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Abstract

We study whether the US stock market is pricing exposures to climate risks through the lenses of

a latent linear factor model with time-varying betas estimable by an extension of the instrumented

principal component analysis (IPCA) of Kelly, Pruitt, and Su (2019). In our specification, the factor

loadings are allowed to be functions of both “financial” and environmental (“green”) company-

specific characteristics, such as ESG ratings and carbon intensity. We extend the original IPCA

model to allow for the presence of different sets of orthogonal factors whose loadings are driven

by only one of the two types of characteristics. Our extension allows (i) to identify and estimate

latent green factors from a large panel of stock returns without defining (and constructing) them

ex-ante, as typically done in the climate finance literature, (ii) to interpret our factors as purely

“green” or “financial” factors. We identify one “green” factor which is important for the out-of-

sample pricing of stocks in the Energy and Utilities sectors, above and beyond “financial” factors,

which suffice to explain the cross section of stock returns of the stocks in the other sectors.
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1 Introduction

In this work we address two issues related to the impact of climate and environmental risks on the

returns of US equities. First, we study whether a separate risk factor associated to “environmental”

characteristics exists in addition to standard risk factors associated to a large set of commonly used

“financial” characteristics, predictors of stock returns (such as size and book-to-market to name a

few) as studied in the recent papers by Chen and Zimmermann (2022) and Freyberger, Neuhierl, and

Weber (2020). Second, we want to assess the pricing ability of this new environmental factor for the

cross section of stock returns. In this work we define as environmental risks all that risks that may be

associated to some environmental firm-level characteristics like ESG rating, emissions, etc. We define

these characteristics and the factors associated to these characteristics as green to distinguish them

from the financial characteristics like size, book-to-market, etc.

A growing number of works, reviewed in our Section 2, study observable (i.e. pre-specified by

econometrician) environmental risk factors. Our approach is new in this context as we allow for

this factor to be latent. In particular we answer the above questions by extending the instrumented

principal component analysis (henceforth IPCA) originally proposed by Kelly et al. (2019): by starting

from a large set of firm-level financial and environmental characteristics (i.e. the instruments in this

methodology), we measure how they affect the exposure of returns to few latent factors, which we are

able to estimate.

To separate the environmental and financial factors, we propose a new constrained IPCA model

where each type of factors is allowed to depend either on green characteristics only, or on financial

characteristics only. This methodological innovation allows us to interpret the factors as purely green

or purely financial, and to assess how each of the two types of factors explains the variability and the

premia of individual stocks, as measured by the Total, Predictive, and Pricing R2s defined by Kelly

et al. (2019) and in our Section 3.3. By construction, our methodology allows to estimate the green

factors which are orthogonal to financial factors, implying that the only green factor we estimated in

our empirical analysis is not (linearly) related to “standard” financial factors.

ESG data are often used to create green factors or to describe the exposure of stocks to these

factors, see e.g Pastor, Stambaugh, and Taylor (2021a), Engle, Giglio, Kelly, Lee, and Stroebel

(2020), Litterman (2015), and Alessi, Ossola, and Panzica (2020). It is also known that ESG data
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from different providers are not consistent among each other, as documented by Berg, Kölbel, and

Rigobon (2020), Busch, Johnson, and Pioch (2020), and Avramov, Cheng, Lioui, and Tarelli (2021).

Compatible with these studies, our maintained assumption is that each environmental characteristics

can be decomposed into some relevant environmental information common to other characteristics

and some idiosyncratic noise. Notably, IPCA is based on the same premises, and therefore, it

allows to understand which combination of characteristics is most relevant to describe the loadings

of companies’ returns on the latent factors by filtering the noise and keeping only the information

common to different characteristics.

Moreover, as the loadings in the IPCA model are allowed to depend on company characteristics,

the methodology lets the data tell us which is the most relevant ones determining the factors without

selecting few of them ex-ante as typical done, for example, when applying Fama and French

methodology (Fama and French (1993)). In the latter methodology, risk factors are formed by sorting

individual stocks on few predetermined characteristics like size and book-to-market, and taking long-

short position on the extreme quantile portfolios. In this way we select the characteristics ex-ante, and

then we build the factors based on the selected characteristics.

Another drawback of using ESG data, is that these characteristics are available for a few hundred

of companies at the beginning of our sample in 2007, but in the last 5 years data providers cover

thousands of listed companies. An advantage of IPCA, is that it allows to handle easily the unbalanced

nature of the large panels of returns of individual stocks and their green characteristics that we consider

in our analysis. This issue is particular relevant when looking at ESG characteristics as they are not

available for many individual stocks.

To the best of our knowledge, only Lindsey, Pruitt, and Shiller (2021) use the IPCA methodology

alongside ESG data. The authors apply IPCA by using as instruments some ESG ratings in addition to

financial characteristics. Remarkably, they cannot find either systemic risks, or alphas, associated

to ESG characteristics. There are three main differences between our work and theirs: first, our

methodology allows us to clearly separate the factors associated to green characteristics and financial

characteristics, as our factor loadings are either one of the two groups, while the way they run IPCA,

does not impose these restrictions. This implies we can better assess the contribution of the two sets of

factors in explaining the individual stock returns. The second difference is the choice of the data, we
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are focusing mainly on the environmental risk and have more granular environmental data. Third, by

analysing the contribution of our environmental factor to the returns within each sectors, we find that

environmental characteristics matter for the Energy and Utilities sectors. This result is still coherent

with Lindsey et al. (2021)’s findings, since when we analyse the entire stock universe, we do not find

any relevant contribution of the green factor in explainining time-series variation and the average of

stock returns. Furthermore, our analysis are both in-sample and out-of-sample, whereas Lindsey et al.

(2021) perform only in-sample analysis.

Since IPCA factors are by construction investable portfolios, we also assess how these factors

perform when used to build hedging portfolios of the climate risk indexes of Engle et al. (2020),

Faccini, Matin, and Skiadopoulos (2021), and Ardia, Bluteau, Boudt, and Inghelbrecht (2021). We

find that our green factor works well for to hedge the International Summit index by Faccini et al.

(2021), and more generally, IPCA factors provide better hedging compared to Fama-French 5 factors

and climate-narrative portfolios.

The rest of the paper is organised as follows: Section 2 provides the literature review. Section 3

presents the methodology and Section 4 the data used. Section 5 contains the empirical results and

their discussion. In Section 6 we present the results of hedging portfolio of climate risk indexes.

Finally, Section 7 concludes, and presents avenues for future research that we are currently exploring.

The appendix includes figures, tables, the estimation procedures of the model and tests.

2 Literature Review

Environmental and climate finance, has gained traction in academic literature recently (see the review

studies Hong, Karolyi, and Scheinkman (2020) and Giglio, Kelly, and Stroebel (2020): they provide

a comprehensive literature review about climate finance). Indeed, starting with Nordhaus (1977),

researchers have studied the interactions between climate change and the economy but only recently

they have focused on the so called climate finance. The number of academic works studying climate

change and environmental risk in asset pricing has increased. Te majority of these works start by

arbitrary choosing a firm-level measure that proxies the environmental/climate risk exposure of the

companies and use it either to build a factor as a long/short portfolio, and study if it is priced in the
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market (e.g. Pastor, Stambaugh, and Taylor (2021b), Görgen, Jacob, Nerlinger, Riordan, Rohleder, and

Wilkens (2020), Hsu, Li, and Tsou (2020) among others), or use it directly as an explanatory variable

for the cross-section of returns (e.g. Bolton and Kacperczyk (2021) and Bolton and Kacperczyk (2020)

among others). Often these works find completely opposite results, depending on the choice of the

greenness measure. Bolton and Kacperczyk (2021) and Bolton and Kacperczyk (2020) find that US

and international stocks, respectively, associated to high carbon emissions have higher returns and that

investors are demanding compensation for being exposed to carbon risk. Similarly, Hsu et al. (2020),

by constructing a long/short portfolio by using toxic emission intensity, find a pollution premium and

suggest that it is attribute to environmental policy uncertainty. Görgen et al. (2020) estimate carbon

risk through a zero-cost portfolio defined as brown minus green (BMG) using international companies.

Their greenness measure is defined as combination of factors from four comprehensive ESG databases

and they do not find significant carbon risk premium. Alessi et al. (2020) define a factor on the

level of firm emissions and environmental transparency. This factor is priced in the European market

and the lower the greenness and the transparency, the higher the risk premium and then there exist

a negative greenium. Chava (2014) and Trinks, Ibikunle, Mulder, and Scholtens (2021) show that

companies with higher emissions have higher capital cost. Ilhan, Sautner, and Vilkov (2020) find that

climate policy uncertainty is priced in option market. They analyse the S&P500 constituents and they

show that the cost for protecting against downside risk using options is higher for companies with

high carbon intensity. In, Park, and Monk (2019) create a long short portfolio carbon efficient minus

inefficient and they find abnormal returns for the carbon efficient companies. Cheema-Fox, LaPerla,

Serafeim, Turkington, and Wang (2019) test several decarbonisation strategies and find that the more

aggressive ones - in terms of decarbonization - performs better in terms of alpha. Also Garvey, Iyer,

and Nash (2018) find that lower carbon intensity stocks present higher profitability and then higher

expected returns. This is due to the lower exposure to the carbon regulation.

Pastor et al. (2021b) and Pastor et al. (2021a) provide a theoretical analysis of financial market

equilibrium when investors show preferences for ESG. They show that green assets have lower

expected returns than brown, but green assets may have higher realized returns due to the investors’

tastes for green assets. They also show that US green stocks outperform brown as climate concerns

increase. Zerbib (2020) develops an asset pricing model taking into account ESG integration and finds

4



evidence of the coexistence of a taste effect (the investors’ preference for the green stocks) and an

exclusion effect. These effects are varying over the different industries. Monasterolo and De Angelis

(2018) study carbon premium in the period after the Paris Agreement.

