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Abstract

When principal component analysis (PCA) is used on a rolling or conditional setting, ordering and

incoherence issues may emerge. We provide empirical evidence supporting this claim and introduce

an algorithm that allows dynamic re-ordering of the principal components (PCs). We provide ad-

ditional results that shed light on the consequences of incoherence when analyzing the link between

PCs and macroeconomic risk factors, with a focus on the COVID-19 pandemic period. When PCs

are optimally re-ordered, the role of factors emerges more clearly, with relevant implications for

risk management.
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1 Introduction

Principal component analysis (PCA) is widely used in finance. Among its many possible applications

are in the identification of risk factors and the subsequent analysis of pricing (Collin-Dufresn et al.,

2001; Pelger, 2020; Shukla and Trzcinka, 1990), the evaluation of the integration of markets or countries

(Aziakpono et al., 2012; Billio et al., 2017; Donadelli and Paradiso, 2014; Volosovych, 2011), in dimen-

sion reduction problems within predictive models (Aye et al., 2015; Zhang and Wang, 2022; Zhong and

Enke, 2017), in the analysis of commonality in trading (Fung and Hsieh, 1997; Hasbrouck and Seppi,

2001; Korajczyk and Sadka, 2008; Mancini et al., 2013; Panayi et al., 2015), and finally, in volatility

prediction (Carol and Chibumba, 1996; Müller et al., 2011).

When focusing on the application of PCA to financial returns, there is a general consensus on

the interpretation of the first principal component as a proxy of the market factor. Such a view is

supported by the behaviour of this component and by the fact that all its loadings are generally positive

(Fraser et al., 2004; Meyers, 1973). PCA is usually applied based on a time-invariant covariance matrix,

leading to what we call an unconditional PCA. Nevertheless, it is also acknowledged in literature that

the market correlation structure is subject to changes, which proves the need for a conditional PCA.

In this case, a simple strategy would build on a rolling or moving window evaluation of the covariance

matrix,1 leading to a time-varying PCA. The latter is associated with time variation in the loadings

(the eigenvectors) and in the variance of the latent components (the eigenvalues). When one is moving

in this direction, a common practice is to arrange the components according to their variance, from

the most volatile (the first, the market proxy) to the least volatile.

Literature is silent, however, on the possible existence of coherence issues in the principal compo-

nents (PCs) identified from different samples. Let us use a motivating example, considering the returns

of N assets at time t, which are included in the N × 1 vector yt = [y1,t · · · yN,t]′. We observe these

returns in two different samples that span the time intervals [t+ 1, t+M ] and [t+ 1 + h, t+M + h],

respectively, with h << M , and thus, with the samples partially overlapping. Starting from the

first sample, we estimate the covariance matrix of the asset returns, denoted as Σ1, and perform a

PCA, from which the following equality holds: Σ(1) = L(1)D(1)
(
L(1)

)′
, where L(1) is the matrix of

eigenvectors and D(1) is the diagonal matrix of eigenvalues. The corresponding PCs are computed

as u(1)
t =

(
L

(1)
1

)′
yt. Likewise, we obtain Σ(2) = L(2)D(2)

(
L(2)

)′
from the second sample. If the

PCA is coherent in both samples, the following should be true: (i) the loadings of the PCs would be

(almost) time-invariant and orthogonal—that is, given the loading matrices L(1) and L(2), we should

have
(
L(1)

)′
L(2) ≈ IN , with IN being an N × N identity matrix; and (ii) the ranking of the PCs

based on their variance would not be subject to changes. To be more specific, let us assume that the
1An alternative to the use of rolling application of sample moment estimation is represented by the estimation of a

Multivariate Generalized AutoRegressive Conditional Heteroskedastic (MGARCH) model and the subsequent estimation
of the spectral decomposition of the estimated conditional covariances. We discuss this approach in the following section.
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loadings do not change between the two samples, so that we have the following structure for the first

three columns of L(1) and L(2):

[
L(1)

]
.,1:3

=
[
L(2)

]
.,1:3

=


La 0 0

0 Lb 0

0 0 Lc

 , (1)

where La, Lb, and Lc are the orthonormal vectors with lengths satisfying the equality Na+Nb+Nc =

N , whereas 0 is a zero vector.2

Let now assume that the variance of the assets changes from sample 1 to sample 2 and that

this change is completely absorbed by a change in the variance of the PCs in such a way that

V
([
L(2)

]
.,3
yt

)
> V

([
L(2)

]
.,2
yt

)
. We are thus postulating that in h observations that are not

common to the two samples, a shift is realized in the market, and the variance of the PCs is altered.

If this change is realized, the standard practice of ordering PCs on the basis of their variance would

return a matrix L(2) with switched columns, as follows:

[
L̆

(2)
]
.,1:3

=


La 0 0

0 0 Lb

0 Lc 0

 , (2)

thus leading to
(
L(1)

)′
L̆

(2) 6= IN and generating incoherence.

This problem is particularly relevant when PCs are derived from dynamic conditional settings (ei-

ther within a rolling scheme or starting from a dynamic model), as the presence of such incoherence

might impact on the interpretation of PCs. In our study, we shed some light on the empirical oc-

currence of this problem. We also take a step further and analyze the coherence problems of PCc by

exploiting the dynamic structure provided in a Multivariate Generalized AutoRegressive Conditional

Heteroskedastic (MGARCH) model belonging to the Orthogonal GARCH (OGARCH) family. We refer

to the dynamic principal component (DPC) of Aielli and Caporin (2015), an MGARCH specification

that allows computing of conditional PCs, where ordering issues may easily arise.3 In the DPC model,

both eigenvectors and eigenvalues have a dynamic evolution; that is, the loadings will change over

time, as the variance of the PCs, unlike in OGARCH, where only the variance of the PCs changes over

time. In addition, unlike in other MGARCH models, in the DPC model, eigenvectors have a proper

dynamic, and their temporal evolution is not a by-product of the conditional covariance or correlation

dynamic.

When loadings are dynamic, the interpretation of the latent components will be affected by the
2To simplify the notation, we do not report the dimension of the zero vector, which changes according to the dimensions

of the loading vectors.
3Ordering issues may arise in all frameworks where a model for the conditional covariance or conditional correlation

is first estimated in the data and then used to recover conditional eigenvectors.
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incoherence of the PCs. For instance, the appropriate use of PCs as risk factors will be prevented, as

well as an accurate evaluation of the links between PCs and economic drivers (Alexander and Kaeck,

2008; Collin-Dufresn et al., 2001), or their use in risk management (Roncalli and Weisang, 2015; Sabelli

et al., 2017; Topaloglou et al., 2002).

