only). Thus,

alpha is not necessary for modeling expect returns, which already suggests that the “alpha-eating” effect is

also present and probably more pronounced.

38



IPCA Beta Alpha-Beta Alpha

K 1 2 3 4 5 6 1 2 3 4 5 6 0

Panel A: Individual assets (rt)
R2
total 29.1 36.7 36.9 37.0 37.0 37.0 36.7 36.9 36.9 37.0 37.0 37.0 27.0

R2
pred 26.3 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0

Panel B: Managed portfolios (xt)
R2
total 62.4 99.9 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 33.2

R2
pred 29.6 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2

Panel C: Asset pricing test
Wα 76.1 75.4 65.5 37.3 37.0 18.2
p-value 0.00 0.60 25.6 39.4 8.00 41.5

Table A.23: Increased Γα coefficients (covariance-characteristic world)
Panel A and B report the performance evaluation metrics R2

total and R2
pred for individual assets (rt) and characteristic-managed

portfolios (xt), respectively, using a simulated covariance-characteristic data set assuming larger true Γα coefficients. Panel C

reports the sum of squared elements in Γ̂α (Wα) (multiplied by 100 for presentation purposes) and bootstrapped p-values in

percent for the test of Γ̂α = 0. The column “Beta” refers to an IPCA without alpha, “Alpha-Beta” refers to an IPCA with
both alpha and beta, and “Alpha” is an IPCA that only estimates alpha and no betas.

Next, we examine the estimated Γ̂β coefficients and the estimated factor premia in Table A.24 and Table

A.25, respectively. For the one-factor beta-only IPCA, the Γ̂β coefficients of the first two characteristics

are 0.78 and -0.63, respectively, while those to characteristics nine and ten are indistinguishable from zero.

The corresponding factor premium is large and statistically significant (λ̂1 = 0.7867), suggesting that the

“alpha-eating” effect already begins when estimating one factor. The Γ̂β coefficient of characteristic nine

increases to 0.91 when allowing for a second factor but the factor premium of the second factor is zero.

Irrespective of the number of factors, only the factor premium of the first factor is statistically significant

while those of the other factors are not. This finding suggests that the beta-only IPCA fails to capture the

expected returns that are attributable to the betas.
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IPCA Beta Alpha-Beta

