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1 Introduction

A fundamental tenet of asset pricing is that investors should be compensated for their exposure to

sources of systematic risk. This should hold for any risky investment, and cryptocurrencies, of which

Bitcoin (BTC) is the most prominent example, should be no different.1 At the time of this writing,

total market capitalization of the cryptocurrency market stands at around $2 trillion, which is roughly

the size of some of the largest European economies, such as those of Italy and Spain. Therefore, the

need to understand the trade-off between risks and rewards within the context of such growing and

still largely unknown market is pressing. This is the goal of this paper.

The most common empirical approach to evaluating the trade-offs and the dynamics of risks and

returns is based on the assumption that the information content in the cross-section of individual

asset or portfolio returns can be reduced to a small set of factors ft+1 ∈ RK with K < N where N is

the number of test assets. This approach is particularly flexible in the sense that it does not depend

on the asset class under investigation but is grounded on fundamental asset pricing theory: assuming

no-arbitrage conditions hold, a stochastic discount factor mt+1 exists and, for any asset return ri,t+1.

the Euler equation Et [mt+1ri,t+1] = 0 is satisfied

Et [ri,t+1] = −Covt (mt+1, ri,t+1)

V art (mt+1)︸ ︷︷ ︸
βi,t

V art (mt+1)

Et [mt+1]︸ ︷︷ ︸
λt

, (1)

where βi,t represents the exposure to a given source of systematic risk for asset i at time t and λt is the

time-varying price of risk. This equation implies that the expected excess return or “risk premium” is

high for those assets that have a negative covariance with the stochastic discount factor (SDF) mt+1.

Assuming λt = Et [ft+1] , one can map the SDF mt+1 into a linear model in which factors represent

the “state variables” of the investor’s consumption-portfolio decision

ri,t+1 = αi,t + βi,tft+1 + εi,t+1. (2)

The idiosyncratic error term εi,t+1 is zero mean and orthogonal to the risk factors, i.e., Et [ft+1εi,t+1] =

0. Under mild equilibrium pricing conditions, an asset pricing model should imply αi,t = 0 for all i

1In this paper, we use the terms “digital assets”, “cryptocurrencies”, “digital currencies”, and “cryptocurrency
markets” interchangeably.
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and t, that is, the risk factors ft+1 capture all systematic variation in expected returns. The nature of

factors ft+1 is left unspecified by the asset pricing theory. A common approach is to consider ft+1 to be

observable and proxied by a zero-cost long-short portfolios built upon some observable stock features

or characteristics, such as market capitalization, book-to-market, liquidity, idiosyncratic volatility,

etc. This approach is exemplified by Fama and French (2015) and the references therein. A second

common approach is to treat ft+1 as latent and use common data compression techniques, such as

Principal Component Analysis (PCA), to simultaneously estimate the factors and betas from the

panel of realised returns. This approach was pioneered by Chamberlain and Rothschild (1983) and

Connor and Korajczyk (1986).

The two approaches possess both merits and shortcomings when applied to cryptocurrency mar-

kets. Assuming the factors are observable, constructing ft+1 as a characteristic-based portfolios is

an easy task, but requires a perfect understanding of the driving forces behind cryptocurrency mar-

kets. In reality, however, our understanding of cross sectional variation in cryptocurrency returns is

limited, at best. This is due to a variety of reasons: first, the high degree of market concentration

around a handful of assets makes construction of observable risk factors rather problematic. Figure 1

illustrates this case in point. The top-left panel shows the relative market capitalization of the top 50

assets sorted by size relative to the total market.2 The top 50 assets alone account for roughly 90%

of total market capitalization and more than 95% of market activity. Such concentration makes im-

plementing typical long-short portfolios using any meaningful cross-section particularly problematic.

For instance, using more than the top 100 assets by market cap, essentially boils down to including

penny stocks, which have all sorts of issues in terms of trading costs and liquidity.

Second, the assumption that we can approximate ft+1 using only a few observable factors somewhat

ignores the decentralised structure of cryptocurrency markets. The top-right panel of Figure 1 shows

a case in point. The figure shows the supply of the two main digital assets in circulation at the time

of this writing, namely BTC and Ethereum (ETH), held on regular exchanges. By the end of the

sample, only around 15% of the supply is actually tradable on common, relatively liquid exchanges

such as Binance, Bitfinex, Coinbase, and Poloniex. This implies that the vast majority of assets are

either kept in so-called cold storage or are exchanged on decentralised platforms such as UniSwap

(UNI). In turn, this makes common long-short strategies difficult to implement in practice.

2Since September 21, 2011, there have been more than 11,000 digital assets and currencies actually available on both
centralized and decentralised exchanges. Source: CoinMarketCap.
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Similarly, using a standard PCA framework to estimate latent factors has both strengths and

weaknesses in the context of cryptocurrency markets. Arguably, the main benefit is simplicity. Based

on pure statistical criterion, PCA implementation does not require prior knowledge of the market

structure. Nevertheless, applying the PCA modeling approach has several drawbacks: first, it implies

constant factor loadings, whereas the exposure of assets to sources of systematic risk is often not

constant. The bottom-right panel of Figure 1 illustrates this point. It reports the 5th, 50th, and 95th

percentiles of the loadings for each asset on the first principal component based on a rolling window

PCA estimate using 360 daily observations. The cross-section of cryptocurrencies is the same as the

one used in the main empirical analysis, explained in Section 2.1. The loadings are not constant over

time and exhibit low-frequency fluctuations that seem to be somewhat pervasive. Constant factor

loadings are also against the theoretical implications of Eq. (1).

Second, the structure of cryptocurrency returns is not very dense in itself. The bottom-left panel

of Figure 1 shows the explained variance from the first 50 principal components for the same cross-

section of returns used in the main empirical analysis. The first 10 score vectors explain at most 30%

of the variation in the data. This suggests that there is not much information content in returns to

capture sources of co-movements, meaning systematic risk in cryptocurrency markets. The fact that

standard PCA methods do not allow a researcher to incorporate data beyond returns could amplify

the limitations of the relatively low-density structure in cryptocurrency markets.

To mitigate these issues, we build upon the framework used by Büchner and Kelly (2019) and

Kelly et al. (2020) and treat the set of systematic risk factors as latent, but allow for time variation

in the factor loadings based on a set of individual assets characteristics. We use the instrumented

principal components analysis (IPCA) methodology introduced by Kelly et al. (2019) to understand

the dynamics and driving forces of risk premiums in cryptocurrency markets by modelling the factor

loadings as a function of observable characteristics of digital assets zi,t, i.e., βi,t = f (zi,t). We follow

Kelly et al. (2019) and compare the ability of latent and observable risk factor models to capture the

dynamics of risk premiums based on three defined metrics: first, we measure the accuracy with which

they explain the common variation in realised returns using the total R2. The total R2 summarises

the amount of explained variation in the returns ri,t+1 due to contemporaneous factor realisations –

which can be latent or observable – and factor loadings – which can be static or dynamic. Second,

we measure how accurately the dispersion on the risk-return profile of individual assets is captured.
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We assess this by using a predictive R2 which is calculated as the explained variation of the returns

due to the model-based conditional expected return on a given asset β̂i,tλ̂, where λ̂ = E [ft+1] is the

vector of estimated factor risk prices. Both R2
total and R2

pred are computed in- and out-of-sample and

for both individual assets and characteristic-based portfolios.

Third, we inspect the ability of latent or observable risk factors to “price” anomaly portfolios

unconditionally. Specifically, we compare the extent to which alphas on characteristic-based portfolios

can be explained by IPCA factors vis-á-vis standard observable risk factor models with either static

or dynamic loadings.

1.1 Findings

Empirically, we focus our analysis on daily observations of both market and blockchain data for a

cross-section of 809 digital assets over the period from December 2nd 2016 to July 9th 2021. We also

consider the same time span with the data aggregated on a weekly basis, following Liu et al. (2019)

and Liu and Tsyvinski (2020). We exclude stablecoins, which are directly pegged to fiat currencies,

tokens with a market capitalization below hundred million USD, and those assets for which more than

25% of observations are missing over the sample period. A more detailed description of the data is

provided in Section 2.1.

The main results are three-fold: first, we show that a restricted model with a zero intercept and

three IPCA factors produces a R2
total for individual cryptocurrency returns of 17.2% at the daily

frequency. For comparison, a benchmark model with six observable factors: market, size, momen-

tum, volatility, liquidity and reversal, produces a total R2 of 9.6% for daily returns. Perhaps more

importantly, our baseline IPCA specification provides a more accurate description of the daily risk

premium dynamics, with a positive R2
pred equal to 2.9% against -0.02% obtained from the benchmark

observable risk factor model. Imposing dynamic betas to observable factors only marginally improves

the R2
pred to 0.2%, which is still an order of magnitude lower than the IPCA factors. These results

hold both in-sample and out-of-sample, when the latter is based on recursive estimates of the IPCA

factors.

Second, the baseline three-factor IPCA specification proves to be more mean-variance efficient in an

unconditional sense with respect to observable risk factors. This is judged by estimating unconditional

alphas in a full-sample time series regression of characteristic-based portfolio returns onto each set
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of factors. The IPCA model delivers substantially lower alphas than the benchmark model with

observable risk factors providing a better pricing performance. Still on unconditional mean-variance

efficiency, the factors extracted from the IPCA model generate much higher out-of-sample Sharpe

ratios from tangency portfolios relative to the benchmark model with observable risk factors. The

asset pricing implication of this set of results is that the IPCA factors are more coherent with a

mean-variance efficient portfolio allocation with respect to the observable risk factors considered.

Third, we build upon Kelly et al. (2019) and test which characteristics significantly drive the

dynamics of factor loadings. The main testing results show that the factor loadings, and in turn

risk premiums, are primarily driven by a handful of individual asset characteristics such as liquidity

(proxied by volume and synthetic bid-ask spread), market beta, reversal, size and downside risk.

Interestingly, reversal seems to be the most prominent driving factor for expected returns. This is

consistent with some of the existing evidence on cryptocurrency markets (see, e.g., Dobrynskaya,

2021). The fact that only a small set of individual asset characteristics is significant for the dynamics

of factor loadings, coupled with the zero-alpha restriction in the baseline IPCA, suggests that these

characteristics truly explain the assets’ exposure to sources of systematic risk and not simply represent

spurious compensation in absence of risks.

1.2 Related literature

This paper connects to a growing literature that aims at understanding the trade-off between risks

and rewards within the context of cryptocurrency markets. The conventional wisdom posits that the

pricing kernel of cryptocurrencies is segmented away from traditional asset classes, that is, digital

assets are not exposed to the same sources of risks as in other traditional asset classes (see, e.g.,

Yermack, 2015, Liu and Tsyvinski, 2020, Bianchi, 2020). Based on these evidence, some of the

existing research seeks to understand the pricing performance of specific observable risk factors and

portfolios by sorting digital assets into portfolios based on a small set of characteristics such as size,

momentum, liquidity and reversal. Examples can be found in Bianchi and Dickerson (2019), Liu

et al. (2019) and Dobrynskaya (2021) among others. Our paper expands this literature by providing

empirical evidence that the IPCA of Kelly et al. (2019) provides a more accurate measurement of

the dynamics of risks and returns and mean-variance efficiency in the context of digital assets, with

respect to observable risk factor models. This proves to be particularly relevant for cryptocurrency

markets as estimates of the latent factors are not based on any ex ante knowledge of the cross-section of
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returns and, therefore, eliminate the need for the researcher to take a prior stance on the composition

of the risk factors. The latter is an aspect that is particularly cumbersome for digital assets given

their extremely heterogeneous nature and arguably the lack of clear fundamentals such as earnings

and dividends.

