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Anomaly or Possible Risk Factor?

Simple-To-Use Tests

Abstract

Basic asset pricing theory predicts high expected returns are a compensation for risk. How-

ever, high expected returns might also constitute anomalies due to frictions or behavioral

biases. We propose two complementary simple-to-use tests to assess whether risk can explain

differences in expected returns. We provide general theoretical equilibrium foundations for

the tests and show their properties in simulations. The tests take into account risks disliked

by risk-averse individuals, including high-order moments and tail risks. None of the tests

rely on the validity of a factor model nor other parametric statistical models. Empirically,

we find risk cannot explain a large majority of variables predicting differences in expected

returns. In particular, value, momentum, operating profitability, and investment appear to

be anomalies.

JEL classification : G12, C58, C38, D53.

Keywords : Cross-section of Returns; Factor Pricing; Strong SSD; Abnormal returns; Market

frictions.
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1 Introduction

Expected returns reflect and guide investment decisions in the economy (e.g., Cochrane 1996),

and hence they are closely related to firms’ behavior and aggregate outcomes such as unemploy-

ment (Hall 2017, Borovicka and Borovicková 2018). Over the last decades, the literature has

identified hundreds of factors predicting cross-sectional returns (Harvey et al. 2016).1 Kozak

et al. (2018), among others, argue that factors’ returns might be a compensation for risk (e.g.,

Berk et al. 1999, Cooper 2006), but may also occur because of behavioral biases (e.g., Bondt

and Thaler 1985, Jegadeesh and Titman 1993), institutional frictions (e.g., Gromb and Vayanos

2010, and references therein), informational frictions (e.g., Seyhun 1988, Cohen et al. 2012) and

many other frictions.

We propose simple-to-use tests to shed light on the economic content of factors and assess

whether risk alone can explain the difference in expected returns generated by a given factor.

Researchers and practioners typically build a factor through portfolio sorts based on a given

characteristic. They sort stocks according to the value of a characteristic, divide the sorted

stocks into groups according to some quantiles (e.g., bottom 30%, middle 40%, top 30%), and

then form portfolios based on the groups. If the average returns of the portfolios appear to be

monotonic in the characteristic, researchers form a factor by subtracting low-return portfolios

from high-return portfolios, so it mimics a long-short strategy. Factors based on multivariate

sorting similarly have a long leg with high expected-returns and a short leg with low expected-

returns. Basic asset pricing theory stipulates that the higher expected returns of the long leg

should correspond to higher risk. Thus, similarly to Kelly et al. (2019), if risk alone cannot

explain the spread in expected returns between the two legs of the factor, we call the latter an

“anomaly,” otherwise we call it a “possible risk factor.” In the present paper, we do not use the

term “factor” as a shorthand for “risk factor:” A factor can be an anomaly, or a return spread

that risk can explain.

Distinguishing between risk factors and anomalies requires a definition of risk. For this

purpose, we go back to basic microeconomics and define risk as anything a risk-averse individ-

ual dislikes, (i.e., individuals with an increasing and concave von Neumann-Morgenstern utility

function). The basic idea behind our two tests is to check whether every possible risk-averse

individual strictly prefers the long-leg returns over the short-leg returns. If this is not the case,

at least one possible risk-averse individual prefers to forego the higher return of the long leg in

exchange for the lower, but less risky, return of the short leg. Then, risk can possibly explain the

factor’s expected return, i.e., the difference in expected returns between the long and the short

leg. More precisely, the factor’s expected return is a possible compensation for the higher risk of

the long leg with respect to the short leg.

The main empirical results of the paper indicate that a majority of factors are anomalies

rather than possible risk factors. Regarding the Fama and French (2015) five factors and the

1In the following, we use characteristics and factors interchangeably. When we do so, we have variables in
mind that help predict returns in the cross section without taking a stance on the validity of a factor model.
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momentum factor (Jegadeesh and Titman 1993, Carhart 1997), our tests indicate that value,

momentum, operating profitability, and investment are anomalies rather than risk factors. Ev-

idence are mixed regarding size: The null hypothesis is rejected, but it is unclear whether the

rejection is due to risk or a lack of a significant factor return. Application of the tests to a

standard data set of more than 200 potential factors shows that more than 70% of factors are

anomalies, and thus indicate that the main empirical finding holds beyond the widely-used Fama

and French (2015) five factors and the momentum factor.

The null hypothesis of the first test corresponds to unconditional strict preferences for the

long leg, while the null hypothesis of the second test corresponds to strict preferences for the long

leg conditional on the market (i.e., after controlling for exposure to market). Because both tests

check the strict preference for the long leg for every possible risk-averse individual, the tests do

not rely on a specific measure of risk (e.g., variance), nor utility function (e.g., constant relative

risk-aversion utility function). In this way, the tests are comprehensive, that is, they account

for all risks disliked by risk-averse individuals, including high-order moments and tail risks. The

tests are also model-free, in the sense that they do not assume a parametric model of returns.

The large literature has assumed a linear factor model with a specific dependence structure for

the errors (e.g., Ross (1976)’s Arbitrage Pricing Theory and its extensions). In particular, our

proposed tests do not require us to assume a specific factor model, unlike the literature, which

often equates anomalies (or mispricing) and non-zero alphas of regressions of a novel long-short

strategy on a specific factor model. Thus, we can define an anomaly as a difference in expected

returns that cannot be explained by risk alone, and not as a deviation from a specific factor model

that is assumed to capture risk. Another advantage of the unconditional test is the immunity to

the multiple hypotheses and pretesting problems: the test does not yield any type I (nor type II

error) asymptotically. In other words, as the sample size increases, it is not only impossible to

fail to reject a false null hypothesis (type II error), but it is also impossible to wrongly reject a

true null hypothesis (type I error).

To formally tie the tests with asset-pricing theory, we also investigate the meaning of their

null hypotheses beyond a pairwise comparison of factor legs. The null hypotheses correspond

to what we call strong Second-order Stochastic Dominance (SSD), which corresponds to SSD

with strict inequalities instead of weak inequalities. While the use of strict inequalities should

be a mild change in practice, it is key to derive the equilibrium foundations of the tests. In an

economy with diversification benefits, spreads in expected returns between two tradable assets

should compensate for non-diversified risk. We show that if every possible risk-averse individual

strictly prefers the returns of the long leg to the returns of the short leg, then non-diversified risk

alone is unlikely to explain the factor’s expected return, that is, the return spread should exceed

any risk compensation individuals require. In line with most of the literature on factor models,

for simplicity, we focus on a one-period setting. Nevertheless, we show the equilibrium founda-

tions for both tests remain valid in multiperiod settings. We also demonstrate the equilibrium

foundations hold independently of the structure of the economy (e.g., whether or not individuals
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optimally diversify risk, whether or not markets are complete, whether or not a representative

agent exists, etc.). Thus, the theoretical foundations of the proposed tests hold under fairly

general assumptions.

To assess the performance of the tests, we investigate their properties mathematically, nu-

merically and empirically. First, building on the statistical and econometric literature on SSD,

which goes back at least to McFadden (1989), we show the tests have good asymptotic prop-

erties, i.e., they are valid and consistent. Second, we investigate their finite-sample properties

through Monte-Carlo simulations. Our simulation results confirm the asymptotic properties of

the tests. Finally, as a proof of concept, we apply the unconditional test to the market factor,

that is, the spread in expected returns between US stock returns and one-month US Treasury

bill returns. Overwhelming empirical evidence exists documenting that US stocks have higher

expected returns than Treasury bills, but are riskier. In line with the evidence, the tests clearly

indicate that risk can explain the spread, so the market factor clearly appears as a possible risk

factor unlike the majority of other factors.

The question of how to interpret factors is not a mere academic curiosity. In many situations,

the practical implications of a factor discovery depend on whether it is a risk factor or an anomaly.

If a factor corresponds to risk, an individual would likely try to limit her exposure to this factor.

Conversely, if a factor corresponds to an anomaly, an individual would likely want to load on it

—if possible— and thus earn a higher expected return. Likewise, for investment decisions, firms

would likely account for a risk factor to value investment projects, but not necessarily for an

anomaly. More generally, unlike an anomaly, a risk factor can typically be used for discounting,

which is key both in asset pricing and for real investment decisions. Thus the difference between

anomalies and risk factors is also of interest to public authorities in charge of financial markets

efficiency, such as the U. S. Securities and Exchange Commission. A public authority is unlikely

to want to eliminate a risk factor spread that is a compensation for a fundamental risk, but it

would likely want to design policies to eliminate anomalies. For example, targeted advancement

of financial literacy and targeted information-disclosure regulations can alleviate a behavioral

bias and an informational friction, respectively.

Related literature

To the best of our knowledge, our paper is the first to propose model-free and comprehensive

tests to distinguish anomalies from possible risk factors. Nevertheless, it builds on several strands

of the literature.

The literature on factor models for the cross-section of stock returns goes back, at least,

to the CAPM (Sharpe 1964, Lintner 1965, Mossin 1966), in which differences in exposure to

the market return determine differences in expected returns. After some mixed evidence using

individual stock returns as test assets (Miller and Scholes 1972), Black et al. (1972), Fama and

MacBeth (1973) and others group stocks into portfolios to decrease the idiosyncratic noise, and

provide empirical evidence in favor of the CAPM.
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However, theoretically, Merton (1973) shows that the market factor does not need to be the

only risk factor, and Dybvig and Ingersoll (1982) even show that a CAPM equilibrium can imply

the existence of arbitrage opportunities. Empirically, starting with Basu (1977) and Banz (1981),

the literature has developed several factor models that attribute important roles to risk factors

other than the market factor. Fama and French (1992, 1993)’s three factors plus momentum

(Jegadeesh and Titman 1993, Carhart 1997) partly synthesize these early findings.

Since then, exponential growth describes the number of newly discovered factors (Harvey

et al. 2016), partially spurred by the availability of better computing power, data mining, and

trial and error,2 econometric advances,3 and the incorporation of no-arbitrage and equilibrium

constraints in statistical linear factor models.4 Most of the literature focuses on observable

factors rather than latent and unobservable factors, a feature our paper shares.

Recent attempts try to “tame” the factor “zoo” (Cochrane 2011) by using novel econometric

methods. A first strand of literature proposes to reduce the dimensions of the “zoo” through

the extraction of a small number of unobservable factors from static or dynamic PCAs.5 A

second strand proposes techniques to infer a parsimonious set of observable factors. Barillas and

Shanken (2018) and Bryzgalova et al. (2020) develop Bayesian model-selection approaches to

select factors. Freyberger et al. (2020) and Feng et al. (2020) adapt LASSO-type of techniques

to shrink the number of factors. A third and small strand of literature tries to distinguish risk

factors from anomalies. Charoenrook and Conrad (2008) propose conditions for a factor to be a

risk factor, and assess them empirically. Pukthuanthong et al. (2018) propose to classify priced

factors related to the covariance matrix as risk factors. Kelly et al. (2019) classify factors that

corresponds to the exposure to some latent factors as risk factor.

The present paper is closest to this last strand of the literature. The main differences with

respect to the latter are the following. (i) Our approach does not specify a specific linear statistical

model of returns, which does not necessarily imply no-arbitrage for the set of traded assets. 6 (ii)

It detects anomalies instead of risk factors —The rejection of the null hypotheses of our tests

indicate a possible risk factor. (iii) It evades the Hansen and Richard (1987) critique, i.e.,

it does not require that conditioning on econometricians’ information set and conditioning on

individuals’ information set coincide.

We also build on a large econometric literature on tests of stochastic dominance. The liter-

2See, e.g., McLean and Pontiff (2016), Harvey et al. (2016), Chinco et al. (2021), Chen and Zimmermann
(2020b).

3See, e.g., Gibbons et al. (1989), Jagannathan and Wang (1998), Sentana and Fiorentini (2001), Stock and
Watson (2002), Bai (2003), Todorov and Bollerslev (2010), Doz et al. (2011, 2012), Connor et al. (2012), Kan et al.
(2013), Gagliardini et al. (2016, 2019), Forni et al. (2017), Kim and Skoulakis (2018), Raponi et al. (2020), Giglio
and Xiu (2020), Uppal et al. (2018), Pelger (2019), Ando and Bai (2020), Lettau and Pelger (2020), Cattaneo
et al. (2020).

4See, e.g., Ross (1976), Chamberlain and Rothschild (1983), Connor (1984), Milne (1988), Reisman (1988),
Al-Najjar (1998), Forni and Lippi (2001), Raponi et al. (2018), Renault et al. (2019)

5See, e.g., Connor and Korajczyk (1993), Bai and Ng (2002), Hallin and Liška (2007), Amengual and Watson
(2007), Hallin and Liška (2007), Onatski (2009, 2010), Ahn and Horenstein (2013)

6Linear factor models do not rule out arbitrage opportunities for observable traded assets, which are necessarily
finite (Al-Najjar 1998), see also Dybvig and Ingersoll (1982)
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ature mainly builds on McFadden (1989), and includes notable contributions by Davidson and

Duclos (2000), Barrett and Donald (2003), Delgado and Escanciano (2012), and Donald and

Hsu (2016) among others. Our unconditional test is a subsampling implementation of a modi-

fied McFadden (1989) test of SSD. From a technical point of view, it is closest to Linton et al.

(2005), although the null hypotheses are different: Our null hypothesis is “the long leg strongly

dominates the short leg,” whereas applying Linton et al. (2005) to our setting would imply the

null hypothesis “the long leg dominates the short leg or the short leg dominates the long leg.”

Our conditional test is a test of conditional strong SSD. It follows from an application of Durot

(2003)’s approach, along the lines of Delgado and Escanciano (2013), and thus adapts the latter

to strong SSD. Our block subsampling implementations of the unconditional and conditional

tests allow for time-series and cross-sectional dependence.

We also build on a large literature in mathematics on SSD, which goes back to Hardy et al.

(1929). Hadar and Russell (1969), Hanoch and Levy (1969), and Rothschild and Stiglitz (1970)

introduce and develop SSD methods in economics and finance. Since then, the SSD literature in

finance has mainly focused on portfolio allocation or general equilibrium implications of stochastic

dominance with recent contributions including Post (2003), Post and Levy (2005), Carlier et al.

(2012), Post and Kopa (2017). Recently, Chalamandaris et al. (2019) and Arvanitis et al. (2021),

building on Arvanitis et al. (2019) and Scaillet and Topaloglou (2010), propose a method to

assess whether adding a factor to a given set of factors is beneficial for every risk-averse investor,

and for every prospect investor, respectively. These are spanning tests for factor investing, in

the spirit of the previously mentioned strand of literature that tries to infer a parsimonious

set of factors. However, they do not allow to distinguish anomalies from possible risk factors.

If a given set of factors contains anomalies, then any added factor that is spanned by these

anomalies should results in a rejection of their null hypothesis. We contribute to this literature

by introducing the concept of strong SSD, i.e., the replacement of weak inequalities by strict

inequalities in the different characterizations of SSD.7 As previously mentioned, while it should

be a mild modification in practice, the modification is crucial for the equilibrium foundations of

the null hypotheses of our tests.

2 Unconditional test

We now develop the unconditional test as well as its equilibrium foundations. For simplicity, we

focus on a one-period equilibrium framework and discuss multi-period extensions in Section 4.6.

7Strict SSD is used to qualify the situation in which all possible risk averse individuals weakly prefer a lottery
to another lottery, with a strict preference for some individuals, or equivalently, in which strictly risk averse
individuals strictly prefer a lottery to another lottery (Dana 2004, Definition 1). For this reason, we use the term
strong SSD instead of strict SSD.

7



2.1 Unconditional null hypothesis

A factor typically corresponds to a long-minus-short trading strategy, in which the long leg is a

high-expected-returns portfolio and the short leg corresponds to a low-expected-returns portfolio.

Thus, the basic idea is to test, for each factor, whether every risk-averse individual would strictly

prefer the lottery representing the long leg to the lottery representing the short leg. Accordingly,

the null hypothesis of the unconditional test is

H0 : ∀u ∈ U2, E[u(rS)] < E[u(rL)] (1)

where U2 denotes a class of concave and increasing functions, and rS and rL denote the returns

of the long leg and the short leg, respectively. If the null hypothesis (1) is rejected, then at least

one possible risk-averse individual weakly prefers the short leg to the long leg, so risk can possibly

explain the spread in expected returns captured by the factor. In other words, an individual who

prefers more to less still prefers the short leg because it is less risky than the long leg. Testing

for all possible utility functions in U2 allows us to sidestep the choice of specifying a specific

measure of risk, that is, the choice of a specific utility function u.

The null hypothesis (1) is similar to the well-known SSD. The difference comes from the

use of strict inequalities instead of weak inequalities, that is, the null hypothesis (1) rules out

the possibility of risk-averse individuals who are indifferent between the long and the short

leg. Hereafter, when the null hypothesis (1) holds, we say that rL strongly SSD dominates rS .

While the replacement of weak inequalities by strict inequalities is a zero-Lebesgue measure

modification, it is key from an economic point of view. SSD is not a sufficient condition for

an anomaly for at least two reasons. First, it does not guarantee a strictly positive expected

factor return E(rL − rS), which is a necessary condition for the existence of a factor. Second,

the modification is key to derive the equilibrium foundations of the test in Section 2.3. If some

individuals are indifferent between the long and the short leg, then both legs can coexist in

equilibrium, hence no anomaly exists. In fact, any portfolio SSD dominates itself, although it

necessarily coexists with itself. In contrast, no portfolio strongly SSD dominates itself, because

strong SSD is not a reflexive binary relation.

Another way to obtain strict inequalities instead of weak inequalities is to rule out affine

utility functions from the class U2, and rely on strict SSD. The latter corresponds to the situation

in which all possible strictly risk-averse individuals strictly prefer the dominant lottery (Dana

2004, Definition 1 and strict Jensen’s inequality). We do not pursue this path because (i) Risk

neutrality (i.e., affine utility functions) is a regular benchmark in finance and economics; (ii) The

existence of a strictly positive expected factor return E(rL − rS) is a necessary condition for the

existence of an anomaly, so it needs to be part of the null hypothesis.

To derive the testable implications of the null hypothesis (1), the following lemma provides

a characterization of strong SSD in terms of cumulative distribution functions (CDFs).

