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1 Introduction

While a huge theoretical literature dating back to the 1960s studies how the

physical skewness of an asset’s discrete (“dollar”) return affects investor behavior

and asset prices, only few empirical studies convincingly test the main predictions

of that literature.1 The reason for this gap is that it is challenging to empirically

estimate skewness with realistic amounts of data, especially over the long return

horizons the theoretical literature focuses on.2 Only recently, a handful of studies

including Fama and French (2018) and Farago and Hjalmarsson (2019) have

started addressing the estimation issue head on, proposing new estimators relying

on fewer data. Yet, as we will demonstrate, those estimators often deliver biased

estimates under realistic assumptions, especially over long horizons.

In our paper, we develop a new estimator of the skewness of an asset’s

return over an arbitrary horizon under the assumption that the asset’s value

can be modelled using a stochastic process from the affine stochastic volatility

(ASV) model class (see Duffie et al. (2000, 2003)). To do so, we first explain how

to calculate the conditional and unconditional version of the skewness of the

asset’s return using the corresponding moment generating functions (MGF) of

the stochastic process. Since the MGFs depend on the parameter values of the

stochastic process, we can then obtain estimates of the two skewness versions from

explicit estimates of the parameters. Crucially, using the most recent estimate of

the conditional MGF, we are easily able to calculate a natural and internally

consistent forecast of skewness over the desired future horizon.

We choose the Heston (1993) stochastic process as an example to implement

1Since we exclusively look into the physical skewness of an asset’s dollar return, we will, for
simplicity, refer to that skewness as the “skewness of an asset’s return” from here on, unless
stated otherwise. Given that only the dollar (and not the log) return measures the profitability
of real-world investments (i.e., only the dollar return is “investable”), its skewness is a more
relevant statistic for real-world investors than the skewness of the log return.

2To illustrate, even if monthly returns were independently and identically (i.i.d) normal, standard
estimators such as the sample skewness would need about 600 observations (approximately 50
years of data) to estimate skewness with a standard error of 0.10. Needless to say, most assets,
as, for example, most single stocks, do not exist for such long time periods.
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our new methodology, the advantages being that the process is simple yet flexible,

popular, and has an MGF available in closed form. Also, we are able to consistently

estimate the parameters of the process with a novel GMM estimator. Using a

Monte Carlo simulation exercise, we then confirm that our skewness estimator

delivers close to unbiased and efficient estimates of the skewness of returns with

an up to five-year horizon – even when we use no more than ten years of data in

our parameter estimation. Under our base case parameter setting for the Heston

process, the true unconditional skewness is, for example, 0.044, 0.097, 0.594,

1.406, and 2.120 at the weekly, monthly, annual, three-year, and five-year return

horizon, respectively. In striking agreement, the mean estimate of our estimator

is 0.041, 0.093, 0.575, 1.286, and 1.890, with an impressive mean squared error

(MSE) of 0.001, 0.004, 0.018, 0.047 and 0.112, all respectively.

Interestingly, Fama and French’s (2018) and Farago and Hjalmarsson’s (2019)

new estimators perform much worse in most simulations, with them overshooting

skewness over all horizons and them failing to capture possible declines in skewness

over shorter horizons. This occurs because their estimators miss out on one of

two forces driving skewness: the “compounding” and the “leverage” effect. The

compounding effect implies that compounding up short-horizon dollar returns

produces right skewness in the long-horizon dollar return, with the effect being

amplified by short-horizon return volatility (Bessembinder (2018)). The leverage

effect implies that a negative dependence between return and volatility lowers

skewness, especially over short horizons (Neuberger and Payne (2020)). While

Fama and French’s (2018) and Farago and Hjalmarsson’s (2019) new estimators

capture the compounding effect, their assumption that returns are i.i.d. makes

them miss out on the leverage effect. Our estimator, in contrast, incorporates

both the compounding effect as well as the leverage effect.

Notwithstanding, our estimator relies crucially on the assumption that

an ASV model can accurately describe asset values. To illustrate that small
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deviations from that assumption do not completely invalidate the estimator, we

next simulate asset values from a stochastic process similar to but even more

realistic than the Heston process, namely, the multi-factor Heston process. Using

our estimator based on the Heston process on those simulated data, we show

that the estimator continues to strongly outperform the others.

We finally apply our skewness estimator to real-world stock indexes, an asset

class for which the existence of a leverage effect has been extensively shown in prior

research. Our evidence reveals that the leverage effect dominates the unconditional

skewness of those indexes over shorter horizons, whereas the compounding effect

dominates that skewness over longer horizons. To be more precise, we discover that

the unconditional skewness of weekly returns is always larger than that of monthly

returns and sometimes even larger than that of annual returns, suggesting that

the “pull-down effect” caused by leverage can be strong. Notwithstanding, we also

find that unconditional skewness always increases with the return horizon over

sufficiently long horizons. We also learn that the unconditional skewness of long-

horizon dollar returns is much lower than suggested in Bessembinder (2018) and

Farago and Hjalmarsson (2019), mainly owing to the leverage effect. Given that,

we do not share Farago and Hjalmarsson’s (2019) sentiment that long-horizon

skewness is too extreme to be useful in practical applications.

Our work contributes to a small but emerging literature on how to accurately

estimate and forecast the skewness of returns over long horizons using limited

amounts of data. As is well appreciated, standard estimators do not succeed in

doing so.3 Thus, Fama and French (2018) propose conducting a simple bootstrap

on short-horizon returns, compounding up the draws to create a “bootstrap

long-horizon return.” Repeating that step multiple times, they compute the

skewness of long-horizon returns from the artifical returns. Assuming that short-

horizon returns are i.i.d., Farago and Hjalmarsson (2019) derive a closed-form

3In addition, Li (2020) shows that standard estimators deliver biased estimates for the skewness
of stock returns in the presence of leverage and volatility feedback effects.
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solution expressing the skewness of long-horizon returns as a function of short-

horizon return moments. Approximating the variance and skewness operator,

Neuberger (2012) and Neuberger and Payne (2020) derive a closed-form solution

expressing the skewness of log long-horizon returns as a function of short-horizon

return moments but without assuming i.i.d. returns. We add to those studies by

proposing an alternative parametric estimator of the skewness of long-horizon

returns producing more unbiased and efficient estimates. In contrast to the other

estimators, our estimator also easily yields a forecast of skewness.

Our work further feeds into a well-established literature on how the skewness

of returns affects financial decision-making and thus asset prices. Arditti (1967)

and Scott and Horvath (1980) establish that von-Neumann-Morgenstern (NM)

investors prefer more positively skewed returns. Simkowitz and Beedles (1978)

and Conine Jr and Tamarkin (1981) highlight that a preference for skewness can

lead the same investors to hold optimal underdiversified portfolios. Assuming

NM preferences in combination with monetary separation, Rubinstein (1973),

Kraus and Litzenberger (1976), and Harvey and Siddique (2000) document that

co-skewness (i.e., systematic skewness) prices assets. Using non-NM preferences or

violations of monetary separation, Brunnermeier et al. (2007), Mitton and Vorkink

(2007), and Barberis and Huang (2008) reveal that idiosyncratic skewness may

also price assets. Importantly, while the theories above all study the skewness of

long-horizon returns, empirical studies typically rely on estimates of the skewness

of short-horizon returns to test them, likely due to the difficulties in estimating

long-horizon skewness with limited data.4 We add to those studies by making a

first step toward testing those theories using more meaningful proxies.

We finally also contribute to the literature on estimating the parameters of

4Empirical studies investigating the effect of skewness on stock and option returns include, for
example, Boyer et al. (2010), Boyer and Vorkink (2014), Conrad et al. (2014), and Amaya
et al. (2015). Those studies are distinct from others concentrating on the effect of risk-neutral
skewness, as, for example, Bali and Murray (2013), Conrad et al. (2013), and Stilger et al.
(2017). Since systematic risk lowers risk-neutral skewness relative to physical skewness, the
results from the two types of studies should not be directly compared.
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continuous stochastic volatility models. Previous approaches include generalized

method of moments (GMM; e.g., Hansen and Scheinkman (1995) and Pan (2002)),

maximum likelihood (e.g., Bakshi et al. (2006), Bates (2006), and Aı̈t-Sahalia

et al. (2007)), simulated methods of moments (e.g., Gallant and Tauchen (1998),

Duffie et al. (2000), and Chernov et al. (2003)), Markov Chain Monte Carlo

(e.g., Eraker et al. (2003) and Li et al. (2008)), and the empirical characteristic

function method (e.g., Singleton (2001) and Jiang and Knight (2002)). Unlike

existing GMM estimators, our GMM estimator is constructed by matching

the theoretical central moments and cross-moments of the dollar return with

its sample counterparts, substituting small time interval approximations for

analytical expressions of the theoretical moments.

The paper proceeds as follows. In Section 2, we introduce our theoretical

framework and derive our general skewness estimator. In Section 3, we propose

a Heston-type estimator based on our framework and show how to implement

it in practice. We further discuss alternative estimators proposed in the recent

literature. Section 4 offers a simulation exercise studying the unbiasedness and

efficiency of our estimator and the others. In Section 5, we apply our Heston-type

estimator to real-world data. Section 6 sums up and concludes.

2 A General Parametric Skewness Estimator

In this section, we introduce our new parametric estimator of the skewness of an

asset’s dollar return over some arbitrary horizon. We start with defining the class

of stochastic processes which can be used to model an asset’s value in our setup

and then outline how to calculate conditional and unconditional return skewness

under those processes in the general case. We next narrow down our discussion

to three popular stochastic processes, deriving their specific expressions for the

two types of skewness. We finally turn to the topic of estimating conditional and

5



unconditional skewness from a stochastic process in the ASV class.