More generally, this paper adds to recent literature that aims to understand the pricing dynamics

and investment properties of digital assets (Weber, 2016; Biais et al., 2020; Chiu and Koeppl, 2017;

Cong and He, 2019; Cong et al., 2021a,b; Sockin and Xiong, 2020; Schilling and Uhlig, 2019; Abadi and

Brunnermeier, 2018; Routledge and Zetlin-Jones, 2021). We contribute to this literature by showing

that indeed only a handful of characteristics including liquidity, size, downside risk, and reversal, play

a decisive, even dominant, role in explaining the variation in both realised and expected returns in

cryptocurrency markets.

Due to the inherent differences in cryptocurrencies with respect to traditional asset classes, and

their novel and emergent status as a form of investment, we believe that the results of this paper could

be relevant to a broad audience; from market participants seeking different sources of returns and

diversification, to regulators wishing to understand the risks embedded in cryptocurrency markets,

and to academics searching for new insights into the market structure of digital assets.

2 Research design

2.1 Data

We collect prices, trading volume, and a variety of on-chain activity measures on a daily basis for a

cross-section of 809 digital assets spanning the period from December 2nd 2016 to July 9th 2021. The

data were obtained from CryptoCompare.com and IntoTheBlock.com, website-based data providers

that collect data from multiple exchanges. These sources integrate market data transactions and

blockchain metrics for more than 350 exchanges and have been used in both existing research (see,

e.g., Alexander and Dakos, 2019, Schwenkler and Zheng, 2020, Borri and Shakhnov, 2020 and Bianchi

and Babiak, 2021, among others) and leading industry applications.3

For each individual asset, the data are aggregated across exchanges based on a volume-weighting

3For instance, CryptoCompare provides Refinitiv, one of the world’s largest providers of financial market data and
infrastructure, with order book and trade data that are integrated into the Refinitiv financial desktop platform Eikon.
Recent work by Alexander and Dakos (2019) suggests that CryptoCompare data is among the most reliable for use in
both academic and practical settings.
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scheme. The aggregation gives relatively more liquid market prices more importance, and market

activity on relatively less liquid exchanges, which are more sensitive to exogenous shocks, is negligi-

ble. A cryptocurrency needs to meet a list of criteria criteria be listed, such as being traded on a

public exchange with an API that reports the last traded price and the last 24-hour trading volume,

and having a non-zero trading volume on at least one supported exchange so that a price can be

determined. A variety of filters to mitigate the impact of erratic and fraudulent trading activity are

also implemented. Outlying trading activity is discarded: for a trade to be considered an outlier, it

must deviate significantly either from the median of exchanges, or from the previous aggregate price.4

Also, the exchanges which the aggregation is based upon are reviewed on a regular basis for each given

cryptocurrency pair. Constituent exchanges are excluded if (1) the posted prices are too volatile com-

pared to the market average, (2) trading has been suspended by the exchange on a given day, (3)

there are reports of false data being provided, or (4) the public API of a given exchange malfunctions.

In order to ensure that exchanges that are excluded in a given month have an expiring price impact,

the aggregate market price takes the last trade time into account, so that the aggregation moves with

the market without being significantly affected by changes in the exchange composition. These steps

should mitigate the effects of suspicious and/or fraudulent market activity and substantially reduce

the exposure of the empirical analysis to misreporting trading activity for some exchanges.

From the dataset outlined above, we construct a number of individual characteristics for each day.

Characteristics include both blockchain- and market-based variables. On-chain activity measures

consist of the sum of new blockchain addresses created for a given asset (new add), the sum of

addresses that executed at least one transaction during the day (active add), the number of valid

transactions for a given day, after filtering out failed transactions (transaction count), and the

average transaction value denominated in native units of the digital asset for a given day (avg trans

value). These measures have been shown to capture key pricing features such as network growth and

development (see, e.g., Pagnotta and Buraschi, 2018). Market variables include daily trading volume,

expressed in millions of USD (trading volume), a price impact measure calculated as the absolute

value of the daily return-to-volume ratio as originally proposed by Amihud (2002) (illiq), the daily

average between two different synthetic bid-ask spread measures as proposed by Corwin and Schultz

(2012) and Abdi and Ranaldo (2017) (bid-ask), a de-trended measure of trading volume based on

4Such deviations can occur for a number of reasons, such as extremely low liquidity on a particular pair, erroneous
data from an exchange, and incorrect mapping of a pair in the API.
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two different trending periods (15 and 30 days) as proposed by Llorente et al. (2002) (vol shock),

total market capitalization (size), 30-day rolling-window estimates of the CAPM alpha and beta

(capm α and capm β), in which excess return on the market portfolio is constructed as the difference

between the cryptocurrency market index return and the risk-free rate measured as the one-month

Treasury bill rate. The cryptocurrency market index return is defined as the value-weighted return

of all available underlying coins after filtering (see description below). We then consider also the

volatility of the same CAPM residuals (idio vol), the daily realised volatility estimate as in Yang

and Zhang (2000) (rvol), the 5% historical value-at-risk and corresponding expected shortfall based

on 90 days of realised returns (VaR(5%) and ES(5%)), short-term reversal rev (see, e.g., Nagel, 2012),

and four different time-series momentum factors based on 7, 14, 21 and 30 day look-back periods

(mom) (see, e.g., Moskowitz et al., 2012). In total, we construct 21 different characteristics and market

variables for each individual asset.

2.1.1 Observable risk factors. From the cross-section of 809 digital assets, we exclude sta-

blecoins, which are directly pegged to fiat currencies, and tokens with market capitalization below

hundred million USD. This leaves an unbalanced panel of market and blockchain data for 382 digital

assets. Despite the shrinkage in size, Figure 2 shows that our cross-section of assets cover the over-

whelming majority of total market capitalization. The sum of the market cap of the selected digital

assets (red line) includes more than 95% of the total market value (blue line) for almost all of the

sample period, with a slight increasing discrepancy over the bull market cycle between the end of

2020 and the beginning of 2021. The median number of daily observations for a given asset is 1200

trading days, while the median size of the cross-section is 250 assets for a given trading day; that is,

for at least 50% of the sample observations we have at least 250 assets in the data. Assets included

should not necessarily be tradable by the end of the sample to avoid survivorship bias.

In addition to the excess returns on the market portfolio, we analyze the performance of a compre-

hensive list of zero-investment long-short strategies based on size, momentum, volatility, liquidity, and

reversal. We consider these observable factors because they have been shown to capture a significant

amount of the variation in realised and expected returns on cryptocurrencies (see e.g., Liu et al.,

2019, Brauneis et al., 2021, Leirvik, 2021). We describe each factor and its unconditional historical

performance in turn.

We construct the size factor by sorting digital assets based on their market capitalization. The
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latter is calculated as the circulating supply of tokens/coins times their current market price expressed

in USD (see, e.g., Liu et al., 2019). For each trading day, we sort individual cryptocurrencies into

quintile portfolios based on the value of their market capitalization. We then construct a value-

weighted portfolio for each quintile and track the return on each portfolio in the day that follows.

The size factor is constructed as a long-short portfolio which goes long (short) on small (large) assets.

We assume that shorting occurs on the margin at a 1x leverage ratio. As a result, each time the

portfolio is rebalanced, one can invest only a fraction of wealth in new short positions5.

Daily rebalancing of the strategy implies that transaction costs should be considered, as they may

absorb a substantial fraction of the realised performance. We consider an average bid-ask spread

of 100 basis points, which is a rather conservative estimate and roughly corresponds to the cross-

sectional average between the Corwin and Schultz (2012) and Abdi and Ranaldo (2017) estimate over

the sample. We also assume that opening a short position costs an additional 50 bp, which is again

a rather conservative estimate given the fee structures of major cryptocurrency exchanges (see, e.g.,

Schwenkler and Zheng, 2020 and Bianchi and Dickerson, 2019). Note that this same fee structure is

assumed across all factor risk portfolios.

For liquidity risk factors, we consider two alternative portfolio construction procedures. First,

for each trading day, we sort individual cryptocurrencies into quintile portfolios based on the value

of their Amihud (2002) ratio. This is calculated as the ratio between the absolute daily return and

the average daily trading volume expressed in $mln. We then construct a value-weighted portfolio

for each quintile and track the return on each portfolio in the day that follows. The illiquidity

risk factor is constructed as the long-short portfolio which goes long (short) on less liquid (more

liquid) assets. An alternative liquidity factor is constructed by replacing the Amihud (2002) ratio

with the average between the Corwin and Schultz (2012) and Abdi and Ranaldo (2017) synthetic

bid-ask spread measures, to sort assets into quintile value-weighted portfolios. Brauneis et al. (2021)

has recently shown that both the Corwin and Schultz (2012) and Abdi and Ranaldo (2017) provide

a fairly accurate proxy for liquidity within the context of cryptocurrency markets.

5Although short-sales in cryptocurrency markets were rather difficult to implement, especially in the early part of the
sample, they were not impossible to execute. The equivalent of a short sale can be implemented via margin trading on
major exchanges including Binance, Poloniex, and Bitfinex. In practice, these exchanges offer the possibility to borrow
a given crypto at the current market price and to sell it, and then to buy it back later to cover your position. Another
interpretation one could give to our long-short portfolio is a weighting scheme with respect to a benchmark; that is,
a value-weighted market portfolio. In this respect, a long (short) position could be interpreted in relative terms as
overweighting (underweighting) some cryptocurrency pair with respect to its market weight. To summarise, although
complex to execute, a long-short strategy can indeed be implemented (see, e.g., Liu et al., 2019).
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Next, we consider a variety of alternative specifications for cross-sectional momentum as introduced

by Jegadeesh and Titman (2001). We consider four different “look-back” periods of 7, 14, 21, and 30

trading days. Each pair i is allocated to a given quintile at time t based on its cumulative log return

over the previous l-days. Portfolios are value-weighted. The momentum strategy is constructed as the

long-short portfolio which goes long (short) on past winner (loser) assets. The skipping period for

returns calculation is one day after the portfolio is constructed to avoid short-term reversal.

The last two observable long-short strategies are based on returns volatility and short-term reversal.

For volatility, at each time t, a rolling volatility estimate is computed using the volatility estimator

of Yang and Zhang (2000) (with rolling period of 30-days). The volatility estimates are then lagged

and the cross-section is sorted into quintiles from low to high volatility. The out-of-sample return

is computed by taking the value-weighted mean of each quintile. A short position is initiated in

the sub-portfolio with the pairs which have the lowest volatility, whereas a long position is taken

in the sub-portfolio with the pairs which have the highest volatility. A similar logic applies to the

construction of the short-term reversal, in which assets are clustered into quintiles based on previous-

day returns. Each sub-portfolio is value weighted. A zero-cost portfolio is then constructed by going

long on the high-volatility sub-portfolio and short on the low-volatility sub-portfolio.