In this paper, we provide empirical evidence of the occurrence of ordering incoherence for con-

ditional PCs, working with the constituents of the Dow Jones Industrial Average (DJIA) index over

the period of March 2019 to December 2020. Our sample includes the data from the coronavirus

disease 2019 (COVID-19) outbreak and represents an interesting case study to identify how both the

role and the relevance of PCs change over time. After showing the existence of incoherence, which

clearly emerges when assets are clustered by economic sector, we provide a second contribution, on the

methodological side, by introducing an algorithm for re-ordering the conditional PCs. We then support

the appropriateness of our algorithm with further analyses. We start by highlighting the strong impact

of the COVID-19 shock on the reordered components. For some components, the effect of COVID-19

is transient, and the relevant peaks observed in the first stage of the pandemic disappear after a few

weeks. For other components, the effects are more persistent and last until the end of 2020, marking

a clear change of regime between the pre- and the post-COVID-19 periods. Moreover, we dynamically

estimate a regression model, in which we employ a large set of factors, to provide information on the

risks and performance of the equity, bond, commodity and currency markets, as well as on the stress

and uncertainty beyond the financial system. We deal with the large dimensionality of the resulting

model by using well-known machine learning techniques. Interestingly, we find that the impact of a

subset of factors becomes more relevant when looking at the reordered components, compared to the

original DPC estimates. Finally, we show the improvements provided by our method within a portfolio

framework. Specifically, after decomposing the variance of the minimum variance portfolio into a sys-

tematic and an idiosyncratic component, we find that the former significantly reacts to the outbreak

of the COVID-19 pandemic when adopting the reordered components. In contrast, the impact of the

COVID-19 shock is less evident when the original DPC and the unconditional components are used.

This paper proceeds as follows. Section 2.1 gives an overview of the DPC model, and Section 2.2

presents the details of our reordering algorithm. Section 3 describes the dataset that we used in our

study and the empirical setup. Section 4 analyzes the empirical properties of the reordered eigenvectors,

and Section 5 highlights the implications of our approach in terms of regression and portfolio exposure.

Section 6 concludes this paper.
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2 Methods

2.1 An overview of the dynamic principal components model

Let yt = [y1,t · · · yN,t]′ denote an N×1 vector of returns yielded by N stocks at time t, for t = 1, . . . , T .

We assume that the expected value of yt conditional on the information set available at time t − 1

is equal to zero; that is, Et−1 [yt] = 0, where 0 is an N × 1 zero vector. Therefore, the conditional

covariance matrix of yt is defined asHt = Et−1 [yty
′
t] and can be expressed using the following spectral

decomposition equation:

Ht = LtDtL
′
t, (3)

where Lt and Dt are both N × N matrices; the diagonal entries of Dt = diag (d1,t · · · dN,t) are the

eigenvalues of Ht, and the columns of Lt =
[
l
(i,j)
t

]
are the corresponding eigenvectors.

The conditional PCs of yt are computed as follows:

ut = L′tyt, (4)

so that the asset returns can be written as:

yt = Ltut. (5)

The components computed from Equation (4) are conditional on It−1 (i.e., the information set

available at time t−1). They are conditionally orthogonal and have Dt as their conditional covariance

matrix. We estimate Lt andDt in Equation (3) using the dynamic principal components (DPC) model

introduced by Aielli and Caporin (2015), where the term ‘dynamic’ points out the time-varying nature

of the linear mapping from the PCs to the corresponding asset returns. We briefly describe the DPC

model as follows.

In its first step, the DPC model focuses on the estimation of the Lt matrix. We stress that Lt

is orthonormal (i.e., LtL′t = L′tLt = IN , where IN is the N -dimensional identity matrix) due to the

properties of the spectral decomposition of its positive definite matrix (Gruber, 2013). This estimation

builds on an auxiliary process, the so-called loading-driving process, which reproduces the features of

the underlying loading dynamics under the required orthonormality constraints. Aielli and Caporin

(2015) modeled this auxiliary process by resorting to the following BEKK specification (Ding and

Engle, 2001; Engle and Kroner, 1995; Engle and Mezrich, 1996):

Qt = (1− a− b)S + ayt−1y
′
t−1 + bQt−1, (6)

where (y0,Q0) ∈ I0, whereas the scalars a and b, along with the S matrix, are parameters to be

estimated.
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Under the assumptions a ≥ 0, b ≥ 0, a + b < 1, S � 0 and Q0 � 0 (i.e., S and Q0 are positive

definite matrices), Qt is positive definite, so that its spectral decomposition exists for each t. After

obtaining Qt from Equation (6), it is possible to retrieve the matrix of conditional loadings Lt, which

is defined as the eigenvector matrix of Qt:

Qt = LtGtL
′
t, (7)

where Gt = diag (g1,t, . . . , gN,t), with g1,t, . . . , gN,t being the eigenvalues of Qt.

The DPC model requires the following conditions to ensure the uniqueness of the spectral decom-

position in Equation (7) and the existence of a unique loadings sequence for a given dataset: (i) the

eigenvalues of Qt are arranged in strictly decreasing order; (ii) the sign of the corresponding eigenvec-

tors is such that the diagonal elements of L′tL are positive, where L is computed from the following

spectral decomposition of S: S = LDL′, with D = diag (d1, . . . , dN ); and (iii) for a given covariance-

stationary process, the magnitude of S is restricted by satisfying the equality tr (S) = tr
(
S
)
, where

S = E [yty
′
t] is the unconditional covariance matrix of yt (Aielli and Caporin, 2015).

In the next step, the DPC model estimates the conditional variances of the PCs using a univariate

GARCH model (Bollerslev, 1986) with variance targeting (Engle and Mezrich, 1996):

Et−1
[
u2i,t
]

= di,t = (1− αi − βi) γi + αiu
2
i,t−1 + βidi,t−1, (8)

where (ui,0, di,0) ∈ I0, γi = di, αi ≥ 0, βi ≥ 0, αi + βi < 1 and di,0 > 0, for i = 1, . . . , N .4

Since di > 0, it follows that di,t > 0, so Ht = LtDtL
′
t is positive definite. Furthermore, the

condition αi + βi < 1 ensures that the PCs are covariance-stationary, with the unconditional sec-

ond moment equal to E
[
u2i,t

]
= E [di,t] = di (Aielli and Caporin, 2015; Bollerslev, 1986). Under

the assumption that the sequence d1, . . . , dN is arranged in strictly decreasing order, it follows that

E
[
u21,t
]
> E

[
u22,t
]
> · · · > E

[
u2N,t

]
. As a result, the components are arranged in decreasing order

according to their corresponding unconditional variances (Aielli and Caporin, 2015).

Aielli and Caporin (2015) referred the model resulting from Equations (5)—(7) and (8) as the

scalar DPC model, where the term ‘scalar’ refers to the scalar BEKK recursion in Equation (6). Aielli

and Caporin showed that under weak stationary conditions, the loading process of the scalar DPC

model is identified. Moreover, under usual conditions, the DPC model possesses the loading targeting

property (Aielli and Caporin, 2015); that is, the columns of L are the eigenvectors of the stationary

second moment of yt, as shown in the following equation:

S = LDL′, (9)
4In addition to the GARCH(1,1) specification, we can flexibly employ any other univariate GARCH specification,

with the possibility of including exogenous regressors and leverage effects (Aielli and Caporin, 2015).
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where D is a diagonal matrix.

