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1. Introduction

The role of options markets and leveraged ETFs on the dynamics of the underlying

stock prices has recently received significant attention, attracting negative press coverage

for potentially contributing to market volatility during already turbulent times. The

trading activity in options was blamed to increase the violent stock swings during the

February-March 2020 Covid-19 selloff. The Wall Street Journal wrote:

“Investors searching for clues on what drove the back-to-back drops in the stock

market are pointing to the options market as a contributor, saying hedging

activity by traders may have exacerbated the decline.”

Wall Street Journal, Feb. 27, 20201

In this paper, we investigate the effects of portfolio rebalancing on the intraday dy-

namics of stock prices at the end of the trading day, arising from two distinct derivative

instruments.

The first channel relates to the options market, where market makers and broker/dealers

provide liquidity to clients who want to take positions in stock options. As they have

institutional incentives to avoid directional exposures, they typically delta-hedge their

positions. Since the option delta changes when the value of the underlying changes, mar-

ket makers need to regularly update their positions to maintain delta neutrality. The

direction of the resulting flows depends on their initial gamma imbalance and the price

movement of the underlying asset. Suppose, for instance, that the price of a stock expe-

riences a positive jump, driven by positive unexpected news about future cash flows. If

the aggregate gamma of market makers is initially negative, maintaining delta-neutrality

requires the purchase of additional shares in the underlying stock. On the contrary, a

positive gamma exposure requires selling the underlying asset. Thus, if the aggregate

gamma of market makers is significantly negative, delta-hedging can give rise to signifi-

cant net buying, contributing to end-of-day momentum. Symmetrically, if the aggregate

gamma imbalance of market makers were positive, delta-hedging would have a stabilizing

effect in the form of an end-of-day reversal.2

1https://www.wsj.com/articles/the-invisible-forces-exacerbating-market-swings-

11582804802
2Derivative markets are by construction in zero net demand since for each option there is a buyer

and a seller. Therefore, the overall dollar value of aggregate gamma for each option is zero across all
purchasers and sellers. However, some market participants are likely not involved in delta-hedging –
think of retail investors or mutual funds – because of different incentives. This implies that the flows
arising by delta-hedging activity may not be trivial.
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The second channel relates to leveraged ETFs, that is, synthetic instruments that

rely on total return swaps, and whose notional principal is a multiple of the value of a

referenced index. Different from a standard ETF, a price appreciation of the underlying

index has the compounded effect of increasing both the referenced portfolio and the

required notional value of the swap. As a consequence, any price change gives rise to

an imbalance between the required and effective notional amount of the swap. The

swap counterparty has to manage her risk exposure, thus potentially inducing a large

rebalancing of the portfolio of physical assets used to hedge the swap (see Section 2.3).

Cheng and Madhavan (2010) argue that the portfolio rebalancing of leveraged ETFs may

have an impact on intraday prices.

Figure 1 illustrates the rebalancing effects caused by delta-hedgers and leveraged

ETFs towards the end of the trading day. The upper panel shows the intraday return

path for Tesla’s stock on 13 December 2012. At the beginning of the day, the aggregate

gamma was positive and economically significant. During the day, Tesla experienced a

negative return equal to−6.62% by 15:30. Based on the information available, the gamma

imbalance implied that delta-hedgers needed to trade an amount equal to 102.11% of the

average dollar trading volume of Tesla shares in the last half-hour. Indeed, a strong price

reversal emerged in the last 30 minutes of the trading day, which is consistent with the

large initial positive gamma imbalance.

An interesting example that relates to the role of leveraged ETFs is provided by the

dynamics of Apple stock on 24 October 2018, see Figure 1 (middle panel). Apple shares

are an important constituent for leveraged ETFs. At the same time, the aggregate gamma

of delta-hedgers was close to zero at the beginning of the trading day. By 15:30, Apple

shares had dropped by −2.24%. As a consequence, leveraged ETF swap counterparties

had to sell large quantities of Apple shares to rebalance their portfolios for an estimated

amount equal to 8.85% of the average trading volume in Apple shares. Possibly as a

result, the price dropped further by −1.22%.

The timing of option delta-hedging and portfolio rebalancing by leveraged ETFs can

be different. Figure 1 (bottom panel) illustrates the potential effect of this heterogeneity

on the price dynamics. On 23 June 2016, the gamma imbalance of delta-hedgers on

Amazon stock options was large and positive. At the market opening, the price dropped

by almost 4%. The implied hedging demand by delta-hedgers required purchasing shares

for approximately 50% of the average dollar volume in the last half trading hour in

Amazon shares. Consistently, the share price started to mean revert at 15:30, albeit not

completely. Leveraged ETF swap counterparties had to rebalance, which caused further

2
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Fig. 1. Delta-Hedging and Leveraged ETF Rebalancing Effects
The figure depicts the effects of delta-hedging and leveraged ETF rebalancing on three days in our
sample for Tesla (TSLA), Apple (AAPL), and Amazon (AMZN) stock, respectively. rpre denotes the
return from the previous day’s close price until 15:30. rend denotes the return from 15:30 to close. ΓHP

is defined in Equation (5) and is the product of rpre and the aggregate gamma imbalance, ΓIB . ΩLETF

is the measure for leveraged ETF rebalancing, defined in Equation (6). ΓHP and ΩLETF are expressed
in relative terms to the average dollar trading volume in the last half hour over the last month.

downward pressure as it emerged shortly before the market closing.

We start our analysis by testing whether the above-described price effects have em-

pirical support. To do so, we build a novel dataset merging data from several options

exchanges, including the identity of all option counterparties, and the portfolio composi-

tion of 72 leveraged ETFs for 24 underlying benchmark ETFs, which represents almost

the whole universe of leveraged ETFs on U.S. equity indexes. After computing the gamma

imbalance of delta-hedgers and the rebalancing demand of leveraged ETFs, we merge with
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NYSE TAQ data to get intraday prices of equity stocks. To the best of our knowledge,

this is is the most comprehensive dataset covering options and leveraged ETFs – both in

the cross-section and in the time series. Confirming previous findings from the literature

(Tuzun, 2014; Shim and Todorov, 2021; Baltussen, Da, Lammers, and Martens, 2021; Ni,

Pearson, Poteshman, and White, 2020), we find that both sources of mechanical flows

are significantly related to stock returns in the last 30 minutes of the trading day. A

standard-deviation increase in Γ depresses end-of-day returns by −113% of the average

return in the last thirty minutes of a trading day, while a standard-deviation increase

in leveraged ETF rebalancing flows increases end-of-day returns by 430% of the average

return in the last half hour. Moreover, the impact of both rebalancing sources is amplified

when controlling for the magnitude of the other.

These results are robust to a battery of control variables suggested in the literature,

such as the trading volume in the option relative to the equity market (Roll, Schwartz,

and Subrahmanyam, 2010), the put/call ratio (Blau, Nguyen, and Whitby, 2014), implied

volatility, the riskiness of the underlying stock, and the release of fundamental news.

Next, we turn our attention to the institutional differences between the two chan-

nels and their implications. On the one hand, leveraged ETFs are subject to a strict

mandate, which requires replicating the underlying index returns at the close multiplied

by a leverage factor on a daily basis. This forces leveraged ETF providers to rebalance

only a few minutes before the end of the trading day, with little room for discretion. On

the other hand, option delta-hedgers enjoy some degree of flexibility with regards to the

timing of their rebalancing strategy. Moreover, while leveraged ETF holdings are fully

disclosed and constant over a single trading day, the intraday inventory of delta-hedgers

potentially changes and is not readily available. These different sets of rules and incen-

tives may generate a heterogeneous degree of information asymmetry regarding flows for

the two channels.

An important empirical contribution of our analysis, therefore, relates to the conse-

quences of disclosing order flow information. By exploiting the institutional differences

of the two channels, we shed light on the relationship between order flow disclosure and

market quality. First, do the transparency of leveraged ETFs and the predictability of

their flows lead to enhanced liquidity provision or does it attract predatory trading? How

does this affect the speed of reversal of stock prices after the liquidity shocks? Second,

how do the effects of the two sources of mechanical order flow evolve over time? Do

liquidity providers improve their ability to accommodate shocks over time? And does

such a learning process depend on the availability of information on flows?
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We begin by investigating how quickly option delta-hedgers actively hedge following

a large price shock in the underlying. If the large movement has occurred early during

the trading day, we find that the hedging activity is almost immediate. In contrast, the

rebalancing activity of leveraged ETFs is unrelated to intraday jumps and takes place

almost exclusively at the end-of-day. We note that these results can explain why the

regression coefficient on leveraged ETFs flow is almost four times larger than its options-

based counterpart. Leveraging on a numerical simulation, we show that the wedge may

result from the measurement errors on our proxy for gamma imbalance – arising from

the discretion of the rebalancing strategy of delta-hedgers.

Next, we show that the price effects of both channels are on average fully reversed,

but with heterogeneous speed. While leveraged ETF-induced price pressure evaporates

at the next-day opening, that arising from delta-hedging is significantly longer-lived and

requires almost a full trading day to be reversed. We also find that for leveraged ETFs

the price impact coefficient is lower for larger flows, while it does not change significantly

for gamma-related flows. As in Brøgger (2021), we interpret these findings as evidence of

enhanced liquidity provision for the more predictable leveraged ETF-based flows.

Finally, we exploit the length of our sample to analyze the time-series evolution and

persistence of the two channels, using rolling-window regressions. The findings clearly in-

dicate that the magnitude of the price effects stemming from leveraged ETFs is declining

over time, being barely statistically significant in the last part of the sample. On the con-

trary, the importance of gamma-induced price effects is persistent throughout the sample

and, if anything, has been increasing over time. The high and increasing fragmentation

of the U.S. options market potentially causes the difference in the statistical performance

over time, as it hinders market participants from constructing a precise measure of the

true inventory positions of delta-hedgers.

Overall, these results suggest that liquidity providers can better identify shocks coming

from leveraged ETFs, thus incrementally limiting their impact on asset prices over time.

On the contrary, the price effects due to gamma imbalances and delta-hedging of options

exposures persist throughout the sample, suggesting that liquidity provision is impeded

by information asymmetry.

Related Literature

Our work relates to several streams of the literature. The first concerns the role of

order flow information disclosure in microstructure dynamics (Madhavan, 2000). A num-
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ber of theoretical works suggest that transparency is positively associated with market

quality. Forster and George (1992) and Benveniste, Marcus, and Wilhelm (1992) model

the effects of anonymity in financial markets and show that spreads and price impact are

lower when dealers are partially informed about the direction of liquidity trades. Admati

and Pfleiderer (1991) propose a model of sunshine trading, showing that liquidity traders

who can pre-announce their order flow enjoy better liquidity provision but increase ad-

verse selection costs for others who cannot. Other models, however, argue in favor of

opaqueness. For instance, Madhavan (1995) provides a theoretical setting featuring mar-

ket segmentation where large institutional investors benefit from non-disclosure of their

liquidity trades. The empirical evidence on the subject has not yet settled the issue.

Porter and Weaver (1998) study the effects of increased transparency on the Toronto

Stock Exchange, concluding that spreads widen after an increase in transparency. Gem-

mill (1996), analyzes the consequences of an increase in post-trade transparency on the

London Stock Exchange, finding no significant impact on market liquidity. By exploit-

ing the heterogeneous impact of two sources of mechanical intraday rebalancing, our

results shed new light on the issue, providing evidence that order flow transparency leads

to better liquidity provision. We argue that, as the institutional mandate of leveraged

ETFs forces them to act under full transparency, they collectively enjoy a positive equi-

librium with lower spreads during their rebalancing operations. Conversely, the freedom

of options delta-hedgers to partially control their rebalancing strategy generates a less

desirable equilibrium with higher transaction costs and reduced price efficiency.

The second stream studies the feedback effects of options trading on the underly-

ing stock price dynamics. The literature generally distinguishes between two channels

through which options trading may have an impact on the price of the underlying. Hu

(2014) provides evidence that the information found in market makers’ initial delta-

hedges can significantly affect the price dynamics of the underlying.3 However, a non-

informational channel may also be at work: Ni, Pearson, and Poteshman (2005) and

Golez and Jackwerth (2012) document that rebalancing and unwinding of option market

makers’ delta hedges on or very close to expiration drive the prices of individual stocks

and stock index futures towards option strike prices on option expiration dates. Lately,

Ni et al. (2020) analyze the effects of Γ-imbalance on absolute returns and the autocor-

relation of returns, based on theoretical models that predict a negative relation between

3Other studies advocating an informational channel are, among others, Easley, O’Hara, and Srinivas
(1998), Pan and Poteshman (2006), Ni, Pan, and Poteshman (2008), Cremers and Weinbaum (2010),
Roll et al. (2010), Johnson and So (2012), and Ge, Lin, and Pearson (2016).
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stock volatility and Γ-imbalance.4 Whereas Ni et al. (2020) resort to daily data, Barbon

and Buraschi (2020) concentrate on intraday price dynamics. They find that Γ-imbalance

is negatively related to intraday volatility and document that Γ-imbalance can affect the

frequency and magnitude of flash crashes. Baltussen et al. (2021) show that end-of-day

momentum in many futures contracts concentrates on days with negative Γ-exposure of

option market makers. Finally, Chordia, Kurov, Muravyev, and Subrahmanyam (2021)

propose a risk-based channel. The authors show that net buying pressure in index puts

on the International Securities Exchange positively predicts subsequent S&P 500 index

returns and trace the predictability to the purchase of protection when uncertainty is

high.

