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Abstract 

When assets’ expected returns follow a factor structure subject to pricing errors, we show that 
the mean-variance portfolio can be used to obtain a set of implied factor risk premia. We show 
that such implied factor risk premia result in stable factor weights. To translate these factor 
weights into asset portfolios, we propose an asset allocation methodology that constructs 
portfolios to target these factor weights while accounting for the possibility of pricing errors. 
The analysis shows that our “factor-targeted portfolios” exhibit higher Sharpe ratios than 
various allocation methodologies under a variety of scenarios in expected returns.  
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Portfolio allocation using factors is becoming more and more popular among institutional 

investors. Factor investing is not only supported by studies showing that individual assets are likely 

driven by a common set of risk factors (Sharpe, 1964; Lintner, 1975; Ross, 1976; Berry et al., 1988; 

Ang, 2014; Clarke et al., 2016) but it is also considered a more stable method to design a portfolio 

(i.e., generating less turnover as in Bessler et. al., 2021). Indeed, the 2008 global financial crisis 

highlighted the limits of traditional asset allocation models, which were severely affected by the 

breakdown in correlations and diversification across assets. This has led academics and investment 

managers to seek portfolio allocation methods that are based on more stable building blocks using 

risk and return factors rather than assets (Fabozzi, 2020). 

However, how factors can be best incorporated into the investment process is still an active 

research question. There are several recent studies that develop methods to translate factor weights 

into asset allocations (e.g., Greenberg et al., 2016; Bass et al., 2017; Bender et al., 2018; Bergeron et 

al., 2018; Aliaga-Diaz et al., 2020; Kolm and Ritter, 2020) but there are still questions that are largely 

unanswered: (1) How should investors determine the optimal exposure to the various risk factors 

given that asset returns are subject to idiosyncratic errors? (2) How can investors map factor weights 

to asset portfolios in a simple yet robust way? (3) Why would building portfolios based on factors 

outperform the traditional approach of building portfolios based on assets? In this study we aim to 

address these three questions. 

First, assuming that assets’ expected returns are priced by a known set of risk factors but are 

subject to random pricing errors, we provide a methodology that utilizes reverse optimization to 

calculate the implied factor expected returns given an asset portfolio. 1 Given a set of arbitrary asset 

portfolio weights, our reverse optimization methodology calculates the implied factor returns such 

that the asset portfolio would be mean-variance optimal with respect to a set of implied assets’ 

expected returns priced by those implied factors with the least pricing errors. 2 In particular, if the 

asset portfolio happens to be the mean-variance tangency portfolio, we show that those implied factor 

returns are consistent with the risk premia estimated via a cross-sectional regression of asset expected 

 
1 While the “true” underlying factors driving asset returns are unobservable to the econometrician, recent studies by both 
investment managers and academics have agreed upon the fact that macro factors (e.g., economic growth, real rate and 
inflation) are important drivers of asset returns. Recent examples of articles that use a similar set of factors as the ones 
we employ in this article include Bass et al. (2017), Bender et al. (2018), and Gladstone et al. (2021). Such macro factors 
can be replicated using portfolios of traded securities such as equities, real return bonds, commodities, break-even 
inflation and credit. 
2 The implied assets’ expected returns are reverse optimized such that they would be priced by a set of implied factor 
returns with the least cross-sectional square errors. 
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returns on factor loadings, similar to the second step of a Fama-Macbeth regression (Fama and 

MacBeth, 1973). 3 Using these implied factor returns, we can build a mean-variance factor portfolio. 

We call these portfolio weights as the portfolio’s “reverse optimized” factor weights. The matrix that 

maps the asset weights to these reverse optimized factor weights is referred as the implied factor 

loading matrix. 

Second, we examine the reverse optimized factor weights of a mean-variance tangency 

portfolio when assets’ expected returns are priced by those factors but with pricing errors. Consistent 

with prior evidence (e.g., Michaud, 1989), we find that the mean-variance tangency portfolio weights 

are sensitive to asset return inputs. However, the corresponding reverse optimized factor weights are 

considerably more stable. The stability of factor weights stems from more stable implied factor 

returns and, more importantly, from less extreme values in the inverse factor covariance matrix. We 

demonstrate that the implied factor returns of the mean-variance tangency portfolio are equal to the 

true factor expected returns plus a factor return error component. The factor return errors can be 

expressed as estimates from the cross-sectional regression of asset pricing errors on factor loadings. 4 

The sample estimates of the factor returns’ errors are more stable than the assets’ pricing errors 

themselves when the number of assets is considerably larger than the number of factors. 5 The results 

suggest that, while the mean-variance tangency portfolios may be prone to pricing errors, its reverse 

optimized factor portfolios are considerably more stable around the optimal values. 

Third, using the reverse optimized factor weights, we build different asset portfolios that 

respect these factor weights but account for input errors of expected returns. We extend existing 

methodologies (Greenberg et al., 2016; Elkamhi et al., 2021) and provide a closed-form solution that 

translates factor weights into asset portfolios with weights that are robust and more practical for asset 

managers. Specifically, although Elkamhi et al. (2021) build an asset portfolio that respects the 

desired factor weights by targeting the portfolio factor weights, we differentiate from them by 

targeting the portfolio’s reverse optimized factor weights instead, and by utilizing the implied factor 

loading matrix. 6 The factor-targeting methodology presented in this article requires  both the desired 

 
3 In the special case where the assets’ expected returns are priced by a set of factors without errors, the implied factor 
returns of the mean-variance tangency portfolio is equal to the true factor premia. 
4 Since the implied factor returns are consistent with estimates from a cross-sectional regression of assets’ expected 
returns on factor loadings, so are the factor returns’ errors. 
5 In our analysis using historical data, the inverse of the factor covariance matrix has much fewer extreme values than 
that of the asset covariance matrix. This outcome contributes to the stability of the reverse optimized factor weights. 
6 In section “Comparison between using standard and implied factor loadings”, we show that factor-targeting using the 
reverse optimized factor weights leads to better portfolio stability and higher average Sharpe ratios. 
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factor weights (i.e., the reverse optimized factor weights of the mean-variance portfolio) as well as a 

target asset portfolio as inputs. This target asset portfolio is necessary to achieve uniqueness in the 

mapping between factor weights and asset weights. 7 In this article, we present our results using four 

sets of target asset weights calculated using traditional portfolio allocation rules: maximum 

diversification, minimum volatility, equally weighted (1/N) and equal risk contributions. 8 Last, we 

ask whether our factor-targeted portfolios improve upon the portfolios built using more traditional 

methods (i.e., mean-variance, etc.). 

We provide an explanation for why our methodology achieves more robust portfolios that 

outperforms mean-variance as well as various traditional allocation rules. Previous research (e.g., 

Greenberg et al., 2016; Elkamhi et al., 2021) has provided methodologies for mapping factor weights 

to asset portfolios without considering pricing errors for expected returns. 9 We extend the existing 

literature by proposing a new portfolio construction methodology that accounts for pricing errors 

when targeting the desired factor weights. We show that failing to recognize the presence of assets’ 

pricing errors in the portfolio construction would lead to portfolios that are inferior to those that are 

built using our methodology. As we translate factor weights into asset weights using our methodology 

with a target asset portfolio that is built using a risk-diversified approach, the resulting portfolio 

achieves asset risk diversification while matching the desired factor weights. 

To demonstrate the usefulness of our methodology, we proceed in two steps. The first step is 

to demonstrate the stability of the reverse optimized factor weights of the mean-variance tangency 

portfolio. This result suggests that such reverse optimized factor weights can be used in practice 

because they are theoretically motivated (i.e., they come from mean-variance) and they are stable 

(i.e., more practical and less transaction costs). We conduct our analysis using a simulation approach. 

We simulate asset returns from a linear factor model subject to idiosyncratic errors. We evaluate the 

stability of the mean-variance tangency portfolio weights and the corresponding reverse optimized 

factor weights across different simulated scenarios. 

The second step is to apply both our factor-targeting methodology as well as various portfolio 

allocation rules directly on assets (i.e., mean-variance, maximum diversification, equal risk 

 
7 It is well known that, for a given set of factor weights, there might be many portfolios that have those exact factor 
weights (for a discussion, see Greenberg et al., 2016). 
8 However, our methodology is flexible, and investors can use their preferred allocation rule for the target asset weights 
and they can also target their portfolio to different desired factor weights determined through other means. 
9 For completeness, we note there is evidence that, in the absence of pricing errors, factor-based asset allocation is not 
superior to asset-class based asset allocation (e.g., Idzorek and Kowara, 2013). 
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contributions, and 1/N) and evaluate the performance of in terms of Sharpe ratios. In our 

analysis, we use 17 assets covering various public asset classes. We include five macroeconomic 

tradable factors and build them using factor mimicking portfolios. We use historical data to 

estimate the asset and factor covariance matrices as well as the factor loadings needed for our 

analysis. We assume a set of factor risk premia consistent with industry practice and use the 

computed factor loadings to price the assets’ expected returns. Historically, we find that the 

average of the pricing error standard deviations is approximately 1.5% for our set of 

macroeconomic factors. 

The results of our simulations show that in a situation where the assets’ expected returns are 

priced by a linear factor model but are subject to random pricing errors, the reverse optimized factor 

weights of the traditional mean-variance tangency portfolio are considerably more stable than those 

asset portfolio weights. Given a standard deviation of pricing errors of 1.5%, the average standard 

deviation of portfolio weights across assets using the traditional mean-variance on assets is 125%. 

The corresponding reverse optimized factor weights are more stable with an average standard 

deviation for factor weights of 29%. We also show that, when assets’ expected returns are subject to 

pricing errors, our factor weights are stable while mean-variance portfolio weights are subject to 

large changes. These results suggest while mean-variance tangency weights for assets may not be 

reliable, their reverse optimized factor weights are more robust and closer to mean-variance optimal 

with respect to the true risk premia. 

While the Sharpe ratios of mean-variance applied directly on assets are higher in the absence 

of pricing errors, they deteriorate rapidly as the pricing errors’ standard deviation increases in our 

simulation. The factor-targeted portfolios obtained using our methodology show a much slower rate 

of deterioration. The results from our simulations also show that, for a pricing error standard 

deviation of 1.5%, our factor-targeted portfolios generate higher Sharpe ratios than that of the mean-

variance portfolio with an approximate 95% probability. 

Next, we compare our factor-targeted portfolios – which account for pricing errors – with the 

factor-targeted portfolios that do not account for pricing errors (i.e., Elkamhi et al., 2021). Our results 

show that the Sharpe ratios of our factor-targeted portfolios, which account for pricing errors, exhibit 

both higher averages and lower standard deviations across simulations.  

We also compare the factor-targeted portfolios built using our methodology with the four 

corresponding traditional portfolios that are also used as target asset weights: maximum 
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diversification, minimum volatility, equally weighted (1/N) and equal risk contributions. Clearly, 

those traditional portfolios are not subject to pricing errors in expected returns since they do not rely 

on them as inputs. Therefore, we proceed to analyze how all these portfolios are impacted by different 

risk premia settings as well as pricing errors. When there are no pricing errors in expected returns, 

the factor-targeted portfolios have higher Sharpe ratios than the traditional portfolios for various risk 

premia settings. When there are large pricing errors in assets’ expected returns, factor-targeted and 

traditional portfolios perform similarly on average.  

To summarize, we present analyses for our factor-targeted asset allocation methodology 

under a setting where assets’ expected returns are priced by a known set of factors but are subject to 

pricing errors. We find that using the same assets’ expected returns and covariance inputs, our factor-

targeted portfolios outperform, in terms of Sharpe ratios, traditional mean-variance asset portfolios 

when expected returns are subject to even small pricing errors. As we evaluate portfolio performances 

in our analysis across a multitude of criteria, the factor-targeting methodology presented in this article 

creates portfolios that are stable and robust against expected return inputs and they perform well 

across risk premia settings. 

Methodology 
Reverse optimized factor weights 
In this section, we (1) describe how to compute the implied factor expected returns from a 

given set of asset weights using reverse optimization, (2) describe how to calculate the mean-variance 

factor weights using the implied factor expected returns, which we labeled as “reverse optimized 

factor weights”, and (3) show that, in the absence of pricing errors, the reverse optimized factor 

weights are mean-variance optimal in the factor space when the asset weights are mean-variance 

optimal themselves. 

We start by assuming that the 𝑁𝑁 asset returns follow a linear factor structure with (true) factor 

returns 𝜇𝜇𝑓𝑓 and a factor covariance matrix Σ𝑓𝑓 for 𝑀𝑀 factors. We also define 𝐵𝐵 as the 𝑁𝑁 × 𝑀𝑀 matrix of 

factor loadings for the 𝑁𝑁 assets with respect to the 𝑀𝑀 factors such that 

𝜇𝜇𝑎𝑎 = 𝐵𝐵𝜇𝜇𝑓𝑓 + 𝜀𝜀 (1) 

where 𝜀𝜀 is a vector of pricing errors for assets’ expected excess returns with respect to the 𝑀𝑀 factors.  

The presence of pricing errors has been discussed extensively in the literature. For example, 

linear factor models are thought to be just an approximation of the true underlying relationship 
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between factors and assets since no model is likely to be completely accurate. This is discussed, for 

example, in Hansen and Jagannathan (1997), Shanken (1987) and many others. Alternatively, there 

might be missing factors that the investors have omitted (Pastor and Stambaugh, 2000). 

