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Abstract

We develop a parametric estimator of the physical skewness of an as-
set’s discrete (“dollar”) return over long horizons from the assumption
that the asset’s value can be modelled using a stochastic process from the
affine stochastic volatility (ASV) model class. Taking compounding and
leverage effects into account, we demonstrate that our estimator is close
to unbiased and efficient, setting it apart from other recent estimators. In
a further contrast to those other estimators, it also lends itself naturally
to forecasting skewness. Applying our estimator to representative stock
indexes, we show that the skewness of long-horizon dollar returns is far
less extreme than suggested in the current literature.
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1 Introduction

While a huge theoretical literature dating back to the 1960s studies how the
physical skewness of an asset’s discrete (“dollar”) return affects investor behavior
and asset prices, only few empirical studies convincingly test the main predictions
of that literature.! The reason for this gap is that it is challenging to empirically
estimate skewness with realistic amounts of data, especially over the long return
horizons the theoretical literature focuses on.? Only recently, a handful of studies
including Fama and French (2018) and Farago and Hjalmarsson (2019) have
started addressing the estimation issue head on, proposing new estimators relying
on fewer data. Yet, as we will demonstrate, those estimators often deliver biased

estimates under realistic assumptions, especially over long horizons.

In our paper, we develop a new estimator of the skewness of an asset’s
return over an arbitrary horizon under the assumption that the asset’s value
can be modelled using a stochastic process from the affine stochastic volatility
(ASV) model class (see Duffie et al. (2000, 2003)). To do so, we first explain how
to calculate the conditional and unconditional version of the skewness of the
asset’s return using the corresponding moment generating functions (MGF) of
the stochastic process. Since the MGF's depend on the parameter values of the
stochastic process, we can then obtain estimates of the two skewness versions from
explicit estimates of the parameters. Crucially, using the most recent estimate of
the conditional MGF, we are easily able to calculate a natural and internally

consistent forecast of skewness over the desired future horizon.

We choose the Heston (1993) stochastic process as an example to implement

1Since we exclusively look into the physical skewness of an asset’s dollar return, we will, for
simplicity, refer to that skewness as the “skewness of an asset’s return” from here on, unless
stated otherwise. Given that only the dollar (and not the log) return measures the profitability
of real-world investments (i.e., only the dollar return is “investable”), its skewness is a more
relevant statistic for real-world investors than the skewness of the log return.

2To illustrate, even if monthly returns were independently and identically (i.i.d) normal, standard
estimators such as the sample skewness would need about 600 observations (approximately 50
years of data) to estimate skewness with a standard error of 0.10. Needless to say, most assets,
as, for example, most single stocks, do not exist for such long time periods.



our new methodology, the advantages being that the process is simple yet flexible,
popular, and has an MGF available in closed form. Also, we are able to consistently
estimate the parameters of the process with a novel GMM estimator. Using a
Monte Carlo simulation exercise, we then confirm that our skewness estimator
delivers close to unbiased and efficient estimates of the skewness of returns with
an up to five-year horizon — even when we use no more than ten years of data in
our parameter estimation. Under our base case parameter setting for the Heston
process, the true unconditional skewness is, for example, 0.044, 0.097, 0.594,
1.406, and 2.120 at the weekly, monthly, annual, three-year, and five-year return
horizon, respectively. In striking agreement, the mean estimate of our estimator
is 0.041, 0.093, 0.575, 1.286, and 1.890, with an impressive mean squared error
(MSE) of 0.001, 0.004, 0.018, 0.047 and 0.112, all respectively.

Interestingly, Fama and French’s (2018) and Farago and Hjalmarsson’s (2019)
new estimators perform much worse in most simulations, with them overshooting
skewness over all horizons and them failing to capture possible declines in skewness
over shorter horizons. This occurs because their estimators miss out on one of
two forces driving skewness: the “compounding” and the “leverage” effect. The
compounding effect implies that compounding up short-horizon dollar returns
produces right skewness in the long-horizon dollar return, with the effect being
amplified by short-horizon return volatility (Bessembinder (2018)). The leverage
effect implies that a negative dependence between return and volatility lowers
skewness, especially over short horizons (Neuberger and Payne (2020)). While
Fama and French’s (2018) and Farago and Hjalmarsson’s (2019) new estimators
capture the compounding effect, their assumption that returns are i.i.d. makes
them miss out on the leverage effect. Our estimator, in contrast, incorporates

both the compounding effect as well as the leverage effect.

Notwithstanding, our estimator relies crucially on the assumption that

an ASV model can accurately describe asset values. To illustrate that small



deviations from that assumption do not completely invalidate the estimator, we
next simulate asset values from a stochastic process similar to but even more
realistic than the Heston process, namely, the multi-factor Heston process. Using
our estimator based on the Heston process on those simulated data, we show

that the estimator continues to strongly outperform the others.

We finally apply our skewness estimator to real-world stock indexes, an asset
class for which the existence of a leverage effect has been extensively shown in prior
research. Our evidence reveals that the leverage effect dominates the unconditional
skewness of those indexes over shorter horizons, whereas the compounding effect
dominates that skewness over longer horizons. To be more precise, we discover that
the unconditional skewness of weekly returns is always larger than that of monthly
returns and sometimes even larger than that of annual returns, suggesting that
the “pull-down effect” caused by leverage can be strong. Notwithstanding, we also
find that unconditional skewness always increases with the return horizon over
sufficiently long horizons. We also learn that the unconditional skewness of long-
horizon dollar returns is much lower than suggested in Bessembinder (2018) and
Farago and Hjalmarsson (2019), mainly owing to the leverage effect. Given that,
we do not share Farago and Hjalmarsson’s (2019) sentiment that long-horizon

skewness is too extreme to be useful in practical applications.

Our work contributes to a small but emerging literature on how to accurately
estimate and forecast the skewness of returns over long horizons using limited
amounts of data. As is well appreciated, standard estimators do not succeed in
doing s0.? Thus, Fama and French (2018) propose conducting a simple bootstrap
on short-horizon returns, compounding up the draws to create a “bootstrap
long-horizon return.” Repeating that step multiple times, they compute the
skewness of long-horizon returns from the artifical returns. Assuming that short-

horizon returns are i.i.d., Farago and Hjalmarsson (2019) derive a closed-form

31n addition, Li (2020) shows that standard estimators deliver biased estimates for the skewness
of stock returns in the presence of leverage and volatility feedback effects.



solution expressing the skewness of long-horizon returns as a function of short-
horizon return moments. Approximating the variance and skewness operator,
Neuberger (2012) and Neuberger and Payne (2020) derive a closed-form solution
expressing the skewness of log long-horizon returns as a function of short-horizon
return moments but without assuming i.i.d. returns. We add to those studies by
proposing an alternative parametric estimator of the skewness of long-horizon
returns producing more unbiased and efficient estimates. In contrast to the other

estimators, our estimator also easily yields a forecast of skewness.

Our work further feeds into a well-established literature on how the skewness
of returns affects financial decision-making and thus asset prices. Arditti (1967)
and Scott and Horvath (1980) establish that von-Neumann-Morgenstern (NM)
investors prefer more positively skewed returns. Simkowitz and Beedles (1978)
and Conine Jr and Tamarkin (1981) highlight that a preference for skewness can
lead the same investors to hold optimal underdiversified portfolios. Assuming
NM preferences in combination with monetary separation, Rubinstein (1973),
Kraus and Litzenberger (1976), and Harvey and Siddique (2000) document that
co-skewness (i.e., systematic skewness) prices assets. Using non-NM preferences or
violations of monetary separation, Brunnermeier et al. (2007), Mitton and Vorkink
(2007), and Barberis and Huang (2008) reveal that idiosyncratic skewness may
also price assets. Importantly, while the theories above all study the skewness of
long-horizon returns, empirical studies typically rely on estimates of the skewness
of short-horizon returns to test them, likely due to the difficulties in estimating
long-horizon skewness with limited data.* We add to those studies by making a

first step toward testing those theories using more meaningful proxies.

We finally also contribute to the literature on estimating the parameters of

4Empirical studies investigating the effect of skewness on stock and option returns include, for
example, Boyer et al. (2010), Boyer and Vorkink (2014), Conrad et al. (2014), and Amaya
et al. (2015). Those studies are distinct from others concentrating on the effect of risk-neutral
skewness, as, for example, Bali and Murray (2013), Conrad et al. (2013), and Stilger et al.
(2017). Since systematic risk lowers risk-neutral skewness relative to physical skewness, the
results from the two types of studies should not be directly compared.



continuous stochastic volatility models. Previous approaches include generalized
method of moments (GMM,; e.g., Hansen and Scheinkman (1995) and Pan (2002)),
maximum likelihood (e.g., Bakshi et al. (2006), Bates (2006), and Ait-Sahalia
et al. (2007)), simulated methods of moments (e.g., Gallant and Tauchen (1998),
Duffie et al. (2000), and Chernov et al. (2003)), Markov Chain Monte Carlo
(e.g., Eraker et al. (2003) and Li et al. (2008)), and the empirical characteristic
function method (e.g., Singleton (2001) and Jiang and Knight (2002)). Unlike
existing GMM estimators, our GMM estimator is constructed by matching
the theoretical central moments and cross-moments of the dollar return with
its sample counterparts, substituting small time interval approximations for

analytical expressions of the theoretical moments.