A different, but related stream of the literature studies the effects of the inventory of

option market makers. Gârleanu, Pedersen, and Poteshman (2009) have provided path-

breaking work on how demand pressure affects option prices. A closely related study is

by Fournier and Jacobs (2020). Johnson, Liang, and Liu (2016) investigate the forces

behind the use of S&P 500 index options and conclude that unspanned crash risk drives

much of their demand. Relatedly, Jacobs and Mai (2020) find a tight link between prices

and demand in S&P 500 and VIX options. Chen, Joslin, and Ni (2019) infer financial

intermediary constraints via deep out-of-the-money index put options. The authors show

that a tightening of intermediary constraints is accompanied by option expensiveness and

broker-dealer deleveraging.

A third stream focuses on the effects of (leveraged) ETF ownership on the constituent

stocks. Ben-David, Franzoni, and Moussawi (2018) show that stocks with higher ETF

ownership exhibit higher volatility, as liquidity shocks caused by short-horizon traders in

the ETF can be transmitted to the underlying stocks by an arbitrage mechanism. Shum,

Hejazi, Haryanto, and Rodier (2016) show that the rebalancing flows of leveraged ETFs

amplify end-of-day volatility in the period from 2006 to 2011.

Another part of the literature studies intraday return patterns. We find high-frequency

return continuation in the cross-section of stock returns, consistent with the evidence

provided by Gao, Han, Zhengzi Li, and Zhou (2018) and Baltussen et al. (2021). Both

studies focus on aggregate investment vehicles, such as ETFs and index Futures. Gao

et al. (2018) show that their effects are stronger on days with elevated volatility, which

are typically also accompanied by higher trading volume. In the cross-section of stocks,

we confirm the finding of Komarov (2017) that stocks performing best in the first half

4For a theoretical foundation, see among others Frey and Stremme (1997), Frey (1998), Sircar and
Papanicolaou (1998), Platen and Schweizer (1998), Wilmott and Schönbucher (2000).
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of the day will likely lose in the second half if controlled for market returns. Another

study on short-term return reversals is Heston, Korajczyk, and Sadka (2010). The authors

show that the returns of a half-hour period have predictive power over the same half-hour

periods for up to 40 days in the future when controlling for the impact of the market. They

relate this to the usage of trade mechanisms by institutional traders, designed to limit the

relative price impact of their orders. More recently, studies link investor heterogeneity on

the stock level to cross-sectional intraday and overnight return variations. Lou, Polk, and

Skouras (2019) hypothesize that different investor types trade predominately at different

times throughout the trading day. Empirically, the authors document high persistence in

overnight and intraday return components, which they find not on a single-stock basis,

but also for 14 equity strategies such as size, value or profitability. Bogousslavsky (2020)

focuses only on intraday returns and finds that a mispricing factor earns positive returns

up to the last half hour, consistent with the idea that arbitrageurs trading on mispricing

reduce their positions at the end of the trading day.

Finally, the last stream focuses on the U.S. equity market closing auction. Bogous-

slavsky and Muravyev (2020) show that the share of daily volume in the closing auction

has more than doubled from 2010 to 2018. They attribute the increase in trading vol-

ume to the rise of indexing and ETFs. Wu and Jegadeesh (2020) examine the price

impact, including ts temporary component, of closing auctions. Trading strategies based

on market-on-close imbalances generate outsized returns.

2. Data and Measurements

To conduct our empirical analysis we source data from several databases, including

information for single stocks, single-name options, and leveraged ETFs. By merging these

data sources we obtain a unique dataset allowing us to measure flows coming from the

hedging of options and rebalancing of leveraged ETFs to study their potential impact on

stock prices.

2.1. Data Sources

Options Market. The first dataset merges option data from five different exchanges:

(a) the CBOE C1 exchange, (b) NASDAQ GEMX (GEMX), (c) NASDAQ International

Security Exchange (ISE), (d) NASDAQ Options Market (NOM), and (e) NASDAQ PHLX

(PHLX). The dataset includes information on signed trading volume, the underlying
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stock, and the category of the counterparties engaged in the trade.

Each of the five exchanges provides four categories of volume for each option series:

open buy, open sell, close buy, and close sell. Each category is further broken down into

different types of market participants: broker/dealer, proprietary, and customer.5 For

each type of market participant, we sum the buy and sell trades to estimate the long and

short open interest at the trader-type level. The five exchanges sum up to a substantial

proportion of the equity options market, delivering the most comprehensive coverage

available at the moment. Nonetheless, we do not cover volume outside of these exchanges

and OTC options trading. We also gather daily bid and ask quotes, implied volatility,

trading volume, open interest, and Greeks for each option contract from OptionMetrics.

As individual stock options are of American type, OptionMetrics uses binomial trees to

compute implied volatility and Greeks.

Leveraged ETFs. We obtain information on all leveraged ETFs on U.S. equity indexes

from ETFGlobal including the leverage amount, the benchmark index referenced by the

fund and the assets under management of each leveraged ETF at the daily frequency. We

compute the constituents of the benchmark index of each leveraged ETF and use TAQ

data to calculate intraday returns of each selected benchmark referenced by the leveraged

ETF.

Table OA3.1 in the Online Appendix provides an overview of the properties of lever-

aged ETFs included in our sample. On average, we consider 72 leveraged ETFs for 24

underlying benchmark indices, with a cross-sectional distribution that is fairly stable over

time. On average, 45% of the funds we consider are inverse or bear funds. Weighted by

the AUM (VW), this number drops to 33%, but fluctuates substantially over time, with

a proportion of just 16% at the 10th percentile and 63% at the 90th. The average fund

is leveraged by an absolute value of 2.35.

Stock Market. Information on individual equity stocks is obtained from the Center for

Research on Security Prices (CRSP) and includes trading volume, shares outstanding,

and closing prices. We restrict our analysis to stocks with CRSP share codes 10 and 11,

and exchange codes 1, 2, 3, 31, 32, and 33. Information on any type of distribution (e.g.

dividends and stock splits) is also obtained from CRSP. We match data from CRSP with

our options data via the matching algorithm provided by WRDS.

High-frequency Data on Underlying Assets. Intraday stock price data and transaction

volumes are obtained from TAQ. We use standard cleaning procedures and match intraday

5In 2009, the type of professional customer has been introduced alongside the customer. We merge
professional customers with customers.
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trade prices with CRSP to obtain PERMNOs as unique identifiers. More details are given

in Online Appendix OA1. Equipped with intraday prices, we calculate intraday returns

relative to the previous day’s closing price. Following standard practice in the literature,

(see Lou et al., 2019), we assume that corporate events that mechanically impact prices,

e.g. dividend payments and stock splits, take place overnight and are realized at the time

of the first trade on the target date. If a delisting occurs as reported by CRSP, we assume

that the delisting amount is realized at the respective day’s close.

To summarize, our sample across optionable stocks and leveraged ETFs comprises

1,882,332 stock-day observations from January 2012 through December 2019.6

2.2. Measuring Gamma Hedging Pressure

Let V (t, S) denote the value of an option contract and ∆(t, S) = ∂V (t,S)
∂S

be the first

derivative of the option price with respect to the underlying, whereas Γ(t, S) = ∂2V (t,S)
∂S2

measures the change of ∆(t, S) for changes in S. When Γ(t, S) is not zero, ∆(t, S)

changes depending on time to maturity and the level of S and, consequently, any hedging

position has to be adjusted periodically. If Γ(t, S) is large in absolute terms, ∆(t, S) is

very sensitive to movements in the underlying and it implies a large amount of rebalancing

for the market maker to remain delta-neutral.

Since option market makers and broker/dealers have similar hedging incentives, we

classify both as “delta-hedgers”. Consequently, we categorize proprietary and customers

as non-delta-hedgers and refer to them jointly as “end-customers” in the remainder of

the paper.

To obtain the gamma imbalance of delta-hedgers, we proceed as follows. Let OIBuy,Io,t

be the open interest of investors of type I in long positions in option o at time t, which

is related to daily volume as follows (see Ni et al., 2020):

OIBuy,Io,t = OIBuy,Io,t−1 + V olumeOpenBuy,Io,t − V olumeCloseSell,Io,t (1)

OISell,Io,t = OISell,Io,t−1 + V olumeOpenSell,Io,t − V olumeCloseBuy,Io,t , (2)

where V olumeOpenBuy,Io,t and V olumeOpenSell,Io,t denote the volume from investors type I to

open new long and short option positions, and V olumeCloseBuy,Io,t and V olumeCloseSell,Io,t

6To appear in the sample, each stock has to be optionable and included in one or more leveraged
ETFs.
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refer to volumes with which investors of type I closed existing long and short positions,

respectively.

Second, we calculate the delta-hedgers’ net open interest in option series o at date t’s

close as

netOIo,t = −
[
OIBuy,Customero,t −OISell,Customero,t +OIBuy,Proprietaryo,t −OISell,Proprietaryo,t

]
,

(3)

where netOIo,t is measured in units of option contracts and OID,Io,t is the open interest

of direction D (either buy or sell) by market participant type I (either customer or

proprietary) in option series o at the close of date t. The net open interest of market

makers is the opposite of the sum of the remaining market participant types. Assuming

that broker/dealers are also delta-hedgers yields Equation (3).

Let Γo(t, S) denote the gamma of option series o on stock j at day t and underlying

price S, expressed in shares of the underlying.7 To compute the day t delta-hedger dollar

gamma imbalance in option series o, we take the product of Γo(t, S) with the stock price

S at 15:30 on the target day and multiply by the contract multiplier Multo of o (typically

Multo = 100).8

To obtain the aggregated gamma imbalance on an underlying stock j for trading day

t, denoted by ΓIBj,t , we compute the sum over all options on the underlying:

ΓIBj,t =

(∑
o

netOIo,t−1 × Γo(t− 1, Sclosej,t−1)× S15:30
j,t ×Multo

)
︸ ︷︷ ︸

(?)

×
Sclosej,t−1

100
× 1

ADVend
j,t−1

. (4)

The term (?) in Equation (4) denotes the total dollar gamma imbalance for a given

stock at day t. It is the dollar amount delta-hedgers need to trade in the underlying

for each one-dollar move in the underlying stock price S. By multiplying (?) by the

underlying price divided by 100, we obtain the dollar gamma imbalance for a one percent

move in S. This facilitates comparison over time and in the cross-section. Finally, we scale

by the average dollar volume in the last half hour of a trading day, ADVend
t−1, computed

over the last month. Thereby, we express the delta-hedgers’ gamma imbalance in a given

stock as a fraction of the typical trading taking place in the last half hour, which allows

7OptionMetrics calculates the gamma of an option as the absolute change in delta given a $1.00
change in the underlying.

8Since we cannot observe intraday variations of the net open interest, we assume that Γ(t, S) only
changes due to innovations in the stock price. We hence use the observed stock price at 15:30 on day t
to compute the best possible estimate of the amount to be traded by delta-hedgers.
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us to obtain a timely proxy for the potential price impact of hedging adjustments.

ΓIBj,t denotes the amount of hedging market makers would have to do for a 1%-move

in the underlying stock j at time t. We combine this measure with information on how

much the underlying has moved before the start of the hedging window. The return from

the close of day t− 1 to the start of the hedging window at 15:30 is denoted as rpre
j,t . The

percentage hedging pressure is thus the interaction between ΓIBj,t and rpre
j,t :

ΓHPj,t = 100× ΓIBj,t × r
pre
j,t . (5)

ΓHP is our main variable of interest. It directly captures the amount of hedging required

for delta-hedgers to remain delta-neutral after observing intraday return rpre.

2.3. Measuring Leveraged ETF Rebalancing Pressure

To understand how leveraged ETFs may contribute to intraday price momentum, let

L be the fund’s leverage factor, say −3 for a bear and +3 for a bull fund, and At the

leveraged ETF’s assets under management (AUM). The required notional amount of total

return swaps at day t is St = L×At. Hence, if the return on the index at time t+1 is rbencht+1 ,

then At+1 = At× (1+L×rbencht+1 ). Therefore, the required notional amount of total return

swaps at t+ 1 becomes St+1 = L×At+1 = L×At× (1 +L× rbencht+1 ). However, the actual

exposure of the total return swaps at t+1 is Et+1 = St×(1+rbencht+1 ) = L×At×(1+rbencht+1 ).

The difference between the required and the actual notional is the rebalancing amount,

equal to St+1−Et+1 = L× (L−1)×At×rbencht+1 . Given that the required hedging multiple

L × (L − 1) is strictly positive for L ∈ R \ [0, 1], leveraged ETF swap counterparties

always have to trade in the same direction as the return of the underlying index, which

may induce an end-of-day return momentum effect in the stocks included in the index

referenced by the leveraged ETF.9 Unlike the gamma imbalance effect, hedging demand

by leveraged ETFs for a given stock is not necessarily proportional to the return of that

specific stock but, rather, to the return of the underlying index. Therefore, leveraged

ETFs rebalancing may induce return momentum in a stock, even if its return in the first

part of the trading day is zero.

To compute the amount of rebalancing affecting an individual stock, let stock j be

9We assume that returns swap providers (or their counterparties) ultimately need to hold a quantity
of the underlying stock proportional to the size of the swap contract. If some of the swaps are based on
other instruments or on correlated assets, this would introduce noise in our proxy and bias our results
toward zero.
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included in the underlying of a leveraged ETF i with a weight of wi,j,t on day t. If the

swap counterparty starts rebalancing their exposure at 15:30, and rpre
i,t;bench denotes the

return on the benchmark ETF up until that moment, the relative amount of rebalancing

required in stock j is the sum over all leveraged ETFs in which stock j is included in:

ΩLETF
j,t =

∑Ni,t
i=1 Li × (Li − 1)× Ai,t−1 × wi,j,t−1 × rpre

i,t;bench

ADVend
j,t−1

(6)

We scale by the average dollar volume in the last half hour (ADVend
t−1) to compare the

impact of rebalancing with the average amount of trading at the end of the trading day.