K 1 2 3 4 5 6 1 2 3 4 5 6

B1 Z1 0.78 0.78 0.78 0.78 0.78 0.78 -0.04 0.04 0.11 0.67 0.70 0.80
B1 Z2 -0.63 -0.63 -0.63 -0.63 -0.62 -0.62 -0.01 -0.01 -0.44 -0.30 -0.26 -0.39
B1 Z3 0.00 0.00 0.00 -0.00 0.00 0.00 -0.02 0.00 0.82 0.35 0.36 0.21
B1 Z4 -0.01 -0.00 -0.00 -0.01 -0.01 -0.01 -0.03 0.06 0.11 -0.53 -0.50 -0.13
B1 Z5 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.01 0.01 -0.18 -0.11 -0.12 0.15
B1 Z6 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.01 0.12 0.15 0.12 0.29
B1 Z7 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.08 -0.05 -0.05 0.18
B1 Z8 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.05 -0.06 -0.05 -0.02
B1 Z9 0.07 0.04 0.04 0.04 0.04 0.04 0.91 0.85 0.12 0.07 0.07 0.05
B1 Z10 0.00 0.02 0.02 0.02 0.02 0.02 -0.41 0.52 0.19 0.10 0.10 0.04
B2 Z1 -0.04 0.04 -0.06 -0.06 -0.06 0.08 0.02 -0.06 -0.06 0.03
B2 Z2 -0.01 -0.02 -0.02 -0.02 -0.02 0.01 -0.04 -0.01 -0.01 -0.02
B2 Z3 -0.02 0.01 0.01 0.02 0.03 0.02 0.10 0.01 0.02 0.19
B2 Z4 -0.03 -0.01 0.07 0.08 0.05 0.07 0.00 0.06 0.06 0.19
B2 Z5 0.01 -0.01 0.01 0.01 0.00 -0.00 -0.03 0.01 0.01 -0.04
B2 Z6 0.00 0.00 -0.01 -0.01 -0.01 -0.01 0.02 -0.01 -0.01 -0.00
B2 Z7 0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.01 -0.00 -0.00 0.01
B2 Z8 -0.00 -0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.01
B2 Z9 0.91 -1.00 1.00 0.99 1.00 -0.53 -0.99 1.00 1.00 -0.96
B2 Z10 -0.41 0.00 0.00 0.00 -0.00 0.84 0.03 0.00 0.00 0.06
B3 Z1 -0.02 -0.31 -0.20 -0.19 -0.06 -0.23 -0.09 -0.09
B3 Z2 -0.05 -0.41 -0.27 -0.25 -0.11 -0.30 -0.12 -0.10
B3 Z3 -0.02 0.29 0.53 0.52 0.17 0.64 0.77 0.59
B3 Z4 -0.09 0.79 0.75 0.77 -0.07 0.43 0.55 0.72
B3 Z5 -0.00 -0.03 -0.13 -0.12 -0.04 -0.12 -0.22 -0.08
B3 Z6 0.01 -0.08 -0.10 -0.11 0.04 0.04 -0.07 -0.03
B3 Z7 0.00 -0.00 -0.03 -0.03 -0.01 -0.05 -0.06 0.04
B3 Z8 -0.00 0.03 0.03 0.03 -0.01 -0.02 0.00 0.02
B3 Z9 -0.00 -0.09 -0.09 -0.07 -0.01 -0.05 -0.05 0.27
B3 Z10 -0.99 0.08 0.08 0.09 -0.97 0.49 0.17 0.16
B4 Z1 -0.07 -0.13 -0.07 -0.16 -0.02 -0.09
B4 Z2 -0.11 -0.18 -0.10 -0.22 -0.05 -0.14
B4 Z3 0.02 -0.07 0.57 0.42 0.20 0.17
B4 Z4 0.01 0.06 -0.38 0.08 -0.02 0.06
B4 Z5 -0.01 0.04 -0.19 -0.09 -0.07 0.01
B4 Z6 0.00 0.01 0.07 0.06 0.01 0.07
B4 Z7 0.00 0.01 -0.05 -0.03 -0.02 0.03
B4 Z8 0.00 0.01 -0.03 -0.02 -0.01 -0.00
B4 Z9 -0.01 -0.01 -0.00 -0.02 -0.00 -0.02
B4 Z10 -0.99 -0.97 -0.69 -0.85 -0.98 -0.97
B5 Z1 -0.37 -0.17 -0.55 -0.38
B5 Z2 -0.47 -0.23 -0.68 -0.48
B5 Z3 -0.66 -0.55 0.09 -0.37
B5 Z4 0.23 0.36 -0.29 0.23
B5 Z5 0.30 0.21 0.16 0.47
B5 Z6 0.05 -0.03 0.33 0.36
B5 Z7 0.08 0.06 0.00 0.26
B5 Z8 0.03 0.04 -0.07 0.00
B5 Z9 -0.04 -0.02 -0.02 -0.04
B5 Z10 0.21 -0.66 0.06 0.09
B6 Z1 -0.55 -0.40
B6 Z2 -0.68 -0.49
B6 Z3 -0.05 0.44
B6 Z4 -0.32 -0.52
B6 Z5 0.13 -0.21
B6 Z6 0.18 0.12
B6 Z7 0.04 -0.23
B6 Z8 -0.02 -0.09
B6 Z9 -0.03 -0.01
B6 Z10 0.28 0.15

Table A.24: Γ̂β coefficients for the increased Γα setting (covariance-characteristic world)

This table reports the estimated Γ̂β coefficients for each estimated IPCA, i.e., beta-only (“Beta”), unrestricted (“Alpha-Beta”),

and alpha-only (“Alpha”) for our simulation setup with upward scaled Γα coefficients. The term Γ̂β,l,j denotes the estimated
coefficient of the l-th characteristic for the beta on the j-th factor.
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K f̂1 f̂2 f̂3 f̂4 f̂5 f̂6

Panel A: Beta-Only IPCA

1 0.7867
2 0.8719 0.0000
3 0.8718 0.0005 0.0004
4 0.8717 0.0002 0.0054 0.0009
5 0.8717 0.0002 0.0040 0.0015 0.0030
6 0.8718 0.0002 0.0038 0.0008 0.0018 0.0031

Panel B: Alpha-Beta IPCA

1 0.0020
2 0.0662 0.0418
3 0.3244 0.0034 0.0026
4 0.6219 0.0001 0.0066 0.0038
5 0.6249 0.0001 0.0042 0.0009 0.0037
6 0.7600 0.0005 0.0024 0.0018 0.0044 0.0004

Table A.25: Estimated factor premia for the increased Γα setting (covariance-characteristic world)
The table reports the estimated factor premia, calculated as the time series average of each factor. If a factor premium
significantly differs from zero at the 1 percent level, we print the premium in bold letters.