The loading targeting property can also be expressed by means of the following relationship:

ut = L′yt, (10)

where ut is the vector of the unconditional PCs of yt (Aielli and Caporin, 2015).

The scalar BEKK recursion defined in Equation (6) leads to the simplest specification of the

DPC model (i.e., the scalar DPC model). Aielli and Caporin (2015) also proposed a more general

specification, which provides greater flexibility in the loading dynamics. This additional specification

builds on the Full BEKK(1,1,1) recursion, which is defined as follows:

Qt =
(
S −ASA′ −BSB′

)
+ Ayt−1y′t−1A′ + BQt−1B′, (11)

where

A = LV L′, B = LBL′, (12)

V = diag (
√
v1, . . . ,

√
vN ) and B = diag

(√
b1, . . . ,

√
bN

)
. (13)

Under the conditions Q0 � 0, S � 0, vi ≥ 0, bi ≥ 0 and vi + bi < 1, for i = 1, . . . , N , the intercept

of Qt is positive definite, which ensures that Qt is also positive definite (Engle and Kroner, 1995) and

that the spectral decompositions of Qt exist (Aielli and Caporin, 2015). Aielli and Caporin identified

the model resulting from Equations (5), (7), (8) and (11)—(13) as the DPC model.

2.2 Economic sector and eigenvector reordering

We estimated the conditional eigenvector matrix Lt given in Equation (3) using the DPC model (Aielli

and Caporin, 2015). We denoted the resulting estimate as L̂t, with t = 1, . . . , T . In this study, we

investigate whether the ordering of the columns of L̂t is affected by the sector classification of these

companies. If there is a connection between the sector classification and the positions of the columns

of L̂t, we can rearrange the columns of L̂t to increase the stability of the estimates in the time interval

[1, T ].

Specifically, for each column j of L̂t (that corresponds to the j-th eigenvector, with j = 1, . . . , N)

and for each time period t (with t = 1, . . . , T ), we aggregated the N companies into K economic

sectors. Then, we measured the relevance of each sector within each eigenvector and for each time

period by computing the weight:

ŵk,t,j =

N∑
i=1

(
l̂
(i,j)
t

)2
Ii∈k, (14)

for k = 1, . . . ,K, t = 1, . . . , T and j = 1, . . . , N , where Ii∈k is an indicator function that has a value of

1 if the i-th company belongs to the k-th sector, and a value of 0 otherwise.
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To evaluate the dynamics of ŵk,t,j over time, we built the following K × T matrix:

Âj =


ŵ1,1,j · · · ŵ1,T,j

...
. . .

...

ŵK,1,j · · · ŵK,T,j

 (15)

for j = 1, . . . , N .

In case of perfect stability along the time interval [1, T ], the entries placed on each row of Âj take

the same value; that is, ŵk,1,j = ŵk,2,j = · · · = ŵk,T,j . However, we typically observed fluctuations

due to the dynamics of the financial markets. In addition to these typical and expected fluctuations,

a different source of instability may be the ‘unnatural’ positioning of some eigenvectors along the time

interval [1, T ]. This instability implies sudden and transient shifts of entire columns of Âj , which are

significantly distant from the dominant cluster of Âj ; that is, the cluster which includes the majority

of the columns of Âj that exhibited a similar behaviour along the time interval [1, T ]. We clarify this

point with an example in Figure 1, where we display the area plots of the Â23 [panel (a)] and Â24

[panel (c)] matrices obtained from our dataset.5 These matrices have K = 8 rows, corresponding to

the economic sectors of the analyzed companies, and T = 450 columns, corresponding to the number of

periods of each time series. We clearly observed the presence of two clusters for the Â24 matrix. A first

and dominant cluster collected the majority of the columns of Â24, and a second cluster included the

columns of Â24 from 193 to 198 and from 200 to 223. Furthermore, we saw an evident correspondence

of Â24 with the Â23 matrix in a subset of their columns. Indeed, columns 193—198 and 200—223 of

Â23 do not belong to the dominant cluster of Â23 but to the dominant cluster of Â24. Therefore, we

could increase the stability of the DPC estimates by replacing columns 193—198 and 200—223 of Â24

with the same columns of Â23, and vice versa. This graphical example also helped us identify a clear

relationship between the sector classification of the companies included in our dataset and L̂t.

In this study, we rearranged the Â1, . . . , ÂN matrices by implementing the following reordering

algorithm.

1. We determined the number of clusters within each Âj matrix using three alternative measures: (i)

the Davies-Bouldin index (Davies and Bouldin, 1979); (ii) the Calinski-Harabasz index (Calinski

and Harabasz, 1974); and (iii) the silhouette values (Rousseeuw, 1987). Then, for each Âj matrix,

we computed the mode, denoted as mj , of the number of clusters suggested by the three stated

approaches, for j = 1, . . . , N . By doing so, the choice of the number of clusters was more robust,

as we used the information retrieved from the three different methods.

2. We implemented the k-means clustering method for each Âj matrix using mj as the optimal

number of clusters and the squared Euclidean distance metric for j = 1, . . . , N . Then, we
5We describe the dataset employed in our study in Section 3.

8



100 200 300 400
0

0.2

0.4

0.6

0.8

1

100 200 300 400
0

0.2

0.4

0.6

0.8

1

communications consumer staples and discretionary energy financial health care industrials materials technology

100 200 300 400
0

0.2

0.4

0.6

0.8

1

100 200 300 400
0

0.2

0.4

0.6

0.8

1

Figure 1: Graphical representation of the Â23, Â24, Ã23 and Ã24 matrices.

allocated the T columns of Âj to the mj clusters identified for the same matrix and determined

the dominant cluster of Âj , that is, the cluster of Âj that recorded the greatest frequency (i.e.,

the greatest number of columns of Âj). We denoted the frequency of the dominant cluster of Âj

as fj , and its relative frequency, as pj = fj/T . We also computed the sum of the point-to-centroid

distances within the dominant cluster of Âj , denoted as sj , from which we obtained its average

value δj = sj/fj . From δj and pj , we calculated the ratio rj = δj/pj . Finally, we obtained a

T × 1 vector xj = [xj,1 · · ·xj,T ]′, where xj,1, . . . , xj,T are the distances from each point (i.e., each

column) to the centroid of the dominant cluster of Âj , for j = 1, . . . , N .

3. We identified the Âj matrix with the lowest value of rj , denoted as Âj? , with 1 ≤ j? ≤ N .

Âj? exhibited a more persistent and stable structure of the dominant cluster than the other Âj

matrices, with 1 ≤ j ≤ N and j 6= j?.

