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Conservative Holdings, Aggressive Trades:

Learning, Equilibrium Flows, and Risk

Premia

Abstract

We propose an equilibrium asset pricing model in which agents learn about fundamentals

and differ in their preference for robustness. We first show that, when agents are averse to

parameter uncertainty, learning about the volatility of fundamentals has a first-order effect

on portfolio flows: contrary to intuition, uncertainty-averse agents increase their risky asset

holdings in periods of high uncertainty, despite holding conservative portfolios. We then

show that subjective risk premia increase following both unexpected good and bad news,

implying that “betting-against-beta” strategies are less profitable when uncertainty is high.

These predictions are consistent with observed portfolio flows of retail and institutional

investors around dividend surprises and with recent empirical evidence linking uncertainty

and the beta anomaly. Our model highlights that heterogeneity of preferences and learning

about economic uncertainty are key channels for understanding the equilibrium dynamics of

portfolio holdings and risk premia following news about economic outcomes.
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1 Introduction

Periods of high uncertainty, such as those following unexpected corporate and macro an-

nouncements, are frequently associated with a flow of risky assets from institutional to indi-

vidual investors’ portfolios. The existing literature typically attributes such flows to either

investors’ limited attention or portfolio constraints.1 In this paper we propose an alterna-

tive explanation that emphasizes the equilibrium interaction between heterogeneous agents

who, upon the arrival of new information, (i) learn about the underlying parameters of the

economy and (ii) are sensitive to parameter uncertainty. We show that learning and aver-

sion to parameter uncertainty are necessary channels to explain the equilibrium dynamics of

portfolio flows and asset prices around economic announcements.

Recent evidence (see, e.g., Nagel and Xu, 2022) emphasizes that subjective, ex-ante, risk

premia inferred from return expectations of investors for a variety of asset classes are much

less counter-cyclical than objective risk-premia inferred from in-sample predictive regressions.

Such a discrepancy between subjective and objective risk premia can be reconciled through

representative-agent asset pricing models in which subjective expectations are time varying

as in settings with constant learning (Collin-Dufresne, Johannes, and Lochstoer, 2016a;

Nagel and Xu, 2021). While learning about uncertain parameters in representative-agent

models introduces important dynamics that are relevant to explain asset pricing puzzles,

these models are not designed to study portfolio flows. In this paper, we consider a general

equilibrium heterogeneous-agents endowment economy in which different types of agents

learn about both the mean and the volatility of the endowment process and differ in their

aversion to parameter uncertainty. It is common in the literature to either (i) assume that

dividend volatility is known as it can be perfectly estimated from high-frequency data or

(ii) treat volatility as known invoking studies in which learning about volatility has a second-

order effect in equilibrium, e.g., Collin-Dufresne, Johannes, and Lochstoer (2016b). In reality,

however, information reaches market participants in a lumpy fashion, such as during FOMC

communication events or corporate earning announcements, and agents have to learn about

volatility. We show that, in the presence of aversion to uncertainty, learning about volatility

has a first-order effect on portfolio decisions and gives rise to novel dynamics in portfolio

flows and asset prices that are consistent with empirical observation.

1See, among others, Frazzini and Lamont (2007), Barber and Odean (2008) and Hirshleifer, Myers,
Myers, and Teoh (2008) Kaniel, Saar, and Titman (2008), Kaniel, Liu, Saar, and Titman (2012).
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Our model predicts that, in equilibrium, ambiguity averse agents, while more conserva-

tive in their holdings, are more aggressive in their trades. Specifically, they increase their

position in the risky asset after observing large positive or negative dividend realizations.

Furthermore, the agents’ equilibrium flow adjustments to the arrival of information in our

model implies that larger dividend realizations are associated with higher expected market

risk premia. These results highlight the importance of considering equilibrium forces when

interpreting empirical evidence.

We first illustrate the main mechanism in a stylized heterogeneous agent model that

we can solve analytically. In this setting, we show that the equilibrium interaction between

ambiguity-averse and ambiguity-neutral agents generates risk premia that depend linearly on

both the dividend variance and the standard error of the expected dividend. This property

is common when agents have preferences that exhibit first-order risk aversion, see, e.g.,

Segal and Spivak (1990). As a consequence of learning, both good and bad news result in

an increase in agents’ volatility estimate. When agents have heterogeneous preferences for

robustness, these belief updates result in equilibrium in expected risk premia that are “too

low” (i.e., prices too high) for ambiguity-neutral agents and “too high” (i.e., prices too low)

for ambiguity averse agents to justify their existing portfolio holdings. This difference in

valuation generates therefore gains from trade in which ambiguity averse (neutral) agents

increase (decrease) their position in the risky asset in times of high uncertainty, that is,

following both positive and negative surprises. In contrast, if no agent exhibits preference

for robustness, the equilibrium risk premium is proportional to the dividend variance and a

standard “no-trade” result emerges, where surprises do not generate equilibrium flows.

We then solve a fully-fledged multi-period general equilibrium endowment economy where

agents learn about the mean and the variance of the endowment, and differ in their degree of

risk aversion and preference for robustness. To gain tractability, we assume that agents in this

model learn with “fading memory” as in Nagel and Xu (2021). We numerically solve such a

model by extending the incomplete-market backward approach of Dumas and Lyasoff (2012)

in order to account for learning and heterogeneity in the preference for robustness. Analysis

of the equilibrium confirms the intuition of the stylized setting: ambiguity averse agents

are conservative in their holdings but aggressive in their trade on new information; and,

subjective risk premia are higher following both positive and negative surprises. Furthermore,

we show that in equilibrium (i) the risk-free rate increases following negative surprises and

decreases following positive surprises; and (ii) the aggressive trades of ambiguity averse agents

give rise to patterns of over-reaction to dividend news in their equilibrium consumption.

2
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We empirically investigate our model predictions using data on corporate ownership as

well as changes in institutional ownership of individual public firms from F-13 filings. We

find that exceptionally bad as well as exceptionally good signals of corporate profitability are

associated with low or even negative changes in institutional ownership. In contrast, neutral

signal realizations, indicating lack of surprise, are associated with an increase in institutional

ownership. These findings are consistent with the predictions of our equilibrium model if we

assume that, as suggested by the “competence hypothesis” (see, e.g., Heath and Tversky,

1991), retail investors are more averse to uncertainty than institutions.2 Furthermore, we also

find that, consistent with our model, the market risk premium is higher following negative

as well as positive surprises. This finding is consistent with Nagel and Xu (2022) who report

that subjective risk premia increase with the subjective estimate of variance.

In summary, within the context of our model (i) heterogeneous preferences for robustness;

(ii) learning about the variance of the endowment process; and (iii) market clearing are

necessary conditions to generate equilibrium portfolio flows and risk premia consistent with

those observed in the data. In fact, a model without heterogeneity in preferences towards

robustness cannot explain observed flows in response to news. Similarly, a model in which

the variance of the dividend process is known does not generate sensitivity of portfolio flows

to news. Finally, in a partial equilibrium model that ignores the price effects of portfolio

rebalancing, as uncertainty increases, agents with preference for robustness trade into more

conservative portfolios, contrary to the evidence we document in the data.

Our work relates to three strands of literature. First, we contribute to the literature

on asset pricing with heterogeneous agents.3 We differ from the work in this literature by

considering learning and agents’ preference for robustness emerging from their aversion to

parameter uncertainty. Chapman and Polkovnichenko (2009) study asset pricing in two-

date economies with heterogeneous agents endowed with non-expected utility preferences.

We focus on one form of deviation from expected utility, namely preference for robustness,

and generalize their results to the case of learning about the mean and the variance of the

2The “competence hypothesis” states that agents are generally ambiguity-averse toward tasks for which
they do not feel competent. Li, Tiwari, and Tong (2017) provide support to the assumption that retail
investors have a stronger desire for robustness.

3This literature is too vast to be reviewed here. Key contributions, among many others, are Mankiw
(1986), Dumas (1989), Constantinides and Duffie (1996), Dumas, Kurshev, and Uppal (2009), Bhamra and
Uppal (2014), and Gârleanu and Panageas (2015). Panageas (2020) provides an excellent review of the
literature.
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endowment process, and to multi-period economies.4,5 Buss, Uppal, and Vilkov (2021) study

the dynamics of asset demand in a multiperiod general equilibrium model in which agents

are heterogeneous in their confidence about the assets’ return dynamics. They show that

heterogeneous beliefs lead to asset demand curves that are steeper than with homogeneous

beliefs. Unlike Buss, Uppal, and Vilkov (2021), agents in our model differ in their attitude

towards robustness and learn about both the mean and the variance of the dividend process.

Because of agents’ preference for robustness, learning about variance has a first-order effect

on both equilibrium flows and asset prices in our model. These effects are instead negligible

in a model where agents are ambiguity neutral.

Second, we contribute to the literature that studies asset prices under parameter uncer-

tainty and learning.6 In our model, agents update their priors about the moments of the

endowment process by observing its realizations over time. If the endowment process were

observable in continuous time, its variance could be known with certainty. In reality, infor-

mation reaches market participants through discrete events, such as FOMC communications,

earning announcements, macro news, etc.7

Learning in this setting implies that the estimated variance is time-varying. We show

that time variation in the estimated variance has significant qualitative implications for equi-

librium flows and asset prices that would be absent in a model where the variance is a known

constant. An alternative approach would be to exogenously assume stochastic volatility in

the endowment process (see, e.g. Bansal and Yaron, 2004). However, we show that in a

model with unknown mean but stochastic and observable volatility, new observations always

increase the precision of the mean and lead to negligible effects on portfolio flows. There-

fore, we view learning about the volatility of a simple i.i.d. endowment process as a more

4Similar to our setup, Easley and O’Hara (2009) model investors with a desire for robustness with respect
to ambiguity in both the dividend mean and variance. In our model, learning ties the ambiguity in the
dividend mean to the variance of the dividend distribution and helps rationalize portfolio flows in reaction to
new information. Cao, Wang, and Zhang (2005) use a similar model with heterogeneous uncertainty-averse
investors but no learning to show that limited asset market participation can arise endogenously in the
presence of model uncertainty.

5Illeditsch, Ganguli, and Condie (2021) analyze learning under ambiguity about the link between infor-
mation and asset payoffs and show that this leads to underrection to news. Ilut and Schneider (2022) provide
a comprehensive survey of modelling uncertainty as ambiguity.

6Among others, key contributions are David (1997), Veronesi (1999), Pástor (2000), Barberis (2000), Xia
(2001) and Leippold, Trojani, and Vanini (2008). Pástor and Veronesi (2009) provide an extensive overview
of learning in financial markets.

7See the large literature on the announcement premium, e.g., Savor and Wilson (2016), Ai and Bansal
(2018), and many others.
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realistic and parsimonious way to model time variation in volatility while allowing objective

and subjective expectations to differ (see, e.g. Nagel and Xu, 2021).

Third, our work is related to the large literature that studies the trading behavior of

institutional and retail investors. Ample evidence indicates that retail investors act as liq-

uidity providers who meet institutional investors’ demand for immediacy.8 Consistent with

this view, we document that institutional investors tend to reduce their share in corporate

ownership when indicators of future corporate profitability are exceptionally bad. Although

retail investors might be less sophisticated, they face lower agency costs and less liquidity

constraints than their institutional counterparts. This advantage allows them to act as mar-

ket makers, especially during times of financial turmoil when liquidity is a scarce resource.

Surprisingly, and less discussed in this literature, institutional investors significantly reduce

their share in corporate ownership after exceptionally positive signals as well. The finding

that individual investors increase their holdings in the risky asset after bad and good sur-

prises is rationalized in the literature by appealing to the “attention grabbing” hypothesis,

which assumes that individual investors have limited attention and rarely short sell.9 We

provide an alternative explanation to the attention grabbing hypothesis, by highlighting the

important role of preference for robustness and learning.

The rest of the paper proceeds as follows. In Section 2 we provide intuition in a simple

one-period equilibrium model which is analytically tractable. Section 3 presents a general

equilibrium heterogeneous-agent model with learning. Section 4 contains our empirical anal-

ysis. Section 5 concludes. Appendix A derives the properties of the agents’ iso-portfolio

curves used to develop intuition in the stylized model of Section 2. Appendix B describes

Bayesian updating with fading memory and Appendix C contains details of the numerical

algorithm we develop to solve the model of Section 3.

