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Anomaly or Possible Risk Factor?

Simple-To-Use Tests

Abstract

Basic asset pricing theory predicts high expected returns are a compensation for risk. How-
ever, high expected returns might also constitute anomalies due to frictions or behavioral
biases. We propose two complementary simple-to-use tests to assess whether risk can explain
differences in expected returns. We provide general theoretical equilibrium foundations for
the tests and show their properties in simulations. The tests take into account risks disliked
by risk-averse individuals, including high-order moments and tail risks. None of the tests
rely on the validity of a factor model nor other parametric statistical models. Empirically,
we find risk cannot explain a large majority of variables predicting differences in expected
returns. In particular, value, momentum, operating profitability, and investment appear to

be anomalies.

JEL classification: G12, C58, C38, D53.

Keywords: Cross-section of Returns; Factor Pricing; Strong SSD; Abnormal returns; Market

frictions.



1 Introduction

Expected returns reflect and guide investment decisions in the economy (e.g., Cochrand T996),
and hence they are closely related to firms’ behavior and aggregate outcomes such as unemploy-
ment (Hall P0T7, Borovicka _and Borovickoval 20T18). Over the last decades, the literature has
identified hundreds of factors predicting cross-sectional returns (Harvey ef all 2016).7 Kozak
of_all (20I8), among others, argue that factors’ returns might be a compensation for risk (e.g.,
Berk“ef~all 1999, Cooper 2006), but may also occur because of behavioral biases (e.g., Bondf
and Thaler T985, Jegadeesh and Titmanl T993), institutional frictions (e.g., Gromh and Vayanos
2010, and references therein), informational frictions (e.g., Seyhun T988 Cohen ef all P0T2) and
many other frictions.

We propose simple-to-use tests to shed light on the economic content of factors and assess
whether risk alone can explain the difference in expected returns generated by a given factor.
Researchers and practioners typically build a factor through portfolio sorts based on a given
characteristic. They sort stocks according to the value of a characteristic, divide the sorted
stocks into groups according to some quantiles (e.g., bottom 30%, middle 40%, top 30%), and
then form portfolios based on the groups. If the average returns of the portfolios appear to be
monotonic in the characteristic, researchers form a factor by subtracting low-return portfolios
from high-return portfolios, so it mimics a long-short strategy. Factors based on multivariate
sorting similarly have a long leg with high expected-returns and a short leg with low expected-
returns. Basic asset pricing theory stipulates that the higher expected returns of the long leg
should correspond to higher risk. Thus, similarly to Kelly_et"all (2019), if risk alone cannot
explain the spread in expected returns between the two legs of the factor, we call the latter an
“anomaly,” otherwise we call it a “possible risk factor.” In the present paper, we do not use the
term “factor” as a shorthand for “risk factor:” A factor can be an anomaly, or a return spread
that risk can explain.

Distinguishing between risk factors and anomalies requires a definition of risk. For this
purpose, we go back to basic microeconomics and define risk as anything a risk-averse individ-
ual dislikes, (i.e., individuals with an increasing and concave von Neumann-Morgenstern utility
function). The basic idea behind our two tests is to check whether every possible risk-averse
individual strictly prefers the long-leg returns over the short-leg returns. If this is not the case,
at least one possible risk-averse individual prefers to forego the higher return of the long leg in
exchange for the lower, but less risky, return of the short leg. Then, risk can possibly explain the
factor’s expected return, i.e., the difference in expected returns between the long and the short
leg. More precisely, the factor’s expected return is a possible compensation for the higher risk of
the long leg with respect to the short leg.

The main empirical results of the paper indicate that a majority of factors are anomalies

rather than possible risk factors. Regarding the Fama and Frenchl (2017) five factors and the

In the following, we use characteristics and factors interchangeably. When we do so, we have variables in
mind that help predict returns in the cross section without taking a stance on the validity of a factor model.



momentum factor (Jegadeesh”and Tiftman 1993, Carharfl T997), our tests indicate that value,
momentum, operating profitability, and investment are anomalies rather than risk factors. Ev-
idence are mixed regarding size: The null hypothesis is rejected, but it is unclear whether the
rejection is due to risk or a lack of a significant factor return. Application of the tests to a
standard data set of more than 200 potential factors shows that more than 70% of factors are
anomalies, and thus indicate that the main empirical finding holds beyond the widely-used Fama
and Frenchl (2015) five factors and the momentum factor.

The null hypothesis of the first test corresponds to unconditional strict preferences for the
long leg, while the null hypothesis of the second test corresponds to strict preferences for the long
leg conditional on the market (i.e., after controlling for exposure to market). Because both tests
check the strict preference for the long leg for every possible risk-averse individual, the tests do
not rely on a specific measure of risk (e.g., variance), nor utility function (e.g., constant relative
risk-aversion utility function). In this way, the tests are comprehensive, that is, they account
for all risks disliked by risk-averse individuals, including high-order moments and tail risks. The
tests are also model-free, in the sense that they do not assume a parametric model of returns.

The large literature has assumed a linear factor model with a specific dependence structure for

proposed tests do not require us to assume a specific factor model, unlike the literature, which
often equates anomalies (or mispricing) and non-zero alphas of regressions of a novel long-short
strategy on a specific factor model. Thus, we can define an anomaly as a difference in expected
returns that cannot be explained by risk alone, and not as a deviation from a specific factor model
that is assumed to capture risk. Another advantage of the unconditional test is the immunity to
the multiple hypotheses and pretesting problems: the test does not yield any type I (nor type II
error) asymptotically. In other words, as the sample size increases, it is not only impossible to
fail to reject a false null hypothesis (type II error), but it is also impossible to wrongly reject a
true null hypothesis (type I error).

To formally tie the tests with asset-pricing theory, we also investigate the meaning of their
null hypotheses beyond a pairwise comparison of factor legs. The null hypotheses correspond
to what we call strong Second-order Stochastic Dominance (SSD), which corresponds to SSD
with strict inequalities instead of weak inequalities. While the use of strict inequalities should
be a mild change in practice, it is key to derive the equilibrium foundations of the tests. In an
economy with diversification benefits, spreads in expected returns between two tradable assets
should compensate for non-diversified risk. We show that if every possible risk-averse individual
strictly prefers the returns of the long leg to the returns of the short leg, then non-diversified risk
alone is unlikely to explain the factor’s expected return, that is, the return spread should exceed
any risk compensation individuals require. In line with most of the literature on factor models,
for simplicity, we focus on a one-period setting. Nevertheless, we show the equilibrium founda-
tions for both tests remain valid in multiperiod settings. We also demonstrate the equilibrium

foundations hold independently of the structure of the economy (e.g., whether or not individuals



optimally diversify risk, whether or not markets are complete, whether or not a representative
agent exists, etc.). Thus, the theoretical foundations of the proposed tests hold under fairly
general assumptions.

To assess the performance of the tests, we investigate their properties mathematically, nu-
merically and empirically. First, building on the statistical and econometric literature on SSD,
which goes back at least to McFadden (T989), we show the tests have good asymptotic prop-
erties, i.e., they are valid and consistent. Second, we investigate their finite-sample properties
through Monte-Carlo simulations. Our simulation results confirm the asymptotic properties of
the tests. Finally, as a proof of concept, we apply the unconditional test to the market factor,
that is, the spread in expected returns between US stock returns and one-month US Treasury
bill returns. Overwhelming empirical evidence exists documenting that US stocks have higher
expected returns than Treasury bills, but are riskier. In line with the evidence, the tests clearly
indicate that risk can explain the spread, so the market factor clearly appears as a possible risk
factor unlike the majority of other factors.

The question of how to interpret factors is not a mere academic curiosity. In many situations,
the practical implications of a factor discovery depend on whether it is a risk factor or an anomaly.
If a factor corresponds to risk, an individual would likely try to limit her exposure to this factor.
Conversely, if a factor corresponds to an anomaly, an individual would likely want to load on it
—if possible— and thus earn a higher expected return. Likewise, for investment decisions, firms
would likely account for a risk factor to value investment projects, but not necessarily for an
anomaly. More generally, unlike an anomaly, a risk factor can typically be used for discounting,
which is key both in asset pricing and for real investment decisions. Thus the difference between
anomalies and risk factors is also of interest to public authorities in charge of financial markets
efficiency, such as the U. S. Securities and Exchange Commission. A public authority is unlikely
to want to eliminate a risk factor spread that is a compensation for a fundamental risk, but it
would likely want to design policies to eliminate anomalies. For example, targeted advancement
of financial literacy and targeted information-disclosure regulations can alleviate a behavioral

bias and an informational friction, respectively.

Related literature

To the best of our knowledge, our paper is the first to propose model-free and comprehensive
tests to distinguish anomalies from possible risk factors. Nevertheless, it builds on several strands
of the literature.

The literature on factor models for the cross-section of stock returns goes back, at least,
to the CAPM (Sharpe T964, Linftned T965, Mossinl T966), in which differences in exposure to
the market return determine differences in expected returns. After some mixed evidence using
individual stock returns as test assets (Miller_and Scholes 1972), Black ef all (T972), [Fama and
MacBefH (T973) and others group stocks into portfolios to decrease the idiosyncratic noise, and

provide empirical evidence in favor of the CAPM.



However, theoretically, Merfon (T973) shows that the market factor does not need to be the
only risk factor, and [Dybvig and Ingersoll (T982) even show that a CAPM equilibrium can imply
the existence of arbitrage opportunities. Empirically, starting with Basu (I977) and BanZ (I98T),
the literature has developed several factor models that attribute important roles to risk factors
other than the market factor. Fama and French (T992, T993)’s three factors plus momentum
(Jegadeesh and Titman 1993, Carharfl 1997) partly synthesize these early findings.

Since then, exponential growth describes the number of newly discovered factors (Harvey

ef_all POT6), partially spurred by the availability of better computing power, data mining, and

2 econometric advances,® and the incorporation of no-arbitrage and equilibrium

trial and error,
constraints in statistical linear factor models.? Most of the literature focuses on observable
factors rather than latent and unobservable factors, a feature our paper shares.

Recent attempts try to “tame” the factor “zoo” (Cachrand POTT) by using novel econometric
methods. A first strand of literature proposes to reduce the dimensions of the “zoo” through
the extraction of a small number of unobservable factors from static or dynamic PCAs.® A
second strand proposes techniques to infer a parsimonious set of observable factors. Barillas and
Shanken (201R8) and Bryzgalova et all (2020) develop Bayesian model-selection approaches to
select factors. Ereyherger_ef all (2020) and Feng ef all (2020) adapt LASSO-type of techniques
to shrink the number of factors. A third and small strand of literature tries to distinguish risk
factors from anomalies. Charoenraok and Conrad (2008) propose conditions for a factor to be a
risk factor, and assess them empirically. Pukfhnanthong et all (2018) propose to classify priced
factors related to the covariance matrix as risk factors. Kelly ef all (2019) classify factors that

corresponds to the exposure to some latent factors as risk factor.

The present paper is closest to this last strand of the literature. The main differences with
respect to the latter are the following. (i) Our approach does not specify a specific linear statistical
model of returns, which does not necessarily imply no-arbitrage for the set of traded assets.? (ii)
It detects anomalies instead of risk factors —The rejection of the null hypotheses of our tests
indicate a possible risk factor. (iii) It evades the Hansen and Richard (T987) critique, i.e.,

it does not require that conditioning on econometricians’ information set and conditioning on

individuals’ information set coincide.

We also build on a large econometric literature on tests of stochastic dominance. The liter-

2See, e.g., McLean and Pontiff (2016), Harvey ef all (2016), Chinca ef all (2021), Chen and Zimmermann
(20208).

3See, e.g., Gﬁm (C9R9) Lla.ga.m:.a.t.h.a.n_an.d_Wang (T99R), b.en.ta.n.a_a.n.d_l*_mr.eni:m.ll (2007), Stock_and
(2013), Gagliardini et all (2016, 201Y), Eorni et all () lKJm_a.n.d_S.knu.Lakﬂ(),lH.a.pnm_e_t_aJJ(),U.Lghd
and X (2020), Uppal_ef_all ml. , Pelged (POTY), Ando_and RBai (2020), Leffan_and Pelgen (2020), Catfaned
Bt all mim

4See, e.g., Rasd (1976), Chamberlain and Rofhschild (T983), Connor (1984), Milnd (I988), Reisman (T98R),
AT-Najjal (T99R), Forni and Lippi (2001), Raponief_all (POI8), Renault_ef all (2019)

5See, e.g., Connor and Korajezyl (T993), Baiand Ng (2002), Hallin and Liska (2007), Amengual and Watson
() Hallin“and Tigka (2007), Onafski (2009, P0OT0), Ahn_and Horenstein (2013)

5Linear factor models do not rule out arbitrage opportunities for observable traded assets, which are necessarily

finite (Al-Najjaid T99R), see also Dybvig-and Ingersall (T987)




ature mainly builds on McFadden (T989), and includes notable contributions by Davidson and
Duclos (2000), Barretf_and Donald (2003), Delgado and FEscanciand (2012), and Donald and
Hsu (2016) among others. Our unconditional test is a subsampling implementation of a modi-
fied McFadden (T989) test of SSD. From a technical point of view, it is closest to Linfon ef all
(2007), although the null hypotheses are different: Our null hypothesis is “the long leg strongly
dominates the short leg,” whereas applying Linfon ef all (2005) to our setting would imply the
null hypothesis “the long leg dominates the short leg or the short leg dominates the long leg.”

Our conditional test is a test of conditional strong SSD. It follows from an application of [Durof
(2003)’s approach, along the lines of Delgado and Escanciand (2013), and thus adapts the latter

to strong SSD. Our block subsampling implementations of the unconditional and conditional

tests allow for time-series and cross-sectional dependence.
We also build on a large literature in mathematics on SSD, which goes back to Hardy ef all

(1929). Hadar and Russell (T969), Hanoch and Levyl (T969), and Rofhschild and Sfiglitz (T970)

introduce and develop SSD methods in economics and finance. Since then, the SSD literature in

finance has mainly focused on portfolio allocation or general equilibrium implications of stochastic
dominance with recent contributions including Posfl (2003), Post-and Levy (2005), Carlier ef all
(2012), Post-and Kopa (2017). Recently, Chalamandaris_efall (2019) and Arvanifis et all (2027),
building on Arvanifis_ef all (2019) and Scaillet_and Topaloglon (2010), propose a method to

assess whether adding a factor to a given set of factors is beneficial for every risk-averse investor,

and for every prospect investor, respectively. These are spanning tests for factor investing, in
the spirit of the previously mentioned strand of literature that tries to infer a parsimonious
set of factors. However, they do not allow to distinguish anomalies from possible risk factors.
If a given set of factors contains anomalies, then any added factor that is spanned by these
anomalies should results in a rejection of their null hypothesis. We contribute to this literature
by introducing the concept of strong SSD, i.e., the replacement of weak inequalities by strict
inequalities in the different characterizations of SSD.% As previously mentioned, while it should
be a mild modification in practice, the modification is crucial for the equilibrium foundations of

the null hypotheses of our tests.

2 Unconditional test

We now develop the unconditional test as well as its equilibrium foundations. For simplicity, we

focus on a one-period equilibrium framework and discuss multi-period extensions in Section E8.

"Strict SSD is used to qualify the situation in which all possible risk averse individuals weakly prefer a lottery
to another lottery, with a strict preference for some individuals, or equivalently, in which strictly risk averse
individuals strictly prefer a lottery to another lottery (Dana 2004, Definition 1). For this reason, we use the term
strong SSD instead of strict SSD.