The paper proceeds as follows. In Section 2, we introduce our theoretical
framework and derive our general skewness estimator. In Section 3, we propose
a Heston-type estimator based on our framework and show how to implement
it in practice. We further discuss alternative estimators proposed in the recent
literature. Section 4 offers a simulation exercise studying the unbiasedness and
efficiency of our estimator and the others. In Section 5, we apply our Heston-type

estimator to real-world data. Section 6 sums up and concludes.

2 A General Parametric Skewness Estimator

In this section, we introduce our new parametric estimator of the skewness of an
asset’s dollar return over some arbitrary horizon. We start with defining the class
of stochastic processes which can be used to model an asset’s value in our setup
and then outline how to calculate conditional and unconditional return skewness
under those processes in the general case. We next narrow down our discussion
to three popular stochastic processes, deriving their specific expressions for the

two types of skewness. We finally turn to the topic of estimating conditional and



unconditional skewness from a stochastic process in the ASV class.

2.1 Affine Stochastic Volatility (ASV) Models

In our derivations, we assume that the value of an asset can be described using a
stochastic process from the ASV model class, as formalized in Duffie et al. (2000,
2003), Chernov et al. (2003), Bates (2006), and Cheridito et al. (2007). In line

with those studies, we define such processes as follows:

Assumption 1. On a canonical filtered space (Q, F, (F)i>0), let (X, Vi)i>o denote
a time-homogenous stochastically continuous Markov process taking values in
the state space D = R X ]Ri for some d € N, where the scalar process X; is
understood as the observed log-value process and the d-dimensional vector-valued

process Vi is the latent state process associated with X;. We assume that:

1. There exist unique functions ¢(u,w,h) € C and (u,w, h) € C* such that
the joint conditional moment generating function (MGF) M(u,w, h; V;)

defined in Equation (2.1) has an exponential-linear form:

My (u,w, h; V) = E[eTt,hu+<‘/t+h,w> | Xy, Vt] _ euhu-kd)(mw,h)-&-(’tb(u,w,h),Vt>’
(2.1)
for all (u,w,h) € Cx C¢ xRy and t >0 if B[.] exists, and where 1y ), =

Xipn — Xy 18 the log-return of X, over horizon h and p the drift of X;.5

2. Ast — oo, Vi converges in law to a unique invariant limit distribution

L(v) with MGF given by G(w) = E[e{w-V?)].

3. For allt,h € (0,00), M(3,0,h;V;) < oo almost surely.

Condition (1) follows Duffie et al. (2003) in defining an ASV model which is

homogenous of order one in X;. Assuming the existence of the limit distribution

5To be more precise, the MGF functions of the ASV models in this paper refer to the analytical
continuation of the corresponding characteristic functions to the complex plane.



L(v), Condition (2) ensures that a stationary regime for the Markov system exists
and thus that the unconditional moments of X; are well defined (see Keller-Ressel
and Steiner (2008) and Keller-Ressel (2011) for more details). In turn, the third
moment of X; does not explode over any finite horizon h, implying the skewness
of the dollar return over that horizon exists (see Andersen and Piterbarg (2007),

Keller-Ressel (2011), and Keller-Ressel et al. (2015) for details).

Intuitively, My(u,w, h; V) can be viewed as the MGF for (7, Vi4pn) con-
ditional on the latent state vector V;. As we discuss below, My (u,w, h; V;) is
inconvenient to use empirically since V; is unobservable in practice. To avoid
that issue, we could focus on the unconditional MGF, computed by interpreting
V; as a random variable with (limiting) distribution L(v) and then taking the

expectation of the conditional MGF with respect to that variable:
M(u,w,h) = E[My(u,w, b )] = P00 DG, w, ). (2.2)

Doing so, we can, however, only estimate unconditional skewness, not conditional
skewness, as we will understand more fully in the next section. To keep our
notation simple, we from here on suppress the MGF parameter w whenever it is

equal to zero (i.e., My(u, h) = M¢(u,0,h) and M (u,h) = M(u,0,h)).

2.2 Calculating True Skewness from ASV Models
2.2.1 The General Case

We next derive general closed-form or quasi-closed-form solutions for the skewness
of an asset’s dollar return over some horizon under the assumptions that the value
of the asset can be modelled using a stochastic process from the ASV class and
that the process parameters are known. To do so, we define the asset’s gross dollar

return measured from time ¢ and with horizon h as R; ) = e"*" = eXttn—Xe,



which is the ratio of the asset’s value at time t + A to its value at time ¢.

We define the unconditional skewness of the dollar return as:

E[(Ryn — E[Ry5))°]
V[R; 1]3/? ’

Skew[R¢ 1] = (2.3)

which can be interpreted as our best estimate of skewness in the absence of any

information on V;. Conversely, we define the conditional skewness as:

E[(Rin — E[R14|Gi])%|G4]

Skew[R; 1G] = SIRIARE ,

(2.4)

where G = (G;)1>0 C F denotes the filtration generated by X,. Equation (2.4) can
be interpreted as our best estimate of skewness conditional on the observations
available at time t. Notice that when X; is continuously observed over time we
can perfectly estimate the latent state process V;, so that Skew[R; ;|G| is equal

to Skew[R; ,|V4], the full-information conditional skewness.

Using Assumption (1) in Section 2.1, we are able to rewrite the unconditional

skewness of the dollar return in Equation (2.3) as:

M(3,h) — 3M (1, R)M(2, h) + 2M (1, h)?

Skew[Ry 1| = 2.5
it pen - #
and the conditional skewness of the dollar return in Equation (2.4) as:
M(3,h) — 3M,(1, h) My(2, k) + 2M,(1,R)3
Skew[Ry plg,) = 2t R) — SMi(L, R)M:(2,h) + 2M,(1, h) (2.6)

(M (2, h) — My (1, h)?]3/2

2.2.2 Some Specific Examples

We now show the specific solutions for the unconditional and conditional skewness
in case that the asset’s value can be described using geometric Brownian motion

(GBM), the Heston process, and the multifactor-Heston process.



Geometric Brownian motion. Suppose (X, V;)¢>0 satisfies:
1
X =Xo+ (p— 502)t + /VidW; and V; = o2, (2.7)

where p and o are parameters, and W, is a Brownian motion. Since V; is constant,

the conditional and unconditional MGFs coincide and equal:
My (u, h) = M(u, h) = el#h=30"Mutzohu® (2.8)

In turn, the conditional and unconditional skewness coincide and equal:

e?;ho’2 _ 36h02 +2
(eho® —1)3/2

SkeW[Rt7h|gt] = SkeW[Rmh} = (29)

which is derived from plugging Equation (2.8) into (2.5) and simplifying. To wit,
Equation (2.9) is similar to Farago and Hjalmarsson’s (2019) estimator for dollar
return skewness, which also relies on the assumption that the short-horizon dollar

return is i.i.d. but does not require it to be lognormally distributed.

The Heston model. To enable an asset’s volatility to evolve stochastically
over time and to allow the asset’s value and volatility to be correlated, Heston

(1993) assumes that (X, V;):>o satisfies:

1
dX, = (= Vi)t + /VidW,
(2.10)

dV; = k(o — Vy)dt + £/ VidBy,

where &, v, and £ are the mean reversion, the long-run variance, and the volatility-
of-volatility parameter respectively, and W; and B; are Brownian motions with
[W, B); = pt. Setting p < 0 creates a negative correlation between the asset’s
value and volatility, consistent with Black’s (1976) leverage effect. To ensure that

V; is positive, we require £ > 0, a > 0, and £ > 0 as well as 2ka > £2.

Bates (2006), Andersen (2008), and Rollin et al. (2009) document that the



conditional MGF of the Heston stochastic process is:
My, w0, Vi) = Hiet W eV (2.11)

where:

B o () — 0y (u) | (Quw) — PO
o(u,w,h) = Kb <a+(u)h + 20 Rl Y ( Qlu,w) 1 )),

Qu, w)ay (u) — a_ (u)el W

Y(u,w,h) = Qu, w) — oP(u)t ;o Plu) = \/(“ —&pu)? + &2 (u — u?),
ax = (k—upt + P()/E2, and  Q(u,w) = W

(2.12)

Since (V4)¢>0 obeys a Gamma distribution in the Heston process in the time

limit, the function G(w) in Equation (2.2) takes the form:

2 —2ra /€2
— wVi] - i
G(w) = E[e¥V] = (1 2Kw) : (2.13)
and the unconditional MGF is equal to:
M (u, w, h) = et*hHowh) G (u, w, h)). (2.14)

The multi-factor Heston model. To allow for a stochastic volatility model
with even more flexibility, Christoffersen et al. (2009) propose the multi-factor
Heston model, which generalizes the Heston model by modelling variance using

K > 1 stochastic variables. In particular, (X, V;)i>0 now satisfies:

K

K
1
ax; = (=5 D Vidt+ 3 v aw o)
2.15

k=1 k=1
V) = k@ (a® — v a4 ¢®\ v PaB® | ke1,2,... K],

10



where [W®H), BW)], = p®) [ H) W(k/)]t = [B®), W(’f’)]t = [B(k),B(k/)}t =0
for all k # K, and the parameters pu, k), a® €®) and p*) are defined as

(k)

before. Since each V;*"’ evolves independently of the others, the conditional MGF

of the multi-factor Heston process takes the form:

M, (u’ w, h; 9’ V;) — thu+ZkK:1 &P (u,w,h)+ K| w(k)(u,w,h)vt(k)’ (2]_6)

where ¢) (u, w, h) and ¥*) (u,w, h) are as in Equation (2.12) assuming x = x(*),

a=a® ¢=¢% and p = p¥). We further have that:
K
G(w) =[] ¢W(w), (2.17)
k=1

where G*) (w) is as in Equation (2.13) under the same assumption as above.