In the reverse optimization, we look for the implied factor returns 𝜇𝜇𝑓𝑓∗  such that the given asset 

weights would be mean-variance optimal by minimizing the sum of squared pricing errors. Recalling 

that the asset mean-variance weights 𝑤𝑤𝑎𝑎 are such that 𝑤𝑤𝑎𝑎 = (𝜆𝜆Σ𝑎𝑎)−1𝜇𝜇𝑎𝑎, we can use Equation (1) to 

minimize the sum of squared errors which in matrix form can be written as 

argmin
𝜇𝜇𝑓𝑓

 �𝜆𝜆 Σ𝑎𝑎 𝑤𝑤𝑎𝑎  −  𝐵𝐵 𝜇𝜇𝑓𝑓�′ (𝜆𝜆 Σ𝑎𝑎 𝑤𝑤𝑎𝑎  −  𝐵𝐵 𝜇𝜇𝑓𝑓 )  (2) 

where 𝜆𝜆 is the risk aversion parameter. This is equivalent to estimating the linear regression 𝜆𝜆Σ𝑎𝑎𝑤𝑤𝑎𝑎 =

 𝐵𝐵𝜇𝜇𝑓𝑓 + 𝜀𝜀 which yields the following solution for 𝜇𝜇𝑓𝑓∗  

𝜇𝜇𝑓𝑓∗ = (𝐵𝐵′𝐵𝐵)−1𝐵𝐵′𝜆𝜆Σ𝑎𝑎 𝑤𝑤𝑎𝑎 (3) 

With this implied factor return 𝜇𝜇𝑓𝑓∗ , we can compute the reverse mean-variance factor weights 

with the same risk aversion as 

𝑤𝑤𝑓𝑓∗ = �𝜆𝜆Σ𝑓𝑓�
−1
𝜇𝜇𝑓𝑓∗  

Substituting Equation (3) into the above expression, the mean-variance factor weights can be 

expressed as follows 

𝑤𝑤𝑓𝑓∗ = 𝐵𝐵𝑖𝑖 𝑤𝑤𝑎𝑎 (4) 

where  

𝐵𝐵𝑖𝑖 = Σ𝑓𝑓−1(𝐵𝐵′𝐵𝐵)−1𝐵𝐵′Σ𝑎𝑎 (5) 

Note that 𝐵𝐵𝑖𝑖 is the 𝑀𝑀 × 𝑁𝑁 implied factor loading matrix that transforms a set of given asset weights 

(𝑤𝑤𝑎𝑎) into the reverse optimized factor weights (𝑤𝑤𝑓𝑓∗). In the special case where 𝑤𝑤𝑎𝑎 is mean-variance 

optimal and there are no pricing errors in expected returns (i.e., 𝜇𝜇𝑎𝑎 = 𝐵𝐵𝜇𝜇𝑓𝑓), 𝑤𝑤𝑓𝑓∗ is also mean-variance 

optimal given 𝜇𝜇𝑓𝑓. Specifically, given that 𝑤𝑤𝑎𝑎  =  (𝜆𝜆 Σ𝑎𝑎)−1 𝜇𝜇𝑎𝑎, substituting it in Equation (4) yields 

𝑤𝑤𝑓𝑓∗  = �𝜆𝜆 Σ𝑓𝑓�
−1(𝐵𝐵′𝐵𝐵)−1𝐵𝐵′Σ𝑎𝑎 Σ𝑎𝑎−1 𝐵𝐵 𝜇𝜇𝑓𝑓  

 𝑤𝑤𝑓𝑓∗  = �𝜆𝜆 Σ𝑓𝑓�
−1

 𝜇𝜇𝑓𝑓 (6) 

where Equation (6) shows that 𝑤𝑤𝑓𝑓∗ is the solution of the unconstrained mean-variance optimization 

using Σ𝑓𝑓 and 𝜇𝜇𝑓𝑓. 
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Reverse optimized factor weights for the mean-variance tangency portfolio 
We present the standard unconstrained mean-variance tangency portfolio given assets' 

expected excess returns 𝜇𝜇𝑎𝑎 and covariance matrix Σ𝑎𝑎 as 

𝑤𝑤𝑎𝑎,𝑡𝑡𝑡𝑡 =  
Σ𝑎𝑎−1𝜇𝜇𝑎𝑎

|𝟏𝟏𝑁𝑁′ Σ𝑎𝑎−1𝜇𝜇𝑎𝑎|
 (7) 

where 𝜇𝜇𝑎𝑎 is a 𝑁𝑁 ×  1 vector of expected excess returns for 𝑁𝑁 assets, Σ𝑎𝑎 is a 𝑁𝑁 × 𝑁𝑁 covariance matrix 

and 𝟏𝟏𝑁𝑁 is a 𝑁𝑁 × 1 vector of ones. Using Equation (7) in Equation (4), we can compute the reverse 

optimized factor weight for the mean-variance tangency portfolio as 

 𝑤𝑤𝑓𝑓,𝑡𝑡𝑡𝑡
∗ =

Σ𝑓𝑓−1(𝐵𝐵′𝐵𝐵)−1𝐵𝐵′𝜇𝜇𝑎𝑎
|𝟏𝟏𝑁𝑁′ Σ𝑎𝑎−1𝜇𝜇𝑎𝑎|

 (8) 

Note that the reverse optimized factor weights do not necessarily sum up to one. 

Factor-targeted asset allocation  
In this section, we describe our factor-targeting methodology, which builds asset portfolios 

that respect a desired set of factor weights. To apply our methodology, investors need to provide two 

inputs: (1) the set of desired factor weights (𝑤𝑤�𝑓𝑓) and (2) the set of “target asset weights” (𝑤𝑤�𝑎𝑎). This 

latter input is required to ensure that we achieve a unique asset portfolio that is targeted to the desired 

factor weights. As we prove in Appendix A, for any set of desired factor weights, there might be 

multiple asset portfolios that respect such factor weights. Because of this non-uniqueness, in addition 

to targeting the portfolio’s reverse optimized factor weights to the desired factor weights, we impose 

an extra condition to obtain a unique portfolio: we minimize the difference between the resulting 

portfolio weights and the target asset weights 𝑤𝑤�𝑎𝑎. For these target asset weights, investors can use 

any allocation rule but, in this article, we restrict our attention to traditional asset allocation rules that 

are risk and diversification focused (e.g., maximum diversification, minimum variance, equally 

weighted and equal risk contributions). 10 Formally, the optimization procedure can be written as 

follows 

argmin
𝑤𝑤

𝛾𝛾 (𝐵𝐵𝑖𝑖 𝑤𝑤 −  𝑤𝑤�𝑓𝑓′)(𝐵𝐵𝑖𝑖 𝑤𝑤 −  𝑤𝑤�𝑓𝑓′)′�����������������
𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑎𝑎𝑡𝑡𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑓𝑓𝐷𝐷𝑓𝑓 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝐷𝐷𝐷𝐷
𝐷𝐷𝑡𝑡𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑜𝑜𝐷𝐷𝑜𝑜 𝑓𝑓𝑎𝑎𝑓𝑓𝑡𝑡𝐷𝐷𝑓𝑓 𝑤𝑤𝐷𝐷𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝐷𝐷

+ (1 − 𝛾𝛾)(𝑤𝑤 −  𝑤𝑤�𝑎𝑎)′ (𝑤𝑤 −  𝑤𝑤�𝑎𝑎)�������������������
𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑎𝑎𝑡𝑡𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑓𝑓𝐷𝐷𝑓𝑓

𝑇𝑇𝑎𝑎𝑓𝑓𝑤𝑤𝐷𝐷𝑡𝑡 𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 𝑤𝑤𝐷𝐷𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝐷𝐷

  
(9) 

where 𝑤𝑤�𝑓𝑓 is the desired target factor weights, 𝑤𝑤�𝑎𝑎 is the target asset weights and 𝐵𝐵𝑖𝑖 is defined as per 

 
10 Elkamhi et al. (2021) provides a short discussion on the intuition of using traditional portfolios as the target asset 
weights. 
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Equation (5), and 𝛾𝛾 is a parameter that affects how much weight is given to deviations from the 

reverse optimized factor weights. 

Our goal is to obtain a portfolio that respects the desired factor weights, so 𝛾𝛾 is set to an 

arbitrary large value in practice (i.e., 0.999) so that the squared deviations from the reverse optimized 

factor weights (first term in Equation (9)) are as close to zero as possible. With the implied factor 

weights from the chosen portfolio weights 𝑤𝑤 required to be as close as possible to the reverse 

optimized factor weights, the optimization would then search for asset weights 𝑤𝑤 such that they have 

the least square errors with the target asset weights 𝑤𝑤�𝑎𝑎 (second term in Equation (9)). 

Solving Equation (9) yields the following solution 

𝑤𝑤 = [𝛾𝛾 𝐵𝐵𝑖𝑖′𝐵𝐵𝑖𝑖 + (1 − 𝛾𝛾)𝐼𝐼𝑁𝑁× 𝑁𝑁]−1 �𝛾𝛾 𝐵𝐵𝑖𝑖′ 𝑤𝑤�𝑓𝑓  +  (1 − 𝛾𝛾) 𝑤𝑤�𝑎𝑎� (10) 

where 𝐼𝐼𝑁𝑁 × 𝑁𝑁 is an 𝑁𝑁 × 𝑁𝑁 identity matrix. The model presented in this article follows closely the one 

presented in Elkamhi et al. (2021) but it extends it to the case where asset returns are generated from 

a factor model with pricing errors. 

As for our target factor weights 𝑤𝑤�𝑓𝑓, we choose the reverse optimized factor weights of the 

mean-variance tangency portfolio (𝑤𝑤𝑓𝑓,𝑡𝑡𝑡𝑡
∗  in Equation (8)). We also set 𝛾𝛾 to be 0.999. We investigate 

four different traditional asset allocation rules (Maximum Diversification, Minimum Volatility, 1/N, 

and Equal Risk Contributions) to compute the target asset weights and evaluate their performances. 

The rules for these four traditional allocation methodologies are defined below 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑢𝑢𝑚𝑚 𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝑀𝑀𝐷𝐷𝑀𝑀𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷:        𝑤𝑤�𝑓𝑓𝑜𝑜 =
Σ𝑎𝑎−1𝑉𝑉𝟏𝟏𝑁𝑁
𝟏𝟏𝑁𝑁′ Σ𝑎𝑎−1𝑉𝑉𝟏𝟏𝑁𝑁

 (11) 

𝑀𝑀𝑀𝑀𝐷𝐷𝑀𝑀𝑚𝑚𝑢𝑢𝑚𝑚 𝑉𝑉𝐷𝐷𝑉𝑉𝑀𝑀𝐷𝐷𝑀𝑀𝑉𝑉𝑀𝑀𝐷𝐷𝑉𝑉:        𝑤𝑤�𝑓𝑓𝐷𝐷 =
Σ𝑎𝑎−1𝟏𝟏𝑁𝑁
𝟏𝟏𝑁𝑁′ Σ𝑎𝑎−1𝟏𝟏𝑁𝑁

 (12) 

1/𝑁𝑁:        𝑤𝑤�1/𝑁𝑁 =
𝟏𝟏𝑁𝑁

𝟏𝟏𝑁𝑁′𝟏𝟏𝑁𝑁
 (13) 

𝐸𝐸𝐸𝐸𝑢𝑢𝑀𝑀𝑉𝑉 𝑅𝑅𝑀𝑀𝐷𝐷𝑅𝑅 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝐶𝐶𝑢𝑢𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷:      𝑤𝑤�𝐸𝐸𝑅𝑅𝐸𝐸 = �𝑤𝑤:  𝑅𝑅𝐶𝐶𝑖𝑖 = 𝑅𝑅𝐶𝐶𝑗𝑗  for all assets 𝑀𝑀, 𝑗𝑗� (14) 

 

where 𝑉𝑉 is a diagonal matrix with the asset volatilities along the diagonal. 𝑅𝑅𝐶𝐶𝑖𝑖 is the risk contribution 

for asset 𝑀𝑀, which is defined as 𝑅𝑅𝐶𝐶𝑖𝑖  =  𝑤𝑤𝑖𝑖 ⋅
𝜕𝜕𝜕𝜕(𝑤𝑤)
𝜕𝜕𝑤𝑤𝑖𝑖

 =  𝑤𝑤𝑖𝑖 ⋅
(Σ 𝑤𝑤)𝑖𝑖
√𝑤𝑤′Σ 𝑤𝑤

 . 11 Finally, substituting our choices 

for 𝑤𝑤�𝑓𝑓 and 𝑤𝑤�𝑎𝑎 in Equation (10), the factor-targeted asset allocation rule with target asset weights 𝑤𝑤𝑥𝑥 

 
11 See Roncalli (2013) for a detailed discussion on risk contributions. 
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can be expressed as follows 

 𝑤𝑤𝑓𝑓𝑡𝑡,𝑥𝑥 = [𝛾𝛾 𝐵𝐵𝑖𝑖′𝐵𝐵𝑖𝑖  +  (1 − 𝛾𝛾)𝐼𝐼𝑁𝑁× 𝑁𝑁]−1 �𝛾𝛾 𝐵𝐵𝑖𝑖′𝑤𝑤𝑓𝑓,𝑡𝑡𝑡𝑡
∗ + (1 − 𝛾𝛾) 𝑤𝑤�𝑥𝑥�,   𝛾𝛾 =  0.999 (15) 

where 𝑤𝑤𝑓𝑓,𝑡𝑡𝑡𝑡
∗  is the vector of reverse optimized factor weights for the mean-variance tangency 

portfolio (see Equation (8)), and 𝑤𝑤�𝑥𝑥 is the vector of target asset weights (i.e., any of the portfolios 

from Equations (11) to (14)). 

Analysis Setup 
In this section, we describe the setup used to evaluate the performance of various allocation 

rules when assets follow a linear factor structure but are subject to random errors as per the following 

model 

𝜇𝜇𝑎𝑎  =  𝐵𝐵𝜇𝜇𝑓𝑓  + 𝜎𝜎𝜀𝜀  𝑍𝑍𝑁𝑁 (16) 

where 𝑍𝑍𝑁𝑁 is a 𝑁𝑁 ×  1 vector of uncorrelated random errors drawn from standard Normal distribution, 

𝜎𝜎𝜀𝜀 is a scalar and is the standard deviation of the errors. 

We simulate 5,000 scenarios of assets’ expected returns for a given true vector of risk premia 

𝜇𝜇𝑓𝑓 using Equation (16). For each of the 5,000 scenarios, we compute the portfolio weights and Sharpe 

ratios using our factor-targeted methodology, the traditional mean-variance method for assets and the 

four asset allocation rules that we described above with the simulated assets’ expected returns. We 

compare the average and standard deviation of the Sharpe ratios as well as the volatility of portfolio 

weights across the various allocation methodologies. Furthermore, we also use the distributions of 

Sharpe ratios from the 5,000 simulations to calculate the probabilities for our proposed methodology 

to outperform the mean-variance tangency portfolio. These different comparisons allow us to 

evaluate the robustness of those portfolio allocation rules being investigated. 12 

Values for 𝚺𝚺𝒂𝒂,𝚺𝚺𝒇𝒇,𝑩𝑩𝒊𝒊  

We use historical data from year 2005 to 2020 on 17 assets to compute the sample covariance 

matrix Σ𝑎𝑎 for our analysis. Exhibit 1 shows the data used for the empirical analysis as well as the 

factor loading matrix 𝐵𝐵 used for assets. Exhibit 2 shows the factor definitions as well as the assumed 

risk premia used in this article.  

