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Abstract

We investigate empirical asset pricing in the foreign exchange market from the perspective of cross-
sectional description and time series prediction in the context of deep learning. We propose two models,
the deep latent factor model and the deep prediction model. The former focuses on cross-sectional de-
scription and maintains the economic interpretation of factor models with the no-arbitrage restriction,
while the latter focuses on pure prediction without considering the risk-return trade-off. An architecture
of sequence modelling is employed in both models as a homogeneous constituent to extract historical in-
formation and incorporate cross-country interactions. We conduct a comprehensive comparative analysis
of model performance across different architectures and complexities. Both models yield the best perfor-
mance in cross section and time series respectively, show clear cross-country interaction patterns, agree
on the same groups of influential characteristics that consistently dominate, and highlight the beneficial
effects of incorporating long-range historical data for both problems. Our study provides a complete
spectrum of how deep learning can be used to model exchange rate return with or without considering
the economic interpretation.
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1 Introduction

Great interest in using comprehensive complex characteristics to model asset returns has been arisen from the
latest development of machine learning methods. These methods are studied from two canonical perspectives,
namely cross-section (Kelly et al. (2019); Gu et al. (2021)) and time series (Fischer and Krauss (2018);
Filippou et al. (2020)). For decades, these two themes have dominated empirical asset pricing research, with
the former attempting to characterize and explain variations in asset returns, while the latter attempting to
predict market risk premiums in time series.

The most common framework for describing the cross-sectional asset return is the factor model with
observable factors based on previously established knowledge about average return fluctuations 1. Recent
literature opens a new strand that allows latent factors and makes no ex-ante assumptions regarding their
definition. In latent factor models, the unobservable factors and factor loadings are estimated concurrently
using statistical methods such as principal components analysis (PCA) 2. Boosted by the burgeoning pop-
ularity of machine learning in finance, latent factor models have provoked considerable discussion over the
recent years.

Kelly and Xiu (2021) document the remarkable effectiveness of machine learning methods in revealing
complex nonlinear relationships and overcoming limitations of traditional latent factor via their flexible
functional forms and ability to deal with large data sets. As prominent examples, Lettau and Pelger (2020a,b)
generalize PCA to RP-PCA with a penalty term to account for the pricing errors in the means, indicating that
RP-PCA can detect weak factors and dominates PCA in estimating latent factors even with large datasets;
Kelly et al. (2019) and Gu et al. (2021) incorporate a large collection of equity characteristics that serve as
conditioning information for the time-varying betas, using a linear functional form of instrumented principal
components analysis (IPCA) and an extended nonlinear autoencoder, respectively; Chen et al. (2020) use
generative adversarial network (GAN) and long short-term memory (LSTM) to account for massive amounts
of conditioning information and temporal variation.

Different from factor models, which attempt to reconstruct asset returns with pre-specified risk exposures
and risk premia structure, return prediction in time series, on the other hand, focuses exclusively on forecast-
ing future terms without considering the risk-return structure (see the work of Fischer and Krauss (2018);
Filippou et al. (2020)). Gu et al. (2018) investigate equity asset pricing using machine learning methods in
both the cross-section and time series.

However, in the Forex market, forecasting return is a notoriously difficult task compared to the equity
market. The commonly known Meese-Rogoff puzzle suggests that economic models underperform in out-of-
sample forecasting of major bilateral exchange rates compared to the random walk models (Meese and Rogoff
(1983a,b)) 3. To date, no single model has yet to emerge as the best forecasting model. Some literature
examine the instability and non-linearity of the relationship between macroeconomic fundamentals and
exchange rate fluctuations (e.g., Stock and Watson (1996), Stock and Watson (1999), Rossi et al. (2006) and
Engel et al. (2007).), while others contribute to predictor selection, such as prices, money supplies and output
(e.g., Mark and Sul (2001) and Kilian and Taylor (2003)). A more expansive list of predictors and broader
functional forms by machine learning for forecasting exchange rate are investigated in recent studies, such
as Engel et al. (2015), which investigate a combination of fundamentals and principal component extracted
factors, and Filippou et al. (2020), which document the outperformance of standard neural network in
forecasting exchange rates using a rich set of predictors.

To date, the literature of using machine learning models to predict or explain the exchange rate return is
far less than the ones on equity market. A great lack of thorough methodological or empirical work on this
topic leaves three outstanding questions: 1) Cross section or time series: The cross-sectional model structure
of latent factor has been less studied in Forex market (see work on equity market Kelly and Xiu (2021);
Gu et al. (2021); Kelly et al. (2019)). Meanwhile, Filippou et al. (2020) assume homogeneous parameter

1Backed by the arbitrage pricing theory (APT) (Ross (1976)), factor models describe the cross-sectional asset returns from
the perspective of risk exposures and risk premium and have been workhorses for modelling the cross-sectional variations for
decades. In accordance with APT’s economic interpretation, factor models seek to provide a compact statistical description of
assets’ cross-sectional risk-return structure. In this context, the estimation and interpretation of factor models stand out as
the central topic in this field. Factor model has constituted an extensive literature, see, for example, Fama and French (1993),
Carhart (1997) and Hou et al. (2015).

2See Connor and Korajczyk (1986) and Bai and Ng (2002), among others.
3See a number of possible explanations Isard et al. (1983), Schinasi and Swamy (1989) and Moosa (2013), among others.
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weights across countries in the time series model structure. However, this hypothetical simplification has
no obvious theoretical or intuitive justification. It is unclear which model structures produce the most
prominent exchange rate explanation and forecast. 2) Partial or full interaction: The work of Gu et al.
(2018, 2021); Filippou et al. (2020) address the interaction between macroeconomic fundamentals and asset
characteristics by deterministic Kronecker product, while neglecting interactions among assets. However,
recent literature Branger et al. (2021); Gofman et al. (2020); Barunik et al. (2020) suggest that interactions
among assets can be propagated through complex networks and therefore be non-negligible. No existing work
addresses architecture with full interactions among the characteristics of assets through a non-deterministic
“data-defined” format yet. 3) One period or long memory: most studies assume that the return is predicted
by a function of factors, loadings or predictors that are at present or one-period lagged. There is a lack of a
comprehensive model structure capable of exploiting long sequence of predictors and extracting representative
historical information embedded in the temporal correlations of predictors.

In this paper, with the aim to answer the three outstanding questions, we explore the asset pricing problem
in the Forex market from two canonical perspectives, namely cross-sectional description and time series
prediction. To accomplish it, we extend the factor model in Gu et al. (2021) and redesign the deep prediction
model in Filippou et al. (2020), respectively. We extract the representative historical dynamics from a rich set
of predictors by an attention network and incorporate interaction effects over all countries by fully connected
network structures. Although sharing some homogeneous constituent architectures, the structure of the two
models stems from completely different underlying assumptions. With the deep prediction model primarily
capturing complex nonlinear relationships, the latent factor model also maintains economic interpretations
on this basis.