2.4. Summary Statistics

In this section, we provide summary statistics for the gamma hedging pressure and

leveraged ETF rebalancing quantity.
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Fig. 2. Time Series Cross-sectional Distribution of ΩLETF and ΓHP

This figure shows weekly averages of the cross-sectional distribution of the demand pressure from the
rebalancing of leveraged ETFs (ΩLETF ) and Gamma imbalance (ΓHP ). The dark line represents the
cross-sectional median, the dark-colored area the 25th/75th percentile, and the light-colored area the
5th/95th percentile.

Figure 2 shows the cross-sectional distribution of ΩLETF over time and compares it

with the distribution of ΓHP . While both are time-varying, the distribution of ΓHP is
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wider, with a larger interquartile range, suggesting that on the same day delta-hedgers

can have a large negative gamma imbalance on some stocks and, at the same time, a large

positive gamma imbalance on another stock. Table A1 in the Appendix provides more

granular summary statistics on ΓHP and ΩLETF . Table A1 shows that the aggregate

pressure arising from leveraged ETFs is on average higher than the one from delta-

hedging, but the distribution of absolute ΓHP has a heavy right tail.

Table 1: The Cross-Section of Demand Pressure from Gamma and Leveraged ETF Rebal-
ancing
This table reports the average daily number (N) and percentage (Share) of stocks with a combined re-
balancing amount in the last 30 minutes of the trading day exceeding a certain threshold (first column),
as a percentage of the average dollar volume. The fourth column (% Gamma) reports the proportion
of the total demand pressure due to the Gamma imbalance ΓHP relative to the combined rebalancing
amount: |ΓHP |/(|ΓHP |+ |ΩLETF |). Additionally, the table reports the average mean (Mean), standard
deviation (Std), and 10%- and 90%-percentile of the share of the combined rebalancing amount condi-
tional on exceeding the specified level. The sample contains stocks that are optionable and included in
the benchmark index of at least one leveraged ETF. The sample period is from January 2012 – December
2019.

N Share % Gamma Mean Std 10% 90%

1% 601.7 60.23% 49.95% 5.11 8.29 1.30 9.81

2% 354.4 35.48% 55.76% 7.68 10.41 2.86 13.67

5% 182.6 18.28% 63.01% 12.07 13.72 5.47 20.28

10% 69.5 6.95% 71.86% 21.23 19.63 10.83 34.30

15% 34.0 3.41% 76.47% 30.50 24.34 16.43 48.97

25% 12.5 1.25% 80.91% 49.00 31.88 28.92 76.72

50% 3.4 0.34% 84.75% 94.33 44.86 72.69 122.20

Table 1 documents the economic significance of the demand pressure arising from

the rebalancing activity of the leveraged ETFs and the delta hedging activity in the

options market. The second column reports the average number of stocks in the joint

sample for which the combined dollar rebalancing amount due to both channels exceeds

a certain threshold of the average dollar volume in the last 30 minutes of the trading

day (ADVend), depicted in the first column. We find that, on average, for 69 (12) stocks

the combined rebalancing amount exceeds the 10% (25%) threshold. For these stocks,

the average rebalancing dollar amount is equal to 21.23% (49.00%) of ADVend. The

cross-sectional dispersion is large and for stocks in the 90th percentile (last column)

the average rebalancing dollar amount exceeds 34.30% (76.72%) of the total end-of-day

trading volume. The fourth column provides information about the relative importance
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of each channel. The majority of the rebalancing amount is driven by ΓHP . For the

group exceeding a rebalancing threshold of 10% (25%), 71.86% (80.91%) of the average

absolute combined rebalancing originates from the hedging activity of option market

makers. Moreover, the share of ΓHP in the combined rebalancing amount is monotonically

increasing in the threshold level, suggesting that the demand pressure from this channel

dominates for large total rebalancing flows.

2.5. Abnormal Order Flow

We define the abnormal order flow in the last 30 minutes of trading day t for stock j

as

RSVOLend
j,t = SVOLend

j,t /ADVend
j,t−1 . (7)

SVOLend
j,t is the difference between the trading volumes in up- and down-minutes, defined

as

SVOLendj,t =
∑

m∈ 15:30→Close

VOLj,t,m × 1rj,t,m>0 −
∑

m∈ 15:30→Close

VOLj,t,m × 1rj,t,m<0, (8)

where m denotes the minutes within the hedging window for target day t.10

3. Empirical Results

3.1. Main Results

Consider the case in which ΓIBj,t for stock j at time t is negative. If delta-hedgers want

to maintain delta-neutrality, they have to sell the underlying stock if it has depreciated

intraday, leading to additional momentum. Instead, for a positive ΓIBj,t , the delta-hedgers

have to buy the underlying stock, trading against its previous price change, which gives

rise to intraday reversals. Following Equation (6), rebalancing of the swap portfolios

replicating the exposure of leveraged ETFs will always be in the same direction as the

previous movement of the benchmark ETF, potentially leading to momentum for a large

number of stocks. Another important difference between the two rebalancing sources is

in the cross-section. Since ΓHP can greatly differ across stocks even on the same day t,

the effect is inherently stock-specific. For ΩLETF in contrast, all stocks that belong to

10We scale by ADVend
t−1 to make the signed volume comparable across stocks and over time.
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the same benchmark index are exposed to the same price pressure, proportional to their

weighting in the index.

In Table 2, we investigate the impact of the rebalancing activity of delta-hedgers and

leveraged ETF swap counterparties on the order-flow and returns of individual stocks in

the last half hour before the close. To do so, we employ two types of panel regressions:

RSVOLend
j,t = β0r

pre
j,t + β1ΓHPj,t + β2ΩLETF

j,t + FEj + FEt + εj,t,

(9)

rend
j,t = β0r

pre
j,t + β1ΓHPj,t + β2ΩLETF

j,t + FEj + FEt + εj,t. (10)

including asset (FEj) and date fixed effects (FEt).
11 Standard errors are double-clustered

by day and asset, and return observations weighted by the stock’s market capitalization

in the previous month to rule out that our results are driven by microstructure issues in

small stocks.

Table 2: Impact of Delta-Hedging and Leveraged ETF Rebalancing
The table reports the results to regressing the returns in the last half hour of a trading day on returns until
15:30 (rpre), on option hedging pressure ΓHP and leveraged ETF rebalancing quantity ΩLETF following
Equation (9). T-statistics are in parentheses below and are computed using time-and-entity-clustered
standard errors. ***, **, * denotes significance at the 1%, 5%, 10% level. We include entity-fixed effects
in all specifications and value-weight observations. The sample period is 2012 – December 2019.

(1) (2) (3) (4) (5)

Dependent RSVOLend
t rend

t RSVOLend
t rend

t rend
t

ΓHPt -9.438** -9.464*** -10.960***

(-2.116) (-4.709) (-5.521)

ΩLETF
t 109.572*** 43.394*** 46.738***

(5.450) (4.797) (5.198)

rpre
t -1.263*** -0.757*** -1.512*** -0.902*** -0.820***

(-5.111) (-6.907) (-5.640) (-8.139) (-7.452)

Observations 1,882,332 1,882,332 1,882,332 1,882,332 1,882,332

R2 (%) 0.141 0.284 0.234 0.325 0.370

Entity FE Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j]

11In Appendix C, we add control variables Xj,t to Equation (9) to rule out that neither informational
channels nor risk-based explanations are driving our results.
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Gamma Hedging Pressure Column (1) shows that ΓHP negatively impacts RSVOLend
t

with a coefficient of −9.44 (t-value: −2.12), which establishes a significant link between

the gamma-induced trading activity of delta-hedgers and end-of-day order flow. At the

same time, this additional directed volume has a direct impact on end-of-day returns

(column 2). Specifically, the slope coefficient of ΓHP is negative and highly significant

at −9.46 (t-value: −4.71), suggesting that a negative shock to ΓHP (additional buying

pressure) amplifies end-of-day returns. We furthermore control for the impact of other

momentum-based intraday effects by including the previous return from last day’s close

to the start of the supposed hedging window at 15:30. While the estimated slope coef-

ficient is negative and significant, its inclusion does not materially change the estimated

impact of ΓHP on end-of-day returns.

In Online Appendix OA7, we mitigate concerns that investors might trade options

based on past information which is correlated with future intraday returns. Our results

remain quantitatively and qualitatively the same when replacing ΓHP with an estimate

based on older option inventories of delta-hedgers following Ni et al. (2020).

Leveraged ETFs If the rebalancing pressure from leveraged ETFs is sufficiently large,

we should find that it positively relates to end-of-day order flow, as well as returns.

Column (3) shows how a positive shock to ΩLETF clearly leads to additional buying

pressure at the close. The slope coefficient is estimated at 109.57 and is highly significant

(t-value: 5.45). The ensuing buying pressure also translates to higher end-of-day returns

with a coefficient of 43.40 (t-value: 4.80), as shown in column (4).

Joint Rebalancing The two rebalancing channels may affect closing stock returns in

different ways. In the example reported in the Introduction, for instance, an investor

considering only gamma hedging flows would have predicted positive returns for Amazon

on June 23rd, 2016, given the large and negative magnitude of ΓHP . Had she also known

about the significant amount of expected selling from leveraged ETFs, she may have

revised her prediction.

In column (5) of Table 2 we estimate a model accounting for the two channels jointly,

resulting in increases of both coefficients in absolute magnitude to −10.96 for ΓHP and

47.74 for ΩLETF , both of which are significant at the 1%-level. A one standard deviation

decrease in ΓHP is associated with a 113% increase in the magnitude of end-of-day returns

relative to the stock-level mean return during that period, while a standard deviation

increase in ΩLETF corresponds to an increase of 430%.
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Fig. 3. Year-by-Year Rebalancing Flows
The figure shows the estimated overall absolute rebalancing flows from leveraged ETFs and option delta-
hedging for each year in the sample in billion USD.

We find that a shock to the buying pressure coming from leveraged ETF rebalancing

flows is estimated to impact end-of-day returns of a target stock two to four times as

much as a similarly-sized shock from option delta-hedgers. But how do the estimated

rebalancing amounts stack up when considered across all stocks in the universe of op-

tionable stocks, which are also included in leveraged ETFs? Figure 3 shows the absolute

year-by-year rebalancing amount in billion USD, summed across the entire cross-section

of stocks in our sample. For each year, the total amount that would have to be traded in

the underlying stocks to assure delta-neutrality exceeds that required by leveraged ETF

counterparties. In fact, in most years the total rebalancing flows from delta-hedgers are

at least twice as large. We find that the total trading amount for both rebalancing sources

has increased over time, from approximately 80 billion USD in 2012 for ΓHP to 160 bil-

lion USD in 2019 – a twofold increase. This growth has two reasons: first, the general

growth in options trading. Second, the staggered introduction of weekly options on single

equities, which, due to their short lifespan and corresponding large gamma values, have

a large impact on the overall gamma position of delta-hedgers, potentially prompting

larger rebalancing trading. The total amount of rebalancing from leveraged ETFs has

increased even more dramatically, starting at 35 billion USD in 2012 and growing to 85

billion USD in 2019, which mimics the rapid growth of the industry.

Information Quality of Rebalancing Proxies Why do gamma hedging flows have

a seemingly smaller impact on end-of-day order flow and returns, despite being larger

in terms of USD traded? It is well known that noise in the explanatory variable biases
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regression estimates towards zero, which potentially explains the seemingly smaller one-

to-one impact of gamma rebalancing. In this section, we investigate the role of uncertainty

attached to acquiring the information necessary to determine the amount of rebalancing

flows from option delta-hedgers. As a counterpoint, consider the estimation of the re-

balancing pressure from leveraged ETFs in Equation (6). To quantify ΩLETF we need

to know the leverage factor, the assets-under-management, the return on the benchmark

ETF before hedging begins, and the weight of the target stock in the benchmark ETF.

All of these inputs are readily observable. Furthermore, leveraged ETFs are mandated to

provide a daily multiple exposure to the benchmark, forcing their swap counterparties to

trade near the market close. Consequently, all necessary information to determine their

rebalancing activity is observed with little uncertainty.

In contrast, the information used to quantify the total amount of rebalancing from

delta-hedgers is more uncertain for a number of reasons: first, we only observe approx-

imately 50-70% of the transacted volume in equity options. In fact, the fragmented

exchange landscape of equity options trading contributes to the opacity of rebalancing

flows. Only a fraction of exchanges reports on detailed volume data by type of market

participant, while the remainder is invariably unobservable. Second, delta-hedgers are

not explicitly required to rebalance at the close, but may do so at different times during

the day, or even hold on to some directional risk overnight. Third, the inventory data

provides only an end-of-day snapshot of the delta-hedgers portfolio, which disregards

intraday changes in the gamma imbalance.

To understand the impact of information uncertainty on the estimation of how ΓHP

influences end-of-day returns, we resort to a simulation study, outlined in detail in Ap-

pendix B. Figure 4 shows the results for two levels of π ∈ [10%, 50%], which denotes

the probability that delta-hedgers rebalance at a different time than between 15:30 and

16:00. We also vary the amount of unobserved fluctuation σ(∆) in the empirically ob-

served gamma imbalance, relative to the fluctuation of the true value, which addresses

the influence of intraday shifts in the delta-hedger’s portfolio, as well as the unobserved

portion of the total option inventory.

Given the evidence in Figure 3 that the cumulative amount of rebalancing is much

larger for ΓHP than it is for ΩLETF , we set the true impact of ΓHP on end-of-day returns

to the empirical estimate for ΩLETF of -41 as a conservative estimate in the simulation.