2 A one-period model

In this section we develop a simple one-period equilibrium model with learning and hetero-

geneity in the preference for robustness that we can solve analytically. We use this stylized

model to illustrate the effect of learning about dividend volatility when agents are ambigu-

8See e.g. Kaniel, Saar, and Titman (2008), Barrot, Kaniel, and Sraer (2016), Glossner, Matos, Ramelli,
and Wagner (2020), and Pástor and Vorsatz (2020).

9See e.g. Frazzini and Lamont (2007), Barber and Odean (2008), Hirshleifer, Myers, Myers, and Teoh
(2008),Berkman, Koch, Tuttle, and Zhang (2012), and Barber, Huang, Odean, and Schwarz (2021).
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ity averse (Section 2.2); we compare these effects to those obtained from a model in which

volatility is known but stochastic (Section 2.3); and discuss the cyclicality of the equilibrium

subjective risk premium (Section 2.4).

2.1 Setup

There are two dates, t = 0, 1, and a single “tree” producing a perishable dividend D̃ at time

t = 1. Agents can trade in claims over the dividend tree (the risky asset) at a price p and

lend to each other (the riskless asset). Since consumption occurs only at t = 1, the riskless

rate in the economy is undetermined and, without loss of generality, set to zero.

Beliefs. We assume that the dividend D̃ is normally distributed with unknown mean µ

and variance σ2. At time t = 0 agents have subjective beliefs m and v2 about µ and σ2

that result from having observed a time series of n past dividend realizations. Thus, agents

believe that the t = 1 dividend D̃ is t-distributed with mean m and variance v2 and n − 1

degrees of freedom. For ease of exposition, we assume a large enough n, so that the subjective

distribution of dividend is approximately normal.

Preferences. The economy is populated by two types of agents, i = A,B, both having

CARA utility ui(c) = −1/γie
−γic, with absolute risk aversion γi > 0. Both agents have

the same beliefs (m, v2) but differ in their attitude towards uncertainty in these moments’

estimates. Type-B agents are Bayesians. Therefore, they (i) use their best estimate of the

mean m as the “perceived” dividend mean, that is, µ̂B = m, and (ii) account for parameter

uncertainty by inflating their best estimate of the variance v2 by the mean standard error

s = v/
√
n, that is, their perceived dividend variance is σ̂2 = v2 + s2 = v2(1 + 1

n
).10

In contrast, type-A agents are “ambiguity averse” and dislike the uncertainty in the

parameter estimates m and v2. They guard against their aversion to parameter uncertainty

by choosing portfolios that are robust to “worst-case” scenarios. This implies choosing

the perceived dividend mean and variance conservatively within a confidence interval for

the estimates m and v2. The size of these confidence interval captures agents’ aversion to

uncertainty. For illustration purposes, in this section we assume that the agent is averse only

10Because the standard error of the mean declines monotonically in the number of observations, n, the
true mean becomes eventually known. In the next section, we allow for parameter uncertainty to persists
over time by assuming that agents learn with “fading memory” as in Nagel and Xu (2021).
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to uncertainty about the mean estimate m and consider the general case in Appendix B.2.11

Therefore, like the Bayesians, ambiguity-averse agents account for parameter uncertainty by

inflating their variance estimate v2, that is, σ̂2 = v2+s2. In addition, they select the perceived

mean µ̂A in a conservative way within a confidence interval µ̂A ∈M ≡ [m−κs,m+κs], whose

size depends on their aversion to uncertainty κ. In classical statistics, κ would represent,

for example, the quantile of a distribution, e.g., κ = 1.96 for a 95% confidence interval of

a normal distribution. When κ = 0 and γA = γB, agent A and B are identical. Therefore,

the parameter κ parsimoniously captures the heterogeneity in attitude towards parameter

uncertainty between the agents in our economy.

Portfolios. We denote by θi agent’s i = A,B number of shares of the risky asset. The

portfolio problem of type-B agents is standard, that is,

max
θB

E
[
− 1

γB
e−γBW̃B

]
, (1)

subject to

W̃B = θBD̃ + (WB − θBp), (2)

where WB denotes the value of B’s initial endowment.12 If n is large enough, D̃ ∼ N (µ̂B, σ̂
2),

with µ̂B = m and σ̂2 = v2(1 + 1
n
). Therefore, agent B’s demand of the risky asset is

θB =
m− p
γBσ̂2

. (3)

11Easley and O’Hara (2009) show that when ambiguity aversion is modeled as in the max-min setting of
Gilboa and Schmeidler (1989), the ambiguity-averse agent always elects the highest possible return variance
when constructing optimal portfolios. Therefore, the portfolio choice problem with ambiguity about both µ
and σ2 reduces to a problem with ambiguity only about µ, where σ2 is fixed at the maximum over the set
of its possible values.

12With CARA preferences and absent a consumption decision at t = 0, i.e., with exogenous riskfree rate,
the demand for the risky investment is independent of the initial endowment. Hence, the relative share of
the types of agents only depends on the relation between their risk tolerance, 1

γi
.
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In contrast, type-A agents maximize expected utility by selecting the “worst case” mean

µ̂A from their estimated confidence interval.13 Specifically, type-A agents solve

max
θA

min
µ̂A∈M

E
[
− 1

γA
e−γAW̃A

]
, with M≡ [m− κs,m+ κs], (4)

subject to

W̃A = θAD̃ + (WA − θAp), (5)

with WA the value of A’s initial endowment. The desire for robustness of types-A agents

implies that, when forming their consumption and portfolio decisions, type-A agents select

the mean µ̂A within the confidence interval M that delivers the worst possible expected

utility.14

The solution of the portfolio problem (4)–(5) is

θA =


m−κs−p
γAσ̂2 if p < m− κs,

0 if m− κs ≤ p ≤ m+ κs.
m+κs−p
γAσ̂2 if p > m+ κs

(6)

When p < m − κs, agents A have positive demand for the risky asset, and they invest as

if they would use a different (equivalent) probability measure on the dividend states. That

is, type-A agents invest as if their estimate of the expected dividend is adjusted downwards

by a quantity κs that depends on their degree of ambiguity aversion κ and the amount of

uncertainty in the mean estimate m, captured by the standard error s. When p ∈ (m −
κs,m+ κs) type-A agents do not hold the risky asset and for p > m+ κs, they hold a short

position.

Equilibrium. By imposing market clearing, θA + θB = 1, we obtain the equilibrium ex-

dividend price for the risky asset

p∗ = m− λ, (7)

13For simplicity, in our analysis we rely on the “max-min” implementation of the Gilboa and Schmeidler
(1989) model, as in Garlappi, Uppal, and Wang (2007). Alternative and less extreme versions of this
approach are possible, such as models with “variational preferences” as in Hansen and Sargent (2001), in
which the desire for robustness can be captured by a “penalty” for deviations from the posterior (mt, v

2
t ), see,

for example Anderson, Hansen, and Sargent (2000) and Hansen and Sargent (2008). The main qualitative
implications are however unaltered: aversion to parameter uncertainty leads to a direct adjustment in the
perceived mean estimate before forming portfolios.

14See Bewley (2011) for a discussion of how confidence intervals obtained from classical statistics are
related to Knightian uncertainty.
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where λ denotes the subjective risk premium given by

λ =


γB

γA+γB

κ√
n
v + γ0

(
n+1
n

)
v2 if κ ≤ κ∗,

γB
(
n+1
n

)
v2 if κ > κ∗.

with κ∗ ≡ γB

(
n+ 1√
n

)
v, (8)

where γ0 ≡
(
γ−1
A + γ−1

B

)−1
denotes the aggregated absolute risk aversion in the economy.

The demand for the risky asset in equations (3) and (6) imply that either both agent

participate in the market or only agent B participates. The expression of the risk premium

in equation (8) shows that A participates for level of ambiguity aversion smaller than the

threshold κ∗. Intuitively, A’s demand is higher with less aversion to ambiguity. From the

expression of the participation threshold κ∗ we note that equilibrium participation is more

likely the higher is (i) B’s risk aversion γB ; (ii) the estimated dividend volatility v; and

(iii) the number of past dividend observations n.

The expression for the equilibrium subjective risk premium in equation (8) shows that

when both agents participate in the market, i.e., κ < κ∗, the equilibrium risk premium is

linear-quadratic in the dividend volatility v. The linear term in the expression of λ appears

because the preferences of type-A agents exhibit “first-order” risk aversion, (see, e.g., Segal

and Spivak, 1990). Intuitively, unlike B agents who are locally risk-neutral, A agents are

locally risk-averse and demand a compensation for holding a vanishing amount of risk.15

Note that, from equation (8), the subjective risk premium λ depends only on the dividend

volatility v and variance v2 and it will therefore be constant in an economy in which the

dividend variance is a known constant.

Substituting the equilibrium price p∗ in the agents’ demand functions (3) and (6), we

obtain the following expressions for the equilibrium portfolio holdings16

θA = max

{
γ0

γA
− 1

γA + γB

( √
n

n+ 1

)
κ

v
, 0

}
, (9)

θB = min

{
γ0

γB
+

1

γA + γB

( √
n

n+ 1

)
κ

v
, 1

}
. (10)

[Figure 1 about here.]

15Aversion towards uncertainty in σ2 does not generate fist-order risk aversion and has only quantitative,
not qualitative, effects. See Appendix B.2 for a formal argument.

16Note, that the max and min in equations (9) and (10) do not originate from a short-sale constraint but
from agent A’s no participation, as shown in the demand equation (6).
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The left panel of Figure 1 illustrates the equilibrium portfolio weights θA and θB from

equations (9)–(10) as a function of the volatility estimate v. The figure shows that if κ < κ∗

or, equivalently, v > v∗ ≡
√
n

n+1
κ
γB

(the vertical dashed line), both agents hold the risky

asset in equilibrium. Furthermore, when both agents participate, A’s risky asset demand

is increasing in the dividend volatility v while B’s demand is decreasing. As v → ∞, the

portfolio holdings converge asymptotically to the constant weights θA = γ0

γA
and θB = γ0

γB
.

The right panel of Figure 1 provides an intuition for the structure of the equilibrium

holdings in equations (9)–(10). The dotted curves in the figures represent “iso-portfolio”

curves for both agents, that is, the combination of volatility v and risk premium λ associated

with the same portfolio holdings. The intersection of complementary iso-portfolio curves of

the two agents, i.e., curves with weights that clear the market, θB + θA = 1, identify the

equilibrium risk premium, represented by the solid black line. Because of first-order risk

aversion, agents A participate in the market only if the risk premium exceeds the hurdle

λ(v∗) = κ2

(n+1)γB
= κ√

n
v∗. The red-shaded area in Figure 1 shows the range of risk premia that

are too low for A to hold the risky asset. The θA = 0 iso-portfolio line (red-dashed) intersects

the curve of the equilibrium risk premium (black line) at v = v∗ where λ(v∗) = κ√
n
v∗. For

a dividend volatility v ≤ v∗, or, equivalently, κ ≥ κ∗, the risk premium that agent B

requires for holding 100% of the risky asset is too low for agents A to participate in the

market. Therefore, since agent B is the only one holding the risky asset, the risk premium’s

dependence on v coincides with the θB = 100% iso-curve (upmost blue dashed line).

For values of v > v∗, or, equivalently, κ < κ∗, both agents participate in equilibrium.

As we show in Appendix A, in any equilibrium in which agents A participate, their iso-

portfolio lines in Figure 1 are always flatter than those of agents B. This happens because,

when agents exhibit first-order risk aversion, the equilibrium risk premium λ consists of

two parts: (i) compensation for first-order risk aversion to induce participation (v-term in

equation (8)) and (ii) compensation for risk aversion (v2-term in equation (8)). Because of

this dual function of the risk premium, agents A hold fewer risky assets than B and demand

a relatively lower compensation for accepting an additional marginal unit of volatility. This

implies that the marginal rate of substitution between required risk premium and dividend

volatility is strictly higher for B than for A. Intuitively, starting from an equilibrium in which

both A and B participate, in order not to change their portfolios, agents A require relatively

less compensation than B for an additional unit of volatility. Hence the equilibrium risk

premium is perceived to be “too high” (price too low) by A and “too low” (price too high)

by B, and a gain from trade emerges: B is willing to sell and A is willing to buy. In sum,

10
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because of first-order risk aversion, in equilibrium agents A hold “conservative” portfolio

but trade “aggressively” by increasing the holdings of the risky asset following an increase

in volatility.