For each asset, we present the excess return calculated according to Equation (1) (the factor 

 
12 Analysis on the volatility of asset weights is valuable for investors because it directly affects turnover and trans- 
action costs, which are known to be important determinants when applying an allocation rule in practice. 
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portfolios expected returns are provided in Exhibit 2), the factor loadings obtained by regressing the 

asset returns on the factor returns. We show the t-statistics of the regressions in parenthesis and report 

the R-squared in the furthermost right column. The factors are defined as factor mimicking 

portfolios. 13 All the factor returns are scaled to have 10% annualized volatility in-sample. As it is 

well known, uncovering the “true” underlying factors that affect asset returns is a difficult task that 

goes beyond the scope of this article. However, we follow the commonly used definitions of factors. 

For example, BlackRock and Barra developed risk models which include factors that are defined 

very similarly to our factor definitions. 

The factor loading matrix 𝐵𝐵 is obtained by regressing the assets’ historical returns onto the 

factor mimicking portfolios returns: 𝐷𝐷𝑎𝑎,𝑗𝑗 = 𝐷𝐷𝑓𝑓 𝐵𝐵𝑗𝑗′  + 𝜀𝜀, where 𝐷𝐷𝑎𝑎,𝑗𝑗 is the time series of returns for asset 

𝑗𝑗, and 𝐷𝐷𝑓𝑓 is the time series of returns for the 5 factors and 𝐵𝐵𝑗𝑗 is the factor loading of the 5 factors for 

asset 𝑗𝑗 (i.e., 𝐵𝐵𝑗𝑗′ is a row vector loadings for asset 𝑗𝑗 in Exhibit 1). We use the historical sample 

covariance matrix for the 5 factor mimicking portfolios as Σ𝑓𝑓. 

Values for 𝝁𝝁𝒂𝒂 and 𝝁𝝁𝒇𝒇 

 Exhibit 2 shows the factor risk premia (i.e., expected returns) assumptions (i.e., 𝜇𝜇𝑓𝑓). For ease 

of interpretability, we use factor risk premia that are consistent with those commonly assumed in 

practice. 14 We choose not to use historical factor mimicking portfolio returns as they are unlikely to 

create representative results for portfolio construction analysis in the current investing environment. 

Instead, we use risk premia assumptions that are in line with the most recent capital market 

assumptions from the industry (e.g., BlackRock and JP Morgan). The assets’ expected returns are 

computed as 𝜇𝜇𝑎𝑎  =  𝐵𝐵 𝜇𝜇𝑓𝑓. This way, the assets’ expected returns (𝜇𝜇𝑎𝑎) used in our analysis would be 

in-line with practitioners’ general expectations and the resulting portfolio weights in our analysis 

would be more realistic. Indeed, the assets’ expected returns computed using the factor risk premia 

– shown in Exhibit 1 – are generally in-line with the recent capital market assumptions surveys. 15 

 

[Insert Exhibit 1 and Exhibit 2 here] 

 
13 The use of factor mimicking portfolios is common in practice (e.g., Bender et al., 2018; Greenberg et al., 2016) as 
they are tradable. 
14 Although our choice of factor risk premia is admittedly arbitrary, our analysis does not rely on specific estimates of 
risk premia. The methodology works for any set of risk premia assumptions. 
15 For example, see the capital market assumption surveys from Horizon Actuarial Services:  
https://www.horizonactuarial.com/blog/2020-survey-of-capital-market-assumptions  

https://www.horizonactuarial.com/blog/2020-survey-of-capital-market-assumptions
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Results and Discussions 
This section is organized as follows. We start by providing a discussion on why the factor-

targeted portfolios discussed in this study are likely to be more robust than other factor-targeted 

portfolios (e.g. Elkamhi et al., 2021). After the brief discussion, we provide evidence of such 

robustness by demonstrating that, while mean-variance weights are highly sensitive to expected 

return inputs, their reverse optimized factor weights are more stable. Using these factor weights, we 

compare and show that our factor-targeted portfolios, which uses the implied factor loadings 𝐵𝐵𝑖𝑖, 

perform better than those that uses the standard factor loadings 𝐵𝐵. 

After a comparison between the two factor-targeted portfolio methodologies, we proceed to 

compare our methodology with traditional allocation rules. Specifically, we compare the 

performance of our factor-targeted portfolios with mean-variance tangency portfolios and the four 

other allocation rules described in Equations (11) to (14). Following that, we provide a robustness 

test by using different assumptions for the factor risk premia and apply them on all the portfolios 

describe thus far. 

We also perform a robustness exercise. We compare our portfolios that target the reverse 

optimized factor weights of mean-variance asset portfolios against the portfolios that target mean-

variance factor portfolios instead. 16 This comparison further reinforces the benefits of using reverse 

optimized factor weights. 

Why are our factor-targeted portfolios more robust? 
In this section, we provide the intuition for why the factor-targeted methodology discussed in 

this study is a robust method for portfolio allocation. Recall that many different asset portfolios can 

have the same set of optimal factor weights (Greenberg et al., 2016; Elkamhi et al., 2021). Indeed, 

by construction our factor-targeted portfolios have the same reverse optimized factor weights as the 

mean-variance portfolio. The performance difference between portfolios with the same implied 

factor weights lies in how well the assets are diversified in addition to the portfolio achieving the 

desired factor weights. There are two contributing factors to the robustness of our method: (1) our 

method targets the factor weights computed using the reverse optimized factor weights of the 

portfolio (i.e., 𝑤𝑤𝑓𝑓∗ =  𝐵𝐵𝑖𝑖 𝑤𝑤𝑎𝑎), rather than using the portfolio’s factor weights (i.e., 𝑤𝑤𝑓𝑓∗ = 𝐵𝐵𝑤𝑤𝑎𝑎) and (2) 

 
16 As we describe below, “mean variance factor portfolios” are the tangency portfolios calculated using expected 
returns and covariances of factors. Such portfolios differ from the “reverse optimized factor weights” that are implied 
by mean variance asset portfolios (i.e., tangency portfolios calculated directly on assets). 
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we use one of the traditional allocation rules that are risk and diversification focused as our “target 

asset weights”. This ensures that the resulting portfolio, while respecting the reverse optimized factor 

weights, is optimized towards one of these traditional portfolios, thus inheriting their properties.. 

Targeting the reverse optimized factor weights adds robustness to our portfolio when assets 

are generated from a known factor structure with errors. Indeed, note that in Equation (15) we use 

the implied factor loadings 𝐵𝐵𝑖𝑖 rather than the standard factor loadings 𝐵𝐵, which are used in Elkamhi 

et al. (2021). The reason is that the standard factor loadings 𝐵𝐵 are optimal only when assets’ expected 

returns are not subject to pricing errors. In other words, using 𝐵𝐵 implies the underlying factor model 

completely prices the assets’ expected returns without the possibility of pricing errors. Thus, when 

the “true” model includes pricing errors, using 𝐵𝐵 in a factor-targeting methodology is mis-specified 

leading to sub-optimal results. 

Furthermore, we can decompose the solution for mean-variance portfolios into two 

components (sub portfolios): 𝑤𝑤𝑎𝑎 = (𝜆𝜆 Σ𝑎𝑎)−1𝜇𝜇𝑎𝑎∗  + (𝜆𝜆 Σ𝑎𝑎)−1𝜀𝜀∗, where 𝜇𝜇𝑎𝑎∗  are components of assets' 

expected returns predicted by 𝜇𝜇𝑓𝑓∗  and 𝜀𝜀∗ are the corresponding residuals. In essence, the first sub 

portfolio – (𝜆𝜆 Σ𝑎𝑎)−1 𝜇𝜇𝑎𝑎∗  – achieves the reverse optimized factor weights of 𝑤𝑤𝑓𝑓∗ for the mean-variance 

portfolio while the second sub portfolio − (𝜆𝜆 Σ𝑎𝑎)−1 𝜀𝜀∗ − is a maximum Sharpe ratio portfolio using 

the residuals 𝜀𝜀∗. 17 Mean-variance optimization assumes investors know the “true” assets' expected 

returns (i.e., there are no errors) so the second sub portfolio should not exist.  

Finally, this intuition is consistent with the literature studying the trade-off between 

theoretical optimality and estimation error (e.g., Tu and Zhou, 2011; Kan and Zhou, 2007). On the 

one hand, investors can use the traditional mean-variance portfolio using assets, which is optimal in 

the absence of pricing errors but performs poorly in the presence of even small pricing errors. On the 

other hand, investors can use traditional rules which are considerably less affected by pricing errors 

but are sub-optimal from a theoretical perspective. Using our methodology, the decrease in 

theoretical portfolio optimality (i.e., deviating from asset mean-variance) is more than compensated 

by the reduction of the negative effects of pricing errors.  

Stability comparisons between mean-variance and reverse optimized factor 
weights 

We show in this section that the reverse optimized factor weights from a mean-variance 

 
17 The second sub portfolio does not have any reverse optimized factor weights because by definition 𝐵𝐵′𝜀𝜀∗ =  0. 



15 
 

portfolio can be used as the target factor weights in Equation (9). Using the reverse optimized factor 

weights has two advantages: reverse optimized factor weights (1) can be calculated directly using 

observable asset returns, which avoids investors the difficult task to forecast or estimate factor 

returns, and (2) are stable even in the presence of pricing errors. The latter advantage is an unforeseen 

result since it is well known that that traditional asset mean-variance portfolios are sensitive to 

changes in expected return inputs (e.g., Michaud, 1989; Best and Grauer, 1991; Britten-Jones, 1999; 

DeMiguel et al., 2009). 18 Indeed, Exhibit 3 shows that when assets’ expected returns follow a factor 

structure but are subject to pricing errors as per Equation (16), the mean-variance tangency portfolio 

weights, as expected, exhibit large variations. 

Exhibit 3 shows that converting these asset mean-variance weights to the reverse optimized 

factor weights via Equation (8) yields reverse optimized factor weights that are much more stable 

than their assets’ counterparts. For example, with a pricing error standard deviation (𝜎𝜎𝜀𝜀) of 1.0%, the 

average of the standard deviations for tangency portfolio weights across the 5,000 simulations is 

83%. Meanwhile, the average of the standard deviations for the reverse optimized factor weights is 

only 20%. This analysis shows that, even when assets’ expected returns vary (according to Equation 

(16)) leading to unstable mean-variance weights, their reverse optimized factor weights exhibit less 

variability. 

 

[Insert Exhibit 3 here] 

 

There are two components that contribute to the stability of the reverse optimized factor 

weights for the mean-variance tangency portfolio. First, as we show below, the errors in the implied 

factor returns with respect to the true factor expected returns are driven by the sample covariances 

between the assets’ pricing errors and the factor loadings. This can result in the implied factor return 

errors being smaller than the assets’ pricing errors provided that a reasonable number of assets are 

involved. Second, given the smaller number of factors (i.e., 5 factors) involved than the number of 

assets (i.e., 17 assets), it is expected that the inverse of the factor covariance matrix has less extreme 

values than the inverse of the asset covariance matrix. Furthermore, absent pricing errors, these 

reverse optimized factor weights are mean-variance optimal. Therefore, they are not only stable but 

 
18 The difficulties of estimating expected returns – which ultimately affect asset allocation – are also discussed in Black 
(1993). 
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also optimal. 

Using the definition of 𝜇𝜇𝑎𝑎 provided in Equation (1) together with the definition of 𝜇𝜇𝑓𝑓∗  in 

Equation (3), we can write the implied factor excess returns (𝜇𝜇𝑓𝑓∗ ) of the mean-variance tangency 

portfolio as 

𝜇𝜇𝑓𝑓∗ = (𝐵𝐵′𝐵𝐵)−1 𝐵𝐵′𝜇𝜇𝑎𝑎 

𝜇𝜇𝑓𝑓∗ = (𝐵𝐵′𝐵𝐵)−1 𝐵𝐵′�𝐵𝐵 𝜇𝜇𝑓𝑓 + 𝜀𝜀� 
 

  𝜇𝜇𝑓𝑓∗ = 𝜇𝜇𝑓𝑓  +  (𝐵𝐵′𝐵𝐵)−1𝐵𝐵′𝜀𝜀������� 
𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑎𝑎𝑡𝑡𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑓𝑓𝐷𝐷𝑓𝑓 𝑡𝑡𝑓𝑓𝑡𝑡𝐷𝐷 
𝑓𝑓𝑎𝑎𝑓𝑓𝑡𝑡𝐷𝐷𝑓𝑓 𝐷𝐷𝑥𝑥𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝐷𝐷𝑡𝑡𝑡𝑡𝑓𝑓𝐷𝐷𝐷𝐷

 
(17) 

Equation (17) shows that the implied factor excess returns are equal to the true values, 𝜇𝜇𝑓𝑓 , 

plus an error component that depends on the assets’ pricing errors 𝜀𝜀. The implied factor returns are 

consistent with estimates from a cross-sectional regression of asset returns on the factor loadings. 

Furthermore, the factor return errors (𝜀𝜀𝑓𝑓 = (𝐵𝐵′𝐵𝐵)−1𝐵𝐵′𝜀𝜀) can also be interpreted as an estimate from 

the following cross-sectional regression: 𝜀𝜀 = 𝐵𝐵 𝜀𝜀𝑓𝑓 + 𝜖𝜖. As such, the factor returns errors 𝜀𝜀𝑓𝑓 only 

capture the covariances between the random assets’ pricing errors ε and the factor loading 𝐵𝐵. Given 

the known factor structure (i.e., the data generating process for asset returns), these covariances have 

true values of zero based on the model (𝜇𝜇𝑎𝑎  =  𝐵𝐵𝜇𝜇𝑓𝑓  + 𝜀𝜀). In practice, the sample estimates of the 

factor return errors are small when the number of assets is (considerably) larger than the number of 

factors. In our analysis setup, when the standard deviation of asset pricing errors (𝜀𝜀) is 1.00%, the 

average of the standard deviations for the factor returns errors’ (𝜀𝜀𝑓𝑓) is 0.71%. 

From Equation (17), it follows that the mean-variance factor weights are equal to 

𝑤𝑤𝑓𝑓∗ =  �𝜆𝜆Σ𝑓𝑓�
−1
𝜇𝜇𝑓𝑓�������

𝑂𝑂𝑡𝑡𝑡𝑡𝑖𝑖𝑓𝑓𝑎𝑎𝑂𝑂 
𝑊𝑊𝐷𝐷𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝐷𝐷

+  �𝜆𝜆Σ𝑓𝑓�
−1(𝐵𝐵′𝐵𝐵)−1𝐵𝐵′𝜀𝜀�������������

𝐸𝐸𝑓𝑓𝑓𝑓𝐷𝐷𝑓𝑓 𝑓𝑓𝐷𝐷𝑓𝑓𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡

 
(18) 

Equation (18) shows that the mean-variance factor weights inherit the same structure as the implied 

factor excess returns: they are equal to the optimal weights in the absence of errors plus an error 

component. This error component is simply equal to the inverse of the factor covariance matrix 

��𝜆𝜆Σ𝑓𝑓�
−1
� times the factor return errors �𝜀𝜀𝑓𝑓 = (𝐵𝐵′𝐵𝐵)−1𝐵𝐵′𝜀𝜀�. 