Table 1 reports some of the descriptive statistics of each observable risk factor in turn. Two

facts emerge. First, once reasonable transaction costs are accounted for, only few observable factors

generate statistically significant risk premiums, including the market portfolio, the liquidity, and the

short-term reversal strategies. Second, reversal generates an astonishing Sharpe ratio of 4.58 on an

annual basis. As short-term reversal is inherently linked to liquidity (see, e.g., Nagel, 2012), we can

assume that the risk of “evaporating liquidity” in the short term may indeed represent a significant

source of risk for which investors in cryptocurrency markets may require significant compensation

(see, e.g., Bianchi and Dickerson, 2019).

Note that a variety of alternative risk factors could have been constructed based on observable

characteristics. For instance, different definitions of volatility could have been implemented to con-

struct a corresponding long-short portfolio. However, Liu et al. (2019) showed that three factors,

namely market, size and momentum, can accurately span a much larger set of factor-based portfolios,

volatility and liquidity included. For this reason, we limit our analysis to the observable risk factors

outlined above and reported in Table 1.
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2.2 Econometric framework

Methodologically, we apply the instrumented principal components analysis developed by Kelly et al.

(2019) and recently used by Büchner and Kelly (2019) and Kelly et al. (2020). The general IPCA

model for the excess return on a given test asset ri,t+1 is defined as

ri,t+1 = αi,t + βi,tft+1 + εi,t+1 (3)

αi,t = z
′
i,tΓα + να,i,t, βi,t = z

′
i,tΓβ + νβ,i,t

with the K × 1 vector of latent factors ft+1 extracted from the cross-section of test assets. The

intercepts αi,t and factor loadings βi,t are allowed to be time-varying and depend on the L× 1 vector

of observable cryptocurrency characteristics, zi,t. The mapping between observable characteristics and

dynamic factor loadings is assumed to be linear and is determined by the matrix Γβ. The estimation

of the IPCA model defined by Eq. (3) is performed using the cross-section of N cryptocurrencies

over T periods via an alternating least squares approach, which iterates the first order conditions of

Γ = [Γα,Γβ] and ft+1 (see Kelly et al. (2019) for more details). As outlined in Section 2.1, the panel

of the assets data can be unbalanced.

The application of IPCA in the context of digital assets can be motivated in several ways. First,

our understanding of the cross sectional variation of the returns on digital assets is limited, at best.

For instance, high market concentration around a handful of digital assets makes long-short strategies

based on observable characteristics potentially highly dependent on the trading costs and frictions that

characterise any asset beyond the top 100 by market capitalization (see Figure 1). Second, risk factor

loadings are arguably not constant over time in a highly volatile environment such as cryptocurrency

markets. Third, cross-sectional correlation of the returns, especially at the daily level, is rather weak.

Thus, by simply using realised returns to build common components to explain the interplay between

risks and rewards may not necessarily be very informative a priori. Instead, the IPCA allows a

researcher to expand the conditioning information set and to incorporate other data beyond returns,

which could mitigate the limitations of the relatively low-density structure in cryptocurrency markets.

Fourth, the IPCA framework makes asset pricing tests relatively intuitive and straightforward to

implement, even when the factor structure of the returns is latent and dynamic. Specifically, a

restricted model with Γα = 0 corresponds to the null hypothesis that systematic factors are the
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sole determinants of returns. Meanwhile, an unrestricted Γα 6= 0 model represents the alternative

hypothesis that conditional expected returns have intercepts that depend on stock characteristics,

indicating that compensation for holding cryptocurrencies does not align with their systematic risk

exposure.

To assess the performance of the IPCA vis-á-vis observable risk factors, Kelly et al. (2019) propose

two alternative metrics. The total R2 is defined as

R2
total = 1−

∑
i,t

(
ri,t+1 − z

′
i,t

(
Γ̂α + Γ̂β f̂t+1

))
∑

i,t r
2
i,t+1

, (4)

which measures the fraction of the total variance of realized returns captured by factor realizations

and conditional loadings. The predictive R2 is defined as

R2
pred = 1−

∑
i,t

(
ri,t+1 − z

′
i,t

(
Γ̂α + Γ̂βλ̂

))
∑

i,t r
2
i,t+1

, (5)

in which λ̂ is the unconditional time-series average of factor returns. The predictive R2 is a “condi-

tional measure”, in the sense that it measures how well conditional expected returns implied by the

model capture realized return variation.

Both the total and the predictive R2 outlined above pertain to the variation in the realised and

expected returns of individual assets. Furthermore, the asset pricing literature commonly examines

the performance of factor models in terms of their ability to explain the behaviour of portfolios in

addition to individual assets. For example, when looking at equity markets, researchers tend to use

double-sorted portfolios formed on different characteristics, such as size and book-to-market ratios

(see, e.g., Fama and French, 2015). Nevertheless, the choice of most appropriate portfolios has been

a source of debate (Lewellen et al., 2010; Daniel et al., 2012). Kelly et al. (2019) demonstrate that

the IPCA methodology provides a convenient resolution to this problem, since all asset pricing tests

can be implemented in a similar way both for individual assets and characteristic-managed portfolios.

For instance, consider the N × L matrix of characteristics at time t, Zt, and define the L× 1 vector

of managed portfolios as

xt+1 =
Z
′
trt+1

Nt+1
, (6)

in which Nt+1 denotes the number of non-missing cryptocurrency observations. The l-th element of
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the vector of managed portfolios, xt+1, is a weighted average of cryptocurrency returns, rt+1, where

the weights are defined by characteristics, Zt. Similarly to the performance measures defined for the

individual assets, we can determine the total and predictive R2 for each l = 1, ..., L of characteristic-

managed portfolios as

R2
total,x = 1−

∑
l,t

(
xl,t+1 − z

′
l,tzl,t

(
Γ̂α + Γ̂β f̂t+1

))
∑

l,t x
2
l,t+1

, (7)

R2
pred,x = 1−

∑
l,t

(
xl,t+1 − z

′
l,tzl,t

(
Γ̂α + Γ̂βλ̂

))
∑

l,t x
2
l,t+1

. (8)

Although the main focus of our empirical analysis is on individual assets, we also report the whole

battery of tests, both in-sample and out-of-sample for characteristic-managed portfolios. This allows

for a more direct comparison between the performance of the IPCA and the results obtained in some

of the existing research (see, e.g., Liu et al., 2019).

3 Empirical Results

3.1 Asset pricing performance

We begin our empirical investigation by estimating the restricted (Γα = 0) and unrestricted (Γα 6= 0)

IPCA models for K = 1, ..., 6 factors. We compute R2
total and R2

pred for both individual assets and

characteristic-based portfolios. Table 2 summarizes the results. Panel A shows the results for the

cross-section of individual assets. Two facts emerge: first, the total R2 account for 13.00% and 15.89%

of the observed variation in returns for a one-factor model with a restricted and unrestricted intercept,

respectively. That is, the additional variation explained by the intercept is small compared to the first

latent principal component. The spread in the performance of the single-factor specification increases

for the R2
pred metric. Second, increasing the number of latent factors leads to gradual improvement

in model performance, both related to realised returns and conditional expected returns. In fact, the

six-factor IPCA model explaining 18.68% and 18.69% for Γα = 0 and Γα 6= 0. More importantly,

when allowing for a non-zero intercept in the model structure, R2
pred increases to a remarkable 2.9%

with virtually no differences between the restricted and unrestricted specifications. This suggests that

when considering more than two latent factors there is virtually no variation in realised and expected

returns that is explained by the model intercept.
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It is common practice in the empirical asset pricing literature to examine the explanatory power

of asset pricing models using portfolios such as the size and value sorted portfolios as test assets

(see, e.g., Liu et al., 2019 and Kelly et al., 2019). The IPCA framework can be approximately

stated in terms of managed portfolios xt = Z ′trt+1/Nt+1 (see Section 2 for details), where Nt is the

number of assets in the cross-section at time t. This construction yields an L × 1 vector xt, where

L corresponds to the number of characteristics. We then compute the performance measures for the

managed portfolios as test assets. Panel B in Table 2 shows the results. The explanatory power of the

IPCA is markedly stronger for portfolio returns than for returns on individual assets. For instance,

both restricted and unrestricted models with only a single factor generate a total R2 of above 93%.

The predictive R statistics exhibit a similar pattern when we increase the number of IPCA factors;

however, their magnitude is slightly smaller: the IPCA generates a predictive R2 of 1.74% for Γα = 0

and Γα 6= 0 with K = 6 factors. The fact that these numbers are smaller than those for individual

cryptocurrencies is an interesting result on its own. This finding also stands in stark contrast to

prior results for equity, corporate bond, and option returns, where IPCA performance in terms of

predictive R2 statistics tends to be stronger for characteristic-managed portfolios (Kelly et al., 2019,

2020; Büchner and Kelly, 2019), indicating a possible segmentation between risks in cryptocurrencies

and traditional asset classes. In fact, as highlighted by Liu and Tsyvinski (2020), typical risk factors

that have been used in the equity literature do not seem to enter the pricing kernel for cryptocurrency

markets, which inherently implies pricing segmentation.

Panel C in Table 2 reports the bootstrap p-values for the hypothesis test of H0 : Γα = 0 for IPCA

with a number of latent factors ranging from K = 1 to K = 6. The null hypothesis implies that

characteristics help to explain risk through systematic factors, but not on their own.6 In the K = 1

and K = 2 specifications of the IPCA model, we reject the null hypothesis that expected returns

are driven solely by their compensation to common risk factors. On the other hand, a model with

more than two latent factors show that mispricing vanishes to zero in statistical terms. As a result,

we choose the three-factor IPCA model as our main baseline specification, as it is the smallest model

that fails to reject the null at a 5% conventional significance level (p-value = 96.1%).

6We follow Kelly et al. (2019) and for each model specification, we construct the test statistic based on the identical
implementation of a “wild residual” bootstrap approach. Specifically, we initially draw 10000 pseudo-samples under the
null hypothesis H0 : Γα = 0. For each sample, we construct a Wald-type statistic measuring the distance between the
restricted and unrestricted models. We then calculate the fraction of simulated statistics exceeding the corresponding
value from the data to obtain the p-value for the IPCA model considered.
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3.2 Comparison with observable factors

Liu et al. (2019) shows that three observable risk factors, the excess returns on the market, size, and

momentum, can span the cross-sectional variation of a larger set of characteristic-based portfolios.

Although factors are latent and dynamic, we find evidence in a similar spirit: as we increase the

number of factors above two, the discrepancy in terms of total R2 between the unrestricted model

with Γα 6= 0 and the restricted model with Γα = 0 vanishes. We compare the performance of our

IPCA specification against a number of observable risk factors adapted from the existing empirical

asset pricing literature. We consider six risk factors: market, size, momentum, liquidity, reversal, and

volatility. We describe these factors in Section 2.1 and report some of their descriptive statistics in

Table 1.