2.1 Affine Stochastic Volatility (ASV) Models

In our derivations, we assume that the value of an asset can be described using a

stochastic process from the ASV model class, as formalized in Duffie et al. (2000,

2003), Chernov et al. (2003), Bates (2006), and Cheridito et al. (2007). In line

with those studies, we define such processes as follows:

Assumption 1. On a canonical filtered space (Ω,F , (Ft)t≥0), let (Xt, Vt)t≥0 denote

a time-homogenous stochastically continuous Markov process taking values in

the state space D = R × Rd+ for some d ∈ N, where the scalar process Xt is

understood as the observed log-value process and the d-dimensional vector-valued

process Vt is the latent state process associated with Xt. We assume that:

1. There exist unique functions φ(u,w, h) ∈ C and ψ(u,w, h) ∈ Cd such that

the joint conditional moment generating function (MGF) Mt(u,w, h;Vt)

defined in Equation (2.1) has an exponential-linear form:

Mt(u,w, h;Vt) ≡ E[ert,hu+〈Vt+h,w〉|Xt, Vt] = eµhu+φ(u,w,h)+〈ψ(u,w,h),Vt〉,

(2.1)

for all (u,w, h) ∈ C× Cd × R+ and t ≥ 0 if E[.] exists, and where rt,h ≡

Xt+h −Xt is the log-return of Xt over horizon h and µ the drift of Xt.
5

2. As t → ∞, Vt converges in law to a unique invariant limit distribution

L(v) with MGF given by G(w) = E[e〈w,Vt〉].

3. For all t, h ∈ (0,∞), Mt(3, 0, h;Vt) <∞ almost surely.

Condition (1) follows Duffie et al. (2003) in defining an ASV model which is

homogenous of order one in Xt. Assuming the existence of the limit distribution

5To be more precise, the MGF functions of the ASV models in this paper refer to the analytical
continuation of the corresponding characteristic functions to the complex plane.
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L(v), Condition (2) ensures that a stationary regime for the Markov system exists

and thus that the unconditional moments of Xt are well defined (see Keller-Ressel

and Steiner (2008) and Keller-Ressel (2011) for more details). In turn, the third

moment of Xt does not explode over any finite horizon h, implying the skewness

of the dollar return over that horizon exists (see Andersen and Piterbarg (2007),

Keller-Ressel (2011), and Keller-Ressel et al. (2015) for details).

Intuitively, Mt(u,w, h;Vt) can be viewed as the MGF for (rt,h, Vt+h) con-

ditional on the latent state vector Vt. As we discuss below, Mt(u,w, h;Vt) is

inconvenient to use empirically since Vt is unobservable in practice. To avoid

that issue, we could focus on the unconditional MGF, computed by interpreting

Vt as a random variable with (limiting) distribution L(v) and then taking the

expectation of the conditional MGF with respect to that variable:

M(u,w, h) ≡ E[Mt(u,w, h;Vt)] = eµhu+φ(u,w,h)G(ψ(u,w, h)). (2.2)

Doing so, we can, however, only estimate unconditional skewness, not conditional

skewness, as we will understand more fully in the next section. To keep our

notation simple, we from here on suppress the MGF parameter w whenever it is

equal to zero (i.e., Mt(u, h) ≡Mt(u, 0, h) and M(u, h) ≡M(u, 0, h)).

2.2 Calculating True Skewness from ASV Models

2.2.1 The General Case

We next derive general closed-form or quasi-closed-form solutions for the skewness

of an asset’s dollar return over some horizon under the assumptions that the value

of the asset can be modelled using a stochastic process from the ASV class and

that the process parameters are known. To do so, we define the asset’s gross dollar

return measured from time t and with horizon h as Rt,h ≡ ert,h = eXt+h−Xt ,
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which is the ratio of the asset’s value at time t+ h to its value at time t.

We define the unconditional skewness of the dollar return as:

Skew[Rt,h] ≡ E[(Rt,h − E[Rt,h])3]

V[Rt,h]3/2
, (2.3)

which can be interpreted as our best estimate of skewness in the absence of any

information on Vt. Conversely, we define the conditional skewness as:

Skew[Rt,h|Gt] ≡
E[(Rt,h − E[Rt,h|Gt])3|Gt]

V[Rt,h|Gt]3/2
, (2.4)

where G = (Gt)t≥0 ⊂ F denotes the filtration generated by Xt. Equation (2.4) can

be interpreted as our best estimate of skewness conditional on the observations

available at time t. Notice that when Xt is continuously observed over time we

can perfectly estimate the latent state process Vt, so that Skew[Rt,h|Gt] is equal

to Skew[Rt,h|Vt], the full-information conditional skewness.

Using Assumption (1) in Section 2.1, we are able to rewrite the unconditional

skewness of the dollar return in Equation (2.3) as:

Skew[Rt,h] =
M(3, h)− 3M(1, h)M(2, h) + 2M(1, h)3

[M(2, h)−M(1, h)2]3/2
, (2.5)

and the conditional skewness of the dollar return in Equation (2.4) as:

Skew[Rt,h|Gt] =
Mt(3, h)− 3Mt(1, h)Mt(2, h) + 2Mt(1, h)3

[Mt(2, h)−Mt(1, h)2]3/2
. (2.6)

2.2.2 Some Specific Examples

We now show the specific solutions for the unconditional and conditional skewness

in case that the asset’s value can be described using geometric Brownian motion

(GBM), the Heston process, and the multifactor-Heston process.
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Geometric Brownian motion. Suppose (Xt, Vt)t≥0 satisfies:

Xt = X0 + (µ− 1

2
σ2)t+

√
VtdWt and Vt = σ2, (2.7)

where µ and σ are parameters, and Wt is a Brownian motion. Since Vt is constant,

the conditional and unconditional MGFs coincide and equal:

Mt(u, h) = M(u, h) = e(µh− 1
2σ

2h)u+ 1
2σ

2hu2

. (2.8)

In turn, the conditional and unconditional skewness coincide and equal:

Skew[Rt,h|Gt] = Skew[Rt,h] =
e3hσ2 − 3ehσ

2

+ 2

(ehσ2 − 1)3/2
, (2.9)

which is derived from plugging Equation (2.8) into (2.5) and simplifying. To wit,

Equation (2.9) is similar to Farago and Hjalmarsson’s (2019) estimator for dollar

return skewness, which also relies on the assumption that the short-horizon dollar

return is i.i.d. but does not require it to be lognormally distributed.

The Heston model. To enable an asset’s volatility to evolve stochastically

over time and to allow the asset’s value and volatility to be correlated, Heston

(1993) assumes that (Xt, Vt)t≥0 satisfies:

dXt = (µ− 1

2
Vt)dt+

√
VtdWt,

dVt = κ(α− Vt)dt+ ξ
√
VtdBt,

(2.10)

where κ, α, and ξ are the mean reversion, the long-run variance, and the volatility-

of-volatility parameter respectively, and Wt and Bt are Brownian motions with

[W,B]t = ρt. Setting ρ < 0 creates a negative correlation between the asset’s

value and volatility, consistent with Black’s (1976) leverage effect. To ensure that

Vt is positive, we require κ > 0, α > 0, and ξ > 0 as well as 2κα > ξ2.

Bates (2006), Andersen (2008), and Rollin et al. (2009) document that the
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conditional MGF of the Heston stochastic process is:

Mt(u,w, h;Vt) = eµhu+φ(u,w,h)+ψ(u,w,h)Vt , (2.11)

where:

φ(u,w, h) = κθ

(
α+(u)h+

α−(u)− α+(u)

P (u)
ln
(Q(u,w)− eP (u)h

Q(u,w)− 1

))
,

ψ(u,w, h) =
Q(u,w)α+(u)− α−(u)eP (u)t

Q(u,w)− eP (u)t
, P (u) =

√
(κ− ξρu)2 + ξ2(u− u2),

α± = (κ− uρξ ± P (u))/ξ2, and Q(u,w) =
α−(u)− w
α+(u)− w

.

(2.12)

Since (Vt)t≥0 obeys a Gamma distribution in the Heston process in the time

limit, the function G(w) in Equation (2.2) takes the form:

G(w) ≡ E[ewVt ] =
(

1− ξ2

2κ
w
)−2κα/ξ2

, (2.13)

and the unconditional MGF is equal to:

M(u,w, h) = eµuh+φ(u,w,h)G(ψ(u,w, h)). (2.14)

The multi-factor Heston model. To allow for a stochastic volatility model

with even more flexibility, Christoffersen et al. (2009) propose the multi-factor

Heston model, which generalizes the Heston model by modelling variance using

K > 1 stochastic variables. In particular, (Xt, Vt)t≥0 now satisfies:

dXt = (µ− 1

2

K∑
k=1

V
(k)
t )dt+

K∑
k=1

√
V

(k)
t dW

(k)
t ,

V
(k)
t = κ(k)(α(k) − V (k)

t )dt+ ξ(k)

√
V

(k)
t dB

(k)
t , k ∈ [1, 2, . . . ,K],

(2.15)

10



where [W (k), B(k)]t = ρ(k)t, [W (k),W (k′)]t = [B(k),W (k′)]t = [B(k), B(k′)]t = 0

for all k 6= k′, and the parameters µ, κ(k), α(k), ξ(k), and ρ(k) are defined as

before. Since each V
(k)
t evolves independently of the others, the conditional MGF

of the multi-factor Heston process takes the form:

Mt(u,w, h; θ, Vt) = eµhu+
∑K
k=1 φ

(k)(u,w,h)+
∑K
k=1 ψ

(k)(u,w,h)V
(k)
t , (2.16)

where φ(k)(u,w, h) and ψ(k)(u,w, h) are as in Equation (2.12) assuming κ = κ(k),

α = α(k), ξ = ξ(k), and ρ = ρ(k). We further have that:

G(w) =

K∏
k=1

G(k)(w), (2.17)

where G(k)(w) is as in Equation (2.13) under the same assumption as above.