This true value is shown by the green line. We also highlight our empirical estimate of

around −11. The blue line denotes the average estimated coefficient for 1,000 simulations

over 2,000 time steps, the blue-shaded area the 95% confidence bounds.
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Fig. 4. Simulating Error Sources in ΓHP

The figure shows the impact of unobserved fluctuation in the empirical gamma estimate σ(∆) and the
probability with which option delta-hedgers may decide to rebalance their exposure at a different time
than at the close, denoted as π. The setup of the simulation study is outlined in Appendix B. The
green line shows the true slope coefficient of ΓHP in the simulation, which we fix at −41, the black line
highlights our empirical estimate from Table 2. The blue line denotes the average estimated coefficient
for 1,000 simulations over 2,000 time steps, the blue-shaded area the 95% confidence bounds.

For a low level of π = 10% we find that we would require a very high level of σ(∆),

about as high as the fluctuation of its true value. If we increase the probability that

delta-hedgers establish delta-neutrality of their positions at their own discretion and may

deviate from the supposed hedging window at the close to 50%, we find average coefficients

much closer to our empirical estimate of ≈ −11. In fact, an uncertainty level σ(∆) of

around 0.6 generates the empirically-observed impact of ΓHP on end-of-day returns. In

the following section, we empirically investigate the level of discretion of delta-hedgers,

which can severely impede the estimation of its true impact as shown in the simulation.

3.2. Discretionary Rebalancing Times

Intraday jumps potentially present occasions where delta-hedgers are incentivized to

deviate from end-of-day hedging. Consequently, we focus on the price effects of rebalanc-

ing activities following large price movements. We detect price jumps for the underlying

stocks in the case of ΓHP and the benchmark ETF for ΩLETF . For this, we compare the

return in each 30-minute interval of a given trading day with the return distribution of

the same interval over the last year. We denote stock intervals where the returns exceed

the top or bottom 2.5th percentile as jump events. We then record the cumulative return

from the previous day close up to the end of the interval when the jump has occurred
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(rincl. jump
t ) and relate it to the return in the subsequent 30-minute interval (rnext

t ), and

to ΓHP and ΩLETF computed using rincl. jump
t . In Table 3 we separately report results for

jump events occurring either before noon or between noon and 15:00.

As evident in column (1), we find large and significantly negative coefficients for jumps

before noon in the case of ΓHP (−44.42, t-value: −1.98). This suggests that option delta-

hedgers rebalance their exposure shortly after particularly large price movements. We do

not find any effect for jumps in the second part of the trading day. In stark contrast to

these results, the impact for leveraged ETF rebalancing is insignificant and economically

negligible at all times, regardless of whether we consider jumps before or after noon

(columns (3) and (4)).

To further investigate how option delta-hedgers exploit the discretionary nature of

their re-hedging needs, we focus on the gamma imbalance accumulated only after a jump

event. For this, we assume the delta-hedger hedges her accrued exposure right after

the jump, and hedges the remainder once more at the close. The remaining exposure

consequently amounts to

ΓHPj,t = 100× ΓIBj,t−1 × r
after jump
j,t , (11)

where rafter jumps measures the return of the underlying after the identified jump period

until 15:30.

The results reported in columns (5) and (6) in Table 3 provide evidence of end-of-day

rebalancing on identified jump-days only for jumps that happen after noon. In fact, the

pattern of significance and the magnitude of coefficients inversely match the pattern for

the impact of hedging directly after large price movements. Taken together, we conclude

that delta-hedgers tend to rapidly rebalance after early jumps, but decide to wait to

re-hedge after late jump events to take advantage of favorable liquidity patterns at the

close (Lou et al., 2019; Andersen and Bollerslev, 1997).

Although we find substantial evidence that end-of-day rebalancing by delta-hedgers

impacts stock prices, the results presented here highlight the significant uncertainty re-

garding the timing of the rebalancing activity. As the simulation study shows, this

uncertainty introduces errors in the empirical measurement of ΓHP , which attenuates its

estimated impact on end-of-day returns, driving coefficients towards zero.
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Table 3: Rebalancing Flows on Jump Days
The table reports the results to regressing intraday jump returns on returns in the subsequent 30-minute
interval. For ΓHP , we identify jumps in the underlying stock returns. For ΩLETF , we identify jumps
in the benchmark of the leveraged ETF. To detect jumps, we compare each non-overlapping 30-minute
return with returns of the same interval over the last year. If the return is higher (lower) than the 97.5%
(2.5%) percentile, we regard the return as a jump. Next, we record the return from yesterday’s close

until the end of the 30-minute interval, where the jump has occurred (rincl. jump
t ). We collect also the

return of the subsequent 30-minute interval (rnext
t ) on the stock level. In the case of leveraged ETFs, we

select all stocks in leveraged ETFs for which a jump in the benchmark index of the leveraged ETF has
occurred. Jumps can take place before noon or after noon, but before 3pm. Equipped with rincl. jump

t ,
rnext
t , and the intraday return of the benchmark index, we reconstruct ΓHPt and ΩLETFt for each affected

stock j. Subsequently, we run Equation (9). T-statistics are in parentheses below and are computed
using time-and-entity-clustered standard errors. ***, **, * denotes significance at the 1%, 5%, 10% level.
We include entity-fixed effects in all specifications and value-weight observations. The sample period is
January 2012 – December 2019.

(1) (2) (3) (4) (5) (6)

Dependent rnext
t rnext

t rnext
t rnext

t rend
t rend

t

ΓHPt -44.416** 0.251 -34.546 -77.316***

(-1.984) (0.013) (-1.575) (-2.668)

ΩLETF
t -0.220 -0.493

(-0.686) (-0.642)

rincl. jump
t -0.952*** -1.288*** -0.711** -0.266

(-4.240) (-6.311) (-2.083) (-1.561)

rafter jump -0.825*** -1.176***

(-3.678) (-3.955)

Observations 339,552 305,694 500,036 293,872 339,552 305,694

R2 (%) 0.160 0.199 0.057 0.029 0.101 0.112

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j] [t;j]

Jumps Until Pre-Noon After-Noon Pre-Noon After-Noon Pre-Noon After-Noon

3.3. Reversal

If the mechanical rebalancing activities of delta-hedgers and leveraged ETF swap

counterparties move prices sufficiently far from fundamental values, we should observe

a quick reversal of these effects at the next open as other market participants enter the

market and correct these deviations. Consequently, we expect returns on the following

market open to relate positively to ΓHP and negatively to ΩLETF . To test this hypothesis,
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we run the panel regression

rnight
j,t = β0r

end
j,t + β1ΓHPj,t + β2ΩLETF

j,t + FEj + FEt + εj,t, (12)

where rnight
j,t is the return from the close of day t to 10:00 on day t+ 1.

Table 4: Next-Day Reversal
The table reports the results to regressing returns from closure of day t to 10:00 on day t+ 1 on returns
until 15:30, rpre, on option hedging pressure ΓHP and leveraged ETF rebalancing quantity ΩLETF

following Equation (9). We also consider the return from 15:30 of day t to 10:00 on t+ 1, rend+night, and
the 24h return from day t’s 15:30 to day t+ 1’s 15:30, rend+next pre, as dependent variables. T-statistics
are in parentheses below and are computed using time-and-entity-clustered standard errors. ***, **, *
denotes significance at the 1%, 5%, 10% level. We include entity fixed effects in all specifications and
value-weight observations. The sample period is January 2012 – December 2019.

(1) (2) (3) (4) (5)

Dependent rnight
t rnight

t rnight
t rend+night rend+next pre

rpre
t 0.951** 1.268*** 1.057*** 0.235 -0.626

(2.444) (3.126) (2.737) (0.585) (-1.163)

ΓHPt 25.573*** 28.118*** 17.132* 13.316

(3.208) (3.427) (1.844) (1.551)

ΩLETF
t -70.943*** -79.521*** -32.584 -40.628

(-3.382) (-3.634) (-1.515) (-1.402)

Observations 1,882,234 1,882,234 1,882,234 1,882,234 1,879,754

R2 (%) 0.030 0.028 0.040 0.007 0.006

Entity FE Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j]

Table 4 highlights the relatively swift reversal of the impact of ΓHP and ΩLETF : the

coefficient on ΓHP in column (1) is positive at 25.57 (t-value: 3.28), while that on ΩLETF

in column (2) is negative at −70.95 (t-value: −3.38). In column (3), we include both

rebalancing flows jointly and show a magnification of the proposed reversal effects for

both.

In order to assess if the initial price impact is fully reverted over night, we substitute

the overnight return in Equation (12) by the return from 15:30 of day t to 10:00 on

t+ 1, rend+night. A full reversal of the effect would render the impact of ΓHP and ΩLETF

on rend+night insignificant. As column (4) in Table 4 shows, this is the case for ΩLETF .

However, the coefficient on ΓHP is statistically significant at the 10% level, suggesting
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that rebalancing flows from delta-hedgers take more time to be fully reversed. Indeed,

we observe a full reversal effect for the impact of gamma rebalancing when considering

the return from t’s 15:30 to t+ 1’s 15:30, rend+next pre, as shown in column (5).

3.4. Liquidity Provision

How do market participants react when delta-hedgers or leveraged ETF swap coun-

terparties have to trade particularly large quantities of a certain stock? Strategic traders

could engage in predatory trading by amplifying the rebalancing activities from op-

tion delta-hedgers and leveraged ETF swap counterparties (Brunnermeier and Pedersen,

2005). Predators initially buy (sell) the underlying while rebalancing flows exert signif-

icant buying (selling) pressure and unwind their position as the rebalancing concludes.

Contrarily, strategic traders may provide liquidity instead, which Admati and Pfleiderer

(1991) term a sunshine equilibrium. In this scenario, the price impact of rebalancing flows

is minimized.

To investigate how strategic traders react to large rebalancing flows, we augment

Equation (9) with a dummy interaction for days when the rebalancing flow exceeds a

certain percentile:

rend
j,t = β0r

pre
j,t + β1zj,t + β2zj,t × Lj,t,x + FEj + FEt + εj,t, (13)

where z is one of our two proxies for order flow, and Lj,t,x is a dummy variable that is equal

to 1 if the absolute magnitude of the respective rebalancing flow of stock j exceeds the

xth cross-sectional percentile. We consider three thresholds for x, i.e, x ∈ {95, 97.5, 99}.
Columns (1) to (3) of Table 5 report the results for ΓHP , whereas columns (4) to (6)

do so for ΩLETF . The estimated coefficients for the interaction terms are positive, but

not statistically significant for ΓHP , implying that we neither find evidence in favor of

predatory trading nor in favor of a sunshine equilibrium. On the contrary, the estimated

coefficients for ΩLETF rebalancing flows are negative and highly significant for large flows

that exceed the 95th percentile of ΩLETF . We find a monotonic increase in β2 in the

threshold used to identify large leveraged ETF rebalancing flows. This pattern is consis-

tent with a sunshine equilibrium in the spirit of Admati and Pfleiderer (1991), in which

other market participants accommodate the liquidity needs by large rebalancing flows

from leveraged ETFs.

Table D3 in the Appendix provides supporting evidence using the change in the bid-

ask spread of individual stocks. A shock to the absolute value of ΓHP prompts market
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Table 5: Liquidity Provision Around Large Rebalancing Flows
The table reports the results to regressing returns in the last half hour of a trading day on returns
until 15:30 on delta-hedging and leveraged ETF rebalancing flows including dummy variables for large
rebalancing flows. Lj,t,x is a dummy variable that is equal to 1 if the size of the respective rebalancing
flow of stock j exceeds the xth cross-sectional percentile of the absolute rebalancing flow. We consider
three thresholds for x, i.e, x ∈ {95, 97.5, 99}. T-statistics are in parentheses below and are computed
using time-and-entity-clustered standard errors. ***, **, * denotes significance at the 1%, 5%, 10% level.
We include entity-fixed effects in all specifications and value-weight observations.

(1) (2) (3) (4) (5) (6)

Dependent rend
t rend

t rend
t rend

t rend
t rend

t

ΓHPt -11.588*** -11.294*** -10.333***

(-3.407) (-4.358) (-4.114)

ΓHPt × Lt,x 2.828 3.252 2.696

(1.081) (1.373) (0.855)

ΩLETF
t 57.027*** 53.729*** 49.683***

(4.803) (5.230) (5.672)

ΩLETF
t × Lt,x -22.267** -26.226*** -30.561***

(-2.327) (-2.725) (-3.111)

rpre
t -0.754*** -0.753*** -0.755*** -0.909*** -0.908*** -0.908***

(-6.905) (-6.902) (-6.894) (-8.212) (-8.183) (-8.187)

Observations 1,882,332 1,882,332 1,882,332 1,882,332 1,882,332 1,882,332

R2 (%) 0.284 0.285 0.284 0.334 0.335 0.333

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j] [t;j]

xth perc. 95.0 97.5 99.0 95.0 97.5 99.0

makers in the underlying stock to increase the corresponding spreads in advance. In

contrast, we find no such evidence for rebalancing flows from leveraged ETFs. Together

with the results regarding large flows in Table 5, we find convincing evidence in favor of

a better liquidity provision for the flows of leveraged ETF counterparties, driven by a

greater transparency on their timing and of their magnitude. Conversely, market makers

in the underlying stocks face the risk of adverse selection from the flows of option market

makers due to their opaque nature and discretionary timing.
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3.5. Trading Strategies

Next, we quantify the economic significance of these frictions by studying trading

strategies that use ΓHP and ΩLETF as timing signals. First, we construct a long-short

portfolio based on ΓHP . On each trading day at 15:30, we sort our stock sample according

to ΓHP into decile portfolios. Subsequently, we build a long-short strategy, denoted by

LmHΓ, by taking a long (short) position in the lowest (highest) decile portfolio. We

close our positions at the market close of the same trading day, such that the strategy

is active for only 30 minutes each day. In the second strategy, HmLΩ, we use ΩLETF as

a timing signal. We construct decile portfolios based on ΩLETF and take a long (short)

position in the highest (lowest) decile. Finally, we use both ΓHP and ΩLETF as signals

in a combined strategy. For each stock at 15:30, we sort our stock sample according to

their aggregate imbalance ΩLETF − ΓHP into decile portfolios and subsequently build a

long-short strategy, denoted by HmLΓ,Ω.