In our cross-sectional study, we extend the work of Kelly et al. (2019) and Gu et al. (2021) and propose
the Deep Latent Factor (DLF) model. The asset pricing model proposed by Kelly et al. (2019) employs
an instrumented PCA that allows the factor loadings to incorporate and linearly condition on a broad
set of stock-level characteristics. Gu et al. (2021) extends their work by allowing the factor loadings to
nonlinearly condition on the stock characteristics using a conditional autoencoder neural network. The
conditional autoencoder captures information from one-period lagged characteristics and naturally assumes
these factors, which are, economically, a portfolio of individual asset returns, are static linear combinations
of characteristic-managed portfolios between every two refits.4

Our deep latent factor model extends the conditioning information from one-period lagged characteristics
to a longer look-back window and extracts state variables via sequence modelling techniques. The factor
portfolio weights are nonlinearly conditioned on the historical characteristics with no ex-ante assumptions.
Additionally, we adapt to the Forex intuition and expand the characteristic set to include all common and
country-specific characteristics in the cross section, allowing cross-country interaction effects.

From the perspective of time series prediction, we propose a deep prediction model that forecasts exchange
rate fluctuations in the next period. Our model architecture improves the deep neural network model
in Filippou et al. (2020), a close predecessor to our work, mainly in two ways. First, we employ time-
series attention network (sequence modelling techniques) in our architecture to incorporate information from
historical fundamental characteristics in a longer window, which is proved effective in subsequent empirical
studies. Second, our model allows cross-country interactions and learns a separate set of parameters for each
currency in the training step, instead of learning a common set of parameters shared across currencies trained
by pooled data. Hence, we denote the deep Prediction model with Attention Network and Full Connection
as PRED-TSAN-FC.

Although some homogeneous constituent architectures are shared, the two models are fundamentally
different in their design initiatives. The deep latent factor (DLF) model is constructed incorporating the
factor asset pricing model structure while the deep prediction model (PRED-TSAN-FC) mainly captures
complex nonlinear relationships. Using those two models, we show the predictability of the exchange rate
return in both perspectives. Moreover, we provide a complete spectrum of how deep learning can be used
to model exchange rate return with or without economic interpretation.

In our empirical study of G10 currencies, we evaluate the models based on their contemporaneous ex-

4In the conditional autoencoder architecture, the factor layer is set to be a linear hidden layer, thus the coefficients in factor
portfolios are weight parameters learned in the training step, which are only updated when refitting the model.
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planatory performance, measured by the contemporaneous R2 5 and RMSE 6, and predictive performance,
measure by the predictive RMSE and the economic value - Sharpe ratios of long-short carry trade port-
folios. The deep latent factor model (DLF) provides an improved out-of-sample predictive performance
compared to extant models in terms of both statistical and economic performance. The contemporaneous
explanatory performance tends to rise as model complexity grows, whereas simpler architectures tend to
yield better predictive performance. On the other hand, despite the use of all regularization and ensemble
methods, the performance of the deep prediction model (PRED-TSAN-FC) is highly volatile and does not
exhibit significant monotonicity with respect to the model complexity. When assessing the overall perfor-
mance, considering the average performance over different model complexities, the deep prediction model
outperforms comparative prediction models and provides a slightly better performance compared to the
random walk benchmark.7 A significant performance enhancement is suggested by both the deep latent
factor model and the deep prediction model on the sequence modelling architecture, which is used to ex-
tract state variables from historical characteristics. In both models, the characteristic sensitivity reveals a
distinct cross-country interaction pattern and a dominance of interest rate-related characteristics in terms
of characteristic importance, which is consistent over time.

The contribution of our study is twofold. First, we contribute to the empirical asset pricing literature
in the Forex market by an in-depth methodological study from two perspectives, namely cross-sectional
description through a deep latent factor model (DLF) and time series prediction through a deep prediction
model (PRED-TSAN-FC). The former maintains the economic interpretation of factor models, extending
the work of Kelly et al. (2019) and Gu et al. (2021), while the latter aims to forecast future returns and
improves the closest predecessor model of Filippou et al. (2020) in multiple aspects. We compare the
models in terms of statistical and economic performance, and identify obvious cross-country interactions
and consistent dominant characteristics in both the deep latent factor model and deep prediction model.
Second, we conduct an in-depth comparative empirical analysis of neural network models with various
architectures and complexities in both cross-sectional description and time-series prediction. We compare the
statistical and economic performance of our candidate models and explore the effectiveness of different model
specifications. We highlight the significant beneficial effects of employing sequence modelling architecture in
both problems.

The remainder of the paper is organized as follows. Section 2 discusses the specification and estimation
of the models. Section 3 presents our empirical studies of the deep latent factor model and deep prediction
model. Section 4 concludes.

2 Methodology

This section describes the models that guide our empirical work. We first introduce the overall architectures
of our deep latent factor model and deep prediction model in Section 2.1 and 2.2 respectively, with the
former focused on cross-sectional variations in asset returns and the latter on forecasting future returns in
time series. Then, we illustrate in detail the key constituent architectures employed by the two models,
namely the time-series attention network and the feed-forward network in Section 2.3 and 2.4 respectively.
Finally, in Section 2.5, we discuss the regularization techniques and loss functions that we employed to
estimate the latent factor model and prediction model.

2.1 Deep Latent Factor Model

In this subsection, we focus on our deep latent factor model, which is designed to capture the cross-sectional
return variations in the Forex market. It follows the latent factor strand of literature and extends the work
of Kelly et al. (2019) and Gu et al. (2021).

5As defined in Kelly et al. (2019) and Gu et al. (2021).
6The root mean squared error is a widely employed metric in exchange rate prediction, as defined in Meese and Rogoff

(1983a,b).
7The random walk without drift, also known as the no-change benchmark, has been a widely studied robust benchmark in

the literature of exchange rate forecasting since Meese and Rogoff (1983a,b).
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We start from the canonical form of the factor model. Let rit represents the return of asset i in period t,
for i = 1, . . . , N and t = 1, . . . , T , a K-factor model can be described in mathematical form as:

rit = βi⊤ft + ui
t (1)

where ft is a K × 1 vector of common factor returns in period t, βi is a K × 1 vector of factor loadings for
asset i, ui

t is the idiosyncratic component of rit and is uncorrelated with factor returns ft.
In the context of latent factors, the factor returns, factor loadings and idiosyncratic components are

unobservable. The factors and factor loadings are estimated simultaneously from a panel of realized returns
using statistical techniques such as PCA, which captures the cross-sectional behaviors based on information
in asset returns. To incorporate a broader range of information beyond returns, Kelly et al. (2019); Gu et al.
(2021) propose their model with the highest level description as

rit = β(zit−1)
⊤
ft + ui

t (2)

where the factor exposure β(zit−1) is linearly (Kelly et al. (2019)) or non-linearly (Gu et al. (2021)) conditioned

on an arbitrary length vector of one-period lagged asset characteristics zit−1, that is, β(zit−1)
⊤

= zit−1
⊤

Γ.
The linear implementation in Kelly et al. (2019) is termed as instrumented principal components analysis
(IPCA), which allows the factor model to incorporate observable characteristics serving as instrumental
variables for time-varying conditional loadings of the latent factors, while the nonlinearity in Gu et al.
(2021) is implemented through a conditional autoencoder model with interaction effects of factor exposures.
The conditional autoencoder is an unsupervised model from the autoencoder family and can be thought of
as a nonlinear, neural network extension of IPCA. 8