Other ASV models. Turning to other ASV models, Theorem 2.7 in Duffie

et al. (2003) suggests that φ(u,w, h) and ψ(u,w, h) can always be obtained as

the solution of a system of general Riccati equations. Moreover, G(w) can be

derived as a by-product of that solution, as, for example, done in Keller-Ressel

(2011). While the Ricatti-equation system does not always have a closed-form

solution, it is always possible to solve it using numerical methods. As a result,

we can always calculate dollar-return skewness from Equations (2.5) and (2.6) if

the asset’s value obeys an ASV-class stochastic process — even if we looked into

processes more complicated and sophisticated than those explicitly discussed in

this section (such as affine jump-diffusion processes as in e.g. Eraker et al. (2003)

and Bates (2006)).6

6While only few studies derive closed-form solutions for the MGFs of general stochastic processes
from the ASV class, the reason may be a lack of applications. We note, for example, that we
only require φ(u, 0, h) and ψ(u, 0, h) for the purpose of option pricing, with these functions
being much easier to compute than their general (i.e., w 6= 0) counterparts. Pan (2002), Bates
(2006), and Bates (2012) show how to derive MGFs for ASV-class stochastic processes with
K = 1, while Bates (2019) discusses how to derive those MGFs for models with K > 1.
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2.3 Estimating Skewness from ASV Models

Since we can calculate the skewness of an asset’s dollar return assuming that the

asset’s value obeys an ASV-class stochastic process and the process parameters are

known, we next show that we can consistently and efficiently estimate and forecast

that skewness simply by estimating the process parameters. Assuming that we

work with daily or intra-day price data, we let (Xt)t≥0 be equidistantly observed

on some finite interval [0, T ]. To be more precise, denoting some fixed time

interval by ∆ (e.g., ∆ = 1/252 for one trading day), we observe (Xi∆)i=1:N , where

N = T/∆ is the sample size. Since ∆ is fixed, we, however, write Xi rather than

Xi∆ to keep our notation as simple as possible. We use Gi = σ(Xj ; j ∈ {0, . . . , i})

to denote the filtration generated by (Xj)j=1:i, with i ≤ N .

To be able to estimate the parameters of ASV-class stochastic processes and

to convert those into dollar return skewness estimates and forecasts, we impose

the following additional assumptions on top of those in Assumption (1):

Assumption 2. Consider an ASV model generating (Xt, Vt)t≥0 defined as in

Assumption 1. We further assume about that model that:

1. The model is uniquely determined by some k-dimensional parameter vector

θ ∈ Θ, where the associated parameter space Θ is a compact subspace of

Rk. For some realization of (Xt, Vt)t≥0, we denote the true data generating

parameter vector by θ0, taking values from the interior of Θ.

2. There exists an N-consistent estimator of θ0 adapted to GN , which we

denote by θ̂, such that θ̂
p→ θ0 as N →∞.

3. The unconditional and conditional moments E[Rkt,h] and E[Rkt,h|Gt] are

uniformly continuous in θ for all h > 0 and k = 1, 2, 3.

Conditions (1) and (2) ensure that a consistent estimator of the parameter

vector θ0 can be constructed based on equidistantly observed data. Given that
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Bates (2006) shows that numerous estimation techniques (including, e.g., GMM,

the efficient method of moments (EMM), and the empirical characteristic function

method) consistently estimate the parameters of a wide class of ASV models,

the two conditions are not restrictive. Condition (3) ensures the exponential

moments of an ASV model are smooth functions of the parameter vector, which is

also satisfied by the vast majority of ASV models. The final condition guarantees

that plugging the consistent estimates of an ASV-class stochastic process into

our skewness formulas (2.5) and (2.6) yields consistent skewness estimates.

Under Assumptions (1) and (2), we can estimate the unconditional skewness

of an asset’s dollar return over time i∆ to i∆ + h, Skew[Ri,h; θ̂], using:

Skew[Ri,h; θ̂] =
M(3, h; θ̂)− 3M(1, h; θ̂)M(2, h; θ̂) + 2M(1, h; θ̂)3

[M(2, h; θ̂)−M(1, h; θ̂)2]3/2
. (2.18)

Since we are unable to exactly infer Vi to calculate the value of the full-information

conditional MGF, Mi(u,w, h;Vi, θ̂), with equidistantly observed data, we devise

an optimal estimate M̄i(u,w, h; θ̂) ≡ E[Mi(u,w, h;Vi, θ̂)|Gi] instead. The observed

conditional skewness, Skew[Ri,h; θ̂|Gi], is then computed using:

Skew[Ri,h; θ̂|Gi] =
M̄i(3, h; θ̂)− 3M̄i(1, h; θ̂)M̄i(2, h; θ̂) + 2M̄i(1, h; θ̂)3

[M̄i(2, h; θ̂)− M̄i(1, h; θ̂)2]3/2
. (2.19)

While the optimal estimate M̄i(u,w, h; θ̂) is generally unavailable in closed-form,

the following proposition from Bates (2006) allows us to iteratively calculate it:

Proposition 1. Under Assumptions (1) and (2), assume that V0 is a random draw

from L(v) and X0 is a deterministic initial log-price. Let Gi(w|Gi) = E[e〈w,Vi〉|Gi]

denote the MGF of Vi conditioning on Gi. It then holds that:
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M̄i(u,w, h; θ̂) = eµhu+φ(u,w,h)Gi(ψ(u,w, h)|Gi), (2.20)

Gi+1(w|Gi+1) =

∫ 0+i∞
0−i∞ M̄i(u,w, h; θ̂)e−uri,1du∫ 0+i∞
0−i∞ M̄i(u, 0, h; θ̂)e−uri,1du

, (2.21)

where G0(w|G0) = G(w).

In practice, we always start with Equation (2.20), calculating M̄0(u,w, h; θ̂) =

eµhu+φ(u,w,h)G(w). We next plug M̄0(u,w, h; θ̂) into Equation (2.21), numerically

evaluating the integrals and obtaining G1(w|G1). We then plug G1(w|G1) back

into Equation (2.20), allowing us to compute the optimal expected MGF at

time ∆, M̄1(u,w, h; θ̂). We continue in that manner until we have the optimal

expected MGFs for all dates in our data (i.e., for all i ∈ {1, 2, . . . , N}).

We note that a direct implementation of Proposition (1) suffers from the

curse of dimensionality due to the iterative nature of the numerical integration. To

avoid that problem, we follow Bates (2006) and approximate Gi(w|Gi) by the

MGF of a Gamma distribution with parameters estimated numerically at every

iteration. Despite the complexity, the approach is numerically stable, and filtration

errors die out with an increasing number of observations.

Following from condition (3) of Assumption (2), the continuous mapping

theorem implies that Skew[Ri,h; θ̂] and Skew[Ri,h; θ̂|Gi] are consistent estima-

tors of, respectively, Skew[Ri,h; θ0] and Skew[Ri,h; θ0|Gi], as stated in the next

proposition:

Proposition 2. Under Assumptions (1) and (2), it holds as N →∞ that:

Skew[Ri,h; θ̂]
p→ Skew[Ri,h; θ0],

Skew[Ri,h; θ̂|Gi]
p→ Skew[Ri,h; θ0|Gi].

(2.22)
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We can also establish that our skewness estimates are asymptotically normal

if θ̂ is so, too. Since establishing that θ̂ is asymptotically normal, however, requires

additional assumptions, we omit those derivations for the sake of brevity.

3 A Heston-Type Estimator Based On Our Setup and

Other Competing Estimators

In this section, we study a Heston-type estimator of the skewness of long-horizon

returns based on the setup in Section 2, illustrating how we can use a novel GMM

approach to calculate that estimator in practice. We also introduce estimators of

the skewness of long-horizon returns advocated in recent studies.

3.1 The Heston-Type Estimator

3.1.1 Using GMM to Calculate the Heston-Type Estimator

We devise a Heston-type estimator of the conditional (unconditional) skewness

of long-horizon dollar returns by plugging the conditional (unconditional) MGFs

of the Heston stochastic process shown in Equation (2.11) ((2.14)) into skewness

formula (2.6) ((2.5)) and evaluating the formula at estimates of the parameter

values of the process, θ ≡ [µ, κ, α, ξ, ρ]. To obtain the parameter estimates, we

propose a novel GMM approach matching the theoretical central moments and

cross-moments of Ri,∆ with their sample counterparts. To that end, denote the

centered version ofRi,∆ as R̃i,∆ ≡ Ri,∆−M(1,∆). Next denote the centered MGF

and cross-MGF of Ri,∆ as, respectively, M̃(k,∆) ≡ E[R̃ki,∆] and C̃(m,n,∆, j) ≡

Cov[R̃mi,∆, R̃
n
i+j,∆], where j indicates the number of lags. We can then write the

system of moment conditions used in our GMM approach as:

E[h(Ri,∆; θ)] = 0, (3.1)
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where h(Ri,∆; θ) is given by the following vector:

h(Ri,∆; θ) =



Ri,∆ −M(1,∆; θ)

R̃2
i,∆ − M̃(2,∆; θ)

R̃3
i,∆ − M̃(3,∆; θ)

R̃4
i,∆ − M̃(4,∆; θ)

R̃1
i,∆R̃

2
i+1,∆ − C̃(1, 2,∆, 1; θ)

...

R̃1
i,∆R̃

2
i+J,∆ − C̃(1, 2,∆, J ; θ)

R̃2
i,∆R̃

2
i+1,∆ − C̃(2, 2,∆, 1; θ)

...

R̃2
i,∆R̃

2
i+J,∆ − C̃(2, 2,∆, J ; θ)


(4+2J)×1

, (3.2)

and J represents the longest lag between returns.

Expanding the definitions of M̃(k,∆; θ) and C̃(m,n,∆, j; θ) in vector (3.2), we

show in the appendix that those centered MGFs and cross-MGFs can be written

as linear functions of non-centered MGFs and cross-MGFs:

M̃(2,∆) = M(2,∆)−M2(1,∆), (3.3)

M̃(3,∆) = M(3,∆)− 3M(1,∆)M(2,∆) + 2M3(1,∆), (3.4)

M̃(4,∆) = M(4,∆)− 4M(1,∆)M(3,∆) + 6M2(1,∆)M(2,∆)

− 3M4(1,∆), (3.5)

C̃(1, 2,∆, j) = C(1, 2,∆, j)−M(1,∆)M(2,∆), (3.6)

C̃(2, 2,∆, j) = C(2, 2,∆, j)− 2M(1,∆)C(1, 2,∆, j)−M2(2,∆)

+ 2M2(1,∆)M(2,∆), (3.7)
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where the non-centered cross-MGFs C(m,n,∆, j) can be calculated from:

C(m,n,∆, j) = eµ∆n+φ(n,0,∆)+φ(0,ψ(n,0,∆),j)M(m,ψ(0, ψ(n, 0,∆), j∆),∆).7

(3.8)

Although our moment conditions include all first four central moments in

the first four rows, they only include two cross-moments, namely those involving

R̃i,∆R̃
2
i+j,∆ and R̃2

i,∆R̃
2
i+j,∆, starting from the fifth row. While the cross-moments

involving R̃i,∆R̃
2
i+j,∆ are meant to capture leverage effects, the ones involving

R̃2
i,∆R̃

2
i+j,∆ are meant to capture volatility clustering effects, two well-documented

stylized facts of asset returns. We do not include other cross-moments since most

of them are likely to be close to zero, making it hard to identify parameters

from them. The cross-moments involving R̃i,∆R̃i+j,∆ will, for example, always

approximately hold in a weak-form efficient market since the history of dollar

returns does not predict future dollar returns in such a market.