2.1 Unconditional null hypothesis

A factor typically corresponds to a long-minus-short trading strategy, in which the long leg is a
high-expected-returns portfolio and the short leg corresponds to a low-expected-returns portfolio.
Thus, the basic idea is to test, for each factor, whether every risk-averse individual would strictly
prefer the lottery representing the long leg to the lottery representing the short leg. Accordingly,

the null hypothesis of the unconditional test is
Hy : Vu € Uy, Elu(rg)] < E[u(ry)] (1)

where Uy denotes a class of concave and increasing functions, and rg and ry denote the returns
of the long leg and the short leg, respectively. If the null hypothesis () is rejected, then at least
one possible risk-averse individual weakly prefers the short leg to the long leg, so risk can possibly
explain the spread in expected returns captured by the factor. In other words, an individual who
prefers more to less still prefers the short leg because it is less risky than the long leg. Testing
for all possible utility functions in Us allows us to sidestep the choice of specifying a specific
measure of risk, that is, the choice of a specific utility function wu.

The null hypothesis () is similar to the well-known SSD. The difference comes from the
use of strict inequalities instead of weak inequalities, that is, the null hypothesis () rules out
the possibility of risk-averse individuals who are indifferent between the long and the short
leg. Hereafter, when the null hypothesis (0) holds, we say that r7 strongly SSD dominates rg.
While the replacement of weak inequalities by strict inequalities is a zero-Lebesgue measure
modification, it is key from an economic point of view. SSD is not a sufficient condition for
an anomaly for at least two reasons. First, it does not guarantee a strictly positive expected
factor return E(ry — rg), which is a necessary condition for the existence of a factor. Second,
the modification is key to derive the equilibrium foundations of the test in Section P=3. If some
individuals are indifferent between the long and the short leg, then both legs can coexist in
equilibrium, hence no anomaly exists. In fact, any portfolio SSD dominates itself, although it
necessarily coexists with itself. In contrast, no portfolio strongly SSD dominates itself, because
strong SSD is not a reflexive binary relation.

Another way to obtain strict inequalities instead of weak inequalities is to rule out affine
utility functions from the class Us, and rely on strict SSD. The latter corresponds to the situation
in which all possible strictly risk-averse individuals strictly prefer the dominant lottery (Danal
2004, Definition 1 and strict Jensen’s inequality). We do not pursue this path because (i) Risk
neutrality (i.e., affine utility functions) is a regular benchmark in finance and economics; (ii) The
existence of a strictly positive expected factor return E(ry, — rg) is a necessary condition for the
existence of an anomaly, so it needs to be part of the null hypothesis.

To derive the testable implications of the null hypothesis (), the following lemma provides

a characterization of strong SSD in terms of cumulative distribution functions (CDFs).

Lemma 1 (Characterizations of strong SSD in terms of CDF). Assume the support of the random



variables rr, and rs is a subset of the interval [u,u] C R with u # u. Denote the left derivative
and right derivative of a function u(.) at x with u’_(x) and v/, (x), respectively. Define the class
U, of concave and increasing functions u : [u,u] — R such that (s.t.) there exist v/, (u) € R
and v'_(1) € R\ {0}, where @ # u and @ := min {u,inf{z € [u, 7] s.t., Vz € [z,7], u(z) =0}}.F

Then the following statements are equivalent.
(i) For all u € Uy, E[u(rg)] < E[u(rg)].

(11) For all z €]u, o], Ff)(z) < Fé(?)(z), where, Vi € {H, L}, Fi(z)(z) = [“(z — x)dFj(z)
denotes the integrated CDF' of r;, with F;(.) the CDF of r;.

Proof. See Appendix BT
O

Well-known estimators of CDFs and functionals thereof exist, so Lemma [ provides a way
to test the null hypothesis (). Lemma [0 is the strong counterpart of the well-known Hardy-
Littlewood et. al. theorem,® which has been popularized in economics by Rothschild and Stiglitz
(1970). In the present paper, Lemma [ is mainly used for the same purpose as the Hardy-
Littlewood et. al. theorem in the SSD econometric literature.

Despite the appearance, it is not sufficient to replace the weak inequalities in the available
proofs of the Hardy-Littlewood et. al. theorem by strict inequalities to prove Lemma 0. The key
new ingredient of the proof is the quantity @, which enters in the definition of the class Uy of
concave increasing functions. The restrictions on @ rules out constant functions from the class
Uy —they would imply an equality and thus necessarily violate (I)—, while they allow short-
put-payoff-type functions, whose expectations are equal to the integrated CDF. Despite these
restrictions, the class Us contains all strictly increasing, differentiable, and concave functions
on R. In words, the class U, is the class of concave, increasing functions differentiable at the
minimum u of the support and with non-zero left-derivative at the minimum between “absorbing”
zeros and the maximum % of the support.

A direct consequence of Lemma [ is the invariance of the null hypothesis ([) under strictly
positive affine transformations of lotteries. This implies the formulations of the null hypothesis
(I0) in terms of terminal wealth, capital gain, gross returns or any other strictly positive affine
transformation thereof are all mathematically equivalent, i.e., Yu € Us, Elu(rg)] < E[u(rr)] <
Vu € Us, Elu(Wors)] < Eju(Worr)] < Yu € Ug, E[u(Wo(1 + rg))] < E[u(Wo(1 + rr))], where
Wg > 0 is the initial wealth of the risk-averse individual.

In addition to Lemma [0, we require the following assumption to obtain a test statistic for
the null hypothesis ().

8Concavity only ensures left and right differentiability in the interior Ju, %[ (e.g., Aliprantis and Border
RO06/T994, Theorem 7.22), so the assumptions of right differentiability at u is not subsumed by the concav-
ity assumption.

9See, e.g., Hardy ef all (1929, 1934), Blackwell (T951), Sherman (T951), Carfier of all (1964), Strassen (T963).



Assumption 1. (a) (Common bounded support) The support of the random wvariables vy and
rs is U, Uy| C [u,u], where u = u, and u # u. (b)(No touching without crossing) If there exists
z €lu, Tl s.t. F£2)(2) = FéQ)(é), then there exists Z €|u,u] s.t. Féz)(,'z:) < F£2) (2).

Assumption [(a) is a standard assumption in the econometrics and economic SSD literature
and should be “harmless” in practice (McFadden T98Y). All observable quantities are necessarily
finite because computer memory is finite. Assumption 0(b) “no touching without crossing” should
also be harmless in practice. A sufficient condition for the assumption is that zero is not a critical
value, that is, the derivative of the function z +— F ég) (z2) = F éz)(z) is non-zero in the level set of
0. The set of critical values of the function z — F E)(z) - F g)(z) has zero Lebesgue measure
following Sard’s theorem. Thus, Assumption D(b) is harmless in practice, although it is crucial
for the present paper. Thanks to Assumption 0(b), the null hypothesis (II) does not hold if, and
only if, there exists z € [u,T] s.t. FéQ)(z) < F£2)(z).

2.2 Unconditional test statistic

We now discuss the asymptotic properties of the unconditional test, study its properties in

simulations, and discuss the issues of multiple hypothesis testing and pretesting.

2.2.1 Asymptotic properties

In most statistical tests, the idea is to reject a null hypothesis if the difference between an
(unconstrained) estimator and an estimator constrained by the null hypothesis is too large. For
example, given a sample (X;)I_, of size T' with independent and identically distributed data,
the idea behind a t-test with null hypothesis “Hg : EX; = 0” is to assess whether the difference
between the average X7 and zero normalized by the standard error 6/v/'T (i.e., VT| X7 —0|/5) is
large. If the normalized difference between the (unconstrained) estimator X7 and the constrained
estimator 0 is beyond a plausible threshold, the null hypothesis “Hp : EX; = 07 is rejected. In
the present paper, both tests follow the same logic.

By Lemma [, the null hypothesis (I) is equivalent to the null hypothesis
Hp : Vz €]u, o], Fg)(z) - Fg)(z) <0, (2)

where F £2)(z) and F. 5@ (z) denote the integrated CDF of ry, and rg, respectively. Moreover, the
standard estimator for a CDF is the empirical CDF, so a standard estimator of the integrated
CDF Féz) is the integrated empirical CDF Fg)(z) = %Z:{:l 1{rr; < z}(z —rps). Thus,
the statistic of the unconditional test is the difference between the wunconstrained estimator
FI(JQ)(.) - Fg)() and the constrained estimator min{ﬁf)(.) - Fg)(.), 0}, that is,

VTEKSS : = VT sup |FP (2) — FP(2) — min{F{?(2) — F{P(2), 0}

z€Ilp
= VT sup |[F{P(2) — Fg(2)| (3)
z€Ilp

10



where Iz := [cp, @], with e | u, and where F £2A)S(z) denotes the minimum of the integrated em-
pirical CDF (that is, Fg\)s(z) = min{FL(Q) (2), Fb(?) (2)}).1 The estimator min{FL(Q) (\) —Fg) (.),0}
is a constrained estimator of FE)(.) - Fg)(.), because it satisfies the null hypothesis (B) by
construction. It can be shown that the test statistic (B) is related to the one-sided Kolmogorov-
Smirnov (KS) type statistics, which has been used in the SSD literature since McFadden (T989).

The following proposition shows the KS7. test statistic (B) defines a valid and consistent test
of the null hypothesis ().

Proposition 1 (No type I error and No type II error). Under Assumption 0 and the Assumptions
of Appendiz A3, for any level of the test a €]0, 1],

(i) if the null hypothesis (W) holds, then
Jim P <61_a < x/TKST) —0;
(i) if the null hypothesis (I) does not hold, then

lim P <él_a < x/TKST) — 1.
T—o0

where ¢1_q, is the 1 —a quantile of a (centered) block-subsampling approximation of the asymptotic
distribution of \/TKS} with a block size by s.t. limp_,oo by = 00 and limp_, bTT =0.

Proof. See Appendix B O

Proposition 0 (i) shows the null hypothesis is asymptotically never rejected when it is
true, i.e., no type I error exists, asymptotically. Proposition 0 (i) a fortiori also means the
test is valid, that is, the probability of wrongly rejecting a true hypothesis is asymptotically
smaller than any level o €]0,1]. Proposition I (ii) shows the null hypothesis is rejected with
probability one when it is wrong, that is, no type II error exists, asymptotically. In the
present paper, we rely on centered and uncentered block subsampling to approximate the dis-
tribution of test statistics. Block subsampling implies to draw without replacement matrices
(Tig41 Tig2 * 0 Titrbr)ie{L,sy of br consecutive observations of contemporaneous 7, and rg,
instead of any matrix (r;s 74, - Tty )ie{L,S} of by observations of r;, and rg. In this way,
block subsampling accounts for potential time-dependence and cross-sectional dependence.

The mathematics behind Proposition [ are standard. We just need (i) the test statistic (8)
to go to zero under the null hypothesis and (ii) the test statistic to diverge under the alternative

hypothesis. The crux of the mathematics is the following. Denote with A the subset of R, in

"The absolute value is superfluous in the Kolmogorov-Smirnov (KS) test statistic (B) because, for all z € R,
0 < FIEQ)(z) — Féi)s(z) by the definition of Ff,\)s(z) However, we keep the absolute value to make clear that
the KS test statistic (B) measures the distance between the unconstrained estimator F,SZ) and the constrained

estimator FJQQ/\)S (2).

11



which the null hypothesis (B) does not hold, that is,
A:={zecR: Fg)(z) < Ff)(z)}.

Then, addition and subtraction of F' 1-52)(2) and F 8\)5(2') to the quantity maximized by the KS%,
test statistic (B) yields

VTKS(2) = VT{FP (2) - Fg(2)})
= VI {E{7(2) - F)(2) = [P (2) = FiRs(2)) + FP () = Fis(2) }
= VTIEP (2) = FP (2)] = VT g(2) — Fis(2)]
HVTFP (2) - FY (2)1a(2), (4)

because, for all z ¢ A, Ff)(z) — Fg\)s(z) = Ff)(z) — Ff)(z) =0.
Under the null hypothesis (B), by the definition of A, 1a(z) =0, for all z € R. Thus, for T
big enough, with probability one,

VTEST(2) = VTIE) (2) — FY)(2)] = VTIE s (2) — Fils(2)]
(

because FS\)S() =F 1-52)(.), and a Law of Large Numbers (LLN) implies the uniform convergence

of F£2)(z) = %ZtT:lll{rLt < z}(z —rpy) and Fg)(z) = %Z?zl]l{rgﬂg < z}(z —rgt) to
F£2)(z) = E[l{rp; < z}(z — rrs) and Fg)(z) = E[l{rg; < z}(z — rg4), so Féi)s(z) =
F f) (z) for T big enough. Thus, v/T' KS7 is asymptotically smaller than any positive quantity,
s0 P(é1-a < \/TKS}) goes to zero, as T — oo. If the null hypothesis (B) does not hold,
VIIEP (2) = FP ()] = VT[ASL  1{rpy < 2}z — 1) —E[1{rp, < 2}(z —r1)]], which, by
a Central Limit Theorem (CLT'), converges to a tight limit after multiplication by VT. Similarly,
by the continuous mapping theorem \/T[Fg\)s(z) - FEA)S(Z)] = Op(1). However, for all z € A,
\/T[Féz)(z) — Féz)(z)]]lA(z) — 00, as T — o0o. Therefore, under the alternative hypothesis, as
T — oo, the KS% test statistic (B), which maximizes (H), goes to infinity, and thus becomes

bigger than any threshold ¢;_,.

2.2.2 Monte-Carlo Simulations

We find in Monte-Carlo simulations in Table 0 that the finite-sample properties of the test
statistic KS%. are in line with Proposition 0. For all data-generating processes (DGP), p-values
goes to zero when the null hypothesis (B) is wrong. Also, in line with the asymptotic theory, a
large and growing proportion of p-values equals one, when the null hypothesis () holds, because
of the absence of type I error, asymptotically. The first two DGPs are Gaussian distributions
calibrated to data. More precisely, they are calibrated to two factors —size and the dividend

yield— for which the null hypotheses are barely true (or false) in order to be challenging for the

12



test. The third DGP is a stylized DGP except for the correlation between the long leg and the
short leg. The latter correlation is calibrated to the average correlation of the legs of some of
the most prominent factors. Further simulation results and details are available in Appendix B.

One insight from the simulations is that centered block subsampling tends to yield more
rejections than uncentered block subsampling approximations. Hence, to be conservative, we
use the centered subsampling approximation in our empirical implementation: Centered block
subsampling should play against the main empirical result of the paper. In Section B2, we also

investigate the finite-sample properties of the tests on actual financial data.

2.2.3 Immunity to multiple hypothesis testing and pretesting

Because of the large number of factors considered in the literature, Harvey ef all (2016) among
others raise the concern of multiple hypothesis testing. The multiple hypothesis problem stems
from the high probability of wrongly rejecting at least one true hypothesis, if one simultaneously
tests many true hypotheses with size and level of each test exactly equal to « €]0,1]. E.g., by
definition of the asymptotic size of a test, if one simultaneously and independently tests 100 true
hypotheses at size a = 5%, one expects to wrongly reject 5 true hypotheses, asymptotically.
The following Proposition B shows the unconditional test is immune to the multiple hypothesis

problem.

Proposition 2 (Immunity to multiple hypothesis testing). Define a family (Ho )X | of null
hypotheses s.t. Hyy, : Yu € U, Elu(ry,g)] < Elu(rg,r)], where ris and ry 1, denote the return of
the short leg and the long leg of the factor k. Define the set J C [1, K| of true hypotheses. Under

the assumptions of Proposition O, the asymptotic family-wise error rate (FWER) is zero, i.e.,
TIEI;OP{Hj €J st &j1a< \/TKs;qT} —0,

where KS;’T is the unconditional test statistic (B) that corresponds to the null hypothesis H ;
and ¢j1—q the 1 — o quantile of a (centered) block-subsampling approzimation of the asymptotic

distribution of \/TKS;‘T with a block size by s.t. limp_,oo by = 0o and limp_, o bTT =0.