Finally, we shed light on the estimation of the Γ̂α coefficients in Table A.26. In the true two-factor

alpha-beta IPCA, the Γ̂α are close to the true ones. However, allowing for additional factors, we observe

the “alpha-eating” effect for both the first and second characteristic. At the same time, the coefficients on

the third and fourth characteristic increase in magnitude, although the correlation with the truly relevant

characteristics are low (i.e., all correlations are below 0.01).

This robustness analysis reveals that even if the true Γα coefficients take unrealistic high values, the

“alpha-eating” effects results in the acceptance of the null hypothesis if a sufficient number of factors is

included, supporting the findings that IPCA will always create a covariance-based explanation for returns,

even if the “anomalous returns” are unrealistic high.
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IPCA Alpha-Beta Alpha

K 1 2 3 4 5 6 0

Γ̂α,1 0.6780 0.6720 0.6417 0.2642 0.2396 0.0715 0.6767

Γ̂α,2 -0.5474 -0.5472 -0.4039 -0.3595 -0.3830 -0.2460 -0.5475

Γ̂α,3 0.0014 0.0003 -0.2663 -0.2255 -0.2298 -0.1597 0.0010

Γ̂α,4 -0.0038 -0.0109 -0.0390 0.3249 0.3104 0.0954 -0.0033

Γ̂α,5 -0.0010 -0.0015 0.0574 0.0656 0.0762 -0.1191 -0.0008

Γ̂α,6 -0.0001 0.0010 -0.0377 -0.0937 -0.0786 -0.2212 0.0001

Γ̂α,7 -0.0002 0.0001 0.0245 0.0296 0.0313 -0.1359 -0.0003

Γ̂α,8 -0.0001 -0.0002 0.0147 0.0361 0.0333 0.0163 -0.0001

Γ̂α,9 0.0314 -0.0010 -0.0035 -0.0079 -0.0084 -0.0036 0.0334

Γ̂α,10 0.0147 -0.0560 -0.0466 -0.0500 -0.0463 -0.0149 0.0138

Table A.26: Γ̂α coefficients for the increased Γα setting (covariance-characteristic world)

This table reports the estimated Γ̂α coefficients for each estimated IPCA, i.e., beta-only (“Beta”), unrestricted (“Alpha-Beta”),

and alpha-only (“Alpha”) for our simulation setup with upward scaled Γα coefficients. The term Γ̂α,l denotes the estimated
coefficient of the l-th characteristic for the alpha.
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Appendix B. Empirical results

This appendix replicates Table 1 in KPS and extends it by including results for the alpha-only IPCA

(i.e., K = 0).

K
0 1 2 3 4 5 6

Panel A: Individual stocks (rt)
R2
total Γα = 0 14.8 16.4 17.4 18.0 18.6 18.9

Γα 6= 0 0.77 15.2 16.8 17.7 18.4 18.7 19.0

R2
pred Γα = 0 0.35 0.34 0.41 0.42 0.69 0.68

Γα 6= 0 0.77 0.76 0.75 0.75 0.74 0.74 0.72

Panel B: Managed portfolios (xt)
R2
total Γα = 0 90.3 95.3 97.1 98.0 98.4 98.8

Γα 6= 0 2.67 90.8 95.7 97.3 98.2 98.6 98.9

R2
pred Γα = 0 2.01 2.00 2.10 2.13 2.41 2.39

Γα 6= 0 2.67 2.61 2.56 2.54 2.51 2.50 2.46

Table B.27: IPCA model performance (in-sample)
Panel A and B report R2

total and R2
pred in percent for the beta-only Γα = 0 and alpha-beta Γα 6= 0 IPCA model using the

same U.S. equity data set as in KPS. We include a special case, that is, an alpha-only IPCA that includes no common factors
(i.e., K = 0).
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