We begin our analysis with a cryptocurrency counterpart of the capital asset pricing model

(CAPM), that is, a single factor specification with a market return (FF1). We then study an aug-

mented two-factor model by adding size (FF2). Motivated by the results of Liu et al. (2019), we

consider a three-factor model (FF3) combining the market, size and momentum factors, where the

latter corresponds to the r21 1 specification in Table 1. The four- and five-factor models (FF4 and

FF5) add liquidity and volatility as additional risk factors. Notice that, between the two different

liquidity factor specifications, we consider a long-short portfolio based on the synthetic bid-ask spread,

as it appears to generate positive and significant returns.7 Finally, the reversal strategy appears to be

strongly profitable in cryptocurrency markets. For this reason, we include the reversal factor alongside

the FF5 factors to obtain the FF6 model (see also Dobrynskaya, 2021).

Table 3 recaps the performance of the restricted IPCA model, i.e., Γα = 0 (Panel A), and provides

the results for two alternative specifications of the observable risk factor models. The first specification

(Panel B) puts the observable risk factors into a setting similar to the IPCA, that is, factor loadings

are instrumented with the same characteristics used for the baseline IPCA model, i.e., dynamic

loadings. This specification can be estimated by pre-specifying factors and evaluating only the matrix

of loadings Γβ from the associated first-order condition. The second alternative specification (Panel

C) follows a standard factor pricing model with static loadings, with the betas estimated from a panel

regression of cryptocurrency returns on observable risk factors (see, e.g., Liu and Tsyvinski, 2020; Liu

7In a set of unreported results, we also consider a combination of the market, size, reversal, and volatility plus different
momentum specifications and the Amihud (2002) sorted portfolios. All alternative specifications produce lower R2

total

and R2
pred, so we choose the best possible specification for the observable factors model. Results for each alternative

factor specification are available upon request.
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et al., 2019). Loadings are static, as they do not depend on cryptocurrency characteristics, unlike the

IPCA specification. We impose a zero intercept constraint for both alternative approaches to align

with the baseline IPCA specification and isolate the explanatory power of sources of systematic risk.

The results show three interesting aspects. First, the explanatory power of the IPCA factors

outperforms observable risk factors by a significant margin. For instance, our baseline three-factor

IPCA model generates a 17.2% R2
total, whereas a six factor model with static loadings delivers a

9.6% R2
total. This is a remarkable result for daily returns in a highly volatile market. Turning to

the expected returns, R2
pred from the IPCA is again much larger than the one obtained from the

benchmark observable risk factor models. For instance, while the three-factor IPCA specification

generates a 2.9% predictive R2, the best performing six-factor model produces 0.67%. Second, the

predictive performance of a dynamic factor model is substantially higher than that of a factor model

with static loadings. For instance, the six-factor model with instrumented loadings delivers R2
pred

0.67% compared to -0.02% obtained from the same model with static loadings. This result suggests

that significant information is brought by individual asset characteristics to explain the cross sectional

variation of returns. Third, the incremental contribution of factors beyond the excess returns on the

market is mixed. For instance, the total variation of a model with only market excess returns as a

unique risk factor (FF1) is comparable to a more extensive six-factor model with additional proxies

of systematic risk (FF6). On the other hand, in terms of R2
pred, the explained variation substantially

increases when the reversal factor is included. This suggests that, while exposure to market risk may

explain a great deal of the variation in realised returns, short-term reversal might play a key role in

the dynamics of risk premiums (see, e.g., Nagel, 2012).

The outperformance of the IPCA framework for individual assets is confirmed for characteristic-

based portfolios. For instance, while the baseline three-factor IPCA model explains almost 97% of

the variation in realised returns, the best performing models with observable risk factors with either

static or dynamic loadings produce a much lower 64%. This value is in line with some of the existing

results in the literature (see, e.g., Liu et al., 2019). Panels B and C confirm that both total and

predictive R2’s for individual cryptocurrencies and managed portfolios are somewhat comparable. In

terms of predictive performance, the empirical results slightly favor time-varying betas. Specifically,

the predictive statistics from static observable factor models never rise above -0.02% and 0.22% for

individual assets and portfolios. To summarise, the results in Table 3 show that the IPCA factors
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produce a much more accurate measurement of the dynamics of risk and rewards for individual assets

and characteristic-based portfolios.

Table 4 formally tests whether coupling latent and observable risk factors improves the explanatory

power of the IPCA model significantly. We test whether the observable risk proxies provide informa-

tion about and beyond IPCA factors explaining the variation in realised and expected returns. The

test is based on an extended IPCA model

ri,t+1 = βi,tft+1 + δi,tgt+1 + εi,t+1. (9)

The term βi,tft+1 is the same as in the main IPCA specification in Eq. (3). The new term is

the portion of the returns variation described by the M × 1 vector of observable factors gt+1. For

consistency, the loadings on both observable and latent risk factors are instrumented using the same

set of individual asset characteristics, i.e., δi,t = z′i,tΓδ +νδ,i,t. A detailed description of the estimation

procedure appears in Kelly et al. (2019). To test the incremental explanatory power of observable

risk factors, we test the null hypothesis

H0 : Γδ = 0L×M vs H1 : Γδ 6= 0L×M . (10)

A Wald-type test statistic is constructed as Wδ = vec
(

Γ̂δ

)′
vec
(

Γ̂δ

)
, with Γ̂δ denoting the estimated

parameters for the loadings on gt+1. Wδ represents the distance between the model with and without

additional observable risk factors. The p-values are obtained using the same residual wild bootstrap

concept.

Panel A and B in Table 4 report the total and predictive R2 for the augmented IPCA. For ease of

exposition, we repeat the performance statistics obtained from the original IPCA implementation (the

first row of both panels). In general, the results show that adding observable factors only marginally

improves the performance of the IPCA model, almost regardless of the number of latent factors K.

For instance, our baseline model with K = 3 produces R2
total of 17.7%. By adding all observable risk

factors, the total R2 increases by a tiny margin to 17.8%. Turning to the bootstrap results, Panel

C in Table 4 shows that the market factor is statistically significant up to the baseline IPCA with

three latent factors. As we add more IPCA factors, all of the observable factors start to become

redundant, that is, for K ≥ 3 none of the six long-short portfolios are statistically significant at the
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1% level after controlling for IPCA factors. In sum, none of the observable risk factors seems to offer

an alternative, or incremental, economic explanation of the IPCA factors for the variation in both

realised and expected returns.

3.3 Unconditional asset pricing

The results thus far have shown that the IPCA model achieves a more accurate in-sample description

of individual assets and managed portfolios in comparison to the model comprising a variety of

observable risk factors. This does not necessarily imply that the IPCA factors are unconditionally

mean-variance efficient, i.e., whether they can price assets unconditionally. In order to test mean-

variance efficiency of the IPCA factors vs observable risk factors, we carry out two asset pricing

tests.

We first test the ability of IPCA to price the cross-section of characteristic-managed portfolios

(see, e.g., Büchner and Kelly, 2019; Kelly et al., 2020). As a benchmark, we choose the six factor

model used in the main empirical analysis so far: a model that includes the market factor in addition

to size, momentum, liquidity, reversal, and volatility factors. We study the cross-section of managed

portfolios, as these represent test portfolios that are weighted by asset characteristics.

We focus on the IPCA specification with the K = 3 factors. Our choice of the three-factor model

is motivated by the results of the significance test of Γα. We compare the alphas obtained from the

IPCA factors with those estimated via a set of time-series regressions of the same managed portfolio

returns on the observable risk factors. For the sake of completeness, we consider both conditional and

unconditional alphas by instrumenting IPCA and observable factors with individual characteristics.

Specifically, the portfolio alphas are computed as the time-series averages of period-by-period portfolio

residuals in both the static and dynamic versions of the latent or observable factor models. Figure

4 plots unconditional and conditional versions of portfolio alphas against their raw average excess

returns. For convenience, we highlight significant and insignificant alphas with filled and unfilled

markers. The plots also report the average absolute alpha for each specification, to quantify the

average size of mispricing across factor models.

The main results show that allowing for time-varying factor loadings in the FF6 specification

reduces the average absolute alpha from 10.79% to 8.54% on an annual basis, while the number of

portfolios with significant alphas remains large. We also find that the estimated alphas from both
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implementations of observable factors are clustered around the 45-degree line. This indicates that

observable factors may have difficulties explaining the cross-section of managed portfolio returns. In

contrast, when using the baseline IPCA factors, the average absolute alpha is substantially reduced

to 4.28% with static loadings and to 0.61% with instrumented coefficients. Further, all portfolio

alphas from the static and dynamic IPCA specifications become insignificant and their magnitudes

are economically small.

To gain a better understanding of how portfolio alphas change with the number of factors, we

re-run the previous analysis with IPCA factors from the K = 1 through K = 6 specifications and

with observable factors from FF1 through FF6. Table 5 reports the average absolute alphas in the

unconditional and conditional implementations. The average pricing error decreases as we increase the

number of IPCA factors, while mispricing remains significant regardless of the number of observable

risk factors. A single factor from the K = 1 IPCA model outperforms observable factors in terms

of both unconditional and conditional alphas. Increasing the number of IPCA factors to K = 6

reduces mispricing from 9.14% to 3.87% and from 8.63% to 0.58% for specifications with static and

instrumented loadings.

3.4 Out-of-sample performance

Thus far, we have shown that the IPCA model achieves a superior description of the in-sample

variation of the trade-off between risks and rewards. The total and predictive R2 reported previously

are essentially in-sample statistics, that is, both fits and predictions are generated using the whole

history of observations. However, the in-sample outperformance does not necessarily translate into

out-of-sample performance. Hence, we now analyze out-of-sample predictions.

Recursive forecasts are carried out by expanding the window of observations starting from Septem-

ber 2019. The first half of the observations available is used as an in-sample period. The computation

of the out-of-sample realised factor returns f̂t+1 is implemented as in Kelly et al. (2019). We eval-

uate the out-of-sample performance of the models with IPCA or observable factors using the total

and predictive R2 computed for individual assets and characteristic-managed portfolios. Table 6

summarises the results. Except for a few nuances, we find that the superior in-sample fit of IPCA

translates into strong out-of-sample performance. For instance, R2
total for the baseline three-factor

IPCA model declines from 17.15% to 16.16%. Meanwhile, R2
pred remains essentially unchanged, i.e.,
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2.93% in-sample vs 2.95% out-of-sample. The IPCA performance is also somewhat persistent for

characteristic-managed portfolios. For instance, the total (predictive) R2 slightly decreases from

96.49% (1.75%) in-sample to 95.77% (1.29%) out-of-sample for the IPCA specification with K = 3

factors.

Despite this small deterioration in the performance, the IPCA model still significantly outperforms

the benchmark model with observable risk factors. For instance, when it comes to individual assets,

the out-of-sample R2
total obtained from the FF6 is 7.38% (6.87%) for instrumented (static) loadings.

This is quite a sizable deterioration in comparison to the in-sample performance, which was 9.27%

and 9.62% for the dynamic and static loadings, respectively. A similar pattern holds for managed

portfolios. The in-sample R2
total for the dynamic (static) model with observable risk factors is 64.10%

(64.05%), while the out-of-sample value decreases to 53.70% (53.31%). The figure for R2
pred is mixed,

with values that remain largely unchanged between in-sample and out-of-sample fits.

Table 7 provides insight into the ability of IPCA to carry over the in-sample mean-variance effi-

ciency to the out-of-sample setting. The out-of-sample mean-variance efficiency for both IPCA and

observable risk factors is assessed by computing the Sharpe ratios of individual factors and tangency

portfolios formed from the set of factors. Panel A of Table 7 reports the results for the IPCA model.