Other ASV models. Turning to other ASV models, Theorem 2.7 in Duffie
et al. (2003) suggests that ¢(u,w,h) and ¥ (u,w,h) can always be obtained as
the solution of a system of general Riccati equations. Moreover, G(w) can be
derived as a by-product of that solution, as, for example, done in Keller-Ressel
(2011). While the Ricatti-equation system does not always have a closed-form
solution, it is always possible to solve it using numerical methods. As a result,
we can always calculate dollar-return skewness from Equations (2.5) and (2.6) if
the asset’s value obeys an ASV-class stochastic process — even if we looked into
processes more complicated and sophisticated than those explicitly discussed in
this section (such as affine jump-diffusion processes as in e.g. Eraker et al. (2003)

and Bates (2006)).°

6While only few studies derive closed-form solutions for the MGF's of general stochastic processes
from the ASV class, the reason may be a lack of applications. We note, for example, that we
only require ¢(u,0, h) and 1 (u, 0, h) for the purpose of option pricing, with these functions
being much easier to compute than their general (i.e., w # 0) counterparts. Pan (2002), Bates
(2006), and Bates (2012) show how to derive MGF's for ASV-class stochastic processes with
K =1, while Bates (2019) discusses how to derive those MGF's for models with K > 1.

11



2.3 Estimating Skewness from ASV Models

Since we can calculate the skewness of an asset’s dollar return assuming that the
asset’s value obeys an ASV-class stochastic process and the process parameters are
known, we next show that we can consistently and efficiently estimate and forecast
that skewness simply by estimating the process parameters. Assuming that we
work with daily or intra-day price data, we let (X;);>0 be equidistantly observed
on some finite interval [0,7]. To be more precise, denoting some fixed time
interval by A (e.g., A = 1/252 for one trading day), we observe (X;a)i=1.n, where
N =T/A is the sample size. Since A is fixed, we, however, write X; rather than
Xin to keep our notation as simple as possible. We use G; = 0(X;;j € {0,...,i})

to denote the filtration generated by (X;);=1.;, with ¢ < N.

To be able to estimate the parameters of ASV-class stochastic processes and
to convert those into dollar return skewness estimates and forecasts, we impose

the following additional assumptions on top of those in Assumption (1):

Assumption 2. Consider an ASV model generating (X, Vi)i>0 defined as in

Assumption 1. We further assume about that model that:

1. The model is uniquely determined by some k-dimensional parameter vector
0 € O, where the associated parameter space © is a compact subspace of
R*. For some realization of (X;, Vi)i>0, we denote the true data generating

parameter vector by 0y, taking values from the interior of ©.

2. There exists an N -consistent estimator of 0y adapted to Gy, which we

denote by 0, such that 0 2 0y as N — co.

3. The unconditional and conditional moments E[Rf)h] and E[Rf7h|gt] are

uniformly continuous in 0 for all h >0 and k =1,2,3.

Conditions (1) and (2) ensure that a consistent estimator of the parameter

vector Ay can be constructed based on equidistantly observed data. Given that

12



Bates (2006) shows that numerous estimation techniques (including, e.g., GMM,
the efficient method of moments (EMM), and the empirical characteristic function
method) consistently estimate the parameters of a wide class of ASV models,
the two conditions are not restrictive. Condition (3) ensures the exponential
moments of an ASV model are smooth functions of the parameter vector, which is
also satisfied by the vast majority of ASV models. The final condition guarantees
that plugging the consistent estimates of an ASV-class stochastic process into

our skewness formulas (2.5) and (2.6) yields consistent skewness estimates.

Under Assumptions (1) and (2), we can estimate the unconditional skewness

of an asset’s dollar return over time A to iA + h, Skew[R; ; 0], using:

~ M(3,h;0) — 3M (1, h; 0)M(2, h; 0) + 2M (1, h; §)3

Skew[R; p; 6] = M3 1:0) = 3M, hiO)M(2, hi6) + 2M (L, hi6)° -, 1)
[M(2a ha 0) - M(la ha 0)2]3/2

Since we are unable to exactly infer V; to calculate the value of the full-information

conditional MGF, M;(u,w, h; V;, é), with equidistantly observed data, we devise

an optimal estimate M;(u, w, h; é) = E[M;(u, w, h; V;, é)\gz] instead. The observed

conditional skewness, Skew[R; ; HA\Q,-}, is then computed using:
M;(3, h; 6) — 3M

Skew[R; »; 0/Gi] = [M(;

1, h; O)M; (2, h: 0) + 2M;(1, h: 6)3
(h7h79) l( 7h1€)+ Z( ’h’e) . (219)

6) — (1, h; 6)%]3/>
While the optimal estimate Mi(m w, h; é) is generally unavailable in closed-form,

the following proposition from Bates (2006) allows us to iteratively calculate it:

Proposition 1. Under Assumptions (1) and (2), assume that Vg is a random draw

from L(v) and Xq is a deterministic initial log-price. Let Gi(w|G;) = E[e{V4)|G;]

denote the MGF of V; conditioning on G;. It then holds that:

13



M; (u, w, h; ) = et 00 G (4 (u, w, h)|Ga), (2.20)

Oojii:j M; (u,w, h; é)e‘“”ldu
Gi+1(w|gi+1) =

Ooj;i: ]\Z'l(u7 (]’ h’ é)e_uri’ldu )

(2.21)

where Go(w|Gy) = G(w).

In practice, we always start with Equation (2.20), calculating Mo (u, w, h; é) =
erhutd(ww.h) Q). We next plug Mo (u, w, h; §) into Equation (2.21), numerically
evaluating the integrals and obtaining Gy (w|G;). We then plug G (w|G1) back
into Equation (2.20), allowing us to compute the optimal expected MGF at
time A, M, (u, w, h; é) We continue in that manner until we have the optimal

expected MGFs for all dates in our data (i.e., for all ¢ € {1,2,...,N}).

We note that a direct implementation of Proposition (1) suffers from the
curse of dimensionality due to the iterative nature of the numerical integration. To
avoid that problem, we follow Bates (2006) and approximate G;(w|G;) by the
MGF of a Gamma distribution with parameters estimated numerically at every
iteration. Despite the complexity, the approach is numerically stable, and filtration

errors die out with an increasing number of observations.

Following from condition (3) of Assumption (2), the continuous mapping
theorem implies that Skew[R; p; é] and Skew[R; ; é|gi] are consistent estima-
tors of, respectively, Skew|[R; n; 6] and Skew[R; ; 00|G;], as stated in the next

proposition:

Proposition 2. Under Assumptions (1) and (2), it holds as N — oo that:

Skew|[R; ;0] 2 Skew|[R;.1; 6o],
) (2.22)
Skew[R; 1; 01Gi] % Skew|[R; 1,; 60|Gi)-
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We can also establish that our skewness estimates are asymptotically normal
if 6 is so, too. Since establishing that 6 is asymptotically normal, however, requires

additional assumptions, we omit those derivations for the sake of brevity.

3 A Heston-Type Estimator Based On Our Setup and

Other Competing Estimators

In this section, we study a Heston-type estimator of the skewness of long-horizon
returns based on the setup in Section 2, illustrating how we can use a novel GMM
approach to calculate that estimator in practice. We also introduce estimators of

the skewness of long-horizon returns advocated in recent studies.

3.1 The Heston-Type Estimator
3.1.1 Using GMM to Calculate the Heston-Type Estimator

We devise a Heston-type estimator of the conditional (unconditional) skewness
of long-horizon dollar returns by plugging the conditional (unconditional) MGF's
of the Heston stochastic process shown in Equation (2.11) ((2.14)) into skewness
formula (2.6) ((2.5)) and evaluating the formula at estimates of the parameter
values of the process, 6 = [u, k, a, &, p]. To obtain the parameter estimates, we
propose a novel GMM approach matching the theoretical central moments and
cross-moments of R; o with their sample counterparts. To that end, denote the
centered version of R; A as I;BLA = R; A—M (1, A). Next denote the centered MGF
and cross-MGF of R; A as, respectively, ]\;I(k, A) = E[RfA] and C’(m,m Aj) =
COV[RZLA, ]:EZZF ;.als where j indicates the number of lags. We can then write the

system of moment conditions used in our GMM approach as:
E[h(R; a;6)] =0, (3.1)
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where h(R; a;0) is given by the following vector:

Rin — M(1,A;6)

R\ — M(3,A;0)
RiAR% A —C(1,2,A,10)
WRiaso)=| 0 , (3.2)
REAR? ;A —C(1,2,A,7;0)
RZ%AR?H,A —~C(2,2,A,1;0)

P2 D2 _ .
Ri,ARiJrJ,A 0(272’A’J79) (4427)x1

and J represents the longest lag between returns.