2.2 Learning and equilibrium flows

As the analysis of the previous section illustrates, in an equilibrium when both types of

agents participate, portfolio holdings depend on the estimated dividend volatility, v and,

from equations (9)–(10), changes in v induces portfolio flows between the Bayesian and the

ambiguity averse investors. This fact suggests that learning about volatility, by making the

estimate v time varying, plays a crucial role in the determination of equilibrium flows. Here

we develop intuition about the effect of learning in the context of the simple model of the

previous section. The general model of Section 3 explores this channel thoroughly.

Suppose agents form their t = 0 beliefs (m, v2) from a set of n historical dividend obser-

vations, resulting in the equilibrium portfolio weights θA and θB shown in equations (9)–(10).

At time t = 0, agents observe a dividend signal D′. Because agents have CARA preferences

and there is no consumption at t = 0, the signal D′ has no wealth effects and therefore does

not induce agents to rebalance their portfolio. The only effect of the signal D′ is to reveal

information about future dividends. After observing this signal, investors update their belief

to (m′, v′2) resulting in new equilibrium holdings, θ′A and θ′B. We interpret the rebalancing

θ′A − θA = θB − θ′B as the flow induced by the arrival of new information. The difference

e = D′ −m between the new observation and the agents’ prior belief m represents the divi-

dend “surprise”. Standard results from statistical inference theory, see, e.g., Greene (2020)

imply that the posterior mean, m′, is linear in the surprise e and the posterior variance, v′2,

is linear in the squared surprise e2 , that is,

m′ =
1

n′

n′∑
t=1

Dt = m+
1

n′
e, (11)

v′2 =
1

n′ − 1

n′∑
t=1

(
Dt −m′

)2

= v2 +
1

n′

(
e2 − n′

n′ − 1
v2

)
, (12)

s′ =
v′√
n′
. (13)
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with n′ = n + 1 the number of observations, and n′

n′−1
v2 = v2 + s2 the prior estimate of the

total variance.

The portfolio holdings (9)–(10) highlight that only a change in volatility can generate

trade among agents in equilibrium. Because of CARA preferences, these equilibrium portfo-

lios do not depend on the agents’ beliefs about the dividend mean, m. Hence, if the dividend

variance is known there would not be equilibrium flows in this model. Equilibrium flows can

emerge only if v varies over time, as in the case of a model in which agents learn about the

variance of the dividend process. Larger dividend “surprises” e lead to an increase in the

updated variance v′2 and hence in the standard error s′ = v′/
√
n′ of the estimated mean.

Therefore, from equations (9)–(10), large surprises imply an increase in the equilibrium

holdings θA and a decrease in the equilibrium holdings θB.

[Figure 2 about here.]

Figure 2 shows equilibrium portfolio holdings (left panels) and subjective risk premia

(right panels) for low (top panels) and high (bottom panels) levels of ambiguity aversion,

as a function of the dividend surprise e = D′ −m. Unlike Figure 1, which shows the same

quantities as a function of the volatility estimate v, Figure 2 emphasizes the effect of both

positive and negative surprises. A large value of the volatility in Figure 1 can be associated

with either a large positive or negative dividend surprise. Linking portfolio flows and risk

premia to dividend surprises allows us to relate more directly to the empirical analysis of

Section 4.

The left panels of Figure 2 illustrate the equilibrium portfolio holdings of agents B from

equation (10) as a function of the dividend surprise e. The different curves correspond to

different levels of type-A agents’ preference for robustness parameter, κ. Larger values of

κ imply stronger ambiguity aversion, more conservative portfolios for agents A, and hence,

by market clearing, larger risky asset holdings by B agents. The inverted U-shape of the

equilibrium portfolio of agents B indicates that larger dividend surprises reduce the holdings

θB of the Bayesian investor and increase those of the ambiguity-averse agent A. The black

line in the top-left panel shows that with no preference for robustness (κ = 0) there are

no flows following dividend surprises. For intermediate values of κ there are portfolio flows

between agents, with A-agents buying and B-agents selling. For higher values of κ (red line

in the bottom-left panel), ambiguity averse agents do not participate and therefore there

cannot be flows between agents in equilibrium.
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The right panels of Figure 2 display the equilibrium risk premium λ as a function of

dividend surprises. A larger dividend surprise e, positive or negative, is associated to larger

values of the posterior variance v2. It then follows directly from the mechanism illustrated

in Figure 1, that larger surprises are associated with larger expected risk premia. The right

panels of Figure 2 also show that, although a higher preference for robustness κ results in

higher risk premia, conditional on participation of A-type agents, ambiguity aversion, per

se, is not necessary to generate the U-shape relationship between dividend surprises and risk

premia. In fact, such a pattern is present also for the case of κ = 0 (the black line in the

top-right panel).

2.3 Learning about variance vs. stochastic volatility

One may argue that a model in which perceived variance is endogenously time-varying due

to learning is observationally equivalent to a model without learning but with exogenously

time-varying variance. Although both models exhibit time-variation in volatility, in a model

with learning, a change in the estimated variance implies a change in the perceived informa-

tion quality of all historically observed dividends. In contrast, in a model with stochastic

volatility, a change in variance does not affect the quality of past information since parame-

ters are known. In this section, we show that the difference in the source of time-variation in

volatility has qualitative and quantitative implications for portfolio flows. Specifically, while

known and stochastic volatility has only second-order effects on flows, learning about the

volatility and its impact on the confidence interval of the mean has first-order effects in any

equilibrium with ambiguity averse agents.

To illustrate this point, let us assume independent and identically normally distributed

dividends D with unknown and constant mean µ and time-varying but observable variance

σ2
t . The best estimate of the mean m from a history of n observations is then (see, e.g.,

Chapter 9 in Greene, 2020)

m =
n∑
t=1

wtDt with wt ≡
1/σ2

t

1/s2
and

1

s2
=

n∑
t=1

1

σ2
t

, (14)
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where the weight wt represents the relative precision of each observation and s the standard

error of the mean.17

The updated values of the mean and standard error after observing the new realized

dividend D′ and variance σ′2 are

m′ = (1− w′)m+ w′D′, w′ =
1
σ′2

1
s2

+ 1
σ′2

=
s2

s2 + σ′2
(15)

1

s′2
=

1

s2
+

1

σ′2
. (16)

With stochastic but known variance, the updated standard error s′ does not depend on the

new dividend realization D′. Equation (16) implies that s′ ≤ s, i.e., new observations can

only reduce the standard error of the mean.18 Because the standard error controls the size

of the confidence intervalM = [m− κs′,m+ κs′] characterizing ambiguity about the mean,

in a model with stochastic volatility, a new dividend observation always reduces ambiguity.

Observations in times of very high volatility σ′ receive tiny weights w′ in the updated mean

m′ and only marginally reduce the standard error s′.

In contrast, in our model where agents learn about an unknown variance, dividend sur-

prises D′ increase the estimated variance v′2 whenever the squared surprise e2 = (D′ −m)2

exceeds the prior estimate of the total variance v2 +s2, see equation (12). This increase in es-

timated variance directly implies a higher estimated standard error of the mean, s′ = v′/
√
n′,

see equation (13). Therefore, the new signal affects the quality of all historical dividends,

and agents revise their confidence interval of the mean. Comparing the dynamics of the

standard error of the mean in a model with stochastic volatility, equation (16), and learning

about variance, equation (12), we conclude that a model of stochastic but know volatilty

would imply negligible or inexistent equilibrium flows following dividend surprises, contrary

to the empirical evidence.

17Because dividend realization are independent and identically distributed, the variance of m is given by

s2 = var(m) =

n∑
t=1

w2
t var(Dt)︸ ︷︷ ︸

=σ2
t

=

(
1∑n

t=1
1
σ2
t

)2 n∑
t=1

[(
1

σ2
t

)2

σ2
t

]
=

1∑n
t=1

1
σ2
t

.

18In a model of fading memory, as the one considered in Section 3, it is possible that new observations
might lead to a slight increase in the standard error, when agents’ memory fades sufficiently fast.
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2.4 Countercyclical risk premia and predictability

The expression for the equilibrium risk premium in equation (8) and the updating in variance

estimate (12) induced by learning implies that the subjective risk premium λ increases with

the magnitude of the dividend surprises e = D′−m, regardless of their sign. This dependence

gives rise to a form of predictability that investors in our model can detect in real time. As

in Lewellen and Shanken (2002) and Nagel and Xu (2022), parameter uncertainty implies

also a second form of predictability that, although detectable by an outside econometrician

who knows the dividend process’ true moments, cannot be exploited by investors.

To illustrate, consider first the case in which the true dividend mean is constant but

unknown, and the variance is known by all investors. Following positive dividend realizations,

investors’ best estimate of the expected dividend is higher than the true mean and the stock

will be “over-priced” relative to its fundamental value. Since the true mean is lower than

investors’ estimate, they will perceive negative returns after high prices. An econometrician

looking at the data will find that high prices predict lower returns, that is, the objective

expected risk premium is

λobj = µ− p∗ = µ−m(e)︸ ︷︷ ︸
unobservable

+m(e)− p∗︸ ︷︷ ︸
≡λsubj(e)

, (17)

where λsubj(e) denotes the subjective risk-premium derived in equation (8), which is a con-

stant if σ2 is known. Following a positive dividend realization e > 0, agents’ best estimate of

the mean m(e) increases and the objective expected risk premium λobj decreases, implying

lower expected returns. However, unlike the econometrician, investors do not know the true

dividend mean µ and therefore cannot exploit such a profitability. If variance is known, the

subjective risk premium λsubj(e) is constant and there is no real-time predictability and hence

no flows in equilibrium.

In contrast, when agents learn also about the variance, as Figure 2 illustrates, the equi-

librium subjective risk-premium λsubj(e) increases with the size of the dividend surprise e,

regardlesss of its sign. After large positive or negative surprises, agents expect returns to

be higher.19 Unlike the term µ −m(e), which cannot be known by the agents, the subjec-

19Nagel and Xu (2022) analyze CFO survey data and find that the subjective risk premium is positively
related to subjective estimates of variance and that CFOs’ subjective return expectations strongly depend
on realized variance.
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tive risk-premium λsubj(e) belongs to the agents’ information sets. Therefore, in equilibrium,

agents experience a time-varying risk premium.

The objective risk premium (17) is asymmetric with respect to new information. Because

the mean estimate m(e) increases with the surprise e and the subjective risk premmium

λsubj(e) increases with the square surprise e2, bad news (e < 0) result in a more pronounced

increase in the objective risk premium (a larger drop in the share price) than “good news”

(e > 0) of equal magnitude, which instead result in a more moderate decrease in the risk

premium. This asymmetric reaction to new information is a direct consequence of learning

and does not require additional behavioral assumptions, such as agents’ over-reaction to bad

news.

3 A multi-period model

The simplified model of the previous section is useful to develop intuition. The analytical

solution of this model, however, comes at the cost of ignoring intertemporal consumption

decisions, and hence is silent about the equilibrium risk-free rate and learning dynamics. In

this section, we extend the setting to a general equilibrium model in which agents optimally

choose their consumption and portfolio policy while learning about the moments of the

dividend process. This general model confirms that the results and the intuition developed

in the model of the previous section remain valid in a more general framework.

3.1 Setup

We consider a discrete-time endowment economy with heterogeneous agents living over a

finite horizon T , with time indexed by t = 0, . . . , T . There is a single consumption good

which we take as the numéraire. The financial assets in this economy consist of two traded

securities: (i) a short-lived riskless asset (the “bond”) in zero-net supply and unit face value

and (ii) a long-lived asset (the “stock”) in unit supply. The stock generates a perishable

dividend Dt ∼ N (µ, σ2) at dates t = 1, . . . , T . The dividend follows an independent and

identically distributed (IID) law of motion

Dt = µ+ σεt, t = 1, . . . , T, (18)
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where {εt} is a series of standard normal shocks.20 The dividend mean µ and its variance σ2

are unknown to the agents and must be learned from observing the dividend realization Dt.