Each column reports the univariate Sharpe ratio of the respective factor as well as the Sharpe ratio of

the tangency portfolio combining factors from K = 1 to K = 6. The IPCA model with K = 2, 3 latent

factors yields an annualised Sharpe ratio above 13, which is tenfold higher than the best tangency

portfolio based on the six observable risk factors. Interestingly, adding more than three IPCA factors

is detrimental from a mean-variance efficiency perspective. However, despite the decline in the Sharpe

ratios after three factors, they still exceed those from the observable factor models, such as the FF6

model that generates a Sharpe ratio of 1.79 vs 7.82 for the IPCA with K = 6 factors. This evidence

is consistent with the main empirical evidence that three latent IPCA factors are sufficient to price

the cross-section of cryptocurrency returns.

3.5 Factors and characteristics

We now delve further into the drivers of the IPCA model’s performance, and examine the marginal

contribution of each asset characteristic. This helps to provide an economic interpretation of the

latent IPCA factors. We evaluate the marginal relevance of each characteristics for the IPCA model
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using the procedure outlined in Kelly et al. (2019): an exact bootstrap approach that tests a joint

significance of the K loadings for each individual characteristic. Let the lth row in the parameter

matrix Γβ = [γβ,1, . . . , γβ,L]
′

correspond to the loadings on the K factors of the lth characteristic. The

joint significance test boils down to testing the null hypothesis that the entire lth row must be zero.

To test this hypothesis, we begin by estimating an unrestricted IPCA model, in which coefficients of

Γβ are not set to zeros, and save the estimated model parameters {γ̂β,l}Ll=1, latent factors {f̂t}Tt=1, and

managed portfolio residuals {d̂t}Tt=1. For each characteristic l, we then compute the Wald-type statistic

of the form Ŵβ,l = γ̂
′
β,lγ̂β,l. Next, we use the residuals to resample characteristic-managed portfolio

returns under the restriction γβ,l = 0K×1.
8 Similarly, we re-estimate the IPCA model using these

pseudo-portfolio returns and compute the bootstrap test statistic Ŵ b
β,l for the bth bootstrap draw.

For the lth characteristic, the p-value of the null hypothesis test equals the fraction of bootstrapped

Ŵ b
β,l statistics exceeding the empirical value Ŵβ,l.

The first three columns of Table 8 show the results for the baseline IPCA model with K = 3

factors and two “neighbourhood” alternative specifications with K = 2 and K = 4 factors, which

are reported for the sake of comparison. We find that out of the 21 characteristics considered, six

(trading volume, bid-ask, size, capm β, ES (5%) and rev) significantly contribute to explain the

variation in cryptocurrency returns as indicated by close-to-zero p-values. The capm β characteristic

is not significant for the IPCA specification with K = 4 factors, whereas active add, VaR(5%) and

mom 7 1 have a bootstrapped p-value smaller than 5% only for the two-factor IPCA model. The results

of the baseline and alternative IPCA specifications for the full sample suggest that the dynamics of

factor loadings and therefore of cryptocurrency risk premiums is mostly due to characteristics linked

to liquidity, market capitalization, and both market and downside risk.

We now interpret the factors in turn. Because the factors in the IPCA framework are not ordered

and are only identifiable up to a rotation, a detailed interpretation of the individual factors is problem-

atic, perhaps even inappropriate. Moreover, we caution that any labeling of the factors is imperfect,

because each factor is influenced to some degree by all of the characteristics, and the orthogonality

condition implies that none of the latent factors will match an exact characteristic. Nonetheless, we

8Starting from the restricted matrix

Γ̂l
β = [γ̂β,1, . . . , γ̂β,l−1, 0K×1, γ̂β,l+1, γ̂β,L]

′
,

bootstrap portfolio returns are defined as x̂bt = ZtΓ̂
l
β f̂t + d̂bt , in which {d̂bt}Tt=1 are the residuals for the bth bootstrap

draw.
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adapt the idea of Ludvigson and Ng (2009) and provide an interpretation of the latent factors based

on the marginal R2 of a univariate regression of each of the 21 different characteristic-based portfolios

onto each estimated IPCA factor, one at a time, using the full sample of observations.

Figure 5 summarizes the results for the baseline IPCA model with K = 3 factors. The first

latent factor strongly relates to short-term reversal (rev) as suggested by the marginal R2 of 85% for

the reversal portfolio, and has a negligible association with other characteristics, as indicated by the

marginal R2 of less than 5%. Short-term reversal is typically associated with investor overreaction to

past information and correction of that reaction after a short time horizon. Specifically, Nagel (2012)

suggests that returns to short-term reversal strategies can be interpreted as a proxy for the returns

from liquidity provision. Thus, the reversal anomaly can be associated with liquidity risk.

Factor 2 is primarily driven by the Amihud (2002) price impact measure illiq and the total

daily volume (trading volume). Both characteristics are inherently linked to the intensity of market

activity and the dynamics of liquidity. The market beta also has a marginal R2 of 40%, which is

slightly lower than the above 45% marginal R2’s for price impact and trading. At a much smaller

magnitude, Factor 2 also appears to be “contaminated” by fundamental blockchain activity and

market capitalization. Specifically, the marginal R2 statistics corresponding to these characteristics

are less than 20%, indicating a relatively weaker relationship.

Factor 3 appears to capture the information content of several quantities related to volatility, liq-

uidity, and downside risks, making its interpretation challenging. It exhibits the strongest association

with downside risk and idiosyncratic volatility measures, as illustrated by the above 40% marginal R2

for VaR(5%), ES(5%) and idio vol. Factor 3 can also be explained in part by liquidity, as proxied

by the synthetic bid-ask spread (see Section 2 for an explanation). For instance, the marginal R2

statistics for bid-ask is above 30%. The managed portfolios constructed for liquidity, volatility, and

downside risk characteristics tend to be strongly correlated in our sample. Factor 3 recovers these fac-

tors due to their common exposure to cryptocurrency tail risk and, hence, it can be labelled downside

risk.

In sum, Table 8 and Figure 5 suggest that a few characteristics are primarily responsible for the

dynamics of risk premiums in cryptocurrency markets. These are mainly related to liquidity, size,

market beta, reversal and possibly to downside risk. These findings expand upon those of Liu and

Tsyvinski (2020), Liu et al. (2019), Bianchi and Dickerson (2019) and Dobrynskaya (2021).
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3.6 Sub-sample analysis

From the onset of the Covid-19 pandemic, cryptocurrency markets have experienced a significant run-

up in value, reminiscent of the ICO-bubble that occured between the end of 2017 and the beginning

of 2018. To investigate the performance of the IPCA framework pre- and post-pandemic outbreak,

we now split the sample into two non-overlapping periods, from December 2nd 2016 to January 1st

2020 and from January 2nd 2020 to July 9th 2021.

We replicate the main empirical analysis performed for the full sample and then discuss differences

and similarities across sub-samples. This should provide additional insights into the robustness of the

asset pricing results across different market conditions and cycles. Panels A and B in Table 9 report

performance statistics for the restricted and unrestricted IPCA models with K = 1, . . . , 6 factors

estimated from the corresponding sub-samples. Two facts emerge: first, the number of factors that

set the aggregate intercept to zero is larger in the post-pandemic period. For the pre-pandemic

sample, the IPCA model with K = 3 factors rejects the null hypothesis at all conventional confidence

levels and corresponds to a large jump in both total and predictive R2 of 18.07% and 2.91% for

individual cryptocurrencies. For the post-pandemic sample, the smallest model that fails to reject

the null hypothesis at the 1% level includes the K = 6 factors. This observation corresponds well

to a gradual improvement in the predictive R2 statistics from 0.04% to 3.41% when we increase the

number of IPCA factors from K = 1 to K = 6. The discrepancy in the number of factors in the pre-

and post-pandemic periods does not call into question the ability of the IPCA framework to explain

the variation of realised and expected returns in cryptocurrencies. Instead, it suggests that, for the

second sub-sample individual asset characteristics are not themselves enough to explain the dynamics

of risk premiums, unless we increase the number of latent factors to K = 6.

Second, the performance of IPCA is rather stable across sub-samples, although it slightly deteri-

orates in the post-pandemic period. For instance, the average R2
total for the pre- and post-pandemic

periods is around 18% and 16% for individual assets. At the managed portfolios level, the difference

in total R2 between the single factor models estimated from different splits is around 1.1%, and di-

minishes to a mere 0.3% as we increase the number of factors to K = 6. This leads to the conclusion

that the explanatory power of IPCA factors is stable. The finding is remarkable given the nature

and the rapid development of cryptocurrency markets. In fact, the number of assets in the panel is

steadily increasing in the first sub-sample, while it remains relatively stable in the second sub-sample.
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Consequently, this is reflected in the number of factors needed to reject the null hypothesis that the

intercepts are zero. Regardless of the number of factors required to eliminate the mispricing, the

IPCA factors maintain a fine statistical performance throughout. Comparing these results to those

reported in Table 2, the key conclusion is that the IPCA fit for the whole sample remains very similar

in the two sub-samples.

3.6.1 Comparison with observable factors. The previous results show that the IPCA perfor-

mance remains relatively stable over different sample periods. In contrast, we find that observable

risk factors tend to perform rather differently pre- and post-pandemic outbreak. Table 10 shows

this. Indeed, the observable risk factor models with dynamic loadings tend to perform much better

over the first sample than over the post-pandemic period. The average R2
total for individual assets

(characteristic-managed portfolios) is around 11% (75.5%) for the first sub-sample, and substantially

decreases to 7.5% (54.5%) for the second sub-sample. There are two possible reasons for this: the

cross-section of cryptocurrencies is smaller in the first sample period and the price run up in the sec-

ond part of the sample is characterised by considerably higher volatility and possibly greater downside

risks (see Fig. 2). This suggests that the performance of models employing observable risk factors

could be sensitive to both the size of the cross-section and the aggregate market conditions.

Although the performance of observable risk factors is improved in the first part of the sample,

IPCA still explains a significantly larger fraction of the variation in realised and expected returns.

For the sake of comparison, consider the IPCA models with K = 3 and K = 6 factors for the first and

second sub-samples, respectively. The chosen benchmarks produce a total R2 of 18.07% and 18.15%

for individual cryptocurrencies. In contrast, the total R2 reaches the maximum of 12.57% and 8.80%

for the pre- and post-pandemic periods in the model with six observable factors and static loadings.

Turning to the predictive R2 at the individual asset level, the baseline IPCA specifications under

consideration produce remarkable 2.91% and 3.41% for the respective sub-samples. The performance

of observable risk factors is stronger in the models with dynamic loadings, but it never rises above an

upper bound of 0.81%. The gap between IPCA and the models’ observable risk factors is even larger

when it comes to characteristic-based portfolios.

Figure 6 suggests that the superior statistical performance of IPCA across sub-samples translates

into unconditional mean-variance efficiency. The top panels compare the factor pricing model com-

prising six observable factors and static loadings with the IPCA specification with K = 3 factors
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estimated on the pre-pandemic outbreak sample. The spread in the performance is clear. The aver-

age absolute pricing error implied by observable risk factors is 10.25% on an annual basis, which is an

order of magnitude smaller than 0.86% from the baseline IPCA framework. For the post-pandemic

outbreak sample, the model with six observable factors produces an average absolute pricing error of

11.25% in annualised terms, while the IPCA specification with K = 6 factors produces a mere 0.53%.