Table 6: ΓHP and ΩLETF Based Trading Strategies
The table reports the economic value of timing the last half-hour market return using using ΓHP ,
ΩLETF and a joint signal based on both. The ΓHP -strategy, LmHΓ, takes a long (short) position in
a stock when the stock’s ΓHP is in the lowest (highest) decile. The ΩLETF -strategy, HmLΩ, takes a
long (short) position in a stock when the stock’s ΩLETF is in the highest (lowest) decile. The combined
strategy, HmLΓ,Ω, computes a cross-sectional rank according to ΓHP and ΩLETF and takes a long (short)
position in a stock when the stock’s aggregated ranking is in the highest (lowest) decile. As a benchmark,
Marketend denotes investing in all stocks from 15:30 to 16:00. Portfolios are value-weighted, including
for Marketend. For each strategy, we report the average return (Avg ret), standard deviation (Std dev),
Sharpe ratio (Sharpe), Sharpe ratio assuming an effective spread of 25% of the quoted bid-ask spread (Net
Sharpe), skewness, kurtosis, and success rate (Success). The returns are annualized and in percentage.
Newey and West (1987) robust t-statistics are in parentheses, and significance at the 1%, 5%, or 10%
level is denoted by ***, **, or *, respectively. The sample period is January 2012 – December 2019.

Avg ret Std dev Sharpe Net Sharpe Skewness Kurtosis Success

LmHΓ 5.20*** 1.36 3.83 1.76 0.17 3.00 61.07

HmLΩ 5.78*** 2.31 2.51 0.05 0.13 3.54 56.29

HmLΓ,Ω 6.63*** 1.54 4.29 1.77 0.27 2.80 62.70

Marketend -1.39 3.26 -0.43 -0.43 -1.05 12.27 51.92

Table 6 reports summary statistics of the resulting strategies using value-weighted

portfolios. LmHΓ yields an average total excess return equal to 5.20% per year which are

significant at the 1%-level. Although HmLΩ yields a slightly higher average total excess

return per year, 5.78%, LmHΓ exhibits a higher Sharpe ratio (3.83 vs. 2.51). Similarly,

we observe higher success ratios for LmHΓ compared to HmLΩ (61% vs. 56%).
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The combination of the two signals ΩLETF and ΓHP reduces the noise and improves the

success ratio with an increase in the average return to 6.62% per year, which is significant

at the 1%-level. Consistent with this, the combined strategy exhibits the highest (gross)

Sharpe ratio of 4.29 and a success rate of 62%. It is notable that the skewness of the three

strategies are positive, compared to the negative skewness of the return on the market.
12

Table 7: Risk-adjusted Returns of ΓHP and ΩLETF Trading Strategies
The table reports the estimation results from regressing returns of strategies timing the last half-hour
based on ΓHP , ΩLETF and a combination of both on the returns of all stocks from 15:30 to 16:00
(Marketend), the equity market excess return (MKT), size (SMB), book-to-market (HML), profitability
(RMW), investment (CMA), momentum (MOM), and an intermediary capital asset pricing factor (IC,
proposed by He et al., 2017). The ΓHP -strategy, LmHΓ, takes a long (short) position in a stock when the
stock’s ΓHP is in the lowest (highest) decile. The ΩLETF -strategy, HmLΩ, takes a long (short) position
in a stock when the stock’s ΩLETF is in the highest (lowest) decile. The combined strategy, HmLΓ,Ω,
computes a cross-sectional rank according to ΓHP and ΩLETF and takes a long (short) position in a
stock when the stock’s aggregated ranking is in the highest (lowest) decile. Portfolios are value-weighted.
Newey and West (1987) robust t-statistics are in parentheses, and significance at the 1%, 5%, or 10%
level is denoted by ***, **, or *, respectively. The sample period is January 2012 – December 2019.

Intercept Marketend MKT SMB HML RMW CMA MOM IC R2 R2 adj

LmHΓ 5.21 0.01 0.03% -0.02%

(9.37***) (0.42)

4.84 1.24 1.11 0.46 2.89 0.89 2.13 0.72 0.88% 0.45%

(7.99***) (1.00) (0.88) (0.27) (1.58) (0.31) (2.10**) (0.86)

HmLΩ 5.77 -0.01 0.02% -0.03%

(6.07***) (-0.30)

6.22 0.24 0.93 -1.11 -4.98 1.03 -4.06 -1.04 0.72% 0.29%

(5.87***) (0.09) (0.42) (-0.36) (-1.27) (0.25) (-2.87***) (-0.61)

HmLΓ,Ω 6.66 0.02 0.2% 0.1%

(10.24***) (1.82*)

6.30 3.05 0.19 -0.38 -0.02 4.79 1.30 -0.02 1.10% 0.70%

(8.70***) (2.62***) (0.12) (-0.19) (-0.01) (1.55) (1.14) (-0.02)

Because of the significant turnover ratio required in such a strategy, it is important

to investigate the potential impact of transaction costs if an trader were to implement

such a strategy. We assume an effective spread of 25% of the quoted bid-ask spread

at 15:30 as a measure for transaction costs. As evident from Table 6, we find that the

trading strategy based on ΓHP continues to yield high risk-adjusted performance with a

net Sharpe ratio of 1.76. On the other hand, the net Sharpe ratio for HmLΩ is reduced

to 0.05. The strategy that combines the two signals HmLΓ,Ω generates the highest net

12To put this in context, Jiang, Kelly, and Xiu (2020) use convolutional neural networks on price path
images to predict the future return direction. They achieve a success rate of up to 53.6%.
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Sharpe ratio, which is equal to 1.77. This confirms that the economic frictions generated

by these two channels jointly are indeed economically significant, although ΓHP plays a

greater role.

How much of these strategies’ end-of-day returns are explained by exposure to well-

established risk factors? Table 7 summarizes the results of regressing LmHΓ, HmLΩ,

and HmLΓ,Ω on the end-of-day market return (Marketend) and the full-day Fama-French

five-factor model (Fama and French, 2015), augmented by a momentum as well as an

intermediary capital asset pricing factor (He et al., 2017).13 We find that neither the

market nor the augmented five-factor model can explain the returns of LmHΓ, HmLΩ,

and HmLΓ,Ω. The R2 is small on average. The only factor that is statistically significant

for the joint strategy is MKT, the other factors in the extended five-factor model are

not significant. Notwithstanding the statistical importance of MKT, the alphas of these

regressions are statistically significant and virtually unchanged and account for almost

the entire average gross excess return.
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Fig. 5. Rolling Regressions
The figure shows the absolute t-statistics of estimated ΓHP and ΩLETF coefficients over time, as mea-
sured on a rolling basis for each three year-period starting in January 2012. Specifically, we estimate
Equation (9) for the first three years in our sample, shift the starting and end date by one day and repeat
this for all days in the sample (January 2012 – December 2019).

13Data on the Fama-French five-factor model and the momentum factor is taken from
Kenneth French’s website, https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_

library.html, whereas data on the intermediary capital asset pricing factor is obtained from Zhiguo He’s
website, https://voices.uchicago.edu/zhiguohe/data-and-empirical-patterns/intermediary-

capital-ratio-and-risk-factor/.
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Fig. 6. Market Share of Option Exchange Volume
The figure shows the annual share of transacted volume in equity options on each U.S. options exchange.
The market share is given for the five option exchanges in our sample (PHLX, CBOE, NOM, ISE, and
GEMX), as well as the three largest exchanges among the remainder (AMEX, ARCA, and BZX). Rest
combines volumes on exchanges BOX, BXO, C2, EDGX, EMLD, MERC, MIAX, and PEARL. The upper
part of the figure shows the percentage of ΓHP variance explained by the first two principal components
across all option exchanges in our sample on a year-by-year basis. PC1 and PC2 denote the first and
second principal component, respectively.

3.6. The Evolution of the Imbalance and its Price Impact

We investigate how the price impact of ΓHP and ΩLETF changed over time by running our

baseline regression using a rolling window of three years. Figure 5 displays the absolute

t-statistics of the coefficients for ΓHP (blue line) and for ΩLETF (green line). We find that

the statistical significance of ΓHP has stayed nearly unchanged until the end of 2016 and

has since then further increased. On the other hand, the estimated significance for ΩLETF

has decreased over time. Figure E1 in Appendix E shows that the difference in statistical

significance over time is also reflected in the performance of the timing strategies based

on ΓHP and ΩLETF .

A probable reason for the difference in the statistical performance over time lies in the

high fragmentation of the U.S. options market, which reduces the availability and quality

of information about the inventory positions of delta-hedgers.14 This limits the ability of

arbitrageurs to construct a precise measure of the rebalancing demand of delta-hedgers.

Figure 6 shows the year-by-year market share for the five exchanges in our sample, as

well as the three largest remaining exchanges, measured by volume in 2019. The figure

shows a trend towards higher dispersion of option volumes across exchanges. This was

helped by the opening of new exchanges in recent years, which allows market makers to

14See Andersen, Archakov, Grund, Hautsch, Li, Nasekin, Nolte, Pham, Taylor, and Todorov (2021)
for a current account on the history of the U.S. options market.
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strategically hide information about their inventory positions. At the start of the sample,

there were nine active option exchanges; since then, seven new exchanges have been

opened (Andersen et al., 2021). These new exchanges represent about a fifth of the entire

volume in equity options in 2019. Moreover, not all option venues provided information

useful to approximate the inventory of delta-hedgers. For example, AMEX and ARCA,

which correspond to roughly 30% of traded options volume at the start of our sample,

started reporting a detailed breakdown of option volumes in March of 2022 (NYSE, 2022).

The latter informational friction can be mitigated if option inventories of delta-hedgers are

highly correlated across option exchanges. We run a principal component decomposition

of the gamma imbalance across the option exchanges for which we observe the data. We

find that the first principal component can explain between 67% and 84% of the total

variance of the gamma imbalance. The second principal component explains between

14% and 22%, suggesting that information from multiple exchanges is indeed needed to

obtain a precise proxy of the aggregate gamma imbalance. We also find that the average

3-year rolling correlations range from 30% to 80% and are decreasing for ISE and CBOE

over time (see Figure OA4.1). These results suggest the presence of an informational

friction that may explain why the abnormal excess returns earned by strategies based on

ΓHP have been large and persistent.

4. Conclusion

A growing literature focuses on cross-sectional intraday return variation, linking it to

investor heterogeneity on the stock level. In this paper, we provide novel insights into how

derivative markets add to cross-sectional variation towards the end of the trading day.

By drawing upon a unique dataset merging data from several exchanges identifying types

of market participants in U.S. stock options and the portfolio composition of U.S. equity-

focused leveraged ETFs, we document large price pressure on end-of-day returns when

option market makers engage in delta-hedging and leveraged ETF swap counterparties

rebalance their positional exposure.

We show that delta-hedging and leveraged ETF rebalancing exert an economically

large price pressure on end-of-day returns. Whereas leveraged ETFs contribute to a

basket-wide momentum effect, delta-hedging can either have a stabilizing effect in the

form of end-of-day reversal, but may also exaggerate intraday momentum. The direction

is determined by the previous return of the underlying and the aggregate option inven-

tory of market makers. Moreover, our results reveal that option market makers have
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discretion on the execution of their hedging strategies, especially after intraday jumps.

On the contrary, leveraged ETF swap counterparties are required to establish the target

exposure of the fund at the close. This institutional flexibility translates into information

asymmetry faced by liquidity providers, constituting a friction for liquidity provision.

Consistent with the assumption that the impact of rebalancing is mechanical in nature,

we also document that it is transitory, as the effects fully reverse during the next trad-

ing day. Such a reversal materializes in a shorter time frame for leveraged ETFs price

pressure than for that induced by gamma imbalances.

We finally show that the effect of option market imbalances is persistent over the

years, while that of leveraged ETFs is significantly decreasing, further suggesting a key

role of information asymmetry as the main friction underlying their dynamics.
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Gârleanu, N., Pedersen, L. H., Poteshman, A. M., 2009. Demand-Based Option Pricing.

Review of Financial Studies 22, 4259–4299.

He, Z., Kelly, B., Manela, A., 2017. Intermediary asset pricing: New evidence from many

asset classes. Journal of Financial Economics 126, 1–35.

Heston, S. L., Korajczyk, R. A., Sadka, R., 2010. Intraday patterns in the cross-section

of stock returns. Journal of Finance 65, 1369–1407.

Holden, C. W., Jacobsen, S., 2014. Liquidity measurement problems in fast, competitive

markets: Expensive and cheap solutions. Journal of Finance 69, 1747–1785.

Hu, J., 2014. Does option trading convey stock price informationα. Journal of Financial

Economics 111, 625–645.

Jacobs, K., Mai, A. T., 2020. The role of intermediaries in derivatives markets: Evidence

from vix options. Working paper.

Jiang, J., Kelly, B. T., Xiu, D., 2020. (re-) imag (in) ing price trends. Chicago Booth

Research Paper .