Lemma 1 (Characterizations of strong SSD in terms of CDF). Assume the support of the random
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variables rL and rS is a subset of the interval [u, u] ⊂ R with u 6= u. Denote the left derivative

and right derivative of a function u(.) at x with u′
−(x) and u′

+(x), respectively. Define the class

U2 of concave and increasing functions u : [u, u] → R such that (s.t.) there exist u′
+(u) ∈ R

and u′
−(ǔ) ∈ R \ {0}, where ǔ 6= u and ǔ := min

{
u, inf{z ∈ [u, u] s.t., ∀x ∈ [z, u], u(x) = 0}

}
.8

Then the following statements are equivalent.

(i) For all u ∈ U2, E[u(rS)] < E[u(rL)].

(ii) For all z ∈]u,∞[, F
(2)
L (z) < F

(2)
S (z), where, ∀i ∈ {H,L}, F

(2)
i (z) :=

∫ z
u (z − x)dFi(x)

denotes the integrated CDF of ri, with Fi(.) the CDF of ri.

Proof. See Appendix A.1.1.

Well-known estimators of CDFs and functionals thereof exist, so Lemma 1 provides a way

to test the null hypothesis (1). Lemma 1 is the strong counterpart of the well-known Hardy-

Littlewood et. al. theorem,9 which has been popularized in economics by Rothschild and Stiglitz

(1970). In the present paper, Lemma 1 is mainly used for the same purpose as the Hardy-

Littlewood et. al. theorem in the SSD econometric literature.

Despite the appearance, it is not sufficient to replace the weak inequalities in the available

proofs of the Hardy-Littlewood et. al. theorem by strict inequalities to prove Lemma 1. The key

new ingredient of the proof is the quantity ǔ, which enters in the definition of the class U2 of

concave increasing functions. The restrictions on ǔ rules out constant functions from the class

U2 —they would imply an equality and thus necessarily violate (1)—, while they allow short-

put-payoff-type functions, whose expectations are equal to the integrated CDF. Despite these

restrictions, the class U2 contains all strictly increasing, differentiable, and concave functions

on R. In words, the class U2 is the class of concave, increasing functions differentiable at the

minimum u of the support and with non-zero left-derivative at the minimum between “absorbing”

zeros and the maximum u of the support.

A direct consequence of Lemma 1 is the invariance of the null hypothesis (1) under strictly

positive affine transformations of lotteries. This implies the formulations of the null hypothesis

(1) in terms of terminal wealth, capital gain, gross returns or any other strictly positive affine

transformation thereof are all mathematically equivalent, i.e., ∀u ∈ U2, E[u(rS)] < E[u(rL)] ⇔

∀u ∈ U2, E[u(W0rS)] < E[u(W0rL)] ⇔ ∀u ∈ U2, E[u(W0(1 + rS))] < E[u(W0(1 + rL))], where

W0 > 0 is the initial wealth of the risk-averse individual.

In addition to Lemma 1, we require the following assumption to obtain a test statistic for

the null hypothesis (1).

8Concavity only ensures left and right differentiability in the interior ]u, u[ (e.g., Aliprantis and Border
2006/1994, Theorem 7.22), so the assumptions of right differentiability at u is not subsumed by the concav-
ity assumption.

9See, e.g., Hardy et al. (1929, 1934), Blackwell (1951), Sherman (1951), Cartier et al. (1964), Strassen (1965).
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Assumption 1. (a) (Common bounded support) The support of the random variables rL and

rS is [ur, ur] ⊂ [u, u], where u = ur and u 6= u. (b)(No touching without crossing) If there exists

ż ∈]u, u] s.t. F
(2)
L (ż) = F

(2)
S (ż), then there exists z̈ ∈]u, u] s.t. F

(2)
S (z̈) < F

(2)
L (z̈).

Assumption 1(a) is a standard assumption in the econometrics and economic SSD literature

and should be “harmless” in practice (McFadden 1989). All observable quantities are necessarily

finite because computer memory is finite. Assumption 1(b) “no touching without crossing” should

also be harmless in practice. A sufficient condition for the assumption is that zero is not a critical

value, that is, the derivative of the function z 7→ F
(2)
S (z) − F

(2)
L (z) is non-zero in the level set of

0. The set of critical values of the function z 7→ F
(2)
S (z) − F

(2)
L (z) has zero Lebesgue measure

following Sard’s theorem. Thus, Assumption 1(b) is harmless in practice, although it is crucial

for the present paper. Thanks to Assumption 1(b), the null hypothesis (1) does not hold if, and

only if, there exists z ∈ [u, u] s.t. F
(2)
S (z) < F

(2)
L (z).

2.2 Unconditional test statistic

We now discuss the asymptotic properties of the unconditional test, study its properties in

simulations, and discuss the issues of multiple hypothesis testing and pretesting.

2.2.1 Asymptotic properties

In most statistical tests, the idea is to reject a null hypothesis if the difference between an

(unconstrained) estimator and an estimator constrained by the null hypothesis is too large. For

example, given a sample (Xt)T
t=1 of size T with independent and identically distributed data,

the idea behind a t-test with null hypothesis “H0 : EX1 = 0” is to assess whether the difference

between the average X̄T and zero normalized by the standard error σ̂/
√

T (i.e.,
√

T |X̄T −0|/σ̂) is

large. If the normalized difference between the (unconstrained) estimator X̄T and the constrained

estimator 0 is beyond a plausible threshold, the null hypothesis “H0 : EX1 = 0” is rejected. In

the present paper, both tests follow the same logic.

By Lemma 1, the null hypothesis (1) is equivalent to the null hypothesis

H0 : ∀z ∈]u,∞[, F
(2)
L (z) − F

(2)
S (z) < 0, (2)

where F
(2)
L (z) and F

(2)
S (z) denote the integrated CDF of rL and rS , respectively. Moreover, the

standard estimator for a CDF is the empirical CDF, so a standard estimator of the integrated

CDF F
(2)
L is the integrated empirical CDF F̂

(2)
L (z) := 1

T

∑T
t=1 1{rL,t 6 z}(z − rL,t). Thus,

the statistic of the unconditional test is the difference between the unconstrained estimator

F̂
(2)
L (.) − F̂

(2)
S (.) and the constrained estimator min{F̂ (2)

L (.) − F̂
(2)
S (.), 0}, that is,

√
TKS∗

T : =
√

T sup
z∈IT

∣
∣
∣F̂

(2)
L (z) − F̂

(2)
S (z) − min{F̂ (2)

L (z) − F̂
(2)
S (z), 0}

∣
∣
∣

=
√

T sup
z∈IT

∣
∣
∣F̂

(2)
L (z) − F̂

(2)
L∧S(z)

∣
∣
∣ , (3)
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where IT := [cT , u], with cT ↓ u, and where F̂
(2)
L∧S(z) denotes the minimum of the integrated em-

pirical CDF (that is, F̂ (2)
L∧S(z) = min{F̂ (2)

L (z), F̂ (2)
S (z)}).10 The estimator min{F̂ (2)

L (.)−F̂
(2)
S (.), 0}

is a constrained estimator of F
(2)
L (.) − F

(2)
S (.), because it satisfies the null hypothesis (2) by

construction. It can be shown that the test statistic (3) is related to the one-sided Kolmogorov-

Smirnov (KS) type statistics, which has been used in the SSD literature since McFadden (1989).

The following proposition shows the KS∗
T test statistic (3) defines a valid and consistent test

of the null hypothesis (1).

Proposition 1 (No type I error and No type II error). Under Assumption 1 and the Assumptions

of Appendix A.2, for any level of the test α ∈]0, 1],

(i) if the null hypothesis (1) holds, then

lim
T→∞

P
(
ĉ1−α <

√
TKS∗

T

)
= 0;

(ii) if the null hypothesis (1) does not hold, then

lim
T→∞

P
(
ĉ1−α <

√
TKS∗

T

)
= 1;

where ĉ1−α is the 1−α quantile of a (centered) block-subsampling approximation of the asymptotic

distribution of
√

TKS∗
T with a block size bT s.t. limT→∞ bT = ∞ and limT→∞

bT
T = 0.

Proof. See Appendix A.2.

Proposition 1 (i) shows the null hypothesis is asymptotically never rejected when it is

true, i.e., no type I error exists, asymptotically. Proposition 1 (i) a fortiori also means the

test is valid, that is, the probability of wrongly rejecting a true hypothesis is asymptotically

smaller than any level α ∈]0, 1]. Proposition 1 (ii) shows the null hypothesis is rejected with

probability one when it is wrong, that is, no type II error exists, asymptotically. In the

present paper, we rely on centered and uncentered block subsampling to approximate the dis-

tribution of test statistics. Block subsampling implies to draw without replacement matrices

(ri,t+1 ri,t+2 ∙ ∙ ∙ ri,t+bT
)i∈{L,S} of bT consecutive observations of contemporaneous rL and rS ,

instead of any matrix (ri,t1 ri,t2 ∙ ∙ ∙ ri,tbT
)i∈{L,S} of bT observations of rL and rS . In this way,

block subsampling accounts for potential time-dependence and cross-sectional dependence.

The mathematics behind Proposition 1 are standard. We just need (i) the test statistic (3)

to go to zero under the null hypothesis and (ii) the test statistic to diverge under the alternative

hypothesis. The crux of the mathematics is the following. Denote with A the subset of R, in

10The absolute value is superfluous in the Kolmogorov-Smirnov (KS) test statistic (3) because, for all z ∈ R,
0 6 F̂

(2)
L (z) − F̂

(2)
L∧S(z) by the definition of F̂

(2)
L∧S(z). However, we keep the absolute value to make clear that

the KS test statistic (3) measures the distance between the unconstrained estimator F̂
(2)
L and the constrained

estimator F̂
(2)
L∧S(z).
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which the null hypothesis (2) does not hold, that is,

A := {z ∈ R : F
(2)
S (z) < F

(2)
L (z)}.

Then, addition and subtraction of F
(2)
L (z) and F

(2)
L∧S(z) to the quantity maximized by the KS∗

T

test statistic (3) yields

√
TKST (z) :=

√
T{F̂ (2)

L (z) − F̂
(2)
L∧S(z)}

=
√

T
{

F̂
(2)
L (z) − F

(2)
L (z) − [F̂ (2)

L∧S(z) − F
(2)
L∧S(z)] + F

(2)
L (z) − F

(2)
L∧S(z)

}

=
√

T [F̂ (2)
L (z) − F

(2)
L (z)] −

√
T [F̂ (2)

L∧S(z) − F
(2)
L∧S(z)]

+
√

T [F (2)
L (z) − F

(2)
S (z)]1A(z), (4)

because, for all z /∈ A, F
(2)
L (z) − F

(2)
L∧S(z) = F

(2)
L (z) − F

(2)
L (z) = 0.

Under the null hypothesis (2), by the definition of A, 1A(z) = 0, for all z ∈ R. Thus, for T

big enough, with probability one,

√
TKST (z) =

√
T [F̂ (2)

L (z) − F
(2)
L (z)] −

√
T [F̂ (2)

L∧S(z) − F
(2)
L∧S(z)]

=
√

T [F̂ (2)
L (z) − F

(2)
L (z)] −

√
T [F̂ (2)

L (z) − F
(2)
L (z)] = 0,

because F
(2)
L∧S(.) = F

(2)
L (.), and a Law of Large Numbers (LLN) implies the uniform convergence

of F̂
(2)
L (z) := 1

T

∑T
t=1 1{rL,t 6 z}(z − rL,t) and F̂

(2)
S (z) := 1

T

∑T
t=1 1{rS,t 6 z}(z − rS,t) to

F
(2)
L (z) := E[1{rL,t 6 z}(z − rL,t) and F

(2)
S (z) := E[1{rS,t 6 z}(z − rS,t), so F̂

(2)
L∧S(z) =

F̂
(2)
L (z) for T big enough. Thus,

√
TKS∗

T is asymptotically smaller than any positive quantity,

so P
(
ĉ1−α <

√
TKS∗

T

)
goes to zero, as T → ∞. If the null hypothesis (2) does not hold,

√
T [F̂ (2)

L (z)−F
(2)
L (z)] =

√
T
[

1
T

∑T
t=1 1{rL,t 6 z}(z − rL,t)−E[1{rL,t 6 z}(z − rL,t)]

]
, which, by

a Central Limit Theorem (CLT), converges to a tight limit after multiplication by
√

T . Similarly,

by the continuous mapping theorem
√

T [F̂ (2)
L∧S(z) − F

(2)
L∧S(z)] = OP (1). However, for all z ∈ A,

√
T [F (2)

L (z) − F
(2)
S (z)]1A(z) → ∞, as T → ∞. Therefore, under the alternative hypothesis, as

T → ∞, the KS∗
T test statistic (3), which maximizes (4), goes to infinity, and thus becomes

bigger than any threshold ĉ1−α.

2.2.2 Monte-Carlo Simulations

We find in Monte-Carlo simulations in Table 1 that the finite-sample properties of the test

statistic KS∗
T are in line with Proposition 1. For all data-generating processes (DGP), p-values

goes to zero when the null hypothesis (2) is wrong. Also, in line with the asymptotic theory, a

large and growing proportion of p-values equals one, when the null hypothesis (1) holds, because

of the absence of type I error, asymptotically. The first two DGPs are Gaussian distributions

calibrated to data. More precisely, they are calibrated to two factors —size and the dividend

yield— for which the null hypotheses are barely true (or false) in order to be challenging for the
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test. The third DGP is a stylized DGP except for the correlation between the long leg and the

short leg. The latter correlation is calibrated to the average correlation of the legs of some of

the most prominent factors. Further simulation results and details are available in Appendix B.

One insight from the simulations is that centered block subsampling tends to yield more

rejections than uncentered block subsampling approximations. Hence, to be conservative, we

use the centered subsampling approximation in our empirical implementation: Centered block

subsampling should play against the main empirical result of the paper. In Section 4.2, we also

investigate the finite-sample properties of the tests on actual financial data.

2.2.3 Immunity to multiple hypothesis testing and pretesting

Because of the large number of factors considered in the literature, Harvey et al. (2016) among

others raise the concern of multiple hypothesis testing. The multiple hypothesis problem stems

from the high probability of wrongly rejecting at least one true hypothesis, if one simultaneously

tests many true hypotheses with size and level of each test exactly equal to α ∈]0, 1]. E.g., by

definition of the asymptotic size of a test, if one simultaneously and independently tests 100 true

hypotheses at size α = 5%, one expects to wrongly reject 5 true hypotheses, asymptotically.

The following Proposition 2 shows the unconditional test is immune to the multiple hypothesis

problem.

Proposition 2 (Immunity to multiple hypothesis testing). Define a family (H0,k)K
k=1 of null

hypotheses s.t. H0,k : ∀u ∈ U2, E[u(rk,S)] < E[u(rk,L)], where rk,S and rk,L denote the return of

the short leg and the long leg of the factor k. Define the set J ⊂ [[1,K]] of true hypotheses. Under

the assumptions of Proposition 1, the asymptotic family-wise error rate (FWER) is zero, i.e.,

lim
T→∞

P
{
∃j ∈ J s.t. ĉj,1−α <

√
TKS∗

j,T

}
= 0,

where KS∗
j,T is the unconditional test statistic (3) that corresponds to the null hypothesis H0,j

and ĉj,1−α the 1 − α quantile of a (centered) block-subsampling approximation of the asymptotic

distribution of
√

TKS∗
j,T with a block size bT s.t. limT→∞ bT = ∞ and limT→∞

bT
T = 0.

Proof. By positivity and additivity of probability measures, 0 6 P{∃j ∈ J s.t. ĉj,1−α <
√

TKS∗
j,T }

= P
{⋃

j∈J{ĉj,1−α <
√

TKS∗
j,T }

}
6
∑

j∈J P{ĉj,1−α <
√

TKS∗
j,T }. Now, by Proposition 1i, we

know limT→∞
∑

j∈J P{ĉj,1−α <
√

TKS∗
j,T } = 0, so the result follows from the squeeze theo-

rem.

Proposition 2 stipulates that the probability of wrongly rejecting at least one true hypothesis

(that is, the FWER) is close to zero for a sufficiently large sample size. As the proof shows,

Proposition 2 is an immediate consequence of Proposition 1(i), which implies a zero probability

of rejecting a true hypothesis, asymptotically. Proposition 2 shows the unconditional test satis-

fies stronger properties than asymptotic t-tests corrected for multiple hypothesis testing: Usual
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Table 1: Performance of unconditional test in Monte-Carlo simulations

H0 DGP Boxplots of p-values

False

[
rL

rS

]
IID
↪→ N

([
.015
.0078

]

,

[
.122 .0051

.0572

])

True

[
rL

rS

]
IID
↪→ N

([
.011
.010

]

,

[
.0392 .0012

.0572

])

False






rL
IID
↪→ t(4)

rS
IID
↪→ N (0, 1)

Cor(rS , rL) = .7

Note: The first two data-generating processes (DGP) correspond to Gaussian distributions calibrated to factors for which H0 appears barely
true (or false). The third DGP is a stylized DGP except for the correlation that is calibrated to data. The reported p-values are based on
1000 simulated samples of sample size equal to the indicated T . The distribution of KS∗

T is approximated through centered block subsampling

with block size bT =
√

T.The tops and bottoms of each “box" are the 25th and 75th percentiles of the p-values, respectively. The line in the
middle of each box is the median. Crosses beyond the whisker length indicate outliers. An outlier is a value that is more than 1.5 times the
interquartile range away from the corresponding end of the interquartile ranges. Whiskers are drawn from the ends of the interquartile ranges
to the furthest observations within the whisker length.
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multiple hypothesis procedures for t-tests bound from above the false discovery rate (FDR),

which is a less stringent criterion than FWER (e.g., Lehmann and Romano 2006).