4. For each t = 1, . . . , T and j = 1, . . . , N , we replaced the t-th column of Âj? with the t-th

column of Âj and denoted the resulting matrix as Â
(j,t)

j? . Therefore, Â
(j,t)

j? differs from Âj? only

in the t-th column when j 6= j?. Then, we re-implemented the k-means clustering method on

Â
(j,t)

j? using the original number of clusters of Âj? (i.e., mj?) determined in Step 1. Among the

different measures defined in Step 2, we focused on x(j)j?,t: the distance between the t-th column

and the centroid of the dominant cluster of Â
(j,t)

j? . We highlight that the replacement of the

t-th column of Âj? with the t-th column of Âj is appropriate if and only if x(j)j?,t < xj?,t, where

xj?,t was calculated in Step 2. We iterated the procedure described above for t = 1, . . . , T and
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j = 1, . . . , N and obtained the T ×N matrix as follows:

Xj? =


x
(1)
j?,1 · · · x

(N)
j?,1

...
. . .

...

x
(1)
j?,T · · · x

(N)
j?,T

 . (16)

5. For t = 1, . . . , T , we identified the minimum value of the t-th row ofXj? and denoted the position

of the corresponding row and column as (t, j>), with 1 ≤ j> ≤ N . If j? 6= j>, we replace the t-th

column of Âj? with the t-th column of Âj> and vice versa, for t = 1, . . . , T . We then obtained

a modified version of Âj? , which we denoted as Ãj? .

6. We removed Ãj? from our algorithm to conclude the current iteration.

7. We repeated Steps 1—6 until the (N−1)-th iteration, focusing, from time to time, on the residual

Âj matrices.

The described algorithm provides the new reordered matrices Ã1, . . . , ÃN . Our method increased

the stability in the dynamics of the original Â1, . . . , ÂN matrices along the time interval [1, T ]. An

example is given in Figure 1, where we compare the original Â23 [panel (a)] and Â24 [panel (c)] matrices

with their corresponding counterparts Ã23 [panel (b)] and Ã24 [panel (d)]. Figure 1 shows a graphical

example of the improvements generated by our reordering algorithm on Â23 and Â24, which were

retrieved from the 23-th and 24-th columns of L̂t, respectively. In addition, we calculated a measure

that resembles the turnover within a portfolio framework (see, e.g., Kang et al., 2018; Pun and Wang,

2020), which allows for a complete assessment of the stability of all eigenvectors. For this purpose,

for a given time point t, we collected the weights of the K economic sectors, as defined in Equation

(14), within a new N × K matrix Ŵ t, whose j-th row is equal to the vector [ŵ1,t,j · · · ŵK,t,j ], for

j = 1, . . . , N . Ŵ t was obtained from the original DPC eigenvectors and was compared to W̃ t; that is,

the counterpart retrieved from the rearranged matrices Ã1, . . . , ÃN . Then, we defined the following

stability indicator:

ẑt =
1′K abs

(
Ŵ
′
t − Ŵ

′
t−1

)
1N

2K
(17)

for t = 2, . . . , T , where abs
(
Ŵ
′
t − Ŵ

′
t−1

)
is a K×N matrix whose elements are the absolute values of

the pairwise differences in Ŵ
′
t−Ŵ

′
t−1, and 1K and 1N are K×1 and N ×1 unit vectors, respectively.

We normalized the indicator defined in Equation (17) by 2K so that it would range within the

interval [0, 1]. In particular, ẑt = 0 when the weights of the K economic sectors have the maximum

stability along the time interval [1, T ]. Likewise, we defined the indicator z̃t by replacing Ŵ t with

W̃ t in Equation (17). We display the trend of the z̃t and ẑt indicators in Figure 2. Figure 2 provides

further evidence of the stability improvements achieved with our reordering algorithm. Compared with
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ẑt, z̃t has, on average, lower values and is less volatile. Indeed, the means of z̃t and ẑt are equal to

0.4117 and 0.4876, with variances of 0.0090 and 0.0210, respectively.
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Figure 2: Trend of the z̃t and ẑt indicators.

Given the one-to-one correspondence between the t-th column of Âj and the j-th column of L̂t, we

also rearranged L̂t, for t = 1, . . . , T and j = 1, . . . , N and obtained the new matrices of eigenvectors

L̃1, . . . , L̃T . Specifically, for a given t ∈ {1, . . . , T} and a given j ∈ {1, . . . , N}, we identified which

of the N columns of L̂t generated the t-th column of Ãj . Then, we used this selected column as the

j-th column of L̃t. After obtaining L̃t, we computed the associated vector of the conditional PCs as

ũt = [ũ1,t · · · ũN,t]′ = L̃
′
tyt.

3 Data description and empirical setup

Our dataset included the daily returns of the companies that belonged to the basket of the DJIA index

from March 20, 2019 to December 9, 2020, so we had T = 450 trading days for each time series.6

Therefore, we focused on the period characterised by the outbreak of the COVID-19 pandemic. The

companies included in our dataset were classified into eight sectors: communications (2 companies),

consumer staples and discretionary (7), energy (1), financials (4), health care (4), industrials (4),

materials (1) and technology (7). Appendix A lists the 30 companies included in our dataset.

In Section 5, we evaluate the relevance of our method within a portfolio framework, on the basis

of a regression model in which we use a 25 × 1 vector F t. Specifically, F t includes the regressors

described as follows. The first five variables are the Fama-French research factors: (i) MKT-RF (the
6The data were recovered from Refinitiv Eikon.
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excess market return); (ii) SMB (Small Minus Big, the average return on the small stock portfolios

minus the average return on the big stock portfolios); (iii) HML (High Minus Low, the average return

on the value portfolios minus the average return on the growth portfolios); (iv) RMW (Robust Minus

Weak, the average return on the robust operating profitability portfolios minus the average return

on the weak operating profitability portfolios); and (v) CMA (Conservative Minus Aggressive, the

average return on the conservative investment portfolios minus the average return on the aggressive

investment portfolios). Then, we considered the following: (vi) RF (the change in the risk-free rate)

and (vii) MOM (the Momentum Factor, the average return on the high-prior-return portfolios minus

the average return on the low-prior-return portfolios).7 In addition, we used (viii) DJII (the return

of the Dow Jones Industrials Index); (ix) OIL (the change in the Crude Oil-WTI Spot price); (x)

DOLLAR (the return of the US Dollar Index); (xi) GOLD (the return of the Gold Bullion LBM);

(xii) EFFR (the change in the Effective Federal Funds Rate); (xiii) T10Y3M (the change in the 10-

Year Treasury Constant Maturity Minus 3-Month Treasury Constant Maturity); (xiv) BAA-AAA (the

change in the spread between Moody’s Seasoned Aaa and Baa Corporate Bond Yield Relative to the

Yield on the 10-Year Treasury Constant Maturity); (xv) VIX (the change in the CBOE SPX Volatility