As it is well known (e.g., Fan et al., 2008), estimating high-dimensional covariance matrices 

is very challenging as the number of covariances to estimate grows much faster than the matrix 

dimension. Therefore, large covariance matrices have very large estimation errors. When the inverse 
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of the covariance matrix is calculated, the effects of these estimation errors are exacerbated. Indeed, 

from linear algebra we know that the eigenvalue decomposition of the inverse covariance matrix is 

Σ−1 = 𝑉𝑉 Λ−1 𝑉𝑉−1, where 𝑉𝑉 is the eigenvector matrix and Λ−1 is a diagonal matrix with elements 

containing the inverse eigenvalues for each eigenvector. The inverse eigenvalues of the factor 

covariance matrix are less extreme than that of the asset covariance matrix, resulting in small errors 

in portfolio weights for the same errors in returns. For example, using the covariance matrices in our 

setup, the largest inverse eigenvalue of the factor covariance matrix has a value of 279, while that of 

the asset covariance matrix has a value of 2117, almost eight times larger. 

Given the smaller values of the factor return errors (when compared with assets’ pricing 

errors) and an inverse factor covariance matrix that has less extreme values (i.e., much less extreme 

inverse eigenvalues), the errors in the reverse optimized factor weights 𝑤𝑤𝑓𝑓∗ are, as a result, more stable 

than the mean-variance asset weights. 

Having established the benefits of using the reverse optimized factor weights in the presence 

of pricing errors, we proceed to compare the performances of our factor-targeted portfolios using 

reverse optimized factor weights against alternative methods. 

Comparisons between using standard (𝑩𝑩) and implied (𝑩𝑩𝒊𝒊) factor loadings 
The methodology presented in this study generalizes the special case provided in Elkamhi et 

al. (2021). While Elkamhi et al. (2021) provide a solution to build factor-targeted portfolios where 

assets follow a factor structure without errors, we generalize their approach to the more realistic case 

where asset returns are generated from a factor model with pricing errors. As discussed extensively 

in the literature, pricing errors arise for multiple reasons. For example, the model could be missing 

an important factor, or the chosen factors might only be a proxy for the “true” (and unobservable) 

factors underlying asset returns, etc.  

In this section, we compare our factor-targeted portfolios, which uses the implied factor 

loadings 𝐵𝐵𝑖𝑖, with the factor-targeted portfolios from Elkamhi et al. (2021), which use the standard 

factor loadings 𝐵𝐵. Specifically, we generalize the optimization problem in Equation (9) as follows 

argmin
𝑤𝑤

𝛾𝛾 �𝐾𝐾 𝑤𝑤 −  𝑤𝑤�𝑓𝑓′� �𝐾𝐾 𝑤𝑤 −  𝑤𝑤�𝑓𝑓′�′�������������������
𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑎𝑎𝑡𝑡𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑓𝑓𝐷𝐷𝑓𝑓 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝐷𝐷𝐷𝐷
𝐷𝐷𝑡𝑡𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑜𝑜𝐷𝐷𝑜𝑜 𝑓𝑓𝑎𝑎𝑓𝑓𝑡𝑡𝐷𝐷𝑓𝑓 𝑤𝑤𝐷𝐷𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝐷𝐷

+ (1 − 𝛾𝛾) (𝑤𝑤 −  𝑤𝑤�𝑎𝑎)′ (𝑤𝑤 −  𝑤𝑤�𝑎𝑎)���������������
𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑎𝑎𝑡𝑡𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑓𝑓𝐷𝐷𝑓𝑓

𝑇𝑇𝑎𝑎𝑓𝑓𝑤𝑤𝐷𝐷𝑡𝑡 𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 𝑤𝑤𝐷𝐷𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝐷𝐷

 
(19) 

where 𝐾𝐾 =  𝐵𝐵 for the standard factor loadings and 𝐾𝐾 =  𝐵𝐵𝑖𝑖 for the implied factor loadings. 
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Empirically, 𝐵𝐵 are the values provided in Exhibit 1, while the matrix 𝐵𝐵𝑖𝑖 is computed according to 

Equation (5). The solution to the above problem is  

 

𝑤𝑤𝑓𝑓𝑡𝑡,𝑥𝑥,𝐾𝐾 =  [𝛾𝛾𝐾𝐾′𝐾𝐾 +  (1 − 𝛾𝛾)𝐼𝐼𝑁𝑁×𝑁𝑁]−1� 𝛾𝛾 𝐾𝐾′𝑤𝑤𝑓𝑓,𝑡𝑡𝑡𝑡
∗  + (1 − 𝛾𝛾)𝑤𝑤�𝑥𝑥�, 𝛾𝛾 =  0.999 (20) 

 

When the underlying data contain pricing errors − as it is likely to be the case empirically − 

using 𝐾𝐾 =  𝐵𝐵𝑖𝑖 results in portfolios derived from the “true” model (i.e., accounting for pricing errors). 

Using 𝐾𝐾 =  𝐵𝐵 results in portfolios derived from the “wrong” model (without accounting pricing 

errors) and are therefore “sub-optimal”. As we show below via simulations, using 𝐾𝐾 = 𝐵𝐵 achieves 

weaker performances. 

Exhibit 4 provides a comparison of Sharpe ratios between the factor-targeted portfolios using 

the standard (𝐵𝐵) and implied factor loadings (𝐵𝐵𝑖𝑖). First, Panel A of Exhibit 4 shows the average and 

standard deviation of the Sharpe ratios from the 5,000 simulations of asset returns. Specifically, using 

our 5,000 simulations of the assets expected returns as per Equation (16), we calculate the asset 

weights for each strategy and compute their portfolio Sharpe ratios using the “true” value of assets’ 

expected return 𝜇𝜇𝑎𝑎 = 𝐵𝐵𝜇𝜇𝑓𝑓 (i.e., without pricing errors) and assets’ covariance matrix Σ𝑎𝑎. 

 

[Insert Exhibit 4 here] 

 

The mean-variance tangency portfolio Sharpe ratio statistics are provided as a reference in 

Panel A since we know that in the absence of pricing errors, they are the best performance that an 

investor could achieve. However, we also note that the performance of the mean-variance tangency 

portfolio sharply deteriorates in the presence of pricing errors (e.g., Michaud, 1989).  

Before discussing the results in the presence of pricing errors, we examine the standard 

deviation for expected returns’ pricing errors that we can expect empirically. Using the historical 

data and the factor loading presented in Exhibit 1, we compute the historical weekly returns for the 

factor mimicking portfolios. Together with the factor loadings 𝐵𝐵, we calculate (or price) the asset 

returns based on the realized factor returns and Equation (1). We then compute the empirically 

observed pricing errors as the difference between the realized asset returns and the asset returns 

priced by the realized factor returns. We compute the standard deviation for these pricing errors for 

each asset and apply the square root of time rule to compute the standard deviation for the average 
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annualized pricing errors for a 30-year time period. This time window represents a typical time period 

for long-term expected return forecasts. Averaging those standard deviations across assets yield a 

value of approximately 1.5%. Therefore, our analysis shows that a value of 1.5% is a representative 

of the standard deviation of pricing errors of assets’ expected return for a 30-year horizon under our 

factor model. 

 Panel B and Panel C of Exhibit 4 show the statistics for the Sharpe ratio of the factor-targeted 

portfolios using standard (𝐵𝐵) and implied (𝐵𝐵𝑖𝑖) factor loadings, respectively. To ensure the robustness 

of our results, we employ four-different target asset weights: Maximum Diversification, Minimum 

Volatility, 1/N and Equal Risk Contributions, which are described in Equations (11) to (14). 

Consistent with the intuition that we provided above, the average Sharpe ratios are lower when using 

the standard factor loadings (𝐵𝐵) as opposed to the implied factor loadings (𝐵𝐵𝑖𝑖) for any level of pricing 

errors 𝜎𝜎𝜀𝜀 and for any choice of target asset weights. This confirms that not only 𝐵𝐵 is sub-optimal 

theoretically but it also performs worse than 𝐵𝐵𝑖𝑖.  

 

[Insert Exhibit 5 here] 

 

To gain further insights into the performance of our factor-targeted portfolios, Exhibit 5 plots 

the distribution of Sharpe ratios from the 5,000 simulations using a value of 𝜎𝜎𝜀𝜀 = 1.25%. Panel A of 

Exhibit 5 plots the distribution of Sharpe ratios for the mean-variance tangency portfolio (red bars), 

the factor-targeted portfolios using standard factor loadings 𝐵𝐵 (yellow bars) and the factor-targeted 

portfolios using implied factor loadings 𝐵𝐵𝑖𝑖 (green bars). For the factor-targeted portfolios, we use the 

Maximum Diversification portfolio as target asset weights. The figure clearly shows that the 

performance of the factor-targeted portfolios using implied factor loadings 𝐵𝐵𝑖𝑖 vastly supersedes the 

other two methodologies: the distribution is shifted to the right (i.e., it has a higher average) and it is 

also much more “narrow” around its mean (i.e., it has less variability). Thus, this provides evidence 

that our factor-targeted portfolios, which use the implied factor loadings, are less affected by pricing 

errors. Panel B, C and D of Exhibit 5 repeat the same analysis provided in Panel A but use different 

target asset weights. Specifically, Panel B uses the Minimum Volatility Portfolio as target asset 

weights, while Panel C and D use the 1/N and the Equal Risk Contribution portfolios, respectively. 

 

[Insert Exhibit 6 here] 
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In Panel A of Exhibit 6, we report the probabilities that the factor-targeted portfolios 

outperform the mean-variance tangency portfolio in terms of Sharpe ratios. We run our analysis for 

various levels of 𝜎𝜎𝜀𝜀 . First, as expected, in the absence of estimation error, the mean-variance tangency 

portfolio is the optimal portfolio with certainty. Interestingly, as soon as there are small pricing errors 

(𝜎𝜎𝜀𝜀 ≥ 0.5%), the probabilities of outperforming mean-variance for the four factor-targeted portfolios 

quickly increase above 50% and reach approximately 90% (𝜎𝜎𝜀𝜀 = 1.0%), thus showing a strong 

outperformance with respect to the tangency portfolio.  

This result provides further evidence that our factor-targeted portfolios perform better than 

the tangency portfolio in the presence of even small pricing errors. Panel B provides the same analysis 

for the factor-targeted portfolios using standard factor loadings. There is one main takeaway from 

Panel B of Exhibit 6: the probability of outperforming the mean-variance tangency portfolio is much 

lower when factor-targeted portfolios are built using the standard factor loadings 𝐵𝐵 rather than built 

using the implied factor loadings 𝐵𝐵𝑖𝑖. For example, using the Maximum Diversification portfolio as 

target asset weights and 𝜎𝜎𝜀𝜀 = 0.5%, the probability of outperforming the mean-variance tangency 

portfolio is 87% using implied factor loadings 𝐵𝐵𝑖𝑖, while the probability is only 41.7% when using 

standard factor loadings.  

Last, we would like to comment on the effect that the target asset weights have on the factor-

targeted portfolios. Our methodology is similar in spirit to the shrinkage estimators pioneered by 

Stein (1956) and to the methodology of Elkamhi et al. (2021). Shrinkage estimators generate an 

estimate of a model’s coefficient by shrinking the original raw estimate toward a common value. 

Similarly, our methodology finds the factor-targeted portfolios by “shrinking” the portfolio towards 

the target asset weights. In other words, our methodology chooses the factor-targeted portfolios such 

that (1) they respect the desired factor weights and (2) they are as close as possible to the chosen 

target asset weights. Throughout this article, we present four allocation rules (Maximum 

Diversification, Minimum Volatility, 1/N and Equal Risk Contributions) but these are just for 

illustrative purposes. Our proposed methodology – which ultimately is summarized in Equation (9) 

– can be applied to any allocation rule. 19 

 
19 In untabulated results, we find that using inverse volatility and inverse variance allocation rules yields qualitatively 
similar results to those discussed for the 4 allocation rules presented in this article. That is, using implied factor loadings 
leads to factor-targeted portfolios that outperform portfolios built using standard factor loadings. 
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Comparisons between factor-targeted portfolios and traditional portfolios 
Exhibit 7 shows the weights for the target asset portfolios 𝑤𝑤�𝑥𝑥, their corresponding factor-

targeted portfolios 𝑤𝑤𝑓𝑓𝑡𝑡,𝑥𝑥 and their reverse optimized factor weights for this analysis. 20 For each of 

the 5,000 simulation, we first calculate the reverse optimized factor weights 𝑤𝑤𝑓𝑓,𝑡𝑡𝑡𝑡
∗  based on the mean-

variance tangency portfolio. Next, we use these reverse optimized factor weights 𝑤𝑤𝑓𝑓,𝑡𝑡𝑡𝑡
∗  and apply 

them in Equation (15) for the four target asset portfolios as per Equations (11) to (14) to calculate the 

factor-targeted portfolio weights 𝑤𝑤𝑓𝑓𝑡𝑡,𝑥𝑥
∗ . 

 

[Insert Exhibit 7 and Exhibit 8 here] 

 

Exhibit 7 shows that the reverse optimized weights for the four factor-targeted portfolios are 

the same when 𝜇𝜇𝑎𝑎 = 𝐵𝐵 𝜇𝜇𝑓𝑓 (with no errors) and they are equal to the reverse optimized factor weights 

from the mean-variance tangency portfolio shown in Panel B of Exhibit 3. 21 In other words, these 

factor-targeted portfolios imply the same factor risk premia as the mean-variance portfolio would for 

the same assets’ expected return inputs. 

Using our simulated data, we calculate the standard deviations of these factor-targeted asset 

weights across the simulation and report them in Exhibit 8. There are two main results from Exhibit 

8. First, we note that the asset weight standard deviations are the same for each asset across all four 

factor-targeted asset portfolios. As shown in Equation (15), only 𝑤𝑤𝑓𝑓,𝑡𝑡𝑡𝑡
∗  is affected by pricing errors 

to 𝜇𝜇𝑎𝑎 while 𝑤𝑤�𝑥𝑥 is not. This is because the four traditional allocation rules used in Equation (15) do 

not depend on 𝜇𝜇𝑎𝑎 and therefore their weights 𝑤𝑤�𝑥𝑥 are not affected by the pricing errors in 𝜇𝜇𝑎𝑎.  