As the system of moment conditions (3.1) is overidentified even when J = 1,

we obtain parameter estimates by minimizing a quadratic form of the moment

conditions. To that end, let W (4+2J)×(4+2J) denote a positive definite weighting

matrix. We then define the GMM estimator of the parameter vector θ as:

θ̂GMM = argmin
θ

h̄(Ri,∆; θ)′W (4+2J)×(4+2J)h̄(Ri,∆; θ), (3.9)

where h̄(Ri,∆; θ) = 1
N

∑N
i=1 h(Ri,∆; θ). Under standard regularity conditions (as

discussed in, e.g., Chapter 3 in Hall (2005)), θ̂GMM is a consistent and asymp-

totically normal estimator of θ0. Fixing the horizon h, the delta method suggests

that our conditional and unconditional skewness estimators are also consistent

and asymptotically normal estimators of their true counterparts.

7Derivation can be found in Appendix A.2.
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3.1.2 Practical Implementation

We use a two-step approach with J = 100 to estimate the parameter vector θ in

practice. In particular, we start with employing the identity matrix I204×204 as

weighting matrix W (4+2J)×(4+2J) in Equation (3.9) to obtain the preliminary

parameter estimate vector θ̂1. Relying on the vector θ̂1, we compute the Newey

and West (1987) variance-covariance matrix of h(Ri,∆; θ̂1), often labelled the

spectral density matrix. We finally use the inverted spectral density matrix as

weighting matrix W (4+2J)×(4+2J) to obtain our final parameter estimate vector

θ̂2. In addition to the Feller condition (i.e. 2κα > ξ2), we always impose the

constraints that κ ∈ (0, 10], α ∈ (0, 1], ξ ∈ (0, 1.5], and ρ ∈ [−1, 0] to ensure

reasonable estimates. We also impose ρ ≤ −
√

30/6 or κ/ξ ≥ 6ρ+
√

30 to ensure

Mt(6,∆;Vt) <∞ almost surely, implying a well defined variance of skewness. 8

To increase computational efficiency and improve parameter identification,

we further do not use the MGFs and cross-MGFs in Equations (3.3) to (3.7) in

our GMM estimations but instead their short-time-increment power-expansion

approximations. We show those approximations in Proposition 3.

Proposition 3. As ∆→ 0, it is the case that:

1. M(1,∆) = 1 + µ∆ + µ2

2 ∆2 + o(∆2).

2. M̃(2,∆) = α∆ + α( ξ
2

4κ + α
2 + 2µ+ ξρ)∆2 + o(∆2).

3. M̃(3,∆) = 3α(α+ ξ2

2κ + ξρ
2 )∆2 + o(∆2).

4. M̃(4,∆) = 3α(α+ ξ2

2κ )∆2 + o(∆2).

5. C̃(1, 2,∆, j) = αξρe−κ(j−1)∆∆2 + o(∆2).

6. C̃(2, 2,∆, j) = αξ2

2κ e
−κ(j−1)∆∆2 + o(∆2).

8Further explanation is provided in Appendix A.3.
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Interestingly, the approximations in Proposition (3) often allow for new insights

into the relations between the moments and the parameters. The expression for

C̃(1, 2,∆, j), the covariance between lagged return and current squared return, for

example, suggests that ρ < 0 is a necessary condition for the leverage effect (i.e.,

for higher returns to predict a lower volatility, and vice versa).9

3.2 Fama and French’s (2018) Bootstrap Estimator

Fama and French (2018) suggest a simple bootstrap to estimate the skewness of

long-horizon returns. They start from a time-series of short-horizon (e.g., daily

or weekly) returns. They next draw with replacement and equal probabilities a

number of returns from that time-series sufficient for those returns to cover a

period equal to the desired long horizon (e.g., one year). They then compound

the drawn returns to generate a “bootstrap long-horizon return.” Repeating the

prior two steps multiple times, they generate a sample of bootstrap long-horizon

returns. They finally compute the skewness of the long-horizon return by applying

the sample skewness to the sample of bootstrap long-horizon returns.

While Fama and French’s (2018) estimator is original, their simple bootstrap

abstracts from dependence in returns, implicitly assuming that returns are i.i.d.

over time. Given the i.i.d. assumption, an estimate obtained from their estimator

is simultaneously a conditional and unconditional estimate.

3.3 Farago and Hjalmarsson’s (2019) Estimator

Assuming that the short-horizon return, Ri,∆, is i.i.d., Farago and Hjalmarsson

(2019) demonstrate that the skewness of the long-horizon return, which is the

9We generate the results in Proposition 3 using Wolfram Mathematica, offering our programming
codes in the supplement material for this paper.
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compounded up short-horizon return
∏d
i=1Ri,∆, can be computed from:

Skew

[
d∏
i=1

Ri,∆

]
=
θd3 − 3θd2 + 2

(θd2 − 1)3/2
, (3.10)

where θ2 =
Var[Ri,∆]
E[Ri,∆]2 + 1, θ3 = −2 + 3θ2 + Skew[Ri,∆](θ2 − 1)3/2 and d denotes

the number of short-horizon periods within the long-horizon. As before, the

i.i.d. assumption implies that the estimator (3.10) simultaneously gives a condi-

tional and unconditional estimate. In essence, Farago and Hjalmarsson’s (2019)

estimator is the closed-form equivalent of Fama and French’s (2018) estimator.

3.4 Sample Skewness Estimator

The sample skewness estimator is defined as:

Skew[Ri,∆] =

1
N

∑N
i=1

(
Ri,∆ − 1

N

∑N
i=1Ri,∆

)3

(
1
N

∑N
i=1

(
Ri,∆ − 1

N

∑N
i=1Ri,∆

)2
)3/2

, (3.11)

where N is the number of returns Ri,∆ in our sample period. To ensure that

we have enough observations when we apply the sample skewness estimator to

long-horizon returns, we consistently compute it on overlapping returns.

4 Simulation Exercise

In this section, we conduct a simulation exercise to investigate the performance

of the Heston-type estimator outlined in Section 3 and to compare it with the

other estimators advocated in the recent literature. We start with describing

the data generating process, computing true skewness from that process, and

studying how well we can estimate the process parameters using the novel GMM

method developed by us. We next compare the unbiasedness and efficiency of
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the Heston-type estimator and the others in case asset values obey the Heston

stochastic process. We finally repeat the former comparisons in case asset values

obey a more realistic and flexible process, the double-Heston process.

4.1 Data Generating Process, Implied True Skewness, and Hes-

ton Process Parameter Estimation

We follow Broadie and Kaya (2006) and Andersen (2008) in simulating 10,000 sam-

ple paths with a ten-year length from the Heston-class processes (i.e. Equations

(2.10) and (2.15)). To achieve that, we assume that the initial price for each path,

P0, is 50. Moreover, we draw the initial variance of each factor for each path, V
(k)
0 ,

from their asymptotic Gamma distributions, Γ(2κ(k)α(k)/(ξ(k))2, 2κ(k)/(ξ(k))2).

We set the discretization step equal to one day (i.e., ∆ = 1/252), implying that µ,

α(k), and ξ(k) are all stated per annum and that N = 2, 520. We finally employ

the following four-step approach to consecutively simulate observations for each

sample time i ∈ {1, . . . , N}:

1. We follow Cox et al. (2005) in simulating V
(k)
i based on V

(k)
i−1 using:

V
(k)
i =

(
ξ(k)

)2 (
1− e−κ(k)∆

)
4κ(k)

χ2
d,λ, (4.1)

where d = 4κ(k)α(k)/(ξ(k))2 and λ = 4κ(k)e−κ
(k)∆

(ξ(k))2(1−e−κ(k)∆)
V

(k)
i−1 are, respectively,

the degrees of freedom and the noncentrality parameter of the noncentral

chi-square variable χ2
d,λ.

2. We simulate a standard Gaussian random variable Z(k) for each factor.

3. We follow Andersen (2008) in updating Pi by approximating the solution
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to the Heston-class stochastic differential equation for the asset value as:

Pi = Pi−1 exp

[
µ∆ +

K∑
k=1

f
(
V (k)

)]
, (4.2)

where

f
(
V (k)

)
= K

(k)
0 +K

(k)
1 V

(k)
i−1 +K

(k)
2 V

(k)
i +

√
K

(k)
3 (V

(k)
i−1 + V

(k)
i ) · Z(k),

K
(k)
0 = −ρ

(k)κ(k)α(k)

ξ(k)
∆, K

(k)
1 =

1

2
∆

(
κ(k)ρ(k)

ξ(k)
− 1

2

)
− ρ(k)

ξ(k)
,

K
(k)
2 =

1

2
∆

(
κ(k)ρ(k)

ξ(k)
− 1

2

)
+
ρ(k)

ξ(k)
, K

(k)
3 =

1

2
∆

(
1−

(
ρ(k)

)2
)
.

(4.3)

4. We calculate the daily dollar return Ri,∆ = Pi/Pi−1.

This four-step approach mitigates Euler discretization errors, reducing their

impacts on our simulation exercise.

We select µ = 0.10, κ = 3.00, α = 0.09, ξ = 0.30, and ρ = −0.50 as basecase

parameters in our Heston simulations. To investigate how variations in those

parameter values affect our skewness estimation outcomes, we also consider the

alternative values κ = 1 or 5, α = 0.25, ξ = 0.10 or 0.50 and ρ = −0.90 or 0.00, in

each case, however, varying only one of the parameters from its basecase value.

To understand how the Heston process parameters affect the unconditional

skewness of the return and its relation with the return horizon, Figure 1 plots

that skewness evaluated at the basecase parameter values and its variations over

horizons extending up to five years. The figure vividly shows that, under most

parameter value choices, unconditional skewness monotonically rises with the

return horizon. The only exception is the case in which the asset return and

volatility share a correlation (ρ) of –0.90. In that case, unconditional skewness

initially falls and only later rises with the return horizon. The lesson to be learned
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is thus that, when the asset return-volatility correlation is sufficiently negative,

the leverage effect can dominate the compounding effect at shorter horizons,

whilst it is always dominated by the compounding effect at longer horizons.