We discuss the learning process in Section 3.2.

The economy is populated by two types of atomistic agents, i = A,B, each of equal

mass.21 At time t = 0 agents are endowed with common prior beliefs about the unknown

mean and variance of the dividend process. At time t = 1, . . . , T agents observe the dividend

Dt and update their beliefs. Based on these common posterior beliefs, they choose a level of

consumption and a portfolio of stocks and bonds at time t. At time t = T agents consume

the liquidating value of their portfolio.

While both agents learn about the unknown parameters in the same way, they differ in

how they use their posterior beliefs in forming consumption and portfolio decisions. As in

Section 2, we assume that type-A agents are averse to parameter uncertainty and hence have

a desire for robustness, while type-B agents are Bayesian and account for uncertainty only

by inflating the perceived variance of the dividend process. We discuss the agents’ preference

specifications in more detail in Section 3.3.

3.2 Learning

Agents in our model learn about both the mean, µ, and the variance, σ2, of the dividend

process. Before observing the realized dividend Dt, agents have prior estimates (beliefs) mt−1

and v2
t−1 of the unknown mean µ and variance σ2, as well as an estimate of the standard

error st−1 of the mean estimate mt−1. At time t, agents observe the dividend Dt and update

their estimates.

A natural issue that emerges in a multi-period setting with constant but unknown param-

eters is that eventually investors learn the true parameters. In reality, parameter uncertainty

is unlikely to disappear over time as the economy continuously evolves. To capture this fact

in a tractable way, we assume that agents learn with “fading memory” as in Nagel and Xu

(2021), implying that they put more emphasis on the recent history. This assumption pre-

20The dividend process in equation (18) implies that dividends are stationary in level, which is not realistic.
We do so for consistency with the simple model of Section 2. In this sense, the analysis that follows can be
thought of as applying to a detrended version of a model with deterministic growth, see, e.g., Epstein and
Schneider (2008). Hence, without loss of generality, the methodology of this section can also be adapted to
handle a model with stochastic growth.

21Both classes of agents are endowed with 50% of the long-lived risky asset and have equal risk aversion,
γA = γB .
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serves tractability by keeping agents in a realistic state of “perpetual learning” over time.

Fading-memory investors’ skepticism in the historical estimates implies an upward biased as-

sessment of the perceived signal quality, and hence, in an increased sensitivity of the posterior

beliefs to the more recent signal observation.22

In Appendix B we derive the asymptotic learning recurrence from standard theory of

Bayesian filtering (see, e.g., West and Harrison, 2006, and their concept of “discounting”

information) and show that this type of fading memory leads to “constant gain” learning (see,

e.g., Evans and Honkapohja, 2009, 2012). The updating rules for posterior beliefs mt and

v2
t then simplify to the following constant-gain learning recurrences for both the estimated

mean and variance of the dividend

mt = aDt + (1− a)mt−1 = mt−1 + a (Dt −mt−1)︸ ︷︷ ︸
≡et

, (19)

v2
t = (1− a)v2

t−1 + a(1− a)e2
t , (20)

s2
t = av2

t , (21)

where et = Dt−mt−1 denotes the forecast error, or dividend surprise; s2
t denotes the estima-

tion risk due to uncertainty about the mean dividend; and a ∈ (0, 1) is a constant Bayesian

gain parameter that represents the perceived signal quality relative to the confidence in the

prior and captures the responsiveness of the posterior beliefs to the arrival of new informa-

tion.23 The values mt and v2
t in equations (19) and (20) are the investors’ “best estimates”

of the dividend mean µ and variance σ2, respectively. Because the dividend mean is not

known, the perceived total variance of dividend, σ̂2
t , consists of the sum of the “fundamen-

tal risk”, v2
t , and the “estimation risk”, s2

t , that is, σ̂2
t = v2

t + s2
t = (1 + a)v2

t . One can

think of the parameter a as of the ratio 1/neff, with neff denoting the “effective” number of

observations agents use to determine their beliefs, reflecting over-weighting of more recent

observations.24 In the standard Bayesian case of non-fading memory, the asymptotic gain

for neff →∞ is a = 0. With an infinite number of observations, investors eventually acquire

22A similar learning mechanism that privileges recent history is at play also in the model of Collin-
Dufresne, Johannes, and Lochstoer (2016a) and is documented empirically by Malmendier and Nagel (2011).

23The time-t posterior of µ has a Student’s t-distribution with mean mt, variance s2
t , and 1/a degrees of

freedom. The time-t posterior of σ2 has a χ2 distribution with 1/a degrees of freedom, see Appendix B for
details.

24Bayesian forecasts that employ predictive regressions with time varying coefficients asymptotically lead
to updating rules that are equivalent to learning under fading memory in equations (19)–(21), see, e.g., Koop
and Korobilis (2013) or Dangl and Halling (2012).
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perfect information about the moments (µ, σ) and, hence, do not update their beliefs upon

new dividend realizations.

3.3 Preferences

Both types of agents update their beliefs according to the learning dynamics described in

equations (19)–(21) with a common constant-gain learning parameter a. They differ, how-

ever, in the way they use such information when making their consumption and portfolio

decisions. We assume that type-B agents are Bayesians while type-A agents are averse to

parameter uncertainty and seek robustness when forming portfolios. To formalize this dif-

ference in investors’ preferences, we assume that type-B agents use the posterior mean and

variance estimates mt and σ̂t in forming their portfolio. In contrast, type-A agents consider

a set of possible models, represented as confidence intervals around their best estimates

of the dividend mean and variance, and form portfolios by considering a “worst case sce-

nario”. Specifically, type-A agents consider the following confidence intervals for the mean

and variance of the dividend

Mµ,t ≡ [mt − κst,mt + κst], κ > 0, (22)

Mσ2,t ≡
[
`v2
t ,

¯̀v2
t

]
, 0 < ` < 1 < ¯̀, (23)

where κ, `, and ¯̀ are preference parameters capturing the agent aversion to uncertainty

in the mean and variance, respectively, see Appendix B.1. The confidence intervals (22)–

(23) represent the class of models that type-A agents deem feasible. Notice that learning

affects both the location and the size of the confidence interval for the mean, Mµ,t. Larger

unexpected surprise realization et result in larger updated variance v2
t and hence larger

estimation risk st. As illustrated in the stylized model of Section 2, this process of learning

about the variance is key to generate equilibrium flows and predictability in our model.

As in Section 2, we assume agents with time-separable CARA utility from consumption,

ct, that is, ui(ct) = − 1
γi
e−γict , for i = A,B with γi denoting the coefficient of absolute risk

aversion. Agents choose portfolio and consumption to maximize their expected discounted

lifetime utility. Because of fading memory, the law of iterated expectations does not nec-

essarily hold in equilibrium and therefore, as in Nagel and Xu (2021), we define agents’

preferences in a recursive way, which guarantees that agents’ consumption and portfolio
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policies are time-consistent. Formally,

UA(ct, ct+1, . . . , cT ) = uA(ct) + min
(µ̂A,t,σ̂

2
A,t)∈Mµ,t×Mσ2,t

{
βEA,t [UA(ct+1, ct+2, . . . , cT )]

}
,

UB(ct, ct+1, . . . , cT ) = uB(ct) + EB,t [βUB(ct+1, ct+2, . . . , cT )] ,

Ui(cT ) = ui(cT ), i = A,B, (24)

with β an impatience parameter, common to both agents. Conditional expectations reflect

agents’ beliefs about the parameters (µ, σ2) of the data generating process.

Because of agents A’s desire for robustness, the two types of agent de facto use different

mean and variance estimates when computing their asset demand. These differences, how-

ever, are not due to heterogeneous beliefs, as both agents use the same learning technology,

but are a consequence of their difference in attitude towards parameter uncertainty.

We denote by pbt the time-t price of the one-period bond with unit face value and by pst

the ex-dividend stock price at time t. At time t = 0, . . . , T , each agent i = A,B chooses the

consumption ci,t and the portfolio of stocks and bonds, (θsi,t, θ
b
i,t) to maximize their expected

discounted lifetime utility given in (24) subject to the budget constraint

ci,t + θsi,tp
s
t + θbi,tp

b
t = θsi,t−1 (pst +Dt) + θbi,t−1 · 1, t = 0, . . . , T, (25)

with θsi,T = θbi,T = 0. We assume that at time t = 0 agents are endowed with θsi,−1 units of

the stock and θbi,−1 units of the bond so that market clearing is satisfied, that is,

θsA,−1 + θsB,−1 = 1 (26)

θbA,−1 + θbB,−1 = 0. (27)

By construction, the ex-dividend stock price at the terminal date T is psT = 0.

3.4 Equilibrium

A financial market equilibrium consists of price processes {pbt , pst}Tt=0, portfolios processes

{θbi,t, θsi,t}Tt=0, i = A,B, and consumption allocations {cA,t, cB,t}Tt=0 such that (i) agents maxi-

mize their lifetime utility defined in equation (24) under the dynamic budget constraint (25);

(ii) financial and goods market clear, that is, θsA,t + θsB,t = 1, θbA,t + θbB,t = 0, cA,t + cB,t = Dt,
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for all t = 0, . . . , T and (iii) the initial conditions θsA,−1 + θsB,−1 = 1 and θbA,−1 + θbB,−1 = 0 are

satisfied.

The Euler equations that determine the equilibrium prices pst and pbt of the stock and the

bond, for i = A,B and t = 0, . . . , T − 1, are:

pst = Ei,t
[
β
u′i(ci,t+1)

u′i(ci,t)

(
pst+1 +Dt+1

)]
(28)

pbt = Ei,t
[
β
u′i(ci,t+1)

u′i(ci,t)
1

]
, (29)

with psT = 0. The one period riskless rate at time t is rt = 1/pbt − 1.

Parameter uncertainty and learning implies that agents’ posterior beliefs are state vari-

ables in the model, in addition to the level of the observed dividend. Furthermore, because

of agents’ heterogeneity, the distribution of consumption becomes a key state variable for

the construction of an equilibrium. In sum, at each time, the equilibrium is characterized by

(i) the dividend realization Dt, (ii) the dividend mean estimate, mt, (iii) the dividend vari-

ance estimate, v2
t , (iv) agents’ consumption share, ωA,t ≡ cA,t/Dt = 1−ωB,t, which uniquely

determines agents’ individual t+ 1 state prices.

3.5 Solution methodology

Because the model does not admit an analytical solution, we rely on a numerical procedure to

construct and analyze the equilibrium. In each decision node, the system of conditions (25)–

(29) determines the equilibrium asset prices and agents’ consumption. The intertemporal

Euler’s conditions (28)–(29) make the system simultaneously “backward” and “forward” at

each point in time. The typical solution technique for this type of problems relies on fore-

casting functions and forward-backward iterations, e.g., Krusell and Smith (1998). Such an

approach, however, does not extend naturally to a model of learning. Instead, we rely on the

“time shift” recursive approach of Dumas and Lyasoff (2012). This approach simultaneously

solves for (i) time t portfolios and prices and (ii) time t + 1 consumption. As a result, the

problem can be solved entirely through backward iteration.

To implement this approach, we shift the budget constraint (25) forward in time which, at

time t, allows us to solve for agents’ time-t+1 consumption and time-t portfolios. Unlike Du-

mas and Lyasoff (2012), who model uncertainty as a binomial tree, we characterize the state
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space by a discrete multidimensional grid consisting of four state variables (Dt,mt, v
2
t , ωA,t)

plus time. Because at each point in time there are fewer non-redundant securities than future

possible states of the world, markets are incomplete. Therefore, agents are forced to trade in

response to endowment shocks and/or updated beliefs. The core of the algorithm consists in

recursively constructing time t+ 1 individual investors’ consumption (state prices) as func-

tions of time t’s consumption. Appendix C provides a detailed description of our solution

algorithm.