Expanding the definitions ofM(k, A; 0) and C’(m7 n, A, j;0) in vector (3.2), we
show in the appendix that those centered MGF's and cross-MGF's can be written

as linear functions of non-centered MGFs and cross-MGF's:

M(2,A) = M(2,A)— M?*(1,A), (3.3)

M(3,A) = M(3,A)—3M(1,A)M(2,A) +2M>3(1,A), (3.4)
M(4,A) = M(4,A) —4M(1,A)M(3,A) + 6M?(1,A)M(2,A)

— 3M*(1,4), (3.5)

C(1,2,A,5) = C(1,2,A,5) — M(1,A)M(2,A), (3.6)
C(2,2,A,5) = C(2,2,A,5) —2M(1,A)C(1,2,A,§) — M?(2,A)

+ 2M?(1,A)M(2,A), (3.7)
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where the non-centered cross-MGFs C(m,n, A, j) can be calculated from:

C(m,n, A, j) = et o020 +00.0m0.8)0) N (m, (0,1(n, 0, A), jA), A).7
(3.8)

Although our moment conditions include all first four central moments in
the first four rows, they only include two cross-moments, namely those involving
Ri,Aé12+j,A and R?’AR?H,A, starting from the fifth row. While the cross-moments
involving RlARf +j.A are meant to capture leverage effects, the ones involving
RZQ AR +j,A are meant to capture volatility clustering effects, two well-documented
stylized facts of asset returns. We do not include other cross-moments since most
of them are likely to be close to zero, making it hard to identify parameters
from them. The cross-moments involving RLARHJ-’A will, for example, always
approximately hold in a weak-form efficient market since the history of dollar

returns does not predict future dollar returns in such a market.

As the system of moment conditions (3.1) is overidentified even when J =1,
we obtain parameter estimates by minimizing a quadratic form of the moment
conditions. To that end, let W (412 7)x(4427) denote a positive definite weighting

matrix. We then define the GMM estimator of the parameter vector 6 as:
Ocrin = arg;nin h(Ri,a;0)'W (4427 x (112 h(Ri a3 0), (3.9)

where h(R; a;0) = + vazl h(R; a;0). Under standard regularity conditions (as
discussed in, e.g., Chapter 3 in Hall (2005)), Ocazar is a consistent and asymp-
totically normal estimator of 6. Fixing the horizon h, the delta method suggests
that our conditional and unconditional skewness estimators are also consistent

and asymptotically normal estimators of their true counterparts.

"Derivation can be found in Appendix A.2.
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3.1.2 Practical Implementation

We use a two-step approach with J = 100 to estimate the parameter vector 6 in
practice. In particular, we start with employing the identity matrix Isgsx204 as
weighting matrix W 4127)x 442) in Equation (3.9) to obtain the preliminary
parameter estimate vector 0;. Relying on the vector él, we compute the Newey
and West (1987) variance-covariance matrix of h(R; a;6;), often labelled the
spectral density matrix. We finally use the inverted spectral density matrix as
weighting matrix W 44 27)x (442) to obtain our final parameter estimate vector
f5. In addition to the Feller condition (i.e. 2k > €2), we always impose the
constraints that £ € (0,10], « € (0,1], & € (0,1.5], and p € [—1,0] to ensure
reasonable estimates. We also impose p < —v/30/6 or x/& > 6p + /30 to ensure

M;(6,A;V;) < oo almost surely, implying a well defined variance of skewness. 8

To increase computational efficiency and improve parameter identification,
we further do not use the MGFs and cross-MGFs in Equations (3.3) to (3.7) in
our GMM estimations but instead their short-time-increment power-expansion

approximations. We show those approximations in Proposition 3.

Proposition 3. As A — 0, it is the case that:

1 M(1,A) = 1+ pA + £ A% 4 o(A2).
2. M(2,A) = aA + a(s + 2 + 20+ Ep)A2 + o(A?).

(3,A) = 3a(a + & + £)A2 + o(A?).

2K

o
=

4. M(4,A) = 3a(a + £ )A% + o(A2).

5. C(1,2,A,§) = ape "U—DAA2 4 o(A?),

6. C(2,2,A,5) = % rU-DAAZ | o(A2).

8Further explanation is provided in Appendix A.3.
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Interestingly, the approximations in Proposition (3) often allow for new insights
into the relations between the moments and the parameters. The expression for
C(1,2, A, ), the covariance between lagged return and current squared return, for
example, suggests that p < 0 is a necessary condition for the leverage effect (i.e.,

for higher returns to predict a lower volatility, and vice versa).?

3.2 Fama and French’s (2018) Bootstrap Estimator

Fama and French (2018) suggest a simple bootstrap to estimate the skewness of
long-horizon returns. They start from a time-series of short-horizon (e.g., daily
or weekly) returns. They next draw with replacement and equal probabilities a
number of returns from that time-series sufficient for those returns to cover a
period equal to the desired long horizon (e.g., one year). They then compound
the drawn returns to generate a “bootstrap long-horizon return.” Repeating the
prior two steps multiple times, they generate a sample of bootstrap long-horizon
returns. They finally compute the skewness of the long-horizon return by applying

the sample skewness to the sample of bootstrap long-horizon returns.

While Fama and French’s (2018) estimator is original, their simple bootstrap
abstracts from dependence in returns, implicitly assuming that returns are i.i.d.
over time. Given the i.i.d. assumption, an estimate obtained from their estimator

is simultaneously a conditional and unconditional estimate.

3.3 Farago and Hjalmarsson’s (2019) Estimator

Assuming that the short-horizon return, R; a, is i.i.d., Farago and Hjalmarsson

(2019) demonstrate that the skewness of the long-horizon return, which is the

9We generate the results in Proposition 3 using Wolfram Mathematica, offering our programming
codes in the supplement material for this paper.
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compounded up short-horizon return H?Zl R; A, can be computed from:

0 —309+2

e ECENEE

d
H Ri A

=1

(3.10)

_ Var[R; Al

where 05 = FRAR T 1, 03 = —2 4 302 + Skew[R; A](02 — 1)3/2 and d denotes

the number of short-horizon periods within the long-horizon. As before, the
i.i.d. assumption implies that the estimator (3.10) simultaneously gives a condi-
tional and unconditional estimate. In essence, Farago and Hjalmarsson’s (2019)

estimator is the closed-form equivalent of Fama and French’s (2018) estimator.

3.4 Sample Skewness Estimator

The sample skewness estimator is defined as:

~ Zil\il (Rz‘,A - % Zil Ri,A)g

e e o\ 3/27
(N Zi:l (Ri,A - N Zi:l Ri,A) )

Skew[RiA] = (3.11)

where N is the number of returns R; o in our sample period. To ensure that
we have enough observations when we apply the sample skewness estimator to

long-horizon returns, we consistently compute it on overlapping returns.

4 Simulation Exercise

In this section, we conduct a simulation exercise to investigate the performance
of the Heston-type estimator outlined in Section 3 and to compare it with the
other estimators advocated in the recent literature. We start with describing
the data generating process, computing true skewness from that process, and
studying how well we can estimate the process parameters using the novel GMM

method developed by us. We next compare the unbiasedness and efficiency of
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the Heston-type estimator and the others in case asset values obey the Heston
stochastic process. We finally repeat the former comparisons in case asset values

obey a more realistic and flexible process, the double-Heston process.

4.1 Data Generating Process, Implied True Skewness, and Hes-

ton Process Parameter Estimation

We follow Broadie and Kaya (2006) and Andersen (2008) in simulating 10,000 sam-
ple paths with a ten-year length from the Heston-class processes (i.e. Equations
(2.10) and (2.15)). To achieve that, we assume that the initial price for each path,
Py, is 50. Moreover, we draw the initial variance of each factor for each path, Vo(k)7
from their asymptotic Gamma distributions, T'(2x") a(*) /(€())2 2x(k) /(£(R))2),
We set the discretization step equal to one day (i.e., A = 1/252), implying that p,
a®)and €% are all stated per annum and that N = 2,520. We finally employ
the following four-step approach to consecutively simulate observations for each

sample time ¢ € {1,..., N}:

1. We follow Cox et al. (2005) in simulating Vi(k) based on Vz(fi using:

o (e
Vit'= 1

X?i,)\v (41)

4;{“")67’“(“A (k

where d = 45 a®) /(£F))2 and A = ( Vki are, respectively,

)2 (1—e=n M)
the degrees of freedom and the noncentrality parameter of the noncentral

chi-square variable Xi \-
2. We simulate a standard Gaussian random variable Z(*) for each factor.

3. We follow Andersen (2008) in updating P; by approximating the solution
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to the Heston-class stochastic differential equation for the asset value as:

(4.2)

K
ua+3 5 (v)

k=1

P, =P, 1exp

)

where

PV = K0 4 KV KOV 4\ W v ) 2

()1 (8 o () PG
KPP =8 8 A g oA (Bl )
20 22\ Tew T2) T e
(®) (k) *) 2
h) _ La (5007 1N p ® _Ia (1 (,®
KP = 2A< 5 2) temy K =30 <1 (\9)").