A different approach is used by Engle et al. (2020). The authors build a climate news index that

proxies climate change risk by using textual analysis on newspapers articles and build mimicking

portfolios of the climate change index. Similarly Faccini et al. (2021), Ardia et al. (2021), Apel,

Betzer, and Scherer (2021), and Bua, Kapp, Ramella, and Rognone (2022) use textual analysis to

extract climate factors, on different data news sources. Textual analysis is used also by Sautner,

van Lent, Vilkov, and Zhang (2020), who describe a new method to assess firm-level climate change

exposure. They use a machine learning keyword discovery algorithm to captures exposures to climate

change from the earning call conferences of 10000 companies. Alekseev, Giglio, Maingi, Selgrad, and

Stroebel (2021) propose a new methodology to build hedging climate change portfolios by looking

at the trading behaviour of mutual funds when the fund adviser is exposed to local extreme weather

events to predict how investors react when local extreme weather events occur. Jung, Engle, and

Berner (2021) develop a stress testing procedure to test the resilience of financial institute to climate

risks. Choi, Gao, and Jiang (2020) find that in financial markets, stocks of carbon-intensive firms

underperform firms with low carbon emissions in abnormally warm weather. Retail investors (not

institutional investors) sell carbon-intensive firms in such weather, and return patterns are unlikely to

be driven by changes in fundamentals. Krueger, Sautner, and Starks (2020) measures the importance

of climate risks among institutional investors.

Our work has two major differences versus the prior literature on climate risks: first, we do not

define ex-ante the factors, instead we treat them as unobservable and we estimate factors that best

describe covariation among the return data. In this way we avoid measurement and specification

errors. Measurement problem is a well known problem of ESG data, often used to build these “green”

factors. In this work we use as instrumental characteristics for the factor loadings also environmental

characteristics from different ESG data providers to assess if one “green” factor is priced in the cross-

section of equity returns. We use IPCA (i) to estimate the factor, and (ii) to test which subset of

characteristics best explains the exposure to this green factor. To the best of our knowledge, only

Lindsey et al. (2021) use the IPCA methodology alongside ESG data but, as mentioned in our
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introduction, our paper differs in the methodology and in the data used from their paper. With this

approach we are able to purge these variables from idiosyncratic noise. The second difference is that

the IPCA betas (i.e. factor loadings) are estimated by defining them as a linear function of company

characteristics. These characteristics are the instrument used to estimate time-varying conditional

betas. Furthermore, IPCA allows to include a vast number of characteristics in the empirical analysis,

which would be impossible in standard Fama-MacBeth regression or portfolio construction sorted

on characteristics. In fact, the methodology allows the data to choose the characteristics for factor

construction. However, this approach permits also to control for observable factors and then we can

test if (i) factors already identified by the literature describe well the relevant risks, or whether latent

risk factors are still missing, and if (ii) the exposure to these factors are depending on characteristics.

further details regarding IPCA model are in Kelly et al. (2019), and its asymptotic properties in Kelly,

Pruitt, and Su (2020).

3 Methodology

The IPCA methodology used in this paper has been originally proposed by Kelly et al. (2019) and

Kelly et al. (2020). They consider a conditional factor-pricing model with latent factors and firm-level

characteristics are used as instruments to infer the unobservable (potentially) time-varying loadings.

Their model can be summarized by the following system of equations:

ri,t+1 = αi,t+βi,tft+1 + ϵi,t+1 ,

αi,t = z′i,tΓα + να,i,t , βi,t = z′i,tΓβ + νβ,i,t , (3.1)

which hold for each asset i = 1, ..., Nt over all periods t = 0, ..., T − 1 in which Nt+1 assets are

observed1. The excess return of asset i at date t + 1 is denoted as ri,t+1, and depends on K factors

collected in the vector ft+1. The factors may be either latent or observable. The loadings are time-

varying and depend linearly on a set of observable characteristics zi,t, which are observed at date t.

The L × 1 vector zi,t contains the L − 1 characteristics of the company i at time t and one constant

that captures the systemic risk that is common over time for all the stocks. Any behavior of dynamic

1The number of assets is allowed to change over time, and therefore N is indexed by t
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loadings that is orthogonal to the instruments falls into νβ,i,t such that risk exposures may not be

perfectly recognized observing the characteristics. The L×K matrix Γβ maps the instruments to the

loadings, it does not change over time and is constant for all companies. However, companies change

over the years, and their exposure to risk and expected returns of their stocks are allowed to evolve

accordingly; this feature is allowed since characteristics may change over time and, consequently, also

the loadings.

The parametrization in (3.1) makes the model more efficient in capturing the time varying exposure

compared to the static beta estimated using rolling-windows, which involves the estimation of Nt×K

loadings in each window ending at time t. Therefore, this method also allows to include a relative

large number of characteristics L, but in order to keep the model parsimonious, L, has to be smaller

than N and t. As in our factor model the number of factors also needs to be small to keep the

model parsimonious, in particular we must have K << L. Indeed, starting from a large set

of L characteristics which are instruments of exposures to risk factors, the model aggregates this

information in K factors, and their loadings by keeping only the relevant signals from characteristics

and implicitly averaging out the noise.

In the case characteristics are constant over time, the solution of IPCA can be obtained by applying

PCA to the returns of L managed portfolios by sorting stocks on characteristics. If the characteristics

are not constant over time, IPCA estimation can only be approximated by “classical” PCA on managed

portfolios (which is actually the starting point of the IPCA estimation procedure).

The L-dimensional vector xt+1 contains the returns of managed portfolios at time t+ 1 defined by

the following equation:

xt+1 =
Z ′

t rt+1

Nt+1

, (3.2)

where rt+1 = [r1,t+1, ...ri,t+1, rNt+1,t+1]
′, is the Nt+1-dimension vector collecting the returns of all

assets. Nt+1 is the number of non missing stock observations, and the Nt+1 × L matrix Zt =

[z′1,t, ...z
′
i,t, ...z

′
i,Nt+1

] contains all the Nt+1 vectors of characteristics, zi,t. The managed portfolios are

portfolios with weights given by the values of the characteristics2. Two identification restrictions are

2Following Kelly et al. (2019), characteristics are cross-sectionally ranked, demeaned, and scaled (except the constant)
to live in the [-0,5; 0,5] interval
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imposed in the IPCA procedure, namely: Γ′
βΓβ = IK and the positivity of the mean of the estimated

factors. These identifying restrictions are the standard in latent factor models and do not alter the fit

and the economic content of the model.

3.1 Model specification

In our specification we assume that there exist two types of factors: “financial” and “green”. We define

financial (resp. green) factor loadings as driven only by financial (resp. green) characteristics, in this

way the factors are easily interpretable. Our model specification is

rt+1 = ZF
t Γ

F
α + ZG

t Γ
G
α︸ ︷︷ ︸

αt

+ZF
t Γ

F
β f

F
t+1 + ZG

t Γ
G
β f

G
t+1︸ ︷︷ ︸

βtft+1

+ϵt+1 , (3.3)

where ZF
t (ZL

t ) is a matrix Nt+1 × LF (Nt+1 × LG) containing all the LF financial (LG green)

characteristics for the Nt+1 companies at the time t; ΓF
β (ΓG

β ) is a matrix LF × KF (LG × KG)

mapping the financial (green) characteristics into the loadings of the financial (green) factors: fF
t+1

(fG
t+1). Γ

F
α and ΓG

α are the two vectors mapping the financial and green characteristics into the αt, in

this way we are able to assess the contribution of the two sets of characteristics to the αt. In order to

keep the factors well separated and to interpret them as only-financial and only-green factors, we also

impose the cross-sectional orthogonality of green characteristics from financial characteristics at each

dates (see Section 4.1 for details) and the time-series orthogonality of green and financial factors, that

is E[fF
t+1f

G
t+1

′
] = 0.

3.2 Model estimation

To simplify the exposition of this problem, and coherently with our empirical application, we analyze

the case with KG = 1 green factor only. Then, equation (3.3) can be written as the original IPCA

specification with zero constraints in matrix Γβ which we rename Γ̃β:

rt+1 = ZtΓα + ZtΓ̃βft+1 + ϵt+1 , (3.4)
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where we define the elements in the r.h.s. of the last equation as:

rt+1 =
[
ZF

t ZG
t

]
︸ ︷︷ ︸

=Zt

·

ΓF
α

ΓG
α


︸ ︷︷ ︸
=Γα

+
[
ZF

t ZG
t

]
︸ ︷︷ ︸

=Zt

·

 ΓF
β 0LF×KG

0LG×KF ΓG
β


︸ ︷︷ ︸

=Γ̃β

·

fF
t+1

fG
t+1


︸ ︷︷ ︸
=ft+1

+ϵt+1 , (3.5)

where 0q1×q2 is the generic q1 × q2 matrix of zeros. Taking inspiration from the estimation procedure

of the original IPCA model, we propose a recursive procedure to estimate ΓF
β , ΓG

β , Γα, fF
t , and fG

t for

all t in the equations (3.3). Our estimator {Γ̂F
β , Γ̂

G
β , Γ̂α, f̂} defined as the set of values {ΓF

β ,Γ
G
β ,Γα, f}

which minimize the sum squared errors h(ΓF
β ,Γ

G
β ,Γα, f), defined as:

h(ΓF
β ,Γ

G
β ,Γα, f) :=

T−1∑
t=1

(rt+1 − ZtΓα − ZtΓ̃βft+1)
′(rt+1 − ZtΓα − ZtΓ̃βft+1) (3.6)

where Γ̃β defined in (A.4) contains both ΓF
β and ΓG

β , moreover f = [f2, f3, ...fT ], where ft+1 =

[fF ′
t+1f

G′
t+1]

′, and we impose the constraint that

T−1∑
t=1

fF
t+1f

G′
t+1 = 0KF×1 . (3.7)

Importantly, the orthogonality within financial factors and within green factors is imposed by pre-

multiplying these by appropriate rotation matrices at the end of the estimation procedure, similarly to

the estimation algorithm for IPCA proposed by Kelly et al. (2019). Nevertheless, the orthogonality

between green and financial factors cannot be imposed in this (ex-post) way due the presence of the

zero constraints in matrix Γ̃β . Therefore, the one in (A.6) is the only constraint we explicitly need in

the Lagrangian associated to our estimation procedure, which is:

L(ΓF
β ,Γ

G
β f,Γα, λ) = h(ΓF

β ,Γ
G
β ,Γα, f)− λ′g(f) , (3.8)

where g(f) =
∑T−1

t=1 fF
t+1f

G′
t+1, and λ is the KF -dimensional vector of the Lagrange multipliers.
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The values of ΓF
β , ΓG

β , Γα, and ft+1 minimizing (3.8), satisfy the first order conditions

∂L
∂ft+1

= 0 ⇒ f̂t+1 = ( ̂̃Γ′
βZ

′
tZt
̂̃Γβ − Λ)−1 ̂̃Γ′

βZ
′
t(rt+1 − ZtΓ̂α), for all t (3.9)

where Λ is the matrix

0KF×KF λ

λ′ 0KG×KG

.