Proof. By positivity and additivity of probability measures, 0 < P{3j € J s.t. &j1-0 < VT KS? 1}
= P{UjeJ{éj,l—Oé < \/TKS;‘T}} < YeaPléi-a < \/TKS’;T} Now, by Proposition Oi, we
know Hmr—co 3 5c3 P{éj1-a < VT KS; 7} = 0, so the result follows from the squeeze theo-

rem. O

Proposition B stipulates that the probability of wrongly rejecting at least one true hypothesis
(that is, the FWER) is close to zero for a sufficiently large sample size. As the proof shows,
Proposition B is an immediate consequence of Proposition (i), which implies a zero probability
of rejecting a true hypothesis, asymptotically. Proposition B shows the unconditional test satis-

fies stronger properties than asymptotic t-tests corrected for multiple hypothesis testing: Usual
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Table 1: Performance of unconditional test in Monte-Carlo simulations
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Note: The first two data-generating processes (DGP) correspond to Gaussian distributions calibrated to factors for which Hq appears barely
true (or false). The third DGP is a stylized DGP except for the correlation that is calibrated to data. The reported p-values are based on
1000 simulated samples of sample size equal to the indicated T'. The distribution of KS} is approximated through centered block subsampling
with block size by = v/T.The tops and bottoms of each “box" are the 25th and 75th percentiles of the p-values, respectively. The line in the
middle of each box is the median. Crosses beyond the whisker length indicate outliers. An outlier is a value that is more than 1.5 times the
interquartile range away from the corresponding end of the interquartile ranges. Whiskers are drawn from the ends of the interquartile ranges
to the furthest observations within the whisker length.
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multiple hypothesis procedures for ¢-tests bound from above the false discovery rate (FDR),
which is a less stringent criterion than FWER (e.g., Lehmann and Romand R00A).

While Proposition B is stronger than the property of usual multiple hypothesis testing tech-
niques, it does not address the deeper problem of pretesting. In the context of t-tests, the
pretesting problem is the following. The classical theoretical justification of an asymptotic t-test
of size « is the t-statistic has a probability 1 — «, asymptotically, to be between the «/2 and
1 — a/2 quantiles of a standard Gaussian distribution under the test hypothesis. However, once
computed, the t-statistic is in the non-rejection region with probability 0 or 1, that is, it either
s or it is not in the non-rejection region. Thus, if the result of this first test leads an econo-
metrician to implement a second t-test of size «, the corresponding t-statistic does not typically
have a probability of 1 — a asymptotically to be between the /2 and 1 — «/2 quantiles of a
standard Gaussian distribution under the test hypothesis. The observation of the first ¢-statistic
has removed a part of the randomness of the second t-statistic. Except in specific cases, statistics
based on the same data set are not independent. Hence, the classical theoretical justification
does not hold for the second t-test. In fact, the econometrician would need to use the asymptotic
distribution of the second t-statistic conditional on the result of the first ¢-statistic, and it is
generally a difficult task to derive such a distribution. The pretesting problem is even more
difficult because the econometrician would not only need to condition on the result of the last
t-test but on all previous knowledge about the data (e.g., plots of the data, descriptive statistics,
prior model selections etc.). Because of a lack of a general solutions to the pretesting problem, it
is typically ignored, that is, the econometrician typically proceeds as if they had chosen the test
to be implemented before any examination of the data. Multiple hypothesis testing techniques
do not tackle the pretesting problem because they assume that the list of all statistics to be po-
tentially computed is determined before any examination of the data. The latter assumption is
difficult to defend in the case of factor discovery: The evolution of cross-sectional asset pricing is
a hard-to-predict dialog between theory and many empirical studies. The following Proposition

B shows the unconditional test is immune to the pretesting problem.
Proposition 3 (Immunity to pretesting). Under the assumptions of Proposition O, for any
sequence of events {Fr}ren,

lim P ({él_a < VTKS:} N FT) = lim P(¢1-a < VIKS})P (Fr).

T—o00

Proof. See Appendix B=3. O

Proposition B shows the unconditional test is independent of any sequence of events { Fr}ren
as the sample size increases. Thus, conditioning on prior knowledge of the data is irrelevant for a
sufficiently large sample size. It also means that conditioning on the result of the unconditional
test is also irrelevant for further inference. To the best of our knowledge, only a few known
inference procedures with such property exist (e.g., Hannan and Quinul T979). Like Proposition

B, Proposition B is a direct consequence of Proposition [I.
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2.3 Equilibrium Foundations for Unconditional Test

In the present section, we show that, under general assumptions, the null hypothesis () should

be a sufficient condition for an anomaly.

2.3.1 Equilibrium Foundations without Diversification Benefits

In the absence of diversification benefits, the equilibrium implication of the null hypothesis () is
immediate. Assume individuals have to invest all wealth either in the short leg, or in the long leg
—exclusive or— so no diversification benefits exist. Assume all possible individuals have strictly
increasing von Neumann-Morgenstern utility functions in Usg. If the returns of the long leg are
strictly preferred by all possible individuals to the returns of the short leg, then by the invariance

of the null hypothesis under strictly positive affine transformations of lotteries (Lemma )

Elu(rs)] < E[u(rr)]
1+7rg)] <E[u(l+rL)]
= u (Efu(l + rs)]) < u—l(E[uu + rL)]),

where 4! <E[u(1 + 7“5)]) and u~! (E[u(l +r L)]) are private values —the certainty equivalents—
of the short and long leg gross returns, respectively. In words, all possible risk averse individuals
value the long leg gross returns strictly higher than the short leg gross returns. Now, by definition
for gross returns, the market price of both the gross short leg (1 4+ rg) and of the gross long
leg (1 +rg) is 13. Thus, every individual tries to buy the long leg so the relative price of
the long leg relative to the short leg increases and its returns decrease up to a point where
some individuals are indifferent between the two. At the equilibrium, the long leg cannot be
strictly preferred by all individuals. Therefore, if the null hypothesis (@), —or equivalently
“Hp : Yu € Ug, E[u(l +rg)] < E[u(l + 7)) holds, an anomaly exists.

2.3.2 Equilibrium Foundations with Diversification Benefits

In an economy with several assets, the aforementioned equilibrium implication does not neces-
sarily hold because individuals do not have to choose one among two assets. Individuals can
combine assets into portfolios, so the idiosyncratic risk of different assets can cancel out through
diversification. Then, the remaining non-diversified risk corresponds to the movement of indi-
viduals’ wealth, so the priced risk corresponds to the positive comovements of the factor return
with individuals’ wealth.

Nevertheless, the present section shows the null hypothesis (0) “Hy : Yu € Us, E[u(rg)] <
E[u(rg)]” should still be a sufficient condition for an anomaly in the presence of diversification
benefits. More precisely, we show the null hypothesis (0) implies that, up to a first order, the
expected return of the factor cannot be explained by risk alone, that is, it exceeds the risk

compensations required by risk-averse individuals. For this purpose, we first need to derive the
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factor risk compensations under general assumptions. The assumptions should be as general
as possible to the extent they do not allow for behavioral biases nor frictions affecting the
expected return of the factor. We want risk compensations and not compensations for frictions
or behavioral biases. Thus, the question is to identify a parsimonious combination of ingredients
that are sufficient to derive the factor risk compensations. The following simple derivation shows
that it is sufficient to consider a situation in which individuals optimally and freely trade the
factor in a neighborhood of their locally optimal terminal wealth. Importantly, we do not need

to specify a model, that is, we can do “something without having to do everything.” (Hansen

Derivation of Risk Compensation

By construction, a factor r, —rg = (1+175) — (1 +rg) is a costless portfolio, because it implies
buying 1$ of the long leg and selling 1$ of the short leg. Thus, for any individual, irrespective of
budget constraints, as long as the factor freely trades in a neighborhood of the locally optimal

terminal wealth of the individual, the expected marginal value of the factor is zero, that is,
E[u'(W1)(rr —rs)] =0, (5)

where u(.) and W; denote, respectively, individual’s utility function and terminal wealth. The
logic behind the standard optimality condition (B) is the following. If E[u/(W1)(rp —rg)] > 0
(respectively 0 > E[u/(W7)(r, — rg)]), one more (respectively less) marginal unit of the costless
portfolio r;, — rg would increase individual’s utility. See Appendix B for a formal proof under
general assumptions.

By the optimality condition (H), Cov(u'(W1),rr — rs) + E[u/(W1)|E(rr — rg) = 0, so the

expected return of the factor explained by risk alone is

1
E(ry, — =————C "(W —rg). 6
(TL TS) E[’LL,(Wl)] OV(U ( 1)7TL TS) ( )
In words, the expected return of the factor E(r; — rg) should be the opposite of its covariance

with individuals’ marginal utility normalized by individuals’ expected marginal utility, that is,
1

E[u/(W1)]
x Cov(u'(Wy),r, —rg). Hence, the expected return of the factor E(r; — rg) should exactly

compensate for its normalized negative comovements with the marginal utility of terminal wealth
W1, and thus for its normalized positive comovements with terminal wealth W; —the marginal
utility function «/(.) is decreasing due to concavity.

Our derivation of equation (B) does not require us to specify an equilibrium model. As previ-
ously mentioned, the optimality condition (H), and thus equation (B) holds as long as individuals
can freely trade the costless portfolio r;, — rg in a neighborhood around their locally optimal

terminal wealth Wj. Thus, the quantity —Wlwl)](COV(u’ (W1),rr —rg) should be the risk com-
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pensation for any one-period equilibrium model. In other words, in any equilibrium model,
whether partial equilibrium or general equilibrium, whether with production or not, whether
with complete or incomplete financial markets etc., the risk compensation is given by the right-

hand side of equation (B). If a wedge exists between the expected return of the factor E(ry, —rg)

1
Ef[u/(W1)]

needed to account for the expected return of the factor E(ry — rg). Moreover, the derivation of

and the risk compensation Cov(u'(Wh),rL — rsg), an explanation other than risk is
equation (B) indicates that the other explanation should be a friction or a behavioral bias that
induces a violation of the optimality condition (H). Hence, an informational friction or a trading
friction on the factor can be an explanation, but a friction on production or even a short-sale

constraint on a asset that is not part of the factor cannot be an explanation.

The Null hypothesis (I) and Risk Compensations

The following proposition shows that if the null hypothesis () holds, then the expected return
of the factor E(r; — rg) should exceed the risk compensation —WCOV(UI(WQ, rp —rg) for
a large class of increasing and concave utility functions.

Proposition 4 (Equilibrium foundation for unconditional test). For all u € Uy s.t. w is twice
continuously differentiable on [u, @], which includes the support of Wy and of the returns rg and
rL, then, up to a first order, the null hypothesis “Hy : Yu € Uqg, Elu(rg)] < Elu(ry)]” implies the

expected return of the factor exceeds its risk compensation, i.e.,

—mCov(u'(Wl),rL —rg) <E(rp —rg).

Proposition @ provides sufficient assumptions under which strict preference for the long leg
implies that risk alone cannot explain the factor’s expected return E(ry, —rg), up to a first order.
If risk alone cannot explain the factor’s expected return, other explanations, such as behavioral
biases or institutional frictions, are necessary to explain the factor’s expected return, and thus
we call the factor an anomaly. Assumptions underlying Proposition 8 are mild. They hold for
any twice continuously differentiable strictly increasing and concave utility function on [u, ).
The assumption P(u/(W7) > 0) > 0, which necessarily holds for strictly increasing differentiable
utility functions, ensures that E[u/(W7)] > 0. As previously explained for equation (B), the
assumptions do not require us to specify a DGP for returns, nor an economy. If we were to
specify the latter, it would need to generate the exact same returns as the observed returns and
thus it would not matter for the test. The proof of Proposition B essentially only requires Taylor

expansions. Because of the simplicity of the proof, we provide it in the main text below.
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Proof of Proposition [J. Two first-order Taylor expansions of u(.) around W, yield™®

Elu(rp + EWq) — u(rs + EWY)]
= E [uw(W1) + o' (W) (rp + E(W1) — W) 4 o(er)
—u(Wh) — o/ (W1)(rs + E(W1) — Wh) + o(es)] where €;:=r;+E(Wy)—Wr, Vie{L,S};
— B [W/(W)(r — 7s) + ofez) + ofes)] Y

where the invariance of the null hypothesis () under strictly positive affine transformations of
lotteries (Lemma 0) implies 0 < E[u(ry, + EW1) — u(rg + EWY)].
Thus, up to a first order,

0<E [u'(Wl)(TL - 1"5)] = Cov(u/(Wh),rr, —rs) + E[u/ (W)]E(ry —rs)

& —WCOV(U’(WQ,TL —rg) <E(rp —rg).

3 Test Conditional on the Market

As its name indicates, the unconditional test relies on the unconditional distribution of returns.
However, practitioners—probably inspired by the CAPM—usually analyze returns after control-
ling for exposure to market risk. For this reason, we propose a test conditional on the market.
The present section follows the same structure as the previous section. We first present the test

conditional on the market returns and then its equilibrium foundations.

3.1 Null Hypothesis Conditional on the Market

The null hypothesis of the test conditional on the market is the same as for the unconditional test,
except that it controls for the market return rp;. The idea is to test, for each factor, whether
every possible risk-averse individual would strictly prefer the long-leg lottery to the short-leg

lottery conditional on the market, that is,
Hy : Vu € Ug, Elu(rs)|ra] < E[u(rp)|ru], (8)

where r); denotes the market return.
As previously mentioned, the main motivation for the null hypothesis (B) relative to the null
hypothesis () of the unconditional test is practitioners’ routine of controlling for the market

through a regression with the market (excess) returns as an explanatory variable. In this way,

1 Although the proof is based on Taylor expansions, preferences are not implicitly assumed risk neutral nor
mean-variance because (i) The Taylor expansions are made around the terminal wealth Wi, which is random,
instead of around expected quantities; (ii) The first-order term u'(W1)(rr — rs) exactly corresponds to the non-
diversified risk as the derivation of equation (B) shows.
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practitioners control for affine functions of the market returns. The test conditional on market
does not only control for affine functions of market returns, but for all measurable functions of
market returns. Moreover, it should not matter whether we use market returns, or the latter in
excess of the risk-free rate: Conditioning on rps, or conditioning on rp; — 7y does not matter
because they generate the same o-algebra.

As for the unconditional test, a characterization of strong conditional SSD in terms of CDFs

is necessary to bring the null hypothesis (B) to the data.

Lemma 2 (Characterization of conditional strong SSD in terms of CDF). Assume a complete

probability space. Under Assumption M(a), the following statements are equivalent.

(1) For all u € Usg, Elu(rs)|ra] < E[u(rr)|ra] almost surely (a.s.).

(ii) For all z €]u, 00|, Fé‘])w( lrar) < F( ( |rar) a.s., where F£|1)\4 (z|rar) - f LM (y|rar)dy
a.s.
Proof. See Appendix BT O

Lemma B is the conditional counterpart of Lemma 0. Similarly to Lemma [ for the null
hypothesis (), Lemma B implies the invariance of the null hypothesis (B) under strictly positive
affine transformations of lotteries. In particular, the lemma implies that it does not matter
whether we consider the leg’s returns, or —if inspired by the CAPM— we consider the latter
in excess of the risk-free rate, i.e., Vu € Uy, Elu(rs)|rym]| < Elu(ry)|ry] < Yu € Us, Elu(rg —
re)|rm] < Elu(rr — ry)|ra]. As for the unconditional test, a conditional counterpart of the
assumption “no touching without crossing” is necessary to bring the null hypothesis (B) to the
data.