Johnson, T., Liang, M., Liu, Y., 2016. What Drives Index Options Exposures?*. Review

of Finance 22, 561–593.

Johnson, T. L., So, E. C., 2012. The option to stock volume ratio and future returns.

Journal of Financial Economics 106, 262–286.

Komarov, O., 2017. Intra-day momentum. Working paper.

Lou, D., Polk, C., Skouras, S., 2019. A tug of war: Overnight versus intraday expected

returns. Journal of Financial Economics 134, 192–213.

Madhavan, A., 1995. Consolidation, fragmentation, and the disclosure of trading infor-

mation. Review of Financial Studies 8, 579–603.

Madhavan, A., 2000. Market microstructure: A survey. Journal of financial markets 3,

205–258.

34



Moskowitz, T. J., Ooi, Y. H., Pedersen, L. H., 2012. Time series momentum. Journal of

Financial Economics 104, 228 – 250, special Issue on Investor Sentiment.

Ni, S. X., Pan, J., Poteshman, A. M., 2008. Volatility information trading in the option

market. Journal of Finance 63, 1059–1091.

Ni, S. X., Pearson, N. D., Poteshman, A. M., 2005. Stock price clustering on option

expiration dates. Journal of Financial Economics 78, 49–87.

Ni, S. X., Pearson, N. D., Poteshman, A. M., White, J., 2020. Does Option Trading

Have a Pervasive Impact on Underlying Stock Prices? Review of Financial Studies 34,

1952–1986.

NYSE, 2022. Nyse options open/close volume summary client specification. Tech. report.

Pan, J., Poteshman, A. M., 2006. The Information in Option Volume for Future Stock

Prices. Review of Financial Studies 19, 871–908.

Platen, E., Schweizer, M., 1998. On feedback effects from hedging derivatives. Mathe-

matical Finance 8, 67–84.

Porter, D. C., Weaver, D. G., 1998. Post-trade transparency on nasdaq’s national market

system. Journal of Financial Economics 50, 231–252.

Roll, R., Schwartz, E., Subrahmanyam, A., 2010. O/s: The relative trading activity in

options and stock. Journal of Financial Economics 96, 1 – 17.

Shim, J. J., Todorov, K., 2021. Etfs, illiquid assets, and fire sales. Working paper.

Shum, P., Hejazi, W., Haryanto, E., Rodier, A., 2016. Intraday share price volatility and

leveraged etf rebalancing. Review of Finance 20, 2379–2409.

Sircar, K. R., Papanicolaou, G., 1998. General black-scholes models accounting for in-

creased market volatility from hedging strategies. Applied Mathematical Finance 5,

45–82.

Tuzun, T., 2014. Are leveraged and inverse etfs the new portfolio insurers? In: Paris

December 2014 Finance Meeting EUROFIDAI-AFFI Paper .
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Appendix A. Detailed Summary Statistics on ΓHP and

ΩLETF

Table A1 provides detailed summary statistics on the main variables of interest in the

main paper.

Table A1: Summary Statistics
The table reports means, standard deviations, and quantiles for the gamma, leveraged ETF variables
and returns used in the regression models. The descriptive statistics are first computed for each day
and subsequently averaged across all days. rpre, rnight and rend are denoted in basis points. ADVend is
given in million USD. RSVOLend, ΓIB , ΓHP , ΩLETF and their corresponding absolute values are given
percentage. The sample period is from January 2012 to December 2019.

Mean Std 2.5% 10% 25% 50% 75% 90% 97.5%

rpre 4.75 203.33 -379.68 -187.53 -81.11 4.67 89.38 194.47 394.41

rend 0.02 35.56 -73.4 -38.44 -17.9 -0.53 17.21 38.98 77.24

rnight 4.16 167.3 -249.0 -117.38 -50.88 2.97 57.01 125.12 267.0

ADVend 21.72 59.1 0.25 0.78 2.19 6.79 19.94 47.4 136.93

RSVOLend 0.56 41.86 -86.08 -48.77 -23.39 0.49 24.45 50.03 87.63

ΓIB 0.52 3.0 -3.96 -1.32 -0.26 0.08 0.93 2.91 6.99

|ΓIB| 1.45 2.67 0.0 0.03 0.14 0.55 1.67 3.76 8.03

ΓHP 0.04 3.27 -7.0 -2.25 -0.48 0.0 0.51 2.37 7.28

|ΓHP | 1.61 2.86 0.0 0.02 0.1 0.48 1.75 4.51 10.38

ΩLETF 0.15 1.79 -2.97 -1.72 -0.86 0.1 1.11 2.08 3.48

|ΩLETF | 1.65 1.75 0.03 0.16 0.42 1.03 2.37 3.92 6.25

ΩLETF − ΓHP 0.11 3.81 -7.99 -3.29 -1.27 0.1 1.52 3.56 8.1

|ΩLETF − ΓHP | 2.64 3.14 0.05 0.22 0.61 1.63 3.48 6.25 11.43
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Appendix B. Errors in Measuring ΓHP – A Simula-

tion Study

We simulate returns from last day’s close to 15:30 (rpre) and during the last half

hour of a trading day (rend), as well as the true Gamma imbalance of market makers for

N = 1000 stocks, over a total of T = 2000 time steps, mirroring the eight years of daily

data in our sample.

We allow the delta-hedger to deviate from hedging at the close. She will hedge during

a different time with probability π, i.e. p ∼ Bern(π), such that the true Gamma hedging

pressure for stock j on day t equals

ΓHPj,t (∗) = rpre
j,t × ΓIBj,t (∗)× p,

where rpre
j,t ∼ N (0, σpre = 0.08). The choice of whether the market maker hedges end-of-

day is inherently unobservable to other market participants. At the same time, ΓIB(∗)
may only be approximated with the market maker’s inventory measured at the end of

the last trading day. Intraday changes in the Gamma profile are likewise unobservable.

Consequently, the empirically-observed hedging pressure is measured with error:

ΓHPj,t = rpre
j,t × (ΓIBj,t (∗) + εΓ)j,t,

where εΓ ∼ N [0, σ∆ × (σpre + σpost)
√

2], such that the standard deviation is scaled as a

fraction of the variation of the true but unobservable ΓIB(∗).
Next, imply a direct relationship between end-of-day returns and ΓHP (∗),

rend
j,t = βΓ(∗)× ΓHPj,t (∗) + εpost

j,t ,

with εpost ∼ N (0, σpost) and σpost = 0.04. We set the true slope coefficient βΓ(∗) to −41,

mimicking the impact of leveraged ETF rebalancing. Empirically, we can estimate the

impact of Gamma rebalancing on end-of-day returns only through the noisy proxy ΓHP :

rend
j,t = βΓ × ΓHPj,t + εpost

j,t ,

We are consequently interested in how the degree of noise (σ∆) and probability of dis-

cretionary trading at a different time than the close (π) impact the empirical estimate of

the slope coefficient, βΓ. Results to this are shown in Figure 4.
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Appendix C. Controlling for Risk- and Information-

based Alternative Explanations

The unveiled empirical relationship may be consistent with alternative hypotheses. In

particular, it may arise from intraday oscillations in the level of risk, for volatility-target

investors might rebalance their portfolio away from risky assets towards the end of the

trading day if volatility changes, generating directional order flow. Since option demand

is also a positive function of investors expectations about future volatility, changes in risk

may impact the inventory of market makers and, potentially, their Γ imbalance. These

two observations may generate a mechanical and negative relationship between gamma

imbalance and order-flow, driven by the dynamics of expected volatility.

To rule out the above explanations, specifications in columns (1) to (3) in Table C2 add

controls for proxies of expected volatility, namely the level of the at-the-money implied

volatility (IV ) on day t − 1 and forecasts of future variance using an EGARCH model,

R̂V
end

and R̂V
pre

. The EGARCH models the sum of 1-minute squared returns for each

stock in the last half hour of a trading day, using historical data up until day t− 1 (see

Moskowitz, Ooi, and Pedersen, 2012).

Results show that neither of these two controls is significant, nor does the inclusion

of either materially alter the coefficient and statistical significance of ΓHP and ΩLETF .

Besides risk-based explanations, our findings may arise from information being trans-

mitted from the options market to the market of the underlying. A stream of the literature

argues that options are often used because of their implicit leverage in presence of market

frictions, for instance when short selling is expensive (Ge et al., 2016). Accordingly, Blau

et al. (2014) find that an increase in the put-call ratio negatively predicts future returns

at the daily, weekly, and monthly frequency. Roll et al. (2010) and Hu (2014) show

that the option-to-stock volume predicts options’ underlying returns. We thus extend

the baseline regression to control for these explanatory variables. Columns (4) and (5)

summarize the results and show that the coefficients on ΓHP and ΩLETF are unchanged

both in magnitude and significance, suggesting that our results are not driven by an

information channel.
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Table C2: Controlling for Risk-based and Informational Channels
The table reports the results to regressing the returns in the last half hour of a trading day on returns until
15:30 (rpre), on options market maker hedging pressure ΓHP and leveraged ETF rebalancing quantity

ΩLETF following Equation (9). IVt−1 denotes implied volatility at time t−1. R̂V
end

t (R̂V
pre

t ) denote the
square root of predicted realized variance for the time period from 15:30 to 16:00 (from previous day’s
close to 15:30) on day t. PCt−1 is the put-call-ratio and O/S$

t−1 denotes the option-to-stock volume
in dollar terms. T-statistics are in parentheses below and are computed using time-and-entity-clustered
standard errors. ***, **, * denotes significance at the 1%, 5%, 10% level. We include entity-fixed effects
in all specifications and value-weight observations. The sample period is 2012 – 2019.

(1) (2) (3) (4) (5) (6)

Dependent rend
t rend

t rend
t rend

t rend
t rend

t

ΓHPt -10.925*** -10.958*** -10.938*** -10.961*** -10.961*** -10.914***

(-5.513) (-5.522) (-5.507) (-5.521) (-5.523) (-5.503)

ΩLETF
t 46.832*** 46.768*** 46.790*** 46.755*** 46.738*** 46.835***

(5.208) (5.202) (5.198) (5.195) (5.198) (5.204)

rpre
t -0.822*** -0.820*** -0.820*** -0.820*** -0.820*** -0.821***

(-7.460) (-7.453) (-7.452) (-7.453) (-7.452) (-7.454)

IVt−1 4.463*** 4.040***

(5.079) (5.086)

R̂V
pre

t 19.132 -28.421*

(1.065) (-1.754)

R̂V
end

t 414.582*** 336.520***

(3.156) (2.777)

PCt−1 0.005 -0.003

(0.030) (-0.019)

O/S$
t−1 255.550 100.469

(0.782) (0.321)

Observations 1,882,332 1,882,236 1,882,236 1,879,828 1,882,327 1,879,753

R2 (%) 0.388 0.371 0.380 0.370 0.370 0.393

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j] [t;j]
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Appendix D. Liquidity Provision: Evidence from Spreads

This appendix provides additional evidence of impeded liquidity provision for Gamma

rebalancing flows, which potentially arises because of their opacity. To do so, we measure

the relative change in the bid-ask spread on each stock as

Ŝt =
S16:00:00
t − S15:30:00

t∑15:00:00
τ=09:30:00 S

τ
t /12

, with St = askt − bidt,

and regress it on rebalancing flows ΓHP and ΩLETF . Table D3 shows that market makers

active in the stocks underlying options with large rebalancing flows increase the corre-

sponding spreads to alleviate the issue of adverse selection. We find no such evidence for

rebalancing flows from leveraged ETFs.

Table D3: Spreads and Rebalancing Flows
The table reports the results to regressing the relative change in the bid-ask spread on ΓHP and ΩLETF .

We measure the relative change in the spread as Ŝt =
S16:00:00
t −S15:30:00

t∑15:00:00
τ=09:30:00 S

τ
t /12

, where St = askt − bidt using

consolidated national best bid and offer quotes from the NYSE TAQ database (Holden and Jacobsen,
2014). T-statistics are in parentheses below and are computed using time-and-entity-clustered standard
errors. ***, **, * denotes significance at the 1%, 5%, 10% level. We include entity-fixed effects in all
specifications and value-weight observations.

(1) (2) (3)

Dependent Ŝt Ŝt Ŝt

|ΓHPt | 6.081** 5.555*

(2.058) (1.876)

|ΩLETF
t | 16.353 14.572

(0.843) (0.750)

rpre
t 0.026 0.029 0.025

(0.235) (0.259) (0.228)

Observations 1,863,111 1,863,111 1,863,111

R2 (%) 0.008 0.006 0.013

Entity FE Yes Yes Yes

Time FE Yes Yes Yes

SEs [t;j] [t;j] [t;j]
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Appendix E. Performance of Trading Strategies Over

Time
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Fig. E1. Performance of Trading Strategies Over Time
The figure shows the cumulative performance of a one-dollar investment into trading strategies based on
ΓHP and ΩLETF . The ΓHP -strategy, LmHΓ, takes a long (short) position in a stock when the stock’s
ΓHP is in the lowest (highest) decile. The ΩLETF -strategy, HmLΩ, takes a long (short) position in a
stock when the stock’s ΩLETF is in the highest (lowest) decile. The combined strategy, HmLΓ,Ω, takes
a long (short) position in a stock when the stock’s ΩLETF − ΓHP is in the highest (lowest) decile. As a
benchmark, Marketend denotes investing in all stocks from 15:30 to 16:00. The sample period is January
2012 – December 2019.
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Abstract

This appendix provides supplementary results and additional analyses besides

robustness checks not included in the paper.

Table of Contents:

• Appendix OA1 provides details on the cleaning of high-frequency data.

• Appendix OA2 provides summary statistics for the underlying stocks in the

sample.