[Insert Figure 1 here]

The figure further shows that, at each return horizon, unconditional skewness

rises with long-run variance α and the asset return-volatility correlation ρ but falls

with the volatility of variance ξ. The positive relation with long-run variance is

due to an increase in that variance boosting the compounding effect, whereas the

positive relation with the asset return-volatility correlation is due to an increase

in that correlation diminishing the leverage effect. Interesingly, the strength of

mean reversion κ has an ambiguous effect on unconditional skewness, with the

effect being negative at short horizons but positive at long ones.

Given that the performance of our Heston-type estimator must hinge crucially

on how well we are able to estimate the µ, κ, α, ξ, and ρ parameters, Table 1 offers

descriptive statistics obtained from applying the GMM estimator developed in

Section 3 on each of our 10,000 simulated sample paths. The descriptive statistics

include the true parameter values, the mean estimates, the median estimates, the

standard deviation of the estimates, and the mean squared error (MSE) under

both the basecase parameter values and its variations. The table confirms that

the GMM estimator usually yields mean and median estimates close to the true

values and small standard deviations and MSEs, except for the speed of mean

reversion κ. The higher standard deviations and MSEs for κ presumably come

from the likelihood surface being flat in κ, making it hard to infer that parameter

independent of the estimation method applied (Atiya and Wall (2009)).

[Insert Table 1 here]
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4.2 Unconditional Skewness Estimates in a Heston World

Table 2 contrasts the unbiasedness and efficiency of our Heston-type estimator

and the others for the unconditional skewness of returns in case asset values obey

the Heston stochastic process calibrated using the basecase parameter values or

its variations. Given either parameter value set, the table gives the return horizon

(“Horizon”), the true unconditional return skewness over a horizon (“True”),

and the mean estimate (“Mean”), the absolute bias scaled by the true value

(“%|Bias|”), and the mean squared error (“MSE”) computed over the 10,000

sample paths for each estimator and horizon. The estimators are our Heston-type

(“Ours”), the Fama-French (2018) bootstrap (“FF”), the Farago-Hjalmarsson

(2019) closed-form (“FH”), and the sample skewness (“Conv.”) estimator.

[Insert Table 2 here]

The table shows that our estimator strongly outperforms the other estimators

except when the volatility of variance is close to zero (ξ = 0.10) or the asset return-

volatility correlation is zero (ρ = 0). To be more specific, in the absence of the

above two cases, our estimator always yields the smallest mean absolute percent

error and the smallest MSE over all return horizons, with the small MSEs being

particular noteworthy since the MSE reflects both bias and standard error of an

estimate. The outperformance of our estimator is economically large. Considering

the basecase and the one-year horizon, our estimator, for example, yields a mean

absolute percent error at least 20 percentage points smaller than the others and

an MSE of no more than 25% of those of the others. The worse performance of

our estimator when ξ = 0.10 or ρ = 0 is attributable to asset returns being close

to i.i.d. in those cases, implying that Fama and French’s (2018) and Farago and

Hjalmarsson’s (2019) estimators gain statistical power from imposing reasonable

restrictions. Even in those cases, the performance of our estimator is however,

fortunately, not too far off from those of the other estimators.
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To graphically compare the performance of the estimators, Figure 2 plots

the evolution of true unconditional skewness and the mean estimates obtained

from the estimators under the case ρ = −0.9 over return horizons up to 20 years.

The results from the figure align with those from Table 2. In particular, the

figure vividly shows that our estimator (dotted green line) yields a mean estimate

consistently closest to true unconditional skewness (solid blue line). In contrast,

the mean estimates from Fama and French’s (2018; big red dots) and Farago

and Hjalmarsson’s (2019; violet broken line) estimator consistently overshoot

true unconditional skewness, largely owing to their assumption that returns are

i.i.d. and them thus abstracting from the leverage effect.10 Notably, the extent

of the overshooting rises with the horizon. Finally, the sample skewness (broken

yellow line) is a decent estimator at short horizons. Yet, as we extend the horizon,

it yields increasingly downward biased estimates, largely owing to the sample

containing increasingly fewer independent return observations.11

[Insert Figure 2 here]

4.3 Conditional Skewness Estimates in a Heston World

Table 3 looks into the unbiasedness and efficiency of our Heston-type estimator

for the conditional skewness of returns at the end of each simulated path in case

asset values obey the Heston process calibrated using the same parameter value

sets as before. While the table gives the same statistics as Table 2, for the sake

of brevity, it omits the other (non-Heston-type) estimators since those produce

conditional estimates identical to their corresponding unconditional estimates

due to them assuming i.i.d. returns. In addition, the table further omits return

10We also find it interesting to note that Fama and French’s (2018) and Farago and Hjalmarsson’s
(2019) estimators yield close to identical mean estimates up to ten year horizons, in line with our
prior observation that Farago and Hjalmarsson’s (2019) estimator is essentially the closed-form
equivalent of Fama and French’s (2018) bootstrap estimator.

11Notice that we cannot use the sample skewness to calculate the skewness of returns stretching
over periods longer than ten years with ten years of sample data.
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horizons shorter than one year. While we again estimate the process parameters

underlying the skewness estimates from the entire ten years of data of a sample

path, to speed up our computations, we use only the final two years of data from

a path to compute the optimal estimates of the conditional MGFs, M̄i(u,w, h; θ̂),

according to the iterative procedure outlined in Proposition 1.

We stress that the conditional estimates in this subsection are likely more

relevant to a real-world investor than the unconditional estimates in the prior

subsection. The reason is that such an investor is in most cases more interested

in forecasting skewness over some concrete period (starting, e.g., from the current

date) rather than over an equally long arbitrary period.

[Insert Table 3 here]

The table suggests that our Heston-type estimator also performs extremely

well in estimating the conditional skewness of returns over long horizons. While

true conditional skewness is now not a single number but varies over the 10,000

sample paths for each return horizon and parameter value set according to the

value of the state variable (i.e., variance) at the end of a path, it is on average close

to unconditional skewness (compare “True” columns in Tables 2 and 3). More

crucially, our Heston-type estimates are generally close to conditional skewness,

as demonstrated by the mean absolute percent biases and MSEs. Looking at

the basecase and the five-year horizon, the mean absolute percent bias is, for

example, only 10%, while the MSE is only 0.101. The one exception is the case in

which long-run variance is high (α = 0.25), in which our estimator finds it hard

to capture the rapid rise of conditional skewness with the return horizon.

4.4 Unconditional Estimates in a Double-Heston World

Although our Heston-type estimator outperforms the others in case asset values

obey the Heston process, there could be concern that the fact that our estimator
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assumes exactly the right asset value process grants it an unfair advantage over

the other estimators. To wit, while it seems reasonable to argue that the Heston

process goes some way toward modelling asset values in a more realistic way

relative to i.i.d. processes, it is certainly not the case that it captures all stylized

facts of asset values. To see how deviations between the process assumed by our

estimator and the true process affect the performance of our estimator, Table 4

repeats our unbiasedness and efficiency tests for the unconditional estimates of

the Heston-type estimator and the others in Table 2, this time, however, using a

double-Heston process to simulate the 10,000 sample paths of data.

In contrast to the Heston process, the double-Heston process offers more

flexibility in modelling the term structure of volatility (see Christoffersen et al.

(2009)). Moreover, choosing a high value for the κ1 mean reversion parameter in

Equation (2.15) and a low value for the κ2 parameter, the process is better able

to fit the often different relations between short-term returns and variance and

between long-term returns and variance in the data. To distinguish the double-

Heston process in our simulations as much as possible from a Heston process, we

however not only allow for variations in the mean reversion parameters but also

in all others, setting the parameter value vector of the process, {µ, κ1, α1, ξ1, ρ1,

κ2, α2, ξ2, ρ2}, equal to {0.10, 1, 0.01, 0.10,−0.90, 5, 0.09, 0.50,−0.60}.

[Insert Table 4 here]

Using the same design as Table 2, Table 4 shows that our double-Heston

process yields a slightly lower true unconditional skewness relative to our basecase

Heston process over short return horizons, but a close to identical over longer

horizons. More crucially, the table further reveals that our Heston-type estimator

continues to strongly outperform the others in estimating unconditional skewness

in terms of mean absolute percent bias and MSE. Looking at the five-year horizon,

our estimator, for example, produces a mean absolute percent bias of 9% and an
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MSE of 0.084, while the other estimators produce an mean absolute percent bias of

at least 34% and an MSE of at least 0.654. All in all, we thus conclude that realistic

deviations between the asset value process assumed by our estimator and the true

process only marginally affect the performance of our estimator.

5 Empirical Application

We finally employ our Heston-type estimator as well as the others to estimate

the unconditional skewness of the returns of the S&P 500, FTSE 100, and Nikkei

225 indexes over various return horizons, studying their evolutions and relations

with the return horizon over time. To obtain the Heston-type estimates, we

first estimate the Heston process parameters using ten-year rolling windows of

daily returns and then plug the estimates into Equation (2.5) combined with

Equation (2.14). We use the same windows of daily data to calculate the other

estimators as described in Sections 3.2 to 3.4. The sample periods for the S&P 500,

FTSE 100, and Nikkei 225 indexes are, respectively, 1950/01/03 to 2020/09/30,

1986/01/02 to 2020/09/30, and 1965/01/05 to 2020/09/30.

In Figure 3, we plot the unconditional skewness estimates obtained from the

Heston-type estimator over time, with Panel A focussing on the S&P 500, Panel B

on the FTSE 100, and Panel C on the Nikkei 225 index. In case of each index,

the evolutions of the skewness estimates for different return horizons are highly

correlated over time. Moreover, the weekly-return skewness estimates exceed

the monthly-return skewness estimates in the vast majority of cases — and in

some cases even the annual-return skewness estimates, suggesting the existence

of a strong and time-varying leverage effect in stock indexes. The figure finally

suggests that the skewness of long-horizon dollar returns is likely to be much

lower than suggested in the recent work of Bessembinder (2018) and Farago and

Hjalmarsson (2019), with even our estimates of the skewness of five-year returns
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never exceeding a value of three for any of the stock indexes.