VIX Index); and (xvi) VOIL (the change in the CBOE Crude Oil Volatility Index).8 We further

emphasize the impact of risks considering the following stress indexes: (xvii) FSI (the change in the

OFR Financial Stress Index, which incorporates five categories of indicators: credit, equity valuation,

funding, safe assets and volatility); (xviii) US FSI (the change in the FSI relative to the US area);

(xix) OAE FSI (the change in the FSI relative to the advanced economies area) and (xx) EM FSI

(the change in the FSI relative to the emerging markets area).9 We also considered the uncertainty

arising from newspaper articles with the following variables: (xxi) EPU (the change in the Economic

Policy Uncertainty Index) and (xxii) EMU (the change in the Equity Market Uncertainty Index).10

Finally, we captured the direct impact of the COVID-19 pandemic with the following variables: (xxiii)

RECOV (the change in the number of US recovered citizens); (xxiv) CONFIRM (the change in the

number of US confirmed citizens); and (xxv) DEATHS (the change in the number of US deaths due to

COVID-19).11 Each of the time series included in F t were standardized, so we had a set of 25 factors

expressed in the same scale.
7The data on the variables from (i) to (vii) were recovered from the Kenneth R. French library at

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
8The data on the variables from (viii) to (xi), (xv) and (xvi) were recovered from Refinitiv Eikon and the data on the

variables from (xii) to (xiv) were recovered from the Federal Reserve Bank of St. Louis at https://fred.stlouisfed.org.
9We recovered the data on the variables from (xvii) to (xx) from the Office of Financial Research of the US Department

of the Treasury at https://www.financialresearch.gov/financial-stress-index/.
10We recovered the data on the variables in (xxi) and (xxii) from https://www.policyuncertainty.com.
11We recovered the data on the variables from (xxiii) to (xxv) from the COVID-19 Data Repos-

itory of the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University at
https://github.com/CSSEGISandData/COVID-19.
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4 Empirical properties of the reordered eigenvectors

First, we evaluated the dynamics of the conditional principal components computed from the reordered

eigenvectors; that is, the sequence ũj,1, . . . , ũj,T=450, for j = 1, . . . , N = 30. Specifically, we started

by implementing the Engle’s (1982) AutoRegressive Conditional Heteroskedasticity (ARCH) test for

conditional heteroscedasticity. Then, we identified the components for which the null hypothesis of no

ARCH effects was rejected with a 10% significance level by using either 5 or 15 lags.12 We found that

11 components did not satisfy this: components 12, 15, 16, 19, 20, 21, 24, 26, 28, 29 and 30. For these

components, we computed their respective unconditional sample variances. In contrast, we estimated

an exponential GARCH (EGARCH) model (Nelson, 1991) with a degree of 1 for each GARCH, ARCH

and leverage polynomial for the remaining 19 components. Nevertheless, the EGARCH optimization

provided local and suboptimal solutions for a subset of these components (i.e., components 6, 7, 8

and 14). As a solution, we estimated a GARCH model (Bollerslev, 1986) with a degree of 1 for each

GARCH and ARCH polynomial for components 6, 7, 8 and 14 that yielded more accurate estimates.

We display the variances of the 30 components on the right sides of Figures 3—5. From Figure 3

to Figure 5, we sort the positions of the underlying components according to the sample mean of the

associated variances, from the highest to the lowest. For instance, the first component (on the first row

of Figure 3) records, on average, the greatest variance during the period March 20, 2019—December

9, 2020, equal to 0.00706. In contrast, the 30-th component (on the last row of Figure 5) generated

the lowest variance, equal to 0.00004. We stress that the horizontal lines on the right columns of

Figures 3—5 correspond to the sample variances of the components for which the null hypothesis of no

ARCH effects was not rejected. We also display on the left side of Figures 3—5 the area plots of the

Ã1, . . . , Ã30 matrices. First, it is interesting to observe that the dynamics of Ãj became more volatile

as the variance of the corresponding component increased. Second, we highlight that nine out of 10

components were affected by heteroskedasticity, as shown in Figure 3. This number is reduced to three

in Figure 5. Therefore, the greater the volatility in the dynamics of Ãj is, the greater is the probability

of observing heteroskedasticity for the corresponding ũj,t time series. Third, the variances displayed on

the right side of Figures 3—5 point out a strong impact of the COVID-19 shock. Indeed, the variance

of many components significantly increased around March 2020. This evidence is more strongly seen in

Figures 3 and 4. For some components, the effect of COVID-19 was transient, and the relevant peaks

observed in March 2020 disappeared after a few weeks. This is the case, for instance, with components

1, 14 and 11, as seen in Figure 3. For other components, the effect of the COVID-19 pandemic was

more persistent and lasted until the end of 2020, marking a clear change of regime between the pre-

and the post-COVID-19 periods. This is the case, for example, with components 7, 2 and 10.

12We found that this setup fits well the dynamics of the estimated components.
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Figure 6 ranks the 30 conditional PCs according to their daily variances. For instance, on the

first day (represented as the first column of Figure 6), the first component had the highest variance,

0.00702, and therefore, had rank 1. The 14-th component had rank 2, as it recorded the second highest

variance on the first day, 0.00159. As a result, the 14-th component is on the second row of the first

column. We used the same criterion to fill the remaining rows and columns of Figure 6, where the color

is proportional to the position of the j-th component, from blue (first component) to yellow (30-th

component). We can see from Figure 6 that the outbreak of the COVID-19 pandemic affected the

ranking of the estimated components. Some components, typically classified as low-ranking, became

more important from March 2020. For instance, component 23 had rank 7 on March 5, 2020, rank

10 on March 9, 2020 and rank 9 on March 13, 2020 (see Figure 6). Similar considerations hold for

component 22. In contrast, other components (e.g., component 12) became less important during the

COVID-19 pandemic. This phenomenon is evident in Figure 7, which shows the different impact of

the COVID-19 pandemic on components 12 and 22.

21-Mar-2019 13-Jun-2019 05-Sep-2019 28-Nov-2019 20-Feb-2020 14-May-2020 06-Aug-2020 29-Oct-2020
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Figure 6: Ranking of the 30 components according to their variances.

In PCA, it is important to evaluate the contribution of the individual components in explaining the

features of the data. A measure of how well the first n ≤ N principal components explain variation in

the data is given by the ratio between the sum of the first n eigenvalues and the sum of all eigenvalues.