While Proposition 2 is stronger than the property of usual multiple hypothesis testing tech-

niques, it does not address the deeper problem of pretesting. In the context of t-tests, the

pretesting problem is the following. The classical theoretical justification of an asymptotic t-test

of size α is the t-statistic has a probability 1 − α, asymptotically, to be between the α/2 and

1 − α/2 quantiles of a standard Gaussian distribution under the test hypothesis. However, once

computed, the t-statistic is in the non-rejection region with probability 0 or 1, that is, it either

is or it is not in the non-rejection region. Thus, if the result of this first test leads an econo-

metrician to implement a second t-test of size α, the corresponding t-statistic does not typically

have a probability of 1 − α asymptotically to be between the α/2 and 1 − α/2 quantiles of a

standard Gaussian distribution under the test hypothesis. The observation of the first t-statistic

has removed a part of the randomness of the second t-statistic. Except in specific cases, statistics

based on the same data set are not independent. Hence, the classical theoretical justification

does not hold for the second t-test. In fact, the econometrician would need to use the asymptotic

distribution of the second t-statistic conditional on the result of the first t-statistic, and it is

generally a difficult task to derive such a distribution. The pretesting problem is even more

difficult because the econometrician would not only need to condition on the result of the last

t-test but on all previous knowledge about the data (e.g., plots of the data, descriptive statistics,

prior model selections etc.). Because of a lack of a general solutions to the pretesting problem, it

is typically ignored, that is, the econometrician typically proceeds as if they had chosen the test

to be implemented before any examination of the data. Multiple hypothesis testing techniques

do not tackle the pretesting problem because they assume that the list of all statistics to be po-

tentially computed is determined before any examination of the data. The latter assumption is

difficult to defend in the case of factor discovery: The evolution of cross-sectional asset pricing is

a hard-to-predict dialog between theory and many empirical studies. The following Proposition

3 shows the unconditional test is immune to the pretesting problem.

Proposition 3 (Immunity to pretesting). Under the assumptions of Proposition 1, for any

sequence of events {FT }T∈N,

lim
T→∞

P
(
{ĉ1−α <

√
TKS∗

T } ∩ FT

)
= lim

T→∞
P(ĉ1−α <

√
TKS∗

T )P (FT ) .

Proof. See Appendix A.3.

Proposition 3 shows the unconditional test is independent of any sequence of events {FT }T∈N

as the sample size increases. Thus, conditioning on prior knowledge of the data is irrelevant for a

sufficiently large sample size. It also means that conditioning on the result of the unconditional

test is also irrelevant for further inference. To the best of our knowledge, only a few known

inference procedures with such property exist (e.g., Hannan and Quinn 1979). Like Proposition

2, Proposition 3 is a direct consequence of Proposition 1.
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2.3 Equilibrium Foundations for Unconditional Test

In the present section, we show that, under general assumptions, the null hypothesis (1) should

be a sufficient condition for an anomaly.

2.3.1 Equilibrium Foundations without Diversification Benefits

In the absence of diversification benefits, the equilibrium implication of the null hypothesis (1) is

immediate. Assume individuals have to invest all wealth either in the short leg, or in the long leg

—exclusive or— so no diversification benefits exist. Assume all possible individuals have strictly

increasing von Neumann-Morgenstern utility functions in U2. If the returns of the long leg are

strictly preferred by all possible individuals to the returns of the short leg, then by the invariance

of the null hypothesis under strictly positive affine transformations of lotteries (Lemma 1)

E[u(rS)] < E[u(rL)]

⇔ E[u(1 + rS)] < E[u(1 + rL)]

⇔ u−1
(
E[u(1 + rS)]

)
< u−1

(
E[u(1 + rL)]

)
,

where u−1
(
E[u(1+ rS)]

)
and u−1

(
E[u(1+ rL)]

)
are private values —the certainty equivalents—

of the short and long leg gross returns, respectively. In words, all possible risk averse individuals

value the long leg gross returns strictly higher than the short leg gross returns. Now, by definition

for gross returns, the market price of both the gross short leg (1 + rS) and of the gross long

leg (1 + rS) is 1$. Thus, every individual tries to buy the long leg so the relative price of

the long leg relative to the short leg increases and its returns decrease up to a point where

some individuals are indifferent between the two. At the equilibrium, the long leg cannot be

strictly preferred by all individuals. Therefore, if the null hypothesis (1), —or equivalently

“H0 : ∀u ∈ U2, E[u(1 + rS)] < E[u(1 + rL)]”— holds, an anomaly exists.

2.3.2 Equilibrium Foundations with Diversification Benefits

In an economy with several assets, the aforementioned equilibrium implication does not neces-

sarily hold because individuals do not have to choose one among two assets. Individuals can

combine assets into portfolios, so the idiosyncratic risk of different assets can cancel out through

diversification. Then, the remaining non-diversified risk corresponds to the movement of indi-

viduals’ wealth, so the priced risk corresponds to the positive comovements of the factor return

with individuals’ wealth.

Nevertheless, the present section shows the null hypothesis (1) “H0 : ∀u ∈ U2, E[u(rS)] <

E[u(rL)]” should still be a sufficient condition for an anomaly in the presence of diversification

benefits. More precisely, we show the null hypothesis (1) implies that, up to a first order, the

expected return of the factor cannot be explained by risk alone, that is, it exceeds the risk

compensations required by risk-averse individuals. For this purpose, we first need to derive the
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factor risk compensations under general assumptions. The assumptions should be as general

as possible to the extent they do not allow for behavioral biases nor frictions affecting the

expected return of the factor. We want risk compensations and not compensations for frictions

or behavioral biases. Thus, the question is to identify a parsimonious combination of ingredients

that are sufficient to derive the factor risk compensations. The following simple derivation shows

that it is sufficient to consider a situation in which individuals optimally and freely trade the

factor in a neighborhood of their locally optimal terminal wealth. Importantly, we do not need

to specify a model, that is, we can do “something without having to do everything.” (Hansen

2013).

Derivation of Risk Compensation

By construction, a factor rL − rS = (1 + rL)− (1 + rS) is a costless portfolio, because it implies

buying 1$ of the long leg and selling 1$ of the short leg. Thus, for any individual, irrespective of

budget constraints, as long as the factor freely trades in a neighborhood of the locally optimal

terminal wealth of the individual, the expected marginal value of the factor is zero, that is,

E[u′(W1)(rL − rS)] = 0, (5)

where u(.) and W1 denote, respectively, individual’s utility function and terminal wealth. The

logic behind the standard optimality condition (5) is the following. If E[u′(W1)(rL − rS)] > 0

(respectively 0 > E[u′(W1)(rL − rS)]), one more (respectively less) marginal unit of the costless

portfolio rL − rS would increase individual’s utility. See Appendix A.4 for a formal proof under

general assumptions.

By the optimality condition (5), Cov(u′(W1), rL − rS) + E[u′(W1)]E(rL − rS) = 0, so the

expected return of the factor explained by risk alone is

E(rL − rS) = −
1

E[u′(W1)]
Cov(u′(W1), rL − rS). (6)

In words, the expected return of the factor E(rL − rS) should be the opposite of its covariance

with individuals’ marginal utility normalized by individuals’ expected marginal utility, that is,

− 1
E[u′(W1)]

× Cov(u′(W1), rL − rS). Hence, the expected return of the factor E(rL − rS) should exactly

compensate for its normalized negative comovements with the marginal utility of terminal wealth

W1, and thus for its normalized positive comovements with terminal wealth W1 —the marginal

utility function u′(.) is decreasing due to concavity.

Our derivation of equation (6) does not require us to specify an equilibrium model. As previ-

ously mentioned, the optimality condition (5), and thus equation (6) holds as long as individuals

can freely trade the costless portfolio rL − rS in a neighborhood around their locally optimal

terminal wealth W1. Thus, the quantity − 1
E[u′(W1)]Cov(u′(W1), rL − rS) should be the risk com-

17



pensation for any one-period equilibrium model. In other words, in any equilibrium model,

whether partial equilibrium or general equilibrium, whether with production or not, whether

with complete or incomplete financial markets etc., the risk compensation is given by the right-

hand side of equation (6). If a wedge exists between the expected return of the factor E(rL − rS)

and the risk compensation − 1
E[u′(W1)]Cov(u′(W1), rL − rS), an explanation other than risk is

needed to account for the expected return of the factor E(rL − rS). Moreover, the derivation of

equation (6) indicates that the other explanation should be a friction or a behavioral bias that

induces a violation of the optimality condition (5). Hence, an informational friction or a trading

friction on the factor can be an explanation, but a friction on production or even a short-sale

constraint on a asset that is not part of the factor cannot be an explanation.

The Null hypothesis (1) and Risk Compensations

The following proposition shows that if the null hypothesis (1) holds, then the expected return

of the factor E(rL − rS) should exceed the risk compensation − 1
E[u′(W1)]Cov(u′(W1), rL − rS) for

a large class of increasing and concave utility functions.

Proposition 4 (Equilibrium foundation for unconditional test). For all u ∈ U2 s.t. u is twice

continuously differentiable on [u, u], which includes the support of W1 and of the returns rS and

rL, then, up to a first order, the null hypothesis “H0 : ∀u ∈ U2, E[u(rS)] < E[u(rL)]” implies the

expected return of the factor exceeds its risk compensation, i.e.,

−
1

E[u′(W1)]
Cov(u′(W1), rL − rS) < E(rL − rS).

Proposition 4 provides sufficient assumptions under which strict preference for the long leg

implies that risk alone cannot explain the factor’s expected return E(rL−rS), up to a first order.

If risk alone cannot explain the factor’s expected return, other explanations, such as behavioral

biases or institutional frictions, are necessary to explain the factor’s expected return, and thus

we call the factor an anomaly. Assumptions underlying Proposition 4 are mild. They hold for

any twice continuously differentiable strictly increasing and concave utility function on [u, u].

The assumption P(u′(W1) > 0) > 0, which necessarily holds for strictly increasing differentiable

utility functions, ensures that E[u′(W1)] > 0. As previously explained for equation (6), the

assumptions do not require us to specify a DGP for returns, nor an economy. If we were to

specify the latter, it would need to generate the exact same returns as the observed returns and

thus it would not matter for the test. The proof of Proposition 4 essentially only requires Taylor

expansions. Because of the simplicity of the proof, we provide it in the main text below.
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Proof of Proposition 4. Two first-order Taylor expansions of u(.) around W1 yield11

E[u(rL + EW1) − u(rS + EW1)]

= E
[
u(W1) + u′(W1)

(
rL + E(W1) − W1

)
+ o(εL)

−u(W1) − u′(W1)
(
rS + E(W1) − W1

)
+ o(εS)

]
where εi :=ri+ E(W1)−W1, ∀i∈{L, S};

= E
[
u′(W1)(rL − rS) + o(εL) + o(εS)

]
, (7)

where the invariance of the null hypothesis (1) under strictly positive affine transformations of

lotteries (Lemma 1) implies 0 < E[u(rL + EW1) − u(rS + EW1)].

Thus, up to a first order,

0 < E
[
u′(W1)(rL − rS)

]
= Cov(u′(W1), rL − rS) + E[u′(W1)]E(rL − rS)

⇔ −
1

E[u′(W1)]
Cov(u′(W1), rL − rS) < E(rL − rS).

3 Test Conditional on the Market

As its name indicates, the unconditional test relies on the unconditional distribution of returns.

However, practitioners—probably inspired by the CAPM—usually analyze returns after control-

ling for exposure to market risk. For this reason, we propose a test conditional on the market.

The present section follows the same structure as the previous section. We first present the test

conditional on the market returns and then its equilibrium foundations.

3.1 Null Hypothesis Conditional on the Market

The null hypothesis of the test conditional on the market is the same as for the unconditional test,

except that it controls for the market return rM . The idea is to test, for each factor, whether

every possible risk-averse individual would strictly prefer the long-leg lottery to the short-leg

lottery conditional on the market, that is,

H0 : ∀u ∈ U2, E[u(rS)|rM ] < E[u(rL)|rM ], (8)

where rM denotes the market return.

As previously mentioned, the main motivation for the null hypothesis (8) relative to the null

hypothesis (1) of the unconditional test is practitioners’ routine of controlling for the market

through a regression with the market (excess) returns as an explanatory variable. In this way,

11Although the proof is based on Taylor expansions, preferences are not implicitly assumed risk neutral nor
mean-variance because (i) The Taylor expansions are made around the terminal wealth W1, which is random,
instead of around expected quantities; (ii) The first-order term u′(W1)(rL − rS) exactly corresponds to the non-
diversified risk as the derivation of equation (6) shows.
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practitioners control for affine functions of the market returns. The test conditional on market

does not only control for affine functions of market returns, but for all measurable functions of

market returns. Moreover, it should not matter whether we use market returns, or the latter in

excess of the risk-free rate: Conditioning on rM , or conditioning on rM − rf does not matter

because they generate the same σ-algebra.

As for the unconditional test, a characterization of strong conditional SSD in terms of CDFs

is necessary to bring the null hypothesis (8) to the data.

Lemma 2 (Characterization of conditional strong SSD in terms of CDF). Assume a complete

probability space. Under Assumption 1(a), the following statements are equivalent.

(i) For all u ∈ U2, E[u(rS)|rM ] < E[u(rL)|rM ] almost surely (a.s.).

(ii) For all z ∈]u,∞[, F
(2)
L|M (z|rM ) < F

(2)
S|M (z|rM ) a.s., where F

(2)
L|M (z|rM ) :=

∫ z
u FL|M (y|rM )dy

a.s.

Proof. See Appendix A.1.2.

Lemma 2 is the conditional counterpart of Lemma 1. Similarly to Lemma 1 for the null

hypothesis (1), Lemma 2 implies the invariance of the null hypothesis (8) under strictly positive

affine transformations of lotteries. In particular, the lemma implies that it does not matter

whether we consider the leg’s returns, or —if inspired by the CAPM— we consider the latter

in excess of the risk-free rate, i.e., ∀u ∈ U2, E[u(rS)|rM ] < E[u(rL)|rM ] ⇔ ∀u ∈ U2, E[u(rS −

rf )|rM ] < E[u(rL − rf )|rM ]. As for the unconditional test, a conditional counterpart of the

assumption “no touching without crossing” is necessary to bring the null hypothesis (8) to the

data.

3.2 Test Statistic Conditional on the Market

By Lemma 2, the hypothesis (8) is equivalent to the null hypothesis

H0 : ∀z ∈]u,∞[, F
(2)
L|M (z|.) − F

(2)
S|M (z|.) < 0, (9)

where F
(2)
L|M (z|x) and F

(2)
S|M (z) denote the integrated CDF of rL and rS conditional on rM ,

respectively. We cannot follow the same approach as for the unconditional test in Section 2,

because conditional empirical CDFs do not follow functional CLTs. Thus, we follow Durot

(2003)’s approach along the lines of Delgado and Escanciano (2013), and adapt the latter to

strong SSD. The key idea is to express the null hypothesis (9) in terms of the concavity of the

second-order antiderivative of the difference of integrated conditional CDF.

Under standard regularity conditions, a function is strictly negative if, and only if, its first-

order antiderivative is strictly decreasing, and if, and only if, its second-order antiderivative
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(i.e., the antiderivative of the antiderivative of the function) is strictly concave. Thus, the null

hypothesis (9) is equivalent to the null hypotheses

H0 : ∀z ∈]u,∞[,
∫ .

−∞
[F (2)

L|M (z|ẋ)−F
(2)
S|M (z|ẋ)]fX(ẋ)dẋ = F

(2)
L,M (z, .)−F

(2)
S,M (z, .) strictly decreasing

H0 : ∀z ∈]u,∞[, C(2)(z, .) is strictly concave, (10)

where, for all z ∈ R, C(2)(z, .) denotes a normalized antiderivative of F
(2)
L,M (z, x) − F

(2)
S,M (z, .).

An unconstrained estimator of C(2)(z, .) is the antiderivative Ĉ(2)(z, .) of the integrated empir-

ical CDF. A constrained estimator of C(2)(z, .) is the smallest concave majorant T Ĉ(2)(z, .) of

Ĉ(2)(z, .) because the smallest concave majorant (also called least-concave majorant) of a concave

function is the concave function itself. Therefore the test statistic is

√
TC∗

T :=
√

T sup
(z,u)∈]u,∞[×F̂M ([uM ,uM ])

|T Ĉ(2)(z, u) − Ĉ(2)(z, u)|,

where [uM , uM ] denotes the support of rM . The following proposition shows the C∗
T test statistic

defines a valid and consistent test.

Proposition 5 (Validity and consistency). Under the Assumption 1 and the assumptions of

Appendix A.6,

(i) if the null hypothesis (8) holds, then

lim
T→∞

supP
(
ĉ1−α <

√
TC∗

T

)
6 α;

(ii) if the null hypothesis (8) does not hold, then

lim
T→∞

P
(
ĉ1−α <

√
TC∗

T

)
= 1;

where ĉ1−α is the 1−α quantile of a (centered) block-subsampling approximation of the asymptotic

distribution of
√

TC∗
T with a block size bT s.t. limT→∞ bT = ∞ and limT→∞

bT
T = 0.

Proof. See Appendix A.6.

Proposition 5 shows the test conditional on the market is valid and consistent. Results from

a Monte-Carlo simulation in Table 2 support Proposition 5. When the null hypothesis (8) is

wrong, p-values converge to zero as the sample size increases. When the null hypothesis (8) is

true, a large proportion of p-values is away from zero. For ease of comparison, the DGPs are the

same as in Table 1 for the unconditional tests except for the common component x.
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Table 2: Performance of conditional test in Monte-Carlo simulations

H0 DGP Boxplots of p-values

False

[
rL

rS

]
IID
↪→ x + N

([
.015
.0078

]

,

[
.122 .0051

.0572

])

True

[
rL

rS

]
IID
↪→ x + N

([
.011
.010

]

,

[
.0392 .0012

.0572

])

False

[
rL

rS

]
IID
↪→ x +

[
zL

zS

]

where






zL
IID
↪→ t(4)

zS
IID
↪→ N (0, 1)

Cor(zS , zL) = .7

Note: The first two data-generating processes (DGP) are calibrated to data. In particular x
IID
↪→ N (0, σx), where σx = .04 is the estimated

standard deviation of monthly market returns. The third DGP is a stylized DGP except for the correlation that is calibrated to data. The
reported p-values are based on 1000 simulated samples of sample size equal to the indicated T . The distribution of C∗

T is approximated

through centered block subsampling with block size bT =
√

T . The tops and bottoms of each “box" are the 25th and 75th percentiles of the
p-values, respectively. The line in the middle of each box is the median. Crosses beyond the whisker length indicate outliers. An outlier is a
value that is more than 1.5 times the interquartile range away from the corresponding end of the interquartile ranges. Whiskers are drawn
from the ends of the interquartile ranges to the furthest observations within the whisker length.
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3.3 Equilibrium foundations for the test conditional on the market

In the absence of diversification benefits, the equilibrium foundations of the conditional test is

similar to the ones of the unconditional test. The reasoning is the same, except that investors

control for the conditioning variable, that is, investors’ preferences correspond to an expected

utility under the distribution conditional on the market.