3.2 Test Statistic Conditional on the Market

By Lemma B, the hypothesis (B) is equivalent to the null hypothesis

Ho : ¥z €lu, oo, Fin\, (2].) = Fih,(2].) <0, (9)

where FIE| %

respectively. We cannot follow the same approach as for the unconditional test in Section B

(z|z) and Félj)\/[( ) denote the integrated CDF of r; and rg conditional on 7y,

because conditional empirical CDFs do not follow functional CLTs. Thus, we follow [Durof
(2003)’s approach along the lines of Delgado and Fscanciand (2013), and adapt the latter to
strong SSD. The key idea is to express the null hypothesis (H) in terms of the concavity of the
second-order antiderivative of the difference of integrated conditional CDF.

Under standard regularity conditions, a function is strictly negative if, and only if, its first-

order antiderivative is strictly decreasing, and if, and only if, its second-order antiderivative
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(i.e., the antiderivative of the antiderivative of the function) is strictly concave. Thus, the null

hypothesis (H) is equivalent to the null hypotheses

)

Hy:Vz €]u, oo[,/- [Fﬁj)\/l(d:p)—FgZ)\/l(zu)]fx (2)dz = Fl(l2])w(z, .)—Fg])\/[(z, .) strictly decreasing

Hy : Vz €]u, 0o[, C?(z,.) is strictly concave, (10)

where, for all z € R, C®(z,.) denotes a normalized antiderivative of Fg])w(z,x) — Fézj)\/l(z, ).
An unconstrained estimator of C?)(z,.) is the antiderivative C'®)(z,.) of the integrated empir-
ical CDF. A constrained estimator of C'®(z,.) is the smallest concave majorant 7C®(z,.) of
c® (z,.) because the smallest concave majorant (also called least-concave majorant) of a concave

function is the concave function itself. Therefore the test statistic is

VTCE: :=VT sup TCP (z,u) — CP (2, )],

(Z7U)E]H’OO[XFIV[([y]\/[aﬂlw])

where [u, %] denotes the support of rps. The following proposition shows the C7. test statistic

defines a valid and consistent test.

Proposition 5 (Validity and consistency). Under the Assumption @ and the assumptions of
Appendiz A4,

(i) if the null hypothesis (B) holds, then

lim supP (élfa < \/TC*T> < o

T—oo

(i) if the null hypothesis (B) does not hold, then

lim P (él,a < ﬁcg}) — 1
T—o0
where ¢1_q, is the 1 —a quantile of a (centered) block-subsampling approximation of the asymptotic

distribution of \/TC*T with a block size by s.t. limp_, o, by = 0o and limp_, o bTT =0.
Proof. See Appendix B4. O

Proposition B shows the test conditional on the market is valid and consistent. Results from
a Monte-Carlo simulation in Table B support Proposition B. When the null hypothesis (B) is
wrong, p-values converge to zero as the sample size increases. When the null hypothesis (B) is
true, a large proportion of p-values is away from zero. For ease of comparison, the DGPs are the

same as in Table [ for the unconditional tests except for the common component .
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Table 2: Performance of conditional test in Monte-Carlo simulations
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Note: The first two data-generating processes (DGP) are calibrated to data. In particular x I'I—>D N(0,04), where o, = .04 is the estimated
standard deviation of monthly market returns. The third DGP is a stylized DGP except for the correlation that is calibrated to data. The
reported p-values are based on 1000 simulated samples of sample size equal to the indicated T'. The distribution of Ci} is approximated
through centered block subsampling with block size by = VT. The tops and bottoms of each “box" are the 25th and 75th percentiles of the
p-values, respectively. The line in the middle of each box is the median. Crosses beyond the whisker length indicate outliers. An outlier is a
value that is more than 1.5 times the interquartile range away from the corresponding end of the interquartile ranges. Whiskers are drawn

from the ends of the interquartile ranges to the furthest observations within the whisker length.
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3.3 Equilibrium foundations for the test conditional on the market

In the absence of diversification benefits, the equilibrium foundations of the conditional test is
similar to the ones of the unconditional test. The reasoning is the same, except that investors
control for the conditioning variable, that is, investors’ preferences correspond to an expected
utility under the distribution conditional on the market.

In the presence of diversification benefits, the following proposition formalizes the one-period

equilibrium foundations for the test conditional on market.

Proposition 6 (Equilibrium foundation for test conditional on market). Let rw and [uy, , Uw,],
respectively, denote the return on wealth (that is, ry = % — 1, where Wy denotes the initial
wealth) and the support of Wi. Under Assumptions @, for all uw € Uy s.t. u is twice continuously
differentiable on [u,u], which includes the support of Wi and of the returns rs and rr,, then, up
to a first order, the null hypothesis “Hy : Yu € U, Elu(rs)|rw] < Elu(ry)|rw]” implies that the

expected return of the factor exceeds its risk compensation, that is,

1 /
—_—— - E(rp —rg).
By W) T ) < Bl =)
Proof. Under Assumption [, by iterated conditioning, the Hardy et. al. theorem, and Assumption
M(b) (no touching without crossing), if, Vu € Us, Elu(rs)|rw] < E[u(ry)|rw], then, Vu €
Us, E[u(rs)] < Elu(rz)]. Then the result follows immediately from Proposition . O

Proposition B shows that, up to a first order, strict preference for the long leg conditional on
the market is a sufficient condition for an anomaly. The assumptions of Proposition B are similar

to the assumptions of Proposition M.

4 Empirical Results

We now apply our tests to actual data. We start by describing the dataset and, as a proof of
concept, we apply the test to the market factor MKT. Then, we apply the tests to the widely-used
FF5+MOM factors. Finally, we provide an overview of the test results for a standard dataset of

more than 200 potential risk factors.

4.1 Data

Data for the five Fama and French factors and momentum, FF54+MOM, are from Kenneth French
website. The factors are built by double sorting stocks on size and four characteristics, that is,
book to market (BM), operating profitability (OP), investment (INV) and momentum (MOM).
For each characteristic, stocks are double sorted into Small and Big stocks as well as tertiles
of Low, Medium and High characteristics stocks. For each characteristic, the long leg of the

corresponding factor is the equally weighted portfolio of two portfolios of Small and Big stocks
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in the highest tertiles (lowest for INV) and equivalently for the short leg. For each characteristic,
the long leg of the corresponding Size factor is the equally weighted portfolio of three portfolios
of Small stocks (Low, Medium and High), while the short leg is the equally weighted portfolio
of three portfolios of Big stocks. Following Fama and French (2015), we built a Size factor by
averaging the long and short legs across the Size factors related to BM, OP and INV. We also
use as the aggregate market the CRSP value-weighted index as well as the one-month Treasury
Bill for the risk-free rate.

For BM and MOM a long sample of data is available, starting from July 1926 (BM) or January
1927 (MOM). For the market and the Treasury bill yield, data are also available starting from
July 1926. For OP and INV, data start only from July 1963. For this reason, we report for BM,
MOM and the market MKT the findings for the full sample period as well as for a restricted
period starting in July 1963. The samples for FF5+MOM factors end in October 2021.

We use data for 205 potential risk factors from Chen and Zimmermann (2020a). Stocks
are sorted into quantile portfolios, where the number of quantiles depend upon data availability
for the characteristic. We use the lowest and highest quantiles and retain as the short leg the
quantile with the lowest sample average return over the sample period. We discuss evidence for
the original samples of the published papers as well as for the post-publication samples and the

full samples. The samples end in December 2020.

4.2 Proof of Concept

Propositions @ and B show the unconditional test and the conditional test have good asymptotic
properties. Monte-Carlo simulations (Tables I-2 in previous sections and Appendix B) indicate
that the finite sample performance of the tests are in line with the asymptotic properties. In the
present section, we apply the unconditional test to the market factor MKT as a proof of concept
on actual financial data.

Overwhelming empirical evidence show that US stocks have higher expected returns than

Treasury bill returns, but that they are riskier. Thus, we test the following null hypothesis
Hp : Vu € Uy, Elu(ry)] < Elu(ra)],

where 7 is the one-month Treasury bill return and 7 is the CRSP market return. We report
results in Table B.
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Table 3: Unconditional test applied to the equity premium (i.e., market factor
MKT)

Long Short t%;{/g P-value
1926 - 2021 0.96 0.27  4.01 0.00
1963 - 2021 0.96 0.37  3.18 0.00

Note: The columns “Long,” “Short,” “t@;vs” and “P-value,” respectively, correspond to the average return of the long leg, the average return
of the short leg, the t-statistic for the null hypothesis “Hg : E(rg) = E(ry,)," and the p-value of the unconditional test. We use Newey-West
standard errors to calculate tl]\’,;vs The frequency of the data is monthly.

We clearly reject the null hypothesis, so, in line with the empirical evidence, the market
factor MKT appear as a possible risk factor. In other words, levels of risk aversion exist s.t. US
Treasury bills are preferred to US stocks. The results are robust to subsample analysis. While
the results are a proof of concept for the unconditional test, they also indicate the tests set a
high threshold to classify a factor as an anomaly, in the sense that they allow for any arbitrarily
high level of risk aversion. By construction, the tests do not require the level of risk aversion

(i.e., the concavity of the von Neumann-Morgenstern utility) to be plausible for actual agents in

make individuals prefer US Treasury bills over US stocks, but they regard it as implausibly high,
so they classify the market factor MKT as an anomaly, which they call the “equity premium

puzzle.”

4.3 Unconditional Test Applied to FF5+MOM Factors

The FF5+MOM factors are widely assumed to be risk factors and thus used to adjust for risk
both in practice and academia. We apply our unconditional test to these factors to assess whether

they are anomalies or possible risk factors. The results are reported in the following table.
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Table 4: Unconditional test applied to FF5+-MOM factors

Long Short tf\,}}[}q P-value
Size 1963 - 2021 1.21 097 1.85 0.00

BM 1926 - 2021 1.32 0.99 2.80 0.15
BM 1963 - 2021 1.24 0.97 1.98 0.40
OP 1963 - 2021 1.18 0.92 2.71 1.00

INV 1963 - 2021 1.22 0.96 291 1.00
MOM 1926 - 2021  1.42 0.78  4.40 1.00
MOM 1963 - 2021 1.38 0.76  3.60 0.54
MKT 1926 - 2021 0.96 027 4.01 0.00
MKT 1963 - 2021 0.96 037 318 0.00

Note: The columns “Long,” “Short,” “tjl\‘,;f” and “P-value,” respectively, correspond to the average return of the long leg, the average return
of the short leg, the t-statistic for the null hypothesis “Hg : E(rg) = E(rf)," and the p-value of the unconditional test. We use Newey-West

standard errors to calculate tk;f The frequency of the data is monthly. BM stands for book-to-market, OP for Operating Profitability,
INV for Investment and MOM for Momentum.

Market factor MKT set aside, only Size has a p-value below standard thresholds. The result
is robust to the different methods for constructing Size. A first potential explanation is the lack
of significance of the factor’s expected return: The t-statistic of the long-short portfolio t%}l;q is
slightly below 1.96, suggesting Size might not be a factor after all, and thus neither an anomaly
nor a risk factor. A second potential explanation is that Size can be explained by risk alone.
This second explanation seems more plausible because a t-statistic t%},{?, which is slightly below
1.96 and thus significant at 10%, is unlikely to explain a p-value of zero for the unconditional
test. Moreover, in the original sample (Online Appendix) and for other constructions of the Size
factor, the p-value is still zero even when the expected return is highly significant. This second,
more plausible explanation lends support to Berk (T995), which explains why Size should not be
regarded as an anomaly, but rather as a compensation for risk.

Regarding the factors BM, INV, OP and MOM there is strong evidence for the null hypothesis
for the sub-sample period starting in July 1963. Similar results hold even if we exclude 2020
and 2021. For the MOM factor, the spread between the short and the long legs is greater than
7% on a yearly basis and hence close to the equity premium. While a high risk aversion could
explain the equity premium, it cannot explain the MOM factor. The p-values are also large for
the newly discovered OP and INV factors even though their expected returns are less than half
the MOM factor’s expected return. The findings indicate OP and INV are anomalies through
the lens of our test.

The evidence for the BM factor is weaker, especially for the longest sample period. The
findings complement the debate around the BM factor in Ang and Chenl (2007) and Fama and
Erenchl (2006) as well as to the recent value trap. A necessary condition for strong SSD is a
strictly positive factor expected return. Ang and Chen (2007) document the value premium is

absent pre-1963 explaining why in the longer sample the p-value of the unconditional test is
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much lower than in the post-1963 sample. In the latter sub-sample, the p-value of 40% strongly
indicates that BM is not a risk factor. Note the sample period includes the 2010-2020 decade

during which value stocks underperformed relative to growth stocks.

4.4 Test Conditional on Market applied to FF5+MOM Factors

The test conditional on the market has the main advantage relative to the unconditional test to
control for exposure to market risk including nonlinear dependence. We report the results of the

test conditional on the market in Table B.

Table 5: Test conditional on market applied to FF54+-MOM factors

Long Short t]LV},[;q P-value
Size 1963 - 2021 1.21 097 1.85 0.00

BM 1926 - 2021 1.32 0.99 2.80 0.37
BM 1963 - 2021 1.24 0.97 1.98 0.25
OP 1963 - 2021 1.18 0.92 2.71 0.40

INV 1963 - 2021 1.22 096 291 0.09
MOM 1926 - 2021  1.42 0.78  4.40 0.60
MOM 1963 - 2021 1.38 0.76  3.60 0.43

Note: The columns “Long,” “Short,” “t@;vs” and “P-value,” respectively, correspond to the average return of the long leg, the average return

of the short leg, the t-statistic for the null hypothesis “Hg : E(rg) = E(ry,)," and the p-value of the unconditional test. We use Newey-West

standard errors to calculate tk;vs The frequency of the data is monthly. BM stands for book-to-market, OP for Operating Profitability,
INV for Investment and MOM for Momentum.

We still reject the null that Size is an anomaly. While the p-values drop for the other
characteristics, the factors BM, OP and MOM still appear as anomalies. In the case of INV,
the p-value is now only 9%, which is above the standard 5% threshold, but slightly below 10%.
Again, the findings are robust to alternative construction methods of the Size factor as well as
looking at recent data only.

One possible explanation for the drop in p-values relative to the unconditional test is the
unusual absence of type I error for the latter, asymptotically (Proposition Oi vs Proposition Hii).
A second possible explanation is the important commonality between the market and the legs of

different factors.

4.5 A Bird View on the Factor Zoo

Beyond the widely-used FF5+MOM factors studied above, hundreds of other factors —the factor
“z00"— have been discovered. In order to have a broader assessment, we also apply the two tests
to a standard dataset of more than 200 potential factors. We report the detailed results in the
Appendix. In the present section, we only provide an overview of the main results. We use 5%

as the threshold above which we cannot reject the null hypothesis. We report the proportions of
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potential factors that appear as anomalies in the table below.

Table 6: Proportion of p-values above 5%

Unconditional Conditional on Market

Original Sample 0.92 0.87
Post-Pub. Sample 0.35 0.34
Full Sample 0.88 0.77

Note: The data base correspond to Chen—and Zimmermanu (20203) data base of 205 potential factors. The frequency of the data is monthly.

A first result is that a majority of the 205 potential factors appear as anomalies in the original
sample of the published papers and the full sample. For both tests, we find more than 70% appear
as anomalies in the original sample and the full sample. Because the existence of a factor is

necessary condition for an anomaly, this result lends support to Chenand Zimmermann (20205),

the original sample. Remember the unconditional test is immune to multiple hypothesis problem
and the pretesting problem (Propositions B-B) and hence makes the results of this literature even
stronger.