Furthermore, we find in the observable factor model that the vast majority of characteristic-managed

portfolios have significant alphas, whereas none of the IPCA-implied portfolio alphas is significant at

conventional thresholds.

3.6.2 Factors and characteristics. We further investigate the stability of the model by looking

at which characteristics matter for the dynamics of risk premiums across sub-samples. The empirical

tests are the same as described in Section 3.5. The fourth and fifth columns of Table 8 report the

results for the two IPCA specifications with K = 3 and K = 6 factors estimated on the corresponding

sub-samples. Two facts emerge: first, there is relative consistency in the composition of the matrix

Γβ across sub-samples, that is, the set of significant characteristics is somewhat overlapping across

different periods. Second, those variables that primarily relate to market activity and liquidity (such

as bid-ask spread and short-term reversal) are highly statistically significant. Notice that market

capitalization and the Amihud (2002) price impact measure are also borderline significant, although

at the 10% threshold.

We now provide an economic interpretation of the IPCA factors. Following the procedure outlined

in Section 3.5, we regress each of 21 characteristic-based portfolios onto the IPCA factors, one at

a time, for both sub-periods. Figure 7 shows the estimates for the pre-pandemic period. Similar

to the full sample results (see Figure 5), Factor 1 clearly correlates with the short-term reversal

strategy (rev). The corresponding marginal R2 is an unambiguous 85%. Factor 2 has the largest

marginal R2 for trading volume, illiq and capm β. This evidence is consistent with the full sample

findings, even though the magnitudes of the marginal R2 statistics are smaller for the sub-sample.

Interpretation of Factor 3 is not straightforward, however, it is largely in line with the core results

based on the full sample. For instance, Factor 3 also exhibits the strongest relationship with volatility

and downside risk measures as indicated by marginal R2 statistics as high as 65%. Compared to

the main findings based on a longer period, liquidity measures including trading volume, illiq and

bid-ask exhibit higher correlations with Factor 3. This is possibly due to the fact that the correlation
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between downside risk and liquidity characteristics is quite sizable across assets.

Figure 8 summarises the marginal R2 of the same auxiliary regressions for the six-factor IPCA

model estimated on the second sub-period. Similarly, Factor 1 seems to be unequivocally highly

correlated with short-term reversal. Factor 2 and Factor 3 are more correlated with fundamental

blockchain activity measures and momentum, respectively. Factor 4 highly correlates with capm β,

with a marginal R2 equal to 52%. It is more difficult to interpret Factor 5 and Factor 6 as they seem

to combine many different characteristics, though the marginal R2 statistics of Factor 6 are dominated

by volatility and downside risk measures.

3.7 Weekly returns

The main empirical results so far provide evidence that IPCA offers an accurate description of realised

returns and risk premiums at the daily frequency across different sub-samples. In this section, we

extend this evidence by examining cryptocurrency returns at the weekly frequency. To a large extent,

we replicate the core empirical analysis and discuss differences and similarities between the results

based on daily and weekly returns. This gives some additional insight into the robustness of our

findings to an alternative frequency of observations, which has also been done in some of the existing

literature on observable risk factor models (see e.g., Liu and Tsyvinski, 2020; Liu et al., 2019).

3.7.1 Asset pricing performance. Table 11 reports the in-sample fit of different IPCA specifi-

cations for individual assets and characteristic-managed portfolios. Comparing the results from daily

returns reported in Table 2, several observations are noteworthy. First, the performance of the IPCA

factors for individual assets significantly improves at the weekly frequency. For instance, the total R2

is well above 25% regardless of the number of factors. This compares favourably against the IPCA

performance for daily returns, which is, on average, around 17% across the models considered. Second,

despite the increase in the total R2, the predictive R2 declines for weekly returns. In particular, the

predictive R2 lies consistently around 0.94% for individual cryptocurrencies at the weekly frequency,

which is significantly smaller than the average 2.7% obtained from daily returns. We find that similar

results hold for characteristic-managed portfolios. For instance, the average R2
pred,x across IPCA spec-

ifications decreases from 1.7% for daily returns to 0.83% for weekly data. Third, the null hypothesis

of Γα = 0 cannot be rejected at the 10% only for K = 6 latent factors. However, the specification with

K = 4 factors is the smallest for which the null hypothesis is also rejected at a 5% significance level.
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For this reason, we pick K = 4 as our baseline IPCA specification for weekly returns, as it represents

the most parsimonious model that does not strongly reject the null hypothesis of no mispricing.

Table 12 compares IPCA with models comprising different groups of observable risk factors sampled

at the weekly frequency. Similarly to the IPCA factors, the performance of the observable risk

factor models improves across the board. For instance, compared to the daily frequency, the total

(predictive) R2 from the six-factor model with static loadings increases from 9.62% to 23.41% (from

0.22% to 0.29%). The same holds for the total and predictive R2 constructed for characteristic-

managed portfolios. For the benchmark six-factor model with static loadings, the total R2 for managed

portfolios increases from 64% to 74.7%. As a whole, the reported performance of observable risk factor

models for both individual assets and managed portfolios confirms some of the existing results in the

literature (see, e.g., Liu et al., 2019; Dobrynskaya, 2021).

Nevertheless, the IPCA factors explain a significantly higher fraction of the variation in realised

returns and premiums. The baseline four-factor IPCA model generates almost 25% higher R2
total and

three times higher R2
pred with respect to the best performing model with observable factors, either

with static or dynamic loadings. For managed portfolios, the gap increases further. For instance, the

four-factor IPCA explains up to 98% (0.8%) of the variation in the realised returns (risk premiums),

against the total and predictive R2 of 74.6% and 0.29% for the best performing observable risk factor

model.

Table 13 confirms that the performance of the IPCA factors for observations at the weekly fre-

quency holds out-of-sample. Although the total R2 tends to decrease across specifications, the four-

factor IPCA model explains 21.8% of the variation in weekly returns – higher than 16% implied by

the IPCA benchmark at the daily frequency. In addition, when it comes to R2
pred, the performance

gap increases, with the IPCA factors that explain 0.82% of the variation in risk premiums as opposed

to 0.42% from the observable risk factor model with dynamic loadings and six factors. As a whole,

comparing Table 13 with Table 6, the results suggest that, although the performance of risk factor

models improve almost homogeneously across specifications by using weekly returns, the IPCA fac-

tors still explain a substantially higher variation in the dynamics of risks and rewards compared to

benchmark models with observable risk factors.

Figure 9 shows that such higher statistical performance seems to translate into greater uncon-

ditionally mean-variance efficiency. As a baseline IPCA specification, we use K = 4 latent factors.
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Recall that our choice of the four-factor model is motivated by our results on the significance of

Γα. Similarly to the daily frequency case, we compare the alphas obtained from the IPCA factors

with alphas obtained by a set of time-series regressions of the same managed portfolio returns on the

observable risk factors. The top (bottom) panels of Figure 9 report the plots of the unconditional

(conditional) versions of portfolio alphas against their raw average excess returns. The plots also

report the average absolute alpha for each specification, to quantify the average size of mispricing

across factor models.

Our main results show that allowing for instruments in the FF6 specification reduces the average

absolute alpha from 7.63% to 3.62%, however, the number of portfolios with significant alphas re-

mains large. Furthermore, we confirm the result for the daily frequency returns, that is, the estimated

alphas from both implementations of observable factors are clustered around the 45-degree line. This

indicates that, despite the smaller average absolute pricing error, observable factors still do not sat-

isfactory explain the average returns of managed portfolios at the weekly frequency. On the other

hand, using our baseline IPCA specification reduces the average absolute alpha to 2.77% with static

loadings and to 0.70% with instrumented coefficients. With the exception of two portfolios, all alphas

from the dynamic IPCA specification become insignificant and their magnitudes are economically

small.

3.7.2 Factors and characteristics. For the sake of completeness, we now investigate the signifi-

cance of each characteristic for the dynamics of the loadings at the weekly frequency, and provide a

heuristic interpretation of the four factors in the baseline IPCA specification as originally proposed

by Ludvigson and Ng (2009).

The last column of Table 8 summarises the results. With only the exception of ES (5%), which

is not significant at the 5% confidence level, all of the main results for the daily frequency returns

are confirmed. That is, variables that relate to liquidity, including trading volume, bid-ask and

rev are all highly significant, as is size. In addition to the daily frequency case, both mom 14 1 and

mom 21 1 prove to be significant when using weekly returns. This confirms the results in Liu et al.

(2019), which shows that a relatively short-term momentum factor helps to explain the risk premium

variation in cryptocurrency markets. To a large extent, though, the daily results are confirmed at

the weekly frequency, as suggested by the large overlaps in the significance of characteristics for the

loadings dynamics and therefore for risk premiums variation.
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Figure 10 reports the marginal R2 of the auxiliary regressions of each of the 21 characteristic-

based portfolios on each of the latent risk factors for the K = 4 specification. The first factor seems

to be primarily linked to trading activity, i.e., trading volume, liquidity, i.e., illiq and exposure

to market risk, i.e., capm β. Some residual correlation is also related to blockchain activity measures

such as new and active addresses, as well as average transaction value. In addition to the Amihud

(2002) illiquidy measure and trading volume, the second factor is quite significantly correlated with

short-term reversal. capm β features a relatively high marginal R2 also in the third factor, together

with time-series momentum at different lags. Finally, the fourth factor seems to be mostly correlated

with volatility and downside risk indicators in addition to the bid-ask spread, all sharing a marginal

R2 as high as 45%.

4 Conclusion

This paper employs the dynamic latent factor approach originally proposed by Kelly et al. (2019) to

describe the empirically observed trade-off between risks and rewards within the context of cryptocur-

rency markets. Our findings are threefold. First, we find that a low-dimensional latent factor model

successfully captures the variation in cryptocurrency returns. Our results confirm previous evidence

from traditional asset classes that the IPCA framework outperforms observable risk factor models in

its ability to explain the variation in realised returns and premiums of risky assets (see, e.g., Büchner

and Kelly, 2019; Kelly et al., 2020). Importantly, we show that a handful of characteristics can ex-

plain the dynamics of risk premiums, and there are no significant intercepts associated with managed

portfolios. These findings are confirmed both in-sample and out-of-sample estimation procedures.

Second, the IPCA factors are related to conventional sources of risks, which fit the nature of

cryptocurrency markets, including liquidity, size, and the exposure to aggregate market and downside

risks. Short-term reversal in particular plays a critical role in the dynamics of risk premiums (see,

e.g., Nagel, 2012).

Third, we show that the performance of the IPCA factors remains consistent across sub-samples

(the full sample and the periods before/after the outbreak of the Covid-19 pandemic), as well as when

using returns and characteristics sampled at the weekly frequency. This suggests that the IPCA factors

capture some fundamental structure in the interplay between risks and returns in cryptocurrency

markets.
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Table 1: Summary statistics of observable risk factors

This table reports summary statistics of observable risk factors: a value-weighted market portfolio, size, volatility,
illiquidity, bid-ask spread, reversal strategies and four momentum portfolios formed on past returns over 7, 14, 21, and
30 trading days. A complete description of the observable risk factors is in Section 2. Mean and standard deviation
(both in percent), skewness and kurtosis are reported on the daily basis. Sharpe ratio statistics are annualized. The
sample of observations is from December 2nd 2016 to July 9th 2021.