∂L
∂λ

= 0 ⇒
T−1∑
t=1

fF
t+1f

G′
t+1 = 0KF×1, (3.10)

∂L
∂ΓF

β

= 0 ⇒ vec(Γ̂F ′
β ) =

(
T−1∑
t=1

ZF ′
tZ

F
t ⊗ f̂F

t+1f̂
F ′
t+1

)−1(T−1∑
t=1

[
ZF

t ⊗ f̂F ′
t+1

]′ (
rt+1 − ZtΓ̂α − ZG

t Γ̂
G
β f̂

G
t+1

))
,

(3.11)

and

∂L
∂ΓG

β

= 0 ⇒ vec(Γ̂G′
β ) =

(
T−1∑
t=1

ZG′
tZ

G
t ⊗ f̂G

t+1f̂
G′
t+1

)−1(T−1∑
t=1

[
ZG

t ⊗ f̂G′
t+1

]′ (
rt+1 − ZtΓ̂α − ZF

t Γ̂
F
β f̂

F
t+1

))
.

(3.12)

∂L
∂Γα

= 0 ⇒ vec(Γ̂α) =

(
T−1∑
t=1

Z ′
tZt ⊗ 1

)−1(T−1∑
t=1

[Zt ⊗ 1]′
(
rt+1 − Zt

ˆ̃Γβ

))
(3.13)

In the Appendix A.1 we show all the steps to solve the restricted model by using the alternating

least squares. The restricted model, i.e. Γα = 0, is the model in which this asset pricing restriction is

imposed and the factors are assumed to be the only sources of explanation of premia. As in the original

IPCA, we impose that Γ̃′
βΓ̃β = IKF+KG

and that the factors are orthogonal. The estimation procedure

can be easily extended to control also for observable factors fobs, as described in Appendix A.1.1.

3.3 Performance Measures

To assess the ability of our model to fit the data, we report three goodness of fit measures introduced

by Kelly et al. (2019): the Total, Predictive and Pricing R2′s (Kelly et al. (2019)). In order to define

the three measures we need to define β̂i,t := zi,t
̂̃Γβ
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1. The Total R2 is the fraction of variance in stock returns explained by the time-varying exposure

to the common factors:

Total R2 = 1−

∑
i,t

(
ri,t+1 − β̂i,tf̂t+1

)2∑
i,t r

2
i,t+1

. (3.14)

2. The Predictive R2 is the fraction of variance in stock returns described by conditional expected

returns coming from exposure to the common factors:

Predictive R2 = 1−

∑
i,t

(
ri,t+1 − β̂i,tλ̂

)2∑
i,t r

2
i,t+1

. (3.15)

In contrast to the Total R2, the Predictive R2 represents the fraction of panel return variation

explained by the model’s conditional expected returns, β̂′
i,tλ̂. The parameter λ̂ is a vector

containing the average factor returns over time.

3. The Pricing error R2 is the fraction of the squared unconditional mean returns that is described

by the factors:

Pricing R2 = 1−

∑
n

(
1
|τi|
∑

t∈τi ri,t+1 − β̂i,tf̂t+1

)2
∑

n

(
1
|τi|
∑

t∈τi ri,t+1

)2 , (3.16)

The notation τi recognizes that each asset has a different set of time indices for which it is

observed, and |τi| denotes the number of elements in this set. In contrast to the previous two R2

measures, this focuses on whether the model’s fitted values do a good job of explaining assets’

average returns, i.e. estimated risk premia. This measure is similar to a re-scaled version of a

GRS statistic Shanken, Gibbons, and Ross (1989) premultiplied by -1, so that values near to zero

(resp. one) indicate large (resp. small) mispricing, that is “alpha”, implied by the factor model

for the test assets.
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4 Data

To perform our ananlysis we build the Nt×LF and Nt×LG matrices ZF
t−1 and ZG

t−1 for each time t that

contain all the financial and green characteristics respectively, and the Nt-dimension vector containing

all the returns at the time t. We use monthly returns from Jul 2008 to Apr 2021 and characteristics are

observed with either monthly or annual frequency. In the case of yearly characteristics, we use them

at year t to predict returns from July t + 1 to June t + 2 as in Freyberger et al. (2020). To select the

financial characteristics we follow Langlois (2021). From Refinitiv we select:

1. Market capitalization (monthly): we build monthly lagged market capitalizations by using the

last available market capitalization during the previous month;

2. Total assets (annual): represent the sum of total current assets, long term receivables, investment

in unconsolidated subsidiaries, other investments, net property plant and equipment and other

assets;

3. Investment(annual): We measure total asset growth on an annual basis;

4. β(monthly): we estimate each month t and for each stock i the following regression of daily

excess returns on a constant and the excess returns on market portfolio using daily data over the

previous 12 months:

ri,td − rf,td = αi,t + βi,t (rmkt,td − rf,td) + ϵi,td (4.17)

5. Price To Book Value (annual): this is the share price divided by the book value per share and it

is the inverse of book to market ratio;

6. Dividend Yield (monthly): it expresses the dividend per share as a percentage of the share price;

7. Lagged monthly return (monthly): total return at month t - 1;

8. Momentum (monthly): Total return from month t - 12 to month t - 2;

9. Idiosyncratic volatility (monthly): Volatility of the CAPM regression residuals ϵi,td , in equation

(4.17);
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10. ROE (annual).3

Green characteristics are computed using both MSCI ESG IVA and Refrinitv ESG (ex Asset 4) datasets

whereas financial-characteristics and returns are from Refinitiv. In order to determine our test assets

we start by selecting all the US equities available in in MSCI ESG IVA that have at least an ESG score

(4415 companies). The advantages of using this database is well described in Pastor et al. (2021a).

In particular MSCI covers more than other ESG rating providers and these rating are generated from

corporate documents, media and governments data. The ratings are updated at least on annual basis.

For these 4415 companies we use the following green characteristics from MSCI ESG IVA4:

1. IVA COMPANY RATING (ESG): a company’s final ESG Rating. To arrive at a final letter

rating, the weighted average of the key issue scores are aggregated and companies are ranked

from best (AAA) to worst (CCC);

2. ENVIRONMENTAL PILLAR SCORE (ENV): the Environmental Pillar Score represents the

weighted average of all Key Issues that fall under the Environment Pillar.

3. ENVIRONMENTAL PILLAR WEIGHT (w ENV): the Environmental Pillar Weight represents

the sum of the weights of all Key Issues that fall under the Environment Pillar;

4. CARBON EMISSIONS SCORE (EMISS): this key issue is relevant to those companies with

significant carbon footprints. Companies that proactively invest in low-carbon technologies and

increase the carbon efficiency of their facilities or score higher on this key issue. Companies that

allow legal compliance to determine product strategy, focus exclusively on activities to influence

policy setting, or rely heavily on exploiting differences in regulatory frameworks score lower.

(Score: 0-10).

For these companies we download similar green-characteristics from Refinitiv5:

1. Refinitiv’s Environment Pillar Score - ENSCORE (ENV): it is the weighted average relative

rating of a company based on the reported environmental information and the resulting three

environmental category scores;
3Refinitiv code of total assets: WC02999; Price to Book: PTBV; ROE: WC08301; Dividend Yield: DY
4The definitions of the characteristics are from a dictionary provided by MSCI alongside MSCI ESG IVA data
5The definitions of the characteristics are from Refinitiv
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2. Refinitiv’s ESG Combined Score - TRESCGS (ESG): it is an overall company score based on

the reported information in the environmental, social and corporate governance pillars (ESG

Score) with an ESG Controversies overlay;

3. Emissions Score - TRESGENERS (EMISS): emission category score measures a company’s

commitment and effectiveness towards reducing environmental emission in the production and

operational processes;

4. Carbon intensity (CI): CO2 Equivalent Emissions Total divided by revenues (ENERDP023 /

Revenues). The level of carbon intensity may depend on the industry to which a company

belongs to. For example companies within basic materials sector, on average, have higher

carbon intensity than companies in IT sector by nature Therefore, following the original idea

Heston and Rouwenhorst (1994) and more recently Langlois (2021), we decompose the carbon

intensity characteristic into industry and adjusted component. For each month we run a cross-

sectional regression of carbon intensity for stock i at time t, CIi,t, using all available stocks,

CIi,t = κ+

Nind,t−1∑
ind=1

Iind,tIi∈ind + vi,t (4.18)

In equation (4.18), κ is a constant, Iind,t is the coefficient for industry ind’s effect at time t, Ii∈ind
is an indicator variable equal to one if stock i is in industry ind, vi,t is the regression residual

that capture the adjusted component of stock i, and Nind,t is the number of stocks at time t in the

industry ind.