3.6 Results

In this section, we illustrate the properties of the equilibrium portfolio flows and asset prices

emerging from our dynamic heterogeneous agent model. The main purpose of this analysis

is to illustrate that the intuition of the simple model of Section 2 survives in a full-fledged

general equilibrium model. In addition, however, the model of this section allows us to

investigate the effect of agents’ heterogeneity on the equilibrium risk-free rate and the con-

sumption process, an analysis that is not possible in the simple model of Section 2. Finally,

the multi-period setting of this section allows to analyze optimal impulse response functions

of consumption and investment following dividend surprises.

Parameters. We assume an economy where dividends are IID normal random variables

with mean µ = 1 and volatility σ = 0.1, Dt ∼ N (1, 0.12), and agent have a T = 5 years

planning horizon. At t = −1, both agents are endowed with half of the risky asset and

no bonds. Both agents start with the correct priors for the mean and variance of D (i.e.,

m−1 = 1 and v2
−1 = 0.01), and both have the same CARA utility with a risk-aversion of

γA = γB = 1.25 We assume a time preference parameter β = 0.9, a constant gain parameter

a = 0.05 and a coefficient of ambiguity aversion κ = 0.15.26 To better understand the effect

of learning in equilibrium, we analyze the equilibrium response of agents’ portfolio holdings

and asset prices associated to surprises in the dividend realizations. Specifically, we follow

the equilibrium quantities of interest along a dividend path that starts at a level equal to the

25Because both agents own half of the tree and the price of the risky asset in the different settings is
approximately 3.67, the agents’ implied coefficient of relative risk aversion is γRRA = 1

2 × 3.67 ≈ 1.8.
26The choice of a moderate level of the ambiguity aversion parameter κ allows us to focus on a setting

where both types of agents participate actively in the market, as in the upper panels of Figure 2.
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true mean d0 = 1, exhibits a temporary shock at time t = 1, and returns to its true mean,

Dt = 1, for the remaining periods.27

[Figure 3 about here.]

Portfolios. Figure 3 shows the optimal stock (left panel, θsB) and bond (right panel, θbB)

holdings of the Bayesian investor B as a function of the dividend surprise e at t = 1. The

ambiguity-averse investor A holds θsA = 1− θsB units of the risky asset and θbA = −θbB units

of the risk-free asset. As expected, the investment in the risky asset of agent A declines

significantly in ambiguity aversion κ. As in the simplified model of Section 2, Bayesian

investors reduce their holdings in the risky asset after sufficiently large dividend surprises

for all values of the ambiguity aversion parameter κ > 0. The magnitude of this effect

increases in the level of ambiguity aversion. For κ = 0, dividend surprises do not induce

any flows. The right panel of Figure 3 shows that in equilibrium Bayesian agents borrow

from the ambiguity averse, θbB < 0, and that the borrowing position increases with the level

of ambiguity aversion κ. As in the simple model of Section 2, in the absence of ambiguity

aversion, κ = 0, there are no portfolio flows in equilibrium.

Risk premium and risk-free rate. Figure 4 reports the equilibrium risk premium (left

panel) and risk-free rate (right panel) as a function of the dividend surprise e at t = 1.

As for the case of the simple model of Section 2, the risk premium increases with both

positive and negative dividend surprises and is larger for higher values of the ambiguity

aversion parameter κ. In contrast, the equilibrium risk-free rate is declining in the size

of the dividend surprise and largely unaffected by the presence of ambiguity aversion. A

large dividend surprise, makes agents better off. This reduces the need to borrow to finance

holdings in the risky asset and lowers the risk-free rate. Intuitively, a large dividend surprise

increases the desire to transfer consumption to future states, hence, inflates asset prices and

reduces the interest rate.

[Figure 4 about here.]

Consumption. Figure 5 reports the equilibrium consumption path of the Bayesian (left

panel) and ambiguity averse (right panel) agents, following a positive (solid lines) or negative

27Note that, in general, for t > 1, Dt = 1 6= mt, since agents learn from the dividend shock at t = 1.
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(dashed line) dividend surprise at t = 1. The colored lines correspond to different magnitudes

of the shock. The black solid line represents the equilibrium consumption path in the absence

of surprises. We set the coefficient of ambiguity aversion to κ = 0.15. Without dividend

surprises, the black lines indicate that the equilibrium consumption of the Bayesian investor

slightly increases over time, while that of the ambiguity averse investor slightly declines.

Because the Bayesian agent holds a larger position in the risky asset, his consumption is

more sensitive to the dividend surprise at t = 1 than that of agent A.

Interestingly, while the consumption of the B agent in the positive surprise paths remains

above the consumption level of the no-surprise path, the consumption of the ambiguity averse

agent exhibits over-reaction and stabilizes at a level below the no-surprise path. This finding

indicates that type-A agents benefit from negative dividend surprises. To understand this

effect, recall that agents earn the objective risk premium λobj = µ − m(e) + λsubj(e), given

in equation (17), but act on the basis of their subjective (observable) risk premium λsubj(e).

Negative surprises imply an estimated mean m(e) that is below the true value µ. Therefore,

λobj > λsubj(e). Since ambiguity averse agents trade relatively more aggressively following

surprises, after a negative dividend surprise their equilibrium consumption settles at a level

higher than the no-shock consumption (black solid line). The effect is symmetric for positive

dividend surprises.

[Figure 5 about here.]

To understand the consumption dynamics of Figure 5, in Figure 6 we report the equilibrium

impulse response function for the risky asset holdings of the Bayesian (left panel) and the

ambiguity averse (right panel) agents. Both panels show the equilibrium portfolio deviations

from the holdings in the absence of dividend surprises. Consistent with the intuition of

the stylized model of Section 2, ambiguity averse agents increase their holdings of the risky

asset following negative surprise (dashed lines) and sufficiently large positive surprises (red

solid line) while Bayesian agents decrease their holdings. Higher portfolio holdings imply

a higher sensitivity of consumption to dividend surprises and generate the over-reaction of

equilibrium consumption of ambiguity averse agents in the right panel of Figure 5.

Following a bad signal at time t = 1, Bayesian agents reduce their holdings in the risky

asset (left panel, dashed red line). A negative signal implies a downward revision of the

estimated mean mt(e), an upward revision in the estimated volatility σ̂t and an increase

in both the objective and subjective risk premium (see, equation (17)). Because in the
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subsequent periods, the dividend realizations are set at their true mean, Dt = µ for t > 2,

they represent relatively good news for Bayesian investors who gradually reduce their short

positions relative to the no-surprise path, as illustrated by the dashed lines. In contrast,

following a good signal at time t = 1, the subjective risk premium increases because of

an upward revision in the volatility σ̂t but the objective risk premium decreases, because

investors revise upward the mean estimate mt(e). In the periods following the t = 1 shock,

the dividend realizations are set at their true mean, Dt = µ and therefore represent relatively

bad news for Bayesian investors who gradually reduce their long positions, as illustrated by

the solid lines in the left panel.

[Figure 6 about here.]

4 Empirical analysis

In this section, we provide evidence in support of our model predictions. Two challenges arise

when bringing the model to the data: (i) how to map the idealized agent types in our model

to observable classes of market participants. (ii) how to find good empirical characterizations

of surprising changes in future dividend prospects.

With regard to the first challenge, when interpreting the empirical results, we take the

ambiguity averse, type-A, agents of our model as representatives of the class of individual

investors and type-B agents as representative of the class of institutional investors. This

classification is admittedly crude, given the substantial heterogeneity observed within each

investor type. It is however motivated by a large body of empirical and experimental evi-

dence that favors the interpretation of individual investors being relatively more averse to

uncertainty than institutions. For instance, Li, Tiwari, and Tong (2017) provide empirical

support for the assumption that retail investors have a stronger desire for robustness. More-

over, experimental studies document that ambiguity aversion is influenced by the perceived

competence of decision makers (known as competence hypothesis, see Heath and Tversky,

1991), or “by a comparison with less ambiguous events or with more knowledgeable indi-

viduals” (known as comparison hypothesis, see Fox and Tversky, 1995). Relatedly, Graham,

Harvey, and Huang (2009) argue that investors who perceive themselves competent are likely

to have less parameter uncertainty about their subjective distribution of future asset returns.

Because institutional investors have typically access to larger resources and are professional

investors, they might therefore be perceived by individuals as more knowledgeable.
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With regard to the second challenge, we use exceptionally high or low market returns as a

timely signal on which agents condition their expectations about future dividend payments.

In the model, agents use dividend payments as signals of future expected profitability. Ideally,

unexpected firms’ earnings would be a natural measure of changes in profitability. However,

earnings reports are notoriously noisy and contain outdated information. The use of returns

as indicators for news about profitability is justified by our model, in which realized dividends

and contemporaneous price reactions are highly correlated in equilibrium.

Within this framework, we provide empirical evidence of the two main predictions of

our model: (i) Exceptionally good or bad news about future corporate profitability lead

to an increase in corporate ownership by individual investors and a corresponding decrease

of holdings by institutional investors; (ii) Using only in-sample data, investors’ estimate of

the expected risk premium around surprising signals about corporate profitability are higher

than on average.

We conduct our analysis out-of-sample, that is, from the perspective of investors who

learn with fading memory as they observe dividend realizations over time. Specifically, we

are interested in estimating an empirical counterpart of the premium λ(e) in equation (17)

which is observable by investors in real-time.

4.1 Data

We use two different data sources: (i) aggregate level and flow data on corporate equity

holdings of households and the domestic financial sector from 1952.Q1 to 2020.Q4, obtained

from the Federal Reserve of St. Louis database (FRED)28 and (ii) institutional holdings

of U.S. firms from 2000.Q1 to 2020.Q1, obtained from the Thomson Reuters OP Global

Ownership database (Consolidated Holdings), which we augment with information from

Compustat-CapitalIQ. From CRSP we obtain return data of all firms listed at NYSE, AMEX,

and NASDAQ from 1965.01 to 2020.12. To measure surprises in firms’ future profitability we

rely on standarized market returns, zr, i.e., normalized to have zero mean and unit variance

using a rolling window of 20 quarters. The market return is taken from Kenneth French’s

data library.29

28Data source: https://fred.stlouisfed.org/tags/series.
29Data source: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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We use level and flow data of corporate equities held by households and by components

of the domestic financial sector, according to the FRED definitions: mutual funds, security

brokers and dealers, closed-end and exchange-traded funds, other financial business, private

depository institutions, insurance companies and pension funds, and monetary authority.

Given the inertia in pension funds portfolio allocation, (see e.g. Agnew, Balduzzi, and Sun-

den, 2003; Hu, McLean, Pontiff, and Wang, 2014), we do not consider pension fund data

in our analysis. From the level and flow data of households and the financial sector, we

compute quarterly aggregated (value-weighted) equity returns.

The Thomson Reuters OP Global Ownership (Consolidated Holdings) database covers

13F reporting institutions, mutual, pension and insurance funds, declarable stakeholders and

UK share registers. After excluding firms with market cap below $5 millions, we end up with

quarterly data for the time span 2000.Q1-2020.Q1 for 8,488 firms with 274,697 firm-quarter

observations.30

For the subsequent analysis, we use standardized quarterly market returns, zr, i.e., nor-

malized to have zero mean and unit variance using a 20-quarter rolling windows to group

observations in both data sets into five bins. The breakpoints for bins are given by the 7.5%,

25%, 75%, and 92.5% percentiles of a standard normal distribution.

4.2 Equilibrium flows

Figure 7 shows the relationship between changes in institutional ownership, ∆θsB, and stan-

dardized market returns, zr. The left panel plots aggregate data from the FRED database,

the right panel shows changes in ownership of individual firms from the Thomson Reuters

OP Global Ownership database for firms listed on the NYSE, AMEX or NASDAQ exchages

and with market capitalizations in excess to $5 million. Mean values are in black, median

values in red. As the figure shows, exceptionally bad as well as exceptionally good returns,

representing signals of extraordinary negative and positive news about corporate profitabil-

ity, are associated with low or even negative changes in institutional ownership. In contrast,

neutral signal realizations, indicating lack of surprise, exhibit an increase in institutional

30As standard in this strand of literature, outstanding shares not held by institutional investors are
assumed to be held by private investors.
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ownership. These changes should be interpreted relative to the substantial trend towards

institutional ownership which is present since 1980, see Stambaugh (2014).31

[Figure 7 about here.]