The economic interpretation of factors suggests that factors are portfolios (linear combinations) of in-
dividual asset returns. To maintain the linear structure of factors with a reasonable number of trainable
parameters, Gu et al. (2021) employ a single linear layer on the factor network in their conditional au-
toencoder model, where a vector of characteristic-managed portfolio returns9 passes through a single linear
hidden layer to form the lower dimensional vector of factor returns. Limited by the high computation cost of
machine learning models, it’s hard to refit a model recursively in a monthly frequency, which also increases
the propensity to overfitting to minor monthly variations in data. Thus, a common way in the literature is to
refit the model on an annual basis, as discussed in Gu et al. (2021), Gu et al. (2018) and Cong et al. (2021a).
However, for a neural network model, refitting on an annual basis means that the parameters of the model
are fixed during the twelve months between two refits. In this case, the factors are naturally assumed to be
static linear combinations of input asset returns with fixed coefficients within every twelve months, which is
not theoretically or intuitively justified. The Gu et al. (2021) modification of initializing with characteristic-
managed portfolio returns instead of individual stock returns alleviates the problem partially and reduce the
number of trainable parameters substantially, but at the expense of an ex-ante assumption regarding the
characteristic-managed portfolio weights and the pre-requisite of no common characteristics.

We make improvements to the factor model (2) in three aspects. First, we extend the conditioning
information from one-period lagged asset characteristics to a longer look-back window by sequence modelling
algorithms; more precisely, we summarize the information in historical asset characteristics as state variables
by a low-dimensional vector of market hidden state. Second, we allow the factor portfolio weights to be
conditioned on asset characteristics and vary dynamically over time without any ex-ante assumptions. Third,
we expand the set of predictors for each currency to include all common and country-specific characteristics
in the cross section, taking into account the interaction effects among different countries. This differs from
most structural Forex pricing models, such as the monetary model, in which only the relevant two countries’
fundamental differences are used as predictors in the bilateral exchange rate. Thus, our model can be
described in mathematical form as:

8Autoencoder is an unsupervised dimensionality reduction technique that aims at learning a compressed representation for
the input set of data. The idea of autoencoder has been popular in the neural network field for decades, serving as an effective
tool to convert the high-dimensional data to low-dimensional code (Hinton and Salakhutdinov (2006) and Goodfellow et al.
(2016)). A standard autoencoder neural network is typically constituted by two parts: an encoder network that maps the input
data into a reduced set of representation code, which is the dimensionality reduction process, and then a decoder network that
maps the learned reduced code back to a reconstruction of the input.

9The characteristic-managed portfolio returns are OLS estimates of regressing individual stock returns on the stock-level
characteristics.
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Figure 1: This figure shows the overall architecture of the Deep Latent Factor Model. The model consists of a Beta Network
on the left side and a Factor Network on the right side. At the highest level, the model can be described in equation 4.

rit = β(zt−1, ..., zt−T )
⊤
f(rt, zt−1, ..., zt−T ) + ui

t (3)

where the conditional factor exposure is a neural network model of the lagged historical characteristics of
all countries, and the factors are asset portfolios with their weights also conditioned on lagged historical
characteristics of all countries and modelled by neural networks.

The remainder of this subsection discusses our model architecture in detail. Our deep latent factor model
integrates hidden market states extracted from the dynamics of a diverse set of characteristics and allows for
cross-country interactions. It maintains the economic interpretation of the linear factor model at the highest
level, specifying factors as linear combinations of underlying asset returns with dynamic coefficients.

2.1.1 Overall Architecture

We start from the overall architecture of our deep latent factor model. Let N be the number of foreign
currencies and K be the number of latent factors which is smaller than N . The exchange rates are expressed
as the values of the domestic currency, in this paper US dollar, against the foreign currencies, computed as
the number of foreign currency units per U.S. dollar (i.e., U.S. dollar as the base currency).10

Figure 1 illustrates our overall architecture, which consists of a Beta Network on the left side and a Factor
Network on the right side. At the highest level, the model can be described in mathematical form as:

rt = βt−1ft + ut, (4)

where rt is a N × 1 vector of individual exchange rate returns, βt−1 is a N × K matrix of factor loadings
modeled by the Beta Network from lagged characteristics, ft is a K × 1 vector of latent factor returns in
period t modeled by the Factor Network, ut is a N ×1 vector of idiosyncratic errors and is uncorrelated with
ft.

In our model architecture, both the factor loadings (in Beta network) and factors (in Factor networks)
are conditioned on characteristics of all countries in the cross section, namely the U.S. and the N countries
of foreign currencies, rather than conditioning on characteristics of the relevant two countries in the bilateral
exchange rate as conventional monetary models.

There are two critical constituent architectures that are employed by both the Beta and Factor networks:
the Time-Series Attention Network (TSAN) and the Feed-forward Network (FFN). The TSAN is designed

10The terms “domestic” or ”foreign” do not refer to any geographical region, but rather to a particular side of the deal.
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to extract the market hidden state from historical characteristics, and the FFN has been one of the most
basic and quintessential networks in machine learning. The architectures of TSAN and FFN networks are
discussed in depth in Section 2.3 and 2.4 respectively, so we skip the redundant illustration here.

In next two sections, we discuss the architectures of the Beta and Factor networks, respectively.

2.1.2 Beta Network

We first illustrate the input layer of our Beta Network. Let m denotes the number of characteristics for each
foreign country and m∗ denotes the number for the US. We name T as the length of our look-back window
of historical characteristics; more precisely, at time t, we condition the Beta Network on the characteristics
of all countries in period from time t–T to time t − 1. Then, our input historical characteristics, denoted
as {X(0), X(1), . . . , X(N)}, are a collection of time series where X(0) is an m∗ × T matrix denoting the time
series of common characteristics (including the U.S. characteristics), and X(1), . . . , X(N) are m×T matrices
denoting the historical characteristics of the N foreign countries.

In the Beta Network, we employ a fully connected structure between the input layer and the TSAN.
The Beta Network maps the input historical characteristics of all countries, {X(0), X(1), . . . , X(N)}, into an
output N ×K matrix of factor loadings, βt−1. For each currency, it entails an independent TSAN to extract

the current hidden market state from the dynamics of historical characteristics. We denote s
(i)
t−1 as the

extracted hidden state of currency i, where i = 1, . . . , N . For each currency i, the extracted current hidden
state then passes through an independent Feed Forward Network (FFN) to form a K × 1 vector of factor

loadings β
(i)
t−1. The output N×K matrix of factor loadings βt−1 is thus constructed by merely concatenating

and reshaping the factor loadings β
(1)
t−1, . . . , β

(N)
t−1 .

2.1.3 Factor Network

The Factor Network aims to maintain the economic interpretation of factors, namely, factors are portfolios
of individual currency returns and allow the portfolio weights to be conditional on countries’ historical
characteristics and vary dynamically over time.

To describe the Factor Network in mathematical form at the highest level:

ft = Wt−1rt, (5)

where ft is a K × 1 vector of latent factor returns, Wt−1 is a K × N matrix of factor portfolio weights
conditioned on the time series of historical characteristics, rt is a N × 1 input vector of individual currency
returns.

The Factor Network maps the input vector of individual currency returns rt and historical characteristics
{X(0), X(1), . . . , X(N)} (the same as input of the Beta Network) to the output lower dimensional vector of
latent factor returns ft. The architecture is designed that each of the latent factor returns is a weighted
combination of the input individual currency returns, with their weights learned from the historical asset
characteristics and varying dynamically over time.