[Insert Figure 3 here]

Figure 4 contrasts the unconditional monthly, annual, and five-year return

skewness estimates from our Heston-type estimator (solid red line) with those

from Fama and French’s (2018; dotted green line), Farago and Hjalmarsson’s

(2019; broken violet line), and the sample skewness (broken blue line) estimators

for each index. Raising confidence in our work, plots on the far left show that

the skewness estimates from our estimator and the sample skewness are well

aligned over short return horizons. Moving to the longer return horizons, the

estimates from those two estimators continue to be aligned on average, with the

sample skewness estimates however becoming much too volatile to be useful in

practice, consistent with the simulation evidence in Table 2. In contrast, the

estimates from Fama and French’s (2018) and Farago and Hjalmarsson’s (2019)

estimators are more stable and correlate less strongly with the estimates from

the two former estimators. Also consistent with our simulation evidence, they

tend to yield higher skewness values than the Heston-type and sample skewness

estimators.

[Insert Figure 4 here]

6 Concluding Remarks

In this paper, we derive a novel parametric estimator of the skewness of dollar

returns from the assumption that asset values can be modelled using a stochastic

process from the ASV model class. Using the Heston process as example, we run

a simulation exercise comparing the unbiasedness and efficiency of our estimator

with those of other existing estimators, namely Fama and French’s (2018) boostrap
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estimator, Farago and Hjalmarsson’s (2019) closed-form estimator as well as the

sample skewness estimator. Our evidence suggests that our estimator strongly

outperforms the others when asset values obey the Heston process or even some

more complicated process, with it yielding the smallest mean absolute relative

bias and MSE in the vast majority of cases. We finally apply our Heston-type

estimator to real-world data on stock indexes, showing that there is an important

time-varying leverage effect in that asset class and refuting the idea that the

skewness of long-horizon returns is usually too high to be useful in practice.
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Duffie, D., Filipović, D., Schachermayer, W., et al. (2003). Affine processes and

applications in finance. The Annals of Applied Probability, 13(3):984–1053.

Duffie, D., Pan, J., and Singleton, K. (2000). Transform analysis and asset pricing

for affine jump-diffusions. Econometrica, 68(6):1343–1376.

Eraker, B., Johannes, M., and Polson, N. (2003). The impact of jumps in volatility

and returns. The Journal of Finance, 58(3):1269–1300.

Fama, E. F. and French, K. R. (2018). Long-horizon returns. The Review of

Asset Pricing Studies, 8(2):232–252.

Farago, A. and Hjalmarsson, E. (2019). Compound returns. In Proceedings of

Paris December 2019 Finance Meeting EUROFIDAI-ESSEC.

33



Gallant, A. R. and Tauchen, G. (1998). Reprojecting partially observed systems

with application to interest rate diffusions. Journal of the American Statistical

Association, 93(441):10–24.

Hall, A. (2005). Generalized Method of Moments. Advanced texts in econometrics.

Oxford University Press.

Hansen, L. and Scheinkman, J. (1995). Back to the future: Generating moment

implications for continuous-time markov processes. Econometrica, 63(4):767–

804.

Harvey, C. R. and Siddique, A. (2000). Conditional skewness in asset pricing

tests. The Journal of Finance, 55(3):1263–1295.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility

with applications to bond and currency options. The Review of Financial

Studies, 6(2):327–343.

Jiang, G. J. and Knight, J. L. (2002). Estimation of continuous-time processes

via the empirical characteristic function. Journal of Business & Economic

Statistics, 20(2):198–212.

Keller-Ressel, M. (2011). Moment explosions and long-term behavior of affine

stochastic volatility models. Mathematical Finance, 21(1):73–98.

Keller-Ressel, M., Mayerhofer, E., et al. (2015). Exponential moments of affine

processes. The Annals of Applied Probability, 25(2):714–752.

Keller-Ressel, M. and Steiner, T. (2008). Yield curve shapes and the asymptotic

short rate distribution in affine one-factor models. Finance and Stochastics,

12(2):149–172.

Kraus, A. and Litzenberger, R. H. (1976). Skewness preference and the valuation

of risk assets. The Journal of Finance, 31(4):1085–1100.

34



Li, H., Wells, M. T., and Yu, C. L. (2008). A bayesian analysis of return dynamics
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Table 1: Parameter Estimates under Various Heston Specifications

This table reports some descriptive statistics of the estimated distributions of Heston parameters under various Heston
specifications. SD and MSE are standard deviation and mean square error separately. Parameters µ, κ, α, ξ and ρ
respectively indicate drift, mean-reversion, long-run variance, volatility-of-volatility and correlation between Brownian
motions in a Heston model. All estimations are based on 10,000 replications of 10-year daily dollar returns generated
by the corresponding Heston process, and all estimates are obtained from a simple two-step GMM estimator, where
we match the theoretical central moments and cross-moments of daily returns with their sample counterparts.

Base Case Small ξ

Parameter True Mean Median SD MSE Parameter True Mean Median SD MSE

µ 0.1 0.090 0.092 0.106 0.011 µ 0.1 0.090 0.090 0.104 0.011
κ 3 3.964 3.650 1.971 4.813 κ 3 4.824 4.132 3.487 15.484
α 0.09 0.072 0.071 0.008 0.000 α 0.09 0.074 0.074 0.003 0.000
ξ 0.3 0.252 0.243 0.082 0.009 ξ 0.1 0.095 0.066 0.086 0.007
ρ -0.5 -0.473 -0.467 0.192 0.038 ρ -0.5 -0.677 -0.886 0.365 0.165

Small κ Large ξ

Parameter True Mean Median SD MSE Parameter True Mean Median SD MSE

µ 0.1 0.081 0.086 0.116 0.014 µ 0.1 0.087 0.091 0.108 0.012
κ 1 1.984 1.775 1.117 2.215 κ 3 4.082 3.862 1.656 3.915
α 0.09 0.068 0.064 0.021 0.001 α 0.09 0.068 0.067 0.012 0.001
ξ 0.3 0.285 0.270 0.097 0.010 ξ 0.5 0.424 0.415 0.099 0.016
ρ -0.5 -0.411 -0.391 0.229 0.060 ρ -0.5 -0.442 -0.434 0.168 0.032

Large κ Small ρ

Parameter True Mean Median SD MSE Parameter True Mean Median SD MSE

µ 0.1 0.091 0.093 0.104 0.011 µ 0.1 0.091 0.095 0.106 0.011
κ 5 5.840 5.599 2.486 6.884 κ 3 4.124 3.867 1.661 4.021
α 0.09 0.073 0.073 0.005 0.000 α 0.09 0.072 0.071 0.008 0.000
ξ 0.3 0.236 0.226 0.088 0.012 ξ 0.3 0.269 0.264 0.061 0.005
ρ -0.5 -0.512 -0.495 0.213 0.045 ρ -0.9 -0.775 -0.788 0.145 0.037

Large α Large ρ

Parameter True Mean Median SD MSE Parameter True Mean Median SD MSE

µ 0.1 0.063 0.063 0.175 0.032 µ 0.1 0.085 0.084 0.105 0.011
κ 3 4.196 3.582 2.745 8.963 κ 3 4.288 4.084 2.256 6.748
α 0.25 0.204 0.204 0.014 0.002 α 0.09 0.072 0.071 0.008 0.000
ξ 0.3 0.234 0.219 0.116 0.018 ξ 0.3 0.271 0.250 0.126 0.017
ρ -0.5 -0.588 -0.569 0.273 0.082 ρ 0 -0.096 -0.019 0.146 0.030
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Table 2: Skewness Estimates under Various Heston Specifications

This table displays the results of unconditional skewness estimation under various Heston specifications, with horizon ranging from
one week to five years. Our base case parameters are: µ = 0.1, κ = 3, α = 0.09, ξ = 0.3, and ρ = −0.5, respectively indicating
drift, mean-reversion, long-run variance, volatility-of-volatility and correlation between Brownian motions in a Heston model. For
experiments left, we only change the value of the stated one. True unconditional skewness are obtained by plugging specifications
into the closed-form skewness of the Heston model, while all estimations are based on 10,000 replications of 10-year daily dollar
returns generated by the corresponding Heston process. FF, FH and Conv. respectively represent Fama and French’s (2018)
estimator, Farago and Hjalmarsson’s (2019) estimator, and the sample skewness estimator. %|Bias| refers to the absolute relative
bias in percentage, and MSE is the mean square error.

Base case κ = 1

Horizon True Ours FF FH Conv. Horizon True Ours FF FH Conv.

1W 0.044 Mean 0.041 0.111 0.111 0.050 1W 0.085 Mean 0.060 0.118 0.119 0.091
%|Bias| 7% 155% 156% 14% %|Bias| 29% 40% 40% 8%

MSE 0.001 0.006 0.006 0.012 MSE 0.003 0.004 0.003 0.024
1M 0.097 Mean 0.093 0.253 0.253 0.106 1M 0.173 Mean 0.125 0.255 0.254 0.173

%|Bias| 4% 161% 161% 10% %|Bias| 28% 47% 47% 0%
MSE 0.004 0.025 0.025 0.042 MSE 0.013 0.009 0.009 0.090

1Y 0.594 Mean 0.575 0.944 0.946 0.438 1Y 0.608 Mean 0.532 0.938 0.939 0.391
%|Bias| 3% 59% 59% 26% %|Bias| 13% 54% 54% 36%

MSE 0.018 0.128 0.129 0.217 MSE 0.081 0.136 0.134 0.326
3Y 1.406 Mean 1.286 1.832 1.840 0.588 3Y 1.197 Mean 1.135 1.830 1.837 0.522

%|Bias| 9% 30% 31% 58% %|Bias| 5% 53% 53% 56%
MSE 0.047 0.219 0.207 0.906 MSE 0.172 0.568 0.559 0.710

5Y 2.120 Mean 1.890 2.672 2.691 0.567 5Y 1.753 Mean 1.666 2.688 2.714 0.562
%|Bias| 11% 26% 27% 73% %|Bias| 5% 53% 55% 68%

MSE 0.112 0.482 0.384 2.707 MSE 0.320 1.554 1.444 1.771

α = 0.25 κ = 5

Horizon True Ours FF FH Conv. Horizon True Ours FF FH Conv.