Out of 4415 companies, 2814 have at least for one period all the both financial and green Refinitv

characteristics, see Figure B.1a; 2564 companies have both financial and green MSCI characteristics,

see Figure B.1b. The characteristics start from 2007 whereas returns start in July 2008. All the green

characteristics are available on annual frequency.

We present two specification of the model. In the first (“Refiniti”) we use as instruments

all the financial characteristics and the green characteristics provided by Refinitiv: 10 financial

characteristics, 5 green characteristics and the constant. Therefore, the model has 16 instruments

(there is also the constant). In the second specification (“MSCI”) we use MSCI green characteristics
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instead of the ones by Refinitiv but we add also carbon intensity from Refinitiv. In this case the model

has 17 instruments.

Similarly to Kelly et al. (2019). we standardize the characteristics by computing the respective

cross-sectional ranks and normalizing them in the [-0.5, 0.5] interval. The normalized characteristics

are the new instruments used in the vectors zi,t. By using this normalization, we ensures that we can

compare the coefficients estimates of different characteristic components in IPCA model.

4.1 Orthogonalized green characteristics

The set of green characteristics may be correlated with financial characteristics. To be able to

exactly identify the information embedded in the green characteristics, we impose the cross-sectional

orthogonalization of green characteristics from financial characteristics. We apply the following

regression LG × T times (for each date and each green characteristic):

zGi
t = αGi,t + ZF

t βGi,t + ϵGi
t , ∀t, ∀Gi (4.19)

where zGi
t is the Nt+1-dimension vector containing all the observation of the i-th green characteristic

at the time t for all the Nt+1 companies, αGi,t is a constant, ZF
t is the Nt+1 × LF matrix containing

all the LF financial characteristic at the time t for all the Nt+1 companies. βGi,t is the LF -dimension

vector containing the loadings and ϵGi
t are the residual of the regression. The residuals are the new i-th

green characteristic that is orthogonal to the financial characteristics by construction.

5 Results

In this section we present the results of the estimation of the IPCA model. In our main specification

We use a six factors model with no Γα where we include KF = 5 financial factors and KG = 1

green factor. The choice of 5 financial factors is compatible with Kelly et al. (2019) who consider only

financial characteristics in their model. First we show the estimated latent factors, then we study the

contribution of green and financial factors, respectively, to the R2’s defined in Section 3.3. Importantly,

we perform the analysis both in-sample and out-of-sample as described in detail below.
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5.1 The financial factors

We start with the in-sample analysis where the model parameters are estimated only once using

the entire sample of observations from July 2008 to Apr 2021. We re-estimate the model twice by

keeping always the same financial characteristics but by changing the source of green characteristics,

namely “Refinitiv” and “MSCI”. The Γ̃β matrix’s columns describe how each characteristic maps into

companies loadings on each factor. For each financial (resp. green) factor we plot the correspondent

ΓF
β (resp. ΓG

β ) columns. Figure C.1a displays the first columns of ΓF
β from “Refinitiv” specification.

Loadings on the financial Factor 1 are driven mainly from the constant, the beta, assets, and size.

This suggest to interpret it as a mixture of market, size, and value factors. Indeed, the constant is

the equally weighted portfolio, therefore all the asset universe is exposed to Factor 1. Furthermore,

companies with higher beta are more exposed to this factor. The fact that small companies (low size

characteristic) are positively exposed to this factor, suggest that there is a size component. In addition,

companies with high value of assets and low size are positively exposed to this factor (value-factor).

The correlation between Factor 1 and Fama-French (Fama and French (2015)) market factor is 66%,

57% with size factor, and 66% with value factor. Factor 2 (Figure C.1b) has a strong market component

(58% of correlation). Indeed companies with high betas and high market capitalization are positively

exposed to this factor. Exposure to Factor 3 (Figure C.1c) is mostly determined by idiosyncratic

volatility. Finally, Factor 4 and 5 (Figures C.1d and C.1e) are a mixture of many characteristics. In

Appendix C.1.2 we show the financial factor loadings when MSCI green characteristics are used. The

results are very similar to the ones with Refinitiv characteristics. We test the significance of financial

characteristics by following the procedure described in Appendix A.2. We find that the constant,

betas, size, and idiosyncratic volatility are characteristics whose contribution to the models (both the

specification with green characteristics from Refinitiv and from MSCI) are statistically significant with

a confidence level at 99% (Tabels C.1f and C.2f).

5.2 The green factor

In Appendix C.2 and Appendix C.2.2 are displayed the ΓG
β for the two specifications of the model. For

both of them, we observe that carbon intensity sector component is the main driver of the exposure

to this factor. Figure C.3 suggests to interpret this factor as a green factor: companies within sectors
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with low carbon intensity are positively exposed to this factor. Also for the green factor we test the

significance of green characteristics by following the procedure described in Appendix A.2. We find

that the industrial component of carbon intensity is the only characteristic statistically significant for

both the specification with a confidence level at 99% (Tables C.1 and C.2). The green factor extracted

by using MSCI (resp. Refinitiv) characteristics presents an excess annual return of 5.6% (resp. 4.8%),

annual standard deviation 10.1% (resp. 12.1%), and Sharpe ratio 0.55 (resp. 0.40).

We compare our green factors with the “stranded asset” portfolio proposed by Litterman,6 and

built as in Jung et al. (2021).7 We represent the cumulative returns of both our green factors and

stranded asset portfolio in Figure C.5. Stranded assets have suffered from unanticipated or premature

write-downs, devaluation or conversion to liabilities. In recent years, the academic literature and the

industry are debating regarding the issue of stranded assets due to environmental factors, such as

climate change and society’s attitudes towards it. This portfolio (stranded asset portfolio) consists of

a short position in the stranded asset index: 30% in Energy Select Sector SPDR ETF (ticker: XLE)

and 70% in VanEck Vectors Coal ETF (ticker: KOL), and a long position in SPDR S&P 500 ETF

Trust (ticker: SPY). The correlation of the MSCI (resp. Refinitiv) green factor and the stranded asset

portfolio is 41% (resp. 37%). A possible explanation is that the two portfolios (IPCA factor and

stranded asset portfolio) are exposed to a common source of risk. It is interesting to note that the two

methodologies are different, as Litterman chooses the composition of the portfolio a priori, whereas

we are agnostic and let the data inform the construction of the portfolio. In particular Litterman sells a

brown portfolio and invests the proceeds in the market (the S&P 500). On the other hand, our method

is agnostic in identifying green and brown stocks, and creates a long/short portfolio. It is likely the

two portfolios contain different stocks exposed to the same factor: a common green priced factor.8

Theoretical models that justify the presence of a green factor can be found in Pastor et al. (2021b) and

Avramov, Lioui, Liu, and Tarelli (2022).
6See http://www.intentionalendowments.org/selling_stranded_assets_profit_

protection_and_prosperity
7We thank Prof. Riccardo Rebonato and researchers at ERCII for this valuable suggestion.
8We are currently analysing this by comparing the composition of the IPCA green factors and the composition of the

stranded asset portfolio.
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5.3 In-sample R2

Tables C.5 and C.6 display the in-sample Total, Predictive and Pricing R2′s, defined in section 3.3.

We start by computing the R2′s including only the first financial factor, then we add to the model also

the second financial factor and compute the new R2′s. We keep adding factors until we include all the

KF = 5 financial factors. Then, we add the green factor. In the last column we display the R2’s of the

complete model, which includes both the green and financial factors. The model is estimated on the

entire universe of US stocks for which we observe returns and characteristics in a certain month, but

we measure the R2’s for the different sectors since green characteristics may be particularly relevant

for some of them. In the “Refinitiv” specification, the Energy sector Total R2 (Table C.5) increases

considerably from 39.1% to 41.3%. Also the Utilities sector Pricing R2 increases from 24.2% to

29.6%. Similar results are founded with the “MSCI” specification (Table C.6). The Energy Total R2

increases from 42.4% to 44.8% and Utilities Pricing R2 increases substantially from 31.6% to 37.9%.

5.4 Out-of-sample R2

To construct out-of-sample fit measures, we follow Kelly, Palhares, and Pruitt (2021). We use an

expanding estimation window, with the first out-of-sample observation occurring 48 months after the

start of our sample. Since the entire period is 2008.07-2021.04, the first window in which the model

is estimated consists in the four years 2008.07-2012.06, implying the first out-of-sample prediction of

is produced for July 2012 using data available up to June 2012. For each window ending in month t,

we estimate IPCA model and denote the resulting estimates as ˆ̃Γβ,t. Then, following equation (3), we

calculate the out-of-sample realized factor return at time t + 1. The out-of-sample total R2 compares

rt+1 to Zt
ˆ̃Γβ,tf̂t+1 whereas the out-of-sample predictive R2 compares rt + 1 to Zt

ˆ̃Γβ,tλt where λt is

the factor return mean over the estimation window.

Tables C.7 and C.8 display the out-of-sample Total, Predictive and Pricing R2′s. We follow the

same procedure as in the in-sample analysis: the model is estimated on the entire universe of US

stocks for which we observe returns and characteristics in a certain month, but we measure the R2’s

for the different sectors. We also disentangle the contribution to the R2’s of each single factor as in the

previous analysis.

Looking at the out-of-sample R2 of Table C.7, we can compare the last column F1:F5+G1 that
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includes both green and financial factors with the column F1:F5, which considers only the financial

factors. The Total R2 increases more for Energy sector (almost +2.5%) when the green factor is added

to the pure financial ones and the Pricing R2 increases more for Utilities sector (almost +6%).

These sectors are involved in the most polluting activities and therefore it is reasonable to think

that green characteristics are more relevant to explain the time-series variation and the average of the

(excess) returns of their stocks, as measured by the Total and Predictive R2. Similar results are founded

with the MSCI specification (Table C.8) only for the Energy sector.