The Factor Network adopts a similar architecture as the Beta Network to model the portfolio weight

matrix. For each currency i, where i = 1, . . . , N , the hidden state s̃
(i)
t−1 extracted by the TSAN passes

through a FFN to form a K × 1 vector of portfolio weights, w
(i)
t−1. The N weight vectors are then stacked to

form a K ×N matrix of portfolio weights Wt−1 for the construction of latent factor returns ft.

At last, the final output N × 1 vector of reconstructed asset returns r̂t is then constructed by merely
taking the inner product of the factor loadings βt−1 and factor returns ft.

2.2 Deep Prediction Model

This subsection illustrates the architecture of our deep prediction model, which is designed to forecast the
exchange rate fluctuations in time series. A key difference between this prediction model and the deep latent
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Figure 2: This figure shows the architecture of the Deep Prediction Model. The TSAN architecture is to extract a vector
of state variables from characteristics in a long history. A separate set of parameters is trained for each currency, with the
predictor set containing characteristics of all countries in the cross section and allowing for cross-country interactions.

factor model in Section 2.1 is that in the deep prediction model, the currency returns are forecasted entirely
based on the characteristics with no factor and loading structures. The objective of the prediction model
is to forecast future exchange rate returns in time-series using lagged characteristics, not to explore the
cross-sectional dependence structure of returns through return reconstruction.

The deep prediction model, at the highest level, can be described mathematically as:

rit = Et−1(rit) + ui
t, (6)

where
Et−1(rit) = g(zt−1, ..., zt−T ). (7)

Our deep prediction model g(·) is a neural network function of the characteristic time series, with the
architecture illustrated in Figure 2. The input historical characteristics {X(0), X(1), . . . , X(N)}, which is the
same as the Beta Network input, pass through a single TSAN to extract the market’s overall hidden state
st−1. The Ks × 1 hidden state vector is then fed into an FFN to generate a N × 1 vector of forecasted
individual currency returns r̂t. The architectures of the TSAN and FFN are identical to those mentioned
in the deep latent factor model and are illustrated in detail in subsequent Section 2.3 and 2.4, respectively.
Thus, our deep prediction model maps the historical characteristics of all countries to the forecasted returns
for the next term.

A close predecessor to our work is Filippou et al. (2020). They consider an ensemble forecast, taking the
average of a linear panel regression forecast and a deep neural network forecast, to predict monthly exchange
rates for a group of developed countries based on a broad set of predictors. Despite some relevance with
their deep neural network model, the architecture of our deep prediction model differs significantly in two
aspects. The first distinction is that we employ a TSAN architecture to extract a vector of state variables
from characteristics in a long history, instead of using one-period lagged characteristics as employed in Fil-
ippou et al. (2020). The second difference is that in our deep prediction model, a separate set of parameters
is trained for each currency, with the predictor set containing characteristics of all countries in the cross
section and allowing for cross-country interactions; while in Filippou et al. (2020)’s work, a common set of
parameters is shared across currencies and trained using pooled data, with the predictor set containing solely
the characteristics associated with the target currency.

2.3 Time-Series Attention Network (TSAN)

This section illustrates the architecture of our time-series attention network (TSAN) which is used to extract
current hidden state from historical characteristics and is employed in both the deep latent factor model and
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Figure 3: Time-Series Attention Network (TSAN)

deep prediction model introduced in Section 2.1 and 2.2.
In machine learning, sequence modelling typically involves dealing with sequences of data where the

individual data points are strongly correlated and cannot be assumed as independent and identically dis-
tributed points. Well-known examples of sequence-to-sequence maps include speech recognition and machine
translation, where contextual information from past inputs is critical for future outputs.

Recurrent neural networks (RNNs) and attention mechanisms are two approaches that have been firmly
established as state of the art for sequence modelling tasks.11 Recurrent neural networks, such as long short-
term memory (LSTM)12 and gated recurrent units (GRU)13, generate a sequence of hidden states along
the positions where the current hidden state is a function of the previous hidden states and the current
input. The sequential nature of the computation naturally precludes parallelization within data, making
it difficult to learn long range dependencies at longer sequence lengths. Attention mechanisms instead
allow modelling of dependencies without considering their distance in the sequences thus enable parallel
computation. Self-attention particularly learns a representation of a single sequence by relating different
positions of the sequence.

The strong correlation within the time series of macroeconomic variables and the corresponding market
environments makes the attention mechanisms an attractive choice for modelling the hidden dynamics of the
market. Chen et al. (2020) has suggested the essentiality of extracting the hidden pattern in macroeconomic
time series before feeding into machine learning models, where a LSTM is employed to estimate the hidden
macroeconomic state variables. Cong et al. (2021a) introduce a Cross Asset Attention Network to learn the
interrelationships among the assets from the historical states of all assets, and Cong et al. (2021b) overview
the sequence modelling using neural networks and conduct a comparative analysis of the models in return
forecasting.

Here we introduce a Time-Series Attention Network (TSAN) which extracts the current hidden state of
the market from the historical macroeconomic characteristics. In our model architecture as shown in Figure
1 and Figure 2, we employ the TSAN architecture in both our deep latent factor model and deep prediction
model to extract the associated current hidden state of the market. In both models, the TSAN learns the
current hidden state from historical characteristics of all currencies in the cross section, so that incorporates
both the time-series dependencies and cross-country dependencies.

2.3.1 Model Architecture of TSAN

In the deep latent factor model, we employ an independent and identical TSAN for each currency to extract
its own current hidden state from the historical characteristics. Additionally, the hidden state representations

11See Bahdanau et al. (2014) and Vaswani et al. (2017), among others.
12See Hochreiter and Schmidhuber (1997).
13See Chung et al. (2014).
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Figure 4: Feed-forward Network (FFN)

in Beta Network and Factor Network are extracted independently, as we allow the hidden states in factor
loadings and returns to capture different information from the historical characteristics. Whereas in the
deep prediction model, the market hidden state is universal across currencies. As illustrated in Figure 2,
the TSAN is shared by all currencies. It extracts an overall hidden state of the market from historical
characteristics, which is then fed into an FFN to generate the predicted currency returns.

Without loss of generality, Figure 3 illustrates the architecture of our Time-Series Attention Network
(TSAN). The input time series of historical characteristics {X(0), X(1), . . . , X(N)} are first stacked and
reshaped into a new sequence of vectors X = {xt−1, . . . , xt−T }, in which xt−k represents a M × 1 vector of
characteristics of all the N + 1 countries in period t− k, where k = 1, . . . , T and M = m∗ +m ∗N . The new

sequence is then fed into the TSAN to extract an output Ks × 1 vector of hidden state s
(i)
t−1, where Ks is a

hyperparameter specifying the dimension of hidden state.
An attention network typically maps a query and a set of key-value pairs to an output, where the output

is a weighted combination of the values with the weights, also called the attention score, computed from the
query and the keys. To describe the TSAN in mathematical form:

q(i) = W
(i)
Q xt−1 (8)

K(i) = W
(i)
K X (9)

V (i) = W
(i)
V X (10)

s
(i)
t−1 = V (i) softmax(K(i)⊤q(i)) (11)

where W
(i)
Q , W

(i)
K and W

(i)
V are Ks × M matrices of parameters and are learned from the data in the

training step; q(i) is a Ks × 1 query vector, K(i) is a Ks × T key matrix, and V (i) is a Ks × T value matrix.
As we focus on the current hidden state, our query is set to be a single vector computed by a dot product

of the query parameter matrix W
(i)
Q with the characteristics of period t − 1, rather than characteristic of

all historical periods. To facilitate illustration, the superscript i, where i = 1, . . . , N , is specified in the
architecture to denote currency in the deep latent factor model; however, in the deep prediction model, the
TSAN is shared by all currencies and the superscript can thus be ignored.