• Appendix OA3 provides summary statistics for the leveraged ETFs in the

sample.

• Appendix OA4 calculates the correlation between ΓHP for each option exchange

and the total ΓHP .

• Appendix OA5 investigates the effect of altering the calculation of the average

dollar volume.

• Appendix OA6 investigates the effect of altering the set of delta-hedgers.

• Appendix OA7 splits ΓHP into new and old positions and investigates their

effects.

• Appendix OA8 investigates the effect of scaling returns according to Moskowitz

et al. (2012).

• Appendix OA9 investigates the effect of ΓHP on news and non-news days and

the effect of ΩLETF on days with rpre
j = 0.

• Appendix OA10 investigates the effect across different industries.
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Appendix OA1. Cleaning of High-Frequency Data

To analyze intraday momentum effects in individual stocks, we rely on the NYSE

Trades and Quote (TAQ) database for January 1996 through July 2019. Since the NYSE

provides the raw tape of all trades performed on the included exchanges, multiple cleaning

steps are required. Additionally, we merge the TAQ database with CRSP to use the

PERMNO as a unique identifier per common share of any company.

OA1.1. Cleaning Procedure

We retain only trades with trade correction indicators “00” an “01”, which refer to

correctly recorded trades, and those that have been subsequently altered, but reflect the

actual trade price at the time. We further keep only trades with trade sale corrections

”Z”, ”B”, ”U”, ”T”, ”L”, ”G”, ”W”, ”K”, and ”J”, as well as an accompanying ”I”

reflecting odd lot trades. To rely on trade prices during regular trading hours only, we

discard all observations before 9:30 and after 16:01. We explicitly include the minute of

4pm, as many closing trades (denoted by sale conditions ”6” or ”M”) fall within the first

few seconds afterwards.

If multiple trades occur at exactly the same point in time, we take the median price

as the “correct price”. To make sure that prices are consistent by Ticker, we employ a

bounce-back filter following Andersen, Bondarenko, and Gonzalez-Perez (2015), which

effectively checks whether any trade’s price deviates by more than 15 times the median

absolute deviation of the day. If this is the case, we will kick this observation if we observe

a reversion to the previous price within the next five minutes, or 10 trades, whichever

encompasses more trades. We also drop price observations which deviate by more than

two times |log(pt/p̂)|, where p̂ is the median for the day. We choose trade-based filters to

check for the internal consistency, instead of relying on the Quote database also provided

by the NYSE, as some observations are falsely recorded in both. Afterwards, we span a

minute-by-minute grid between 9:30 and 16:01 and map trades to these trading minutes,

taking the volume-weighted average price within each minute to limit the impact of

microstructure noise and single trades.

OA1.2. Merge with CRSP

The TAQ database provides intraday trade prices, but lacks information about dis-

tributions, mergers, and delistings. We obtain this information from CRSP, as the low-
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frequency database in financial economics.

We use the PERMNO provided by CRSP as an identifier that is unique over time.

In a first step, we merge the historical CUSIP by CRSP (NCUSIP) with the CUSIPs in

the master file taken from TAQ. In some occasions, we cannot merge available tickers in

the trade file this way, and in a second step merge the two databases by the root ticker

and ticker suffix, which indicates different share classes. We keep only stocks with share

codes 10 and 11, denoting common shares, as well as exchange codes 1, 2, 3, 31, 32 and

32, representing the NYSE, AMEX and NASDAQ, respectively. Using this procedure,

we can merge most stocks for which we have intraday data available and cover most of

the CRSP sample.
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Appendix OA2. Summary Statistics of the Underly-

ing

Table OA2.1: Industry Distribution of Underlying Stocks
The table reports time-series averages of industry distributions of the Fama-French 12-industry classifi-
cation. For comparability to the CRSP universe, the distribution of the full CRSP sample is included.

FF-12 Industry Our sample CRSP sample

Consumer durables 0.44% 0.19%

Consumer nondurables 4.57% 2.71%

Manufacturing 10.23% 4.78%

Energy 5.64% 3.4%

Chemicals 3.22% 1.26%

Business Equipment 15.68% 8.62%

Telecom 2.38% 1.95%

Utilities 3.73% 1.9%

Wholesale 11.75% 4.91%

Healthcare 10.64% 5.51%

Finance 10.31% 44.15%

Other 21.41% 20.62%

4



Table OA2.2: Summary Statistics of Underlying Stocks
The table reports summary statistics on the stock-day sample for the underlying stocks. Panel A reports
the time-series summary statistics and Panel B reports the time-series average of cross-sectional distri-
butions. Percent coverage of the stock universe (EW) is the number of stocks in the sample, divided
by the total number of CRSP stocks. Percent coverage of the stock universe (VW) is the total market
capitalization of sample stocks divided by the total CRSP market capitalization. Percent coverage of
stocks traded at NYSE or AMEX is the number of stocks in the sample trading at NYSE or AMEX,
divided by the total number of stocks. The firm size percentiles are computed using the full CRSP
sample. Number of LETF is the number of LETF a stock is included in. The sample period is January
2012 – December 2019.

Mean Std 10-Pctl Q1 Median Q3 90-Pctl

Panel A: Time-Series Distribution

Number of stocks in the sample each month 992.53 227.92 877.2 973.0 1043.0 1101.25 1140.0

Stock coverage of stock universe (EW) 13.86 3.17 12.43 13.65 14.57 15.26 15.92

Stock coverage of stock universe (VW) 48.79 10.17 48.47 49.76 50.92 51.85 52.72

Stock traded at NYSE or AMEX 38.74 8.07 35.78 37.91 40.19 42.88 43.42

Panel B: Time-Series Average of Cross-Sectional Distributions

Firm size in million 15050 44338 454 1079 3152 11182 31883

Firm size CSRP percentile 77 17 51 66 81 92 96

Number of LETF 9 3 6 7 9 11 14
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Appendix OA3. Summary Statistics of Leveraged ETFs

Table OA3.1: Summary Statistics of Leveraged ETFs
The table reports time-series summary statistics on the underlying leveraged ETFs in our sample. Num-
ber of LETF is the number of leveraged ETFs. Number of benchmark indices is the number of unique
benchmark indices underlying all leveraged ETFs. Aggregated AUM denotes the assets under man-
agement across all leveraged ETFs, in million. Aggregated leverage-adjusted AUM is the assets under
management adjusted for the rebalancing leverage of each leveraged ETF. Percentage of inverse LETF
(EW) is the number of inverse ETFs divided by the total number of leveraged ETFs. Percentage of
inverse LETF (VW) is the assets under management weighted proportion of inverse ETFs to the total
leveraged ETF sample. Average absolute leverage factor (EW) is the average absolute leverage factor.
Average absolute leverage factor (VW) is the assets under management weighted absolute leverage factor.
The sample period is January 2012 – December 2019.

Mean Std 10% 25% 50% 75% 90%

Number of LETF 71.67 11.05 66.0 72.0 74.0 76.0 79.0

Number of benchmark indices 23.72 3.7 21.0 23.0 25.0 25.0 27.0

Agg. AUM 17.71 4.69 12.03 15.29 16.92 21.33 24.43

Agg. leverage-adjusted AUM 95.33 28.55 64.23 73.01 86.97 121.12 131.71

Perc. of inverse LETF (EW) 45.29 3.38 41.67 43.24 45.07 45.95 51.28

Perc. of inverse LETF (VW) 33.14 15.66 16.31 22.75 28.48 41.77 62.64

Avg. absolute leverage factor (EW) 2.35 0.13 2.21 2.22 2.32 2.45 2.5

Avg. absolute leverage factor (VW) 2.43 0.14 2.29 2.35 2.44 2.53 2.6
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Appendix OA4. Correlation of Exchange Specific ΓHP

and Total ΓHP
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Fig. OA4.1. Average Three-year Rolling ΓHP Correlations
The figure shows average three-year rolling correlations between ΓHP based on the delta-hedgers option
inventory of one single exchange (either PHLX, CBOE, NOM, ISE, or GEMX) and ΓHP based on the
pooled delta-hedgers option inventory across all exchanges in our sample.
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Appendix OA5. Different ADV Measures

We investigate whether the choice of the time period over which we calculate the

average dollar volume (ADV) effects our results. We calculate ADV over the previous

week (W) or previous quarter (W) and using the last half hour of a trading day (I) or

the entire daily trading volume (D). As Table OA5.1 shows, the choice of denominator

for ΓHP and ΩLETF has little impact on our results.

Table OA5.1: Effect of Different ADV Measures
The table reports the results to regressing returns in the last half hour of a trading day on returns
until 15:30, rpre, gamma hedging pressure ΓHP , and leveraged ETF rebalancing flows ΩLETF following
Equation (9). We exchange the standard ADV measure as the average volume in the last half trading
hour over the last month by similar measures using weekly (W) and quarterly horizons (Q), as well as
measures using daily volume in their constructed (denoted by “-D”). T-statistics are in parentheses below
and are computed using time-and-entity-clustered standard errors. ***, **, * denotes significance at the
1%, 5%, 10% level. We include entity fixed effects in all specifications and value-weight observations.
The sample period is January 2012 – December 2019.

(1) (2) (3) (4) (5) (6)

Dependent rend
t rend

t rend
t rend

t rend
t rend

t

ΓHPt -10.006*** -55.821*** -10.960*** -59.616*** -10.976*** -60.342***

(-5.518) (-7.094) (-5.521) (-6.949) (-5.244) (-6.763)

ΩLETF
t 41.180*** 177.953*** 46.738*** 190.533*** 48.616*** 201.118***

(4.658) (6.015) (5.198) (6.094) (5.084) (6.099)

rpre
t -0.817*** -0.803*** -0.820*** -0.804*** -0.824*** -0.809***

(-7.430) (-7.176) (-7.452) (-7.148) (-7.501) (-7.227)

Observations 1,882,332 1,882,332 1,882,332 1,882,332 1,882,332 1,882,332

R2 (%) 0.363 0.380 0.370 0.382 0.376 0.391

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j] [t;j]

ADV W-I W-D M-I M-D Q-I Q-D
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Appendix OA6. Different Sets of Delta-Hedgers

In the main part of the paper, we assume that delta-hedgers are composed of market

makers and broker/dealers. We exchange the set of delta-hedgers to include only market

makers (Table OA6.1) or to include market makers, broker/dealers, and firm proprietary

traders (Table OA6.2). The choice of the set of likely delta-hedgers has little impact on

our results.

Table OA6.1: Market Makers as the only Delta-Hedgers
The table reports the results to regressing returns in the last half hour of a trading day on returns until
15:30, rpre and gamma hedging pressure ΓHP , following Equation (9). We assume that market makers are
delta-hedgers. T-statistics are in parentheses below and are computed using time-and-entity-clustered
standard errors. ***, **, * denotes significance at the 1%, 5%, 10% level. We include entity fixed effects
in all specifications and value-weight observations. The sample period is January 2012 – December 2019.

(1) (2) (3) (4) (5) (6)

Dependent rend
t rend

t rend
t rend

t rend
t rend

t

ΓHPt -10.354*** -10.292*** -10.345*** -10.312*** -10.355*** -10.355***

(-3.094) (-3.077) (-3.093) (-3.077) (-3.094) (-3.094)

rpre
t -0.739*** -0.741*** -0.739*** -0.739*** -0.739*** -0.739***

(-7.034) (-7.050) (-7.036) (-7.039) (-7.035) (-7.034)

IVt−1 4.517***

(5.029)

R̂V
pre

t 20.913

(1.159)

R̂V
end

t 418.390***

(3.143)

PCt−1 -0.014

(-0.092)

O/S$
t−1 244.126

(0.770)

Observations 1,882,332 1,882,332 1,882,236 1,882,236 1,879,827 1,882,327

R2 (%) 0.267 0.286 0.269 0.277 0.267 0.268

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j] [t;j]
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Table OA6.2: Market Makers, Broker/Dealer, and Firm Proprietary Traders as Delta-
Hedgers
The table reports the results to regressing returns in the last half hour of a trading day on returns until
15:30, rpre and gamma hedging pressure ΓHP , following Equation (9). We assume that market makers,
broker/dealer, and firm proprietary traders are delta-hedgers. T-statistics are in parentheses below and
are computed using time-and-entity-clustered standard errors. ***, **, * denotes significance at the 1%,
5%, 10% level. We include entity fixed effects in all specifications and value-weight observations. The
sample period is January 2012 – December 2019.

(1) (2) (3) (4) (5) (6)

Dependent rend
t rend

t rend
t rend

t rend
t rend

t

ΓHPt -11.014*** -10.977*** -11.005*** -10.976*** -11.014*** -11.012***

(-6.965) (-6.945) (-6.968) (-6.947) (-6.965) (-6.963)

rpre
t -0.706*** -0.708*** -0.706*** -0.707*** -0.706*** -0.706***

(-6.817) (-6.834) (-6.818) (-6.821) (-6.817) (-6.817)

IVt−1 4.516***

(5.076)

R̂V
pre

t 18.816

(1.034)

R̂V
end

t 410.953***

(3.101)

PCt−1 -0.010

(-0.063)

O/S$
t−1 280.615

(0.832)

Observations 1,882,332 1,882,332 1,882,236 1,882,236 1,879,823 1,882,327

R2 (%) 0.296 0.314 0.297 0.306 0.296 0.296

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j] [t;j]
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Appendix OA7. ΓHP based on Older Positions

Endogeneity concerns regarding Equation (9) might be raised given that traders with

public and/or private information on the return of stock j in the last 30 minutes, rend
j ,

choose the option market to exploit this information. To mitigate any concerns, we

follow Ni et al. (2020). Precisely, we split ΓHP in two parts: gamma hedging pressure

originating from older positions held by delta-hedgers at time t− τ , and gamma hedging

pressure stemming from new positions between t − τ and t. Ni et al. (2020) argue that

option positions which existed at t − τ cannot be established due to private and/or

public information after the close at t − τ . In case of short-lived private and/or public

information, positions at t−τ are of no use for predicting the return in the last 30 minutes

on t, rpre.