5.5 Factor tangency portfolio

We analyze out-of-sample Sharpe ratios for the tangency portfolios built by using IPCA factors. We

recall that, by construction, IPCA factors are weighted averages of the excess returns of managed

portfolios (with weights proportional to the columns of ˆ̃Γβ,t) and therefore, also of individual stocks

(with weights proportional to the columns of Zt
ˆ̃Γβ,t).9 Therefore these factors are portfolios, implying

that they are potentially investable assets (if we neglect transaction costs) to be consider in the mean-

variance portfolio optimization problem for the creation of the “Tangency portfolio”. See e.g. Kelly

et al. (2019) for tangency portfolios constructed form IPCA factors, and Lettau and Pelger (2020) for

tangency portfolios constructed using RP-PCA factors.

We disentangle the contribution of financial and green factors to the Sharpe ratio of the tangency

portfolio, that is the optimal mean-variance portfolio. We calculate out-of-sample factor returns

following the same recursive estimation approach from Kelly et al. (2019), section 4.4. The tangency

portfolio return for a set of factors is also constructed on a purely out-of-sample basis by using the

mean and covariance matrix of estimated factors through t and tracking the post-formation t + 1

return. Out-of-sample IPCA Sharpe ratios are displayed in Tables C.9. In Table C.9 the k-th column,

with k going from 1 to 5, we show the Sharpe ratio of the portfolio invested in the first k-th financial

factors. Therefore, the difference between the Sharpe ratios in column k and k − 1 is due to the

addition of the k-th factor. In the six column we add the green factor to the five financial factors. In the

MSCI specification the financial factors do not completely span, in a mean-variance sense, the green

9More precisely, from equation (A.8) we can clearly see that, when Γα = 0, IPCA factors f̂t+1 are returns of
portfolios of individual stocks, where the weights for the k-th factor are given by the k-th row of the K × N matrix

( ̂̃Γ′
βZ

′
tZt
̂̃Γβ − Λ)−1 ̂̃Γ′

βZ
′
t.
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factor, and that adding our green factor to the financial ones improves the investment opportunity set

of investors. This does not happen within the Refinitiv specification.10

6 Hedging Climate News

Since our green factors are investible portfolios, we analyze how they can be used to hedge climate

risks. Following the literature, we define climate risks shocks as the innovations of an AR(1) model

fitted to the different climate news series. We consider a) the two series from Engle et al. (2020),

namely the Wall Street Journal Climate Change New Index (WSJ) and the Negative Climate Change

News Index (CHNEG); b) four series from Faccini et al. (2021), US Climate Policy, International

Summits, Global Warming, and Natural Disaster; c) one serie from Ardia et al. (2021), thet use climate

change-related news published by major U.S. newspapers (MCCC).11

Inspired by the analysis in Engle et al. (2020), in order to assess whether our factors are useful

to hedge climate shocks, we build different mimicking portfolios by using six different sets of assets.

Each set is composed by six portfolios. The first two sets are composed by our six IPCA factors

respectively with MSCI and Refinitiv characteristics. We compare their hedging performance against

other four sets of assets: (i) Fama-French 5 factors (FF5) plus a long-short portfolio based on the

ESG scores of MSCI.12 (ii) FF5 plus a long-short portfolio based on the ESG scores of Refinitiv. (iii)

FF5 plus a portfolio long in the Invesco Global Clean Energy ETF (Ticker: PBD) and short in the

Energy Select Sector SPDR Fund (Ticker: XLE). This portfolio represents an environment-friendly

minus standard energy portfolio (GEME) and it is used also in Alekseev et al. (2021). (iv) FF5 plus

the Litterman’s “stranded asset” portfolio used by Jung et al. (2021), and described above.

To compare the performances of the different sets of assets, for each set we build two mimicking

10Note that, similarly to Kelly et al. (2019) and Lettau and Pelger (2020), in the formation of the out-of-sample optimal
portfolio, we do not take into account the transaction costs, and we do not impose any short-selling constraints. Taking
these issues into account is on our future research agenda.

11The series from Engle et al. (2020), Faccini et al. (2021), and Ardia et al. (2021) are available here, here, and here,
respectively. Series from Faccini et al. (2021), and Ardia et al. (2021) are available with daily frequency, therefore we
compute the 30-days average.

12Fama-French 5 factors are available here.
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portfolios: one containing only standard factors as our 5 financial factors or the FF5,

CCt = fF
t

′
βF + ϵt ,

and the other one containing the 5 standard factors plus the environmental-related factor

CCt = fF
t

′
βF + fG

t β
G + ϵt .

CCt is the value of the climate index at time t, fF
t is a 5-dimension column-vectors containing the

returns of the standard factors (either 5 IPCA financial factors or Fama-French 5 factors) at time t,

βF is the vector containing the weights of the standard factors in the mimicking portfolio, fG
t is a

scalar containing the return of a environmental-related factor and βG is its corresponding weight in

the mimicking portfolio. For each regression we collect the adjusted R2 to assess i) if the additional

environmental-related factors are useful to hedge climate news, and ii) which assets hedge climate

news best. Table C.10 displays the adjusted-R2 of the different mimicking portfolios (rows) for the

different climate indexes (columns). Our factors seem to hedge well specially the indexes provided

by Faccini et al. (2021) related to International Summits and Natural Disasters. Furthermore, the

increment of the adjusted-R2 when the green factor is added, shows that in the case of International

Summits, most of the hedging power is coming from the green factors. Also Natural Disaster index

and CHNEG index are hedged quite well but the marginal effects of our green factors are not strong.

7 Conclusions [INCOMPLETE]

Our preliminary conclusions are threefold. First, also green characteristics matter for describing

returns, but only for Energy and Utilities sectors. Second, industrial component of carbon intensity

seems to count much more than the other characteristics. This is coherent with the fact that green

characteristics are more relevant for some sectors. Third, our factors present a good hedging power

specially for the climate change news index International Summits and it is quite correlated with the

Litterman’s stranded asset portfolio.
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Appendix

A.1 Estimation

To estimate our constrained IPCA we use a similar recursive method to the one proposed in Kelly et al.

(2019). The steps we follow are the following:

1. By using the original IPCA estimator, we compute ΓF
β and ΓG

β in equations (A.1) and (A.2) to

have Γ̃(0)
β , the initial guess of Γ̃β that we need to start the numerical algorithm to solve the system

of first order conditions.

rt+1 = ZF
t Γ

F
β f

F
t+1 + ϵ∗t+1 (A.1)

rt+1 = ZG
t Γ

G
β f

G
t+1 + ϵ∗∗t+1 (A.2)

2. With Γ̃
(0)
β , we compute f

(0)
t+1 for all the periods by using equation (A.8) and equation (A.9). We

collect these values in the matrix f (0) with dimension K × T .

3. With f (0) and Γ
G(0)
β (resp. ΓF (0)

β ), we estimate ΓF (1)
β (resp. ΓG(1)

β ) by using equation (A.10) (resp.

(A.11)). With Γ
F (1)
β and Γ

G(1)
β we build Γ̃

(1)
β

13.

4. We impose that Γ̃(1)
β is orthogonal:

(a) we calculate the Cholesky factorization of both ΓF (1)′
βΓ

F (1)
β and ΓG(1)′

βΓ
G(1)

β and we call

the upper triangular matrices UF and UG:

ΓF (1)′
βΓ

F (1)
β = UF ′

UF

ΓG(1)′
βΓ

G(1)
β = UG′

UG

(b) We apply the svd decomposition to UFfF (1)fF (1)′UF ′ and UGfG(1)fG(1)′UG′:

UFfF (1)fF (1)′UF ′
= LFSFV F

13Γ
G(k)
β and Γ

F (k)
β are the submatrices of Γ̃(k)

β , see equation (??).
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UGfG(1)fG(1)′UG′
= LGSGV G

(c) We compute Γ̃
(1)
β by using the rotation matrices of ΓF (1)

β and ΓG(1)
β:

Γ̃
(1)
β =

ΓF (1)
β ×

(
UF
)−1 × LF 0LF×KG

0LG×KF ΓG(1)
β ×

(
UG
)−1 × LG


and the matrix f (1)

f (1) =

(LF
)−1

UFfF(
LG
)−1

UGfG


5. We repeat the procedure from point 3 as many times until f (k) ≃ f (k+1) and Γ̃

(k)
β ≃ Γ̃

(k+1)
β .

A.1.1 Estimation with observable factors

The IPCA model with observable factors fobs is:

rt+1 = ZtΓδfobs,t+1 + ZtΓ̃βft+1 + ϵt+1 . (A.3)

It is possible to include among the observable factors the all-ones vector to control also for the α: in

this case the Γα is the column of Γδ associated to the all-ones vector. In the case fobs,t+1 = 1 for all

periods t, Γδ coincides with Γα and, therefore, the following estimation procedure, can be sees as an

alternative procedure to estimate Γα. We rewrite (A.3) as:

rt+1 =
[
ZF

t ZG
t

]
︸ ︷︷ ︸

=Zt

·

ΓF
δ

ΓG
δ


︸ ︷︷ ︸
=Γ̃δ

·fobs,t+1 +
[
ZF

t ZG
t

]
︸ ︷︷ ︸

=Zt

·

 ΓF
β 0LF×KG

0LG×KF ΓG
β


︸ ︷︷ ︸

=Γ̃β

·

fF
t+1

fG
t+1


︸ ︷︷ ︸
=ft+1

+ϵt+1 . (A.4)

Our estimator {Γ̂F
β , Γ̂

G
β , Γ̂δ, f̂} defined as the set of values {ΓF

β ,Γ
G
β ,Γδ, f} which minimize:

h(ΓF
β ,Γ

G
β , f) :=

T−1∑
t=1

(rt+1 − ZtΓδfobs,t+1 − ZtΓ̃βft+1)
′(rt+1 − ZtΓδfobs,t+1 − ZtΓ̃βft+1) . (A.5)

27



We impose the constraint that
T−1∑
t=1

fF
t+1f

G′
t+1 = 0KF×1 . (A.6)

The Lagrangian associated to our estimation procedure is:

L(ΓF
β ,Γ

G
β f,Γδ, λ) = h(ΓF

β ,Γ
G
β ,Γδ, f)− λ′g(f) , (A.7)

where g(f) =
∑T−1

t=1 fF
t+1f

G′
t+1, and λ is the KF -dimensional vector of the Lagrange multipliers.