(4.3)

4. We calculate the daily dollar return R; o = P;/P;_1.

This four-step approach mitigates FEuler discretization errors, reducing their

impacts on our simulation exercise.

We select = 0.10, kK = 3.00, « = 0.09, £ = 0.30, and p = —0.50 as basecase
parameters in our Heston simulations. To investigate how variations in those
parameter values affect our skewness estimation outcomes, we also consider the
alternative values k = 1 or 5, « = 0.25, £ = 0.10 or 0.50 and p = —0.90 or 0.00, in

each case, however, varying only one of the parameters from its basecase value.

To understand how the Heston process parameters affect the unconditional
skewness of the return and its relation with the return horizon, Figure 1 plots
that skewness evaluated at the basecase parameter values and its variations over
horizons extending up to five years. The figure vividly shows that, under most
parameter value choices, unconditional skewness monotonically rises with the
return horizon. The only exception is the case in which the asset return and
volatility share a correlation (p) of —0.90. In that case, unconditional skewness

initially falls and only later rises with the return horizon. The lesson to be learned
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is thus that, when the asset return-volatility correlation is sufficiently negative,
the leverage effect can dominate the compounding effect at shorter horizons,

whilst it is always dominated by the compounding effect at longer horizons.

[Insert Figure 1 here]

The figure further shows that, at each return horizon, unconditional skewness
rises with long-run variance a and the asset return-volatility correlation p but falls
with the volatility of variance £. The positive relation with long-run variance is
due to an increase in that variance boosting the compounding effect, whereas the
positive relation with the asset return-volatility correlation is due to an increase
in that correlation diminishing the leverage effect. Interesingly, the strength of
mean reversion x has an ambiguous effect on unconditional skewness, with the

effect being negative at short horizons but positive at long ones.

Given that the performance of our Heston-type estimator must hinge crucially
on how well we are able to estimate the p, , a, £, and p parameters, Table 1 offers
descriptive statistics obtained from applying the GMM estimator developed in
Section 3 on each of our 10,000 simulated sample paths. The descriptive statistics
include the true parameter values, the mean estimates, the median estimates, the
standard deviation of the estimates, and the mean squared error (MSE) under
both the basecase parameter values and its variations. The table confirms that
the GMM estimator usually yields mean and median estimates close to the true
values and small standard deviations and MSEs, except for the speed of mean
reversion . The higher standard deviations and MSEs for x presumably come
from the likelihood surface being flat in x, making it hard to infer that parameter

independent of the estimation method applied (Atiya and Wall (2009)).

[Insert Table 1 here]
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4.2 TUnconditional Skewness Estimates in a Heston World

Table 2 contrasts the unbiasedness and efficiency of our Heston-type estimator
and the others for the unconditional skewness of returns in case asset values obey
the Heston stochastic process calibrated using the basecase parameter values or
its variations. Given either parameter value set, the table gives the return horizon
(“Horizon”), the true unconditional return skewness over a horizon (“True”),
and the mean estimate (“Mean”), the absolute bias scaled by the true value
(“%|Bias|”), and the mean squared error (“MSE”) computed over the 10,000
sample paths for each estimator and horizon. The estimators are our Heston-type
(“Ours”), the Fama-French (2018) bootstrap (“FF”), the Farago-Hjalmarsson

(2019) closed-form (“FH”), and the sample skewness (“Conv.”) estimator.

[Insert Table 2 here]

The table shows that our estimator strongly outperforms the other estimators
except when the volatility of variance is close to zero (£ = 0.10) or the asset return-
volatility correlation is zero (p = 0). To be more specific, in the absence of the
above two cases, our estimator always yields the smallest mean absolute percent
error and the smallest MSE over all return horizons, with the small MSEs being
particular noteworthy since the MSE reflects both bias and standard error of an
estimate. The outperformance of our estimator is economically large. Considering
the basecase and the one-year horizon, our estimator, for example, yields a mean
absolute percent error at least 20 percentage points smaller than the others and
an MSE of no more than 25% of those of the others. The worse performance of
our estimator when £ = 0.10 or p = 0 is attributable to asset returns being close
to i.i.d. in those cases, implying that Fama and French’s (2018) and Farago and
Hjalmarsson’s (2019) estimators gain statistical power from imposing reasonable
restrictions. Even in those cases, the performance of our estimator is however,

fortunately, not too far off from those of the other estimators.
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To graphically compare the performance of the estimators, Figure 2 plots
the evolution of true unconditional skewness and the mean estimates obtained
from the estimators under the case p = —0.9 over return horizons up to 20 years.
The results from the figure align with those from Table 2. In particular, the
figure vividly shows that our estimator (dotted green line) yields a mean estimate
consistently closest to true unconditional skewness (solid blue line). In contrast,
the mean estimates from Fama and French’s (2018; big red dots) and Farago
and Hjalmarsson’s (2019; violet broken line) estimator consistently overshoot
true unconditional skewness, largely owing to their assumption that returns are
i.i.d. and them thus abstracting from the leverage effect.!’ Notably, the extent
of the overshooting rises with the horizon. Finally, the sample skewness (broken
yellow line) is a decent estimator at short horizons. Yet, as we extend the horizon,
it yields increasingly downward biased estimates, largely owing to the sample

containing increasingly fewer independent return observations.'!

[Insert Figure 2 here]

4.3 Conditional Skewness Estimates in a Heston World

Table 3 looks into the unbiasedness and efficiency of our Heston-type estimator
for the conditional skewness of returns at the end of each simulated path in case
asset values obey the Heston process calibrated using the same parameter value
sets as before. While the table gives the same statistics as Table 2, for the sake
of brevity, it omits the other (non-Heston-type) estimators since those produce
conditional estimates identical to their corresponding unconditional estimates

due to them assuming i.i.d. returns. In addition, the table further omits return

10We also find it interesting to note that Fama and French’s (2018) and Farago and Hjalmarsson’s
(2019) estimators yield close to identical mean estimates up to ten year horizons, in line with our
prior observation that Farago and Hjalmarsson’s (2019) estimator is essentially the closed-form
equivalent of Fama and French’s (2018) bootstrap estimator.

HNotice that we cannot use the sample skewness to calculate the skewness of returns stretching
over periods longer than ten years with ten years of sample data.
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horizons shorter than one year. While we again estimate the process parameters
underlying the skewness estimates from the entire ten years of data of a sample
path, to speed up our computations, we use only the final two years of data from
a path to compute the optimal estimates of the conditional MGFs, M;(u,w, h; §)7

according to the iterative procedure outlined in Proposition 1.

We stress that the conditional estimates in this subsection are likely more
relevant to a real-world investor than the unconditional estimates in the prior
subsection. The reason is that such an investor is in most cases more interested
in forecasting skewness over some concrete period (starting, e.g., from the current

date) rather than over an equally long arbitrary period.

[Insert Table 3 here]

The table suggests that our Heston-type estimator also performs extremely
well in estimating the conditional skewness of returns over long horizons. While
true conditional skewness is now not a single number but varies over the 10,000
sample paths for each return horizon and parameter value set according to the
value of the state variable (i.e., variance) at the end of a path, it is on average close
to unconditional skewness (compare “True” columns in Tables 2 and 3). More
crucially, our Heston-type estimates are generally close to conditional skewness,
as demonstrated by the mean absolute percent biases and MSEs. Looking at
the basecase and the five-year horizon, the mean absolute percent bias is, for
example, only 10%, while the MSE is only 0.101. The one exception is the case in
which long-run variance is high (o = 0.25), in which our estimator finds it hard

to capture the rapid rise of conditional skewness with the return horizon.

4.4 TUnconditional Estimates in a Double-Heston World

Although our Heston-type estimator outperforms the others in case asset values

obey the Heston process, there could be concern that the fact that our estimator
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assumes exactly the right asset value process grants it an unfair advantage over
the other estimators. To wit, while it seems reasonable to argue that the Heston
process goes some way toward modelling asset values in a more realistic way
relative to i.i.d. processes, it is certainly not the case that it captures all stylized
facts of asset values. To see how deviations between the process assumed by our
estimator and the true process affect the performance of our estimator, Table 4
repeats our unbiasedness and efficiency tests for the unconditional estimates of
the Heston-type estimator and the others in Table 2, this time, however, using a

double-Heston process to simulate the 10,000 sample paths of data.

In contrast to the Heston process, the double-Heston process offers more
flexibility in modelling the term structure of volatility (see Christoffersen et al.
(2009)). Moreover, choosing a high value for the x; mean reversion parameter in
Equation (2.15) and a low value for the ko parameter, the process is better able
to fit the often different relations between short-term returns and variance and
between long-term returns and variance in the data. To distinguish the double-
Heston process in our simulations as much as possible from a Heston process, we
however not only allow for variations in the mean reversion parameters but also
in all others, setting the parameter value vector of the process, {u, k1,01, &1, p1,

K2, s, £, pa}, equal to {0.10, 1,0.01,0.10, —0.90, 5,0.09, 0.50, —0.60}.