A typically used graphical representation of these proportions is the scree plot. From PCA, the j-th

eigenvalue coincides with the variance of the j-th PC (Härdle and Simar, 2015). Likewise, in our

framework, we were able to evaluate the relevance of the first n components by building on their

variances displayed in Figures 3—5. Following the same decreasing order in Figures 3—5, we sorted

the 30 components according to their average variance. Then, we computed two weights: (i) the
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Figure 7: Ranking of components 12 and 22.

average variance of each component divided by the sum of the average variances of all the components

and (ii) the ratio between the sum of the average variances of the first n components and the sum of

the average variances of all the components. These weights are shown in Figure 8. We can see that

the first nine sorted components (i.e., components 1, 14, 7, 2, 10, 11, 3, 9 and 4) explained 81.77%

of the overall variation, whereas this proportion increased to 90.97% with the first 14 components (by

adding components 12, 6, 5, 8 and 18).
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Figure 8: Relevance of the principal components according to their average variance.
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In addition to the proportions shown in Figure 8, which were computed from average variances, we

assessed the relevance of the estimated components for each day from March 20, 2019 to December 9,

2020. By doing so, we were able to evaluate the dynamics of the daily proportions over time. We still

followed the order of the PCs given in Figures 3—5. Nevertheless, in contrast to the previous analysis,

we now computed the weight of the j-th component as the variance recorded by this component on

day t, divided by the sum of the variances of all the components on the same day, for t = 1, . . . , 450.

We also computed the cumulative weight as the ratio between the sum of the variances of the first n

components on day t and the sum of the variances of all the components on the same day. The results

are shown in Figure 9. The first rows of columns (a) and (b) in Figure 9 represent the first component,

which had, on average, the greatest variance during the period March 20, 2019—December 9, 2020.

The second row represents the 14-th component, and so on, until the last row, which represents the

30-th component, consistent with the order given in Figures 3—5. We highlight in Figure 9 the strong

impact of the COVID-19 shock. First, panel (a) highlights the relevant weight of the first component

during the early stage of the COVID-19 pandemic. From March 10, 2020 to March 19, 2020, this weight

averaged 87.04%, with a peak of 93.17% on March 17, 2020. Furthermore, the degree of concentration

significantly increased after the COVID-19 outbreak. For instance, the first (sorted) seven components

(i.e., components 1, 14, 7, 2, 10, 11 and 3) had a daily average cumulative weight of 73.20% from

February 26, 2020 to December 9, 2020 and 53.80% from March 20, 2019 to February 25, 2020 [see

panel (b) of Figure 9].

(a) Individual daily weights
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21-Mar-2019 13-Jun-2019 05-Sep-2019 28-Nov-2019 20-Feb-2020 14-May-2020 06-Aug-2020 29-Oct-2020

5

10

15

20

25

30

0.2

0.4

0.6

0.8

1

Figure 9: Daily relevance of the principal components.

Building on Figure 9, we also show in Figure 10 three scree plots related to three different days,
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which reproduced the conditions observed before, during and after the COVID-19 shock, respectively.

Specifically, we focused on the following days: June 24, 2019; March 13, 2020; and November 30, 2020,

which correspond to the 68-th, 257-th and 443-rd columns in Figure 9, respectively. First, we highlight

the importance of component 1, which significantly increased with the outbreak of the COVID-19

pandemic. Indeed, the weight of component 1 achieved the value of 92.57% on March 13, 2020, which

is significantly greater than on other days: 11.22% on June 24, 2019 and 4.95% on November 30, 2020.

Component 2 had the greatest weight on June 24, 2019, whereas component 10 had the greatest impact

on November 30, 2020. Therefore, the importance of component 1 decreased during stable periods, as

it strongly reflected the uncertainty or turbulence in financial markets. Second, we again highlight the

greater concentration among a few components after the outbreak of the COVID-19 pandemic. For

instance, 37.83% of the variability on June 24, 2019 is attributable to components 1, 14, 7, 2 and 10.

In contrast, the same components achieved the levels of 94.94% and 72.67% on March 13, 2020 and

November 30, 2020, respectively.

0 5 10 15 20 25 30
0

0.5

1

C
u
m

u
la

ti
v
e
 w

e
ig

h
ts

0

0.05

0.1

0.15

In
d
iv

id
u
a
l 
w

e
ig

h
ts

(a) June 24, 2019

C1

C14

C7

C2

C10
C11 C3

C9

C4

C12
C6

C5 C8
C18 C13

C19 C15
C17 C16

C22 C20 C21 C23 C24 C25 C26 C27 C28 C29 C30

0 5 10 15 20 25 30
0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 w

e
ig

h
ts

0

0.5

1

In
d
iv

id
u
a
l 
w

e
ig

h
ts

(b) March 13, 2020
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(c) November 30, 2020
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Figure 10: Relevance of the principal components before, during and after the outbreak of the COVID-19 pandemic.

We now compare the conditional PCs computed with the reordered eigenvectors (i.e., ũt = [ũ1,t · · · ũ30,t]′ =

L̃
′
tyt) with the conditional PCs obtained using the original DPC eigenvectors (i.e., ût = [û1,t · · · û30,t]′ =

L̂
′
tyt). First, we analyze the correlations between each pair of components. We display the correla-

tions between the 30 entries of ũt, numbered from 1 to 30, on the top-left panel of Figure 11. There,

we see that the off-diagonal entries of the correlation matrix have low values, within the interval

[−0.2344, 0.1941]. Similar considerations apply to the bottom-right panel of Figure 11, which shows

the correlation matrix of the 30 entries of ût, numbered from 31 to 60. In contrast, the top-right (or,

equivalently, the bottom-left) panel of Figure 11 displays the correlation matrix between the elements
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Figure 11: Correlation matrix of the rearranged components (numbered from 1 to 30) and the original components
(numbered from 31 to 60).

of ũt and ût. There, we see that ũj,t and ûj,t have a correlation equal to 1 when j = 28, 29, 30. This

evidence is clearer in Figure 12, which shows the values of the main diagonal of the bottom-left panel

of Figure 11. These results are due to the stability of matrices Â28, Â29 and Â30, which did not change

after the implementation of our reordering algorithm, so that they coincided with Ã28, Ã29 and Ã30,

respectively.

We note that the components from 15 to 17 and from 24 to 27 also had high correlations, greater

than 0.9 (see Figure 12). Interestingly, among the first 14 components, the pair (ũ1,t, û1,t) recorded

the highest correlation, 0.81. Similar to the other panels, the off-diagonal elements of the correlation

matrix displayed on the bottom-left panel of Figure 11 had low values.

For completeness, we also studied the relationships between the variances of the entries of ũt and

ût. Similar to the described analysis, we estimated the variances of the series in ût. Specifically,

we computed the sample variances for components 15, 16, 24, 26, 28, 29 and 30 (for which the null

hypothesis of no ARCH effects was not rejected). In contrast, the variances of the remaining entries of

ût were estimated using the EGARCH model, with a degree of 1 for each GARCH, ARCH and leverage

polynomial. The correlations of these variances are shown in Figure 13. Here, for simplicity, we set

the correlation of the constant variances (i.e., the sample variances computed for those components

for which we have evidence of no ARCH effects) at 0, so the corresponding cell is blue. In contrast to

Figure 11, the off-diagonal elements of each panel in Figure 13 have greater values. It is interesting

to note that the variances of the first 10 components had, on average, higher values when the original
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Figure 12: Main diagonal of the bottom-left (or top-right) panel of Figure 11.

eigenvectors were used. Indeed, the mean value of the first 10 rows and 10 columns of the bottom-

right panel (corresponding to the original eigenvectors) in Figure 13 is 0.6823, greater than the mean

of 0.4074 calculated for the first 10 rows and 10 columns of the top-left panel (corresponding to the

rearranged eigenvectors) of Figure 13. We also highlight the strong correlation between the variances of

the original and rearranged components, especially when focusing on the first positions. For instance,

the mean of the first five values placed on the main diagonal of the top-right (or, equivalently, bottom-

left) panel in Figure 13 is 0.7733.