The covariance matrix for the factor-targeted portfolio weights can be written as 

Σ𝑤𝑤𝑓𝑓𝑡𝑡,𝑥𝑥 =  𝑃𝑃 Σ𝑓𝑓 𝑃𝑃′ (21) 

where 𝑃𝑃 =  [ 𝛾𝛾 𝐵𝐵𝑖𝑖′𝐵𝐵𝑖𝑖 +  (1 − 𝛾𝛾)𝐼𝐼𝑁𝑁× 𝑁𝑁]−1 𝛾𝛾𝐵𝐵𝑖𝑖′ . The asset weight standard deviations shown in 

Exhibit 8 across the 5,000 simulations are estimates of the square root of the diagonal elements of 

Σ𝑤𝑤𝑓𝑓𝑓𝑓,𝑥𝑥. Equation (21) is applicable for all four target asset portfolios (Equations (11) to (14)). 

Therefore, their factor-targeted asset weights standard deviations are only affected by the variation 

 
20 It is worth noting that in Exhibit 4, the reverse optimized factor weights for the traditional portfolios can be quite 
arbitrary as they are affected only by 𝛴𝛴𝑎𝑎 and what assets are included in the optimization (we explore this point later in 
the results and discussions section). 
21 This result is by design as it can be derived from Equation (15). 
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in the reverse optimized factor weights, which is the same across all four target portfolios (e.g., 

Maximum Diversification, etc.). 

Second, the weight standard deviations from Exhibit 8 are considerably more stable than 

those for the mean-variance tangency portfolios shown in Exhibit 3. For example, with 𝜎𝜎𝜀𝜀 = 1%, the 

average of the weight standard deviations across assets for the mean-variance tangency portfolio is 

83% (see Exhibit 3). For the factor-targeted portfolios, the average of the weight standard deviations 

across assets is only 2.8%. Another way to analyze the stability of the factor-targeted portfolios is to 

evaluate their risk exposures. In the interest of brevity, we report such results in Appendix B where 

we show that, indeed, the factor-targeted portfolios are stable in terms of volatility contributions as 

well as standalone volatility risk.  

Comparisons under different risk premia assumptions 
How would different risk premia assumptions affect the factor-targeted and traditional 

portfolios? We address the question in this section by considering four alternative risk premia 

assumptions, which are shown in Exhibit 9. Set-1 is the same set of assumptions as those provided 

in Exhibit 2. Set-2 to Set-4 represent scenarios where risk premiums are concentrated on selected 

factors: Set-2 is a scenario whereby only the equity and credit factors have risk premia; Set-3 

represents a scenario whereby only bonds have risk premia; Set-4 is a scenario whereby only 

commodities have risk premia.  

Exhibit 10 shows the averages and standard deviations of portfolio Sharpe ratios across the 

5,000 simulations for the four sets of risk premia settings and for 𝜎𝜎𝜀𝜀  =  0% (no errors), 1% and 

2%. 22 Specifically, Panel A contains the results for the Mean-variance portfolio and Panel B contains 

the results for the four traditional portfolios that we also used as target asset weights. Panel C and D 

contain the results for the factor target portfolios using implied (𝐵𝐵𝑖𝑖) and standard (𝐵𝐵) factor loadings, 

respectively. 

 

[Insert Exhibit 9 and Exhibit 10 here] 

 

There are several observations on the results shown in Exhibit 10. First, for each set of risk 

premia, the Sharpe ratio of the tangency portfolios (Panel A) when 𝜎𝜎𝜀𝜀  =  0% is the highest when 

 
22 We do not present the Sharpe ratio standard deviations for the traditional portfolios (Panel B) since they are not 
affected by pricing errors (𝜎𝜎𝜀𝜀). 
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compared with all other asset allocation rules (Panels B, C and D). This is intuitive since, in the 

absence of pricing errors, the tangency portfolio is, by definition, the portfolio with the highest Sharpe 

ratio.  

Second, we compare the mean-variance tangency and the factor-targeted portfolios, both 

using implied (𝐵𝐵𝑖𝑖) and standard (𝐵𝐵) factor loadings. Panel C shows that the performance of the factor-

targeted portfolios becomes superior to that of the tangency portfolios when assets’ expected returns 

are subject to errors. When 𝜎𝜎𝜀𝜀 = 1% or 2%, the factor-targeted portfolio Sharpe ratios using implied 

(𝐵𝐵𝑖𝑖) factor loadings become higher than those of the tangency portfolios. This is because, as the error 

standard deviation increases, the factor-targeted Sharpe ratios deteriorate at a much slower pace than 

those of the tangency portfolios (Panel A). Panel D shows that the factor-targeted portfolio Sharpe 

ratios using standard (𝐵𝐵) factor loadings are also higher than those of the tangency portfolios in the 

presence of pricing errors; thus, showing that the use of factor-targeted portfolios outperforms the 

use of mean-variance asset tangency portfolios. However, consistent with our discussion above, the 

Sharpe ratios shown in Panel C, which use implied factor loadings, are higher than those shown in 

Panel D, which use standard factor loadings. 

Third, we compare the factor-targeted and other traditional portfolios (Maximum 

Diversification, Minimum Volatility, 1/N and Equal Risk Contributions). Although traditional 

portfolios are not affected by pricing errors in the expected returns as they utilize only the covariance 

matrix (or they are naïve such as 1/N and use no information), their performances vary noticeably 

across different risk premia scenarios. When 𝜎𝜎𝜀𝜀 = 0%, the factor-targeted portfolios have higher 

Sharpe ratios than those of the traditional portfolios across the four different sets of risk premia 

assumptions. When 𝜎𝜎𝜀𝜀 = 2%, most of the factor-targeted portfolios have higher Sharpe ratios across 

the risk premia assumptions labelled Set-1, Set-2 and Set-4. For Set-3 (where only bonds have risk 

premia), the traditional portfolios have higher Sharpe ratios. The reason why traditional portfolios 

outperform for Set-3 is due to their high real return bonds factor weights in our examples, as shown 

in Panel B from Exhibit 7. These high real return bonds factor weights depend on the choice of the 

asset universe used in the portfolio construction (i.e., the 17 assets we used in this article). 

Using weights from mean-variance on factors as target factor weights 
The results presented thus far use the reverse optimized factor weights for tangency portfolios 

described in Equation (8) as the target factor weights to build factor-targeted portfolios. These desired 

factor weights are derived by taking into account that there are pricing errors they are equivalent to 
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the mean-variance optimal factor weights in the absence of pricing errors (see Equation (6)).  

It is natural to ask: how would the results change if one uses the mean-variance optimal factor 

weights, rather than using the reverse optimized factor weights for a tangency portfolio, as the target 

factor weights for our methodology? We know that in the absence of pricing errors, using the mean-

variance factor weights is equivalent to using the reverse optimized factor weights of a tangency 

portfolio but it is relevant to investigate how pricing errors would affect the results. 23  

In Exhibit 11, we provide a comparison between factor-targeted portfolios built using reverse 

optimized factor weights of a tangency portfolio (i.e., Equation (8)) and factor-targeted portfolios 

built using mean-variance factor weights. Similar to our analysis above, we simulate asset returns 

according to Equation (1). For each of the 5000 simulations, we calculate the expected returns for 

each of the 5 macroeconomic factors using the simulated assets’ expected returns and the definition 

of macroeconomic tradeable factors provided in Exhibit 2. We then use mean-variance optimization 

(i.e., Equation (6)) to obtain the “mean-variance optimal” factor weights for each simulation. We use 

these mean-variance optimal factor weights as target factor weights to build a version of factor-

targeted portfolios that we compared against those that uses the reverse optimized factor weights of 

a tangency portfolio. 

 

[Insert Exhibit 11 and Exhibit 12] 

 

Panel A provides the average and standard deviation of Sharpe ratios using mean-variance 

directly on assets, which provides a benchmark. Panel B and Panel C show the average and standard 

deviation of Sharpe ratios for the factor-targeted portfolio built using reverse optimized factor 

weights of tangency portfolios and using mean-variance optimal factor portfolios (i.e., portfolios 

built using the mean-variance optimal factor weights), respectively. When there are no pricing errors, 

Panels B and C generate the same results as expected.  

However, for pricing errors 𝜎𝜎𝜀𝜀 that are greater than zero, Panels B and C exhibit differences. 

Specifically, consistent with the fact that reverse optimized factor weights account for pricing errors 

while mean-variance factor weights do not, the former methodology outperforms the latter more and 

more as pricing errors become larger. Consider the row with target asset weights equal to the 

maximum diversification portfolio (𝑤𝑤𝐴𝐴:𝑀𝑀𝑀𝑀𝑀𝑀.𝐷𝐷𝑀𝑀𝐷𝐷); for 𝜎𝜎𝜀𝜀 = 2%, the average Sharpe ratio (𝜇𝜇(𝑆𝑆𝑅𝑅)) 

 
23 We thank the anonymous referee for suggesting us to conduct this analysis using mean-variance factor weights. 
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is equal to 28.1% using reverse optimized factor weights of tangency portfolios while it is lower at 

22.6% using mean-variance factor weights. Exhibit 11 shows that, as pricing errors become larger, 

the standard deviation of the Sharpe ratios increases more for portfolios built using mean-variance 

factor weights than those built using reverse optimized factor weights. For 𝜎𝜎𝜀𝜀 = 2%, the standard 

deviation of Sharpe ratios (𝜎𝜎(𝑆𝑆𝑅𝑅)) is equal to 5.1% using reverse optimized factor weights of 

tangency portfolio while it is much higher at 12.8% using mean-variance factor weights.  

Exhibit 12 shows the probabilities of outperforming mean-variance for factor-targeted 

portfolios built using the two sets of target factor weights. As we did in Exhibit 6, we measure such 

probability as the percentage of cases when a factor-targeted portfolio has higher Sharpe ratio than 

the mean-variance tangency portfolio. The blue solid line shows the probability when we use the 

reverse optimized factor weights while the dashed orange line shows the probability when we use 

mean-variance factor weights. Each of the four panels in Exhibit A contains the result for one of the 

target asset weights that we used throughout this article: Maximum Diversification in Panel A, 

Minimum Volatility in Panel B, 1/N in Panel C, Equal Risk Contributions in Panel D. Consistent 

with Exhibit 11, Exhibit 12 shows that as pricing errors increase, the portfolios built using reverse 

optimized factor weights outperform those built using mean-variance factor weights. This result is 

robust across all 4 target-asset weights. 

CONCLUSIONS 
In this article, we show that when assets’ expected returns follow a factor structure subject to 

pricing errors, the traditional asset mean-variance portfolio can be reverse optimized to obtain 

implied factor premia and associated mean-variance factor portfolio weights that are considerably 

less volatile than the asset weights. This is due to (1) the implied factor expected returns likely having 

less errors than the assets’ expected returns and (2) the inverse factor covariance matrix having fewer 

extreme values than the inverse asset covariance matrix. This means that the reverse optimized factor 

weights from the mean-variance tangency portfolio can be used as the desired factor weights to build 

a portfolio. 

We exploit this result by developing a methodology to build what we call “factor-targeted” 

portfolios that target the factor weights implied by the traditional mean-variance tangency portfolio. 

Our methodology achieves a unique mapping between factor weights and asset weights by using a 

set of target asset weights as an additional portfolio optimization objective. In our analysis, we use 
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four traditional, risk and diversification focused portfolio allocation rules to compute target asset 

weights and show that they all yield similar results in terms of Sharpe ratios. Our factor-targeted 

portfolios not only have higher average Sharpe ratios than those of the mean-variance tangency 

portfolios when assets’ expected returns are subject to errors, but they also generate such higher 

Sharpe ratios with a high probability even when pricing errors are small. Furthermore, the factor-

targeted portfolio weights are more robust than the mean-variance portfolio weights when asset 

expected return inputs vary, which is an important consideration for investors in practice. We provide 

robustness tests to confirm the validity of our results by using (1) alternative factor risk premia 

assumptions, and (2) mean-variance factor weights as our target factor weights. 

We provide an explanation for why our methodology achieves robust results when applied. 

The intuition is as follows. Other methodologies, such that those from Greenberg et al. (2016) and 

Elkamhi et al. (2021), build portfolios that target a desired set of factor weights under an implicit 

modelling assumption that assets’ expected returns have no pricing errors. We show in this article 

that, in the presence of pricing errors, the optimal factor weights differ from those that one would 

obtain by assuming no pricing errors. Therefore, when there are pricing errors but investors do not 

account for them, they would build sub-optimal portfolios. Also, our methodology guarantees that 

the portfolio would achieve a high level of asset risk diversification in addition to matching the 

desired factor weights by targeting the portfolio to traditional allocation rules that are risk and 

diversification focused.  