In the presence of diversification benefits, the following proposition formalizes the one-period

equilibrium foundations for the test conditional on market.

Proposition 6 (Equilibrium foundation for test conditional on market). Let rW and [uW1
, uW1 ],

respectively, denote the return on wealth (that is, rW := W1
W0

− 1, where W0 denotes the initial

wealth) and the support of W1. Under Assumptions 1, for all u ∈ U2 s.t. u is twice continuously

differentiable on [u, u], which includes the support of W1 and of the returns rS and rL, then, up

to a first order, the null hypothesis “H0 : ∀u ∈ U2,E[u(rS)|rW ] < E[u(rL)|rW ]” implies that the

expected return of the factor exceeds its risk compensation, that is,

−
1

E[u′(W1)]
Cov(u′(W1), rL − rS) < E(rL − rS).

Proof. Under Assumption 1, by iterated conditioning, the Hardy et. al. theorem, and Assumption

1(b) (no touching without crossing), if, ∀u ∈ U2, E[u(rS)|rW ] < E[u(rL)|rW ], then, ∀u ∈

U2, E[u(rS)] < E[u(rL)]. Then the result follows immediately from Proposition 4.

Proposition 6 shows that, up to a first order, strict preference for the long leg conditional on

the market is a sufficient condition for an anomaly. The assumptions of Proposition 6 are similar

to the assumptions of Proposition 4.

4 Empirical Results

We now apply our tests to actual data. We start by describing the dataset and, as a proof of

concept, we apply the test to the market factor MKT. Then, we apply the tests to the widely-used

FF5+MOM factors. Finally, we provide an overview of the test results for a standard dataset of

more than 200 potential risk factors.

4.1 Data

Data for the five Fama and French factors and momentum, FF5+MOM, are from Kenneth French

website. The factors are built by double sorting stocks on size and four characteristics, that is,

book to market (BM), operating profitability (OP), investment (INV) and momentum (MOM).

For each characteristic, stocks are double sorted into Small and Big stocks as well as tertiles

of Low, Medium and High characteristics stocks. For each characteristic, the long leg of the

corresponding factor is the equally weighted portfolio of two portfolios of Small and Big stocks
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in the highest tertiles (lowest for INV) and equivalently for the short leg. For each characteristic,

the long leg of the corresponding Size factor is the equally weighted portfolio of three portfolios

of Small stocks (Low, Medium and High), while the short leg is the equally weighted portfolio

of three portfolios of Big stocks. Following Fama and French (2015), we built a Size factor by

averaging the long and short legs across the Size factors related to BM, OP and INV. We also

use as the aggregate market the CRSP value-weighted index as well as the one-month Treasury

Bill for the risk-free rate.

For BM and MOM a long sample of data is available, starting from July 1926 (BM) or January

1927 (MOM). For the market and the Treasury bill yield, data are also available starting from

July 1926. For OP and INV, data start only from July 1963. For this reason, we report for BM,

MOM and the market MKT the findings for the full sample period as well as for a restricted

period starting in July 1963. The samples for FF5+MOM factors end in October 2021.

We use data for 205 potential risk factors from Chen and Zimmermann (2020a). Stocks

are sorted into quantile portfolios, where the number of quantiles depend upon data availability

for the characteristic. We use the lowest and highest quantiles and retain as the short leg the

quantile with the lowest sample average return over the sample period. We discuss evidence for

the original samples of the published papers as well as for the post-publication samples and the

full samples. The samples end in December 2020.

4.2 Proof of Concept

Propositions 1 and 5 show the unconditional test and the conditional test have good asymptotic

properties. Monte-Carlo simulations (Tables 1-2 in previous sections and Appendix B) indicate

that the finite sample performance of the tests are in line with the asymptotic properties. In the

present section, we apply the unconditional test to the market factor MKT as a proof of concept

on actual financial data.

Overwhelming empirical evidence show that US stocks have higher expected returns than

Treasury bill returns, but that they are riskier. Thus, we test the following null hypothesis

H0 : ∀u ∈ U2, E[u(rf )] < E[u(rM )],

where rf is the one-month Treasury bill return and rM is the CRSP market return. We report

results in Table 3.
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Table 3: Unconditional test applied to the equity premium (i.e., market factor
MKT)

Long Short tL−S
NW P-value

1926 - 2021 0.96 0.27 4.01 0.00
1963 - 2021 0.96 0.37 3.18 0.00

Note: The columns “Long,” “Short,” “ tL−S
NW

” and “P-value,” respectively, correspond to the average return of the long leg, the average return
of the short leg, the t-statistic for the null hypothesis “H0 : E(rS) = E(rL)," and the p-value of the unconditional test. We use Newey-West

standard errors to calculate tL−S
NW

. The frequency of the data is monthly.

We clearly reject the null hypothesis, so, in line with the empirical evidence, the market

factor MKT appear as a possible risk factor. In other words, levels of risk aversion exist s.t. US

Treasury bills are preferred to US stocks. The results are robust to subsample analysis. While

the results are a proof of concept for the unconditional test, they also indicate the tests set a

high threshold to classify a factor as an anomaly, in the sense that they allow for any arbitrarily

high level of risk aversion. By construction, the tests do not require the level of risk aversion

(i.e., the concavity of the von Neumann-Morgenstern utility) to be plausible for actual agents in

the economy. Mehra and Prescott (1985) also show a sufficiently high level of risk aversion can

make individuals prefer US Treasury bills over US stocks, but they regard it as implausibly high,

so they classify the market factor MKT as an anomaly, which they call the “equity premium

puzzle.”

4.3 Unconditional Test Applied to FF5+MOM Factors

The FF5+MOM factors are widely assumed to be risk factors and thus used to adjust for risk

both in practice and academia. We apply our unconditional test to these factors to assess whether

they are anomalies or possible risk factors. The results are reported in the following table.
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Table 4: Unconditional test applied to FF5+MOM factors

Long Short tL−S
NW P-value

Size 1963 - 2021 1.21 0.97 1.85 0.00
BM 1926 - 2021 1.32 0.99 2.80 0.15
BM 1963 - 2021 1.24 0.97 1.98 0.40
OP 1963 - 2021 1.18 0.92 2.71 1.00
INV 1963 - 2021 1.22 0.96 2.91 1.00
MOM 1926 - 2021 1.42 0.78 4.40 1.00
MOM 1963 - 2021 1.38 0.76 3.60 0.54
MKT 1926 - 2021 0.96 0.27 4.01 0.00
MKT 1963 - 2021 0.96 0.37 3.18 0.00

Note: The columns “Long,” “Short,” “ tL−S
NW

” and “P-value,” respectively, correspond to the average return of the long leg, the average return
of the short leg, the t-statistic for the null hypothesis “H0 : E(rS) = E(rL)," and the p-value of the unconditional test. We use Newey-West

standard errors to calculate tL−S
NW

. The frequency of the data is monthly. BM stands for book-to-market, OP for Operating Profitability,
INV for Investment and MOM for Momentum.

Market factor MKT set aside, only Size has a p-value below standard thresholds. The result

is robust to the different methods for constructing Size. A first potential explanation is the lack

of significance of the factor’s expected return: The t-statistic of the long-short portfolio tL−S
NW is

slightly below 1.96, suggesting Size might not be a factor after all, and thus neither an anomaly

nor a risk factor. A second potential explanation is that Size can be explained by risk alone.

This second explanation seems more plausible because a t-statistic tL−S
NW , which is slightly below

1.96 and thus significant at 10%, is unlikely to explain a p-value of zero for the unconditional

test. Moreover, in the original sample (Online Appendix) and for other constructions of the Size

factor, the p-value is still zero even when the expected return is highly significant. This second,

more plausible explanation lends support to Berk (1995), which explains why Size should not be

regarded as an anomaly, but rather as a compensation for risk.

Regarding the factors BM, INV, OP and MOM there is strong evidence for the null hypothesis

for the sub-sample period starting in July 1963. Similar results hold even if we exclude 2020

and 2021. For the MOM factor, the spread between the short and the long legs is greater than

7% on a yearly basis and hence close to the equity premium. While a high risk aversion could

explain the equity premium, it cannot explain the MOM factor. The p-values are also large for

the newly discovered OP and INV factors even though their expected returns are less than half

the MOM factor’s expected return. The findings indicate OP and INV are anomalies through

the lens of our test.

The evidence for the BM factor is weaker, especially for the longest sample period. The

findings complement the debate around the BM factor in Ang and Chen (2007) and Fama and

French (2006) as well as to the recent value trap. A necessary condition for strong SSD is a

strictly positive factor expected return. Ang and Chen (2007) document the value premium is

absent pre-1963 explaining why in the longer sample the p-value of the unconditional test is
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much lower than in the post-1963 sample. In the latter sub-sample, the p-value of 40% strongly

indicates that BM is not a risk factor. Note the sample period includes the 2010-2020 decade

during which value stocks underperformed relative to growth stocks.

4.4 Test Conditional on Market applied to FF5+MOM Factors

The test conditional on the market has the main advantage relative to the unconditional test to

control for exposure to market risk including nonlinear dependence. We report the results of the

test conditional on the market in Table 5.

Table 5: Test conditional on market applied to FF5+MOM factors

Long Short tL−S
NW P-value

Size 1963 - 2021 1.21 0.97 1.85 0.00
BM 1926 - 2021 1.32 0.99 2.80 0.37
BM 1963 - 2021 1.24 0.97 1.98 0.25
OP 1963 - 2021 1.18 0.92 2.71 0.40
INV 1963 - 2021 1.22 0.96 2.91 0.09
MOM 1926 - 2021 1.42 0.78 4.40 0.60
MOM 1963 - 2021 1.38 0.76 3.60 0.43

Note: The columns “Long,” “Short,” “ tL−S
NW

” and “P-value,” respectively, correspond to the average return of the long leg, the average return
of the short leg, the t-statistic for the null hypothesis “H0 : E(rS) = E(rL)," and the p-value of the unconditional test. We use Newey-West

standard errors to calculate tL−S
NW

. The frequency of the data is monthly. BM stands for book-to-market, OP for Operating Profitability,
INV for Investment and MOM for Momentum.

We still reject the null that Size is an anomaly. While the p-values drop for the other

characteristics, the factors BM, OP and MOM still appear as anomalies. In the case of INV,

the p-value is now only 9%, which is above the standard 5% threshold, but slightly below 10%.

Again, the findings are robust to alternative construction methods of the Size factor as well as

looking at recent data only.

One possible explanation for the drop in p-values relative to the unconditional test is the

unusual absence of type I error for the latter, asymptotically (Proposition 1i vs Proposition 5ii).

A second possible explanation is the important commonality between the market and the legs of

different factors.

4.5 A Bird View on the Factor Zoo

Beyond the widely-used FF5+MOM factors studied above, hundreds of other factors —the factor

“zoo”— have been discovered. In order to have a broader assessment, we also apply the two tests

to a standard dataset of more than 200 potential factors. We report the detailed results in the

Appendix. In the present section, we only provide an overview of the main results. We use 5%

as the threshold above which we cannot reject the null hypothesis. We report the proportions of
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potential factors that appear as anomalies in the table below.

Table 6: Proportion of p-values above 5%

Unconditional Conditional on Market
Original Sample 0.92 0.87
Post-Pub. Sample 0.35 0.34
Full Sample 0.88 0.77

Note: The data base correspond to Chen and Zimmermann (2020a) data base of 205 potential factors. The frequency of the data is monthly.

A first result is that a majority of the 205 potential factors appear as anomalies in the original

sample of the published papers and the full sample. For both tests, we find more than 70% appear

as anomalies in the original sample and the full sample. Because the existence of a factor is

necessary condition for an anomaly, this result lends support to Chen and Zimmermann (2020b),

Chen (2021a,b), Jensen et al. (2021) among others, who find that most factors are replicable in

the original sample. Remember the unconditional test is immune to multiple hypothesis problem

and the pretesting problem (Propositions 2-3) and hence makes the results of this literature even

stronger.

A second result is the dramatic drop in the proportion of anomalies from the original sample

to the post publication sample: The proportion drops from about 90% to about 35% for both

tests. Two potential explanations exist for this drop: (i) Many anomalies became risk factors

after publication; or (ii) The phenomenon of “Anomalies elimination” occurred, that is, many

anomalies disappeared because their expected returns shrank to zero. Table 7 supports the sec-

ond explanation. Table 7 displays the proportion of apparent anomalies among the significant

factors, that is, the proportion of p-values above 5% for the potential factors with expected re-

turns significantly positive at the 5% level. The table shows the proportion of apparent anomalies

among (significant) factors is above 80%, and often close to 90%, in line with “anomaly elim-

ination,” which has been documented (e.g., Hanson and Sunderam 2014, McLean and Pontiff

2016): Following the publication of an anomaly, some investors trade on it, so its expected

return decreases after a temporary increase (Pénasse 2020).

Table 7: Proportion of p-values above 5% for significant factors

Unconditional Conditional on Market
Original Sample 0.93 0.89
Post-Pub. Sample 0.95 0.93
Full Sample 0.91 0.81

Note: We compute the displayed proportions as follows. (i) We keep from the Chen and Zimmermann (2020a) data base of 205 potential
factors, the ones that have a t-statistics bigger than the 95% quantile of standard normal distribution. (ii) We compute the proportion of
p-value above 5% among the kept factors. For simplicity, potential pretesting problems are ignored. The frequency of the data is monthly.
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The third and main result is a clear majority of factors appear as anomalies in all samples.

Overall, more than 80% of factors appear as anomalies in the original sample, the post-publication

sample and the full sample (see Table 7). In Table 6, the proportions are lower because some

potential factors do not have significantly positive expected returns and thus are not factors

per se. This third result generalizes the results for the FF5+MOM factors to most of the

factors documented in the literature. This generalization is not surprising given that theory and

empirical evidence indicate a strong commonality between factors (e.g., Reisman 1992, Lewellen

et al. 2010, Bryzgalova et al. 2020, Arvanitis et al. 2021).

4.6 Multiperiod Considerations

In line with a large part of the literature on factor models, for simplicity, we previously focused

on one-period equilibrium foundations for the proposed tests. In the present section, we provide

multiperiod equilibrium foundations for the unconditional test and a modified conditional test.

For this purpose, as in the one-period case, we first derive the factor risk compensation required

by risk-averse individuals.

Consider individuals who maximize time additive utility functions U(C0:T ) :=
∑T

t=0 βtE[u(Ct)],

where β ∈]0, 1[ denotes a time discount factor, u(.) an increasing and concave von Neuman-

Morgenstern utility function, and C0:T := (C0, C1. . . . , CT ) a consumption process.12 A general-

ization of the one-period reasoning of Section 2.3.2 implies that, for any time period t ∈ [[1, T ]]

at which the factor rL,t − rS,t is freely tradable, the following optimality condition holds

E[u′(Ct)(rL,t − rS,t)] = 0 ,

so the factor expected return explained by risk alone is

E(rL,t − rS,t) = −
1

E[u′(Ct)]
Cov(u′(Ct), rL,t − rS,t).

See Proposition A.1 in Appendix A.4 for a formal proof. Therefore, indexing returns with t,

the equilibrium foundations provided by Propositions 4 and 6 still hold with Ct in lieu of Wt.

The multiperiod version of Propositions 4 shows Tables 3 and 4 have multiperiod equilibrium

foundations.
12Our tests cannot be extended to Epstein-Zin-Weil utility functions (Epstein and Zin 1989, PhilippeWeil 1989).

One of the reasons is that Epstein-Zin-Weil utility functions violate first-order stochastic dominance, and thus, a
fortiori, SSD. Individuals with Epstein-Zin-Weil utility functions do not always prefer more to less. More precisely,
Epstein-Zin-Weil utility functions violate the monotonicity axiom according to which an agent does not choose a
lottery if another available lottery is preferable in every state of the world. See Bommier et al. 2017 for a thorough
analysis of this violation.
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5 Summary and Discussion

Over the last decades, hundreds of factors predicting cross-sectional returns have been discovered.

The present paper (i) introduces the concept of strong SSD; (ii) provides a general, but simple,

derivation of the risk compensations required by risk-averse individuals to hold a factor; (iii)

shows that if the long leg of a factor strongly SSD dominates its short leg, the factor’s expected

return should exceed its possible risk compensations in equilibrium; (iv) proposes two tests of

strong SSD; (v) verifies the performance of the tests numerically,mathematically and empirically;

and (vi) applies the two tests to more than 200 factors.

We propose and use two tests because they rely on slightly different assumptions and data.

Despite their differences, both tests classify a majority of factors —including a majority of the

widely used FF5+MOM factors— as anomalies. Thus, the factors “zoo” appears to be mainly an

anomalies “zoo.” This result might appear unexpected, because strong SSD sets a high threshold

for anomalies. Strong SSD requires strict preference even for implausibly high level of risk

aversion.

The proposed tests do not only help to detect anomalies. They also provide some guidance

on which types of models can explain the anomalies. The tests and their theoretical foundations

barely impose any restriction on distributions of returns nor on production, etc. Thus, explana-

tions of the anomalies “zoo” call for models in which risk-averse individuals do not buy factors

that they value higher than their market price. In particular, trading frictions on factors (e.g.,

He and Modest (1995), Luttmer (1996), intermediary asset pricing as in He and Krishnamurthy

(2018)), or behavioral biases (e.g., Barberis et al. 2021) are possible explanations for the detected

anomalies, while frictions on production are unlikely explanations.

Beyond the question of the factors “zoo,” the present paper is a step toward a solution

to Fama’s joint hypothesis problem (Fama 1970, Roll 1977, Fama 2013), in the sense that it

proposes model-free tests to detect abnormal excess returns. In its modern formulation, the joint

hypothesis problem states that asset pricing tests always jointly test the existence of abnormal

returns and a model of market equilibrium (e.g., CAPM). Hence, it is impossible to distinguish

abnormal returns from using the wrong model of market equilibrium. In contrast, the two

tests of the present paper can help detect abnormal excess returns without assuming a specific

model of market equilibrium.13 To the best of our knowledge, they are the first tests with this

property. Therefore, the proposed tests should be useful to detect abnormal excess returns in

many situations, especially given that the current dominating methodology assimilates abnormal

returns to the alphas of regressions on a preferred factor model. In this way, both tests can provide

guidance for better investment decisions and capital allocation.