While the reduction of institutional ownership in response to negative surprises is in

line with the ample evidence about private investors acting as liquidity providers who meet

institutional investors’ demand for immediacy (see, e.g., Kaniel, Saar, and Titman, 2008;

Barrot, Kaniel, and Sraer, 2016; Glossner, Matos, Ramelli, and Wagner, 2020; Pástor and

Vorsatz, 2020), this line of reasoning would not explain the reduction in θsB after positive

surprises found in both data sets.

[Table 1 about here.]

Table 1 provides details on the analysis underlying the results in Figure 7. The table

shows that high as well as low standardized returns zr are associated with low contempora-

neous changes in institutional ownership, ∆θsB, intermediate zr-values come with an increase

in institutional ownership ∆θsB. The results hold regardless of whether we consider the mean

or the median changes within bins. In the upper panel we show results for the FRED data

set. In order to corroborate our claim that institutional ownership declines after good and

bad surprises, we conduct a non-parametric Kruskal-Wallis (KW) rank sum test (Kruskal

and Wallis, 1952).32 The KW test confirms that ∆θsB differs across bins, and the post-hoc

Dunn test attests that central bins have a significantly higher ∆θsB compared to the extreme

bins (see the corresponding p-values).

The lower panel shows results for the Thomson Reuters Global Corporte Ownership

data. Since individual firm observations are correlated within each quarter, we perform a

31In the FRED data, institutional ownership (excluding pension funds) increases from 3% in 1952.Q1 to
42% in 2020.Q4. In the individual-firm data, over the sample period from 1999.Q1 to 2020.Q1 institutional
ownership increases from 32% to 59% for firms with market capitalization in excess to $5 millions, and
from 44% to 76% for firms with market capitalization exceeding $1 billion. Hence, quarterly changes in
institutional ownership must be compared to the average growth of institutional ownership (approximately
14bp per quarter for FRED data, and 30bp per quarter for our individual-firm data).

32The KW test, an extension of the (Wilcoxon)-Mann-Whitney U-test, is a non-parametric rank-sum
test analyzing whether observations in the different bins originate from the same distribution. While the
test indicates whether observations in one bin are different from observations in the others bins, it does not
indicate which bins cause this results. For that purpose, a subsequent (post hoc) Dunn test (Dunn, 1964)
allows for a pairwise comparison of the bins.
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clustered Wilcoxon rank sum test (clustered by quarter) to conduct the pair-wise comparison

between bins. The results confirm the findings in the FRED data set. Change in institutional

ownership in the first bin (low market returns) is significantly lower than in bins 3 and 4.

Change in institutional ownership in bin 5 is significantly lower than in bin 4.

4.3 Equilibrium risk premium

Our second model prediction is the U-shaped relationship between news and risk premia.

The left panel of Figure 8 shows estimates of the equity risk premium, computed as return

in excess of the 3-month T-Bill rate, from aggregate FRED data. The right panel shows

estimates of the market risk premium from a conditional Fama-MacBeth regression using

return data of all stocks (common equity) traded on NYSE, AMEX or NASDAQ from CRSP

in the period from 1965 to 2021. Specifically, we first compute asset βs through time series

regressions of individual monthly returns in excess to the 1-month T-Bill rate on the value-

weighted market excess return over a sliding window of 36 months. We then estimate cross-

sectional regressions of individual quarterly excess returns on these β-estimates (see Fama

and MacBeth, 1973). The slope coefficients of these regressions, i.e., the quarterly estimates

of the market risk premium, are then sorted into bins conditional on the lagged market

return. Hence, the mean and the median coefficient within each bin represent estimates of

the expected compensation per unit of market risk exposure conditional on lagged returns.

Consistent with Cao, Wu, and Wu (2022), we find that the low-beta anomaly, that is,

the negative relationship between equity beta and the risk premium, is present during times

of low uncertainty when the standardized market returns zr are close to zero. In contrast,

during times of high uncertainty, i.e., zr far away from zero, there is a positive premium for

bearing market risk, implying that a “betting-against-beta” strategy would not be profitable.

The premium reported in the right panel of Figure 8 does not include the cross-sectional

regression intercept, hence, it should be interpreted as an estimate of the marginal premium

offered for bearing one additional unit of market β risk rather than the total expected

premium for holding the market portfolio. While the expected marginal premium is even

negative in calm times, consistent with the low-beta anomaly, the total premium for holding

the market is positive, since the intercept is significantly positive under these conditions (a

fact also reported by Cao, Wu, and Wu, 2022).

[Figure 8 about here.]
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Both panels of Figure 8 show that market risk premia are higher following negative as well

as positive surprises. This finding is partly in line with Nagel (2012), who shows that the

returns of a short-term reversal strategy can be interpreted as a proxy for the returns of

liquidity provision, and that these returns are especially high during periods of financial

turmoil. However, while this argument can rationalize the higher returns in the left tail of

the distribution of return surprises, it is silent about the observed high premia following

positive return surprises.

[Table 2 about here.]

Table 2 provides details on the analysis underlying the results in Figure 8. The table

shows that while high as well as low lagged standardized returns zr are associated with high

risk premia, intermediate lagged zr-values imply low risk premia. The results hold for the

mean as well as for the median premium within bins. The upper panel shows results for

FRED data while the lower panel shows results for CRSP data. In order to test the claim that

risk premia increase after good and bad surprises, in the right side of both panels we report

a non-parametric Kruskal-Wallis rank sum test. The tests confirm that risk premia differ

across bins, and subsequent post-hoc Dunn tests show that central bins have significantly

lower risk premia compared to the extreme bins, as indicated by the corresponding p-values.

5 Conclusion

We explain asset prices and portfolio flows following episodes of increased economic uncer-

tainty using an equilibrium model in which agents learn about the mean and the volatility of

the endowment process and differ in their concerns about parameter uncertainty. We show

that, in equilibrium, ambiguity averse investors hold more conservative portfolios but trade

more aggressively in response to surprises about corporate profitability. Regardless of the

sign of the surprise—positive or negative—Bayesian investors reduce their share in the risky

asset while ambiguity averse investors increase their share. Agents’ learning about volatility

gives rise to a time-varying equilibrium risk premium. While in equilibrium innovations to

the expected dividend are immediately absorbed in prices, large positive and negative sur-

prises generate upward revisions in the estimated dividend volatility and increase risk premia.

Because ambiguity averse preferences exhibit first-order risk aversion, the equilibrium risk

premium depends linearly on both the variance and the volatility of the endowment. When
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the estimated volatility increases, as it happens following dividend surprises, the linearity

in volatility makes the risky asset relatively more attractive to ambiguity averse agents who

increase their risky holdings, compared to ambiguity-neutral agents.

We first illustrate these results in a simple one-period model which is analytically tractable.

We then analyze a multi-period general equilibrium endowment economy with intertemporal

consumption. When agents learn with fading memory about the mean and the variance of

the endowment process, uncertainty is time-varying and persists over time. The multi-period

model allows us to generalize the intuition of the simple model to a larger setting and to

analyze the dynamics of optimal consumption and portfolio responses to dividend surprises.

To solve this general model, we extend the incomplete-market backward approach of Dumas

and Lyasoff (2012) to account for learning and heterogeneity in the preference for robustness.

Three main ingredients are needed to explain flows of funds and risk premia in our setting:

(i) differences in the preference for robustness; (ii) learning about variance; and (iii) market

clearing. Without ambiguity aversion, agents do not rebalance their portfolio after surprises

but only risk premia react. Without learning about dividend variance, the equilibrium risk

premium is a constant and agent’s portfolios are static. Similar to prior work in the literature

on learning and predictability, risk premia in our model are counter-cyclical. However, in

contrast to studies that assume a known variance, in our setting a part of the risk-premium is

observable to forward-looking investors. From an econometrician’s perspective, this implies

that good and bad surprises have an asymmetric effect on the objective risk premium.

Finally, we bring the predictions of our model to the data by analyzing portfolio holdings

of institutional and individual investors. Using aggregated data from FRED as well as sin-

gle stock data from the CRSP-Compustat universe, we provide evidence that institutional

investors tend to reduce their share in corporate ownership when indicators of future cor-

porate profitability are exceptionally bad and exceptionally good. We further find that the

expected risk premium is higher after both positive and negative surprises. These findings

are consistent with the predictions of our model when institutions trade with ambiguity

averse investors who are conservative in their holdings but aggressive in their trades.
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Figure 1: Equilibrium portfolios and risk premia. The left panel shows the equilibrium
portfolios θA and θB as a function of the dividend volatility v. The right panel shows iso-θ
lines of agent A (dotted red) and B (dotted blue). These lines represent the set of values
(v, λ) for which the equilibrium portfolios in equations (3) and (6) corresponds to a given
fractional holding of the endowment tree. The locus of points (v, λ) at which market clears,
θA+θB = 1 identify the equilibrium risk premium λ as a function of the dividend volatility v
(solid black line). The vertical dashed line indicates the participation threshold v∗ ≡

√
n

n+1
κ
γB

.
Parameter values: n = 20, γA = γB = 1, κ = 0.15.
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Figure 2: Equilibrium portfolios and risk premia. The figure shows optimal holdings
of the risky asset for the Bayesian investor θB (left panels) and equilibrium subjective risk
premia λ (right panels) as a function of dividend surprises e = D − m. The top panels
consider low levels of the ambiguity aversion parameter κ while the bottom panels considers
high levels of κ. Parameter values: n = 20, γA = γB = 1, m = 1, v2 = 0.01.
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Figure 3: Equilibrium stock and bond portfolios: dynamic model. The figures
reports the Bayesian portfolio holding of stocks (left panel) and bonds (right panel) as a
function of the dividend surprises e = D −m at t = 1. Parameter values: T = 5, a = 1/20,
γA = γB = 1, β = 0.9, m0 = 1, v2

0 = 0.01, θsA,−1 = θsB,−1 = 0.5, θbA,−1 = θbB,−1 = 0.
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Figure 4: Equilibrium risk premium and risk-free rate: dynamic model. The
figure reports the equilibrium risk premium (left panel) and risk-free rate (right panel) as a
function of the dividend surprise e = D −m at t = 1. Parameter values: T = 5, a = 1/20,
γA = γB = 1, β = 0.9, m0 = 1, v2

0 = 0.01, θsA,−1 = θsB,−1 = 0.5, θbA,−1 = θbB,−1 = 0.
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Figure 5: Equilibrium consumption dynamics. The figure reports the impulse response
function of equilibrium consumption of the Bayesian (left panel) and ambiguity averse (right
panel) agents, following a positive (solid lines) or negative (dashed line) surprise shock e1 =
0,±0.08,±0.16,±0.24. The colored lines corresponds to different magnitudes of the shock.
The black solid line represent the equilibrium consumption path in the absence of surprises.
The ambiguity parameter is set to κ = 0.15. Parameter values: T = 5, a = 1/20, γA = γB =
1, β = 0.9, m0 = 1, v2

0 = 0.01, θsA,−1 = θsB,−1 = 0.5, θbA,−1 = θbB,−1 = 0, D ∼ N (1, 0.12).
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Figure 6: Equilibrium portfolio dynamics. The figure reports the impulse response
function of equilibrium risky asset holdings of the Bayesian (left panel) and ambiguity averse
(right panel) agents, following a positive (solid lines) or negative (dashed line) surprise
shock e1 = 0,±0.08,±0.16,±0.24. The colored lines correspond to different magnitudes of
the shock and represent portfolio deviations from the portfolio holding in the absence of
surprises. The ambiguity parameter is set to κ = 0.15. Parameter values: T = 5, a = 1/20,
γA = γB = 1, β = 0.9, m0 = 1, v2