In conclusion, our factor-targeted portfolios combine useful elements from both mean-

variance and traditional methodologies. By targeting the portfolios’ reverse optimized factor weights 

to those implied by the mean-variance tangency portfolio, the resulting portfolio has the same factor 

optimality as the mean-variance portfolio but is much more robust against errors in assets’ expected 

returns. 
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Exhibit 1: Historical data and factor loadings 

Assets Bloomberg Expected Factor loading matrix 𝐵𝐵 (t-stats in parenthesis)    
 ticker Excess  Real Return  Break-even    

    returns Equities Bonds Commodities Inflation Credit  R-squared 
Equity - U.S. ES1 Index 5.0% 1.60 0.00 -0.01 -0.12 0.20  84.59% 

   (46.49) (0.14) (-0.43) (-3.64) (6.15)   
Equity - Europe VG1 Index 5.7% 2.02 -0.08 -0.15 0.23 -0.06  86.13% 

   (50.80) (-2.46) (-4.64) (5.83) (-1.54)   
Equity - U.K. Z 1 Index 5.1% 1.67 0.10 0.02 -0.06 0.04  85.97% 

   (51.00) (3.81) (0.64) (-1.94) (1.27)   
Equity - Japan TP1 Index 4.9% 1.78 -0.05 -0.27 0.15 -0.13  61.51% 

   (27.61) (-1.05) (-5.32) (2.36) (-2.05)   
Equity - E.M. EEM US Equity* 6.8% 2.13 0.01 0.48 -0.17 -0.12  84.59% 

   (37.56) (0.19) (10.63) (-3.16) (-2.24)   
Fixed Income - U.S. TY1 Comdty 0.4% -0.01 0.48 0.03 -0.34 -0.04  81.46% 

   (-1.16) (53.67) (3.33) (-30.99) (-3.87)   
Fixed Income - Europe RX1 Comdty 0.5% 0.00 0.50 -0.03 -0.39 0.03  86.95% 

   (0.47) (66.50) (-3.69) (-42.97) (3.36)   
Fixed Income - U.K. G 1 Comdty 0.6% 0.01 0.58 0.00 -0.43 0.01  86.60% 

   (0.90) (66.98) (-0.28) (-40.40) (1.24)   
Credit - I.G. IBOXIG Index* 0.9% 0.04 0.57 -0.01 -0.30 0.34  84.59% 

   (1.71) (32.44) (-0.45) (-14.17) (16.22)   
Credit - H.Y. IBOXHY Index* 1.1% -0.01 0.19 0.01 -0.14 0.91  98.86% 

   (-1.16) (53.67) (3.33) (-30.99) (208.98)   
Inflation Linked - U.S. LBUTTRUU Index* 0.5% 0.01 0.51 0.07 -0.07 0.00  68.93% 

   (0.31) (39.99) (5.16) (-4.48) (0.08)   
Inflation Linked - Europe BEIG1T Index* 0.3% 0.05 0.38 -0.06 0.09 -0.01  61.39% 

   (3.06) (29.32) (-4.28) (5.79) (-0.53)   
Inflation Linked - U.K. FTRFILA Index* 0.3% -0.10 0.84 -0.01 -0.05 0.01  84.59% 

   (-3.51) (35.71) (-0.37) (-1.87) (0.48)   
Commodity - Oil CL1 Comdty 2.2% 0.04 -0.30 2.39 0.57 0.07  47.49% 

   (0.29) (-2.81) (22.04) (4.35) (0.56)   
Commodity - Gold GC1 Comdty 0.7% -0.31 0.40 1.36 -0.15 -0.10  50.16% 

   (-4.99) (8.15) (27.26) (-2.51) (-1.75)   
Commodity - Copper HG1 Comdty 3.4% 0.63 -0.22 1.70 0.05 -0.06  56.28% 

   (7.18) (-3.17) (24.25) (0.65) (-0.66)   
Commodity - Corn C 1 Comdty 1.4% -0.20 -0.18 1.92 -0.25 0.17  84.59% 
      (-1.86) (-2.11) (22.21) (-2.35) (1.65)     
* series converted to excess returns using the local 3-month risk free rate 

This table shows the 17 assets used to compute the assets’ covariance matrix Σ𝑎𝑎. Expected excess returns are computed using 
the formula 𝜇𝜇𝑎𝑎 = 𝐵𝐵𝜇𝜇𝑓𝑓 . 𝐵𝐵 is the 17 × 5 factor loadings’ matrix (t-stats in parenthesis). The factor definitions and their assumed 
risk premia 𝜇𝜇𝑓𝑓 are provided in Exhibit 2. Data are obtained from Bloomberg for the period between January 1, 2005 and 
December 31, 2019. Non-overlapping weekly excess returns are used. We regress asset returns on the 5 factors defined in 
Exhibit 2 to calculate the factor loadings 𝐵𝐵 shown above.  
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Exhibit 2: Factor definitions and risk premium assumptions 

 

Factors Risk Premiums 𝜇𝜇𝑓𝑓 Definitions 

Equities 3.00% 
Inverse volatility weighted equity basket (U.S., Europe, 
U.K., Japan, Emerging Markets), scaled to 10% annualized 
volatility. 

Real Return Bonds 0.75% Inverse volatility weighted real return bond basket (U.S., 
Europe, U.K.), scaled to 10% annualized volatility. 

Commodities 1.00% Inverse volatility weighted commodity basket (Oil, Gold, 
Copper, Corn), scaled to 10% annualized volatility. 

Break-even Inflation -0.25% 

Long 1 unit on the Real Return Bonds factor, and short 1 unit 
on the inverse volatility weighted fixed income basket (U.S., 
Europe, U.K.) scaled to 10% annualized volatility. The 
break-even inflation factor is then scaled to 10% annualized 
volatility. 

Credit 1.00% 
Long 1 unit on the U.S. High Yield Credit in excess returns 
and short 0.4 units on the U.S. 10-year Treasury futures for a 
neutral interest rate duration credit factor portfolio. 

 

This table contains the definitions for the 5 factors used in the analysis and their assumed risk premia. 
Factors are defined by factor mimicking portfolios. The weekly return series for assets listed in 
Exhibit 1 are weighted according to the definitions above to create the factor return series. The 
historical factor return series are used to compute the factor covariance matrix Σ𝑓𝑓. 
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Exhibit 3: Stability of mean-variance and reverse optimized 
factor weights 

Assets / Factors Portfolio Std. dev. of portfolio weights 
 weights for different 𝜎𝜎𝜀𝜀 

    0.5% 1.0% 1.5% 2.0% 
Panel A: Mean-variance tangency portfolio 
Equity - U.S. 10.0% 15% 29% 44% 58% 
Equity - Europe 8.2% 17% 34% 51% 68% 
Equity - U.K. 10.1% 18% 37% 55% 73% 
Equity - Japan 8.5% 5% 9% 14% 18% 
Equity - E.M. 7.3% 6% 13% 19% 25% 
Fixed Income - U.S. 50.4% 135% 271% 406% 542% 
Fixed Income - Europe 47.3% 134% 268% 402% 536% 
Fixed Income - U.K. 41.1% 116% 231% 347% 463% 
Credit - I.G. 0.0% 50% 101% 151% 202% 
Credit - H.Y. -8.9% 32% 63% 95% 126% 
Inflation Linked - U.S. -27.6% 84% 168% 252% 336% 
Inflation Linked - Europe -30.2% 57% 114% 171% 228% 
Inflation Linked - U.K. -15.8% 27% 54% 80% 107% 
Commodity - Oil -0.1% 2% 3% 5% 7% 
Commodity - Gold -0.2% 5% 9% 14% 18% 
Commodity - Copper -0.1% 3% 5% 8% 11% 
Commodity - Corn -0.1% 2% 4% 6% 8% 
Average of Std. dev. across assets 42% 83% 125% 166% 

      
Panel B:  Reverse optimized factor weights from the mean-variance tangency portfolio 
Factor - Equities 80.1% 9% 18% 28% 37% 
Factor - Real Return Bonds 31.6% 6% 13% 19% 25% 
Factor - Commodities -0.7% 3% 7% 10% 14% 
Factor - Break-even Inflation -52.3% 16% 32% 48% 64% 
Factor - Credit -8.2% 14% 28% 43% 57% 
Average of Std. dev. across factors 10% 20% 29% 39% 

 

Panel A shows the portfolio weights (𝑤𝑤𝑎𝑎,𝑡𝑡𝑡𝑡) for the mean-variance tangency portfolio in column 
“Portfolio Weights”. The four rightmost columns show the standard deviations of 𝑤𝑤𝑎𝑎,𝑡𝑡𝑡𝑡 across 5,000 
simulations for different values of 𝜎𝜎𝜀𝜀  according to Equation (16). The averages of the asset weight 
standard deviations are provided in the last row. Panel B provides the same type of information for 
the reverse optimized factor weights (𝑤𝑤𝑓𝑓,𝑡𝑡𝑡𝑡

∗ ) obtained from the asset weights 𝑤𝑤𝑎𝑎,𝑡𝑡𝑡𝑡 in Panel A. For 
each simulation, the mean-variance tangency weights are converted to the reverse optimized weights 
using Equation (8) and the standard deviations of those factor weights across simulations are 
calculated for different 𝜎𝜎𝜀𝜀. 
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Exhibit 4: Sharpe ratio comparisons for different factor-targeted 
portfolios 

Portfolio allocation Sharpe ratio Std. dev. of portfolio weights for different 𝜎𝜎𝜀𝜀 

methods statistics   
    0.0% 0.5% 1.0% 1.25% 1.5% 2.0% 

Panel A: Mean-variance portfolio 

Tangency 𝜇𝜇(𝑆𝑆𝑅𝑅) 40.8% 29.1% 18.8% 15.8% 13.5% 10.4% 

 𝜎𝜎(𝑆𝑆𝑅𝑅)  4.9% 6.6% 6.9% 7.0% 7.1% 

        
Panel B: Factor-Targeted portfolios using the standard factor loadings 𝐵𝐵 

𝑤𝑤𝐴𝐴: Max. Div. 𝜇𝜇(𝑆𝑆𝑅𝑅) 28.3% 27.9% 24.9% 23.0% 21.2% 18.1% 

 𝜎𝜎(𝑆𝑆𝑅𝑅)  4.6% 6.2% 6.8% 7.3% 7.9% 
𝑤𝑤𝐴𝐴: Min. Vol. 𝜇𝜇(𝑆𝑆𝑅𝑅) 25.9% 25.9% 23.7% 22.1% 20.5% 17.6% 

 𝜎𝜎(𝑆𝑆𝑅𝑅)  4.4% 5.9% 6.4% 6.9% 7.5% 
𝑤𝑤𝐴𝐴: 1/N 𝜇𝜇(𝑆𝑆𝑅𝑅) 20.8% 21.3% 20.7% 19.8% 18.7% 16.4% 

 𝜎𝜎(𝑆𝑆𝑅𝑅)  3.7% 5.3% 5.7% 6.1% 6.7% 
𝑤𝑤𝐴𝐴: ERC 𝜇𝜇(𝑆𝑆𝑅𝑅) 22.3% 22.8% 21.9% 20.8% 19.5% 16.9% 

 𝜎𝜎(𝑆𝑆𝑅𝑅)  4.1% 5.7% 6.2% 6.5% 7.1% 

        
Panel C: Factor-Targeted portfolios using the implied factor loadings 𝐵𝐵𝑖𝑖 

𝑤𝑤𝐴𝐴: Max. Div. 𝜇𝜇(𝑆𝑆𝑅𝑅) 35.4% 34.6% 32.8% 31.7% 30.5% 28.1% 

 𝜎𝜎(𝑆𝑆𝑅𝑅)  1.1% 2.6% 3.3% 3.9% 5.1% 
𝑤𝑤𝐴𝐴: Min. Vol. 𝜇𝜇(𝑆𝑆𝑅𝑅) 32.8% 32.2% 30.7% 29.7% 28.6% 26.4% 

 𝜎𝜎(𝑆𝑆𝑅𝑅)  1.5% 2.9% 3.5% 4.1% 5.1% 
𝑤𝑤𝐴𝐴: 1/N 𝜇𝜇(𝑆𝑆𝑅𝑅) 31.3% 30.7% 28.9% 27.8% 26.7% 24.4% 

 𝜎𝜎(𝑆𝑆𝑅𝑅)  1.6% 3.0% 3.6% 4.2% 5.2% 
𝑤𝑤𝐴𝐴: ERC 𝜇𝜇(𝑆𝑆𝑅𝑅) 32.8% 32.1% 30.3% 29.2% 28.0% 25.7% 

  𝜎𝜎(𝑆𝑆𝑅𝑅)   1.5% 3.0% 3.7% 4.3% 5.3% 
 

This table shows the averages (µ(SR)) and the standard deviations (σ(SR)) of Sharpe ratio across 5,000 
simulations for different values of 𝜎𝜎𝜀𝜀. The analysis involves the mean-variance tangency portfolio 
and the two sets of factor-targeted portfolios using different factor loadings. 
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Exhibit 5: Distribution of Sharpe ratios 
Panel A 

 

Panel B 

  
Panel C 

  

Panel D 

  
These figures show the distribution of Sharpe ratios across 5,000 simulations for 𝜎𝜎𝜀𝜀 = 1.25%. Panel A to D involve the use of the four traditional 
allocation rules: Maximum Diversification (MaxDiv), Minimum Volatility (MinVol), 1/N and Equal Risk Contributions (ERC), respectively, for 
the factor-targeted portfolios. For each panel, the chart shows the distribution of Sharpe ratios for the mean-variance tangency portfolio (Mean-
Variance) and the two factor-targeted asset (FTA) portfolios using standard factor loadings (standard B) and implied factor loadings (implied B).
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Exhibit 6: Probability of outperforming mean-variance 
for various 𝝈𝝈𝜺𝜺  

 

Panel A: Probabilities using implied factor loadings 𝐵𝐵𝑖𝑖  for different 𝜎𝜎𝜀𝜀 
 𝜎𝜎𝜀𝜀 
 0.00% 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% 

MaxDiv 0.0% 26.1% 87.0% 96.6% 98.2% 98.5% 98.4% 98.1% 97.8% 
MinVol 0.0% 8.3% 70.3% 90.1% 94.7% 96.2% 96.4% 96.4% 96.2% 

1/N 0.0% 3.7% 58.0% 84.0% 91.2% 93.2% 94.0% 94.0% 93.7% 
ERC 0.0% 8.1% 69.1% 89.1% 93.7% 95.4% 95.7% 95.6% 95.2% 

          

Panel B: Probabilities using standard factor loadings 𝐵𝐵 for different 𝜎𝜎𝜀𝜀 
 𝜎𝜎𝜀𝜀 
 0.00% 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% 

MaxDiv 0.0% 3.2% 41.7% 63.4% 71.6% 75.2% 76.9% 77.4% 77.5% 
MinVol 0.0% 1.1% 31.8% 56.3% 67.5% 72.4% 74.9% 75.6% 76.4% 

1/N 0.0% 0.0% 13.5% 38.1% 54.6% 63.3% 68.3% 71.3% 72.6% 
ERC 0.0% 0.1% 18.9% 44.4% 59.0% 67.0% 70.7% 73.1% 73.9% 

 

Panel A shows the probability that the factor-targeted portfolios using implied factor loadings 
generate Sharpe ratios higher than those of the mean-variance tangency portfolio. We measure such 
probability as the percentage of cases where the factor-targeted portfolios exhibit Sharpe ratios than 
those of the tangency portfolio in the 5,000 simulations. We provide the results for different levels of 
pricing error standard deviation (𝜎𝜎𝜀𝜀). Panel B reports results from the same analysis using standard 
factor loadings for the factor-targeted portfolios.
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Exhibit 7: Factor-targeted portfolio weights for various target asset portfolios 

  Target asset weights for   Factor-Targeted portfolio weights for 
 different portfolios  different target asset weights using 𝐵𝐵𝑖𝑖 