13While our tests are a step toward a solution to the modern formulation of Fama’s joint hypothesis problem,
they do not address its original formulation in terms of information. Our tests do not assess whether assets prices
reflect all available information. The latter remains an open issue.

30



References

Ahn, S. C. and Horenstein, A. R.: 2013, Eigenvalue ratio test for the number of factors, Econo-

metrica 81(3), 1203–1227.

Al-Najjar, N. I.: 1998, Factor analysis and arbitrage pricing in large asset economies, Journal of

Economic Theory 78(2), 231–262.

Aliprantis, C. D. and Border, K. C.: 2006/1994, Infinite Dimensional Analysis: A Hitchhiker’s

Guide, 3rd edn, Springer.

Amengual, D. and Watson, M. W.: 2007, Consistent estimation of the number of dynamic factors

in a large n and t panel, Journal of Business & Economic Statistics 25(1), 91–96.

Ando, T. and Bai, J.: 2020, Quantile co-movement in financial markets: A panel quantile model

with unobserved heterogeneity, Journal of the American Statistical Association 115(529), 266–

279.

Ang, A. and Chen, J.: 2007, Capm over the long run: 1926–2001, Journal of Empirical Finance

14(1), 1–40.

Arvanitis, S., Hallam, M., Post, T. and Topaloglou, N.: 2019, Stochastic spanning, Journal of

Business & Economic Statistics 37(4), 573–585.

Arvanitis, S., Scaillet, O. and Topaloglou, N.: 2021, Spanning analysis of stock market anomalies

under prospect stochastic dominance.

Bai, J.: 2003, Inferential theory for factor models of large dimensions, Econometrica 71(1), 135–

171.

Bai, J. and Ng, S.: 2002, Determining the number of factors in approximate factor models,

Econometrica 70(1), 191–221.

Banz, R. W.: 1981, The relationship between return and market value of common stocks, Journal

of Financial Economics 9(1), 3–18.

Barberis, N., Jin, L. J. and Wang, B.: 2021, Prospect theory and stock market anomalies, The

Journal of Finance 76(5), 2639–2687.

Barillas, F. and Shanken, J.: 2018, Comparing asset pricing models, The Journal of Finance

73(2), 715–754.

Barrett, G. F. and Donald, S. G.: 2003, Consistent tests for stochastic dominance, Econometrica

71(1), 71–104.

Basu, S.: 1977, Investment performance of common stocks in relation to their price-earnings

ratios: A test of the efficient market hypothesis, The Journal of Finance 32(3), 663–682.

31



Beran, J.: 1984, Bootstrap methods in statistics, Jahresberichte des Deutschen Mathematichen

Vereins 86, 14–30.

Berk, J. B.: 1995, A critique of size-related anomalies, The Review of Financial Studies 8(2), 275–

286.

Berk, J. B., Green, R. C. and Naik, V.: 1999, Optimal investment, growth options, and security

returns, The Journal of Finance 54, 1553–1607.

Black, F., Jensen, M. C. and Schole, M.: 1972, Studies in the Theory of Capital Markets, Praeger

Publishers Inc., chapter The Capital Asset Pricing Model: Some Empirical Tests. Available

at http://papers.ssrn.com/abstract=908569.

Blackwell, D.: 1951, Comparison of experiments, Proceedings of the Second Berkeley Symposium

on Mathematical Statistics and Probability, University of California Press, pp. 93–102.

Bommier, A., Kochov, A. and Legrand, F.: 2017, On monotone recursive preferences, Econo-

metrica 85(5), 1433–1466.

Bondt, W. F. M. D. and Thaler, R.: 1985, Does the stock market overreact?, The Journal of

Finance 40(3), 793–805.

Borovicka, J. and Borovicková, K.: 2018, Risk premia and unemployment fluctuations,

Manuscript, New York University .

Bryzgalova, S., Huang, J. and Julliard, C.: 2020, Bayesian solutions for the factor zoo: We just

ran two quadrillion models. Available at SSRN: https://ssrn.com/abstract=3481736.

Carhart, M. M.: 1997, On persistence in mutual fund performance, The Journal of Finance

52(1), 57–82.

Cario, M. C. and Nelson., B. L.: 1997, Modeling and generating random vectors with arbitrary

marginal distributions and correlation matrix. Technical Report, Department of Industrial

Engineering and Management Sciences, Northwestern University.

Carlier, G., Dana, R.-A. and Galichon, A.: 2012, Pareto efficiency for the concave order and

multivariate comonotonicity, Journal of Economic Theory 147(1), 207–229.

Cartier, P., Fell, J. M. G. and Meyer, P.-A.: 1964, Comparaison, des mesures portées par un

ensemble convexe compact, Bulletin de la Société Mathématique de France 92, 435–445.

Cattaneo, M. D., Crump, R. K., Farrell, M. H. and Schaumburg, E.: 2020, Characteristic-sorted

portfolios: Estimation and inference, Review of Economics and Statistics 102(3), 531–551.

Chalamandaris, G., Pagratis, S. and Topaloglou, N.: 2019, Are stock-market anomalies anoma-

lous after all?

32



Chamberlain, G. and Rothschild, M.: 1983, Arbitrage, factor structure, and mean-variance

analysis on large asset markets, Econometrica 51(5), 1281–1304.

Charoenrook, A. and Conrad, J.: 2008, Identifying risk-based factors. Older version (2005)

available on ssrn at https://ssrn.com/abstract=757210.

Chen, A. Y.: 2021a, The limits of p-hacking: Some thought experiments. Forthcoming in The

Journal of Finance.

Chen, A. Y.: 2021b, Most claimed statistical findings in cross-sectional return predictability are

likely true. Available at SSRN: https://ssrn.com/abstract=3912915.

Chen, A. Y. and Zimmermann, T.: 2020a, Open source cross-sectional asset pricing. Available

at SSRN: https://ssrn.com/abstract=3604626. Forthcoming in Critical Finance Review.

Chen, A. Y. and Zimmermann, T.: 2020b, Publication bias and the cross-section of stock returns,

The Review of Asset Pricing Studies 10(2), 249–289.

Chernozhukov, V. and Fernández-Val, I.: 2005, Subsampling inference on quantile regression
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ONLINE APPENDIX TO:

Anomaly or Possible Risk Factor? Simple-To-Use Tests
Benjamin Holcblat, Abraham Lioui and Michael Weber

A Proofs

A.1 Proof of Lemma 1 and Lemma 2 (equivalent characterizations of strong
SSD)

A.1.1 Unconditional strong SSD

Lemma 1 is a simplified version of the following theorem.

Theorem A.1 (Equivalent characterizations of strong SSD). Assume that the support of the

random variables rL and rS is a subset of [u, u] ⊂ R with u 6= u. For a u : [u, u] → R, define

ǔ := min
{
u, inf{z ∈ [u, u] s.t., ∀x ∈ [z, u], u(x) = 0}

}
, and denote its left derivative and right

derivative at x with u′
−(x) and u′

+(x), respectively. Then the following statements are equivalent.

(i) For all real-valued, concave, and increasing function u(.) on [u, u] s.t. u′
+(u) ∈ R and

u′
−(ǔ) ∈ R \ {0} with ǔ 6= u, E[u(rS)] < E[u(rL)].

(ii) For all z ∈]u,∞[, E[(z − rL)+] < E[(z − rS)+].

(iii) For all z ∈]u,∞[, F
(2)
L (z) < F

(2)
S (z), where F

(2)
L (z) :=

∫ z
u FL(y)dy.

Proof. Apply upcoming Theorem A.2 with W1 = 1.

A.1.2 Conditional strong SSD

Lemma 2 is a simplified version of the following Theorem. The following theorem is the condi-

tional counterpart of Theorem A.1.

Theorem A.2 (Equivalent characterizations of conditional strong SSD). Assume that the sup-

port of the random variables rL and rS is a subset of [u, u] ⊂ R with u 6= u. Assume a complete

probability space. For a function uW1 : [u, u] → R indexed by a random variable W1, define

ǔW1 := min
{
u, inf{z ∈ [u, u] s.t., ∀x ∈ [z, u], uW1(x) = 0}

}
, and denote its left derivative and

right derivative at x with u′
W1,−(x) and u′

W1,+(x), respectively. Then the following statements

are equivalent.

(i) For all real-valued, concave and increasing function uW1(.) defined on [u, u] and Borel mea-

surable w.r.t. the index W1 s.t. E|uW1(u)| < ∞, E|u′
W1,+(u)| < ∞ and E|u′

W1,−(ǔW1)| < ∞

with u′
W1,−(ǔW1) 6= 0 and ǔW1 6= u a.s., E[uW1(rS)|W1] < E[uW1(rL)|W1] a.s.
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(ibis) For all real-valued, concave and increasing function u(.) on [u, u] s.t. u′
+(u) ∈ R and

u′
−(ǔ) ∈ R \ {0} with ǔ 6= u, E[u(rS)|W1] < E[u(rL)|W1] a.s.

(ii) For all z ∈]u,∞[, E[(z − rL)+|W1] < E[(z − rS)+|W1] a.s.

(iii) For all z ∈]u,∞[, F (2)
L|W1

(z|W1) < F
(2)
S|W1

(z|W1) a.s., where F
(2)
L|W1

(z|W1) :=
∫ z
u FL|W1

(y|W1)dy

a.s.

Before the proof of Theorem A.2, the following lemma shows that ǔW1 is well-defined and

measurable.

Lemma A.1 (Existence and σ(W1)-measurability of ǔW1). Under the assumptions of Theorem

A.2, for all the members of the class of utility functions defined in the statement (i) of the latter

theorem, the following statements hold.

(i) There exists a function w1 7→ ǔw1 with values in [u, u] s.t. ǔw1 := min
{
u, inf{z ∈

[u, u] s.t., ∀x ∈ [z, u], uw1(x) = 0}
}
, for all w1 ∈ R.

(ii) The correspondence ϕ(w1) := {x ∈ [u, u] : uw1(x) = 0} is closed and connected valued, and

weakly measurable.

(iii) The correspondences ψu(w1) :=






ϕ(w1) if ϕ(w1) 6= ∅

{u} otherwise
is closed, connected and non-empty

valued, and weakly measurable.

(iv) For all w1 ∈ R, {z ∈ [u, u] s.t., ∀x ∈ [z, u], uw1(x) = 0} = ∅ iff 0 < d(u, ψu(w1)) :=

infx∈ψu(w1) |u − x|.

(v) The function w1 7→ ǔw1 is Borel measurable.

Proof. (i) For convenience, in the present proof, put Aw1 := {z ∈ [u, u] s.t., ∀x ∈ [z, u], uw1(x) =

0}, where w1 ∈ R.

1st case: ∀z ∈ [u, u], ∃ż ∈ [z, u] s.t. uw1(ż) 6= 0. Then, by definition, the set Aw1 is the

empty set ∅, so its greatest lower bound is ∞ (i.e., inf Aw1 = inf ∅ = ∞), which, in turn, implies

that ǔw1 := min
{
u, inf Aw1

}
= u.

2nd case: ∃z ∈ [u, u], s.t., ∀ż ∈ [z, u], uw1(ż) = 0. Then, Aw1 is not the empty set. There are

two subcases. First, consider the subcase Aw1 := {u}, so ǔw1 = u. Now consider the remaining

subcase Aw1 6= {u}, so inf Aw1 6= u. By the sequential characterization of infima, there exists a

sequence (zn) ∈ AN
w1
s.t. limn→∞ zn = inf Aw1 . Now, Aw1 is a subset of the closed set [u, u], so

(zn) ∈ [u, u]N, which, in turn, implies that inf Aw1 ∈ [u, u] by the sequential characterization of

closed sets (e.g., Aliprantis and Border 2006/1994, Lemma 3.3.5).

(ii) Closeness, connectedness and weak measurability respectively follow from the continuity,

the monotonicity of uw1(.), and the measurability of correspondences defined as a level set of a

Carathéodory function (e.g., Aliprantis and Border 2006/1994, Lemma 18.8.2).
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(iii) We only prove the statement for ψu(.) because the proof is the same for ψu(.). By con-

struction, the correspondence ψu(.) is closed, connected and non-empty valued by the properties

of ϕ(.) stated in (ii), and the properties of the singleton {u}. Thus, it remains to show that ψu(.)

is weakly measurable.

Denote the lower inverse of a correspondence ψ : S � X with ψl(.), i.e., ψl(A) = {s ∈ S :

ψ(s) ∩ A 6= ∅}, ∀A ⊂ X (e.g., Aliprantis and Border 2006/1994, p. 557). By definition of the

lower inverse and of the correspondence ψu, for all open subset O of [u, u],

ψl
u(O) = {w1 ∈ R : ϕ(w1) ∩ O 6= ∅}

⋃
[{w1 ∈ R : ϕ(w1) = ∅} ∩ {w1 ∈ R : {u} ∩ O 6= ∅}]

= ϕl(O)
⋃[

ϕl(R)c ∩ {w1 ∈ R : u ∈ O}
]
∈ B(R)

where the explanations for the last inclusion are the following. First, by (ii), ϕ(.) is weakly mea-

surable, so ϕl(O) and ϕl(R)c are measurable (e.g., Aliprantis and Border 2006/1994, Definition

18.1). Second, {w1 ∈ R : u ∈ O} = ∅ or R, so it is also Borel measurable.

(iv) Fix w1 ∈ R. “⇒” Assume {z ∈ [u, u] s.t., ∀x ∈ [z, u], uw1(x) = 0} = ∅. There are two

cases.

1st case: ψu(w1) = ϕ(w1). By (ii), ψu(w1) = ϕ(w1) := {x ∈ [u, u] : uw1(x) = 0} is a closed

connected set, which means a closed interval (e.g., Rudin 1953, Theorem 2.47). Thus, {z ∈

[u, u] s.t., ∀x ∈ [z, u], uw1(x) = 0} = ∅ (i.e., ∀z ∈ [u, u], ∃x ∈ [z, u] s.t. uw1(x) 6= 0) implies that

d(u, ψu(w1)) > 0.

2nd case: ψu(w1) = {u}. Then, d(u, ψu(w1)) = d(u, u) > 0, because u 6= u by assumption.

“⇐” If d(u, ψu(w1)) > 0, then, for all x ∈ [u − ε, u] where ε := d(u, ψu(w1)), uw1(x) 6= 0

by definition of ψu(.). Thus, ∀z ∈ [u, u], ∃x ∈ [max(z, u − ε), u] s.t. uw1(x) 6= 0. Thus,

{z ∈ [u, u] s.t., ∀x ∈ [z, u], uw1(x) = 0} = ∅.

(v) By (iii), the correspondence ψu(.) is weakly measurable and nonempty-valued. Thus,

the distance function δ : [u, u] × R → R s.t. δ(z, w1) := d(z, ψu(w1)) := infx∈ψu(w1) |z − x| is

Carathéodory (e.g., Aliprantis and Border 2006/1994, Theorem 18.5), so, the set B := {w1 ∈

R : δ(u,w1) > 0} = {w1 ∈ R : d(u, ψu(w1)) > 0} is Borel measurable. Moreover, by (iii), the

correspondence ψu(.) is closed and nonempty valued and weakly measurable, so, by the Castaing

representation theorem (e.g., Aliprantis and Border 2006/1994, Corollary 18.14.2), there exists

a sequence of Borel measurable selectors (fn)n∈N s.t. ψu(w1) = {f1(w1), f2(w1), . . .}, for all

w1 ∈ R. Then, by (iv),

ǔw1 = u1B(w1) + { inf
n∈N

fn(w1)}1Bc(w1),

which is Borel measurable as the product and the addition of Borel measurable functions.

Proof of Theorem A.2. The proof —especially that (ii) implies (i)— does not follow the usual

proof of the Hardy-Littlewood et. al. theorem provided in the economic and finance literature.

The latter proof relies on limiting arguments (e.g., Rothschild and Stiglitz 1970) that do not go
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well with strict inequalities. In particular, for two real-valued sequences (un) and (vn), the strict

inequalities un < vn, for all n ∈ N, do not imply limn→∞ un < limn→∞ vn. The proof follows

from the introduction of the quantity ǔ 6= 0, careful modifications of the proof techniques used in

the mathematical literature (e.g., Föllmer and Schied 2011/2002, for a textbook presentation),

and new technical lemmas.

(i) ⇒ (ibis) If uW1(.) = u(.), then |u′
+(u)| = E|u′

W1,+(u)| ∈ R and |u′
−(ǔ)| = E|u′

W1,−(ǔ)| ∈

R \ {0}.

(ibis) ⇒ (ii). For any z ∈]u,∞[, the function x 7→ −(z − x)+ is a real-valued, concave,

increasing function on [u, u]. Moreover, ǔ = z if z ∈]u, u], and ǔ = u otherwise, so u′
−(ǔ) = 1 6= 0

and ǔ 6= u. Moreover, for any z ∈]u,∞[, if u(x) = −(z − x)+, then u′
+(u) = 1. Thus, putting

u(x) = −(z−x)+, by assumption, −E[(z−rS)+|W1] < −E[(z−rL)+|W1] a.s., which is equivalent

to the needed result E[(z − rL)+|W1] < E[(z − rS)+|W1] a.s.

(ii) ⇒ (i). Let uW1(.) be real-valued, concave, continuous, and increasing function uW1(.)

defined on [u, u] and Borel measurable w.r.t. the index W1 s.t. E|uW1(u)| < ∞, E|u′
W1,+(u)| < ∞

and E|u′
W1,−(ǔW1)| < ∞ with u′

W1,−(ǔW1) 6= 0 and ǔW1 6= u a.s., Then, hW1(.) := −uW1(.) is

a convex function. By the fundamental theorem of calculus for convex functions (e.g., Föllmer

and Schied 2011/2002, Proposition A.4), for all x ∈ [u, u], a.s.,

hW1(x)

= hW1(ǔW1) +
∫ x

ǔW1

h
′
W1,−(y)dy where h

′
W1,−(.) := h′

W1,−(.)1]u,u](.) + h′
W1,+(.)1{u}(.)