2.4 Feed-forward Network (FFN)

This section describes the architecture of our feed-froward network (FFN), which is an essential component
of both the deep latent factor model and deep prediction model discussed above in this section.
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Feed-forward networks are the quintessential deep learning models and form the basis of many important
machine learning applications.14 A feed-forward network typically consists of an input layer, an output
layer and one or more hidden layers in between, which are vector valued with different dimensions. It
defines a deterministic mapping from the input to the output and learns the parameters that have the best
approximation. Feed-forward networks are said to be universal approximators (Hornik et al. (1989)) as their
approximation properties have been widely studied and found to be very general.15

Similar to the employment of TSAN, in the deep latent factor model, we employ an independent and
identical FFN for each currency in Beta Network and Factor Network, respectively, to map from the hidden
state to the factor loadings and factor portfolio weights. Whereas in the deep prediction model, as illustrated
in Figure 2, the FFN is shared by all currencies and map the overall market hidden state to the predicted
currency returns.

Throughout the models, we employ the same hyperparameters for architecture of all FFNs. Without loss
of generality, Figure 4 illustrates the architecture of FFN in Beta Network of the deep latent factor model.

For each currency i, an independent FFN is employed to map its current hidden state s
(i)
t−1 to its factor

loadings β
(i)
t−1.

To describe the FFN in mathematical form, denote L as the number of hidden layers and K [l] as the
number of neurons in each hidden layer l = 1, . . . , L. In the first hidden layer,

z
i,[l]
t−1 = g(W i,[0]s

(i)
t−1 + bi,[0]), l = 1 (12)

where W i,[0] is a K [l] ×Ks matrix of weight parameters, and bi,[0] is a K [l] × 1 vector of bias parameters.
Both the weight and bias parameters are learned from data in the training step. We employ the rectified
linear unit (ReLU), g(y) = max(y, 0), as our nonlinear activation function g(·) throughout the models.

When L > 1, in the upper hidden layers, we have

z
i,[l]
t−1 = g(W i,[l−1]z

i,[l−1]
t−1 + bi,[l−1]), l = 2, . . . , L (13)

where W i,[l−1] is a K [l] ×K [l−1] weight matrix and bi,[l−1] is a K [l] × 1 vector of bias.
The output vector of factor loadings for asset i is then generated by

β
(i)
t−1 = W i,[L]z

i,[L]
t−1 + bi,[L], (14)

where W i,[L] is a K [l] ×K matrix of weights and bi,[L] is a K × 1 vector of bias.

The FFNs in Factor Network work in a similar way to map from the hidden state s̃
(i)
t−1 of each currency

i to the vector of its portfolio weights w
(i)
t−1, thus are not discussed further. In the deep prediction model,

the FFN is shared by all currencies and can thus ignore the superscript i in the illustration.

2.5 Regularization and Loss Function

Regularization, as one of the central concerns in machine learning, aims to reduce the generalization error of
an algorithm (i.e. make the algorithm performs well not only on training data but also on new data) possi-
bly at the expense of increased training error. Many different regularization strategies have been developed,
and there is no best form of solution. Thus, the choice of regularization in a particular task expresses the
preference for different solutions which is assumed to best suit the task. In our model, we choose the LASSO
regularization and apply the penalty specifically to the input characteristics layers.

2.5.1 LASSO Regularization

LASSO, also known as the l1 norm regularization, is a widely used regularization technique to reduce
overfitting in the field of machine learning (Tibshirani (1996)). A LASSO regularization appends a l1

14See, for example, Bishop (2006) and Goodfellow et al. (2016).
15See Hornik (1991) and Kreinovich (1991), among others.
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norm penalty, the sum of the absolute value of the weight parameters, to the objective function of the
machine learning model. Minimizing an objective function with LASSO regularization tends to produce
sparse solutions. It encourages some weight parameters to continuously shrink to zero thus performs both
parameter shrinkage and variable selection, hence can generate more stable and interpretable models. A
similar idea is the ridge regression which applies a l2 norm penalty, the sum of the squares of the weight
parameters, to the objective function. However, the ridge regression only shrinks the size of the weight
parameters without setting any of them to zero, thus it does not perform covariate selection and therefore
does not help improve the interpretability of the model.

LASSO has been employed in the previous literature for predictors identification and characteristics selec-
tion and has resulted in improved out-of-sample performance.16 Unlike the conventional way of regularizing
neural network models, in which all weight parameters are penalized, we apply LASSO regularization just to
the weight parameters of the input characteristic layers. In our model architecture design, we condition the
factor loadings and factor returns on the characteristics of all the countries in the cross section, not just the
relevant two countries of the bilateral exchange rate. As LASSO regularization diminishes the weight param-
eters for less important characteristics, by observing the characteristics importance in the trained regularized
model, we can investigate which characteristics provide more information for explaining the exchange rate
movements and study the interactive effects between characteristics of different countries.

2.5.2 Loss Function and Optimizer

The standard objective function summarizes the squared error between real returns and estimated returns
over all the N currencies and T time periods. Let J(θ; ·) denotes the standard objective function:

J(θ; ·) =
1

NT

N∑
i=1

T∑
t=1

(rit − r̂it)
2, (15)

where θ is a proxy for all the parameters in the model, rit and r̂it are the real return and estimated return of
currency i in period t. Specifically, in the deep latent factor, r̂ denotes the reconstructed return, whereas in
the deep prediction model, it represents the predicted return.

The LASSO regularization adds a parameter norm penalty Ω(θ) to the standard objective function J(θ; ·).
Let J̃(θ; ·) denote the regularized loss function to be minimized, then

J̃(θ; ·) = J(θ; ·) + λΩ(θ), (16)

where λ ∈ [0,+∞) is a hyperparameter that weights the contribution of the LASSO penalty term Ω(θ),
larger values of λ correspond to stronger regularization.

We define the regularization term Ω(θ) differently for our latent factor model and prediction model. In
the deep latent factor model, we set the regularization term Ω(θ) as

Ω(θ) = ||W [0]
Beta||1 + ||W [0]

Factor||1, (17)

where W
[0]
Beta and W

[0]
Factor indicate the weight parameters for the input characteristic layer of the Beta

Network and Factor Network, respectively. Whereas in the deep prediction model, the regularization term
Ω(θ) is defined as

Ω(θ) = λ||W [0]||1, (18)

where W [0] indicates the weight parameters of the input characteristic layer.
In machine learning, three datasets are commonly used in different stages of building the model: a

training set, a validation set and a test set. A training set is used to initially fit the model and estimate
the parameters. Then a validation set is used to tune the model’s hyperparameters. It provides an unbiased
evaluation of the fitted model for a comparison among models with different set of hyperparameters. A test
set is a heldout dataset that has never been used in training, it is used to provide a final evaluation of the

16See, for example, Chinco et al. (2019) and Freyberger et al. (2020).