0 = 0.01, θsA,−1 = θsB,−1 = 0.5, θbA,−1 = θbB,−1 = 0,

D̃ ∼ N (1, 0.12).
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Figure 7: Change in institutional holdings and dividend surprises. The figure shows
mean (black) and median (red) quarterly changes in institutional ownership, ∆θsB, as a func-
tion of dividend surprises. As a proxy for surprises we use the standardized quarterly market
returns, zr, obtained from a 20-quarter rolling window. We use zr to group observations into
five bins with breakpoints given by the 7.5%, 25%, 75%, and 92.5% percentiles of a standard
normal distribution. The left panel shows results for data from the Federal Reserve Bank of
St. Louis database. Ownership data are calculated from equity level data of market partici-
pants (households and financials). The right panel shows results for individual firms listed on
NYSE, AMEX or NASDAQ. Ownership data are from Thomson Reuters Global Ownership
database restricted to common shares traded on NYSE, AMAX or NASDAQ with market
capitalization larger than $5 millions. The market return is taken from Kenneth French’s
data library.
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Figure 8: Risk premia and dividend surprises. The figure shows the mean (black)
and median (red) market risk premia as a function of dividend surprises. As a proxy for
surprises, we use the standardized quarterly market returns, zr, obtained from a 20-quarter
rolling window. We use zr to group observations into five bins with breakpoints given by the
7.5%, 25%, 75%, and 92.5% percentiles of a standard normal distribution. The left panel
shows results for data from the Federal Reserve Bank of St. Louis database. Return data are
calculated from equity level and flow data of market participants (households and financials),
and the risk premium is computed as excess return over the 3-month T-Bill rate. The right
panel shows the conditional beta premium calculated from Fama-MacBeth regressions of
returns of common shares traded on NYSE, AMAX or NASDAQ with market capitalization
larger than $5 millions. The market return is taken from Kenneth French’s data library.
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FRED

mean median KW: χ2 = 13.93, p = 0.0075

bin zr ∆θsB (%) zr ∆θsB (%) n Dunn post hoc

1 -2.07 -0.12 -1.96 -0.08 24 bin 1 2 3 4
2 -1.01 0.34 -1.02 0.18 33 2 0.00
3 0.06 0.20 0.09 0.12 146 3 0.01 0.24
4 1.03 -0.01 1.04 0.02 36 4 0.36 0.02 0.06
5 1.91 0.02 1.85 -0.03 18 5 0.42 0.05 0.18 0.98

Thomson Reuters Global Ownership

mean median

bin zr ∆θsB (%) zr ∆θsB (%) n clustered Wilcoxon rank sum

1 -2.05 -0.23 -1.73 -0.01 37,457 bin 1 2 3 4
2 -1.16 -0.03 -1.24 0.01 23,774 2 0.51
3 0.07 0.31 0.14 0.12 162,316 3 0.05 0.29
4 1.03 1.03 1.06 0.31 40,832 4 0.01 0.05 0.05
5 1.86 0.22 1.94 0.04 10,318 5 0.20 0.62 0.18 0.08

Table 1: Change in institutional holdings and dividend surprises. The table shows
the relationship between institutional ownership ∆θsB (%) and dividend surprises zr. As a
proxy for surprises we use the standardized quarterly market returns, zr, obtained from a
20-quarter rolling window. We use zr to group observations into five bins with breakpoints
given by the 7.5%, 25%, 75%, and 92.5% percentiles of a standard normal distribution. The
number of observations in each bin is n, and ∆θsB (%) is the quarterly change in institutional
ownership in percent. The top panel shows results for data from the Federal Reserve Bank
of St. Louis database. Ownership data are calculated from equity level data of market
participants (households and financials). Kruskal-Wallis (KW) tests for difference in median
values of ∆θsB across the bins, and the post hoc Dunn test is used to conduct pairwise
comparisons. The bottom panel shows results for individual firms with ownership data
from Thomson Reuters Global Ownership database restricted to common shares traded on
NYSE, AMAX or NASDAQ and market capitalization larger than $5 millions. The clustered
Wilcoxon rank sum test clusters observations within the same quarter when performing bin-
wise comparisons. The market return is taken from Kenneth French’s data library.
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FRED

mean median KW: χ2 = 10.60, p = 0.0314

bin lag(zr) r − rf (%) lag(zr) r − rf (%) n Dunn post hoc

1 -2.07 4.25 -1.96 5.95 24 bin 1 2 3 4
2 -1.01 0.54 -1.02 2.43 33 2 0.12
3 0.06 1.30 0.09 2.50 146 3 0.08 0.87
4 1.02 -0.03 1.04 0.72 35 4 0.03 0.47 0.27
5 1.91 6.24 1.85 6.07 18 4 0.54 0.04 0.02 0.01

CRSP

mean median KW: χ2 = 18.72, p = 0.0009

bin lag(zr) r − rf (%) lag(zr) r − rf (%) n Dunn post hoc

1 -2.01 9.96 -1.76 7.05 22 bin 1 2 3 4
2 -1.01 0.27 -0.99 -1.89 27 2 0.00
3 0.04 -0.81 0.06 -0.93 125 3 0.00 0.98
4 0.98 1.44 0.98 -0.55 34 4 0.01 0.49 0.38
5 1.87 5.16 1.78 2.96 16 5 0.49 0.04 0.02 0.12

Table 2: Risk premia and dividend surprises. The table shows the relationship between
risk premia and dividend surprises, zr. We use standardized quarterly market returns zr (i.e.
normalized to have zero mean and unit variance using a rolling window of 20 quarters)
to group observations into five bins, and within each bin we calculate mean and median
values. The breakpoints for bins are given by the 7.5%, 25%, 75%, and 92.5% percentiles of
a standard normal distribution. The number of observations in each bin is n, and r−rf (%) is
the quarterly excess return in percent. Observations are according to lagged zr into five bins,
and within each bin we calculate mean and median values. The top panel shows results for
data from the Federal Reserve Bank of St. Louis database. Return data are calculated from
equity level and flow data of market participants (households and financials), and the risk
premium is indicated as excess return over the 3-month T-Bill rate. Kruskal-Wallis (KW)
tests for difference in the risk premia r − rf across the bins, and the post hoc Dunn test is
used to conduct pairwise comparisons. The bottom panel shows conditional Fama-MacBeth
estimates of the market risk premium obtained in the cross-section of firms listed on NYSE,
AMEX or NASDAQ, with market capitalizations larger than $5 millions. The market return
is taken from Kenneth French’s data library.
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A Slope of agents’ iso-portfolio curves

We prove that the slope of the ambiguity-averse agents’ iso-portfolio curves is flatter than

those of the Bayesian agents. This implies that the marginal rate of substitution between

risk premium and dividend volatility is lower for ambiguity-averse agents. From equation (6)

we derive the risk premium that agents A require for holding a fraction θA of the risky asset

(the iso-portfolio line) and its derivative with respect to dividend volatility v as

λ̄A =
κv√
n

+ γAθA

(
n+ 1

n

)
v2, (A.1)

∂λ̄A
∂v

=
κ√
n

+ 2γAθA

(
n+ 1

n

)
v. (A.2)

From equation (3) we do the same for the iso-portfolio lines of agents B

λ̄B = γBθB

(
n+ 1

n

)
v2, (A.3)

∂λ̄B
∂v

= 2γBθB

(
n+ 1

n

)
v > 0. (A.4)

We prove that along the equilibrium risk premium λ in equation (8) the slope of λ̄A is flatter

than the slope of λ̄B. We need to prove

∂λ̄A
∂v

<
∂λ̄B
∂v

. (A.5)

Using equations (A.1)–(A.4), and θB = 1− θA, this is equivalent to prove

κ√
n

+ 2γAθA

(
n+ 1

n

)
v < 2γB(1− θA)

(
n+ 1

n

)
v, (A.6)

or, rearranging,

2 (γA + γB) θA

(
n+ 1

n

)
v < 2θB

(
n+ 1

n

)
v − κ√

n
. (A.7)

We restrict our analysis to the region where both agents are in the market, v >
√
n

n+1
κ
γB

, and

substitute equilibrium portfolios weights from equation (9) into the above inequality. This

42

Electronic copy available at: https://ssrn.com/abstract=4089250



yields

2γB

(
n+ 1

n

)
v − 2

( √
nκ

(n+ 1)v

)(
n+ 1

n

)
v < 2γB

(
n+ 1

n

)
v − κ√

n
, (A.8)

2
κ√
n

>
κ√
n
, (A.9)

which is true for κ > 0 and n <∞ independently of v.

B Bayesian updating with “Fading Memory”

We start from standard Bayesian filtering theory (e.g., West and Harrison, 2006) and use the

fact that when learning the mean and variance of a standard normally distributed variable

(the dividend) the t/inverse gamma family of distributions serves as a natural conjugate

prior. In order to formalize the concept of fading memory, we employ a so-called discount-

factor approach which assumes that the “surplus variance” which is imposed on the historical

estimate is proportional to estimation uncertainty of the mean. Starting from a t/inverse

gamma distributed prior at t = 0, the joint time t − 1 posterior estimate of the expected

dividend µ and its variance σ is again t/inverse gamma distributed

(µ|t− 1, Dt−1) ∼ Tnt−1

[
mt−1, s

2
t−1

]
, (B.1)(

1

σ2

∣∣∣∣t− 1, Dt−1

)
∼ Γ

[
nt−1

2
,
nt−1v

2
t−1

2

]
, (B.2)

with nt−1 denoting the number of degrees of freedom at time t− 1. Fading memory affects

the process through which the time-t − 1 posterior is transformed into a time-t prior, that

is,

(µ|t,Dt−1) ∼ Tnt−1

[
mt−1, δs

2
t−1

]
, δ > 1, (B.3)(

1

σ2

∣∣∣∣t,Dt−1

)
∼ Γ

[
nt−1

2
,
nt−1v

2
t−1

2

]
. (B.4)

The parameter δ > 1 increases the variance of the prior on µ and hence lowers its information

quality. It parsimoniously captures the extent of an agent’s fading memory. A larger value

of δ corresponds to a stronger extent of fading memory.
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Bayesian updating of the beliefs upon observation of the dividend Dt follows the recur-

rence (see West and Harrison, 2006, Sections 4.6 and 6.3):

mt = (1− at)mt−1 + atDt, (B.5)

s2
t = atv

2
t , (B.6)

at =
δs2

t−1

δs2
t−1 + v2

t−1

=
δat−1

δat−1 + 1
, (B.7)

v2
t = v2

t−1 +
v2
t−1

nt

[
e2

δs2
t−1 + v2

t−1

− 1

]
=

(
1− 1

nt

)
v2
t−1 +

1

nt
(1− at) e2, (B.8)

e = Dt −mt−1, (B.9)

nt = nt−1 + 1. (B.10)

From equation (B.7) we note that the gain at follows a deterministic recurrence. With

unrestricted memory, i.e., δ = 1, at converges asymptotically to 0. Thus, in this case, agents’

beliefs mt, s
2
t and v2

t become over time less and less responsive to new observations Dt, and

agents learn the moments of the dividend process with perfect precision. In contrast, with

fading memory, δ > 1, the Bayesian gain at remains positive in the limit, and we have

lim
t→∞

at = a =
δ − 1

δ
=:

1

neff

> 0. (B.11)

Asymptotically, the updating recurrence (B.5) for mt stays responsive to new observations

as if at any time t there are in total only neff dividend observations available. Hence, we can

interpret this case as learning with fading memory.33 Substituting at → 1
neff

and nt → neff

into the updating recurrence (B.8), we obtain the asymptotic updating equations (19) and

(20) that we use in the main text.

B.1 Confidence intervals

Ambiguity about the estimated mean dividend m and the variance v2 enters considerations

of robust optimization via regions of confidence. The dividend mean µ has a t distribution,

33An alternative interpretation is to view neff = 1/a as the effective number of observations. When
estimating the mean of a normally distributed variable from n observations, the estimation variance of the
mean equals 1/n times the estimated sample variance. Consequently, the constant of proportion a can be
used to identify the effective number of degrees of freedom, neff.
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see (B.1). In the one-period model, the number of degrees of freedom is n. In the general

model with fading memory, the number of effective degrees of freedom is the constant 1/a.

Hence, we use n = 1/a in what follows. Let qt1/a(α) denote the α-quantile of the student

t distribution with 1/a degrees of freedom. Then the corresponding confidence interval for

the µ estimate based on time t posteriors is

µ ∈
[
mt − qt1/a(1− α)st,mt + qt1/a(1− α)st

]
with probability (1− α).