= hW1(ǔW1) −
∫ ǔW1

x
h
′
W1,−(y)dy1{x 6 ǔW1}

because, by definition of h
′
W1,−(.) and ǔW1 , ∀y ∈]ǔW1 , u], h

′
W1,−(y) = 0;

(a)
= hW1(ǔW1) −

∫ ǔW1

x
[h

′
W1,−(y) − h

′
W1,−(ǔW1) + h

′
W1,−(ǔW1)]dy1{x 6 ǔW1}

= hW1(ǔW1) −
∫ ǔW1

x
h
′
W1,−(ǔW1)dy1{x 6 ǔW1} −

∫ ǔW1

x
[h

′
W1,−(y) − h

′
W1,−(ǔW1)]dy1{x 6 ǔW1}

(b)
= hW1(ǔW1) − h

′
W1,−(ǔW1)(ǔW1 − x)1{x 6 ǔW1} +

∫ ǔW1

x
[h

′
W1,−(ǔW1) − h

′
W1,−(y)]dy1{x 6 ǔW1}

(c)
= hW1(ǔW1) − h

′
W1,−(ǔW1)(ǔW1 − x)+ +

∫ ǔW1

x

∫ ǔW1

y
γW1(dz)dy1{x 6 ǔW1} where γW1 is a random

σ-finite Borel measure on [u, u[ s.t., ∀(a, b) ∈ [u, u]2, γW1([a, b[) = h
′
W1,−(b) − h

′
W1,−(a);

(d)
= hW1(ǔW1) − h

′
W1,−(ǔW1)(ǔW1 − x)+ +

∫ ǔW1

u

∫ ǔW1

u
1{x 6 y 6 z}dyγW1(dz)1{x 6 ǔW1}

(e)
= hW1(ǔW1) − h

′
W1,−(ǔW1)(ǔW1 − x)+ +

∫ ǔW1

u
(z − x)+γW1(dz) (A.1)

(a) By assumption, E|h′
W1,−(ǔW1)| = E|u′

W1,−(ǔW1)| < ∞, so h′
W1,−(ǔW1) is finite a.s.

14 Now,

14Concavity of uW1(.) ensure the existence of u′
W1,−(ǔW1) only if ǔW1 ∈]u, u[.
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h
′
W1,−(.) := h′

W1,−(.)1]u,u](.) + h′
W1,+(.)1{u}(.) = h′

W1,−(.) a.s. because ǔW1 6= u a.s. by as-

sumption. Thus, h
′
W1,−(ǔW1) is finite a.s. (b) Standard algebra yields

∫ ǔW1
x h

′
W1,−(ǔW1)dy =

h
′
W1,−(ǔW1)

∫ ǔW1
x dy = h

′
W1,−(ǔW1)(ǔW1 − x). (c) By Lemmas A.2 and A.4 (p. OA.6 & OA.7),

there exists a unique σ-finite random Borel measure γW1 on [u, ǔW1 [ s.t. γW1([a, b[) = h
′
W1,−(b)−

h
′
W1,−(a), ∀(a, b) ∈ [u, u]2 a.s. (d)

∫ ǔW1
x

∫ ǔW1
y γW1(dz)dy =

∫ ǔW1
u

∫ ǔW1
u 1{y 6 z}γW1(dz)1{x 6

y}dy =
∫ ǔW1
u

∫ ǔW1
u 1{x 6 y 6 z}γW1(dz)dy =

∫ ǔW1
u

∫ ǔW1
u 1{x 6 y 6 z}dyγW1(dz) where

the last equality follows from Fubini-Tonelli’s theorem (e.g., Kallenberg 2002/1997, Theorem

1.27) because the Lebesgue measure and γW1 are σ-finite on [u, u]. (e) Standard algebra yields,

∀z ∈ [u, ǔW1 ],
∫ ǔW1
u 1{x 6 y 6 z}dy1{x 6 ǔW1} =

∫ ǔW1
u 1{x 6 y 6 z}dy = (z − x)1{x 6 z} =

(z − x)+.

Then, by the theorem of disintegration of measures (e.g., Kallenberg 2002/1997, Theorem

6.3-6.4 with equation (6)) and Lemma A.1v on p. OA.2„ a.s.,

−E[uW1(rL)|W1] = E[hW1(rL)|W1] =
∫ u

u
hW1(x)dFL|W1

(x|W1)

(a)
= hW1(ǔW1)

∫ u

u
dFL|W1

(x|W1) − h
′
W1,−(ǔW1)

∫ u

u
(ǔW1 − x)+dFL|W1

(x|W1)

+
∫ u

u

∫ ǔW1

u
(z − x)+γW1(dz)dFL|W1

(x|W1)

(b)
= hW1(ǔW1)[FL|W1

(u|W1) − FL|W1
(u|W1)] − h

′
W1,−(ǔW1)E[(ǔW1 − rL)+|W1]

+
∫ ǔW1

u

∫ u

u
(z − x)+dFL|W1

(x|W1)γW1(dz)

(c)
= hW1(ǔW1) − h

′
W1,−(ǔW1)E[(ǔW1 − rL)+|W1] +

∫ ǔW1

u
E[(z − rL)+|W1]γW1(dz)

(d)
< hW1(ǔW1) − h

′
W1,−(ǔW1)E[(ǔW1 − rS)+|W1] +

∫ ǔW1

u
E[(z − rS)+|W1]γW1(dz)

= E[hW1(rS)|W1] = −E[uW1(rS)|W1]

(a) Show the three terms of equation (A.1) have a finite expectation so their conditional expec-

tation are well-defined (e.g., Kallenberg 2002/1997, Theorem 6.1.i&iii), which, in turn, implies

that the integral of the sum is the sum of the integrals. Firstly, by definition, the support of

ǔW1 is in [u, u], so E|hW1(ǔW1)| < ∞ by Lemma A.5 on p. OA.7. Secondly, by the trian-

gle inequality, provided that ǔW1 and rL take values in [u, u], E|h
′
W1,−(ǔW1)(ǔW1 − rL)+| 6

E|h
′
W1,−(ǔW1)||u − u| = |u − u|E|h′

W1,−(ǔW1)| = |u − u|E|u′
W1,−(ǔW1)| < ∞ by assumption,

the definition of h
′
W1,−(.), and the assumption ǔW1 6= u. Thirdly, by the triangle inequality

and the monotonicity of the Lebesgue integral (e.g., Aliprantis and Border 2006/1994, The-

orem 11.13.3), E|
∫ ǔW1
u (z − rL)+γW1(dz)| 6 E

∫ ǔW1
u |u − u|γW1(dz) = |u − u|E|h

′
W1,−(ǔW1) −

h
′
W1,−(u)| 6 |u − u|[E|h

′
W1,−(ǔW1)| + E|h

′
W1,−(u)|] = |u − u|[E|h′

W1,−(ǔW1)| + E|h′
W1,+(u)|] <

∞ by assumption, and where the last equality follows from the definition of the extended
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derivative h
′
W1,−(.), which is a.s. equal to h′

W1,−(.)1]u,u](.) + h′
W1,+(.)1{u}(.), and the assump-

tion ǔW1 6= u. (b) First, by definition, the probability measure corresponding to the c.d.f.

FL|W1
is finite, and thus σ-finite. Second, by Lemma A.2, the random measure γW1(.) is σ-

finite. Thus, by Fubini-Tonelli’s theorem (e.g., Kallenberg 2002/1997, Theorem 1.27),
∫ u
u

∫ u
u (z−

x)+γW1(dz)dFL|W1
(x|W1) =

∫ u
u

∫ u
u (z − x)+dFL|W1

(x|W1)γW1(dz). (c) By definition of c.d.f.

with support [u, u], FL|W1
(u|W1) = 1 and FL|W1

(u|W1) = 0, so FL|W1
(u|W1) − FL|W1

(u|W1) =

1. (d) Firstly, by assumption, ∀z ∈]u, u], E[(z − rL)+|W1] < E[(z − rS)+|W1], and ǔW1 6=

u, so −h
′
W1,−(ǔW1)E[(ǔW1 − rL)+|W1] < −h

′
W1,−(ǔW1)E[(ǔW1 − rS)+|W1] by Lemma A.3 on

p. OA.6. Secondly, by assumption, ∀z ∈]u, u], E[(z − rL)+|W1] < E[(z − rS)+|W1] a.s., so∫ u
u E[(z − rL)+|W1]γW1(dz) 6

∫ u
u E[(z − rS)+|W1]γW1(dz) by the monotonicity of the Lebesgue

integral (e.g., Kallenberg 2002/1997, Lemma 1.18). Moreover, as previously noticed in the ex-

planation for (a), E|
∫ ǔW1
u (z − x)+γW1(dz)| 6 E

∫ ǔW1
u |u − u|γW1(dz) = |u − u|E|h

′
W1,−(ǔW1) −

h
′
W1,−(u)| 6 |u−u|

[
E|h

′
W1,−(ǔW1)| + E|h

′
W1,−(u)|

]
= |u−u|[E|h′

W1,−(ǔW1)|+E|h
′
W1,+(u)|] < ∞,

so E|E[
∫ ǔW1
u (z − rL)+γW1(dz)|W1]| = E|

∫ ǔW1
u E[(z − rL)+|W1]γW1(dz)| < ∞, which implies that

∫ ǔW1
u E[(z − rL)+|W1]γW1(dz) is finite a.s.

(ii) ⇔ (iii). By the theorem of disintegration of measures, we can follow the standard

mathematical proof based on Fubini-Tonelli’s theorem.

Lemma A.2. Under the assumptions of Theorem A.2, for all the members of the class of utility

functions defined in the statement (i) of the latter theorem, there exists a unique random σ-

finite measure γW1(.) on [u, u] s.t. γW1([a, b[) = h
′
W1,−(b) − h

′
W1,−(a) a.s., where h

′
W1,−(.) :=

h′
W1,−(.)1]u,u](.) + h′

W1,+(.)1{u}(.) a.s. with h(.) := −u(.).

Proof. By Lemma A.3 and A.4 on p. OA.6, the extended left-derivative h
′
W1,−(.) is increasing and

left continuous. Therefore, by a standard result for Lebesgue-Stieltjes integrals (e.g., Aliprantis

and Border 2006/1994, Theorem 10.48 and comment just below), there exists a unique σ-finite

Borel measure γW1 on [u, u] s.t. γw1([a, b[) = h
′
−,W1

(b) − h
′
−,W1

(a), ∀(a, b) ∈ [u, u]2 a.s.. In

fact, the measure γW1 is finite a.s., because, ∀A ∈ B([u, u]), γW1(A) 6 h
′
−,W1

(u) − h
′
−,W1

(u) =

h′
−,W1

(u) − h′
+,W1

(u) < ∞ a.s. where the last inequality follows from Lemma A.4 on p. OA.7.

Now, {[a, b[: (a, b) ∈ [u, u]2} is a π-system that generates the Borel σ-algebra B([u, u]) (e.g.,

Aliprantis and Border 2006/1994, Lemma 4.19-4.20), and, for all (a, b) ∈ [u, u]2, w1 7→ h
′
−,w1

(b)−

h
′
−,W1

(a) is Borel measurable because, for all x ∈ [u, u], the left derivative w1 7→ h′
−,w1

(x) inherits

the measurability of w1 7→ hw1(a) := −uw1(x) by stability of measurability under limits (e.g.,

Aliprantis and Border 2006/1994, Theorem 4.27). Thus, by a standard result about random

finite measures (e.g., Kallenberg 2002/1997, Lemma 1.40, which immediately extends to finite

measures), the result follows.

Lemma A.3 (Extended conditional left-derivative). Let hW1 : [u, u] → R be a convex decreasing

function indexed by a random variable W1. Then, if E|h′
W1,+(u)| < ∞ and E|h′

W1,−(u)| < ∞,
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there exists a.s. a finite extended left-derivative on [u, u],

h
′
W1,−(x) :=






h′
W1,−(x) ∀x ∈]u, u]

h′
W1,+(x) for x = u

which is

(i) left-continuous,

(ii) increasing, and

(iii) negative.

Proof. It follows from the convexity of h(.).

Lemma A.4. Let hW1 : [u, u] → R be a convex decreasing function indexed by a random variable

W1. Let ǔW1 be a random variable s.t. ǔW1 := min
{
u, inf{z ∈ [u, u] s.t., ∀x ∈ [z, u], uW1(x) =

0}
}
, where uW1(.) := −hW1(.). Then E|h

′
W1,+(u)| < ∞ and E|h′

W1,−(u)| < ∞, iff, E|h′
W1,+(u)| <

∞ and E|h′
W1,−(ǔW1)| < ∞.

Proof. It follows from the increasing slope criterion for convex functions and the definition of

ǔW1 .

Lemma A.5. Let hW1 : [u, u] → R be a convex function indexed by a random variable W1 s.t.

E|hW1(u)| < ∞, E|h′
W1,+(u)| < ∞ and E|h′

W1,−(u)| < ∞. If X is a random variable with its

support in [u, u], E|hW1(X)| < ∞.

Proof. By the increasing slope criterion for convex functions and its corollaries (e.g., Aliprantis

and Border 2006/1994, Theorem 7.21-7.22), for all x ∈]u, u],

h′
W1,+(u) 6

hW1(x) − hW1(u)
x − u

6 h′
W1,−(u)

⇒ hW1(u) + h′
W1,+(u)(x − u) 6 hW1(x) 6 hW1(u) + h′

W1,−(u)(x − u)

Moreover, the latter equality is also true if x = u. Now, on one hand, if 0 6 hW1(x), then

|hW1(X)| 6 |hW1(u)+h′
W1,−(u)(X−u)|, and, on the other hand, if hW1(x) 6 0, then |hW1(X)| 6

|hW1(u) + h′
W1,+(u)(X − u)|. Thus, for any random variable X with support in [u, u],

|hW1(X)| 6 |hW1(u) + h′
W1,−(u)(X − u)| + |hW1(u) + h′

W1,+(u)(X − u)|
(a)

6 2|hW1(u)| + |h′
W1,−(u)||X − u| + |h′

W1,+(u)||X − u|
(b)

6 2|hW1(u)| + |h′
W1,−(u)||u − u| + |h′

W1,+(u)||u − u|

(c)
⇒ E|hW1(X)| 6 2E|hW1(u)| + E|h′

W1,−(u)||u − u| + E|h′
W1,+(u)||u − u|

(d)
< ∞
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(a) Apply triangle inequality, and note that the absolute value of a product is equal to the product

of the absolute values. (b) By assumption, u 6 X 6 u. (c) Monotonicity and linearity of integrals

(e.g., Aliprantis and Border 2006/1994, Theorem 11.13). (d) By assumption, E|hW1(u)| < ∞,

E|h′
W1,+(u)| < ∞ and E|h′

W1,−(u)| < ∞.

A.2 Proposition 1

Assumption 2 (Weak convergence of normalized integrated CDF& cT ). Denote the weak con-

vergence with “ .” As T → ∞,

√
T

(
F̂

(2)
S − F

(2)
S

F̂
(2)
L − F

(2)
L

)

 

(
HS

HL

)

where the process {H(z)}z∈[u,u] := {(HS(z) HL(z))′}z∈[u,u] has a tight measurable Borel mea-

surable version that lies in the space UC([u, u], ρ) of (uniformly) continuous functions on [u, u]

endowed with the supremum norm ρ. Moreover, cT converges sufficiently slowly to u from above.

Assumption 3 (Strict stationarity with strong mixing). The bivariate process (rt)
T
t=1 := (rS,t rL,t)T

t=1

is strictly stationary and α-mixing.

Assumption 3 is often required to check Assumption 2, so the former is not really more

restrictive than the latter.

Lemma A.6 (Asymptotic limit of KS∗
T ). Under Assumptions 1 and 2,

(i) if H0 holds, then, for T big enough, supz∈IT

∣
∣
∣F̂

(2)
L (z) − F̂

(2)
L∧S(z)

∣
∣
∣ = 0 with probability one

(w.p.1.).

(ii) if H0 does not hold, then as T → ∞, KS∗
T = supz∈IT

∣
∣
∣F̂

(2)
L (z) − F̂

(2)
L∧S(z)

∣
∣
∣ converges to a

non-zero positive constant KS
∗
w.p.1.

Proof. It follows from a reasoning along the lines of the mathematical arguments after Proposition

1 on p. 11.

Lemma A.7 (Subsampling CDF of KS∗
T,i). Assume (bT ) ∈ [[1,∞[[N s.t. limT→∞ bT = ∞ and

limT→∞
bT
T = 0. Under Assumptions 1 , 2, and 3, if H0 does not hold,

(i) for all x ∈ R \ {KS
∗
}, with probability one, as T → ∞, Ĝ0

T,bT
(x) → 1(KS

∗
6 x) where

Ĝ0
T,bT

(x) := 1
T−bT +1

∑T−bT +1
i=1 1(KS∗

T,i 6 x); and

(ii) for all α ∈ [0, 1[, as T → ∞, g0
T,bT ,1−α → KS

∗
with probability one, where g0

T,bT ,1−α :=

inf{y : 1 − α 6 Ĝ0
T,bT

(y)}
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Proof. (i) By triangle inequality for the L2 norm |.|2,

|Ĝ0
T,bT

(x) − 1(KS
∗
6 x)|2 6 |Ĝ0

T,bT
(x) − E[Ĝ0

T,bT
(x)]|2 + |E[Ĝ0

T,bT
(x)] − 1(KS

∗
6 x)|2

=
√
V[Ĝ0

T,bT
(x)] + |P(KS∗

T,1 6 x) − 1(KS
∗
6 x)|2

because E[Ĝ0
T,bT

(x)] = E[ 1
T−bT +1

∑T−bT +1
i=1 1(KS∗

T,i 6 x)] = E[1(KS∗
T,1 6 x)] = P(KS∗

T,1 6 x)

where the second equality comes from strict stationarity (i.e., Assumption 3). Now, for all

x ∈ R \ {KS
∗
}, as T → ∞, |P(KS∗

T,1 6 x) − 1(KS
∗
6 x)|2)) = |P(KS∗

T,1 6 x) − 1(KS
∗
6 x)| → 0

w.p.1 because KS∗
T,1 = KS∗

bT
, which converges in distribution to the non-zero positive constant

KS
∗
by Lemma A.6ii. Thus, it is sufficient to prove that V[Ĝ0

T,bT
(x)] → 0, as T → ∞ w.p.1.

using strong mixing.