A second result is the dramatic drop in the proportion of anomalies from the original sample
to the post publication sample: The proportion drops from about 90% to about 35% for both
tests. Two potential explanations exist for this drop: (i) Many anomalies became risk factors
after publication; or (ii) The phenomenon of “Anomalies elimination” occurred, that is, many
anomalies disappeared because their expected returns shrank to zero. Table [@ supports the sec-
ond explanation. Table [@ displays the proportion of apparent anomalies among the significant
factors, that is, the proportion of p-values above 5% for the potential factors with expected re-
turns significantly positive at the 5% level. The table shows the proportion of apparent anomalies
among (significant) factors is above 80%, and often close to 90%, in line with “anomaly elim-
ination,” which has been documented (e.g., Hanson and Sunderaml P0T4, McLean and Ponfiff
2016): Following the publication of an anomaly, some investors trade on it, so its expected

return decreases after a temporary increase ([Pénassd 2020).

Table 7: Proportion of p-values above 5% for significant factors

Unconditional Conditional on Market

Original Sample 0.93 0.89
Post-Pub. Sample 0.95 0.93
Full Sample 0.91 0.81

Note: We compute the displayed proportions as follows. (i) We keep from the Chenand Zimmermann (Z0203) data base of 205 potential
factors, the ones that have a t-statistics bigger than the 95% quantile of standard normal distribution. (ii) We compute the proportion of
p-value above 5% among the kept factors. For simplicity, potential pretesting problems are ignored. The frequency of the data is monthly.
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The third and main result is a clear majority of factors appear as anomalies in all samples.
Overall, more than 80% of factors appear as anomalies in the original sample, the post-publication
sample and the full sample (see Table [). In Table B, the proportions are lower because some
potential factors do not have significantly positive expected returns and thus are not factors
per se. This third result generalizes the results for the FF54+MOM factors to most of the
factors documented in the literature. This generalization is not surprising given that theory and
empirical evidence indicate a strong commonality between factors (e.g., Reisman 1992, Lewellen
et_al’ ‘)()1(,1, Hryzga.lova et al ‘)()‘)(J7 Arvanitis et _all P021 )

4.6 Multiperiod Considerations

In line with a large part of the literature on factor models, for simplicity, we previously focused
on one-period equilibrium foundations for the proposed tests. In the present section, we provide
multiperiod equilibrium foundations for the unconditional test and a modified conditional test.
For this purpose, as in the one-period case, we first derive the factor risk compensation required
by risk-averse individuals.

Consider individuals who maximize time additive utility functions U(Cy.1) := Ztho BE[u(Cy)],
where 3 €]0,1[ denotes a time discount factor, u(.) an increasing and concave von Neuman-
Morgenstern utility function, and Co.1 := (Cy, Cj. ..., Cr) a consumption process.? A general-
ization of the one-period reasoning of Section EZ33 implies that, for any time period ¢ € [1,T]
at which the factor r7; — rg; is freely tradable, the following optimality condition holds

E[u'(Cy)(ros —rs:)] =0,
so the factor expected return explained by risk alone is

E(rp: —rse) = — COV(UI(Ct),TL7t —Trsy)-

1
Elw(Cy)]
See Proposition BT in Appendix A= for a formal proof. Therefore, indexing returns with t,
the equilibrium foundations provided by Propositions B and B still hold with C; in lieu of W;.
The multiperiod version of Propositions d shows Tables B and B have multiperiod equilibrium

foundations.

120ur tests cannot be extended to Epstein-Zin-Weil utility functions (Epsfein and Zin 989, PhilippeWeil [USJ).
One of the reasons is that Epstein-Zin-Weil utility functions violate first-order stochastic dominance, and thus, a
fortiori, SSD. Individuals with Epstein-Zin-Weil utility functions do not always prefer more to less. More precisely,
Epstein-Zin-Weil utility functions violate the monotonicity axiom according to which an agent does not choose a
lottery if another available lottery is preferable in every state of the world. See Bommier et all P0T7 for a thorough
analysis of this violation.
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5 Summary and Discussion

Over the last decades, hundreds of factors predicting cross-sectional returns have been discovered.
The present paper (i) introduces the concept of strong SSD; (ii) provides a general, but simple,
derivation of the risk compensations required by risk-averse individuals to hold a factor; (iii)
shows that if the long leg of a factor strongly SSD dominates its short leg, the factor’s expected
return should exceed its possible risk compensations in equilibrium; (iv) proposes two tests of
strong SSD; (v) verifies the performance of the tests numerically,mathematically and empirically;
and (vi) applies the two tests to more than 200 factors.

We propose and use two tests because they rely on slightly different assumptions and data.
Despite their differences, both tests classify a majority of factors —including a majority of the
widely used FF54+MOM factors— as anomalies. Thus, the factors “zoo” appears to be mainly an
anomalies “z00.” This result might appear unexpected, because strong SSD sets a high threshold
for anomalies. Strong SSD requires strict preference even for implausibly high level of risk
aversion.

The proposed tests do not only help to detect anomalies. They also provide some guidance
on which types of models can explain the anomalies. The tests and their theoretical foundations
barely impose any restriction on distributions of returns nor on production, etc. Thus, explana-
tions of the anomalies “zoo” call for models in which risk-averse individuals do not buy factors
that they value higher than their market price. In particular, trading frictions on factors (e.g.,
He and Modesf (T995), Cuffmer (T996), intermediary asset pricing as in He and Krishnamurthy
(201R)), or behavioral biases (e.g., Barberis ef all 202T) are possible explanations for the detected
anomalies, while frictions on production are unlikely explanations.

Beyond the question of the factors “zoo,” the present paper is a step toward a solution
to Fama’s joint hypothesis problem (Fama 1970, Roll 1977, Fama 2013), in the sense that it
proposes model-free tests to detect abnormal excess returns. In its modern formulation, the joint
hypothesis problem states that asset pricing tests always jointly test the existence of abnormal
returns and a model of market equilibrium (e.g., CAPM). Hence, it is impossible to distinguish
abnormal returns from using the wrong model of market equilibrium. In contrast, the two
tests of the present paper can help detect abnormal excess returns without assuming a specific
model of market equilibrium.™ To the best of our knowledge, they are the first tests with this
property. Therefore, the proposed tests should be useful to detect abnormal excess returns in
many situations, especially given that the current dominating methodology assimilates abnormal
returns to the alphas of regressions on a preferred factor model. In this way, both tests can provide

guidance for better investment decisions and capital allocation.

13While our tests are a step toward a solution to the modern formulation of Fama’s joint hypothesis problem,
they do not address its original formulation in terms of information. Our tests do not assess whether assets prices
reflect all available information. The latter remains an open issue.
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ONLINE APPENDIX TO:

Anomaly or Possible Risk Factor? Simple-To-Use Tests
Benjamin Holcblat, Abraham Lioui and Michael Weber

A  Proofs

A.1 Proof of Lemma 0 and Lemma B (equivalent characterizations of strong
SSD)

A.1.1 Unconditional strong SSD
Lemma [ is a simplified version of the following theorem.

Theorem A.1 (Equivalent characterizations of strong SSD). Assume that the support of the
random variables rr, and rg is a subset of [u,u] C R with u # u. For a u : [u,u] — R, define
@ := min {@,inf{z € [u, U] s.t., Vo € [2,7], u(z) = 0}}, and denote its left derivative and right

derivative at x with u’_(z) and v/ (x), respectively. Then the following statements are equivalent.

(i) For all real-valued, concave, and increasing function u(.) on [u,u] s.t. v/ (u) € R and
u' (1) € R\ {0} with @ # u, Elu(rg)] < E[u(rg)].

(i1) For all z €]u, 00|, E[(z — )] < E[(z —rg)T].
(ii) For all z €]u, oo, FIEQ)(Z) < FS)(Z), where F]gz)(z) = f; F, (y)dy.

Proof. Apply upcoming Theorem B2 with Wy = 1. O

A.1.2 Conditional strong SSD

Lemma B is a simplified version of the following Theorem. The following theorem is the condi-

tional counterpart of Theorem Bl

Theorem A.2 (Equivalent characterizations of conditional strong SSD). Assume that the sup-
port of the random variables r1, and rg is a subset of [u,u] C R with u # u. Assume a complete
probability space. For a function uw, : [u,u] — R indezed by a random wvariable Wy, define
Gy, = min {%, inf{z € [u, 7| s.t., Vz € [2,°], uw,(z) = 0}}, and denote its left derivative and
right derivative at x with uy, (z) and uy, | (x), respectively. Then the following statements

are equivalent.

(i) For all real-valued, concave and increasing function uyy, (.) defined on [u,u] and Borel mea-
surable w.r.t. the index Wy s.t. Eluw, (u)| < oo, Eluy, | (u)| < oo and Eluy, _(dw,)| < oo
with uy,, _(iw,) # 0 and dw, # u a.s., Eluw, (rs)[Wi] < Efuw, (rp)[Wi] a.s.
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(ibis) For all real-valued, concave and increasing function u(.) on [u, 1] s.t. u/ (u) € R and
u' (1) € R\ {0} with @ # u, Elu(rg)|Wh] < E[u(ry)|W1] a.s.

(ii) For all z €lu, 00|, E[(z — rp)T|W1] < E[(z — rg)T|Wh] a.s.

(z|W1) a.s., where r®

2 z
(W) < F§) i, W) = [y (y W) dy

(iii) For all z €u, 00|, F?) S|W1

L‘W1
a.s.

Before the proof of Theorem A2, the following lemma shows that uyy, is well-defined and

measurable.

Lemma A.1 (Existence and o(W))-measurability of ay, ). Under the assumptions of Theorem
[A72, for all the members of the class of utility functions defined in the statement (i) of the latter

theorem, the following statements hold.

(i) There exists a function wy +— i, with values in [u,u] s.t. U, = min{%,inf{z €
[w, 4] s.t., Vo € [2,7], ww, (z)=0}}, for all wy € R.

(11) The correspondence (wy) == {x € [u, U] : uy, () = 0} is closed and connected valued, and
weakly measurable.

o(wr) if p(wr) # 0

(i1i) The correspondences 1, (w1) := 1s closed, connected and non-empty
{u} otherwise

valued, and weakly measurable.

(iv) For all wy € R, {z € [u,@] s.t., V& € [2,U], uw,(x) = 0} = 0 iff 0 < d(@, Yy(w1)) :=

infxed@(uu) [u — x|.
(v) The function wy — y, is Borel measurable.

Proof. (i) For convenience, in the present proof, put A,, = {z € [u, ] s.t., V& € [2,T], uy, () =
0}, where w; € R.

Ist case: Vz € [u,ul, 32 € [z,u] s.t. uy,(2) # 0. Then, by definition, the set A,,, is the
empty set (), so its greatest lower bound is co (i.e., inf Ay, = inf () = 00), which, in turn, implies
that @, := min {,inf Ay, } = .

2nd case: 3z € [u,ul, s.t., VZ € [2,U], uy, (2) = 0. Then, A, is not the empty set. There are
two subcases. First, consider the subcase A, := {u}, so ., = u. Now consider the remaining
subcase A, # {u}, so inf A, # u. By the sequential characterization of infima, there exists a

sequence (z,) € AN s.t. lim, .o 2, = inf A,,. Now, A,, is a subset of the closed set [u,], so

w1

(2n) € [u, )N, which, in turn, implies that inf A,, € [u, %] by the sequential characterization of
closed sets (e.g., Aliprantis and Border 2006/1994, Lemma 3.3.5).

(ii) Closeness, connectedness and weak measurability respectively follow from the continuity,

the monotonicity of uy, (.), and the measurability of correspondences defined as a level set of a

Carathéodory function (e.g., Alipranfis and Border 2006/T994), Lemma 18.8.2).
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(111) We only prove the statement for 15 (.) because the proof is the same for ¢,(.). By con-
struction, the correspondence 17(.) is closed, connected and non-empty valued by the properties
of p(.) stated in (ii), and the properties of the singleton {@}. Thus, it remains to show that ¥z(.)
is weakly measurable.

Denote the lower inverse of a correspondence ¢ : S — X with ¥!(.), i.e., ¥!(A) = {s € S :
P(s)NA# 0}, VA C X (e.g., Aliprantis and Borded R006/1994, p. 557). By definition of the

lower inverse and of the correspondence vy, for all open subset O of [u, 1],

Ph(0) = {wr € R:p(w1) N O # O} J{wr € R:p(wr) =0} N{wy € R: {u} N O # 0}]
= o) [@Z(R)C N{wi eR:Te 0}] € B(R)

where the explanations for the last inclusion are the following. First, by (ii), ¢(.) is weakly mea-
surable, so ¢!(O) and ¢!(R)¢ are measurable (e.g., Alipranfis and Border P006/T994, Definition
18.1). Second, {w; € R:u € O} =0 or R, so it is also Borel measurable.

(iv) Fix w1 € R. “=" Assume {z € [u,u] s.t., Vo € [2,T], uy,(z) =0} = 0. There are two
cases.
1st case: Yyu(w1) = p(wr). By (i), Yu(wi) = p(w1) = {z
connected set, which means a closed interval (e.g., Rudin 195
[u, ] s.t., Vo € [2,1], Uy, (x) =0} =0 (ie., Vz € [u,u], Iz € [z
d(@, Py (wr)) > 0.
2nd case: Py (w1) = {u}. Then, d(u,,(w1)) = d(@,u) > 0, because u # T by assumption.

‘< If d(w, Py (wr)) > 0, then, for all z € [u — €,u] where € := d(@, ¢y (w1)), Uy, () # 0
by definition of vy,(.). Thus, Vz € [u,u|, 3z € [max(z,u — €),qU] s.t. uy,(z) # 0. Thus,
{z € [u,T] s.t., Vz € [2,T], uw, () =0} =0.

(v) By (iii), the correspondence v,(.) is weakly measurable and nonempty-valued. Thus,

€ [u,T] : uy, (x) = 0} is a closed
3, Theorem 2.47). Thus, {z €
, U] s.b. Uy, (z) # 0) implies that

the distance function ¢ : [u,u] x R — R s.t. 6(z,w1) := d(z,¥u(w1)) = infoey, ) 12 — 2] 18
Carathéodory (e.g., Alipranfis_and Border 2006/1994, Theorem 18.5), so, the set B := {w; €
R : 0(u,wi) > 0} = {w1 € R : d(@,¢y,(w1)) > 0} is Borel measurable. Moreover, by (iii), the
correspondence 1, (.) is closed and nonempty valued and weakly measurable, so, by the Castaing

representation theorem (e.g., Alipranfis_and Borded 2006/T994), Corollary 18.14.2), there exists

a sequence of Borel measurable selectors (fp)nen s.t. Yyu(w1) = {fi(w1), fa(wy),...}, for all
wy € R. Then, by (iv),

ty = Thp(wr) + {inf fulwn) Hpe(n),

which is Borel measurable as the product and the addition of Borel measurable functions. O

Proof of Theorem [A3. The proof —especially that (ii) implies (i)— does not follow the usual
proof of the Hardy-Littlewood et. al. theorem provided in the economic and finance literature.

The latter proof relies on limiting arguments (e.g., Rofhschild and Stiglit4 T970) that do not go
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well with strict inequalities. In particular, for two real-valued sequences (u,) and (v,), the strict
inequalities u, < v,, for all n € N, do not imply lim, . %, < lim, .. v,. The proof follows
from the introduction of the quantity % # 0, careful modifications of the proof techniques used in
the mathematical literature (e.g., EGlImer_and Schied 201T/2002, for a textbook presentation),
and new technical lemmas.

(i) = (ibis) If uw, (.) = u(.), then [, (v)| = Eluyy, ,(u)| € R and |[u’ (1) = E|uyy, _(4)| €
R\ {0}.

(ibis) = (ii). For any z €|u,o0[, the function z +— —(z — z)* is a real-valued, concave,
increasing function on [u,u]. Moreover, @ = z if z €]u, ], and & = U otherwise, so v’ () =1 #0
and @ # u. Moreover, for any z €|u, oo, if u(z) = —(z — z)*, then v/ (u) = 1. Thus, putting
uw(x) = —(z—x)T, by assumption, —E[(z—7g)"|W;] < —E[(z—r)"|W1] a.s., which is equivalent
to the needed result E[(z — r)"|W1] < E[(z — rg)T|W1] as.