[Insert Table 4 here]

Using the same design as Table 2, Table 4 shows that our double-Heston
process yields a slightly lower true unconditional skewness relative to our basecase
Heston process over short return horizons, but a close to identical over longer
horizons. More crucially, the table further reveals that our Heston-type estimator
continues to strongly outperform the others in estimating unconditional skewness
in terms of mean absolute percent bias and MSE. Looking at the five-year horizon,

our estimator, for example, produces a mean absolute percent bias of 9% and an
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MSE of 0.084, while the other estimators produce an mean absolute percent bias of
at least 34% and an MSE of at least 0.654. All in all, we thus conclude that realistic
deviations between the asset value process assumed by our estimator and the true

process only marginally affect the performance of our estimator.

5 Empirical Application

We finally employ our Heston-type estimator as well as the others to estimate
the unconditional skewness of the returns of the S&P 500, FTSE 100, and Nikkei
225 indexes over various return horizons, studying their evolutions and relations
with the return horizon over time. To obtain the Heston-type estimates, we
first estimate the Heston process parameters using ten-year rolling windows of
daily returns and then plug the estimates into Equation (2.5) combined with
Equation (2.14). We use the same windows of daily data to calculate the other
estimators as described in Sections 3.2 to 3.4. The sample periods for the S&P 500,
FTSE 100, and Nikkei 225 indexes are, respectively, 1950/01/03 to 2020/09/30,
1986,/01,/02 to 2020/09/30, and 1965/01/05 to 2020/09/30.

In Figure 3, we plot the unconditional skewness estimates obtained from the
Heston-type estimator over time, with Panel A focussing on the S&P 500, Panel B
on the FTSE 100, and Panel C on the Nikkei 225 index. In case of each index,
the evolutions of the skewness estimates for different return horizons are highly
correlated over time. Moreover, the weekly-return skewness estimates exceed
the monthly-return skewness estimates in the vast majority of cases — and in
some cases even the annual-return skewness estimates, suggesting the existence
of a strong and time-varying leverage effect in stock indexes. The figure finally
suggests that the skewness of long-horizon dollar returns is likely to be much
lower than suggested in the recent work of Bessembinder (2018) and Farago and

Hjalmarsson (2019), with even our estimates of the skewness of five-year returns
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never exceeding a value of three for any of the stock indexes.

[Insert Figure 3 here]

Figure 4 contrasts the unconditional monthly, annual, and five-year return
skewness estimates from our Heston-type estimator (solid red line) with those
from Fama and French’s (2018; dotted green line), Farago and Hjalmarsson’s
(2019; broken violet line), and the sample skewness (broken blue line) estimators
for each index. Raising confidence in our work, plots on the far left show that
the skewness estimates from our estimator and the sample skewness are well
aligned over short return horizons. Moving to the longer return horizons, the
estimates from those two estimators continue to be aligned on average, with the
sample skewness estimates however becoming much too volatile to be useful in
practice, consistent with the simulation evidence in Table 2. In contrast, the
estimates from Fama and French’s (2018) and Farago and Hjalmarsson’s (2019)
estimators are more stable and correlate less strongly with the estimates from
the two former estimators. Also consistent with our simulation evidence, they
tend to yield higher skewness values than the Heston-type and sample skewness

estimators.

[Insert Figure 4 here]

6 Concluding Remarks

In this paper, we derive a novel parametric estimator of the skewness of dollar
returns from the assumption that asset values can be modelled using a stochastic
process from the ASV model class. Using the Heston process as example, we run
a simulation exercise comparing the unbiasedness and efficiency of our estimator

with those of other existing estimators, namely Fama and French’s (2018) boostrap
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estimator, Farago and Hjalmarsson’s (2019) closed-form estimator as well as the
sample skewness estimator. Our evidence suggests that our estimator strongly
outperforms the others when asset values obey the Heston process or even some
more complicated process, with it yielding the smallest mean absolute relative
bias and MSE in the vast majority of cases. We finally apply our Heston-type
estimator to real-world data on stock indexes, showing that there is an important
time-varying leverage effect in that asset class and refuting the idea that the

skewness of long-horizon returns is usually too high to be useful in practice.
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Table 1: Parameter Estimates under Various Heston Specifications

This table reports some descriptive statistics of the estimated distributions of Heston parameters under various Heston
specifications. SD and MSE are standard deviation and mean square error separately. Parameters u, x, «, £ and p
respectively indicate drift, mean-reversion, long-run variance, volatility-of-volatility and correlation between Brownian
motions in a Heston model. All estimations are based on 10,000 replications of 10-year daily dollar returns generated
by the corresponding Heston process, and all estimates are obtained from a simple two-step GMM estimator, where
we match the theoretical central moments and cross-moments of daily returns with their sample counterparts.

Base Case Small &
Parameter True Mean Median SD MSE Parameter True Mean Median SD MSE

I 0.1  0.090 0.092 0.106 0.011 0.1 0.090 0.090 0.104 0.011
K 3 3.964  3.650 1971 4.813 3 4.824 4132  3.487 15.484
! 0.09 0.072  0.071  0.008 0.000 0.09 0.074  0.074 0.003 0.000
3
P

0.3  0.252 0.243  0.082 0.009 0.1 0.095 0.066  0.086  0.007
-0.5  -0473 -0.467 0.192 0.038 -0.5 -0.677 -0.886 0.365 0.165

Small Large &
Parameter True Mean Median SD MSE Parameter True Mean Median SD MSE

0.1  0.081 0.086  0.116 0.014 0.1  0.087 0.091  0.108 0.012

1 1.984 175 1117 2.215 3 4.082 3.862  1.656 3.915
0.09 0.068 0.064  0.021 0.001 0.09 0.068 0.067  0.012 0.001
0.3  0.285 0.270  0.097 0.010 0.5 0.424 0.415  0.099 0.016
-0.5  -0411 -0.391 0.229 0.060 -0.5 -0.442 -0434 0.168 0.032

Large w Small p
Parameter True Mean Median SD MSE Parameter True Mean Median SD MSE

T MR I E

T MR I TE
T MR I E

I 0.1  0.091 0.093  0.104 0.011 I 0.1  0.091 0.095 0.106 0.011

K 5 5.840 5.599  2.486 6.884 K 3 4.124 3.867  1.661 4.021

o 0.09 0.073 0.073  0.005 0.000 o 0.09 0.072 0.071  0.008  0.000

13 0.3 0.236 0.226  0.088 0.012 13 0.3  0.269 0.264  0.061 0.005

0 -0.5 -0.512  -0.495 0.213 0.045 p -0.9 -0.775 -0.788 0.145 0.037
Large o Large p

Parameter True Mean Median SD MSE Parameter True Mean Median SD MSE

Iz 0.1  0.063 0.063  0.175 0.032 0.1 0.085 0.084 0.105 0.011
K 3 4.196 3.582 2.745 8.963 3 4.288 4.084  2.256  6.748
o 0.25  0.204 0.204  0.014 0.002 0.09 0.072 0.071  0.008  0.000
3
p

0.3 0.234 0.219 0.116 0.018 0.3  0.271 0.250  0.126  0.017
-0.5 -0.588 -0.569 0.273 0.082 0 -0.096 -0.019 0.146  0.030

T MR I E
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Table 2: Skewness Estimates under Various Heston Specifications

This table displays the results of unconditional skewness estimation under various Heston specifications, with horizon ranging from
one week to five years. Our base case parameters are: u = 0.1, Kk = 3, @ = 0.09, £ = 0.3, and p = —0.5, respectively indicating
drift, mean-reversion, long-run variance, volatility-of-volatility and correlation between Brownian motions in a Heston model. For
experiments left, we only change the value of the stated one. True unconditional skewness are obtained by plugging specifications
into the closed-form skewness of the Heston model, while all estimations are based on 10,000 replications of 10-year daily dollar
returns generated by the corresponding Heston process. FF, FH and Conv. respectively represent Fama and French’s (2018)
estimator, Farago and Hjalmarsson’s (2019) estimator, and the sample skewness estimator. %|Bias| refers to the absolute relative
bias in percentage, and MSFE is the mean square error.