(ii) Let η > 0 and ε > 0 s.t. 1 − α < 1 − ε & ε < 1 − α, i.e., ε ∈]0, min{α, 1 − α}[. By (i),

w.p.1, there exists T̄ ∈ [[1,∞[[ s.t. T > T̄ implies






1 − Ĝ0
T,bT

(KS
∗
+ η) < ε

Ĝ0
T,bT

(KS
∗
− η) − 0 < ε

⇔






1 − ε < Ĝ0
T,bT

(KS
∗
+ η)

Ĝ0
T,bT

(KS
∗
− η) < ε

⇒






1 − α < Ĝ0
T,bT

(KS
∗
+ η)

Ĝ0
T,bT

(KS
∗
− η) < 1 − α

because ε > 0 s.t. 1−α < 1− ε & ε < 1−α. Now, g0
T,bT ,1−α := inf{y : 1−α 6 Ĝ0

T,bT
(y)}, where

Ĝ0
T,bT

(.) is an increasing function. Thus, w.p.1, ∀T > T̄ , KS
∗
− η < gT,bT ,1−α 6 KS

∗
+ η.

Lemma A.8 (Centered Subsampling CDF of KS∗
T,i). Assume (bT ) ∈ [[1,∞[[N s.t. limT→∞ bT =

∞ and limT→∞
bT
T = 0. Under Assumptions 1 , 2, and 3, if H0 does not hold,

(i) for all x ∈ R \ {KS
∗
}, w.p.1, as T → ∞, Ǧ0

T,bT
(x) → 1(KS

∗
6 x) where Ǧ0

T,bT
(x) :=

1
T−bT +1

∑T−bT +1
i=1 1(KS∗

T,i − KS∗
T 6 x); and

(ii) for all α ∈ [0, 1[, as T → ∞, ǧ0
T,bT ,1−α → KS

∗
w.p.1, where ǧ0

T,bT ,1−α := inf{y : 1 − α 6

Ǧ0
T,bT

(y)}

Proof. Adapt the proof of Lemma A.7.

Proof of Proposition 1. Case 1.1: H0 holds. Uncentered subsampling. By definition of F̂
(2)
L∧S,bT ,i(.),

0 6
√

bT KS∗
bT ,i :=

√
bT supz∈[u,u] |F̂

(2)
L,bT ,i(z)− F̂

(2)
L∧S,bT ,i(z)|. Thus, under Assumptions 1 and 2, by

Lemma A.6i, for T big enough, w.p.1,
√

T supz∈[u,u] |F̂
(2)
L (z)−F̂

(2)
L∧S(z)| = 0 6

√
bT supz∈[u,u] |F̂

(2)
L,bT ,i(z)−

F̂
(2)
L∧S,bT ,i(z)|, ∀i ∈ [[1, T − bT + 1]] . Therefore,

√
T supz∈[u,u] |F̂

(2)
L (z) − F̂

(2)
L∧S(z)| is smaller than

any quantile of the distribution of the
√

bT supz∈[u,u] |F̂
(2)
L,bT ,i(z) − F̂

(2)
L∧S,bT ,i(z)|.
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Case 1.2: H0 holds. Centered subsampling. Under Assumptions 1 and 2, by Lemma A.6i, for

T big enough, w.p.1,
√

T supz∈[u,u] |F̂
(2)
L (z) − F̂

(2)
L∧S(z)| = 0. Thus,for T big enough, w.p.1, the

centered subsampled statistics
√

bT K̇S
∗
T,i are equal to the uncentered susbsampled test statistic√

bT KS∗
T,i, i.e.,

√
bT supz∈[u,u] |F̂

(2)
L,bT ,i(z)−F̂

(2)
L∧S,bT ,i(z)| =

√
bT [supz∈[u,u] |F̂

(2)
L,bT ,i(z)−F̂

(2)
L∧S,bT ,i(z)|−

supz∈[u,u] |F̂
(2)
L (z) − F̂

(2)
L∧S(z)|]. Thus, the same proof as in the uncentered case applies.

Case 2.1: H0 does not holds. Uncentered subsampling, i.e., ĉ1−α := inf{x : 1−α 6 ĜT,bT
(x)}

where ĜT,bT
(x) := 1

T−bT +1

∑T−bT +1
i=1 1(

√
bT KS∗

T,i 6 x).

By definition of gT,bT ,1−α,

{
gT,bT ,1−α <

√
TKS∗

T

}

=
{

inf{x : 1 − α 6 ĜT,bT
(x)} <

√
TKS∗

T

}

=
{

inf{
x

√
bT

: 1 − α 6 ĜT,bT
(x)} <

√
T

bT
KS∗

T

}

(a)
=
{

inf{y : 1 − α 6 ĜT,bT
(
√

bT y)} <

√
T

bT
KS∗

T

}

(b)
=
{

inf{y : 1 − α 6 Ĝ0
T,bT

(y)} <

√
T

bT
KS∗

T

}

=
{

g0
T,bT ,1−α <

√
T

bT
KS∗

T

}

(a) Put y = x/bT . (b) Ĝ0
T,bT

(y) = 1
T−bT +1

∑T−bT +1
t=1 1(KS∗

T,i 6 y) = 1
T−bT +1

∑T−bT +1
t=1 1(

√
bT KS∗

T,i 6√
bT y) = ĜT,bT

(
√

bT y)

Now, under Assumptions 1 , 2, and 3, , limT→∞ P
{

g0
T,bT ,1−α <

√
T
bT

KS∗
T

}
= 1 because

limT→∞ g0
T,bT ,1−α = KS

∗
6 limT→∞

√
T
bT

KS∗
T = limT→∞

√
T
bT

KS
∗

= ∞ w.p.1. by Lemma A.7ii

and limT→∞
bT
T = 0 by assumption.

Case 2.2: H0 does not holds. Centered subsampling, i.e., ĉ1−α := inf{x : 1 − α 6 ĜT,bT
(x)}

where ĜT,bT
(x) := 1

T−bT +1

∑T−bT +1
i=1 1(

√
bT (KS∗

T,i − KS∗
T ) 6 x). Follow the same reasoning as in

the case 2.1.

A.3 Proof of Proposition 3

Proof. 1st case: H0 is true. By positivity and monotonicity of probability measures, 0 6

P
(
{ĉ1−α <

√
TKS∗

T } ∩ FT

)
6 P(ĉ1−α <

√
TKS∗

T ). Now, if H0 is true, limT→∞ P(ĉ1−α <
√

TKS∗
T ) = 0. Thus, the result follows from the squeeze theorem because limT→∞ P

(
{ĉ1−α <

√
TKS∗

T }
)

× P (FT ) = 0
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2st case: H0 is wrong. On one hand, by additivity of probability measures, for all T ∈ [[1,∞[[,

P(FT ) = P(FT ∩ {ĉ1−α <
√

TKS∗
T }) + P(FT ∩ {ĉ1−α <

√
TKS∗

T }
c)

⇒ P(FT ) − P(FT ∩ {ĉ1−α <
√

TKS∗
T }) = P(FT ∩ {ĉ1−α <

√
TKS∗

T }
c)

(a)
⇒ P(FT )P(ĉ1−α <

√
TKS∗

T ) − P(FT ∩ {ĉ1−α <
√

TKS∗
T }) 6 P(FT ∩ {ĉ1−α <

√
TKS∗

T }
c)

(b)
⇒ P(FT )P(ĉ1−α <

√
TKS∗

T ) − P(FT ∩ {ĉ1−α <
√

TKS∗
T }) 6 1 − P(ĉ1−α <

√
TKS∗

T )

(a) P(FT )P(ĉ1−α <
√

TKS∗
T )− P(FT ∩ {ĉ1−α <

√
TKS∗

T }) 6 P(FT )− P(FT ∩ {ĉ1−α <
√

TKS∗
T })

because P(ĉ1−α <
√

TKS∗
T ) ∈ [0, 1] by definition of probability. (b) By monotonicity of probabil-

ity measures, P(FT ∩ {ĉ1−α <
√

TKS∗
T }

c) 6 P({ĉ1−α <
√

TKS∗
T }

c) = 1 − P(ĉ1−α <
√

TKS∗
T ).

On the other hand, for all T ∈ [[1,∞[[,

P(FT )P(ĉ1−α <
√

TKS∗
T ) − P(FT ) 6 P(FT )P(ĉ1−α <

√
TKS∗

T ) − P(FT ∩ {ĉ1−α <
√

TKS∗
T })

⇔ P(FT )[P(ĉ1−α <
√

TKS∗
T ) − 1] 6 P(FT )P(ĉ1−α <

√
TKS∗

T ) − P(FT ∩ {ĉ1−α <
√

TKS∗
T })

Now, by Proposition 1ii (p. 11), limT→∞ P(ĉ1−α <
√

TKS∗
T ) = 1, so that limT→∞ 1−P(ĉ1−α <

√
TKS∗

T ) = 0 and limT→∞[P(ĉ1−α <
√

TKS∗
T ) − 1] = limT→∞ P(FT )[1 − P(ĉ1−α <

√
TKS∗

T )] = 0

because P(FT ) is bounded. Therefore, the result follows from the squeeze theorem.

A.4 Proof of optimality condition and risk compensation

The following Proposition A.1 establishes the optimality condition and the risk compensation

for factors in the one-period case, and in the multiperiod case. The one-period case corresponds

to T = 1 and a given C0 because a strictly increasing utility functions implies C1 = W1 in a

one-period framework.

Proposition A.1 (Optimality condition & risk compensation). Assume the factor rL,t − rS,t

is different from zero with probability one, i.e., P(rL − rS 6= 0) = 1. Assume time-additive

utility functions U(C0:T ) :=
∑T

t=0 βtE[u(Ct)] where β > 0 is the time discount factor, T ∈

[[1,∞[[ the time horizon, and u(.) a continuously differentiable von Neuman-Morgenstern utility

function. Under Assumption 1(a), if C0:T := (C0, C1, . . . , CT ) is a locally optimal consumption

process with values in the interior of [u, u] for an individual with utility function U(C0:T ) :=
∑T

t=0 βtE[u(Ct)], then, for any time period ṫ ∈ [[1, T ]] at which the factor rL,ṫ − rS,ṫ is freely

tradable in a neighborhood of Cṫ,

(i) [Optimality condition] E[u′(Cṫ)(rL,ṫ − rS,ṫ)] = 0; and

(ii) [Risk compensation] under the additional assumption that E[u′(Cṫ)] 6= 0, E(rL,ṫ − rS,ṫ) =

−
1

E[u′(Cṫ)]
Cov(u′(Cṫ), rL,ṫ − rS,ṫ).

Proof. (i) For any ṫ ∈ [[1, T ]], define the consumption process C̃0:T := (C̃0, C̃1, . . . , C̃T ) s.t.,

∀k ∈ [[1, T ]] \ {ṫ}, C̃k = Ck and C̃ṫ = Cṫ + ε(RL,ṫ − RS,ṫ) where ε > 0. Then, on one hand, by
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Assumption 1(a), for ε small enough, Cṫ + ε(RL,ṫ −RS,ṫ) is in any arbitrary small neighborhood

of Cṫ so the local optimality of C0:T implies

0 6 U(C0:T ) − U(C̃0:T ) = βE[u(Cṫ)] − βE[u(Cṫ + ε(RL,ṫ − RS,ṫ))]

(a)
⇔ 0 6 E

[
[u(Cṫ) − u(Cṫ + ε(RL,ṫ − RS,ṫ))]

ε(RL,ṫ − RS,ṫ)
(RL,ṫ − RS,ṫ)

]
(b)
→ E[u′(Cṫ)(RL,ṫ − RS,ṫ)] , as ε ↓ 0.

(a) Divide both sides by 1/(βε), and multiply the numerator and the denominator of the fraction

with (RL,ṫ − RS,ṫ). (b) By Assumption 1(a), for ε small enough Cṫ + ε(RL,ṫ − RS,ṫ) is in the

interior of [u, u] with probability one. Now, by the mean-value theorem and the continuity of

the derivative on [u, u], ε 7→
[u(Cṫ)−u(Cṫ+ε(RL,ṫ−RS,ṫ))]

ε(RL,ṫ−RS,ṫ)
is bounded for ε small enough. Thus, by

the definition of derivatives, Lebesgue’s dominated convergence theorem yields the result.

On the other hand, following a similar reasoning with C̃ṫ = Cṫ − ε(RL,ṫ − RS,ṫ) implies

E[u′(Cṫ)(RL,ṫ − RS,ṫ)] 6 0. Thus, the result follows.

(ii) Standard calculations yield

E[u′(Cṫ)(rL,ṫ − rS,ṫ)] = 0

⇔ Cov(u′(Cṫ), rL,ṫ − rS,ṫ) + E[u′(Cṫ)]E(rL,ṫ − rS,ṫ) = 0

⇔ E(rL,ṫ − rS,ṫ) = −
Cov(u′(Cṫ), rL,ṫ − rS,ṫ)

E[u′(Cṫ)]

Remark 1 (Infinite horizon). Inspection of the proof shows Proposition A.1 can be extended to

infinite horizon under the additional assumption that
∑∞

t=0 |β
tE[u(Ct)]| < ∞. �

Remark 2. Another way to derive the optimality condition is to go through standard Euler

equations. We do not follows this other way because it would require more assumptions: It

would at least require each leg of the factor to be freely tradable, separately. �

A.5 Supplementary results

The following result seems to be known, although no proofs or statements is available in the

literature to the best of our knowledge.

Theorem A.3 (Equivalent characterizations of conditional SSD). Assume that the support of the

random variables rL and rS is a subset of [u, u] ⊂ R with u 6= u. Then the following statements

are equivalent.

(i) For all real-valued, concave and increasing function uW1(.) defined on [u, u] and Borel

measurable w.r.t. the index W1 s.t. E|uW1(u)| < ∞, E|u′
W1,+(u)| < ∞ and E|u′

W1,−(u)| <

∞ , the following inequality holds E[uW1(rS)|W1] 6 E[uW1(rL)|W1] a.s.
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(ibis) For all real-valued, concave and increasing function u(.) on [u, u] s.t. u′
+(u) ∈ R and

u′
−(u) ∈ R, the following inequality holds E[u(rS)|W1] 6 E[u(rL)|W1] a.s.

(ii) For all z ∈ R, E[(z − rL)+|W1] 6 E[(z − rS)+|W1] a.s.

(iii) For all z ∈ R, F
(2)
L|W1

(z|W1) 6 F
(2)
S|W1

(z|W1) a.s., where F
(2)
L|W1

(z|W1) :=
∫ z
u FL|W1

(y|W1)dy

a.s.

Proof of Theorem A.3. Repeat the proof of Theorem A.2 with u in lieu of ǔW1 .

A.6 Proposition 5

Assumption 4 (Conditional no touching without crossing). If there exists ż ∈]u, u] s.t. F
(2)
L|M (ż) =

F
(2)
S|M (ż), then there exists z̈ ∈]u, u] s.t. F

(2)
S|M (z̈) < F

(2)
L|M (z̈).

Assumption 5 (Weak convergence). (a) If H0 holds,
√

TC∗
T converges weakly to a limiting law,

as T → ∞. (b) As T → ∞,
√

T (Ĉ(2) − C(2))  HC , where HC has a tight measurable Borel

measurable version that lies in the space of uniformly continuous functions endowed with the

supremum norm ρ.

Assumption 6 (Strict stationarity with strong mixing). The process (rS,t rL,t rM,t)T
t=1 is strictly

stationary and α-mixing.

Proof of Proposition 5. (i) Use properties of least concave majorant (Durot and Tocquet 2003,

Sec. 2), and adapt the proof of Beran (1984, Theorem 1) along the lines of Politis et al. (1999,

Theorem 3.2.1).

(ii) It follows from the same logic as the proof of Proposition 1(ii).

B Monte-Carlo simulations

The objective of this section is to (i) explore the finite-sample behaviour of the tests; (ii) compare

them with alternative implementations.

B.1 DGPs

B.1.1 Stylized DGPs

The stylized DGPs, which are taken from Whang (2019, p. 225–227) and displayed in Table A.1

(p. OA.14), allow to assess the performance of the tests in well-understood situations. A Gaussian

distribution is strictly preferred by all risk-averse agents to another Gaussian distribution if its

mean and variance are smaller.

OA.13



Table A.1: Stylized DGPs

H0 DGP Plots of CDF & Integrated CDF

True

[
rL

rS

]
IID
↪→ N

([
0

−.1

]

,

[
1 0
0 1

])

False

[
rL

rS

]
IID
↪→ N

([
0
.5

]

,

[
1 0
0 1

])

False

[
rL

rS

]
IID
↪→ N

([
0
0

]

,

[
1 0
0 .52

])

B.1.2 DGPs calibrated to data

In Table A.2 (p. OA.15), the DGPs are calibrated to data. They allow to assess the finite-

sample performance of the test in situations that mimick the data. For this purpose, we calibrate

Gaussian distributions to factors for which the null hypotheses are barely true (or false). More

precisely, the mean and the variance are calibrated to the average and the empirical variance of

the legs of the factor SIZE and the factor DY in original sample.
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Table A.2: DGPs calibrated to data

H0 DGP Plots of CDF & Integrated CDF

False

[
rL

rS

]
IID
↪→ N

([
.015
.0078

]

,

[
.122 .0051

.0572

])

True

[
rL

rS

]
IID
↪→ N

([
.011
.010

]

,

[
.0392 .0012

.0572

])

B.1.3 Non-Gaussian DGPs with correlation calibrated to data

The non-Gaussian DGPs with correlation calibrated from data, which are displayed in Table

A.6 (p. OA.20), correspond to examples of distributions mentioned in the stochastic dominance

literature. The correlation is calibrated to the average correlation between the short and the

long legs of factors in the original sample, that is .7. We rely on the NORTA algorithm (Cario

and Nelson. 1997) to generate the data with the desired correlation and marginal distributions.

The first DGP, which is adapted from Whang (2019, p. 10) and Rothschild and Stiglitz (1970,

Sec. IV) is known to be a challenging DGP. The second DGP allows to assess the performance

of the tests in the present of fat tails: Students distributions are leptokurtic.
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Table A.3: Non-Gaussian DGPs with correlation calibrated to data

H0 DGP Plots of CDF & Integrated CDF

False






rL ↪→ .3U[0,3] + .7U[1,2]

rS ↪→ U[.5,2.5]

Cor(rS , rL) = .7

False






rL
IID
↪→ t(4)

rS
IID
↪→ N (0, 1)

Cor(rS , rL) = .7

B.2 Unconditional Test

B.2.1 Number of grid points and subsample size bT

Like other tests of stochastic dominance à la McFadden (1989), our test requires to choose the

number of gridpoints used to approximate the supremum in the test statistic. In the literature,

the usual number of gridpoints seems to be 100 or less (e.g., Barrett and Donald 2003, Whang

2019). For caution, we use 200, and we have checked that our simulation results are not affected

up to two decimals after the dot if we double the number of nodes to 400.