(i) = (i). Let uw,(.) be real-valued, concave, continuous, and increasing function wuyy, (.)
defined on [u, u] and Borel measurable w.r.t. the index Wy s.t. Efuw, (u)] < 00, Eluy, | (u)| < oo
and Eluyy,  (dw,)| < oo with uy, (dw,) # 0 and dw, # u a.s., Then, hw,(.) == —uw,(.) is
a convex function. By the fundamental theorem of calculus for convex functions (e.g., Fdllmer
and_Schied 201172002, Proposition A.4), for all = € [u,u], a.s.,

hw, ()
= i) /jv oy, (u)dy where By, () := iy, - (Vg () + by, 4 (Dl gy ()
i,
= hw, (dw,) — /;Wl By, — (y)dyl{z < dw, }
because, by definition of E;,Vh_(.) and ayw,, Vy €law,,ul, th (y) =0;

a y v - y - y y
D st = [ s, 0) = T, () + B, (v, g o < i)

. Uwy _, Uwy —/ — . .
= hurs () — / Ry, (i, )dyl{z < i, } — / Ty (4) — T (i)l { < i, }
Uy, —

o-finite Borel measure on [u, [ s.t., V(a,b) € [u, 7%, yw, ([a,b]) = E;Vh,(b) - E;,Vl’,(a);

Ay, aw,
+ / / 1z < y < 2}dyw, (d2) 1 {e < oy )

(d) . = . .
= hW1 (uwl) - th’f(qu)(qu - JZ)

+

() . 7 . . + i +
- hW1 (uwl) - thﬁ(qu)(qu - w) + (Z - JZ) 947%] (dz)

(a) By assumption, E|hy, _(dw,)| = Eluyy, _(dw,)| < 0o, so hy, _(dw,) is finite a.s.™@ Now,

" Concavity of uw, (.) ensure the existence of ufy, _(iw,) only if 4w, €]u,u].

OA A4

= hw, (w,) = Py, () (i, — 2)1{z < dw, } +/ By, (i, ) = T, — () dyL{ < iiw, }

— w1 Uy
= hw, (tw, ) — hWh,(an)(iLW1 —x)t + / / yw, (dz)dyl{z < aw, } where vy, is a random
x y

(A1)



_/ ~

by, (1) = h{/Vl,—_(;)]l]g,ﬂ]( ) + Py, (L (1) = hy, (1) as. because i, f u a.s. by as-
sumption. Thus, hy, _ (ﬂwl) is finite a.s. (b) Standard algebra yields [ hy, _(iw,)dy =
E/I/Vl, (tw, ) qul dy = th (tw, )(uw, — ). (¢) By Lemmas A2 and B4 (p. OAE & OAT),

there exists a unique o-finite random Borel measure vy, on [u, dyw, [ s.t. yw, ([a,b]) = E;,Vh,(b) —
/

By, (), V(a,b) € [w, a2 as. (d) [*0 [Ty, (dz)dy = [;™ [ 1{y < 2}y, (d2)1{z <
yiy = [ [ 1{z < y < 2w (dz)dy = [ [ 1z < y < z}dyyw, (dz) where
the last e(;ualit}j follows from Fubini-Tonelli’s theorem (e.g. Kallenberg R002/1997, Theorem
1.27) because the Lebesgue measure and 7y, are o-finite on [u,u]. (e) Standard algebra yields,
Vz € [u, tw, ], f "M {zr <y < z}dyl{z < aw, } = fuwl Hr<y<zidy=(:z—2)l{z <z} =
(z—x)*. -

Then, by the theorem of disintegration of measures (e.g., Kallenberg) R002/T997, Theorem
6.3-6.4 with equation (6)) and Lemma ATv on p. DA, a.s.,

—E[uw, (rp)IWh] = Elhw, (rp)|[Wh] = /u hw, (2)dFpw, (2[Wh)

= hwl(ﬁwl)/ dFL|W1(x‘W1)_E;/V1,(aW1)/ (aw, — )T dFpw, (x| W1)

u

—
S]
=

+/uu /:Wl (z — )Ty, (d2)d Fpw, (x|Wh)

= By (i) [Fpyw, (@ W1) = Fryw, (W) = Ry, (i JE[(tiw, — )+ W]

UWy u
L / (z — ) dF s, (W), (d2)

u u

wyw,

= huw, (i) — Py, (i, )E[(aw, — ) ¥ (W] + E[(z — ro) " Wilyw, (d2)

S

ﬂWl

hW1 (ﬂwl) - E;/Vl,f ({LW1 )E[(ﬁwl - TS)JF‘Wl] + E[(Z - TS)+|W1]’VW1 (dz)

= E[hw, (rs)IW1] = —E[uw, (rs)|W1]

NE
:\

(a) Show the three terms of equation (A7) have a finite expectation so their conditional expec-
tation are well-defined (e.g., Kallenberg 2002/T997, Theorem 6.1.i&iii), which, in turn, implies
that the integral of the sum is the sum of the integrals. Firstly, by definition, the support of
Uw, is in [u,ul, so Elhw, (4w,)| < oo by Lemma BT on p. OAT. Secondly, by the trian-
gle inequality, provided that aw, and ry take values in [u, ], E[ﬁ;vl’,(awl)(ﬂwl —rp)T| <
EfRy, — (i)l — ul = [@ — ulEly, _(iw,)| = [@ — uEJuly, _(iw,)| < oo by assumption,
the definition of E;/Vh_(.), and the assumption @y, # w. Thirdly, by the triangle inequality
and the monotonicity of the Lebesgue integral (e.g., Aliprantis_and Border 2006/1994, The-
orem 11.13.3), E| [ (z — r1)Tyw, (d2)| < E [ [@ — ulyw, (d2) = [7@ — u|Elhy, _(iw,) —
Py, — W] < [7@ — wl|[E[Ry, —(iw,)| + Elhy, - @)] = [@ — ul[Elhly, (aw,)| + Elby, (W) <
oo by assumption, and where the last equality follows from the deﬁmtlon of the extended
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derivative E;Vh,(.), which is a.s. equal to hyy, — ()1yyq(.) + Ay, 4 (L (), and the assump-
tion ay, # w. (b) First, by definition, the probability measure corresponding to the c.d.f.
Fryw, is finite, and thus o-finite. Second, by Lemma B, the random measure vy (.) is o-
finite. Thus, by Fubini-Tonelli’s theorem (e.g., Kallenherg P002/T997, Theorem 1.27), [ [*(z —
z) P yw, (d2)dFryw, (x| Wh) = f;fj(z — z) " dFpw, (2|W1)yw, (dz). (c¢) By definition of c.d.f.
with support [u, ], Frjw, (@W1) =1 and Frw, (u[W1) = 0, so Fryw, (W) — Fryu, (u/Wh) =
1. (d) Firstly, by assumption, Vz €|u,u], E[(z — rp)T|W1] < E[(z — rs)T|W1], and aw, #
u, 50 —hyy, _ (i, )E[(aw, — rr)T[Wi] < —hy, _ (i, )E[(aw, — rs)|W1] by Lemma B3 on
p. OA®M. Secondly, by assumption, Vz €|u,u], E[(z — rz)"|Wi] < E[(z — rg)T|W1] as., so
JEE[(z — r1) T [Wilyw, (d2) < [T E[(z — rs)*|Wi]yw, (dz) by the monotonicity of the Lebesgue
ir;cegral (e.g., Kallenberg 2()()2/1997, Lemma 1.18). Moreover, as previously noticed in the ex-
planation for (a), E| [M™1 (2 — x) Ty, (d2)] < E [™ [7 — ulyw, (d2) = [@ — wlE[Ryy, _(aw,) —
P, ()] <[5 [ElFy, — (w,)| + ElFoy, ()] = 7=l [E|Ry, _(aw,)|+Elkly, | ()] < o,
so E[E[[I1 (z — rp) Py, (d2)[WA]| = E| [ E[(z —r)*|Wi]yw, (d2)| < oo, which implies that
ffwl ]E[(; — )T [Wilyw, (dz) is finite a.s.

- (i) < (iit). By the theorem of disintegration of measures, we can follow the standard

mathematical proof based on Fubini-Tonelli’s theorem. ]

Lemma A.2. Under the assumptions of Theorem [AZ2, for all the members of the class of utility
functions defined in the statement (i) of the latter theorem, there exists a unique random o-
finite measure yw,(.) on [u,u] s.t. yw,([a,b]) = E/th(b) - E;Vlﬁ(a) a.s., where E;/Vl,—(-) =

Py — (O () + Py, (L () aes. with h(.) == —u(.).

Proof. By Lemma [BA=3 and [A~4 on p. OAT, the extended left-derivative E/WI,— (.) is increasing and
left continuous. Therefore, by a standard result for Lebesgue-Stieltjes integrals (e.g., ATiprantis
and Border R006/T994, Theorem 10.48 and comment just below), there exists a unique o-finite
Borel measure vy, on [u,u] s.t. v, ([a,b]) = EI_7W1(b) - E/_’Wl(a), V(a,b) € [u,u)? as.. In
fact, the measure 7y, is finite a.s., because, VA € B([u,@]), yw, (A) < EI—,WI (w) — El,ywl (u) =
By, (@) = K\ gy, () < 00 a.s. where the last inequality follows from Lemma B4 on p. DA
Now, {[a,b[: (a,b) € [u,u]?} is a 7-system that generates the Borel o-algebra B([u,)]) (e.g.,
Aliprantis and Border 2006/T994, Lemma 4.19-4.20), and, for all (a,b) € [u, 7|2, wy — K’ b)—

El—,Wl (a) is Borel measurable because, for all = € [u,u], the left derivative wy +— h” ,, () inherits

—

the measurability of wy +— hy, (@) := —uy, (z) by stability of measurability under limits (e.g.,
ATiprantis_and Borded R006/T994, Theorem 4.27). Thus, by a standard result about random
finite measures (e.g., Kallenbherg R002/1997, Lemma 1.40, which immediately extends to finite

measures), the result follows. O

Lemma A.3 (Extended conditional left-derivative). Let hyy, : [u,u] — R be a convex decreasing

function indeved by a random variable Wi. Then, if Elhy, ,(u)| < oo and E|hy, (7)| < oo,
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there exists a.s. a finite extended left-derivative on [u, ],

which s
(i) left-continuous,
(ii) increasing, and
(iii) negative.
Proof. 1t follows from the convexity of h(.). O

Lemma A.4. Let hy, : [u,u] — R be a conver decreasing function indexed by a random variable
Wi. Let aw, be a random variable s.t. Gy, = min {u, inf{z € [u,u] s.t., Vz € [2,7], uw,(z) =
0}}, where uw, (.) == —hw, (.). Then E|hyy, |, (w)| < co and E|hy,, _(@)| < oo, iff, Elhyy, | (u)| <
oo and Elhy,, _(dw, )| < oo.

Proof. 1t follows from the increasing slope criterion for convex functions and the definition of
U, - ]

Lemma A.5. Let hy, : [u,u] — R be a convex function indexed by a random variable Wi s.t.
Elhw, (w)| < oo, Elhyy, | (u)| < oo and E|hy, (@) < oo. If X is a random variable with its
support in [u, ], ]E|hW1( )| < o0.

Proof. By the increasing slope criterion for convex functions and its corollaries (e.g., Aliprantis
and Border 2006/T994, Theorem 7.21-7.22), for all = €]u,ul,

g/[/l,Jr(ﬂ) < th(x) _th(ﬂ) < %/Vl,f(ﬂ)

r—u

= hw, () + hyy, o (W)(2 — ) < hw, (2) < hwy (0) + by, - (@) (2 — w)

Moreover, the latter equality is also true if x = u. Now, on one hand, if 0 < Ay, (x), then
lhw, (X)| < [hw, (w) +hyy, _ (@) (X —u)|, and, on the other hand, if hy, (x) < 0, then |Ay, (X)| <
lhw, (w) + By, (W) (X — u)\ Thus, for any random variable X with support in [u, %],

P01 o0+, X =01 s -+ ()X )
< 2ty )] + By @IX — 1l + s @)X —
)
< 2w ()] + Wy @17 — ] + Wiy () [T —

(c) e (d)
= Elhw, (X)| < 2E[hw, (u)] + Elhyy, - (@)|[@ - ul + Elhyy, 1 (w)][i —u| < oo
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(a) Apply triangle inequality, and note that the absolute value of a product is equal to the product
of the absolute values. (b) By assumption, u < X < @. (¢) Monotonicity and linearity of integrals
(e.g., Alipranfis_and Border 2006/1994, Theorem 11.13). (d) By assumption, E|hy, (u)| < oo,
Elhy, 4 (w)] < oo and E|hy, ()] < oo. O

A.2 Proposition 0

Assumption 2 (Weak convergence of normalized integrated CDF& cr). Denote the weak con-

vergence with “~.” As T — oo,

T (B - F L (Hs
@ _ p@) H
L L L
where the process {H(2)}sewm = {(Hs(2) HL(2)) }ocm has a tight measurable Borel mea-

surable version that lies in the space UC([u,u], p) of (uniformly) continuous functions on [u,d]

endowed with the supremum norm p. Moreover, cp converges sufficiently slowly to u from above.

Assumption 3 (Strict stationarity with strong mixing). The bivariate process (r;)i_; = (rs+ ?”L,t)tT:1

is strictly stationary and a-mixing.

Assumption B is often required to check Assumption B, so the former is not really more

restrictive than the latter.

Lemma A.6 (Asymptotic limit of KS}.). Under Assumptions O and B,

(i) if Ho holds, then, for T big enough, sup,cr, Fg) (2) — FL(Q)S(z)‘ = 0 with probability one
(w.p.1.).

(ii) if Ho does not hold, then as T — oo, KST = sup,¢p,.

N

Ff)(z) — Fg\)s(z)‘ converges to a

- —k
non-zero positive constant KS* w.p.1.

Proof. 1t follows from a reasoning along the lines of the mathematical arguments after Proposition
0 on p. [ O

Lemma A.7 (Subsampling CDF of KS}.;). Assume (br) € [1,00[N s.t. limp o by = 00 and
lim7_, bTT = 0. Under Assumptions @ , @, and 3, if Hy does not hold,

*

(i) for all z € R\ {KS"}, with probability one, as T — oo, G%bT (r) — 1(KS™ < z) where
a —b *
G?F,bT (z) := T—blT—i—l Z?:l T 1(KS7,; < x); and

(ii) for all o € |0, 1[, as T — oo, g%bT,l—a — KS* with probability one, where g%bT’lfa =
inf{y:1-a<Ghy (y)}
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Proof. (i) By triangle inequality for the Ly norm |.|o,

*

Gy (2) = L(ES” < 2)l2 < |Gy, (2) — E[Ghy, ()]|2 + [EIGT,, (2)] - 1(ES™ < @)l

*

= /VIGE,, (@) + [P(EST) <o) — L(ES" <)l

because E[GY, (v)] = Elp—try S 1(KS], < 2)] = E[L(KS}, < 2)] = P(KS}, < o)
where the second equality comes from strict stationarity (i.e., Assumption B). Now, for all
e R\{RS'}, as T — oo, [B(KS}, < 2) — (S < a)]2)) = [B(KS}, < 2) — 1(KS” < )| — 0
w.p.1 because KSifp’1 = KS;T, which converges in distribution to the non-zero positive constant
KS™ by Lemma EBii. Thus, it is sufficient to prove that V[G’%bT ()] = 0, as T — oo w.p.l.
using strong mixing.