Base case k=1
Horizon  True Ours FF FH Conv. Horizon  True Ours FF FH Conv.
1w 0.044 Mean 0.041 0.111 0.111  0.050 1W 0.085 Mean 0.060 0.118 0.119 0.091
%|Bias| 7% 155%  156% 14% %|Bias| 29% = 40% 40% 8%
MSE 0.001 0.006 0.006 0.012 MSE 0.003 0.004 0.003 0.024
1M 0.097 Mean 0.093 0.253 0.253 0.106 1M 0.173  Mean 0.125 0.255 0.254 0.173
%|Bias| 4% 161% 161% 10% %|Bias|  28% 4% 47% 0%
MSE 0.004 0.025 0.025 0.042 MSE 0.013 0.009 0.009 0.090
1Y 0.594 Mean 0.575 0.944 0.946 0.438 1Y 0.608 Mean 0.532 0.938 0.939 0.391
%|Bias| 3% 59% 59% 26% %|Bias|  13% 54% 54% 36%
MSE 0.018 0.128 0.129 0.217 MSE 0.081 0.136 0.134 0.326
3Y 1.406 Mean 1.286 1.832 1.840 0.588 3Y 1.197 Mean 1.135 1.830 1.837 0.522
%|Bias| 9% 30% 31% 58% %|Bias| 5% 53% 53% 56%
MSE 0.047 0.219 0.207  0.906 MSE 0.172 0.568 0.559 0.710
5Y 2.120 Mean 1.890 2.672 2.691 0.567 5Y 1.753  Mean 1.666 2.688 2.714 0.562
%|Bias|  11%  26% 2% 3% %|Bias] 5%  53%  55%  68%
MSE 0.112 0.482 0.384 2.707 MSE 0.320 1.554 1.444 1.771
a=0.25 K=
Horizon  True Ours FF FH Conv. Horizon  True Ours FF FH Conv.
1w 0.161 Mean 0.144 0.202 0.202 0.162 1W 0.036 Mean 0.039 0.109 0.109 0.040
%|Bias|  10% 25% 25% 0% %|Bias| 6% 201% 200% 9%
MSE 0.001  0.003 0.002 0.008 MSE 0.001 0.007 0.006 0.010
1M 0.336  Mean 0.304 0.433 0.433 0.326 1M 0.090 Mean 0.095 0.252 0.252 0.095
%|Bias| 9% 29% 29% 3% %|Bias| 5% 179%  179% 5%
MSE 0.004 0.011 0.010 0.035 MSE 0.003 0.027 0.026 0.035
1Y 1.410 Mean 1.294 1.743 1.748 0.916 1Y 0.677 Mean 0.638 0.944 0.945 0.478
%|Bias| 8% 24%  24%  35% %|Bias|] 6%  39%  40%  29%
MSE 0.032 0.133 0.121 0.494 MSE 0.011 0.075 0.073 0.225
3Y 3.464  Mean 2.993 4.276 4.358 1.013 3Y 1.538 Mean 1.384 1.833 1.838 0.600
%|Bias|] 14%  23% @ 26% < 7T1% %|Bias| 10% 19% 20%  61%
MSE 0.346  2.141 0.910 6.320 MSE 0.039 0.115 0.098 1.116
5Y 6.453 Mean 5.211 7.782 8.718 0.951 5Y 2.297 Mean 2.016 2.673 2.686 0.557
%|Bias|  19%  21%  35% 8% %|Bias| 12%  16% 1%  76%
MSE 2.169 18.035 6.162 30.651 MSE 0.106 0.286 0.174 3.319
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¢=0.1 p=-09

Horizon True Ours FF FH  Conv. Horizon  True Ours FF FH Conv.

1w 0.095 Mean 0.085 0.121 0.121 0.095 1w -0.040 Mean -0.030 0.094 0.095 -0.028
%|Bias| 10%  28% 28% 0% %|Bias|  24%  336% 338%  29%

MSE 0.001 0.002 0.001 0.007 MSE 0.001 0.020 0.019 0.011

1M 0.197 Mean 0.181 0.257 0.258 0.193 1M -0.066 Mean -0.041 0.244 0.245 -0.041
%|Bias| 9% 30% 31% 2% %|Bias|  38%  471% 472%  38%

MSE 0.002 0.004 0.004 0.027 MSE 0.005 0.097 0.097 0.035

1Y 0.810 Mean 0.750 0.948 0.949 0.555 1Y 0.279 Mean 0.359 0.941 0.943 0.271
%|Bias| % 17% 17% 32% %|Bias|  29%  237% 238% 3%

MSE 0.009 0.022 0.020 0.261 MSE 0.026 0.444 0.444 0.154

3Y 1.668 Mean 1485 1.838 1.843 0.617 3Y 1.063 Mean 1.077 1.832 1.838 0.550
%|Bias|  11% 10% 10% 63% %|Bias| 1% 2% 73% 48%

MSE 0.047 0.051 0.034 1.339 MSE 0.032 0.629 0.619 0.501

5Y 2.459  Mean  2.131 2.679 2.691 0.568 5Y 1.704 Mean 1.653 2.665 2.689 0.572
%|Bias| 13% 9% 9% 7% %|Bias| 3% 56% 58% 66%

MSE 0.138 0.188 0.063 3.862 MSE 0.0564 1.095 1.027 1.611

£E=05 p=0

Horizon  True Ours FF FH Conv. Horizon  True Ours FF FH Conv.
1w 0.011  Mean 0.003 0.104 0.105 0.019 1w 0.148 Mean 0.113 0.131 0.131 0.145
%|Bias| 70% 858% 861%  78% %|Bias|  23% 11% 11% 2%

MSE 0.003 0.011 0.011 0.026 MSE 0.002 0.002 0.001 0.014

1M 0.032 Mean 0.022 0.249 0.249 0.042 1M 0.302 Mean 0.232 0.263 0.263 0.284
%|Bias|] 32% 685% 686% 32% %|Bias|  23% 13% 13% 6%

MSE 0.011 0.049 0.048 0.085 MSE 0.007 0.003 0.002 0.051

1Y 0.445 Mean 0.442 0.942 0.943 0.324 1Y 1.037 Mean 0.831 0.909 0.950 0.623
%|Bias| 1% 112%  112%  27% %|Bias|  20% 12% 8% 40%

MSE 0.040 0.258 0.256 0.230 MSE 0.052 0.013 0.011 0.406

3Y 1.225 Mean 1.129 1.833 1.838 0.542 3Y 1.946 Mean 1.574 1.838 1.845 0.619
%|Bias| 8%  50%  50%  56% %|Bias|  19% 6% 5% 68%

MSE 0.068 0.440 0.425 0.717 MSE 0.162 0.050 0.028 1.998

5Y 1.889 Mean 1.690 2.680 2.694 0.569 5Y 2.819 Mean 2.236  2.673 2.698 0.567
%|Bias|]  11%  42%  43%  70% %|Bias|  21% 5% 4% 80%

MSE 0.138 0.907 0.806 2.081 MSE 0.393 0.206 0.072 5.369
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Table 3: Skewness Forecasts under Various Heston Specifications

This table summarizes the results of conditional skewness forecast under various Heston specifications, with horizon
ranging from one year to ten years. Our base case parameters are: p = 0.1, k = 3, « = 0.09, £ = 0.3, and p = —0.5,
respectively representing drift, mean-reversion, long-run variance, volatility-of-volatility and correlation between Brownian
motions in a Heston model. For experiments left, we only change the value of the stated one. All forecasts are based
on 10,000 replications of the last two years’ daily dollar returns of the 10-year sample generated by the corresponding
Heston process. %|Bias| indicates the absolute relative bias in percentage, and MSE is the mean square error.

Base Case £E=0.1
Horizon True  Mean %|Bias| MSE Horizon True Mean %|Bias| MSE
1Y 0.582 0.590 1% 0.018 1Y 0.809 0.759 6% 0.008
3Y 1.402 1.301 7% 0.042 3Y 1.668  1.497 10% 0.042
5Y 2.118 1.905 10% 0.101 5Y 2.459 2.146 13% 0.126
10Y 4.155  3.516 15% 0.652 10Y 4.874 3.961 19% 0.980
k=1 £E=05
Horizon True  Mean %|Bias|] MSE Horizon True Mean %|Bias| MSE
1Y 0.414  0.520 26% 0.090 1Y 0.410 0.454 11% 0.043
3Y 1.100 1.153 5% 0.163 3Y 1.216 1.146 6% 0.062
oY 1.689  1.693 0% 0.292 oY 1.884 1.707 9% 0.126
10Y 3.222 3117 3% 1.435 10Y 3.686 3.138 15% 0.686
K=25 p=-—09
Horizon True  Mean %|Bias|] MSE Horizon True Mean %|Bias| MSE
1Y 0.675  0.648 4% 0.010 1Y 0.266  0.369 39% 0.032
3Y 1.537  1.392 9% 0.036 3Y 1.059 1.086 3% 0.032
5Y 2.297  2.024 12% 0.100 Y 1.702 1.662 2% 0.051
10Y 4.538  3.749 17% 0.742 10Y 3.372  3.116 8% 0.248
a=0.25 p=0
Horizon True  Mean %|Bias|] MSE Horizon True Mean %|Bias| MSE
1Y 1.403 1.316 6% 0.028 1Y 1.024 0.847 17% 0.041
3Y 3.461  3.027 13% 0.315 3Y 1.942  1.592 18% 0.145
oY 6.450  5.264 18% 2.034 oY 2.816 2.256 20% 0.366
10Y 27.486 18.293 33% 109.843 10Y 5.651 4.153 27% 2.568

40



Table 4: Skewness Estimates with Double-Heston Data

This table shows the true unconditional skewness of a double-Heston process, with horizon ranging from one week to
five years. Alongside, there are statistics of estimates produced by each estimator. The double-Heston parameter vector
{1, k1, 01,81, p1, K2, a2, &2, p2} is set to {0.1,1,0.01,0.1,—0.9,5,0.09,0.5, —0.6}, where p, x4, a;, & and p; respectively
indicate drift, mean-reversion, long-run variance, volatility-of-volatility and correlation between corresponding Brownian
motions of the price and the volatility processes. True unconditional skewness are obtained by plugging specifications
into the closed-form skewness of the double-Heston model, while all estimations are based on 10,000 replications of
10-year daily dollar returns generated by this double-Heston process. Ours, FF, FH and Conv. respectively represent
our parametric estimator derived from the Heston assumption, Fama and French’s (2018) estimator, Farago and
Hjalmarsson’s (2019) estimator, and the sample skewness estimator. %|Bias| refers to the absolute relative bias in
percentage, and MSFE is the mean square error.