  Max. Div. Min. Vol 1/N ERC   Max. Div. Min. Vol 1/N ERC 

Panel A: Asset weights          
Equity - U.S. 4.7% 4.8% 5.9% 2.9%  7.4% 7.1% 3.9% 3.5% 
Equity - Europe 10.9% 1.2% 5.9% 2.6%  15.3% 5.5% 5.2% 5.5% 
Equity - U.K. -8.9% -0.6% 5.9% 2.7%  -6.1% 2.4% 4.4% 3.6% 
Equity - Japan 7.2% 2.7% 5.9% 3.2%  12.1% 7.9% 7.3% 7.8% 
Equity - E.M. -1.5% -2.0% 5.9% 2.0%  3.1% 4.8% 5.6% 6.1% 
Fixed Income - U.S. 50.7% 47.0% 5.9% 14.3%  49.7% 46.2% 5.3% 12.0% 
Fixed Income - Europe 34.7% 27.7% 5.9% 14.8%  33.8% 26.9% 5.3% 12.5% 
Fixed Income - U.K. 12.7% 10.2% 5.9% 11.6%  11.6% 9.4% 5.2% 8.9% 
Credit - I.G. -17.0% -22.4% 5.9% 5.9%  -18.5% -24.2% 3.5% 1.5% 
Credit - H.Y. 11.1% 19.3% 5.9% 5.5%  10.0% 17.0% 2.4% 1.6% 
Inflation Linked - U.S. -23.4% -3.4% 5.9% 7.8%  -24.5% -4.2% 4.6% 5.0% 
Inflation Linked - Europe -2.8% 20.0% 5.9% 10.0%  -3.2% 19.6% 5.1% 8.2% 
Inflation Linked - U.K. 5.8% -8.6% 5.9% 5.7%  3.9% -10.1% 4.0% 0.6% 
Commodity - Oil 3.5% 0.5% 5.9% 1.9%  -3.0% -4.1% -4.7% -4.2% 
Commodity - Gold 5.1% 0.7% 5.9% 3.7%  3.0% 2.0% 4.2% 0.5% 
Commodity - Copper 3.2% 1.8% 5.9% 2.4%  5.3% 7.8% 5.3% 6.9% 
Commodity - Corn 4.0% 1.1% 5.9% 3.0%  -0.4% -2.6% -2.0% -1.6% 

          
Panel B: Reverse optimized factor weights         
Factor - Equities 15.1% 8.3% 46.5% 24.1%  80.1% 80.1% 80.1% 80.1% 
Factor - Real Return Bonds 26.5% 26.3% 18.0% 37.8%  31.7% 31.7% 31.7% 31.7% 
Factor - Commodities 22.3% 5.0% 43.9% 19.3%  -0.7% -0.7% -0.7% -0.7% 
Factor - Break-even Inflation -12.2% -19.7% 6.4% -20.4%  -52.3% -52.3% -52.3% -52.3% 
Factor - Credit 2.1% 10.2% 9.0% 9.2%   -8.2% -8.2% -8.2% -8.2% 
Max. Div.: Maximum diversification portfolio; Min. Vol.: Minimum volatility portfolio; 1/N: Equally weighted portfolio; ERC: Equal Risk Contributions Portfolio 

In Panel A, the first four columns report the target asset weights for the four traditional portfolios defined in Equations (11) to (14). The 
rightmost four columns show the four factor-targeted portfolios using implied factor loadings (Equation (15)) and the target asset weights 
reported in the first four columns. The table uses 𝛾𝛾 = 0.999. Panel B shows the reverse optimized factor weights for the portfolios in Panel A 
using Equation (4). 
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Exhibit 8: Stability of the factor-targeted portfolios 

Assets  Std. dev. of Factor-Targeted portfolio weights  
  using implied factor loadings 𝐵𝐵𝑖𝑖   for different 𝜎𝜎𝜀𝜀  
  0.5% 1.0% 1.5% 2.0%  

Equity - U.S.  1.3% 2.7% 4.0% 5.3%  

Equity - Europe  0.8% 1.5% 2.3% 3.0%  
Equity - U.K.  0.8% 1.7% 2.5% 3.4%  

Equity - Japan  0.6% 1.2% 1.7% 2.3%  
Equity - E.M.  1.2% 2.4% 3.6% 4.8%  

Fixed Income - U.S.  0.7% 1.4% 2.1% 2.8%  

Fixed Income - Europe  0.7% 1.4% 2.1% 2.8%  
Fixed Income - U.K.  0.9% 1.7% 2.6% 3.4%  

Credit - I.G.  1.7% 3.4% 5.2% 6.9%  
Credit - H.Y.  2.4% 4.7% 7.1% 9.4%  

Inflation Linked - U.S.  0.9% 1.8% 2.7% 3.6%  
Inflation Linked - Europe  0.6% 1.3% 1.9% 2.6%  

Inflation Linked - U.K.  1.6% 3.3% 4.9% 6.6%  
Commodity - Oil  1.1% 2.3% 3.4% 4.5%  

Commodity - Gold  2.6% 5.1% 7.7% 10.2%  

Commodity - Copper  3.0% 6.0% 9.1% 12.1%  
Commodity - Corn  2.5% 5.1% 7.6% 10.1%  
Average of Std. dev. across 
assets 

 1.4% 2.8% 4.1% 5.5%  

 

This table shows the standard deviations of the factor-targeted portfolio weights when using any of the four target asset portfolios shown in 
Exhibit 4. The standard deviations of the factor-targeted portfolio weights are computed using 5,000 simulations for different values of 𝜎𝜎𝜀𝜀 
according to Equation (16). 
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Exhibit 9: Alternative risk premia assumptions 

 

Factors Set-1 Set-2 Set-3 Set-4 

Equities 3.00% 3.00% 0.00% 0.00% 
Real Return Bonds 0.75% 0.00% 3.00% 0.00% 
Commodities 1.00% 0.00% 0.00% 3.00% 

Break-even Inflation -0.25% 0.00% -1.00% 0.00% 
Credit 1.00% 1.00% 0.00% 0.00% 

 

This table shows the four sets of risk premia assumptions used in the Sharpe ratio analysis. Set-1 uses 
the same assumptions as shown in Exhibit 3 and Exhibit 5. Set-2 represents a scenario where only the 
equity and credit factors have risk premiums. Set-3 represents a scenario where only bonds have risk 
premiums. Set-4 represents a scenario where only commodities have risk premiums. 
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Exhibit 10: Sharpe ratio analysis for different risk premia assumptions 

Portfolios Sharpe ratio 𝜎𝜎𝜀𝜀: 0% 

  

𝜎𝜎𝜀𝜀: 1% 

  

𝜎𝜎𝜀𝜀: 2% 
 statistics             

  Factor premia assumption Factor premia assumption Factor premia assumption 
    Set-1 Set-2 Set-3 Set-4   Set-1 Set-2 Set-3 Set-4   Set-1 Set-2 Set-3 Set-4 
Panel A: Mean-variance portfolio 

Tangency 𝜇𝜇(𝑆𝑆𝑅𝑅) 0.41 0.38 0.41 0.33  0.19 0.24 0.10 0.07  0.10 0.15 0.05 0.04 
 𝜎𝜎(𝑆𝑆𝑅𝑅) 0.00 0.00 0.00 0.00  0.07 0.05 0.07 0.03  0.07 0.06 0.07 0.02 
                

Panel B:  Target Asset portfolios 
Max. Div. 𝜇𝜇(𝑆𝑆𝑅𝑅) 0.27 0.16 0.27 0.16  0.27 0.16 0.27 0.16  0.27 0.16 0.27 0.16 
Min. Vol. 𝜇𝜇(𝑆𝑆𝑅𝑅) 0.22 0.12 0.34 0.05  0.22 0.12 0.34 0.05  0.22 0.12 0.34 0.05 

1/N 𝜇𝜇(𝑆𝑆𝑅𝑅) 0.27 0.20 0.08 0.15  0.27 0.20 0.08 0.15  0.27 0.20 0.08 0.15 
ERC 𝜇𝜇(𝑆𝑆𝑅𝑅) 0.28 0.17 0.27 0.12  0.28 0.17 0.27 0.12  0.28 0.17 0.27 0.12 

                
Panel C: Factor-Targeted portfolios using implied factor loadings 𝐵𝐵𝑖𝑖 for different 𝜎𝜎𝜀𝜀 
𝑤𝑤𝐴𝐴: Max. Div. 𝜇𝜇(𝑆𝑆𝑅𝑅) 0.35 0.34 0.36 0.33  0.33 0.33 0.30 0.25  0.28 0.30 0.22 0.17 

 𝜎𝜎(𝑆𝑆𝑅𝑅) 0.00 0.00 0.00 0.00  0.03 0.02 0.05 0.05  0.05 0.04 0.10 0.08 
𝑤𝑤𝐴𝐴: Min. Vol. 𝜇𝜇(𝑆𝑆𝑅𝑅) 0.33 0.32 0.37 0.33  0.31 0.31 0.30 0.25  0.26 0.29 0.22 0.17 

 𝜎𝜎(𝑆𝑆𝑅𝑅) 0.00 0.00 0.00 0.00  0.03 0.02 0.06 0.05  0.05 0.04 0.10 0.08 
𝑤𝑤𝐴𝐴: 1/N 𝜇𝜇(𝑆𝑆𝑅𝑅) 0.31 0.32 0.34 0.33  0.29 0.31 0.26 0.25  0.24 0.28 0.18 0.17 

 𝜎𝜎(𝑆𝑆𝑅𝑅) 0.00 0.00 0.00 0.00  0.03 0.02 0.06 0.05  0.05 0.04 0.11 0.08 
𝑤𝑤𝐴𝐴: ERC 𝜇𝜇(𝑆𝑆𝑅𝑅) 0.33 0.32 0.37 0.33  0.30 0.31 0.29 0.25  0.26 0.29 0.20 0.17 

 𝜎𝜎(𝑆𝑆𝑅𝑅) 0.00 0.00 0.00 0.00  0.03 0.02 0.06 0.05  0.05 0.04 0.11 0.08 
                

Panel D: Factor-Targeted portfolios using standard factor loadings 𝐵𝐵 for different 𝜎𝜎𝜀𝜀 
𝑤𝑤𝐴𝐴: Max. Div. 𝜇𝜇(𝑆𝑆𝑅𝑅) 0.28 0.27 0.36 0.33  0.25 0.26 0.19 0.14  0.18 0.22 0.11 0.08 

 𝜎𝜎(𝑆𝑆𝑅𝑅) 0.00 0.00 0.00 0.00  0.06 0.05 0.09 0.07  0.08 0.07 0.10 0.06 
𝑤𝑤𝐴𝐴: Min. Vol. 𝜇𝜇(𝑆𝑆𝑅𝑅) 0.26 0.26 0.33 0.33  0.24 0.25 0.19 0.14  0.18 0.21 0.11 0.08 

 𝜎𝜎(𝑆𝑆𝑅𝑅) 0.00 0.00 0.00 0.00  0.06 0.05 0.09 0.07  0.07 0.06 0.09 0.06 
𝑤𝑤𝐴𝐴: 1/N 𝜇𝜇(𝑆𝑆𝑅𝑅) 0.21 0.22 0.23 0.32  0.21 0.23 0.17 0.14  0.16 0.20 0.10 0.08 

 𝜎𝜎(𝑆𝑆𝑅𝑅) 0.00 0.00 0.00 0.00  0.05 0.05 0.08 0.07  0.07 0.06 0.09 0.06 
𝑤𝑤𝐴𝐴: ERC 𝜇𝜇(𝑆𝑆𝑅𝑅) 0.22 0.23 0.27 0.32  0.22 0.23 0.18 0.14  0.17 0.20 0.11 0.08 

  𝜎𝜎(𝑆𝑆𝑅𝑅) 0.00 0.00 0.00 0.00   0.06 0.05 0.08 0.07   0.07 0.06 0.09 0.06 

Panel A, B, C and D show the Sharpe ratio statistics for the mean-variance tangency portfolio, the traditional portfolios and the factor-targeted portfolios 
using implied (𝐵𝐵𝑖𝑖) and standard (𝐵𝐵) factor loadings, respectively. For each panel, both the averages (𝜇𝜇(𝑆𝑆𝑅𝑅)) and the standard deviations (𝜎𝜎(𝑆𝑆𝑅𝑅)) of Sharpe 
ratio across 5,000 simulations are reported. For each level of 𝜎𝜎𝜀𝜀  as per Equation (16), we report the results for four different sets of factor premia assumptions 
(Set-1 to Set-4). The details of the four sets of risk premia assumptions are provided in Exhibit 9.  
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Exhibit 11: Sharpe ratio analysis using the mean-variance factor portfolio as target factor 
weights 

Portfolio allocation Sharpe ratio Std. dev. of portfolio weights for different 𝜎𝜎𝜀𝜀 
methods statistics   

    0.0% 0.5% 1.0% 1.25% 1.5% 2.0% 
Panel A: Mean-variance portfolio 

Tangency 𝜇𝜇(𝑆𝑆𝑅𝑅) 40.8% 29.1% 18.8% 15.8% 13.5% 10.4% 

 𝜎𝜎(𝑆𝑆𝑅𝑅)  4.9% 6.6% 6.9% 7.0% 7.1% 

        
Panel B: Factor-Targeted portfolios using reverse optimized factor weights of the tangency portfolio as target factor weights 

𝑤𝑤𝐴𝐴: Max. Div. 𝜇𝜇(𝑆𝑆𝑅𝑅) 35.4% 34.6% 32.8% 31.7% 30.5% 28.1% 

 𝜎𝜎(𝑆𝑆𝑅𝑅)  1.1% 2.6% 3.3% 3.9% 5.1% 
𝑤𝑤𝐴𝐴: Min. Vol. 𝜇𝜇(𝑆𝑆𝑅𝑅) 32.8% 32.2% 30.7% 29.7% 28.6% 26.4% 

 𝜎𝜎(𝑆𝑆𝑅𝑅)  1.5% 2.9% 3.5% 4.1% 5.1% 
𝑤𝑤𝐴𝐴: 1/N 𝜇𝜇(𝑆𝑆𝑅𝑅) 31.3% 30.7% 28.9% 27.8% 26.7% 24.4% 

 𝜎𝜎(𝑆𝑆𝑅𝑅)  1.6% 3.0% 3.6% 4.2% 5.2% 
𝑤𝑤𝐴𝐴: ERC 𝜇𝜇(𝑆𝑆𝑅𝑅) 32.8% 32.1% 30.3% 29.2% 28.0% 25.7% 

 𝜎𝜎(𝑆𝑆𝑅𝑅)   1.5% 3.0% 3.7% 4.3% 5.3% 

        
Panel C: Factor-Targeted portfolios using the mean-variance factor weights as target factor weights 