Regarding the subsample size bT , asymptotic theory requires limT→∞ bT = ∞ and limT→∞
bT
T =

0 (Propositions 1 and 5 on p. 11 & 21). This leaves a wide choice of subsample sizes. The trade

off is the following. If bT is too big (i.e., too close to the sample size T ), the subsample statistics

are too close to each other, so the subsampling distribution is too tight. Conversely, if bT is too

small (e.g., bT = 1), the subsample statistics are too far from each other, so the subsampling

distribution is too wide. While some automatic data-dependent methods have been to proposed

to choose the subsample size bT (e.g., Linton et al. 2005, Politis et al. 1999, Chap. 9), there is no

consensus about which data-dependent methods to choose. Now, by the CLT, under general as-

sumptions, the rate of convergence of estimators (i.e., the rate of accumulation of information) is
√

T , so we choose subsample size bT = b
√

T c where bac := max{n ∈ N : n 6 a}. For robustness,

we also tried bT = bm +
√

T c with m ∈ {5, 10, 20}, and bT =
⌈

ηT
log[log(ee+T )]

⌉
with η ∈ {.25, .5}
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and where dae := min{n ∈ N : a 6 n} for all a ∈ R.15 Monte-Carlo simulations, which are

available upon request, indicate that none of this alternatives work better than bT = b
√

T c.

Moreover, our empirical results appear qualitatively robust to these different subsample sizes.

Thus, we stick to bT = b
√

T c.

B.2.2 Results

We compare uncentered and centered block subsampling. In some situations, it has been found

that centered subsampling outperforms the original uncentered subsampling in small sample (e.g.,

Chernozhukov and Fernández-Val 2005). Our analysis focuses on the boxplots of the p-values.

Overall, the different implementations of the tests appear to have a satisfactory finite-sample

behaviour, i.e., the p-values are usually high under the null hypothesis, while the distribution of

the p-values tends to converge to a point mass at zero under the alternative. Nevertheless, some

patterns indicate some systematically different finite-sample behaviors. In particular, centered

block subsampling implementation performs similarly to our uncentered, except that the p-

values are generally smaller. Thus, for caution, in the empirical section of the main text, we

only report results from our centered subsampling implementation so it goes against our main

result. For the DGPs calibrated to data and the Non-Gaussian DGPs with correlation calibrated

to data, the good finite-sample performance of the tests is partly due to the correlation between

the short and the long legs : The higher the correlation, the less probable are crossing of the

integrated empirical CDFs under the null hypothesis, and the more probable are crossing under

the alternative hypothesis.

15The term ee guarantees that the denominator is bigger than one, so the subsample size cannot be negative
nor bigger than the sample size.
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Table A.4: Monte-Carlo simulations of KS∗
T : Stylized DGPs

H0 DGP Boxplots of p-values

True

[
rL

rS

]
IID
↪→ N

([
0

−.1

]

,

[
1 0
0 1

])

False

[
rL

rS

]
IID
↪→ N

([
0
.5

]

,

[
1 0
0 1

])

False

[
rL

rS

]
IID
↪→ N

([
0
0

]

,

[
1 0
0 .52

])

Note: The reported p-values are based on 1000 simulated samples of sample size equal to the indicated T . The distribution of KS∗
T is

approximated through block subsampling for “KS∗
T No centering,” and centered block subsampling for “KS∗

T .” The block size is bT =
√

T.The
tops and bottoms of each “box" are the 25th and 75th percentiles of the p-values, respectively. The line in the middle of each box is the median.
Crosses beyond the whisker length indicate outliers. An outlier is a value that is more than 1.5 times the interquartile range away from the
corresponding end of the interquartile ranges. Whiskers are drawn from the ends of the interquartile ranges to the furthest observations within
the whisker length.
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Table A.5: Monte-Carlo simulations of KS∗
T : Calibrated DGPs

H0 DGP Boxplots of p-values

False

[
rL

rS

]
IID
↪→ N

([
.015
.0078

]

,

[
.122 .0051

.0572

])

True

[
rL

rS

]
IID
↪→ N

([
.011
.010

]

,

[
.0392 .0012

.0572

])

Note: The reported p-values are based on 1000 simulated samples of sample size equal to the indicated T . The distribution of KS∗
T is

approximated through block subsampling for “KS∗
T No centering,” and centered block subsampling for “KS∗

T .” The block size is bT =
√

T.The
tops and bottoms of each “box" are the 25th and 75th percentiles of the p-values, respectively. The line in the middle of each box is the median.
Crosses beyond the whisker length indicate outliers. An outlier is a value that is more than 1.5 times the interquartile range away from the
corresponding end of the interquartile ranges. Whiskers are drawn from the ends of the interquartile ranges to the furthest observations within
the whisker length.
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Table A.6: Monte-Carlo simulations of KS∗
T :Non-Gaussian DGPs with correlation

calibrated to data

H0 DGP Boxplots of p-values

False






rL
IID
↪→ .3U[0,3] + .7U[1,2]

rS
IID
↪→ U[.5,2.5]

Cor(rS , rL) = .7

False






rL
IID
↪→ t(4)

rS
IID
↪→ N (0, 1)

Cor(rS , rL) = .7

Note:The reported p-values are based on 1000 simulated samples of sample size equal to the indicated T . The distribution of KS∗
T is approx-

imated through block subsampling for “KS∗
T No centering,” and centered block subsampling for “KS∗

T .” The block size is bT =
√

T.The tops
and bottoms of each “box" are the 25th and 75th percentiles of the p-values, respectively. The line in the middle of each box is the median.
Crosses beyond the whisker length indicate outliers. An outlier is a value that is more than 1.5 times the interquartile range away from the
corresponding end of the interquartile ranges. Whiskers are drawn from the ends of the interquartile ranges to the furthest observations within
the whisker length.

B.3 Conditional tests

For ease of comparison, the parameterization and the DGPs are similar to the ones for the

unconditional tests, except for a new common component. More precisely, we add a common

independent Gaussian component x ↪→ N (0, σ2
x) to each of the DGPs. E.g., the first DGP is

[
rL

rS

]

= x +

[
zL

zS

]

where x
IID
↪→ N (0, σ2

x),

[
zL

zS

]
IID
↪→ N

([
0

0

]

,

[
1 0

0 1

])

, and x is independent of [zL zS ]′. The

parameter σx is calibrated to correspond to an estimate of the standard deviation of the monthly

market returns, i.e., σx = 4%. Regarding the parameterization, as in the unconditional test and

for the same reasons, we keep the subsample size bT =
√

T and the number of nodes to 200.
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The patterns of the p-value distributions appear similar to the ones of the unconditional

tests, namely smaller p-values for centered subsampling, better performance when the correlation

between boths legs is higher.

Table A.7: Monte-Carlo simulations of C∗
T : Stylized DGPs

H0 DGP Boxplots of p-values

True

[
rL

rS

]
IID
↪→ x + N

([
0

−.1

]

,

[
1 0
0 1

])

False

[
rL

rS

]
IID
↪→ x + N

([
0
.5

]

,

[
1 0
0 1

])

False

[
rL

rS

]
IID
↪→ x + N

([
0
0

]

,

[
1 0
0 .52

])

Note:The reported p-values are based on 1000 simulated samples of sample size equal to the indicated T . The distribution of C∗
T is approximated

through block subsampling for “C∗
T No centering,” and centered block subsampling for “C∗

T .” The block size is bT =
√

T.The tops and bottoms
of each “box" are the 25th and 75th percentiles of the p-values, respectively. The line in the middle of each box is the median. Crosses beyond
the whisker length indicate outliers. An outlier is a value that is more than 1.5 times the interquartile range away from the corresponding
end of the interquartile ranges. Whiskers are drawn from the ends of the interquartile ranges to the furthest observations within the whisker
length.
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Table A.8: Monte-Carlo simulations of C∗
T : Calibrated DGPs

H0 DGP Boxplots of p-values

False

[
rL

rS

]
IID
↪→ x + N

([
.015
.0078

]

,

[
.122 .0051

.0572

])

True

[
rL

rS

]
IID
↪→ x + N

([
.011
.010

]

,

[
.0392 .0012

.0572

])

Note: The reported p-values are based on 1000 simulated samples of sample size equal to the indicated T . The distribution of C∗
T is

approximated through block subsampling for “C∗
T No centering,” and centered block subsampling for “C∗

T .” The block size is bT =
√

T.The
tops and bottoms of each “box" are the 25th and 75th percentiles of the p-values, respectively. The line in the middle of each box is the
median. Crosses beyond the whisker length indicate outliers. An outlier is a value that is more than 1.5 times the interquartile range
away from the corresponding end of the interquartile ranges. Whiskers are drawn from the ends of the interquartile ranges to the furthest
observations within the whisker length.
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Table A.9: Monte-Carlo simulations of C∗
T : Non-Gaussian DGPs

H0 DGP Boxplots of p-values

False

[
rL

rS

]
IID
↪→ x +

[
zL

zS

]

where






zL
IID
↪→ .3U[0,3] + .7U[1,2]

zS
IID
↪→ U[.5,2.5]

Cor(zS , zL) = .7

False

[
rL

rS

]
IID
↪→ x +

[
zL

zS

]

where






zL
IID
↪→ t(4)

zS
IID
↪→ N (0, 1)

Cor(zS , zL) = .7

Note: The reported p-values are based on 1000 simulated samples of sample size equal to the indicated T . The distribution of C∗
T is

approximated through block subsampling for “C∗
T No centering,” and centered block subsampling for “C∗

T .” The block size is bT =
√

T.The
tops and bottoms of each “box" are the 25th and 75th percentiles of the p-values, respectively. The line in the middle of each box is the
median. Crosses beyond the whisker length indicate outliers. An outlier is a value that is more than 1.5 times the interquartile range
away from the corresponding end of the interquartile ranges. Whiskers are drawn from the ends of the interquartile ranges to the furthest
observations within the whisker length.

C Additional empirical evidence
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Table A.10: Acronym and Description of the 205 Characteristics

This Table provides a short description of each of the 205 characteristics used.

Description

AM Total assets to market
AOP Analyst Optimism
AbnormalAccruals Abnormal Accruals
Accruals Accruals
AccrualsBM Book-to-market and accruals
Activism1 Takeover vulnerability
Activism2 Active shareholders
AdExp Advertising Expense
AgeIPO IPO and age
AnalystRevision EPS forecast revision
AnalystValue Analyst Value
AnnouncementReturn Earnings announcement return
AssetGrowth Asset growth
BM Book to market using most recent ME
BMdec Book to market using December ME
BPEBM Leverage component of BM
Beta CAPM beta
BetaFP Frazzini-Pedersen Beta
BetaLiquidityPS Pastor-Stambaugh liquidity beta
BetaTailRisk Tail risk beta
BidAskSpread Bid-ask spread
BookLeverage Book leverage (annual)
BrandInvest Brand capital investment
CBOperProf Cash-based operating profitability
CF Cash flow to market
Cash Cash to assets
CashProd Cash Productivity
ChAssetTurnover Change in Asset Turnover
ChEQ Growth in book equity
ChForecastAccrual Change in Forecast and Accrual
ChInv Inventory Growth
ChInvIA Change in capital inv (ind adj)
ChNAnalyst Decline in Analyst Coverage
ChNNCOA Change in Net Noncurrent Op Assets
ChNWC Change in Net Working Capital
ChTax Change in Taxes
ChangeInRecommendation Change in recommendation
CitationsRD Citations to RD expenses
CompEquIss Composite equity issuance
CompositeDebtIssuance Composite debt issuance
ConsRecomm Consensus Recommendation
ConvDebt Convertible debt indicator
CoskewACX Coskewness using daily returns
Coskewness Coskewness
CredRatDG Credit Rating Downgrade
CustomerMomentum Customer momentum
DebtIssuance Debt Issuance
DelBreadth Breadth of ownership
DelCOA Change in current operating assets
DelCOL Change in current operating liabilities
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Table A.10 (continued)

Description

DelDRC Deferred Revenue
DelEqu Change in equity to assets
DelFINL Change in financial liabilities
DelLTI Change in long-term investment
DelNetFin Change in net financial assets
DivInit Dividend Initiation
DivOmit Dividend Omission
DivSeason Dividend seasonality
DivYieldST Predicted div yield next month
DolVol Past trading volume
DownRecomm Down forecast EPS
EBM Enterprise component of BM
EP Earnings-to-Price Ratio
EarnSupBig Earnings surprise of big firms
EarningsConsistency Earnings consistency
EarningsForecastDisparity Long-vs-short EPS forecasts
EarningsStreak Earnings surprise streak
EarningsSurprise Earnings Surprise
EntMult Enterprise Multiple
EquityDuration Equity Duration
ExchSwitch Exchange Switch
ExclExp Excluded Expenses
FEPS Analyst earnings per share
FR Pension Funding Status
FirmAge Firm age based on CRSP
FirmAgeMom Firm Age - Momentum
ForecastDispersion EPS Forecast Dispersion
Frontier Efficient frontier index
GP gross profits / total assets
Governance Governance Index
GrAdExp Growth in advertising expenses
GrLTNOA Growth in long term operating assets
GrSaleToGrInv Sales growth over inventory growth
GrSaleToGrOverhead Sales growth over overhead growth
Herf Industry concentration (sales)
HerfAsset Industry concentration (assets)
HerfBE Industry concentration (equity)
High52 52 week high
IO_ShortInterest Inst own among high short interest
IdioRisk Idiosyncratic risk
IdioVol3F Idiosyncratic risk (3 factor)
IdioVolAHT Idiosyncratic risk (AHT)
Illiquidity Amihud’s illiquidity
IndIPO Initial Public Offerings
IndMom Industry Momentum
IndRetBig Industry return of big firms
IntMom Intermediate Momentum
IntanBM Intangible return using BM
IntanCFP Intangible return using CFtoP
IntanEP Intangible return using EP
IntanSP Intangible return using Sale2P
InvGrowth Inventory Growth
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Table A.10 (continued)

Description

InvestPPEInv change in ppe and inv/assets
Investment Investment to revenue
LRreversal Long-run reversal
Leverage Market leverage
MRreversal Medium-run reversal
MS Mohanram G-score
MaxRet Maximum return over month
MeanRankRevGrowth Revenue Growth Rank
Mom12m Momentum (12 month)
Mom12mOffSeason Momentum without the seasonal part
Mom6m Momentum (6 month)
Mom6mJunk Junk Stock Momentum
MomOffSeason Off season long-term reversal
MomOffSeason06YrPlus Off season reversal years 6 to 10
MomOffSeason11YrPlus Off season reversal years 11 to 15
MomOffSeason16YrPlus Off season reversal years 16 to 20
MomRev Momentum and LT Reversal
MomSeason Return seasonality years 2 to 5
MomSeason06YrPlus Return seasonality years 6 to 10
MomSeason11YrPlus Return seasonality years 11 to 15
MomSeason16YrPlus Return seasonality years 16 to 20
MomSeasonShort Return seasonality last year
MomVol Momentum in high volume stocks
NOA Net Operating Assets
NetDebtFinance Net debt financing
NetDebtPrice Net debt to price
NetEquityFinance Net equity financing
NetPayoutYield Net Payout Yield
NumEarnIncrease Earnings streak length
OPLeverage Operating leverage
OScore O Score
OperProf operating profits / book equity
OperProfRD Operating profitability R&D adjusted
OptionVolume1 Option to stock volume
OptionVolume2 Option volume to average
OrderBacklog Order backlog
OrderBacklogChg Change in order backlog
OrgCap Organizational capital
PS Piotroski F-score
PatentsRD Patents to R&D expenses
PayoutYield Payout Yield
PctAcc Percent Operating Accruals
PctTotAcc Percent Total Accruals
PredictedFE Predicted Analyst forecast error
Price Price
PriceDelayRsq Price delay r square
PriceDelaySlope Price delay coeff
PriceDelayTstat Price delay SE adjusted
ProbInformedTrading Probability of Informed Trading
RD R&D over market cap
RDAbility R&D ability
RDIPO IPO and no R&D spending
RDS Real dirty surplus
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Table A.10 (continued)

Description

RDcap R&D capital-to-assets
REV6 Earnings forecast revisions
RIO_Disp Inst Own and Forecast Dispersion
RIO_MB Inst Own and Market to Book
RIO_Turnover Inst Own and Turnover
RIO_Volatility Inst Own and Idio Vol
ResidualMomentum Momentum based on FF3 residuals
ReturnSkew Return skewness
ReturnSkew3F Idiosyncratic skewness (3F model)
RevenueSurprise Revenue Surprise
RoE net income / book equity
SP Sales-to-price
STreversal Short term reversal
ShareIss1Y Share issuance (1 year)
ShareIss5Y Share issuance (5 year)
ShareRepurchase Share repurchases
ShareVol Share Volume
ShortInterest Short Interest
Size Size
SmileSlope Put volatility minus call volatility
Spinoff Spinoffs
SurpriseRD Unexpected R&D increase
Tax Taxable income to income
TotalAccruals Total accruals
UpRecomm Up Forecast
VarCF Cash-flow to price variance
VolMkt Volume to market equity
VolSD Volume Variance
VolumeTrend Volume Trend
XFIN Net external financing
betaVIX Systematic volatility
cfp Operating Cash flows to price
dNoa change in net operating assets
fgr5yrLag Long-term EPS forecast
grcapx Change in capex (two years)
grcapx3y Change in capex (three years)
hire Employment growth
iomom_cust Customers momentum
iomom_supp Suppliers momentum
realestate Real estate holdings
retConglomerate Conglomerate return
roaq Return on assets (qtrly)
sfe Earnings Forecast to price
sinAlgo Sin Stock (selection criteria)
skew1 Volatility smirk near the money
std_turn Share turnover volatility
tang Tangibility
zerotrade Days with zero trades
zerotradeAlt1 Days with zero trades
zerotradeAlt12 Days with zero trades
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