Horizon  True Ours FF FH Conv.

1W -0.018 Mean -0.009 0.104 0.104 -0.011
%|Bias| 48% 679% 630% 40%

MSE 0.002 0.017 0.016 0.014

1M -0.012  Mean 0.008  0.260 0.260  0.001
%[Bias| 161% 2214% 2215%  109%

MSE 0.006  0.075 0.075  0.045

1Y 0.527 Mean 0.537  0.998 1.000  0.401
%[Bias| 2%  89%  90%  24%

MSE 0.017 0.228 0.227 0.194

3Y 1.406 Mean 1.321 1.967 1.974 0.603
%[Bias| 6%  40%  40%  57%

MSE 0.033 0.361 0.343  0.888

5Y 2.167 Mean 1.975 2911 2.932 0.606
%|Bias| 9% 34% 35% 72%

MSE 0.084  0.808 0.654  2.750
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Figure 1: Relation Between Unconditional Skewness and Return Horizon in a Heston World

This figure plots the true unconditional skewness obtained from eight Heston parameter vectors against horizon up to five years.
Our base case parameters are: u = 0.1, Kk = 3, a = 0.09, £ = 0.3, and p = —0.5, respectively indicating drift, mean-reversion,
long-run variance, volatility-of-volatility and correlation between Brownian motions in a Heston model. For experiments left, we

only change the value of the stated one.
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Figure 2: Unconditional Skewness Estimates of a Heston Process

This figure depicts the relation between true unconditional skewness and return horizon of a Heston (1993) process, alongside of which
are curves of mean estimates produced by different estimators. The parameter vector {u, k, o, &, p} is set to {0.1,3,0.09,0.3, —0.9},
where pu, k, a, € and p respectively represent drift, mean reversion, long-run variance, volatility-of-volatility and correlation between
Brownian motions. All estimations are based on 10,000 replications of 10-year daily dollar returns generated by this Heston process.
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Figure 3: The Estimated Trends of Unconditional Skewness for Representative Stock Indexes

This figure plots our unconditional skewness estimates at various horizons for S&P500, FTSE100 and Nikkei225. We download their
daily prices for the periods 1950/01/03 — 2020/09/30, 1986,/01/02 — 2020/09/30, and 1965/01/05 — 2020/09/30 respectively. We set
the length of estimation window to ten years, and we roll one month over every time we shift the window.
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Figure 4: Unconditional Skewness Estimates by Different Estimators

for Representative Stock Indexes

This figure compares the monthly, annual and five-year unconditional skewness estimates produced by different estimators for S&P500,
FTSE100 and Nikkei225. We download their daily prices for the periods 1950/01/03 — 2020/09/30, 1986/01/02 — 2020/09/30, and
1965/01/05 — 2020/09/30 respectively. We set the length of estimation window to ten years, and we roll one month over every time

we shift the window.
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Appendix A Proofs

A.1 Expressions for Centred MGFs and Cross-MGFs

To show that centered MGF's and cross-MGF's are simply linear combinations of non-centered MGFs and
cross-MGF's, we use the moments involved in our GMM estimator as examples (see Equation (3.2)) and

derive their expressions. Recall that M (k,A) = E[RﬁA} and M(k,A) = E[RfA] Let us start from M (2, A).

=E[R} 5 — 2R aAM(1,A) + M?(1,A)] (A1)

E
= M(3,A) — 3M(1,A)M(2,A) +3M3(1,A) — M3(1,A)
M

(3,A) —=3M(1,A)M(2,A) + 2M3(1, A)

Now, we move on to expanding M (4, A).
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For centered cross-MGFs C (m,n,A,j) = COV[RZLA, R;:_jy Als we assume a weak-form efficient market, where

Cov[R]"A, Ritja] = 0. In other words, E[R]"\ Ri1ja] = E[R"A] E[Ri1a]. Then,

¢(1,2,A,§) = Cov [Rm, R§+M}
=B [Rial a] —B[Ria] B[R]
= B[(Ria = M(1,A)) (Rizja = M(1,8))°| = B[Ria = MLA)E |(Rija = M(1,4))%]
=E[RiaR} ;A —2RiaRipj aAM(1,A) + Ry AM?(1,A)
—R} jAM(LA) + 2R j AM?(1,A) — M?(1,A)]
=C(1,2,A,5) — 2M>*(1,A) + M>(1,A) — M(1,A)M (2, A) +2M3(1,A) — M3(1,A)

= C(1,2,A,§) — M(1,A)M(2,A)

Finally, we expand C(2,2, A, j).
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C(2,2,A,§) = Cov [RfyA,RfﬂyA}
=E [R?,AR?JFJ‘,A] -EB [Rf,a} E |:R’i2+j)Aj|
=B |(Ria = M(L,A) (Rirja = M(LA)| =B |(Ria = M(L AP E[(Ripsa = M(1,A))°]
=B [R}AR; ;A — 2R} ARy ;aM(1,A) + R} \M?(1,A) — 2R; AR}, ; AM(1,A)
F4R; AR AM?(1,A) = 2R; AM®(1,A) + R} j A\M?(1,A) = 2R; 1 ; AM® (1, A) + M*(1, A)]
— B[R} A —2R; aAM(1,A) + M*(1,A)|E [R},; A — 2Riy; aM(1,A) + M?*(1, A)]
=C(2,2,A,7) — 2M?(1, A)M(2,A) + M*(1,A)M(2,A) — 2M(1,A)C(1,2, A, 5)
+4AMA(1,A) — 2M*(1,A) + M?(1,A)M(2,A) — 2M*(1, A) + M*(1, A)
— (M(2,4) —2M*(1,A) + M?(1,A))?

=C(2,2,A,5) —2M(1,A)C(1,2,A, ) — M?(2,A) + 2M?(1, A)M(2,A)

A.2 Derivation for the Non-Centered Cross-MGF

Let us denote the non-centered cross-MGF as C(m,n,A,j) =E [R;?AR;‘H,A]. The following formula holds

whenever the moments exist.

E[RAR} Al [RIA B[R Al Fitg]]

=E
=E [RZLAMi+j (Tl, 0, A)]
=E

[ RTAeuAnwm,o,A)Hw<nyo,A),vi+j>]
_ HAN+E(n,0,0) | [RZLA B {ew(n,o,m%ﬂv‘fiﬂ

= et OR) E (R M; (0,4(n,0,A), 5A)]

— HAn+e(n0,A) B { R;nAe¢(0,w<n,0,A>,jA>+<w<o,w<n,o’A>,jA>,Vﬂ

— HAN+A(n0,A)+6(0,4(n,0,4),54) | [emm,A+<w<o,w(n,o,A>,jA),w>}

= euAn—&-(b(mO,A)-i—(b(O,l/)(n,O,A),j)M(m’ 1/)(07 7/)(”7 Oa A)»]A)v A)
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A.3 Parameter Constraints Required to Ensure M;(6,A;V;) < 0o

According to Rollin et al. (2009) Proposition 3.1.1, M;(k, A;V;) < oo holds for every p € [—1,0] on the

1—2p5 +  [A(5)2 —dpt +1
oy . (A7)

B 2(1— ?)

If we assume ki > 6 and let x = x/& > 0, this is equivalent of determining the range of x and p such that:

1-2 \4x? —4 1
pr + T pT + > 6, (A8)

2(1-p?)

interval [k_, k4] with:

which is equivalent to:

VAr? —dpr +1 > 11 — 12p* + 2pz. (A.9)

We now divide into two scenarios.

Scenario 1. If 11 — 12p% + 2pz < 0, then Equation (A.9) holds since the left hand side is always
non-negative. This implies that x > 6p — % is a sufficient condition for Equation (A.9) to hold. We therefore

see that if 6p — % < 0, which implies that p < —1/11/12, then Equation (A.9) holds for all 2 > 0.

Scenario 2. We now assume 11 — 12p? 4 2pz > 0, or z < 6p — %. Squaring both sides of Equation (A.9)
and rearranging yields:

(1 —p?)z? —12p(1 — p*)x — 36p* + 66p> — 30 > 0. (A.10)

This is quadratic in « with at most one positive real root x. One therefore sees that Equation (A.9) holds

under Scenario 2 when 6p — % > x > x4. Solving the above equation w.r.t. z yields:

z4 = 6p 4 V/30. (A.11)

We now discuss two additional conditions: (1) z4 < 6p — %. If this does not hold, then scenario 2 is trivial

as it is subsumed into Scenario 1. (2) xz > 0. If this does not hold, then effectively Equation A.9 holds for

o1



all © > 0. Condition (1) is equivalent to the following:

_11\/%
0

pz =i ~ 1004, (A.12)

which indicates that condition (1) always holds. Condition (2) is equivalent to the condition that p >
—v/30/6 ~ —0.913. We therefore sees that if p < —/30/6, then Equation (A.9) holds for any = > 0. As this

includes scenario 1, scenario 1 is obsolete.
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