(ii)) Let n >0and e >0st. l—a<l—e&e<1l—a,ie, €€|0,min{a,1—a}]. By (i),
w.p.1, there exists T' € [1,00[ s.t. T > T implies

1- @%bT(E* +1n) <e
l—e< CA?OTJ)T(E* +n)

~

GY,, (K" —n) <e
l—a< G%bT(E* +n)
G%’bT(E* - <l—-a

because e > 0s.t. 1—a<1—e& e <1—a. Now, g%bT 1o =inf{y:1—-a< GOTbT(y)}, where
G%bT(.) is an increasing function. Thus, w.p.1, VI' > T, KS — 7 < ITppl—a < KS* + 1. O

Lemma A.8 (Centered Subsampling CDF of KS7.;). Assume (br) € [1, oo[N s.t. limp o0 by =
oo and limp_.o %@ = 0. Under Assumptions @ , B, and B, if Hy does not hold,

(i) for all z € R\ {KS'}, w.p.1, as T — oo, G%bT(x) — 1(KS" < z) where G(:]F,bT(I) =
T—br+1 * *
T—b1T+1 St L(KS}; — KS7 < z); and

(i1) for all a € [0,1[, as T — oo, g%bT’l_a — KS" w.p.1, where g%bT,l_a =inf{y: 1 —a <
G%,bT(y)}

Proof. Adapt the proof of Lemma [B2. O

Proof of Proposition M. Case 1.1: Hy holds. Uncentered subsampling. By definition of Fg\)&b”(.),

0 < VOrKSy, ; := Vbr sup.cpum \Fggw(z) —Fjgi)s’b”(zﬂ. Thus, under Assumptions 0 and B, by
Lemma [B6i, for T' big enough, w.p.1, \/Tsupze[%m \Féz)(z)—pfgi)s(z” =0 < Vb7 sup,cua] |F£213T ;
Fg\)s bpi(2)], Vi € [1,T —br + 1] . Therefore, ﬁSUPze[g,m |F]E2)(z) - Fg\)s(zﬂ is smaller than

any quantile of the distribution of the /by sup.¢p, |F£2,3T J(2) — Fg\)s bpi(2)]-
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Case 1.2: Hg holds. Centered subsampling. Under Assumptions [l and B, by Lemma [B76i, for
T big enough, w.p.1, \/Tsupze[%ﬂ] |F£2)( ) — FL/\S( )] = 0. Thus,for T big enough, w.p.1, the
centered subsampled statistics \/EKS;Z are equal to the uncentered susbsampled test statistic
VBIKSE jyice, Vbrsup.epa [P, ()= Fi2s i ()] = Vorlsupacim 1P, ()= i, (2)]—
SUP.c[u7] |F(2)( ) — Fg\)s( )|]. Thus, the same proof as in the uncentered case applies.

Case 2.1: Hy does not holds. Uncentered subsampling, i.c., ¢1_q := inf{z : 1 —a < Gpp,.(2)}

T—-b
where Gy, () = g — bT+1 ST (Y brKSt; < ).
By definition of g7, 1—a»

{QT,bT,ka < ﬁKSi}}
inf{z:1—a < Grp.(z)} < \/TKS*T}

. € T *
inf( = 1-a s G (1)} < EKST}

{
{
{inf{y l—a< GT,bT( bry)} < \/%KS%}
{
{

—
S]
N

—~
o
=~

: A T .
infly: 1o < Gy, )} < /3 KST
[T
0 i Pk
gT,bT,l—a < bTI<ST}

(a) Puty = a/br. (b) GGy, (y) = ppiry Yoy ™ T L(KST; <) = gy e T MVATKST; <
Vbry) = Grpr (Vory)
Now, under Assumptions 0 , B, and B, , limp_ ]P’{g%bT’l_a < \/%KS*T} = 1 because

limy_ s g%b%l_a =KS" < limp_oo ,/%KS*T = limp_o0 4/ %E* = 0o w.p.1. by Lemma [B7ii

and limp_, %@ = 0 by assumption.

Case 2.2: Hy does not holds. Centered subsampling, i.e., ¢1_q := inf{z : 1 — a < Grp, ()}
where C;’Tbe( ) = T bT+1 ZT brlyg 1(v/br(KST; — KST) < ). Follow the same reasoning as in
the case 2.1. O

A.3 Proof of Proposition B

Proof. 1st case: Hy is true. By positivity and monotonicity of probability measures, 0 <
P({élfa < ﬁKS*T}ﬂFT> < P(é1-a < \/TKS*T) Now, if Hg is true, limp_oo P(¢1_q <

VT KS}) = 0. Thus, the result follows from the squeeze theorem because limz_, o, P ({él,a <T KS*T})
x P (FT) =0
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2st case: Hy is wrong. On one hand, by additivity of probability measures, for all T' € [1, oo,

P(Fr) = P(Fr N {&1_o < VTESH}) + P(Fr N {é1_o < VTKSH})

(Fr) —P(Fr N {é1—a < VTKS}}) = P(Fr N {é1-o < VTKS}})
(Fr)P(é1_o < VTESS) — P(Fr N {é1_o < VTESH}) < P(Fr N {é1_o < VTKSS})
(Fp)P(é1—o < VTKSSH) — P(Fp N {é1—a < VTKS:)}) < 1—P(é1_a < VTKSS)

4

—

S

P
Yp
Yp

—

=

(a) P(Fr)P(¢é1—q < VTKSS) —P(FrN{¢i_o < VTEKS:}) < P(Fr) —P(FrN{é1-a < VTKS}})

because P(¢1_o < VTKSE) € [0,1] by definition of probability. (b) By monotonicity of probabil-

ity measures, P(Fr N {¢1_q < VTKSH}°) < P({é1_a < VTKSH}®) =1 = P(é1_o < VTKSH).
On the other hand, for all T € [1, oo,

P(Pr)P(¢1-o < VIKS}) — P(Fr) < P(Fr)P(¢1-o < VTKS}) — P(Pr N {é1-0 < VTKS}})
& P(Fp)[P(¢1—a < VTKSS) — 1] < P(Fp)P(é1—q < VTKSE) — P(Fp N {é1—o < VTKS:))

Now, by Proposition Hii (p. IT), limp o P(¢1—-o < ﬁKS}) = 1, so that limp_,o 1-P(é1_o <
VTESS) = 0 and limg o [P(¢1_o < VTESS) — 1] = limp oo P(Fp)[1 — P(é1- < VTKSH)] =0
because P(Fr) is bounded. Therefore, the result follows from the squeeze theorem. Ol

A.4 Proof of optimality condition and risk compensation

The following Proposition BTl establishes the optimality condition and the risk compensation
for factors in the one-period case, and in the multiperiod case. The one-period case corresponds
to T =1 and a given Cj because a strictly increasing utility functions implies C; = Wj in a

one-period framework.

Proposition A.1 (Optimality condition & risk compensation). Assume the factor rp; — rgy
is different from zero with probability one, i.e., P(rp —rg # 0) = 1. Assume time-additive
utility functions U(Co.r) = ZZ;O B'E[u(Cy)] where B > 0 is the time discount factor, T €
[1,00[ the time horizon, and u(.) a continuously differentiable von Neuman-Morgenstern utility
function. Under Assumption Q(a), if Co.r := (Co,C1,...,Cr) is a locally optimal consumption
process with values in the interior of [u,a] for an individual with utility function U(Cy.r) =
Z?:O BE[u(Cy)], then, for any time period t € [1,T] at which the factor TLi — Tsi is freely
tradable in a neighborhood of Cy,

(i) [Optimality condition| E[u'(C;)(ry ; —rg;)] = 0; and
(i) [Risk compensation] under the additional assumption that E[u'(C;)] # 0, E(rp ; —rg;) =

1 /
—MCOV(U (C’t-),rLi — 7“575).

Proof. (i) For any ¢ € [1,T], define the consumption process Co.r = (Co,Ch,...,Cr) st.,
Vk € [1,T]\ {t}, Cx = Cr and C; = C; + €(Rp; — Rg;) where e > 0. Then, on one hand, by
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Assumption [(a), for € small enough, C; + €(R}, ; — Rg;) is in any arbitrary small neighborhood
of C; so the local optimality of Cp.r implies

0 < U(Cox) = U(Cor) = BEu(Cy)] — BE[u(C; + e(Ry ; — Rg;))]

[w(Cy) —u(C; + (R ; — Rg ;)]
e(Rp;— Rg)

(@)

<0< E ®)

(Rp;— Rsp)| = E[u'(Cy)(Ry; — Rg;)] , as e | 0.

(a) Divide both sides by 1/(f¢), and multiply the numerator and the denominator of the fraction
with (R; ; — Rg;). (b) By Assumption D(a), for € small enough C; + €(R; ; — Rg;) is in the

interior of [u, W] with probability one. Now, by the mean-value theorem and the continuity of

[u(Cy)—u(Cite(Ry ;—Rg4))]
e(Rp ;—Rg i)

the definition of derivatives, Lebesgue’s dominated convergence theorem yields the result.

the derivative on [u, @], € — is bounded for € small enough. Thus, by
On the other hand, following a similar reasoning with C; = C; — €(Rp; — Rg;) implies
E[u'(Cy)(Rp; — Rg )] < 0. Thus, the result follows.
(#) Standard calculations yield

E[(Cy)(rp; —rg1)] =0
& Cov(u'(Cy),rp i —rgi) + E[W(CYIE(r; —7g4) =0
Cov(u'(Cy)srp i —Tg4)
E[«/(Cy)]

S E(rp;—r5i) =—

O

Remark 1 (Infinite horizon). Inspection of the proof shows Proposition B can be extended to

infinite horizon under the additional assumption that Y ;2. |3*E[u(C})]| < oc. o

Remark 2. Another way to derive the optimality condition is to go through standard Euler
equations. We do not follows this other way because it would require more assumptions: It

would at least require each leg of the factor to be freely tradable, separately. o

A.5 Supplementary results

The following result seems to be known, although no proofs or statements is available in the

literature to the best of our knowledge.

Theorem A.3 (Equivalent characterizations of conditional SSD). Assume that the support of the
random variables rr, and rg is a subset of [u,u] C R with w # u. Then the following statements

are equivalent.

(i) For all real-valued, concave and increasing function uyy,(.) defined on [u,u] and Borel
measurable w.r.t. the index Wy s.t. Eluw, (u)| < 0o, Eluyy, , (u)| < oo and Eluy, (7)] <
00 , the following inequality holds E[uw, (rs)|Wi] < Eluw, (rp)|Wi] a.s.
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(ibis) For all real-valued, concave and increasing function u(.) on [u, 1] s.t. u/ (u) € R and
u__(u) € R, the following inequality holds E[u(rg)|Wh] < E[u(rr)|Wi] a.s.

(ii) For all z € R, E[(z — rp)T|Wh] < E[(z — rg)T|W1] a.s.

(iii) For all z € R, F®

2 2 z
i W) < FSQL (2W7) s, where FL (2Wh) = [ Fy (v Wa)dy

a.s.

Proof of Theorem [A-3. Repeat the proof of Theorem A=A with u in lieu of ayy, . O

A.6 Proposition

Assumption 4 (Conditional no touching without crossing). If there exists Z €|u,u] s.t. F ﬁ])w(z) =

FS(V‘QJ)W(Z), then there exists Z €|u, ] s.t. Fs(‘|21)\4(z> < Fﬁ])w(z)

Assumption 5 (Weak convergence). (a) If Hy holds, VT C% converges weakly to a limiting law,
as T — 0o. (b) As T — oo, VT(C® — C?) s He, where He has a tight measurable Borel
measurable version that lies in the space of uniformly continuous functions endowed with the

supremum norm p.

Assumption 6 (Strict stationarity with strong mixing). The process (rg; T+ *are)iy is strictly

stationary and a-mizing.

Proof of Proposition . (i) Use properties of least concave majorant (Durof_and Toccuefl 2003,
Sec. 2), and adapt the proof of Beran (T984, Theorem 1) along the lines of Polifis"ef all (T999,
Theorem 3.2.1).

(ii) Tt follows from the same logic as the proof of Proposition M(ii). O

B Monte-Carlo simulations

The objective of this section is to (i) explore the finite-sample behaviour of the tests; (ii) compare

them with alternative implementations.
B.1 DGPs

B.1.1 Stylized DGPs

The stylized DGPs, which are taken from Whang| (2019, p. 225-227) and displayed in Table AT
(p. OATA), allow to assess the performance of the tests in well-understood situations. A Gaussian
distribution is strictly preferred by all risk-averse agents to another Gaussian distribution if its

mean and variance are smaller.
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Table A.1: Stylized DGPs

Hy DGP Plots of CDF & Integrated CDF

———CDFofr,
CDFofr, e
s 74

r IID 0 10 e
[rue Ll SN , .
rs —.1 01
Integrated CDF of TL
|

r IID 0 10 % z a0 1 2 31 4
False Ll 2SN ,
" 202

r II1D 0 10 "
False [ L] — /\/<[O] , [O 52 ,

B.1.2 DGPs calibrated to data

In Table A (p. OATH), the DGPs are calibrated to data. They allow to assess the finite-
sample performance of the test in situations that mimick the data. For this purpose, we calibrate
Gaussian distributions to factors for which the null hypotheses are barely true (or false). More
precisely, the mean and the variance are calibrated to the average and the empirical variance of

the legs of the factor SIZE and the factor DY in original sample.

OA.14



Table A.2: DGPs calibrated to data

Hy DGP Plots of CDF & Integrated CDF
05 : [
ri] 1D 0157 [.122 .0051 L I I I
False [7’5] - <[.0078} [ 0572 -

ri] 11D .011] [.0392 .0012 S R R R R
True [rs] =N <[.01o] [ 0572 4 s

B.1.3 Non-Gaussian DGPs with correlation calibrated to data

The non-Gaussian DGPs with correlation calibrated from data, which are displayed in Table
A4 (p. OA™0), correspond to examples of distributions mentioned in the stochastic dominance
literature. The correlation is calibrated to the average correlation between the short and the
long legs of factors in the original sample, that is .7. We rely on the NORTA algorithm (Carid
and Nelsonl T997) to generate the data with the desired correlation and marginal distributions.
The first DGP, which is adapted from Whang (2019, p. 10) and Rofhschild_and Stiglit2 (1970,
Sec. 1V) is known to be a challenging DGP. The second DGP allows to assess the performance

of the tests in the present of fat tails: Students distributions are leptokurtic.
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Table A.3: Non-Gaussian DGPs with correlation calibrated to data

Hy DGP Plots of CDF & Integrated CDF
y CDF;;; ///
//
rr = Sy + Uy B
False rs — U[.5,2.5] 5
Cor(rg,rp) = .7 o E——, e

11D / "

ry — t(4) . .
11D s 2 0 2 P s
False  §7¢ <5 A(0,1) \ B
Integrated CDF of 1, -
(COI'(TS, TL) = 7 at Integrated CDF of rg //
2 7
0 SR -
B 4 2 0 2 4 6

B.2 Unconditional Test
B.2.1 Number of grid points and subsample size by

Like other tests of stochastic dominance & la McFadden (T989), our test requires to choose the
number of gridpoints used to approximate the supremum in the test statistic. In the literature,
the usual number of gridpoints seems to be 100 or less (e.g., Barretf_and Donald 2003, Whang
P019). For caution, we use 200, and we have checked that our simulation results are not affected
up to two decimals after the dot if we double the number of nodes to 400.