The values of ΓF
β , ΓG

β , Γδ, and ft+1 minimizing (A.7), satisfy the first order conditions

∂L
∂ft+1

= 0 ⇒ f̂t+1 = ( ̂̃Γ′
βZ

′
tZt
̂̃Γβ − Λ)−1 ̂̃Γ′

βZ
′
t(rt+1 − ZtΓ̂δfobs,t), for all t (A.8)

where Λ is the matrix

0KF×KF λ

λ′ 0KG×KG

.

∂L
∂λ

= 0 ⇒
T−1∑
t=1

fF
t+1f

G′
t+1 = 0KF×1, (A.9)

We define f̂F&O
t+1 = [fF

t+1, fobs,t+1]
′ (resp. f̂G&O

t+1 = [fG
t+1, fobs,t+1]

′) the vector containing the returns of

the KF (resp. KG) financial factors and the KO observable factors at the time t+ 1.

Similarly we define ΓF&O
β (resp. ΓG&O

β ) the LF × (KF +KO) matrix containing the matrices ΓF
β

and ΓF
δ (resp. ΓG

β and ΓG
δ )

∂L
∂ΓF&O

β

= 0 ⇒ vec(Γ̂F&O′
β ) =

(
T−1∑
t=1

ZF ′
tZ

F
t ⊗ f̂F&O

t+1 f̂F&O′
t+1

)−1(T−1∑
t=1

[
ZF
t ⊗ f̂F&O′

t+1

]′ (
rt+1 − ZG

t Γ̂G&O
β f̂G&O

t+1

))
,

(A.10)

and

∂L
∂ΓG&O

β

= 0 ⇒ vec(Γ̂G&O′
β ) =

(
T−1∑
t=1

ZG′
tZ

G
t ⊗ f̂G&O

t+1 f̂G&O′
t+1

)−1(T−1∑
t=1

[
ZG
t ⊗ f̂G&O′

t+1

]′ (
rt+1 − ZF

t Γ̂
F&O
β f̂F&O

t+1

))
.

(A.11)
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A.2 Testing instrument significance

For the test we apply the same procedure described in Kelly et al. (2019) by adapting it to our

specification. We want to investigate whether a given instrument significantly contribute to βt (defined

as ZtΓ̃β from equation (3.1)) while simultaneously controlling for all other characteristics. Here,

we show how to test a given instrument when it is a financial characteristic but, with the same

methodology, we can test green instruments as well. To formulate the hypotheses, we partition the

parameter matrix as

ΓF
β = [γβ,1, ..., γβ,LF ]′

where γβ,l is a KF ×1 vector that maps the financial characteristic l to the loadings on the KF financial

factors. The characteristic in question that we want to test is the lth. The hypothesis that we want to

test are

H0 :Γ
F
β = [γβ,1, ..., γβ,l−1, 0KF×1, γβ,l+1, ..., γβ,LF ]′

H1 :Γ
F
β = [γβ,1, ...γβ,LF ]′

Our Wald-type statistic in this case is

Wβ,l = γ′
β,lγβ,l.

Inference for this test is based on the same residual bootstrap described in Kelly et al. (2019). First we

estimate the model as in Appendix A.1. Then we can rewrite the model as

xt+1 = ZF
t

′
(
rt+1 − ZG

t Γ̂
G
β f̂

G
t+1

)
= ZF

t

′
ZF

t Γ
F
β f

F
t+1 + ZF

t

′
ϵt+1.

By applying the same bootstrap procedure as in Kelly et al. (2019), we generate 10000 bootstrap

samples under H0 and for each sample we re-estimate the model and record the estimated test statistic

W b
β,l = γb

β,l

′
γb
β,l.

Finally we draw inferences from the empirical null distribution by calculating a p-value as the fraction

of bootstrapped W b
β,l statistics that exceed the value of Wβ,l from the actual data.
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B.1 Descriptive Analysis

Figure B.1: Number of stocks for each industry in our sample and market capitalization weight of each industry
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C.1 Empirical Results

C.1.1 Financial factors loadings (ΓF
β ) composition from the “Refinitiv”

specification

Figure C.1: ΓF
β coefficient estimates from the “Refinitiv” specification with KF = 5 financial factors and KG = 1 green

factor and tests

1 C
onst

ant

2 A
ss

ets

3 In
ve

st
m

ent

4 B
eta

s

5 P
tB

6 D
iv

id
end

7 rM
1

8 rM
O

M

9 R
O

E

10 S
iz

e

11 v
ol

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

(a) First column of ΓF
β
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(b) Second column of ΓF
β
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(c) Third column of ΓF
β
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(d) Fourth column of ΓF
β
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(e) Fifth column of ΓF
β

F1 F2 F3 F4 F5 p−value
Constant 0.48 0.35 -0.03 0.42 0.57 0 ***
Assets 0.32 -0.21 -0.3 -0.55 0.18 0 ***
Investment -0.06 0.09 0 0.04 -0.07 0.32
Betas 0.37 0.65 0.43 -0.35 -0.3 0 ***
PtB -0.02 -0.01 0.05 -0.42 0.16 0.041 **
Dividend 0.03 -0.13 0.1 -0.35 0.06 0.106
rM1 -0.05 -0.11 0.19 0.01 -0.3 0.123
rMOM -0.23 0.1 -0.03 -0.2 0.48 0.106
ROE 0.05 0 -0.03 -0.21 0.24 0.07 *
Size -0.67 0.53 -0.11 -0.1 0.13 0 ***
vol 0.15 0.29 -0.81 -0.04 -0.35 0 ***

(f) ΓF
β and p-values

For each of the financial factors the figure displays the loadings composition: the columns of the estimated ΓF
β coefficient

matrix. Last panel displays the ΓF
β matrix and the p-values for testing each characteristic under the null hypothesis that the

characteristic do not contribute significantly to the loadings, while simultaneously controlling for all other characteristics.
The test is described in Appendix A.2
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C.1.2 Financial factors loadings (ΓF
β ) composition from the “MSCI”

specification

Figure C.2: ΓF
β coefficient estimates from the “MSCI” specification with KF = 5 financial factors and KG = 1 green

factor and tests
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(a) First column of ΓF
β
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(b) Second column of ΓF
β
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(c) Third column of ΓF
β

1 C
onst

ant

2 A
ss

ets

3 In
ve

st
m

ent

4 B
eta

s

5 P
tB

6 D
iv

id
end

7 rM
1

8 rM
O

M

9 R
O

E

10 S
iz

e

11 v
ol

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

(d) Fourth column of ΓF
β
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(e) Fifth column of ΓF
β

F1 F2 F3 F4 F5 p−value
Constant 0.41 0.4 -0.1 0.47 0.47 0 ***
Assets 0.32 -0.07 0.37 -0.51 0.23 0.015 **
Investment -0.03 0.05 -0.04 0.05 -0.1 0.301
Betas 0.24 0.7 -0.4 -0.37 -0.27 0 ***
PtB -0.02 0.01 0 -0.37 0.13 0.104
Dividend 0.01 -0.08 -0.08 -0.44 0.08 0.071 *
rM1 -0.01 -0.14 -0.29 0.01 -0.5 0.002 ***
rMOM -0.15 -0.01 -0.16 0.07 0.07 0.529
ROE 0.05 0.04 0.07 -0.16 0.36 0.027 **
Size -0.8 0.42 0.08 -0.08 0.22 0 ***
vol 0.07 0.36 0.75 0.12 -0.43 0 ***

(f) ΓF
β and p-values

For each of the financial factors the figure displays the loadings composition: the columns of the estimated ΓF
β coefficient

matrix. Last panel displays the ΓF
β matrix and the p-values for testing each characteristic under the null hypothesis that the

characteristic do not contribute significantly to the loadings, while simultaneously controlling for all other characteristics.
The test is described in Appendix A.2
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C.2 Green factor loadings (ΓG
β ) and cumulative returns

C.2.1 “Refinitiv” Specification

Figure C.3: Green factor loadings composition and cumulative returns of the green factor
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(a) ΓG
β estimated by using green characteristics from Refinitiv
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(b) Cumulative returns of the green factor estimated by using green
characteristics from Refinitiv

The figure displays the ΓG
β from the specification “Refinitiv”. These values can are proportional to weights of a portfolio

composed by the managed portfolios that replicates the green factor. The table in Panel (b) displays the values ΓG
β and the

p−values: the sectorial carbon intensity and the emissions score are the only two characteristics whose contribution to the
green factor loadings is statistically significant

Table C.1: ΓG
β matrix from “Refinitiv” specification and p−values for testing the significance of any characteristic to

contribute to the model, while simultaneously controlling for all other characteristics
G1 p−value

CI Sec. -0.93 0 ***
CI Adj. -0.05 0.479
ESG 0.14 0.136
EMISS -0.29 0.050 **
ENV 0.17 0.363

The table displays the values ΓG
β and the p−values: the sectorial carbon intensity and the emissions score are the only two

characteristics whose contribution to the green factor loadings is statistically significant
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C.2.2 “MSCI” Specification

Figure C.4: Green factor loadings composition and cumulative returns of the green factor
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(a) ΓG
β estimated by using green characteristics from Refinitiv
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(b) Cumulative returns of the green factor estimated by using green
characteristics from Refinitiv

The figure displays the ΓG
β from the specification “MSCI”. These values are proportional to weights of a portfolio

(composed by green managed portfolios) that replicates the green factor displayed in panel (b)

Table C.2: ΓG
β matrix from “MSCI” specification and p−values for testing the significance of any characteristic to

contribute to the model, while simultaneously controlling for all other characteristics
G1 p−value

CI Sec -0.91 0 ***
CI Adj 0.02 0.818
ESG 0.07 0.461
ENV 0 0.973
wENV -0.32 0.562
EMISS 0.25 0.171