12



fitted model. Following this template, we divide our data into three separate sets: training, validation and
test sets. The hyperparameter λ in the LASSO penalty is then tuned in validation set.

For the optimization of the loss function, we employ the adaptive moment estimation algorithm (Adam)
as our optimizer, which is one of the most widely used optimizers in machine learning (Kingma and Ba
(2014)). The stochastic gradient descent method (SGD) is adopted for optimizing the objective function to
reduce the computational burden and achieve faster convergence.

3 An Empirical Study of G10 Currencies

3.1 Data

We work with a sample of G10 currencies, with monthly returns based on spot rates from January 2000
through December 2020. Exchange rates are end of month values of US dollar vis-à-vis the remaining nine
G10 currencies 17, defined as units of foreign currencies per unit of US dollar. The monthly currency return
is computed as the monthly change of log exchange rate.

We build a collection of 34 common and country-specific characteristics that are motivated from the
international economics and currency pricing literature and can be classified into four categories: 14 macroe-
conomic fundamentals, six interest rate-related variables, eight technical indicators, and the remaining six
commodity-related common characteristics.18 We obtain the macroeconomic fundamentals from the IMF
and Bloomberg databases, interest rate data from the central banks of the G10 countries, and technical and
commodities data from the Reuters database, with some of the technical data further processed manually.

Most of the characteristics are updated monthly, with six being updated quarterly and one being updated
annually. Given that most of the macroeconomic fundamentals are released ex post with a delay, we use
lagged economic fundamentals with their first-released data to avoid using future information, as Faust et al.
(2003) suggests that the exchange rate prediction models tend to perform better when using original released
data than revised data. Thus, for the prediction of month t, we use the most recent data available at the
end of month t-1; more precisely, we use the most recent monthly updated fundamentals as of month t-1,
the most recent quarterly updated fundamentals as of month t-4, and the most recent annually updated
fundamentals as of month t-6 (Kelly et al. (2019), Gu et al. (2021)). We normalize each of the country-
specific characteristics in the cross section with zero mean and unit variance for each month. The missing
values are filled with the cross-sectional mean following Gu et al. (2018).

Rather than using the difference in characteristics between the domestic and foreign countries as predic-
tors, as some structural models such as the monetary model do, we feed those country-specific characteristics
into the neural network separately without any ex-ante combination, as the input characteristic layer of our
model architecture suggests. In other words, we make no ex-ante assumptions about the relative coefficients
of the fundamentals and allow the model to learn the coefficients from the data. In our input characteristic
layers where X(0), X(1), . . . , X(N) is fed into the model, X(0) is a matrix of common characteristics including
US and commodity-related characteristics, X(1), . . . , X(N) are matrices of country-specific characteristics for
the remaining nine G10 currencies respectively, i.e., we work on a model with N = 9. Hence, the factor
loadings and factor returns for each currency is conditioned on a total of 279 characteristics.19

3.2 Hyperparameters

We initially divide the 21 years of sample data into three disjoint subsets: 10 years of training set (2000-
2009), 3 years of validation set (2010-2012) and 8 years of test set (2013-2020). In our input characteristic
layers, we set our look-back window to be 12 months. That is, we set T = 12 and use characteristics from
month m− 12 to month m− 1 when we model the returns for month t.

17Euro (EUR), Pound sterling (GBP), Japanese yen (JPY), Australian dollar (AUD), New Zealand dollar (NZD), Canadian
dollar (CAD), Swiss franc (CHF), Norwegian krone (NOK) and Swedish krona (SEK)

18See Table A1 in Appendix for a full list.
19See Table A2 and Table A3 in Appendix for a detailed list.
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The non-negative hyperparameter λ, which controls the strength of shrinkage in the LASSO penalty, is
tuned based on the validation performance. Limited by the relatively high computational cost of recursively
searching for an optimal λ for each refit and each architecture, we decide the value of λ based on the
validation performance in a one-time fit and in a model with three hidden layers and four latent factors, the
most complicated architecture among our candidate models. Then we fix the value of λ and no longer tune
it when we refit the model.

After determining the value of λ, we no longer need a validation set thus can merge it into the training
set. For example, to generate an estimate for the year 2013, we fit the model using data from 2000 to 2012
as training set. The model is refitted recursively at the end of each year. Rather than using a sliding window
refit, we make advantage of all available data and expand the training set by one year in each refit to include
the most recent twelve months.

For hyperparamemters with regard to the number of latent factors and hidden layers, we follow the setting
of Gu et al. (2021) and consider a range of model architectures with different complexities. We evaluate
three different architectures: a model with one hidden layer containing 16 neurons, a model with two hidden
layers containing 16 and 8 neurons respectively and a model with three hidden layers containing 16, 8 and
4 neurons respectively. The specification of 16 neurons in the first hidden layer is approximately the square
root of the number of predictors (which is a widely accepted guideline in machine learning). For each of the
three model architectures, we further consider four different specifications: a range from one to four latent
factors. Thus we have in total twelve candidate models under evaluation. We set our TSAN to have four
hidden states, namely Ks = 4, following the specification of Chen et al. (2020).

Additionally, we employ an ensemble approach to improve the stability of the predictions. That is, rather
than predicting based on a single fit, we generate the model predictions by averaging estimates from multiple
independently trained models. For latent factor models, we set the number of independent fits to ten, while
for prediction models, we set it to twenty due to the highly volatile performance.

3.3 Performance Evaluation: Deep Latent Factor Model

3.3.1 Model Comparison Set

We compare our deep latent factor model with a range of latent factor models. The first model is the principle
component analysis (PCA) which employs solely assets return data without regard for asset characteristics,
assuming linear functional form and static factor loadings and factor portfolio weights.

Our second comparison model is the conditional autoencoder model (CA) proposed by Gu et al. (2021),
which conditions the factor loadings on the asset’s own one-period lagged characteristics, as described in (2),
and employs a nonlinear neural network functional form via autoencoder. In CA, the factor loadings vary
dynamically with asset characteristics while the factor portfolio weights remain static.

The third comparison model is the fully connected conditional autoencoder model (FCA). As illustrated
in Figure 5, the FCA model improves CA by allowing the factor loadings to condition on the characteristics
of all the assets in the cross section, rather than just the asset itself. The FCA can be described as:

rit = β(zt−1)
⊤
ft + ui

t (19)

where the factor loadings β(zt−1) is nonlinearly conditioned on the one-period lagged characteristics of all
assets zt−1, rather than the its own characteristics zit−1 as described in (2). Thus, the model allows for
interaction between the characteristics of multiple assets and allows the factor loadings of one asset to be
impacted by the characteristics of other assets.