5 Implications in terms of portfolio exposure

In this section, we assess the relevance of our method, starting from the estimation of a regression

model that lays the foundation for a portfolio analysis. For this purpose, we adopt the 25 variables

included in the F t vector defined in Section 3. These covariates provide information on the risks

and performance not only of the equities market, but also of the bonds, commodities and currencies

markets. Moreover, we use different indexes of stress and uncertainty to emphasize the role of risk in

our study, where variance plays a central role. Finally, we also use health variables that are directly

linked to the COVID-19 pandemic, which, as we saw from our empirical findings discussed in Section

4, had a relevant impact on the dynamics of the conditional components of yt. Therefore, F t provides

a rich information set that allows us to better analyze the relationships between the components

ũ1,t, . . . , ũ30,t and a large set of factors that drive the overall system, highlighting the differences from
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Figure 13: Correlation matrix of the variances of the rearranged components (numbered from 1 to 30) and the original
components (numbered from 31 to 60).

the original DPC estimates.

We first compared the sensitivity of ũj,t and ûj,t to each factor in F t, for j = 1, . . . , 30. We

dynamically estimated these relationships by implementing a rolling window procedure, with a window

size of 150 observations. By doing so, we were able to capture the impact of the outbreak of the COVID-

19 pandemic, which, as we saw in Section 4, affected the dynamics and stability of the estimated

eigenvectors from March 20, 2019 to December 9, 2020. Specifically, we divided our dataset into 300

equally-sized subsamples, each of which included 150 observations for each time series. Therefore,

starting from the adjusted components of yt and using rolling subsamples that spanned the intervals

[τ, τ + 150− 1], with τ = 1, . . . , 300, we iteratively estimated the following model:

ũj,t =
(
θ
(τ)
j

)′
F t + η

(τ)
j,t , (18)

where θ(τ)j is a 25× 1 coefficient vector and η(τ)j,t is the error term, for j = 1, . . . , 30.

We estimated θ(τ)j using the post-LASSO (least absolute shrinkage and selection operator) method

described as follows. First, we considered a potential correlation between the entries of F t, the di-

mensionality of which could imply issues in the accumulation of estimation errors. We did not know a

priori which of the covariates in F t were relevant to the explanation of the conditional PCs of yt. On

the one hand, a large number of regressors could imply overfitting. On the other hand, ad hoc omis-

sions of some regressors introduced substantial bias in the estimates. We dealt with this issue by using
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the LASSO method Tibshirani (1996). This is a machine learning technique that allows automatic

selection of the relevant factors in F t by minimizing the following loss function:

L
(
θ
(τ)
j

)
=

τ+150−1∑
t=τ

(
ũj,t −

(
θ
(τ)
j

)′
F t

)2

+ λ
(τ)
j

∥∥∥θ(τ)j

∥∥∥
1
, (19)

where
∥∥∥θ(τ)j

∥∥∥
1
is the `1-norm penalty of the parameter vector θ(τ)j and λ(τ)j ≥ 0 is the tuning parameter,

for τ = 1, . . . , 300 and j = 1, . . . , 30.

The intensity of the penalization in Equation (19) depends on λ(τ)j : the greater λ(τ)j is, the larger

the number of elements in the estimate of θ(τ)j that approach zero is, providing sparser solutions. For

each j and each τ , we selected the optimal value of λ(τ)j by using the five-fold cross-validation technique,

which is commonly used in applied machine learning (James et al., 2013). We then LASSO-selected,

in this first step, the relevant drivers of ũj,t; that is, the factors in F t whose coefficients—derived from

the minimization of the loss function in Equation (19)—were not zero.

Second, we considered that although LASSO has appealing properties in terms of variable selection,

it typically provides biased estimates for the retained variables, overshrinking the magnitude of their

impact, in absolute value, on the response variable (Fan and Li, 2001). In contrast, we obtained more

accurate estimates using the post-LASSO approach. Specifically, in the second step, we inserted the

LASSO-selected factors into a new vector, F (s)
t . Then, we re-estimated the coefficients of the relevant

factors (i.e., those that belonged to F (s)
t ) by minimizing the loss function defined in Equation (19)

with λ
(τ)
j = 0 (so that the resulting solution coincided with that provided by the standard ordinary

least squares method) and replacing F t with F
(s)
t . In contrast, the coefficients of the factors that were

not LASSO-selected in the first step were set at zero.

We denote the vector of the coefficients obtained with the post-LASSO method, as described, as

θ̃
(τ)

j , which accurately reflects the impact of each factor in F t on the j-th adjusted component ũj,t. The

residual of the model defined in Equation (18), computed by replacing θ(τ)j with θ̃
(τ)

j , is denoted as η̃(τ)j,t ,

for t = τ, . . . , τ + 150 − 1. We repeated the procedure described using the original DPC components

as the response variables (i.e., by using ûj,t in place of ũj,t ). We denote the corresponding coefficient

vector and the residual term as θ̂
(τ)

j and η̂(τ)j,t , respectively.

Interestingly, by comparing θ̃
(τ)

j with θ̂
(τ)

j , we discovered that the impact of a subset of factors in

F t becomes more relevant when looking at the adjusted components. This is the case, for instance,

with RF, as shown in Figure 14. Panel (a) in the Figure displays the impact, in absolute value, of

RF on the components ũ1,t, . . . , ũ30,t (sorted by row) for each of the 300 rolling subsamples (sorted by

column). Here, we see a relevant impact on the first and 14-th components, which became stronger

after the outbreak of the COVID-19 pandemic. We also detect some effect on the other components as

well as in panel (b) of Figure 14, which is, however, less evident. Another interesting case is observed

concerning GOLD. We see a clear effect of the COVID-19 pandemic in both panels (a) and (b) of
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Figure 15. However, the effects on the rearranged components emerged earlier than the effects on the

original DPC estimates. As for the health variables related to the COVID-19 pandemic, the effects

were more transient and concentrated in the initial stage of the shock. An example of such effects is

shown in Figure 16, in terms of DEATHS.