Liquidity Momentum

VW Market Size Volatility Amihud bid-ask Reversal r7 1 r14 1 r21 1 r30 1

Mean 0.22∗∗ 0.06 0.38 -0.12 0.66∗∗ 1.55∗∗∗ -0.06 0.03 0.04 0.07

t(mean) (2.14) (1.76) (1.16) (-0.79) (2.18) (9.34) (-0.29) (0.18) (0.21) (0.89)

SR (annualised) 0.99 0.12 0.50 -0.22 0.93 4.58 -0.12 0.07 0.08 0.11

Skewness -1.01 0.64 -0.23 0.14 -0.08 0.47 -0.51 -0.89 -0.33 -0.29
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Table 2: In-sample asset pricing performance

This table reports in-sample total R2
total and predictive R2

pred for the restricted (Γα = 0) and unrestricted (Γα 6= 0)
IPCA models with K = 1, . . . , 6 factors. Performance statistics are computed for individual assets (Panel A) and
characteristic-managed portfolios (Panel B). Panel C reports the p-values for the test of Γα = 0 based on a bootstrap
with 10000 draws. All numbers are expressed in percent. The sample of observations is from December 2nd 2016 to
July 9th 2021.

K

1 2 3 4 5 6

Panel A: Individual assets

R2
total Γα = 0 13.00 16.52 17.15 17.71 18.22 18.68

Γα 6= 0 15.89 16.56 17.16 17.72 18.23 18.69

R2
pred Γα = 0 0.01 2.91 2.93 2.95 2.94 2.91

Γα 6= 0 2.51 2.62 2.91 2.93 2.92 2.95

Panel B: Characteristic-based portfolios

R2
total,x Γα = 0 93.12 95.16 96.49 97.64 97.79 98.06

Γα 6= 0 94.70 95.65 96.49 97.64 97.78 98.06

R2
pred,x Γα = 0 0.11 1.73 1.75 1.74 1.72 1.71

Γα 6= 0 1.25 1.52 1.75 1.74 1.73 1.74

Panel C: Bootstrap Test (H0 : Γα = 0)

Wα p-value 0.0 0.0 96.1 73.5 70.9 77.5
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Table 3: Latent vs observable factors

This table reports in-sample total R2
total and predictive R2

pred for the restricted (Γα = 0) IPCA models with K = 1, . . . , 6
factors (Panel A) and a set of observable risk factor models with dynamic (Panel B) and static (Panel C) loadings.
Observable factor models begin with a cryptocurrency analogue of CAPM (FF1) with a market factor, and then add
size, momentum, liquidity, volatility, and reversal factors to obtain FF2, FF3, FF4, FF5 and FF6. Performance statistics
are computed for individual cryptocurrencies rt and characteristic-managed portfolios xt. All numbers are expressed in
percent. The sample of observations is from December 2nd 2016 to July 9th 2021.

Test assets Statistics K

1 2 3 4 5 6

Panel A: IPCA

rt R2
total 13.00 16.52 17.15 17.71 18.22 18.68

R2
pred 0.01 2.91 2.93 2.95 2.94 2.91

xt R2
total,x 93.12 95.16 96.49 97.64 97.79 98.06

R2
pred,x 0.11 1.75 1.75 1.74 1.74 1.74

Panel B: Observable risk factors (dynamic loadings)

rt R2
total 8.84 8.86 8.87 8.89 8.90 9.27

R2
pred -0.01 0.00 0.01 0.02 0.03 0.67

xt R2
total,x 63.81 63.83 63.87 63.90 63.93 64.10

R2
pred,x -0.17 -0.16 -0.15 -0.14 -0.13 0.26

Panel C: Observable risk factors (static loadings)

rt R2
total 9.18 9.27 9.36 9.43 9.54 9.62

R2
pred -0.02 -0.02 -0.02 -0.02 -0.02 -0.02

xt R2
total,x 63.75 63.76 63.80 63.82 63.85 64.05

R2
pred,x -0.17 -0.17 -0.16 -0.14 -0.13 0.22
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Table 4: IPCA including observable factors

This table reports R2
total (Panel A) and R2

pred (Panel B) R2 from IPCA specifications with various numbers of latent fac-
tors K (corresponding to columns) while also controlling for observable factors. Rows labeled 0, 1, 4, and 6 correspond to
no observable factors or the CAPM, FFC4, or FFC6 factors, respectively. The table also reports tests of the incremental
explanatory power of each observable factor model with respect to the IPCA model (Panel C). In all specifications,
both latent and observable factor loadings are instrumented with observable cryptocurrency characteristics. R2’s and
p-values are in percent. The sample of observations is from December 2nd 2016 to July 9th 2021.

Obs. Factors K

1 2 3 4 5 6

Panel A: R2
total

0 13.00 16.52 17.15 17.71 18.22 18.68

1 13.19 16.61 17.24 17.78 18.29 18.75

2 13.21 16.62 17.25 17.79 18.30 18.76

6 13.57 16.63 17.26 17.80 18.31 18.77

Panel B: R2
pred

0 0.01 2.91 2.93 2.95 2.94 2.91

1 0.40 2.89 2.91 2.92 2.90 2.93

4 0.40 2.88 2.91 2.90 2.91 2.92

6 0.88 2.87 2.91 2.90 2.92 2.90

Panel C: Individual significance (p-value)

MKT 0.02 0.01 0.07 0.11 0.13 0.14

SIZE 0.12 0.26 0.12 0.17 0.16 0.12

MOM 0.13 0.11 0.15 0.10 0.32 0.16

LIQ 0.79 0.78 0.89 0.73 0.65 0.45

VOL 0.31 0.97 0.97 0.92 0.97 0.93

REV 0.00 0.51 0.46 0.43 0.28 0.29
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Table 5: IPCA portfolio alphas

This table reports unconditional and conditional portfolio alphas when controlling for the factors from the restricted
(Γα = 0) IPCA models with K = 1, . . . , 6 factors (Panel A) and the observable factor models FF1 through FF6 (Panel B).
The test assets are characteristic-managed portfolios. Unconditional alphas are the intercepts of time-series regressions
of portfolio returns on the corresponding factors. Conditional alphas are the time-series average of portfolio residuals
from the IPCA or instrumented observable factor models. The reported values are the average absolute alphas across
all managed portfolios. All numbers are expressed in percent. The sample of observations is from December 2nd 2016
to July 9th 2021.

Panel A: IPCA factors
No. Factors

1 2 3 4 5 6

Unconditional 9.14 5.48 4.28 4.16 4.14 3.87
Conditional 8.63 0.84 0.61 0.60 0.59 0.58

Panel B: Observable factors
FF1 FF2 FF3 FF4 FF5 FF6

Unconditional 10.15 10.22 10.24 10.19 10.21 10.79
Conditional 9.22 9.24 9.21 9.23 9.25 8.54
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Table 6: Out-of-sample asset pricing performance

This table reports in-sample total R2
total and predictive R2

pred for the restricted (Γα = 0) IPCA models with K = 1, . . . , 6
factors (Panel A) and a variety of observable factor models with dynamic (Panel B) and static (Panel C) loadings.
Observable factor models begin with a cryptocurrency analogue of CAPM (FF1) including a market factor, and then
add size, momentum, liquidity, volatility, and reversal factors to obtain FF2, FF3, FF4, FF5 and FF6. The out-of-
sample analysis follows a recursive estimation scheme outlined in the main text starting from the second half of the
available data, i.e., the first prediction is made in September 2019. Performance statistics are computed for individual
cryptocurrencies rt and characteristic-managed portfolios xt. All numbers are expressed in percent. The sample of
observations is from December 2nd 2016 to July 9th 2021.

Test assets Statistics K

1 2 3 4 5 6

Panel A: IPCA

rt R2
total 11.90 15.56 16.16 16.68 17.18 17.61

R2
pred -0.07 2.95 2.95 2.95 2.95 2.96

xt R2
total,x 92.08 94.45 95.77 96.66 97.40 97.62

R2
pred,x -0.63 1.29 1.29 1.29 1.30 1.30

Panel B: Observable risk factors (dynamic loadings)

rt R2
total 7.05 7.03 7.02 7.02 7.02 7.38

R2
pred 0.01 0.02 0.02 0.03 0.03 0.67

xt R2
total,x 53.70 53.65 53.57 53.59 53.59 53.70

R2
pred,x 0.05 0.05 0.05 0.06 0.06 0.46

Panel C: Observable risk factors (static loadings)

rt R2
total 6.90 6.89 6.88 6.88 6.88 6.87

R2
pred 0.01 0.01 0.00 0.00 0.01 0.00

xt R2
total,x 53.50 53.46 53.38 53.40 53.40 53.31

R2
pred,x 0.05 0.04 0.04 0.04 0.04 -0.01
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Table 7: Out-of-sample mean-variance efficiency

This table reports out-of-sample annualized Sharpe ratios of individual factors (“Univariate”) and mean-variance optimal
portfolios (“Tangency”) combining IPCA (Panel A) or observable (Panel B) factors. Observable factor models begin with
a cryptocurrency analogue of CAPM (FF1) with a market factor, and then add size, momentum, liquidity, volatility, and
reversal factors to obtain FF2, FF3, FF4, FF5 and FF6 specifications with two through six factors. The out-of-sample
analysis follows a recursive estimation scheme outlined in the main text starting from the second half of the available
data, i.e., the first portfolio weights are constructed in September 2019.

K

1 2 3 4 5 6

Panel A: IPCA

Univariate -0.30 -1.19 1.65 1.75 -0.16 -0.16

Tangency -0.30 13.72 13.34 10.81 7.82 7.82

Panel B: Observable risk factors

Univariate 0.73 -0.81 0.59 -0.89 -0.86 6.58

Tangency 0.73 0.54 0.69 0.51 0.46 1.79
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Table 8: Significance of the characteristics

This table reports the significance of characteristics to overall fit in the restricted (Γα = 0) IPCA models estimated based
on the daily data from the whole sample (the “Full sample” columns) as well as the sub-samples (the “Sub-samples”
columns) or based on the weekly data from the whole sample (the “Weekly” column). For the full sample period from
December 2016 to July 2021, we report the significance results for the IPCA models with K = 2, ..., 4 factors. For the
two sub-sample periods from December 2016 to January 2020 and from January 2020 to July 2021, we report the results
corresponding to IPCA models with K = 3 and K = 6 factors, respectively. For the weekly data, we present the results
of the K = 4 IPCA model estimated from the whole sample of weekly returns. A variable significance is measured
jointly for all factors based on the bootstrap test. The significance of the lth characteristic for all factors boils down to
testing that the whole lth row in Γβ = [γβ,1, . . . , γβ,L]

′
is equal to zero, that is, the null hypothesis is

H0 : γβ,l = 0K×1.

The numbers in the table are the p-values from the significance test. The sample of observations is from December 2nd
2016 to July 9th 2021.