The fourth comparison model, denoted FCA-DynFac, extends the FCA model by allowing the factor
portfolio weights to condition also on the one-period lagged characteristics of all assets. Figure 6 illustrates
the architecture of FCA-DynFac. The model can be described as:

rit = β(zt−1)
⊤
f(rt, zt−1) + ui

t (20)

where both the factor loadings and factor portfolio weights are neural network models of the one-period
lagged characteristics of all assets in the cross section. Hence, the factor portfolio weights are no longer
static and can fluctuate dynamically over time.
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Figure 5: This figure shows the architecture of the fully connected conditional autoencoder model (FCA). FCA model improves
conditional autoencoder model (CA) of Gu et al. (2021) by allowing the factor loadings to condition on the characteristics of
all the assets in the cross section, rather than just the asset itself.

Figure 6: This figure shows the architecture of FCA-DynFac model. It extends the FCA model by allowing the factor portfolio
weights to condition also on the one-period lagged characteristics of all assets.
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Figure 7: This figure shows the architecture of the FCA-TSAN model. FCA-TSAN extends the FCA model by including
TSAN in its factor network, to extract market hidden states from the characteristics.

The fifth comparison model, which we note FCA-TSAN, extends the FCA model by including the time-
series attention network (TSAN), as described in Section 2, in its factor network, to extract market hidden
states from the characteristics. Figure 7 illustrates the architecture of the FCA-TSAN. In this model, the
beta network employs an identical architecture as illustrated in Figure 1 while the factor portfolio weights
remain static. We can describe FCA-TSAN in mathematical form as:

rit = β(zt−1, ..., zt−T )
⊤
ft + ui

t (21)

where the conditional factor exposure is a neural network nonlinear function of the lagged historical charac-
teristics of all assets in the cross section.

Our deep latent factor model (DLF), as described in (3) and illustrated in Figure 1, is distinguished from
FCA-TSAN in that it allows factor portfolio weights to condition on the historical characteristics of all assets,
with the time-series attention network (TSAN) extracting market hidden states from the characteristics.
Thus, the factor portfolio weights can vary dynamically over time with the asset characteristics.

Table 1 summarize crucial components of five comparison models. Those components are associated
with model improvements in the interaction effect over all countries, dynamic factor portfolio weights and
historical state extraction via attention network.

Table 1: This table summarizes the primary architecture differences among five comparison deep factor models. ✓indicates
the inclusion of components.

CA FCA FCA-DynFac FCA-TSAN DLF

Interaction over countries - ✓ ✓ ✓ ✓
Dynamic Factor Portfolio Weight - - ✓ - ✓
Attention network on loading - - - ✓ ✓
Attention network on factor - - - - ✓

For each of the comparison model, we consider a range of model architectures corresponding to different
levels of complexity. For PCA, we consider four different architectures: PCA with a number of latent factors
ranging from one to four. For the remaining comparison models, we consider twelve different architectures:
models with a number of hidden layers ranging from one to three, and each of these models with a number
of latent factors ranging from one to four, respectively.
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3.3.2 Statistical Performance Evaluation

First, we assess the model’s overall contemporaneous explanatory power in explaining exchange rate move-
ments. We use the out-of-sample cross-sectional contemporaneous R2 (R2

Cont) and root mean squared error
(RMSECont) as our metrics, which summarize the model’s performance in all currencies all over the test set
periods and are defined as:

R2
Cont = 1 −

∑
i,t∈Test(r

i
t − r̂it)

2∑
i,t∈Test r

i
t
2 , (22)

RMSECont =

√
1

NT

∑
i,t∈Test

(r̂it − rit)
2. (23)

The out-of-sample R2
Cont measures the contemporaneous descriptive ability of the factor portfolios and is

commonly used in linear asset pricing. The root mean squared error is a widely employed metric in exchange
rate prediction, as in Meese and Rogoff (1983a,b), hence we use the out-of-sample contemporaneous root
mean squared error (RMSECont) to help evaluate the pricing accuracy of the model.

Table 2 and 3 report the out-of-sample R2
Cont and RMSECont of DLF and the five comparison models

with different architectures. As the number of latent factors increases, the performance generally improves
monotonically (with a greater R2

Cont and a smaller RMSECont). Whereas performance varies differently with
respect to the number of hidden layers for different models. The performance of FCA, FCA-DynFac and
DLF improves monotonically as the number of hidden layers grows, CA and FCA-TSAN, on the other hand,
do not exhibit a significant change in performance as the number of hidden layers varies. In comparison to
the number of hidden layers in architecture, the number of latent factors has a greater influence on model
performance.

The highest out-of-sample R2
Cont (lowest out-of-sample contemporaneous RMSE), 84.62% (1.03), is pre-

sented by FCA with three hidden layers and four latent factors, closely followed by several slightly weaker
performances delivered by models with four latent factors.

Interestingly, the neural network models fail to outperform the simplest linear model, PCA, in terms
of the contemporaneous explanatory power. The PCA loadings remain remarkably stable over time when
performed on an expanding window. This underperformance of neural network models, particularly those
with simpler architectures, is likely a result of overfitting due to the limited data set in the training step.

Next, we evaluate the model’s predictive accuracy by the out-of-sample predictive root mean squared
error (RMSEPred):

RMSEPred =

√
1

NT

∑
i,t∈Test

(r̂it,Pred − rit)
2, (24)

where
r̂it,Pred = βi

t−1

⊤
ft−1. (25)

The RMSEPred compares the out-of-sample predictive ability of the candidate models. Table 4 reports the
out-of-sample RMSEPred of the models with different architectures. The neural network models outperform
PCA consistently in terms of RMSEPred, indicating the advantage of employing neural networks to capture
time variation through characteristics in prediction.

The best overall model in terms of out-of-sample predictive ability is DLF with one factor. The lowest
RMSEPred of 2.70 is delivered by DLF with one latent factor and one hidden layer, followed by a slightly
weaker performance of DLF with one latent factor and two hidden layers, which delivers a RMSEPred of
2.71.

In contrast to the contemporaneous explanatory performance, the predictive performance tends to de-
crease as the number of latent factors grows in each model. Additionally, increasing the number of hidden
layers also exhibits a generally negative effect on the predictive performance. That is, the model tends to
perform better with simple architectures.

In our model architecture design, FCA-DynFac differs from FCA in that it allows dynamic weights de-
rived from characteristics in the factor portfolios. The superior performance of FCA-DynFac, except for

17



Table 2: R2
Cont (%) results. In this table, we report the out-of-sample contemporaneous R2 of the six latent factor models,

i.e., PCA, FCA, FCA-DynFac, FCA-TSAN and DLF, with the number of latent factors ranging from 1 to 4 and the number of
hidden layers ranging from 1 to 3 (except for PCA, which does not have multiple hidden layers).