We now assess whether the differences in the θ̃
(τ)

j and θ̂
(τ)

j vector coefficients imply relevant conse-

quences in terms of portfolio exposure. For this purpose, among the different efficient portfolios we can

build on the 30 constituents of the DJIA index, we focus on the minimum variance portfolio (MVP),

given the central role of volatility in our study. Specifically, for each τ ∈ {1, . . . , 300}, we iteratively

estimate the MVP weights as follows:

φ(τ) =
Ω(τ)130

(130)
′Ω(τ)130

, (20)

where 130 is a 30 × 1 unit vector, and Ω(τ) is the inverse of the 30 × 30 sample covariance matrix of

the stock returns, observed from τ to τ + 150− 1; that is, from the data yτ , . . . ,yτ+150−1.

Therefore, for each τ -th rolling subsample, we compute 150 returns of MVP, denoted as ξ(τ)t =(
φ(τ)

)′
yt, for t = τ, . . . , τ + 150− 1. We can rewrite ξ(τ)t as follows:

ξ
(τ)
t =

(
φ(τ)

)′
yt =

(
φ(τ)

)′
L̃tũt =

(
φ(τ)

)′
L̃t

[(
Θ̃

(τ)
)′
F t + η̃

(τ)
t

]
=

(
φ(τ)

)′
L̃t

(
Θ̃

(τ)
)′
F t︸ ︷︷ ︸

ξ̃
(τ)
F,t

+
(
φ(τ)

)′
L̃tη̃

(τ)
t︸ ︷︷ ︸

ξ̃
(τ)
η,t

, (21)

where ũt = [ũ1,t · · · ũ30,t]′, η̃(τ)t =
[
η̃
(τ)
1,t · · · η̃

(τ)
30,t

]′
, and Θ̃

(τ)
is a 25 × 30 matrix, the j-th column of

which is the θ̃
(τ)

j vector, for j = 1, . . . , N , τ = 1, . . . , 300 and t = τ, . . . , τ + 150− 1.

We can see from Equation (21) that it is possible to decompose the portfolio return ξ
(τ)
t into a

systematic component—i.e., ξ̃(τ)F,t—and an idiosyncratic component—i.e., ξ̃(τ)η,t . Let
(
σ
(τ)
ξ

)2
and

(
σ̃
(τ)
F

)2
be the variances of ξ(τ)t and ξ̃

(τ)
F,t , respectively, computed from each rolling subsample; that is, for

τ = 1, . . . , 300. Building on this decomposition, we can evaluate the contribution of the systematic

component to the variability of the MVP return based on the ratio ϕ̃(τ) =
(
σ̃
(τ)
F

)2
/
(
σ
(τ)
ξ

)2
. The

greater ϕ̃(τ) is, the greater the capability of our method to capture the dynamics and fluctuations of

the overall system, channelled through the adjusted eigenvectors. It is interesting to contrast the trend

of ϕ̃(τ) with the same ratio computed from the original DPC eigenvectors, which we denote as ϕ̂(τ).

Therefore, we obtained ϕ̂(τ) by replacing L̃t, Θ̃
(τ)

and η̃(τ)t in Equation (21) with L̂t, Θ̂
(τ)

and η̂(τ)t ,

respectively. For completeness, we repeated the described calculations by adopting the unconditional

eigenvectors of the sample covariance matrix estimated from yt, . . . ,y450 (i.e. our entire dataset). We

denote the corresponding ratio as ϕ(τ).

We display the trend of ϕ̃(τ), ϕ̂(τ) and ϕ(τ), for τ = 1, . . . , 300, in Figure 17. Here, we see that
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(a) Adjusted conditional principal components
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(b) Original conditional principal components
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Figure 14: Impact (in absolute value) of the risk-free rate (RF) on the adjusted [panel (a)] and original [panel (b)]
conditional components ûj,t and ũj,t, respectively, along the rolling subsamples, for j = 1, . . . , 30.

26



(a) Adjusted conditional principal components
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(b) Original conditional principal components
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Figure 15: Impact (in absolute value) of the Gold Bullion LBM (GOLD) on the adjusted [panel (a)] and original [panel
(b)] conditional components ûj,t and ũj,t, respectively, along the rolling subsamples, for j = 1, . . . , 30.
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(a) Adjusted conditional principal components
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(b) Original conditional principal components
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Figure 16: Impact (in absolute value) of the deaths due to COVID-19 (DEATHS) on the adjusted [panel (a)] and
original [panel (b)] conditional components ûj,t and ũj,t, respectively, along the rolling subsamples, for j = 1, . . . , 30.

28



ϕ̃(τ) significantly reacted to the outbreak of the COVID-19 pandemic. In contrast, the impact of

the COVID-19 shock is not evident when looking at ϕ̂(τ) and ϕ(τ). Furthermore, it is interesting to

highlight the inversion in the ranking before and after the COVID-19 shock. Before this shock, the

original DPC method led to a greater contribution of the systematic component to the portfolio risk,

followed by the unconditional eigenvectors. After the COVID-19 shock, our method almost always

pointed out a greater contribution to the portfolio variance.
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Figure 17: Contribution of the systematic component to the overall minimum variance portfolio, using the adjusted,
original and unconditional eigenvectors.

6 Concluding remarks

In this study, we first presented the possible existence of ordering issues when PCA is used in a rolling

or conditional setting. Then, using a specific MGARCH model, we provided empirical evidence of

the occurrence of ordering issues and incoherence among PCs and then introduced an algorithm for

optimal re-ordering of the PCs. We applied our proposed algorithm to data that included those during

the outbreak of the COVID-19 pandemic. We found an advantage of using coherent PCs: a clearer

interpretation of the link between PCs and risk factors.

Our results may pave the way for further applications in risk management and asset allocation,

areas where PCA is widely used.
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Appendix

A List of the companies included in our dataset

Table 1: Companies and economic sector

NUMBER COMPANY SECTOR

1 VERIZON COMMUNICATIONS communications

2 WALT DISNEY communications

3 COCA COLA consumer staples and discretionary

4 HOME DEPOT consumer staples and discretionary

5 MCDONALD’S consumer staples and discretionary

6 NIKE consumer staples and discretionary

7 PROCTER & GAMBLE consumer staples and discretionary

8 WALMART consumer staples and discretionary

9 WALGREENS BOOTS ALLIANCE consumer staples and discretionary

10 CHEVRON energy

11 AMERICAN EXPRESS financials

12 JP MORGAN CHASE & CO. financials

13 GOLDMAN SACHS financials

14 TRAVELERS COS. financials

15 AMGEN health care

16 JOHNSON & JOHNSON health care

17 MERCK & COMPANY health care

18 UNITEDHEALTH GROUP health care

19 HONEYWELL INTL. industrials

20 BOEING industrials

21 CATERPILLAR industrials

22 3M industrials

23 DOW ORD SHS materials

24 INTERNATIONAL BUS.MCHS. technology

25 APPLE technology

26 CISCO SYSTEMS technology

27 SALESFORCE.COM technology

28 INTEL technology

29 MICROSOFT technology

30 VISA technology
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