1W 0.161 Mean 0.144 0.202 0.202 0.162 1W 0.036 Mean 0.039 0.109 0.109 0.040
%|Bias| 10% 25% 25% 0% %|Bias| 6% 201% 200% 9%

MSE 0.001 0.003 0.002 0.008 MSE 0.001 0.007 0.006 0.010
1M 0.336 Mean 0.304 0.433 0.433 0.326 1M 0.090 Mean 0.095 0.252 0.252 0.095

%|Bias| 9% 29% 29% 3% %|Bias| 5% 179% 179% 5%
MSE 0.004 0.011 0.010 0.035 MSE 0.003 0.027 0.026 0.035

1Y 1.410 Mean 1.294 1.743 1.748 0.916 1Y 0.677 Mean 0.638 0.944 0.945 0.478
%|Bias| 8% 24% 24% 35% %|Bias| 6% 39% 40% 29%

MSE 0.032 0.133 0.121 0.494 MSE 0.011 0.075 0.073 0.225
3Y 3.464 Mean 2.993 4.276 4.358 1.013 3Y 1.538 Mean 1.384 1.833 1.838 0.600

%|Bias| 14% 23% 26% 71% %|Bias| 10% 19% 20% 61%
MSE 0.346 2.141 0.910 6.320 MSE 0.039 0.115 0.098 1.116

5Y 6.453 Mean 5.211 7.782 8.718 0.951 5Y 2.297 Mean 2.016 2.673 2.686 0.557
%|Bias| 19% 21% 35% 85% %|Bias| 12% 16% 17% 76%

MSE 2.169 18.035 6.162 30.651 MSE 0.106 0.286 0.174 3.319
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ξ = 0.1 ρ = −0.9

Horizon True Ours FF FH Conv. Horizon True Ours FF FH Conv.

1W 0.095 Mean 0.085 0.121 0.121 0.095 1W -0.040 Mean -0.030 0.094 0.095 -0.028
%|Bias| 10% 28% 28% 0% %|Bias| 24% 336% 338% 29%

MSE 0.001 0.002 0.001 0.007 MSE 0.001 0.020 0.019 0.011
1M 0.197 Mean 0.181 0.257 0.258 0.193 1M -0.066 Mean -0.041 0.244 0.245 -0.041

%|Bias| 9% 30% 31% 2% %|Bias| 38% 471% 472% 38%
MSE 0.002 0.004 0.004 0.027 MSE 0.005 0.097 0.097 0.035

1Y 0.810 Mean 0.750 0.948 0.949 0.555 1Y 0.279 Mean 0.359 0.941 0.943 0.271
%|Bias| 7% 17% 17% 32% %|Bias| 29% 237% 238% 3%

MSE 0.009 0.022 0.020 0.261 MSE 0.026 0.444 0.444 0.154
3Y 1.668 Mean 1.485 1.838 1.843 0.617 3Y 1.063 Mean 1.077 1.832 1.838 0.550

%|Bias| 11% 10% 10% 63% %|Bias| 1% 72% 73% 48%
MSE 0.047 0.051 0.034 1.339 MSE 0.032 0.629 0.619 0.501

5Y 2.459 Mean 2.131 2.679 2.691 0.568 5Y 1.704 Mean 1.653 2.665 2.689 0.572
%|Bias| 13% 9% 9% 77% %|Bias| 3% 56% 58% 66%

MSE 0.138 0.188 0.063 3.862 MSE 0.054 1.095 1.027 1.611

ξ = 0.5 ρ = 0

Horizon True Ours FF FH Conv. Horizon True Ours FF FH Conv.

1W 0.011 Mean 0.003 0.104 0.105 0.019 1W 0.148 Mean 0.113 0.131 0.131 0.145
%|Bias| 70% 858% 861% 78% %|Bias| 23% 11% 11% 2%

MSE 0.003 0.011 0.011 0.026 MSE 0.002 0.002 0.001 0.014
1M 0.032 Mean 0.022 0.249 0.249 0.042 1M 0.302 Mean 0.232 0.263 0.263 0.284

%|Bias| 32% 685% 686% 32% %|Bias| 23% 13% 13% 6%
MSE 0.011 0.049 0.048 0.085 MSE 0.007 0.003 0.002 0.051

1Y 0.445 Mean 0.442 0.942 0.943 0.324 1Y 1.037 Mean 0.831 0.909 0.950 0.623
%|Bias| 1% 112% 112% 27% %|Bias| 20% 12% 8% 40%

MSE 0.040 0.258 0.256 0.230 MSE 0.052 0.013 0.011 0.406
3Y 1.225 Mean 1.129 1.833 1.838 0.542 3Y 1.946 Mean 1.574 1.838 1.845 0.619

%|Bias| 8% 50% 50% 56% %|Bias| 19% 6% 5% 68%
MSE 0.068 0.440 0.425 0.717 MSE 0.162 0.050 0.028 1.998

5Y 1.889 Mean 1.690 2.680 2.694 0.569 5Y 2.819 Mean 2.236 2.673 2.698 0.567
%|Bias| 11% 42% 43% 70% %|Bias| 21% 5% 4% 80%

MSE 0.138 0.907 0.806 2.081 MSE 0.393 0.206 0.072 5.369
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Table 3: Skewness Forecasts under Various Heston Specifications

This table summarizes the results of conditional skewness forecast under various Heston specifications, with horizon
ranging from one year to ten years. Our base case parameters are: µ = 0.1, κ = 3, α = 0.09, ξ = 0.3, and ρ = −0.5,
respectively representing drift, mean-reversion, long-run variance, volatility-of-volatility and correlation between Brownian
motions in a Heston model. For experiments left, we only change the value of the stated one. All forecasts are based
on 10,000 replications of the last two years’ daily dollar returns of the 10-year sample generated by the corresponding
Heston process. %|Bias| indicates the absolute relative bias in percentage, and MSE is the mean square error.

Base Case ξ = 0.1

Horizon True Mean %|Bias| MSE Horizon True Mean %|Bias| MSE

1Y 0.582 0.590 1% 0.018 1Y 0.809 0.759 6% 0.008
3Y 1.402 1.301 7% 0.042 3Y 1.668 1.497 10% 0.042
5Y 2.118 1.905 10% 0.101 5Y 2.459 2.146 13% 0.126
10Y 4.155 3.516 15% 0.652 10Y 4.874 3.961 19% 0.980

κ = 1 ξ = 0.5

Horizon True Mean %|Bias| MSE Horizon True Mean %|Bias| MSE

1Y 0.414 0.520 26% 0.090 1Y 0.410 0.454 11% 0.043
3Y 1.100 1.153 5% 0.163 3Y 1.216 1.146 6% 0.062
5Y 1.689 1.693 0% 0.292 5Y 1.884 1.707 9% 0.126
10Y 3.222 3.117 3% 1.435 10Y 3.686 3.138 15% 0.686

κ = 5 ρ = −0.9

Horizon True Mean %|Bias| MSE Horizon True Mean %|Bias| MSE

1Y 0.675 0.648 4% 0.010 1Y 0.266 0.369 39% 0.032
3Y 1.537 1.392 9% 0.036 3Y 1.059 1.086 3% 0.032
5Y 2.297 2.024 12% 0.100 5Y 1.702 1.662 2% 0.051
10Y 4.538 3.749 17% 0.742 10Y 3.372 3.116 8% 0.248

α = 0.25 ρ = 0

Horizon True Mean %|Bias| MSE Horizon True Mean %|Bias| MSE

1Y 1.403 1.316 6% 0.028 1Y 1.024 0.847 17% 0.041
3Y 3.461 3.027 13% 0.315 3Y 1.942 1.592 18% 0.145
5Y 6.450 5.264 18% 2.034 5Y 2.816 2.256 20% 0.366
10Y 27.486 18.293 33% 109.843 10Y 5.651 4.153 27% 2.568
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Table 4: Skewness Estimates with Double-Heston Data

This table shows the true unconditional skewness of a double-Heston process, with horizon ranging from one week to
five years. Alongside, there are statistics of estimates produced by each estimator. The double-Heston parameter vector
{µ, κ1, α1, ξ1, ρ1, κ2, α2, ξ2, ρ2} is set to {0.1, 1, 0.01, 0.1,−0.9, 5, 0.09, 0.5,−0.6}, where µ, κi, αi, ξi and ρi respectively
indicate drift, mean-reversion, long-run variance, volatility-of-volatility and correlation between corresponding Brownian
motions of the price and the volatility processes. True unconditional skewness are obtained by plugging specifications
into the closed-form skewness of the double-Heston model, while all estimations are based on 10,000 replications of
10-year daily dollar returns generated by this double-Heston process. Ours, FF, FH and Conv. respectively represent
our parametric estimator derived from the Heston assumption, Fama and French’s (2018) estimator, Farago and
Hjalmarsson’s (2019) estimator, and the sample skewness estimator. %|Bias| refers to the absolute relative bias in
percentage, and MSE is the mean square error.

Horizon True Ours FF FH Conv.

1W -0.018 Mean -0.009 0.104 0.104 -0.011
%|Bias| 48% 679% 680% 40%

MSE 0.002 0.017 0.016 0.014
1M -0.012 Mean 0.008 0.260 0.260 0.001

%|Bias| 161% 2214% 2215% 109%
MSE 0.006 0.075 0.075 0.045

1Y 0.527 Mean 0.537 0.998 1.000 0.401
%|Bias| 2% 89% 90% 24%

MSE 0.017 0.228 0.227 0.194
3Y 1.406 Mean 1.321 1.967 1.974 0.603

%|Bias| 6% 40% 40% 57%
MSE 0.033 0.361 0.343 0.888

5Y 2.167 Mean 1.975 2.911 2.932 0.606
%|Bias| 9% 34% 35% 72%

MSE 0.084 0.808 0.654 2.750
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Figure 1: Relation Between Unconditional Skewness and Return Horizon in a Heston World

This figure plots the true unconditional skewness obtained from eight Heston parameter vectors against horizon up to five years.
Our base case parameters are: µ = 0.1, κ = 3, α = 0.09, ξ = 0.3, and ρ = −0.5, respectively indicating drift, mean-reversion,
long-run variance, volatility-of-volatility and correlation between Brownian motions in a Heston model. For experiments left, we
only change the value of the stated one.
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Figure 2: Unconditional Skewness Estimates of a Heston Process

This figure depicts the relation between true unconditional skewness and return horizon of a Heston (1993) process, alongside of which
are curves of mean estimates produced by different estimators. The parameter vector {µ, κ, α, ξ, ρ} is set to {0.1, 3, 0.09, 0.3,−0.9},
where µ, κ, α, ξ and ρ respectively represent drift, mean reversion, long-run variance, volatility-of-volatility and correlation between
Brownian motions. All estimations are based on 10,000 replications of 10-year daily dollar returns generated by this Heston process.
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Figure 3: The Estimated Trends of Unconditional Skewness for Representative Stock Indexes