To decompose ΓHP , we first define the gamma imbalance for stock j at time t which

is based on option positions of delta-hedgers at time t− τ as

ΓIBj,t;τ =

Nt
t−τ∑
o=1

netOIo,t−1−τ × Γo(t− 1, Sclosej,t−1)× S15:30
j,t ×Multo


×
Sclosej,t−1

100
× 1

ADVend
j,t−1

, (OA1)

where N t
t−τ denotes the number of options contracts on stock j that are available at time

t − τ and expire after t. The difference between Equation (OA1) and Equation (4) in

the main paper is that Equation (OA1) uses the net open interest of likely delta-hedgers

at time t − τ and sums over options expiring after t. However, both definitions use the

gamma of option contracts at the previous trading day, t − 1. Hence, Equation (OA1)

denotes the gamma imbalance at time t of old positions.

Next, we define the gamma hedging pressure due to old positions as

ΓHPj,t;τ = 100× ΓIBj,t;τ × r
pre
j,t . (OA2)

We decompose ΓHP at time t into the part that is due to old positions existing at

time t− τ , ΓHPj,t;τ , and the part due to new positions, ΓHPj,t;new, as follows

ΓHPj,t = ΓHPj,t;τ − ΓHPj,t;new, (OA3)

where ΓHPj,t;new = ΓHPj,t − ΓHPj,t;τ .
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Finally, we run the following specification where we control for fixed effects and other

control variables, Xj,t,

rend
j,t = β0r

pre
j,t + β1ΓHPj,t;τ + β2ΓHPj,t;new + γ ′Xj,t + FEj + FEt + εj,t. (OA4)

We hypothesize that β1 is negative and statistically significant. Table OA7.1 and

Table OA7.2 show results with τ set to five and ten business days, respectively. Both

tables confirm our hypothesis.
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Table OA7.1: Option Hedging Pressure based on 5-Business Day Old Positions
The table summarizes the results of regressions of returns in the last half hour of a trading day on
gamma hedging pressure based on five business day old positions ΓHPt;τ and hedging pressure based on

new positions, ΓHPt;new, after controlling for returns until 15:30 (rpre), as in specification Equation (OA4).

IVt−1 denotes implied volatility at time t − 1. R̂V
end

t denote the square root of predicted realized
variance for the time period from 15:30 to 16:00. PCt−1 is the put-call-ratio and O/S$

t−1 denotes the
option-to-stock volume in dollar terms. T-statistics are in parentheses below and are computed using
time-and-entity-clustered standard errors. ***, **, * denotes significance at the 1%, 5%, 10% level.
We include entity fixed effects in all specifications and value-weight observations. The sample period is
January 2012 – December 2019.

(1) (2) (3) (4) (5) (6)

Dependent rend
t rend

t rend
t rend

t rend
t rend

t

ΓHPt;τ -16.375*** -16.324*** -16.370*** -16.366*** -16.376*** -16.372***

(-6.954) (-6.942) (-6.954) (-6.947) (-6.954) (-6.955)

ΓHPt;new -1.107*** -1.117*** -1.110*** -1.124*** -1.107*** -1.104***

(-2.601) (-2.638) (-2.611) (-2.664) (-2.600) (-2.590)

rpre
t -0.810*** -0.813*** -0.811*** -0.811*** -0.810*** -0.810***

(-6.765) (-6.776) (-6.767) (-6.767) (-6.766) (-6.765)

IVt−1 5.133***

(4.964)

R̂V
pre

t 22.224

(1.058)

R̂V
end

t 435.201***

(2.795)

PCt−1 0.064

(0.299)

O/S$
t−1 283.201

(0.899)

Observations 1,015,379 1,015,379 1,015,333 1,015,333 1,014,433 1,015,375

R2 (%) 0.341 0.363 0.342 0.351 0.341 0.341

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j] [t;j]
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Table OA7.2: Option Hedging Pressure based on 10-Business Day Old Positions
The table summarizes the results of regressions of returns in the last half hour of a trading day on
gamma hedging pressure based on ten business day old positions ΓHPt;τ and hedging pressure based on

new positions, ΓHPt;new, after controlling for returns until 15:30 (rpre), as in specification Equation (OA4).

IVt−1 denotes implied volatility at time t − 1. R̂V
end

t denote the square root of predicted realized
variance for the time period from 15:30 to 16:00. PCt−1 is the put-call-ratio and O/S$

t−1 denotes the
option-to-stock volume in dollar terms. T-statistics are in parentheses below and are computed using
time-and-entity-clustered standard errors. ***, **, * denotes significance at the 1%, 5%, 10% level.
We include entity fixed effects in all specifications and value-weight observations. The sample period is
January 2012 – December 2019.

(1) (2) (3) (4) (5) (6)

Dependent rend
t rend

t rend
t rend

t rend
t rend

t

ΓHPt;τ -17.973*** -17.912*** -17.972*** -17.959*** -17.973*** -17.973***

(-6.714) (-6.694) (-6.715) (-6.710) (-6.713) (-6.715)

ΓHPt;new -1.234*** -1.244*** -1.237*** -1.251*** -1.234*** -1.231***

(-2.777) (-2.814) (-2.787) (-2.839) (-2.776) (-2.765)

rpre
t -0.821*** -0.823*** -0.821*** -0.821*** -0.821*** -0.821***

(-6.837) (-6.848) (-6.839) (-6.838) (-6.838) (-6.837)

IVt−1 5.138***

(4.969)

R̂V
pre

t 22.482

(1.069)

R̂V
end

t 435.447***

(2.791)

PCt−1 0.064

(0.302)

O/S$
t−1 287.581

(0.910)

Observations 1,015,379 1,015,379 1,015,333 1,015,333 1,014,433 1,015,375

R2 (%) 0.332 0.354 0.334 0.343 0.332 0.333

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j] [t;j]
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Appendix OA8. Scaled Returns as in Moskowitz et al.

(2012)

Instead of using simple returns and value-weighted observations, Moskowitz et al.

(2012) propose the use of scaled returns, which expresses returns in terms of units of

expected risk:

r̂ =
r

σr
, (OA5)

where σr is calculated using an exponentially-weighted moving average from the realized

variance of using 5-minute squared returns from last close to 15:30. The half life is chosen

to equal 60 days.

As shown in Table OA8.1, scaling returns does not alter our results.

Table OA8.1: Using Scaled Returns
The table reports the results to regressing returns in the last half hour of a trading day on returns until
15:30, rpre and gamma hedging pressure ΓHP , following Equation (9). The regression setup follows that
of Table 2 but uses scaled returns. T-statistics in parentheses are derived from standard errors clustered
by date and entity. ***, **, * denotes significance at the 1%, 5%, 10% level. We include entity fixed
effects and weight returns by the stock’s market capitalization. The sample period is January 2012 –
December 2019.

(1) (2) (3)

Dependent rend
t rend

t rend
t

ΩLETF
t 165.089*** 173.968***

(4.936) (5.233)

ΓHPt -29.157*** -34.042***

(-3.501) (-4.167)

rpre
t -0.060*** -0.068*** -0.063***

(-7.644) (-8.695) (-7.948)

Observations 1,882,236 1,882,236 1,882,236

R2 (%) 0.487 0.536 0.563

Entity FE Yes Yes Yes

Time FE Yes Yes Yes

SEs [t;j] [t;j] [t;j]
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Appendix OA9. Mechanical Flows

Index versus Stock Specific Effects

While ΓHP rebalancing activity depends on the return of the underlying stock, the

rebalancing amount for leveraged ETFs depends on the return of the benchmark index of

the leveraged ETF. We exploit this unique structure of the rebalancing flows from lever-

aged ETFs, by conditioning on those stocks for which the return until hedging begins is

near zero (below 10 basis points in absolute terms). Given that the impact of rebalancing

flows is mechanical, we still expect an effect of ΩLETF in roughly the same magnitude as

for the full sample. This approach allows us to investigate the impact of leveraged ETF

rebalancing without being conflated by other intraday return phenomena (Heston et al.,

2010; Lou et al., 2019; Bogousslavsky, 2020), or option rebalancing in the form of ΓHP .

The results in Table OA9.1 confirm our prior.

Table OA9.1: Near Zero Returns of the Underlying Stock
The table reports the results to regressing the returns in the last half hour of a trading day on the
Leveraged ETF rebalancing quantity ΩLETF . We have included only stock-day observations for which
the absolute return from the previous day’s close until 15:30 of stock j is below 10 basis points in absolute
terms. T-statistics are in parentheses below and are computed using time-and-entity-clustered standard
errors. ***, **, * denotes significance at the 1%, 5%, 10% level. We include entity fixed effects in all
specifications and value-weight observations. The sample period is January 2012 – December 2019.

(1)

Dependent rend
t

ΩLETF
t 69.400***

(4.961)

rpre
t -0.899

(-0.434)

Observations 120,913

R2 (%) 0.119

Entity FE Yes

Time FE Yes

SEs [t;j]
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What is the role of news on fundamentals?

To test that delta-hedging effects are unrelated to fundamental news on the under-

lying stock, we perform sample splits on earnings announcements and material news.

Information on earnings announcement days is obtained from Compustat and I/B/E/S.

Whenever the announcement date for the same stock differs between Compustat and

I/B/E/S, we follow Dellavigna and Pollet (2009) and use the earlier date. Compustat

and I/B/E/S are matched to our CRSP data via the matching algorithms provided by

WRDS. We use the Dow Jones version of Ravenpack News Analytics and its sentiment

scores to identify days with significant news for each underlying. We restrict our news

sample to articles that are most relevant for a particular stock, i.e. a relevance score of

100. Furthermore, we only include news that is highly positive (sentiment score above

0.75) or highly negative (sentiment score below 0.25).

We identify the two weeks centered around earnings announcements and the releases

of material news as indicated by RavenPack for each stock in our sample. The estimated

coefficients for stocks with and without material news releases or earnings announcements

in Table OA9.2 barely differ, confirming the mechanical nature of ΓHP -flows.
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Table OA9.2: Impact of Fundamental Information
The table reports the results to regressing the returns in the last half hour of a trading day on returns until
15:30, rpre, and gamma hedging pressure ΓHP . The regression results are reported for several subsamples
where we focus on or exclude days with fundamental information, either earnings announcements (EA)
or fundamental news releases identified by RavenPack. Specification (1) uses the subsample for which
Compustat and/or I/B/E/S do not report earnings announcements (EA). Specification (2) excludes day-
asset observations for which Compustat and/or I/B/E/S report earnings announcements. In specification
(3) we exclude asset-day observations for which RavenPack documents either at least one negative (score
≥ 25) or one positive (score ≤ 75) news appearance, whereas specification (4) includes only these
observations. Whenever earnings announcements or fundamental news are released on day t for asset
j, we exclude also a window of 5 trading days around t for asset j. t-statistics are in parentheses
below. T-statistics are in parentheses below and are computed using time-and-entity-clustered standard
errors. ***, **, * denotes significance at the 1%, 5%, 10% level. We include entity fixed effects in all
specifications and value-weight observations. The sample period is January 2012 – December 2019.

(1) (2) (3) (4)

Dependent rend
t rend

t rend
t rend

t

ΓHPt -9.865*** -8.117* -10.551*** -8.671***

(-5.557) (-1.879) (-6.635) (-2.780)

rpre
t -0.749*** -0.744*** -0.662*** -0.850***

(-6.907) (-4.296) (-6.824) (-5.168)

Observations 1,607,439 274,893 1,567,086 315,246

R2 (%) 0.263 0.335 0.219 0.390

Entity FE Yes Yes Yes Yes

Time FE Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j]

Subsample Excluding EA Only EA Excluding News Only News
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Appendix OA10. Effects Across Industries

Investor attention for stocks in respective sectors changes over time. To compare how

hedging pressure from the options market impacts end-of-day returns, we sort stocks into

their respective industry following the classification on Kenneth French’s website.

Table OA10.1 displays results. ΓIB− and ΩLETF−effects are present and statistically

significant in all industries.

Table OA10.1: Effects in Different Industries
The table reports the results to regressing returns in the last half hour of a trading day on re-
turns until 15:30, rpre and gamma hedging pressure ΓHP , following Equation (9). The sample is
split by the industry classification based on SIC codes, following Kenneth French’s website, https:

//mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. T-statistics in paren-
theses are derived from standard errors clustered by date and entity. ***, **, * denotes significance
at the 1%, 5%, 10% level. We include entity fixed effects and weight returns by the stock’s market
capitalization. The sample period is January 2012 – December 2019.

(1) (2) (3) (4) (5)

Dependent rend
t rend

t rend
t rend

t rend
t

ΓHPt -8.777*** -6.822*** -6.919* -20.417*** -16.849***

(-5.212) (-3.145) (-1.814) (-4.111) (-5.734)

ΩLETF
t 31.260*** 21.224*** 47.491*** 95.533*** 38.054***

(6.586) (3.642) (8.304) (6.488) (4.318)

rpre
t -0.680*** -0.839*** -0.978*** -0.959*** -0.654***

(-5.585) (-4.495) (-4.630) (-4.689) (-3.491)

Observations 346,342 427,144 366,477 201,183 541,186

R2 (%) 0.269 0.295 0.430 0.748 0.308

Entity FE Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j]

Industry Consumer Manuf.+Energy Business Health Other
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