Full sample Sub-samples Weekly

Name K=2 K=3 K=4 12:16-01:20 (K=3) 01:20-07:21 (K=6) K=4

new add 0.240 0.390 0.310 0.860 0.227 0.495

active add 0.010 0.320 0.120 0.320 0.816 0.988

transaction count 0.120 0.160 0.190 0.350 0.302 0.698

avg trans value 0.110 0.130 0.080 0.080 0.126 0.911

trading volume 0.000 0.020 0.030 0.030 0.000 0.042

illiq 0.051 0.270 0.210 0.260 0.081 0.112

bid-ask 0.000 0.040 0.030 0.020 0.041 0.021

vol shock 15 0.210 0.210 0.330 0.650 0.486 0.748

vol shock 30 0.230 0.340 0.440 0.350 0.732 0.345

size 0.000 0.031 0.020 0.170 0.063 0.041

capm α 0.270 0.890 0.950 0.620 0.744 0.214

capm β 0.000 0.040 0.730 0.240 0.004 0.707

idio vol 0.120 0.060 0.060 0.240 0.102 0.254

rvol 0.070 0.080 0.250 0.160 0.542 0.251

VaR(5%) 0.000 0.140 0.090 0.260 0.512 0.345

ES (5%) 0.000 0.040 0.040 0.040 0.208 0.174

rev 0.000 0.000 0.000 0.000 0.000 0.000

mom 7 1 0.030 0.240 0.170 0.250 0.066 0.105

mom 14 1 0.070 0.480 0.680 0.680 0.665 0.047

mom 21 1 0.520 0.580 0.310 0.850 0.131 0.044

mom 30 1 0.210 0.670 0.940 0.170 0.340 0.671
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Table 11: Asset pricing performance on weekly returns

This table reports in-sample total and predictive R2 for the restricted (Γα = 0) and unrestricted (Γα 6= 0) IPCA models
with K = 1, . . . , 6 factors estimated based on the weekly data. Performance statistics are computed for individual assets
(Panel A) and characteristic-managed portfolios (Panel B). Panel C reports the p-values for the test of Γα = 0 based
on a bootstrap with 10000 draws. All numbers are expressed in percent. The sample of observations is from December
2nd 2016 to July 9th 2021.

K

1 2 3 4 5 6

Panel A: Individual assets

R2
total Γα = 0 25.53 26.84 27.49 28.04 28.55 29.01

Γα 6= 0 26.38 27.05 27.64 28.18 28.67 29.12

R2
pred Γα = 0 0.15 0.93 0.93 0.93 0.91 0.91

Γα 6= 0 0.96 0.95 0.95 0.95 0.94 0.94

Panel B: Characteristic-based portfolios

R2
total,x Γα = 0 97.05 97.57 98.16 98.73 99.02 99.17

Γα 6= 0 97.34 97.95 98.32 98.80 99.08 99.18

R2
pred,x Γα = 0 0.61 0.83 0.83 0.82 0.80 0.80

Γα 6= 0 0.86 0.85 0.85 0.84 0.83 0.82

Panel C: Bootstrap Test (H0 : Γα = 0)

Wα p-value 4.41 4.65 3.32 7.72 4.86 23.3
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Table 12: Latent vs observable factors: Weekly data

This table reports total and in-sample predictive R2 for the restricted (Γα = 0) IPCA models with K = 1, . . . , 6 factors
(Panel A) and a variety of observable factor models with dynamic (Panel B) and static (Panel C) loadings estimated
based on the weekly data. Observable factor models begin with a cryptocurrency analogue of CAPM (FF1) with a
market factor, and then add size, momentum, liquidity, volatility, and reversal factors to obtain FF2, FF3, FF4, FF5
and FF6. Performance statistics are computed for individual cryptocurrencies rt and characteristic-managed portfolios
xt. All numbers are expressed in percent. The sample of observations is from December 2nd 2016 to July 9th 2021.

Test assets Statistics K

1 2 3 4 5 6

Panel A: IPCA

rt R2
total 25.53 26.84 27.49 28.04 28.55 29.01

R2
pred 0.15 0.93 0.93 0.93 0.91 0.91

xt R2
total,x 97.05 97.57 98.16 98.73 99.02 99.17

R2
pred,x 0.61 0.83 0.83 0.82 0.80 0.80

Panel B: Observable risk factors (dynamic loadings)

rt R2
total 18.71 19.88 19.95 20.05 20.14 20.66

R2
pred -0.12 0.04 0.04 0.08 0.15 0.53

xt R2
total,x 70.35 73.84 73.97 74.04 74.23 74.76

R2
pred,x -0.54 0.01 0.05 0.03 0.15 1.04

Panel C: Observable risk factors (static loadings)

rt R2
total 19.69 21.32 21.81 22.35 22.96 23.41

R2
pred -0.23 -0.06 -0.05 -0.04 0.00 0.29

xt R2
total,x 70.37 73.85 73.95 74.02 74.18 74.74

R2
pred,x -0.57 -0.03 -0.01 -0.02 0.15 0.29
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Table 13: Out-of-sample asset pricing performance on weekly returns

This table reports out-of-sample total and predictive R2 for the restricted (Γα = 0) IPCA models with K = 1, . . . , 6
factors (Panel A) and a variety of observable factor models with dynamic (Panel B) and static (Panel C) loadings
estimated based on the weekly data. Observable factor models begin with a cryptocurrency analogue of CAPM (FF1)
including a market factor, and then add size, momentum, liquidity, volatility, and reversal factors to obtain FF2, FF3,
FF4, FF5 and FF6. The out-of-sample analysis follows a recursive estimation scheme outlined in the main text starting
from the second half of the available data, i.e. the first prediction is made in September 2019. Performance statistics
are computed for individual cryptocurrencies rt and characteristic-managed portfolios xt. All numbers are expressed in
percent.

Test assets Statistics K

1 2 3 4 5 6

Panel A: IPCA

rt R2
total 19.63 21.03 21.49 21.86 22.19 22.57

R2
pred 1.65 0.82 0.82 0.82 0.81 0.83

xt R2
total,x 95.29 96.00 96.59 97.01 97.34 97.61

R2
pred,x 8.21 7.51 7.52 7.53 7.53 7.56

Panel B: Observable risk factors (dynamic loadings)

rt R2
total 14.91 15.75 15.73 15.75 15.67 15.97

R2
pred 0.07 0.00 0.00 0.01 0.03 0.42

xt R2
total,x 61.28 64.51 64.51 64.46 64.17 64.02

R2
pred,x 0.28 -0.14 -0.15 -0.14 -0.15 -0.63

Panel C: Observable risk factors (static loadings)

rt R2
total 14.60 15.33 15.32 15.29 15.23 15.17

R2
pred 0.07 -0.04 -0.04 -0.04 -0.04 -0.21

xt R2
total,x 60.97 64.10 64.07 63.93 63.67 63.39

R2
pred,x 0.29 -0.14 -0.16 -0.15 -0.18 -0.86
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Figure 1: A first look at the data

This figure shows the cumulative sum of the market capitalization of the top 50 cryptocurrencies relative to the aggregate
market and our sample (the top-left panel). The top-right panel reports the percent supply held on exchange addresses
for two largest digital assets, Bitcoin (BTC) and Ethereum (ETH). The bottom-left panel demonstrates the explained
variance from the first 50 principal components for the same cross-section of returns used in the main empirical analysis.
The bottom-right panel illustrates the median, 5th and 95th percentiles of the estimated loadings for each asset on the
first principal component estimated based on a rolling window PCA estimate using 360 daily observations.

(a) Market cap concentration (b) The percent supply of BTC and ETH

(c) Cumulative variance explained by PCA (%) (d) The rolling window factor loadings
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Figure 2: Sample coverage

This figure shows the market capitalization of the aggregate market and our sample. The sample period is from December
2, 2016 to July 9, 2021.
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Figure 3: Individual characteristics

This figure reports the scatter plots of average value in individual characteristics across digital assets. We report the
correlation between size, bid-ask, es (5%), and capm β. The sample period is from (put the sample period here).

(a) size vs bid-ask (b) volume vs bid-ask

(c) es (5%) vs capm β (d) es (5%) vs bid-ask
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Figure 4: Alphas of characteristic-managed portfolios

This figure shows unconditional alphas estimated from a time-series regression of portfolio returns on observable factors
from the FF6 model (Panel (a)) or IPCA factors from the K = 3 specification (Panel (b)). The alphas are computed for
characteristic-managed portfolios and are plotted against portfolios’ raw average excess returns. Significant alphas with
absolute values of t-statistics greater than 2.0 are depicted with filled diamonds, while insignificant alphas are denoted
with unfilled circles. The figure also reports conditional alphas from instrumented observable FF6 or three-factor IPCA
models (Panels (c) and (d)), which are computed as the time-series averages of period-by-period portfolio residuals. Each
panel further shows the average absolute alphas for each specification. All reported values are expressed in percentage
per annum.
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Figure 6: Alphas of characteristic-managed portfolios: Sub-samples

This figure shows unconditional alphas estimated from a time-series regression of portfolio returns on observable factors
from the FF6 model estimated based on the two sub-samples from December 2016 to January 2020 (Panel (a)) and
from January 2020 to July 2021 (Panel (b)). The alphas are computed for characteristic-managed portfolios and are
plotted against portfolios’ raw average excess returns. Significant alphas with absolute values of t-statistics greater
than 2.0 are depicted with filled diamonds, while insignificant alphas are denoted with unfilled circles. The figure also
reports conditional alphas from the K = 3 (Panel (b)) and K = 6 (Panel (d)) IPCA models estimated based on the two
sub-samples from December 2016 to January 2020 and from January 2020 to July 2021, respectively. The conditional
alphas are computed as the time-series averages of period-by-period portfolio residuals. Each panel further shows the
average absolute alphas for each specification. All reported values are expressed in percentage per annum.
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Figure 8: Marginal R2 for IPCA factors: Sub-sample from 01:2020 to 07:2021

This figure shows the marginal R2 for the IPCA factors from the restricted (Γα = 0) K = 6 specification estimated
based on the sub-sample from January 2020 to July 2021. The marginal R2 is the R2 statistic from regressions of each
of characteristic-managed portfolios onto each IPCA factor, one at a time.
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Figure 9: Alphas of characteristic-managed portfolios: Weekly data

This figure shows unconditional alphas estimated from a time-series regression of portfolio returns on observable factors
from the FF6 model (Panel (a)) or IPCA factors from the K = 4 specification (Panel (b)). The alphas are computed for
characteristic-managed portfolios and are plotted against portfolios’ raw average excess returns. Significant alphas with
absolute values of t-statistics greater than 2.0 are depicted with filled diamonds, while insignificant alphas are denoted
with unfilled circles. The figure also reports conditional alphas from instrumented observable FF6 or four-factor IPCA
models (Panels (c) and (d)), which are computed as the time-series averages of period-by-period portfolio residuals. Each
panel further shows the average absolute alphas for each specification. All reported values are expressed in percentage
per annum. The results are reported for the models estimated based on the weekly data.
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Figure 10: Marginal R2 for IPCA factors: Weekly returns

This figure shows the marginal R2 for the IPCA factors from the restricted (Γα = 0) K = 4 specification estimated based
on the weekly data. The marginal R2 is the R2 statistic from regressions of each of characteristic-managed portfolios
onto each IPCA factor, one at a time.
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