This figure plots our unconditional skewness estimates at various horizons for S&P500, FTSE100 and Nikkei225. We download their
daily prices for the periods 1950/01/03 – 2020/09/30, 1986/01/02 – 2020/09/30, and 1965/01/05 – 2020/09/30 respectively. We set
the length of estimation window to ten years, and we roll one month over every time we shift the window.
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Figure 4: Unconditional Skewness Estimates by Different Estimators
for Representative Stock Indexes

This figure compares the monthly, annual and five-year unconditional skewness estimates produced by different estimators for S&P500,
FTSE100 and Nikkei225. We download their daily prices for the periods 1950/01/03 – 2020/09/30, 1986/01/02 – 2020/09/30, and
1965/01/05 – 2020/09/30 respectively. We set the length of estimation window to ten years, and we roll one month over every time
we shift the window.
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Appendix A Proofs

A.1 Expressions for Centred MGFs and Cross-MGFs

To show that centered MGFs and cross-MGFs are simply linear combinations of non-centered MGFs and

cross-MGFs, we use the moments involved in our GMM estimator as examples (see Equation (3.2)) and

derive their expressions. Recall that M(k,∆) = E[Rki,∆] and M̃(k,∆) ≡ E[R̃ki,∆]. Let us start from M̃(2,∆).

M̃(2,∆) ≡ E
[
R̃2
i,∆

]
= E

[
(Ri,∆ −M(1,∆))

2
]

= E
[
R2
i,∆ − 2Ri,∆M(1,∆) +M2(1,∆)

]
= M(2,∆)− 2M2(1,∆) +M2(1,∆)

= M(2,∆)−M2(1,∆)

(A.1)

Next, we derive M̃(3,∆).

M̃(3,∆) ≡ E
[
R̃3
i,∆

]
= E

[
(Ri,∆ −M(1,∆))

3
]

= E
[
R3
i,∆ − 3R2

i,∆M(1,∆) + 3Ri,∆M
2(1,∆)−M3(1,∆)

]
= M(3,∆)− 3M(1,∆)M(2,∆) + 3M3(1,∆)−M3(1,∆)

= M(3,∆)− 3M(1,∆)M(2,∆) + 2M3(1,∆)

(A.2)

Now, we move on to expanding M̃(4,∆).
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M̃(4,∆) ≡ E
[
R̃4
i,∆

]
= E

[
(Ri,∆ −M(1,∆))

4
]

= E
[
R4
i,∆ − 4R3

i,∆M(1,∆) + 6R2
i,∆M

2(1,∆)− 4Ri,∆M
3(1,∆) +M4(1,∆)

]
= M(4,∆)− 4M(1,∆)M(3,∆) + 6M2(1,∆)M(2,∆)− 4M4(1,∆) +M4(1,∆)

= M(4,∆)− 4M(1,∆)M(3,∆) + 6M2(1,∆)M(2,∆)− 3M4(1,∆)

(A.3)

For centered cross-MGFs C̃(m,n,∆, j) ≡ Cov[R̃mi,∆, R̃
n
i+j,∆], we assume a weak-form efficient market, where

Cov[Rmi,∆, Ri+j,∆] = 0. In other words, E[Rmi,∆Ri+j,∆] = E[Rmi,∆] E[Ri+j,∆]. Then,

C̃(1, 2,∆, j) ≡ Cov
[
R̃i,∆, R̃

2
i+j,∆

]
= E

[
R̃i,∆R̃

2
i+j,∆

]
− E

[
R̃i,∆

]
E
[
R̃2
i+j,∆

]
= E

[
(Ri,∆ −M(1,∆)) (Ri+j,∆ −M(1,∆))

2
]
− E [Ri,∆ −M(1,∆)] E

[
(Ri+j,∆ −M(1,∆))

2
]

= E
[
Ri,∆R

2
i+j,∆ − 2Ri,∆Ri+j,∆M(1,∆) +Ri,∆M

2(1,∆)

−R2
i+j,∆M(1,∆) + 2Ri+j,∆M

2(1,∆)−M3(1,∆)
]

= C(1, 2,∆, j)− 2M3(1,∆) +M3(1,∆)−M(1,∆)M(2,∆) + 2M3(1,∆)−M3(1,∆)

= C(1, 2,∆, j)−M(1,∆)M(2,∆)

(A.4)

Finally, we expand C̃(2, 2,∆, j).
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C̃(2, 2,∆, j) ≡ Cov
[
R̃2
i,∆, R̃

2
i+j,∆

]
= E

[
R̃2
i,∆R̃

2
i+j,∆

]
− E

[
R̃2
i,∆

]
E
[
R̃2
i+j,∆

]
= E

[
(Ri,∆ −M(1,∆))

2
(Ri+j,∆ −M(1,∆))

2
]
− E

[
(Ri,∆ −M(1,∆))

2
]

E
[
(Ri+j,∆ −M(1,∆))

2
]

= E
[
R2
i,∆R

2
i+j,∆ − 2R2

i,∆Ri+j,∆M(1,∆) +R2
i,∆M

2(1,∆)− 2Ri,∆R
2
i+j,∆M(1,∆)

+4Ri,∆Ri+j,∆M
2(1,∆)− 2Ri,∆M

3(1,∆) +R2
i+j,∆M

2(1,∆)− 2Ri+j,∆M
3(1,∆) +M4(1,∆)

]
− E

[
R2
i,∆ − 2Ri,∆M(1,∆) +M2(1,∆)

]
E
[
R2
i+j,∆ − 2Ri+j,∆M(1,∆) +M2(1,∆)

]
= C(2, 2,∆, j)− 2M2(1,∆)M(2,∆) +M2(1,∆)M(2,∆)− 2M(1,∆)C(1, 2,∆, j)

+ 4M4(1,∆)− 2M4(1,∆) +M2(1,∆)M(2,∆)− 2M4(1,∆) +M4(1,∆)

−
(
M(2,∆)− 2M2(1,∆) +M2(1,∆)

)2
= C(2, 2,∆, j)− 2M(1,∆)C(1, 2,∆, j)−M2(2,∆) + 2M2(1,∆)M(2,∆)

(A.5)

A.2 Derivation for the Non-Centered Cross-MGF

Let us denote the non-centered cross-MGF as C(m,n,∆, j) = E
[
Rmi,∆R

n
i+j,∆

]
. The following formula holds

whenever the moments exist.

E
[
Rmi,∆R

n
i+j,∆

]
= E

[
Rmi,∆ E

[
Rni+j,∆|Fi+j

]]
= E

[
Rmi,∆Mi+j(n, 0,∆)

]
= E

[
Rmi,∆e

µ∆n+φ(n,0,∆)+〈ψ(n,0,∆),Vi+j〉
]

= eµ∆n+φ(n,0,∆) E
[
Rmi,∆ E

[
e〈ψ(n,0,∆),Vi+j〉|Fi

]]
= eµ∆n+φ(n,0,∆) E

[
Rmi,∆Mi (0, ψ(n, 0,∆), j∆)

]
= eµ∆n+φ(n,0,∆) E

[
Rmi,∆e

φ(0,ψ(n,0,∆),j∆)+〈ψ(0,ψ(n,0,∆),j∆),Vi〉
]

= eµ∆n+φ(n,0,∆)+φ(0,ψ(n,0,∆),j∆) E
[
emri,∆+〈ψ(0,ψ(n,0,∆),j∆),Vi〉

]
= eµ∆n+φ(n,0,∆)+φ(0,ψ(n,0,∆),j)M(m,ψ(0, ψ(n, 0,∆), j∆),∆)

(A.6)
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A.3 Parameter Constraints Required to Ensure Mt(6,∆;Vt) <∞

According to Rollin et al. (2009) Proposition 3.1.1, Mt(k,∆;Vt) < ∞ holds for every ρ ∈ [−1, 0] on the

interval [k−, k+] with:

k± =
1− 2ρκξ ±

√
4(κξ )2 − 4ρκξ + 1

2(1− ρ2)
. (A.7)

If we assume k+ ≥ 6 and let x = κ/ξ > 0, this is equivalent of determining the range of x and ρ such that:

1− 2ρx+
√

4x2 − 4ρx+ 1

2(1− ρ2)
≥ 6, (A.8)

which is equivalent to: √
4x2 − 4ρx+ 1 ≥ 11− 12ρ2 + 2ρx. (A.9)

We now divide into two scenarios.

Scenario 1. If 11 − 12ρ2 + 2ρx ≤ 0, then Equation (A.9) holds since the left hand side is always

non-negative. This implies that x ≥ 6ρ− 11
2ρ is a sufficient condition for Equation (A.9) to hold. We therefore

see that if 6ρ− 11
2ρ ≤ 0, which implies that ρ ≤ −

√
11/12, then Equation (A.9) holds for all x > 0.

Scenario 2. We now assume 11− 12ρ2 + 2ρx ≥ 0, or x ≤ 6ρ− 11
2ρ . Squaring both sides of Equation (A.9)

and rearranging yields:

(1− ρ2)x2 − 12ρ(1− ρ2)x− 36ρ4 + 66ρ2 − 30 ≥ 0. (A.10)

This is quadratic in x with at most one positive real root x+. One therefore sees that Equation (A.9) holds

under Scenario 2 when 6ρ− 11
2ρ ≥ x ≥ x+. Solving the above equation w.r.t. x yields:

x± = 6ρ±
√

30. (A.11)

We now discuss two additional conditions: (1) x+ ≤ 6ρ− 11
2ρ . If this does not hold, then scenario 2 is trivial

as it is subsumed into Scenario 1. (2) x+ ≥ 0. If this does not hold, then effectively Equation A.9 holds for
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all x > 0. Condition (1) is equivalent to the following:

ρ ≥ −11
√

30

60
≈ −1.004, (A.12)

which indicates that condition (1) always holds. Condition (2) is equivalent to the condition that ρ ≥

−
√

30/6 ≈ −0.913. We therefore sees that if ρ ≤ −
√

30/6, then Equation (A.9) holds for any x > 0. As this

includes scenario 1, scenario 1 is obsolete.
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