The table displays the values ΓG
β and the p−values: the sectorial carbon intensity is the only characteristics whose

contribution to the green factor loadings is statistically significant
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C.3 IPCA green factors and Stranded Asset Portfolio
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Figure C.5: Comparison between IPCA green factors and Stranded Asset Portfolio
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C.4 Factor correlations and Sharpe ratios

A4 F1 A4 F2 A4 F3 A4 F4 A4 F5 A4 G1 M F1 M F2 M F3 M F4 M F5 M G1 Mkt-RF SMB HML RMW CMA
A4 F1 1 0 0 -0.03 -0.03 -0.01 0.94 0.23 -0.06 -0.1 0.06 0 0.66 0.57 0.66 -0.16 0.26
A4 F2 1 0 0 0 0 -0.15 0.93 0.11 0.11 -0.09 0 0.58 0.28 -0.15 -0.3 -0.41
A4 F3 1 0 0 0 0.04 -0.09 0.84 -0.29 -0.06 0.03 -0.03 0 -0.04 0.12 -0.06
A4 F4 1 -0.08 -0.04 0.04 -0.1 0.1 0.84 -0.16 -0.01 0 0.18 -0.47 -0.18 -0.25
A4 F5 1 -0.03 -0.09 0.06 0.23 0.11 0.89 -0.1 0.37 -0.14 0.05 0.17 0.06
A4 G1 1 -0.05 0.03 0.04 -0.02 -0.04 0.91 0 0.12 0.17 -0.3 -0.1
M F1 1 0 0 -0.03 -0.04 -0.02 0.51 0.51 0.61 -0.16 0.31
M F2 1 0 0 0 0 0.72 0.36 0.07 -0.28 0.31
M F3 1 0 -0.01 0 0.08 0.03 -0.05 0.04 -0.08
M F4 1 -0.08 -0.04 0.09 0.15 -0.4 -0.21 -0.19
M F5 1 -0.05 0.34 -0.17 0.08 0.24 0.09
M G1 1 -0.01 0.06 0.14 -0.28 -0.07

Mkt-RF 1 0.43 0.32 -0.2 -0.09
SMB 1 0.4 -0.37 0.1
HML 1 -0.09 0.47
RMW 1 0.04
CMA 1

Table C.3: Correlation matrix between the 6 latent factors of the two different specifications (Refinitv:A4, MSCI:M) and
the Fama-French 5 factors

F1 F2 F3 F4 F5 G1

Out-of-sample
MSCI -0.17 -1.05 -0.27 1.15 0.97 0.52
Refinitiv 0.01 -0.64 -0.07 0.72 0.94 0.51

In-sample
MSCI 0.42 0.04 0.06 0.90 1.10 0.56
Refinitiv 0.35 0.02 0.04 1.08 0.93 0.40

Table C.4: This table shows the annualized Sharpe rations of our IPCA factors computed both in-sample and out-of-sample.

37



C.5 Total, Pricing, and Predictive R2’s

C.5.1 In Sample R2’s, green characteristics from Refinitiv

R2 F1 F1-F2 F1-F3 F1-F4 F1-F5 F1-G1

Entire Asset Universe
Total 22.35 31.15 31.99 33.72 35.98 36.44
Predictive 0.83 0.85 0.85 1.17 1.31 1.32
Pricing 4.27 28.21 28.21 32.98 36.13 37.09

Consumer Staples
Total 11.2 13.58 14.51 16.44 21.63 21.52
Predictive 0.31 0.32 0.31 0.6 0.85 0.78
Pricing -25.81 -32.77 -39.64 -41.08 -39.66 -39.37

Health Care
Total 5.92 13.59 13.9 18.34 19.95 20.11
Predictive 0.61 0.63 0.62 1.09 1.3 1.28
Pricing 1.35 19.17 18.64 24.31 24.82 26.27

Financials
Total 33.74 40.6 41.99 42.77 44.91 46.08
Predictive 1.32 1.34 1.33 1.36 1.44 1.41
Pricing -16.48 30.66 34.69 35.86 42.48 39.51

Energy
Total 28.41 37.03 39.14 39.07 39.19 41.33
Predictive -0.05 -0.06 -0.06 -0.15 -0.4 -0.31
Pricing 11.52 24.33 23.37 13.71 13 18.73

Basic Materials
Total 26.74 35.06 36.12 36.35 37.86 38.28
Predictive 0.67 0.67 0.68 0.81 0.85 0.85
Pricing 20.58 33.68 34.45 37.63 36.45 35.82

Telecommunications
Total 11.92 17.17 17.71 20.13 21.67 21.59
Predictive 0.5 0.51 0.51 0.58 0.52 0.44
Pricing 3.01 23.71 22.97 18.78 18.74 17.13

Consumer Discretion
Total 24.76 33.6 34.38 35.61 37.72 37.76
Predictive 1 1.02 1.01 1.43 1.6 1.62
Pricing 10.9 35.24 37.39 41.58 46.67 47.82

Industrials
Total 28.7 40.34 40.74 41.54 44.68 44.39
Predictive 1.23 1.25 1.26 1.69 2.06 2.02
Pricing 14.19 43.11 42.09 50.88 59.29 58.28

Utilities
Total 7.07 9.02 10.42 11.31 26.38 27.99
Predictive 1.09 1.09 1.09 1.44 1.69 1.78
Pricing -17.85 5.62 5.49 10.82 24.22 29.15

Technology
Total 14.37 28.49 28.47 32.4 34.35 34.65
Predictive 1.03 1.06 1.06 1.9 2.29 2.36
Pricing -0.28 35.24 34.23 49.47 54.4 55.65

Real Estate
Total 35.95 43.05 44.11 45.7 49.69 49.73
Predictive 1.03 1.05 1.04 1.25 1.08 1.09
Pricing 15.35 32.07 25.2 29.55 20.01 24.68

Table C.5: This table shows the in-sample R2 for the specification with 10 financial characteristics and 4 green
characteristics from Refinitiv. The financial characteristics are the same used by Langlois (2021) built following
Freyberger et al. (2020) and are: market capitalization, total assets, investment, β, book to market, dividend yield, lagged
monthly return, momentum, idiosyncratic volatility, ROE. The green characteristics are: ESG rating, environmental score,
emissions score and carbon intensity (CO2 emissions scope 1 and 2 normalized by revenues) divided in the two
components, namely sectorial and adjusted.
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C.5.2 In Sample R2’s, green characteristics from MSCI

R2 F1 F1-F2 F1-F3 F1-F4 F1-F5 F1-G1

Entire Asset Universe
Total 18.68 32.37 33.22 35.63 37.74 38.25
Predictive 0.93 0.88 0.89 1.19 1.32 1.33
Pricing 3.46 30.59 26.88 35.09 37.16 37.55

Consumer Staples
Total 8.86 14.44 14.2 16.74 23.57 23.4
Predictive 0.5 0.47 0.49 0.86 1.13 1.11
Pricing -2.12 -10.33 -16.4 -19.84 -18.01 -20.59

Health Care
Total 5.08 13.11 13.09 18.4 19.9 20.08
Predictive 0.55 0.51 0.52 0.94 1.17 1.16
Pricing 3 17.55 14.05 19.67 20.05 20.77

Financials
Total 29.97 42.54 44.35 44.98 46.83 48.16
Predictive 1.28 1.24 1.23 1.13 1.08 0.97
Pricing -21.89 36.56 31.63 33.11 37.97 34.37

Energy
Total 23.6 39.16 41.31 42 42.42 44.79
Predictive 0.01 0.04 0.04 -0.08 -0.35 -0.23
Pricing 18.53 33.45 30.24 24.21 23.57 28.14

Basic Materials
Total 23.29 37.7 38.75 39.02 40.39 40.48
Predictive 0.93 0.89 0.91 1.1 1.15 1.12
Pricing 21.07 48.69 46.91 57.35 59 54.9

Telecommunications
Total 9.86 16.84 16.72 20.57 22.16 22.69
Predictive 0.55 0.54 0.54 0.55 0.54 0.43
Pricing -8.45 18.9 14.2 17.08 18.9 17.36

Consumer Discretion
Total 19.78 35.32 36.04 38.18 39.82 39.82
Predictive 1.23 1.17 1.17 1.63 1.77 1.77
Pricing 8.42 40.28 38.91 49.15 51.78 52.58

Industrials
Total 23.54 41.57 42.43 43.51 46.45 46.34
Predictive 1.29 1.22 1.25 1.59 1.98 1.95
Pricing 2.96 42.58 37.67 55.58 63.21 61.78

Utilities
Total 5.07 6.72 9.39 11.16 26.04 27.24
Predictive 1.2 1.18 1.2 1.38 1.47 1.71
Pricing -34.32 7.66 -0.4 19.92 31.6 37.87

Technology
Total 11.89 28.67 28.24 34.03 36.02 36.24
Predictive 1.17 1.06 1.1 2.03 2.54 2.63
Pricing -5.93 27.02 20.28 45.37 48.56 49.75

Real Estate
Total 31.06 47.19 48.8 50.54 53.13 53.18
Predictive 1.16 1.11 1.1 1.26 1.12 1.17
Pricing 19.37 38.86 30.73 35.13 25.74 31.22

Table C.6: This table shows the in-sample R2 for the specification with 10 financial characteristics and 5 green
characteristics. The financial characteristics are from Refinitiv and are the same used by Langlois (2021) built following
Freyberger et al. (2020) and are: market capitalization, total assets, investment, β, book to market, dividend yield, lagged
monthly return, momentum, idiosyncratic volatility, ROE. The green characteristics are 4 from MSCI ESG IVA and 1
from Refinitiv: ESG rating, environmental score, emissions score and carbon intensity (CO2 emissions scope 1 and 2
normalized by revenues) divided in the two components, namely sectorial and adjusted carbon intensity.
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C.5.3 Out of Sample R2’s, green characteristics from Refinitiv