Regarding the subsample size by, asymptotic theory requires limz_,, by = co and limp_. bTT =
0 (Propositions M and B on p. [ & ET). This leaves a wide choice of subsample sizes. The trade
off is the following. If by is too big (i.e., too close to the sample size T'), the subsample statistics
are too close to each other, so the subsampling distribution is too tight. Conversely, if b7 is too
small (e.g., by = 1), the subsample statistics are too far from each other, so the subsampling
distribution is too wide. While some automatic data-dependent methods have been to proposed
to choose the subsample size by (e.g., Linfon et all RO0T, Polifis’ef all 1999, Chap. 9), there is no
consensus about which data-dependent methods to choose. Now, by the CLT, under general as-
sumptions, the rate of convergence of estimators (i.e., the rate of accumulation of information) is
VT, so we choose subsample size by = |v/T| where |a| := max{n € N : n < a}. For robustness,
we also tried by = |m + VT | with m € {5,10,20}, and by = [W} with n € {.25,.5}
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and where [a] := min{n € N : a < n} for all @ € R™ Monte-Carlo simulations, which are
available upon request, indicate that none of this alternatives work better than by = |[VT].
Moreover, our empirical results appear qualitatively robust to these different subsample sizes.
Thus, we stick to by = |V/T].

B.2.2 Results

We compare uncentered and centered block subsampling. In some situations, it has been found
that centered subsampling outperforms the original uncentered subsampling in small sample (e.g.,
Chernozhukov_and Fernandez-Val P2005). Our analysis focuses on the boxplots of the p-values.
Overall, the different implementations of the tests appear to have a satisfactory finite-sample
behaviour, i.e., the p-values are usually high under the null hypothesis, while the distribution of
the p-values tends to converge to a point mass at zero under the alternative. Nevertheless, some
patterns indicate some systematically different finite-sample behaviors. In particular, centered
block subsampling implementation performs similarly to our uncentered, except that the p-
values are generally smaller. Thus, for caution, in the empirical section of the main text, we
only report results from our centered subsampling implementation so it goes against our main
result. For the DGPs calibrated to data and the Non-Gaussian DGPs with correlation calibrated
to data, the good finite-sample performance of the tests is partly due to the correlation between
the short and the long legs : The higher the correlation, the less probable are crossing of the
integrated empirical CDFs under the null hypothesis, and the more probable are crossing under

the alternative hypothesis.

15The term e°® guarantees that the denominator is bigger than one, so the subsample size cannot be negative
nor bigger than the sample size.

OA.17



Table A.4: Monte-Carlo simulations of KS7: Stylized DGPs

Hy DGP Boxplots of p-values
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rr| LD 0] |10
False — N I

rs o] |0 52 ‘. 11
!

LRI N

50 150 250 500 S0 150 250 500
Sample sizes Sample sizes

e 8
i
e 8

Note: The reported p-values are based on 1000 simulated samples of sample size equal to the indicated 7. The distribution of KSi} is
approximated through block subsampling for “KS7}. No centering,” and centered block subsampling for “KS7..” The block size is bp = VT.The
tops and bottoms of each “box" are the 25th and 75th percentiles of the p-values, respectively. The line in the middle of each box is the median.
Crosses beyond the whisker length indicate outliers. An outlier is a value that is more than 1.5 times the interquartile range away from the
corresponding end of the interquartile ranges. Whiskers are drawn from the ends of the interquartile ranges to the furthest observations within
the whisker length.
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Table A.5: Monte-Carlo simulations of KS7: Calibrated DGPs

H, DGP

Boxplots of p-values

KS] No centering KS
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H
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Note: The reported p-values are based on 1000 simulated samples of sample size equal to the indicated T. The distribution of KS;- is
approximated through block subsampling for “KS,} No centering,” and centered block subsampling for “KS}?’ The block size is by = v/T.The

tops and bottoms of each “box

are the 25th and 75th percentiles of the p-values, respectively. The line in the middle of each box is the median.

Crosses beyond the whisker length indicate outliers. An outlier is a value that is more than 1.5 times the interquartile range away from the
corresponding end of the interquartile ranges. Whiskers are drawn from the ends of the interquartile ranges to the furthest observations within

the whisker length.

OA.19



Table A.6: Monte-Carlo simulations of KS7:Non-Gaussian DGPs with correlation
calibrated to data

Hy DGP Boxplots of p-values
KS ] No contering s}
1+ i+
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08 08
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! @ Ba B

I
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Note:The reported p-values are based on 1000 simulated samples of sample size equal to the indicated T. The distribution of KS} is approx-

imated through block subsampling for “KS7. No centering,” and centered block subsampling for “KS%..” The block size is bp = VT .The tops
and bottoms of each “box" are the 25th and 75th percentiles of the p-values, respectively. The line in the middle of each box is the median.
Crosses beyond the whisker length indicate outliers. An outlier is a value that is more than 1.5 times the interquartile range away from the
corresponding end of the interquartile ranges. Whiskers are drawn from the ends of the interquartile ranges to the furthest observations within
the whisker length.

B.3 Conditional tests

For ease of comparison, the parameterization and the DGPs are similar to the ones for the
unconditional tests, except for a new common component. More precisely, we add a common
independent Gaussian component x < N'(0,02) to each of the DGPs. E.g., the first DGP is

TL N ZI
rs zS
11D oy |ZL| IID o] [10 .. ,
where z <= N(0,02), — N ol o1l ) and z is independent of [z, zg]'. The
28

parameter o, is calibrated to correspond to an estimate of the standard deviation of the monthly
market returns, i.e., o, = 4%. Regarding the parameterization, as in the unconditional test and

for the same reasons, we keep the subsample size by = /T and the number of nodes to 200.
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The patterns of the p-value distributions appear similar to the ones of the unconditional
tests, namely smaller p-values for centered subsampling, better performance when the correlation

between boths legs is higher.

Table A.7: Monte-Carlo simulations of C}.: Stylized DGPs

Hy DGP Boxplots of p-values

C; No centering c;
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Note:The reported p-values are based on 1000 simulated samples of sample size equal to the indicated T'. The distribution of C} is approximated

through block subsampling for “C7, No centering,” and centered block subsampling for “C7..” The block size is bp = VT .The tops and bottoms
of each “box" are the 25th and 75th percentiles of the p-values, respectively. The line in the middle of each box is the median. Crosses beyond
the whisker length indicate outliers. An outlier is a value that is more than 1.5 times the interquartile range away from the corresponding
end of the interquartile ranges. Whiskers are drawn from the ends of the interquartile ranges to the furthest observations within the whisker
length.
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Table A.8: Monte-Carlo simulations of C#%.: Calibrated DGPs

Hy DGP Boxplots of p-values

C‘T No centering I:‘.'Y
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Note: The reported p-values are based on 1000 simulated samples of sample size equal to the indicated T. The distribution of C} is
approximated through block subsampling for "‘C} No centering,” and centered block subsampling for “C}f’ The block size is bp = VT .The
tops and bottoms of each “box" are the 25th and 75th percentiles of the p-values, respectively. The line in the middle of each box is the
median. Crosses beyond the whisker length indicate outliers. An outlier is a value that is more than 1.5 times the interquartile range
away from the corresponding end of the interquartile ranges. Whiskers are drawn from the ends of the interquartile ranges to the furthest
observations within the whisker length.
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Table A.9: Monte-Carlo simulations of C}

Non-Gaussian DGPs

H, DGP

Boxplots of p-values
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Note: The reported p-values are based on 1000 simulated samples of sample size equal to the indicated T. The distribution of Cf} is

approximated through block subsampling for "‘C} No centering,” and centered block subsampling for “Cfl‘m” The block size is bp = VT .The
tops and bottoms of each “box" are the 25th and 75th percentiles of the p-values, respectively. The line in the middle of each box is the
median. Crosses beyond the whisker length indicate outliers. An outlier is a value that is more than 1.5 times the interquartile range
away from the corresponding end of the interquartile ranges. Whiskers are drawn from the ends of the interquartile ranges to the furthest

observations within the whisker length.

C Additional empirical evidence
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Table A.10: Acronym and Description of the 205 Characteristics

This Table provides a short description of each of the 205 characteristics used.

Description
AM Total assets to market
AOP Analyst Optimism
AbnormalAccruals Abnormal Accruals
Accruals Accruals
AccrualsBM Book-to-market and accruals
Activism1l Takeover vulnerability
Activism2 Active shareholders
AdExp Advertising Expense
AgelPO IPO and age
AnalystRevision EPS forecast revision
AnalystValue Analyst Value
AnnouncementReturn Earnings announcement return
AssetGrowth Asset growth
BM Book to market using most recent ME
BMdec Book to market using December ME
BPEBM Leverage component of BM
Beta CAPM beta
BetaFP Frazzini-Pedersen Beta
BetaLiquidityPS Pastor-Stambaugh liquidity beta
BetaTailRisk Tail risk beta
BidAskSpread Bid-ask spread
BookLeverage Book leverage (annual)
BrandInvest Brand capital investment
CBOperProf Cash-based operating profitability
CF Cash flow to market
Cash Cash to assets
CashProd Cash Productivity
ChAssetTurnover Change in Asset Turnover
ChEQ Growth in book equity
ChForecastAccrual Change in Forecast and Accrual
Chlnv Inventory Growth
ChInvIA Change in capital inv (ind adj)
ChNAnalyst Decline in Analyst Coverage
ChNNCOA Change in Net Noncurrent Op Assets
ChNWC Change in Net Working Capital
ChTax Change in Taxes
ChangeInRecommendation Change in recommendation
CitationsRD Citations to RD expenses
CompEqulss Composite equity issuance
CompositeDebtIssuance Composite debt issuance
ConsRecomm Consensus Recommendation
ConvDebt Convertible debt indicator
CoskewACX Coskewness using daily returns
Coskewness Coskewness
CredRatDG Credit Rating Downgrade
CustomerMomentum Customer momentum
DebtlIssuance Debt Issuance
DelBreadth Breadth of ownership
DelCOA Change in current operating assets
DelCOL Change in current operating liabilities
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Table A.10 (continued)

Description

DelDRC

DelEqu

DelFINL

DelLTI
DelNetFin
DivInit

DivOmit
DivSeason
DivYieldST
DolVol
DownRecomm
EBM

EP

EarnSupBig
EarningsConsistency
EarningsForecastDisparity
EarningsStreak
EarningsSurprise
EntMult
EquityDuration
ExchSwitch
ExclExp

FEPS

FR

FirmAge
FirmAgeMom
ForecastDispersion
Frontier

GP

Governance
GrAdExp
GrLTNOA
GrSaleToGrInv
GrSaleToGrOverhead
Herf

HerfAsset
HerfBE

Highb52

IO ShortInterest
IdioRisk
IdioVol3F
IdioVolAHT
Illiquidity
IndIPO

IndMom
IndRetBig
IntMom
IntanBM
IntanCFP
IntanEP

IntanSP
InvGrowth

Deferred Revenue
Change in equity to assets
Change in financial liabilities
Change in long-term investment
Change in net financial assets
Dividend Initiation
Dividend Omission
Dividend seasonality
Predicted div yield next month
Past trading volume
Down forecast EPS
Enterprise component of BM
Earnings-to-Price Ratio
Earnings surprise of big firms
Earnings consistency
Long-vs-short EPS forecasts
Earnings surprise streak
Earnings Surprise
Enterprise Multiple
Equity Duration
Exchange Switch
Excluded Expenses
Analyst earnings per share
Pension Funding Status
Firm age based on CRSP
Firm Age - Momentum
EPS Forecast Dispersion
Efficient frontier index
gross profits / total assets
Governance Index
Growth in advertising expenses
Growth in long term operating assets
Sales growth over inventory growth
Sales growth over overhead growth
Industry concentration (sales)
Industry concentration (assets)
Industry concentration (equity)
52 week high
Inst own among high short interest
Idiosyncratic risk
Idiosyncratic risk (3 factor)
Idiosyncratic risk (AHT)
Amihud’s illiquidity
Initial Public Offerings
Industry Momentum
Industry return of big firms
Intermediate Momentum
Intangible return using BM
Intangible return using CFtoP
Intangible return using EP
Intangible return using Sale2P
Inventory Growth
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Table A.10 (continued)

Description

Invest PPEInv
Investment
LRreversal

Leverage

MRreversal

MS

MaxRet
MeanRankRevGrowth
Mom1l2m
Mom12mOffSeason
Mom6m
Mom6mJunk
MomOffSeason
MomOffSeason06YrPlus
MomOffSeasonl1YrPlus
MomOffSeason16YrPlus
MomRev
MomSeason
MomSeason06 YrPlus
MomSeasonl1YrPlus
MomSeasonl1l6YrPlus
MomSeasonShort
MomVol

NOA
NetDebtFinance
NetDebtPrice
NetEquityFinance
NetPayoutYield
NumEarnIncrease
OPLeverage

OScore

OperProf
OperProfRD
OptionVolumel
OptionVolume2
OrderBacklog
OrderBacklogChg
OrgCap

PS

PatentsRD
PayoutYield

PctAcc

PctTotAcc
PredictedFE

Price

PriceDelayRsq
PriceDelaySlope
PriceDelayTstat
ProbInformedTrading
RD

RDADbility

RDIPO

RDS

change in ppe and inv/assets
Investment to revenue
Long-run reversal
Market leverage
Medium-run reversal
Mohanram G-score
Maximum return over month
Revenue Growth Rank
Momentum (12 month)
Momentum without the seasonal part
Momentum (6 month)
Junk Stock Momentum
Off season long-term reversal
Off season reversal years 6 to 10
Off season reversal years 11 to 15
Off season reversal years 16 to 20
Momentum and LT Reversal
Return seasonality years 2 to 5
Return seasonality years 6 to 10
Return seasonality years 11 to 15
Return seasonality years 16 to 20
Return seasonality last year
Momentum in high volume stocks
Net Operating Assets
Net debt financing
Net debt to price
Net equity financing
Net Payout Yield
Earnings streak length
Operating leverage
O Score
operating profits / book equity
Operating profitability R&D adjusted
Option to stock volume
Option volume to average
Order backlog
Change in order backlog
Organizational capital
Piotroski F-score
Patents to R&D expenses
Payout Yield
Percent Operating Accruals
Percent Total Accruals
Predicted Analyst forecast error
Price
Price delay r square
Price delay coeff
Price delay SE adjusted
Probability of Informed Trading
R&D over market cap
R&D ability
IPO and no R&D spending
Real dirty surplus
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Table A.10 (continued)

Description

RDcap

REV6

RIO Disp

RIO MB

RIO Turnover
RIO Volatility

ResidualMomentum

ReturnSkew
ReturnSkew3F
RevenueSurprise
RoE

SP

STreversal
Sharelss1lY
Sharelss5Y
ShareRepurchase
ShareVol
ShortInterest
Size
SmileSlope
Spinoff
SurpriseRD
Tax
TotalAccruals
UpRecomm
VarCF

VolMkt

VolSD
VolumeTrend
XFIN
betaVIX

cfp

dNoa
fgr5yrLag
grcapx
grcapx3y

hire

iomom cust
iomom supp
realestate
retConglomerate
roaq

sfe

sinAlgo

skewl

std turn

tang

zerotrade
zerotradeAltl
zerotradeAlt12

R&D capital-to-assets
Earnings forecast revisions
Inst Own and Forecast Dispersion
Inst Own and Market to Book
Inst Own and Turnover
Inst Own and Idio Vol
Momentum based on FF3 residuals
Return skewness
Idiosyncratic skewness (3F model)
Revenue Surprise
net income / book equity
Sales-to-price
Short term reversal
Share issuance (1 year)
Share issuance (5 year)
Share repurchases
Share Volume
Short Interest
Size
Put volatility minus call volatility
Spinoffs
Unexpected R&D increase
Taxable income to income
Total accruals
Up Forecast
Cash-flow to price variance
Volume to market equity
Volume Variance
Volume Trend
Net external financing
Systematic volatility
Operating Cash flows to price
change in net operating assets
Long-term EPS forecast
Change in capex (two years)
Change in capex (three years)
Employment growth
Customers momentum
Suppliers momentum
Real estate holdings
Conglomerate return
Return on assets (qtrly)
Earnings Forecast to price
Sin Stock (selection criteria)
Volatility smirk near the money
Share turnover volatility
Tangibility
Days with zero trades
Days with zero trades
Days with zero trades
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