This confidence interval changes its center when mt is updated over time and its size with

updates in s2
t = av2

t . Simplifying notation, we use κ = qt1/a(1− α) in the main text and

µ̂A ∈Mµ,t = [mt − κ
√
avt,mt + κ

√
avt]. (B.12)

Equation (B.2) implies that under fading memory

1
a
v2

σ2
∼ χ2

1/a,

with qχ2
1/a

(α) denoting the α-quantile of a χ2
1/a distribution, the symmetric confidence interval

(symmetric with respect to the probability) of the dividend variance, σ2, based on time t

posteriors is given by

σ2 ∈

[
1

aqχ2
1/a

(1− α
2
)
v2
t ,

1

aqχ2
1/a

(α
2
)
v2
t

]
with probability (1− α). (B.13)

This confidence interval changes over time only because the estimates v2
t are updated. The

quantile dependent multipliers are constants

` =
1

aqχ2
1/a

(1− α
2
)
, (B.14)

¯̀ =
1

aqχ2
1/a

(α
2
)
. (B.15)

B.2 Robust optimization and ambiguity in the dividend variance

To handle ambiguity in both µ and σ2 in the one-period model of Section 2, we need to

extend the max-min optimization of Equation (4) accordingly, that is,
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max
θA

min
µ̂A∈Mµ,σ̂2

A∈Mσ2

E
[
− 1

γA
e−γAW̃A

]
, (B.16)

subject to the budget constraint in equation (5). The confidence intervals for µ and σ are

given in Appendix B.1 with the gain parameter a defined by the number of degrees of freedom

n that is, a = 1/n. The inner minimization is equivalent to maximizing

ζ = γAθA(µ̂A − p)−
1

2
γ2θ2σ̂2

A + γWA, (B.17)

with respect to the ambiguous parameters µ̂A and σ̂2
A.

The derivative of ζ with respect to µ̂A is independent of the choice of σ̂A and is given by

∂ζ

∂µ̂A
= γAθA


> 0 if θA > 0,

= 0 if θA = 0,

< 0 if θA < 0.

The minimum of ζ with respect to µ̂A is attained at

µ̂A


= m− κ√

n
σ̂ if θA > 0,

∈Mµ if θA = 0,

= m+ κ√
n
σ̂ if θA < 0.

Substituting the minimizing µ̂A into ζ, and taking the derivative with respect to σ̂A we

obtain

∂ζ

∂σ̂A


= −γAθA κ√

n
− γ2

Aθ
2σ̂A < 0 if θA > 0,

= 0 if θA = 0,

= γAθA
κ√
n
− γ2

Aθ
2σ̂A < 0 if θA < 0.

Hence, ζ is always minimized by choosing the largest attainable value of σ̂ which is
√

¯̀n+1
n
v.

The outer maximization in equation (B.16) yields

θA =


=

m−
√

¯̀(n+1)

n
κv−p

n+1
n
γA ¯̀v2 if m−

√
¯̀(n+1)

n
κv − p > 0,

= 0 otherwise ,

=
m+

√
¯̀(n+1)

n
κv−p

n+1
n
γA ¯̀v2 if m+

√
¯̀(n+1)

n
κv − p < 0,
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which resembles the optimal demand in (6) with

γA → ¯̀γA,

κ →
√

¯̀κ.

Therefore, including ambiguity aversion with respect to the dividend variance has no qual-

itative impact on the demand of type-A agents for the risky asset and is equivalent to the

demand of investors who are only averse to ambiguity in the mean but have an effectively

higher coefficients of risk-aversion γA and ambiguity aversion κ.

B.3 Stochastic and observable variance

When variance is time-varying but known, learning about the mean happens in the same

way as when variance is constant but unknown. In particular, if the agents learn with

fading memory, prior knowledge about the mean is discounted before updating it with new

information,34 i.e., the standard error s2
t−1 increases by a factor 1/(1 − a), mirroring the

decrease in confidence in the prior as time passes and memory gradually fades. The updating

recurrences in (15) to (16) become

mt = (1− ηt)mt−1 + ηtDt (B.18)
1

s2
t

=
1

1
1−as

2
t−1

+
1

σ2
t

(B.19)

s2
t = ηtσ

2
t with ηt =

1
1−as

2
t−1

1
1−as

2
t−1 + σ2

t

, (B.20)

Equation (B.19) shows that with fading memory, a > 0, the standard error of the mean, st,

might increase with new observations. Whenever the information content of the new dividend

(1/σ2
t ) is low compared to the fading memory effect (s2

t−1/(1− a)), new, noisy, information

might actually increase the standard error st. This happens when the new observation

is sufficiently noisy and/or memory fades sufficiently fast, that is, when σ2
t > s2

t−1/a. In

contrast, when σ2
t < s2

t−1/a, the information content of the new dividend observation is

sufficiently large to outweigh the effect of fading memory. Without fading memory, that

is, a → 0, the latter effect always dominates and, as we discuss in the main text, under

34For the discount factor approach see West and Harrison (2006).
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stochastic but known volatility, new observations always increase the precision of the mean

estimate, in contrast to the case in which variance is unknown.

C Solution algorithm

To find an equilibrium for the general model described in Section 3, we extend the algo-

rithm proposed by Dumas and Lyasoff (2012) for preference heterogeneity and learning.

We first provide a summary of the methodology and then discuss explicitly our numerical

implementation.

Methodology. We compute the equilibrium through backward induction. Given the en-

dogenous variable ωt = ci,t/Dt, or equivalently, the state price φi,t = u′i,t(ci,t) = u′(ωtDt) we

solve the following system of equations:

1. First-order conditions for t+ 1-consumption:

u′i,t+1(ci,t+1) = φi,t+1, 0 ≤ t ≤ T − 1, i = A,B (C.1)

with φt+1 denoting the Lagrangian associated to t+ 1 budget constraint (25).

2. Time t+ 1 flow budget constraint (25)

ci,t+1 + Fi,t+1 = θsi,t
(
pst+1 +Dt+1

)
+ θbi,t · 1, t = 0, . . . , T − 1, i = A,B (C.2)

where

Fi,t+1 ≡ θsi,t+1p
s
t+1 + θbi,t+1p

b
t+1 (C.3)

denotes agent i’s wealth exiting time t+ 1.

3. Kernel conditions

EA,t
[
φA,t+1

φA,t
× (pst+1 +Dt+1)

]
= EB,t

[
φB,t+1

φB,t
× (pst+1 +Dt+1)

]
(C.4)

EA,t
[
φA,t+1

φA,t
× 1

]
= EB,t

[
φB,t+1

φB,t
× 1

]
(C.5)
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The expectations Ei,t[·] account for the difference in agent’s preferences when forming

portfolios. We model type-A agents’ preference for robustness as a change in agent

B’s probability measure. Specifically, for agent A the distribution of dividend has

mean µ̂A,t = mt ± κvt
√
a and variance σ̂2

A,t = (1 + a)¯̀v2
t , with mt the posterior mean

from equation (19), a the constant gain parameter, and κ > 0 and ¯̀ > 1 ambiguity

aversion parameters determining the confidence intervals for the mean and variance in

equations (22)–(23). For agent B, the distribution of dividend has mean µ̂B,t = mt

and variance σ̂2
B,t = (1 + a)v2

t .

4. Market clearing conditions

θsA,t + θsB,t = 1 (C.6)

θbA,t + θbB,t = 0. (C.7)

We model uncertainty as an event tree (Ω, F) with Ω the state originating from the four

state variables (Dt,mt, v
2
t , ωt)

T
t=0, and F ≡ {Ft}Tt=0 a filtration. We denote by ξ ∈ Ft a generic

node of the event tree at time t and by ξ+ ⊂ Ft+1 the set of its successor nodes. To construct

an equilibrium by backward induction, for each node ξt ∈ Ft, t = T −1, T −2, . . . , 1, we need

to solve the conditions (C.1)-(C.7) across all the successors nodes η ∈ ξ+. At time t = 0, we

are left with equations (C.1) and (C.6) which are the only “forward” conditions, that is,

u′(ci,0) = φi,0, i = A,B (C.8)

ci,0 + Fi,0 = θ̄si,0(ps0 + d0) + θ̄bi,0p
b
0, (C.9)

where θ̄si,0 and θ̄bi,0 are agent i’s endowment of the stock and bond, and

Fi,0 = Ei,0
[
φi,1
φi,0
× (Fi,1 + ci,1)

]
(C.10)

ps0 = Ei,0
[
φi,1
φi,0
× (ps1 +D1)

]
(C.11)

pb0 = Ei,0
[
φi,1
φi,0
× 1

]
. (C.12)

The system (C.8)–(C.9) needs to be solved for {ci,0, φi,0}, i = A,B. Because markets are

incomplete, the individual stochastic discount factors, φi,t+1/φi,t, will not be equated across

agents. However, all agents must agree on the price in equilibrium. Therefore, from the
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kernel conditions (C.4)–(C.5) we have that the exiting wealth Fi,t and the asset prices pst

and pbt can be written in term’s of either agent’s state price, that is, for t ≥ 0,

Fi,t = Ei,t
[
φi,1
φi,0
× (Fi,t+1 + ci,t+1)

]
, Fi,T ≡ 0 (C.13)

pst = Ei,t
[
φi,t+1

φi,t
× (pst+1 +Dt+1)

]
, psT ≡ 0 (C.14)

pb0 = Ei,t
[
φi,t+1

φi,t
× 1

]
, pbT ≡ 0. (C.15)

Numerical implementation. We now describe the numerical implementation of the al-

gorithm.

1. At each time t the problem is fully described by four state variables: (Dt,mt, v
2
t , ωt).

We discretize the state space using a Nd×Nm×Nv ×Nω grid. Each point of this grid

represents a decision node ξ. While the consumption share is bounded between 0 and

1, the other state variables do not have natural bounds. We construct the grids for mt

and v2
t by centering them around the initial belief m0 and v2

0. Similarly, we construct

the grid for Dt by centering it around m0. A point ξ on this four-dimensional grid

represents a decision node. For each decision node ξ we identify a set of successor

nodes η ∈ ξ+ which we refer to as “active” nodes. We determine such active nodes

η together with the corresponding subjective probabilities qi,η in order to match the

preferences of both agents, see (C.4) and (C.5). Specifically, we use the dividend

realizations in η ∈ ξ+ together with the priors in the decision node ξ and the Bayesian

updating rules to calculate the range of posteriors mt and v2
t so as to match the means

and variances µ̂i and σ̂2
i that agents use in forming portfolios. As a consequence of

this construction, the equilibrium can be calculated by backward induction within a

(hyper)cone of the discretized state space.

2. The core of the algorithm consists of solving the equilibrium conditions (C.1)–(C.7).

Denoting by qi,η the subjective probabilities for the successor nodes η ∈ ξ+, we obtain

the current portfolio and the investors’ future state prices (or consumption) in all

successor nodes η ∈ ξ+ by solving the following system of equations for i = A,B and
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for all η ∈ ξ+:

ci,t+1,η + Fi,t+1,η = θsi,t,ξ(p
s
t+1,η +Dt+1,η) + θbi,t,ξ, (C.16)

Fi,t =
∑
η∈ξ+

qi,η

[
u′i(ci,t+1,η)

u′i(ci,t,ξ)
(Fi,t+1,η + ci,t+1,η)

]
, (C.17)

pst =
∑
η∈ξ+

qi,η

[
β
u′i(ci,t+1,η)

u′i(ci,t,ξ)

(
pst+1,η +Dt+1,η

)]
, (C.18)

pbt =
∑
η∈ξ+

qi,η

[
β
u′i(ci,t+1,η)

u′i(ci,t,ξ)
1

]
, (C.19)

Dt+1,η = cA,t+1,η + cB,t+1,η, (C.20)

1 = θsA,t,ξ + θsB,t,ξ, (C.21)

0 = θbA,t,ξ + θbB,t,ξ, (C.22)

with Fi,t+1,η denoting agent i’s wealth exiting time t+ 1 in the successor nodes η ∈ ξ+.

3. When we reach time 0, we use the initial conditions to solve for the consumption of

agents. After a dividend realizations and the subsequent update, the estimated mean

and variance values for the next decision stage will generally not be located exactly

on our chosen discrete grid points for both agents. Therefore, we use cubic-spline

approximations to capture the non-linear relationship between decision variable and

state variables. The accuracy of approximation increase with the fineness of the grid.
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