R2 F1 F1-F2 F1-F3 F1-F4 F1-F5 F1-G1

Entire Asset Universe
Total 18.51 27.72 29.24 31.02 32.81 33.27
Predictive 0.76 0.41 0.25 0.72 1.07 1.08
Pricing -28.83 -2.25 -3.55 13.87 17.63 18.7

Consumer Staples
Total 8.57 10.74 12.34 14.29 18.78 18.63
Predictive 0.12 -0.05 -0.3 0.03 0.23 0.14
Pricing -95.36 -105.63 -112.07 -106.29 -101.99 -100.74

Health Care
Total 4.03 11.13 13.95 16.83 17.64 17.86
Predictive 0.58 0.24 0.18 0.85 1.14 1.13
Pricing -18.74 0.52 0.74 16.57 19.71 20.29

Financials
Total 34.54 43.64 43.92 44.41 47.48 48.95
Predictive 1.62 1.13 0.91 0.85 1.39 1.36
Pricing 0.03 36.75 30.13 48.31 55.26 54.59

Energy
Total 27.63 35.17 37.49 37.88 37.54 39.76
Predictive -0.26 -0.21 -0.58 -0.46 -0.58 -0.5
Pricing 7.67 10.51 3.63 -7.33 -9.69 -3.16

Basic Materials
Total 22.65 30.39 31.21 32.54 33.09 33.47
Predictive 0.26 0.11 -0.1 0.15 0.48 0.45
Pricing -22.41 -0.55 3.85 17.46 20.79 20.77

Telecommunications
Total 9.16 11.89 13.66 15.5 17.3 17.72
Predictive 0.8 0.54 0.46 0.78 0.92 0.86
Pricing -23.39 -4.52 -4.22 0.54 0.02 -0.98

Consumer Discretion
Total 19.32 29.64 31.15 32.87 34.36 34.36
Predictive 0.91 0.55 0.39 0.98 1.28 1.29
Pricing -42.31 -2.7 -0.02 27.69 32.81 33.18

Industrials
Total 23.28 36.97 37.23 38.62 40.95 40.58
Predictive 1.21 0.6 0.45 0.86 1.81 1.75
Pricing -40.74 -0.54 -3.46 21.42 30.85 29.27

Utilities
Total 7.22 5.54 7.14 8.63 24.02 22.45
Predictive 1.33 1.06 0.93 1.48 1.88 1.95
Pricing -71.85 -39.13 -46.35 -14.6 4.2 9.87

Technology
Total 9.19 22.48 23.83 27.91 29.5 29.84
Predictive 1.13 0.49 0.48 1.54 2.24 2.36
Pricing -67.18 -16.19 -17.06 19.63 24.93 26.71

Real Estate
Total 29.66 38.99 40.51 41.47 45.98 46.06
Predictive 0.65 0.53 0.42 0.78 0.43 0.45
Pricing 19.09 30.5 25.42 30.04 24.2 27.46

Table C.7: This table shows the out-of-sample R2 for the specification with 10 financial characteristics and 5 green
characteristics from Refinitiv. The financial characteristics are the same used by Langlois (2021) built following
Freyberger et al. (2020) and are: market capitalization, total assets, investment, β, book to market, dividend yield, lagged
monthly return, momentum, idiosyncratic volatility, ROE. The green characteristics are: ESG rating, environmental score,
emissions score and carbon intensity (CO2 emissions scope 1 and 2 normalized by revenues from ESG Refinitiv - Asset 4)
divided in the two components, namely sectorial and adjusted carbon intensity. The out-of-sample estimation is
performed with expanding window over the period 2007.01 - 2019.12. The first estimation window consists in the first 4
years of the sample.
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C.5.4 Out of Sample R2’s, green characteristics from MSCI

R2 F1 F1-F2 F1-F3 F1-F4 F1-F5 F1-G1

Entire Asset Universe
Total 15.42 30.52 31.08 33.88 35.57 36.05
Predictive 0.82 0.39 0.28 0.92 1.03 1.03
Pricing -15.62 13.16 8.01 20.8 21.61 22.19

Consumer Staples
Total 7.57 13.11 12.93 16.43 21.67 21.74
Predictive 0.59 0.34 0.09 0.67 0.63 0.63
Pricing 1.99 -0.06 -6.33 -7.54 -6.48 -5.3

Health Care
Total 3.76 12 12.11 18.01 18.47 18.69
Predictive 0.53 0.22 0.13 0.81 1.01 1.03
Pricing -19.54 -2.12 -6.98 2.32 2.41 2.73

Financials
Total 30.3 44.84 46.09 46.35 49.83 51.65
Predictive 1.45 0.92 0.65 0.8 0.79 0.69
Pricing 13.94 49.56 41.4 51.34 53.31 53.38

Energy
Total 22.39 38.86 40.35 40.84 40.75 43.12
Predictive -0.16 -0.45 -0.48 -0.36 -0.52 -0.44
Pricing 10.75 18.93 13.96 3.69 2.88 6.44

Basic Materials
Total 19.98 35.55 36.23 36.78 37.69 37.8
Predictive 0.59 0.15 0.02 0.5 0.57 0.52
Pricing -41.58 9.24 4.98 21.44 23.94 22.36

Telecommunications
Total 8.22 13.68 13.62 17.92 19.32 19.86
Predictive 0.63 0.39 0.41 0.59 0.63 0.52
Pricing -28.95 -2.71 -10.47 -8.6 -7.88 -8.47

Consumer Discretion
Total 15.33 33.53 34.4 36.56 37.63 37.51
Predictive 1.09 0.63 0.56 1.39 1.44 1.44
Pricing -16.69 26.74 25.46 44.07 44.64 44.76

Industrials
Total 18.15 39.43 39.76 41.26 43.41 43.24
Predictive 1.2 0.62 0.47 1.29 1.71 1.66
Pricing -33.8 18.19 10.75 39.85 44.78 43.45

Utilities
Total 5.02 3.5 4.56 7.33 24.79 23.83
Predictive 1.36 1.11 0.91 1.42 1.35 1.59
Pricing -77.68 -30.66 -42.85 -2.17 15.13 18.15

Technology
Total 7.89 24.94 24 31.45 32.75 32.88
Predictive 1.1 0.52 0.42 1.79 2.3 2.41
Pricing -50.52 -8.6 -16.54 19.2 19.85 20.45

Real Estate
Total 26.03 45.43 46.45 48.12 51.66 51.56
Predictive 0.91 0.55 0.49 0.97 0.47 0.49
Pricing 41.64 47.05 40.31 38.97 35.89 38.65

Table C.8: This table shows the out-of-sample R2 for the specification with 10 financial characteristics and 5 green
characteristics. The financial characteristics are from Refinitiv and are the same used by Langlois (2021) built following
Freyberger et al. (2020). The green characteristics are 4 from MSCI ESG IVA and 1 from ESG Refinitiv (Asset 4). The
financial characteristics are: market capitalization, total assets, investment, β, book to market, dividend yield, lagged
monthly return, momentum, idiosyncratic volatility, ROE. The green characteristics are: ESG rating, environmental score,
environmental weight, emissions score. In addition we add carbon intensity (CO2 emissions scope 1 and 2 normalized by
revenues from ESG Refinitiv - Asset 4) divided in the two components, namely sectorial and adjusted carbon intensity.
The out-of-sample estimation is performed with expanding window over the period 2007.01 - 2019.12. The first
estimation window consists in the first 4 years of the sample.
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C.6 Out-of-sample Sharpe ratio of the maximum Sharpe ratio
portfolio

F1 F1:F2 F1:F3 F1:F4 F1:F5 F1:F5 + G1

MSCI -0.17 -0.68 -0.73 0.62 1.29 1.34

Refinitiv 0.01 -0.41 -0.62 0.23 1.14 1.14

Table C.9: This table shows the annualized Sharpe ratio of the out-of-sample maximum Sharpe ratio portfolio that can be obtained by an optimal
linear combination of of the factors which are ultimately portfolio of individual stocks. Column i− th, with i = 1, 2, ..., 6, shows the Sharpe ratio
obtained by using only the first i-th factors; the first 5 are financial factors, whereas the 6−th is the green factor. We perform this analysis both for the
Refinitiv and MSCI specifications.

C.7 R2 Hedging Climate risk

Engle et al. Faccini, Matin, Skiadopoulos Ardia et al.

WSJ CHNEG US ClimPolicy IntSummit GlobWarm NatDis MCCC

IPCA Factors
Financial factors MSCI 0.009 0.085 -0.017 0.004 0.072 0.096 0.065
Financial and green factors MSCI 0.003 0.101 -0.023 0.108 0.074 0.099 0.058

Financial factors Refinitiv 0.013 0.045 -0.018 -0.013 0.065 0.078 0.03
Financial and green factors Refinitiv 0.01 0.066 -0.025 0.098 0.068 0.095 0.022

Observable Factors
Fama-French 5 -0.005 0.012 0.03 0.025 -0.004 -0.023 -0.017
Fama-French 5 + Ref ESG -0.014 0.004 0.026 0.018 -0.005 -0.008 -0.022
Fama-French 5 + MSCI ESG -0.012 0.022 0.032 0.02 0.01 -0.028 -0.024
Fama-French 5 +GEME -0.014 0.026 0.026 0.023 -0.008 -0.03 -0.026
Fama-French 5 + SAP -0.013 0.013 0.023 0.018 -0.009 -0.004 -0.026

FF5 + IPCA Green factors
Fama-French 5 + green MSCI factor 0.001 0.02 0.03 0.116 0.001 -0.025 -0.023
Fama-French 5 + green Refinitiv factor 0.008 0.024 0.026 0.115 0.003 -0.012 -0.021

Table C.10: This table shows the total adjusted R2 of the regressions of the factors (rows) on the climate risk indexes in the literature (columns). In
bold the highest numbers for each index. These are full-sample regressions.
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