𝑤𝑤𝐴𝐴: Max. Div. 𝜇𝜇(𝑆𝑆𝑅𝑅) 35.4% 34.2% 31.3% 29.2% 27.0% 22.6% 

 𝜎𝜎(𝑆𝑆𝑅𝑅)  1.5% 4.3% 7.1% 9.5% 12.8% 
𝑤𝑤𝐴𝐴: Min. Vol. 𝜇𝜇(𝑆𝑆𝑅𝑅) 32.8% 31.8% 29.3% 27.4% 25.4% 21.1% 

 𝜎𝜎(𝑆𝑆𝑅𝑅)  1.7% 4.2% 6.9% 9.2% 12.5% 
𝑤𝑤𝐴𝐴: 1/N 𝜇𝜇(𝑆𝑆𝑅𝑅) 31.3% 30.3% 27.8% 25.9% 23.8% 19.5% 

 𝜎𝜎(𝑆𝑆𝑅𝑅)  1.8% 4.2% 6.8% 9.0% 12.3% 
𝑤𝑤𝐴𝐴: ERC 𝜇𝜇(𝑆𝑆𝑅𝑅) 32.8% 31.7% 29.0% 27.1% 25.0% 20.6% 

  𝜎𝜎(𝑆𝑆𝑅𝑅)   1.9% 4.3% 7.0% 9.3% 12.6% 
 

This table shows the averages (µ(SR)) and the standard deviations (σ(SR)) of Sharpe ratio across 5,000 simulations for different values of 𝜎𝜎𝜀𝜀. 
The analysis involves the mean-variance tangency portfolio (Panel A), the factor-targeted portfolios using reverse optimized factor weights of 
the tangency portfolio (Panel B) and the factor-targeted portfolios using the mean-variance factor weights. The implied factor loadings (𝐵𝐵𝑖𝑖) 
are used for the factor-targeted portfolios. 
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Exhibit 12 Comparison of probabilities: using reverse optimized factor weights of tangency 
portfolios versus using mean-variance factor weights 
Panel A 

 

Panel B 

 
  

Panel C 

 

Panel D 

 
For each Panel, the line shows the probability that a factor-targeted portfolio shows a higher Sharpe ratio than the mean-variance tangency portfolio. The blue solid line shows 
the factor-targeted portfolios built using the reverse optimized factor weights of tangency portfolios (“RevOpt-Tangency” in legend) as the desired target factor weights. The 
orange dashed line shows the factor-targeted portfolios built using the mean-variance factor weights (“MVO Factors” in legend) as the desired target factor weights. As in 
Exhibit 6, we measure such probability as the percentage of cases when the factor-targeted portfolios exhibit a higher Sharpe ratio than the tangency portfolio in the 5,000 
simulations. Panel A shows the results for the Maximum Diversification portfolio, Panel B for the Minimum Volatility Portfolio, Panels C and D plot the results for the 1/N 
and Equal Risk Contributions portfolios. We provide the results for different levels of pricing errors’ standard deviation (𝜎𝜎𝜀𝜀), which vary along the x-axis. 
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Appendix A 
In this appendix, we prove that there exist multiple asset portfolios that respect a desired 

set of factor weights; therefore, additional constraints or objectives are required to obtain a unique 

mapping as discussed in this article as well as in Greenberg et al. (2016) and Elkamhi et al. (2021). 

To achieve a unique mapping between factor weights and asset portfolios, investors are required 

to provide at least one additional constraint or objective. This is discussed in Greenberg et al. 

(2016) and Elkamhi et al. (2021) and we provide a formal derivation in this appendix to prove that 

there does not exist a unique mapping between factor weights and asset portfolios in the absence 

of such additions.  

Formally, investors seeking a desired target factor weight – without additional constraints 

or objectives – build an asset portfolio with the following optimization procedure 

argmin
𝑤𝑤

(𝐵𝐵𝑖𝑖 𝑤𝑤 −  𝑤𝑤�𝑓𝑓′)(𝐵𝐵𝑖𝑖 𝑤𝑤 −  𝑤𝑤�𝑓𝑓′)′�����������������
𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑎𝑎𝑡𝑡𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑓𝑓𝐷𝐷𝑓𝑓 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝐷𝐷𝐷𝐷
𝐷𝐷𝑡𝑡𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑜𝑜𝐷𝐷𝑜𝑜 𝑓𝑓𝑎𝑎𝑓𝑓𝑡𝑡𝐷𝐷𝑓𝑓 𝑤𝑤𝐷𝐷𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝐷𝐷

  
(A.1) 

where 𝑤𝑤�𝑓𝑓 is the desired target factor weights, and 𝐵𝐵𝑖𝑖 is the 𝑀𝑀 × 𝑁𝑁 implied factor loading 

matrix defined in Equation (5). Note that Equation A.1 is a special case of Equation (9), where 

the parameter 𝛾𝛾 is set to 1. 𝑁𝑁 is the number of assets and 𝑀𝑀 is the number of factors. 

The solution to the problem in Equation (A.1) would be  

𝑤𝑤 = [𝐵𝐵𝑖𝑖′𝐵𝐵𝑖𝑖 ]−1 𝐵𝐵𝑖𝑖′ 𝑤𝑤�𝑓𝑓 (A.2) 

and it is unique if and only if 𝐵𝐵𝑖𝑖′𝐵𝐵𝑖𝑖 – which is a 𝑁𝑁 × 𝑁𝑁 matrix – is an invertible matrix. However, 

𝐵𝐵𝑖𝑖′𝐵𝐵𝑖𝑖 is not invertible since its rank is equal to 𝑀𝑀 (the number of factors), which is less than 𝑁𝑁 (the 

number of assets). In other words, as shown in Equation (1), the 𝑁𝑁 assets are spanned by the 𝑀𝑀 

factors and it follows that only 𝑀𝑀 columns are linearly independent. Therefore, the matrix 𝐵𝐵𝑖𝑖′𝐵𝐵𝑖𝑖 

cannot be inverted since it does not have full rank. This implies that there does not exist a unique 

solution to Equation (A.2). 

For investors, this means that, in the absence of additional constraints or objectives, there 

does not exist a unique portfolio of assets that achieves the desired factor weights, rather there are 

potentially many of them. In Equation (9), we add a second objective to achieve a unique mapping 

between factor weights and asset portfolios by using the target asset weights. 
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Appendix B 
In this Appendix, we address the question: do factor-targeted portfolios provide stability in 

terms of risk exposures? We answer this question by analyzing the standard deviations of volatility 

risk contributions and standalone volatility risks across the 5,000 simulations. First, for each 

simulation we calculate the risk contribution of each asset to total volatility of the portfolio as well 

as the assets' standalone risks. Given a vector of asset weights 𝑤𝑤 and a variance covariance matrix 

Σ, it is well known that the volatility of the portfolio can be written as 𝜎𝜎(𝑤𝑤)  =  √𝑤𝑤′ Σ 𝑤𝑤. The risk 

contribution for asset 𝑀𝑀 (𝑅𝑅𝐶𝐶𝑖𝑖) is defined as 

𝑅𝑅𝐶𝐶𝑖𝑖  =  𝑤𝑤𝑖𝑖 ⋅
𝜕𝜕𝜎𝜎(𝑤𝑤)
𝜕𝜕𝑤𝑤𝑖𝑖

 =  𝑤𝑤𝑖𝑖 ⋅
(Σ 𝑤𝑤)𝑖𝑖
√𝑤𝑤′Σ 𝑤𝑤

 (B.1) 

where 𝑤𝑤𝑖𝑖 is the weight of asset 𝑀𝑀, and (Σ𝑤𝑤)𝑖𝑖 is the 𝑀𝑀-th element of the vector Σ𝑤𝑤. 24 The standalone 

risk of asset 𝑀𝑀 (𝑆𝑆𝐴𝐴𝑖𝑖) is defined as the asset weight multiplied by its volatility 

𝑆𝑆𝐴𝐴𝑖𝑖  =  𝑤𝑤𝑖𝑖 × 𝜎𝜎𝑖𝑖 (B.2) 

where 𝜎𝜎𝑖𝑖 is the volatility of asset 𝑀𝑀. 

Exhibit B.1 shows the standard deviation of risk contributions across 5,000 simulations for 

a standard deviation of pricing errors of 1% (𝜎𝜎𝜀𝜀  =  1%). We present our results for the mean-

variance factor portfolio as well as for the four factor-targeted portfolios defined in Equations (11) 

to (14). The standard deviations of risk contributions for the mean-variance tangency portfolio are 

considerably larger than those for the four factor-targeted portfolios. Indeed, the average of the 

standard deviations of risk contribution for the tangency portfolio is 1.5% while it is less than 0.3% 

for those of the factor-targeted portfolios. This confirms that our factor-targeted portfolios provide 

investors with more stable risk diversification compared to the tangency portfolio. Furthermore, 

the results also show that the standard deviations of risk contributions between the four factor-

targeted portfolios are all very similar. This result shows that our choice of traditional rules used 

to build a factor-targeted portfolio with our methodology (Equation (15)) does not affect the 

stability of the risk contributions. 

 

[Insert Exhibit B.1 and Exhibit B.2 here] 

 

 
24 For a textbook treatment of risk contributions, we refer the interested reader to Roncalli (2013). 
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Exhibit B.2 presents the analysis on standalone risks. The table shows the standard 

deviation of standalone risk across 5,000 simulations for a standard deviation of pricing errors of 

1% (𝜎𝜎𝜀𝜀 = 1%). Similarly, to the results on risk contributions, we present our findings for the mean-

variance factor portfolio as well as for the four factor-targeted portfolios defined in Equations (11) 

to (14). The table shows that the standard deviations of standalone risks for the four factor-targeted 

portfolios are lower than those of the mean-variance tangency portfolio. This finding provides 

further evidence that our factor-targeted portfolios exhibit stability across a multitude of 

characteristics: asset weights as shown in Exhibit 8, risk contributions as shown in Exhibit B.1 and 

standalone risks as shown in Exhibit B.2. 
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Exhibit B.1: Stability of Risk Contributions 

 
    Factor-targeted Portfolios 
  MVO MaxDiv MinVol 1/N ERC 

Equity - U.S. 1.8% 0.4% 0.4% 0.4% 0.3% 
Equity - Europe 2.2% 0.4% 0.3% 0.3% 0.3% 
Equity - U.K. 2.3% 0.2% 0.2% 0.3% 0.2% 
Equity - Japan 0.6% 0.3% 0.2% 0.2% 0.2% 
Equity - E.M. 1.1% 0.4% 0.4% 0.4% 0.4% 
Fixed Income - U.S. 3.2% 0.3% 0.3% 0.0% 0.1% 
Fixed Income - Europe 3.3% 0.2% 0.1% 0.0% 0.1% 
Fixed Income - U.K. 2.9% 0.1% 0.1% 0.0% 0.1% 
Credit - I.G. 1.7% 0.1% 0.2% 0.1% 0.1% 
Credit - H.Y. 1.0% 0.3% 0.4% 0.2% 0.2% 
Inflation Linked - U.S. 2.1% 0.1% 0.0% 0.1% 0.1% 
Inflation Linked - Europe 1.5% 0.0% 0.1% 0.0% 0.1% 
Inflation Linked - U.K. 0.7% 0.1% 0.1% 0.1% 0.1% 
Commodity - Oil 0.1% 0.1% 0.1% 0.2% 0.1% 
Commodity - Gold 0.1% 0.3% 0.2% 0.3% 0.2% 
Commodity - Copper 0.2% 0.9% 1.1% 1.0% 1.1% 
Commodity - Corn 0.1% 0.4% 0.3% 0.3% 0.3% 
Average 1.5% 0.3% 0.3% 0.2% 0.2% 

 

This table shows the standard deviations of risk contributions across 5,000 simulations for 𝜎𝜎𝜀𝜀  =  1%. 
The definition of risk contributions is provided in Equation (20). Column MVO shows the standard 
deviations of risk contributions for the mean-variance tangency portfolio. The remaining columns 
contain the standard deviation of risk contributions for the factor-targeted portfolios: MaxDiv is the 
factor-targeted portfolio with asset target weights equal to the Maximum Diversification portfolio, 
MinVol uses the Minimum Volatility portfolio as target asset weights, 1/N uses the equally weighted 
portfolio and ERC uses the equal risk contribution portfolio as target asset weights. Equation (15) 
provides the solution for the factor-targeted portfolios. 
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Exhibit B.2: Stability of Standalone Risk 

    Factor-targeted Portfolios 
  MVO MaxDiv MinVol 1/N ERC 

Equity - U.S. 5.3% 0.5% 0.5% 0.5% 0.5% 
Equity - Europe 7.5% 0.3% 0.3% 0.3% 0.3% 
Equity - U.K. 6.6% 0.3% 0.3% 0.3% 0.3% 
Equity - Japan 2.0% 0.2% 0.2% 0.2% 0.2% 
Equity - E.M. 3.2% 0.6% 0.6% 0.6% 0.6% 
Fixed Income - U.S. 14.7% 0.1% 0.1% 0.1% 0.1% 
Fixed Income - Europe 14.5% 0.1% 0.1% 0.1% 0.1% 
Fixed Income - U.K. 14.3% 0.1% 0.1% 0.1% 0.1% 
Credit - I.G. 7.4% 0.3% 0.3% 0.3% 0.3% 
Credit - H.Y. 5.5% 0.4% 0.4% 0.4% 0.4% 
Inflation Linked - U.S. 9.9% 0.1% 0.1% 0.1% 0.1% 
Inflation Linked - Europe 6.1% 0.1% 0.1% 0.1% 0.1% 
Inflation Linked - U.K. 5.5% 0.3% 0.3% 0.3% 0.3% 
Commodity - Oil 1.3% 0.9% 0.9% 0.9% 0.9% 
Commodity - Gold 1.6% 0.9% 0.9% 0.9% 0.9% 
Commodity - Copper 1.5% 1.7% 1.7% 1.7% 1.7% 
Commodity - Corn 1.1% 1.5% 1.5% 1.5% 1.5% 
Average 6.4% 0.5% 0.5% 0.5% 0.5% 

 

This table shows the standard deviations of standalone risks across 5,000 simulations for 𝜎𝜎𝜀𝜀  =  1%. 
The definition of standalone risks is provided in Equation (21). Column MVO shows the standard 
deviations of standalone risks for the mean-variance tangency portfolio. The remaining columns 
contain the standard deviation of standalone risks for the factor-targeted portfolios: MaxDiv is the 
factor-targeted portfolio with asset target weights equal to the Maximum Diversification portfolio, 
MinVol uses the Minimum Volatility portfolio as target asset weights, 1/N uses the equally weighted 
portfolio and ERC uses the equal risk contribution portfolio as target asset weights. Equation (15) 
provides the solution for the factor-targeted portfolios. 
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