Number of
Hidden Layers

Model
Number of Latent Factors
1 2 3 4

PCA 58.83 69.33 78.53 84.23

1

CA 42.85 64.35 74.03 82.11
FCA 20.23 57.47 73.06 81.79

FCA-DynFac <0 <0 <0 <0
FCA-TSAN 49.36 69.71 77.47 84.36

DLF 34.68 65.33 76.86 83.54

2

CA 39.72 64.94 74.50 82.49
FCA 28.80 63.59 75.18 82.74

FCA-DynFac 12.89 16.61 14.56 8.58
FCA-TSAN 52.98 66.78 77.76 83.53

DLF 45.02 67.00 76.53 83.61

3

CA 45.03 66.95 76.73 82.56
FCA 31.91 64.81 77.45 84.62

FCA-DynFac 19.65 38.36 48.38 54.17
FCA-TSAN 51.75 69.14 77.13 83.72

DLF 46.95 68.88 76.41 82.43

those with a single hidden layer, demonstrates the advantages of employing conditional dynamic weights in
factor portfolios. DLF further extends FCA-DynFac by allowing factor loadings and factor portfolio weights
to condition on historical characteristics rather than one-period lagged characteristics via TSAN architec-
tures. The additional outperformance of DLF over FCA-DynFac reveals the benefits of extracting market
hidden states from historical characteristics in factor loadings and factor portfolio weights. Interestingly,
FCA-TSAN consistently underperforms FCA. These two models differ in that FCA excludes the TSAN ar-
chitectures in its Beta Network, whereas both two models employ a single linear hidden layer in the Factor
Network and assume static portfolio weights. Thus, the consistent underperformance of FCA-TSAN suggests
a negative effect of TSAN architectures in Beta Network when employing static factor portfolios.

3.3.3 Economic Performance Evaluation

To further assess the model performance in terms of the economic value, we construct long short portfolios
based on the out-of-sample predictive returns and compare the Sharpe ratios of each model.

The currency excess return of a U.S. investor holding foreign currency k is defined as:

rxk
t+1 = ikt – it − ∆skt+1, (26)

where ik and i denotes the one-month interest rate in country k and the U.S., respectively, and ∆s denotes
the log spot rate change or return.

For each model, we construct self-financing long-short portfolios in two ways. The first portfolio longs
the currency with the highest forecasted excess return and shorts the currency with the lowest, whereas the
second portfolio buys the currencies with the top two highest predictive returns and sells the bottom two
currencies, which are all equal-weighted. At the end of each month, we rebalance the portfolios by sorting
the currencies based on their out-of-sample predictive excess returns described in (25).

Table 5 reports the out-of-sample Sharpe ratios of the long-one-short-one portfolios for each model with
a range of architectures. Comparing the overall performance of the six candidate models, the results are
generally consistent with the statistically performance as measured by RMSEPred. In terms of economic
value, the five neural network models consistently outperform PCA and tend to perform better with simpler
architectures. DLF delivers the best overall performance, with the highest Sharpe ratio of 0.77 achieved by
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Table 3: RMSECont (%) results. In this table, we report the out-of-sample contemporaneous RMSE of the six latent factor
models, i.e., PCA, FCA, FCA-DynFac, FCA-TSAN and DLF, with the number of latent factors ranging from 1 to 4 and the
number of hidden layers ranging from 1 to 3 (except for PCA, which does not have multiple hidden layers).

Number of
Hidden Layers

Model
Number of Latent Factors

1 2 3 4
PCA 1.69 1.46 1.22 1.04

1

CA 1.99 1.57 1.34 1.11
FCA 2.35 1.71 1.36 1.12

FCA-DynFac 2.86 3.65 4.14 4.31
FCA-TSAN 1.87 1.45 1.25 1.04

DLF 2.48 2.36 2.23 2.22

2

CA 2.04 1.56 1.33 1.10
FCA 2.22 1.59 1.31 1.09

FCA-DynFac 2.45 2.40 2.43 2.51
FCA-TSAN 1.80 1.52 1.24 1.07

DLF 2.33 1.97 1.87 1.84

3

CA 1.95 1.51 1.27 1.10
FCA 2.17 1.56 1.25 1.03

FCA-DynFac 2.36 2.06 1.89 1.78
FCA-TSAN 1.83 1.46 1.26 1.06

DLF 2.23 1.88 1.76 1.63

Table 4: RMSEPred (%) results. In this table, we report the out-of-sample predictive RMSE of the six latent factor models,
i.e., PCA, FCA, FCA-DynFac, FCA-TSAN and DLF, with the number of latent factors ranging from 1 to 4 and the number of
hidden layers ranging from 1 to 3 (except for PCA, which does not have multiple hidden layers).

Number of
Hidden Layers

Model
Number of Latent Factors

1 2 3 4
PCA 3.30 3.42 3.52 3.57

1

CA 3.17 3.27 3.32 3.38
FCA 2.91 3.08 3.27 3.35

FCA-DynFac 3.20 3.69 4.12 4.51
FCA-TSAN 3.15 3.30 3.36 3.44

DLF 2.70 2.85 2.84 2.93

2

CA 2.93 3.17 3.28 3.34
FCA 3.00 3.21 3.33 3.44

FCA-DynFac 2.88 2.93 3.01 3.17
FCA-TSAN 3.26 3.30 3.41 3.47

DLF 2.71 2.86 3.01 2.96

3

CA 3.05 3.24 3.30 3.36
FCA 3.10 3.24 3.39 3.46

FCA-DynFac 2.74 3.00 3.18 3.25
FCA-TSAN 3.30 3.33 3.38 3.48

DLF 2.79 3.02 3.02 3.10
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Table 5: Sharpe Ratios of Long-One-Short-One Portfolios

Number of
Hidden Layers

Model
Number of Latent Factors
1 2 3 4

PCA -0.13 0.02 -0.20 0.02

1

CA 0.17 0.14 -0.19 0.10
FCA 0.38 0.38 -0.14 -0.11

FCA-DynFac -0.12 0.08 0.40 0.02
FCA-TSAN 0.23 0.22 0.15 -0.03

DLF 0.49 0.32 -0.03 0.77

2

CA -0.04 0.23 -0.15 -0.05
FCA 0.09 -0.09 -0.11 0.01

FCA-DynFac 0.28 -0.07 -0.27 0.31
FCA-TSAN -0.05 0.42 0.37 0.15

DLF 0.31 0.37 0.39 0.39

3

CA 0.08 -0.17 -0.02 -0.08
FCA -0.02 -0.22 0.07 0.06

FCA-DynFac 0.43 0.13 -0.17 0.13
FCA-TSAN 0.17 0.15 0.14 0.10

DLF -0.08 0.22 0.05 0.14

Note: In this table, we report the out-of-sample Sharpe ratios of long-short portfolios for the six latent factor models,
i.e., PCA, FCA, FCA-DynFac, FCA-TSAN and DLF, with the number of latent factors ranging from 1 to 4 and the
number of hidden layers ranging from 1 to 3 (except for PCA, which does not have multiple hidden layers). In each
portfolio, we long the currency with the highest predictive excess return and short the currency with the lowest.

DLF with one hidden layer and four latent factors.
As model complexity varies, the portfolio Sharpe ratios are not as monotonic as the RMSEPred. The

performances exhibit more volatility, as betting on a single currency could result in a single wrong bet having
a substantial effect on the entire Sharpe ratio. Hence, we report the Sharpe ratios of the long-two-short-two
portfolios as an additional reference. As shown in Table 6, all neural network models deliver positive Sharpe
ratios regardless of the architecture. The highest Sharpe ratio, 0.56, is again achieved by DLF with one
hidden layer and four latent factors.

3.3.4 Pricing Errors

Our model setting, similar to Gu et al. (2021), imposes a no-arbitrage restriction by allowing no intercept in
the factor model. In contrast to the prediction model which contains no factor structure, the factor model
encourages the return predictability to come only through factor risk exposures. Thus, in this section we
test the out-of-sample pricing errors of our DLF model. The pricing error for currency i is defined as:

αi = E[rit] − E[r̂it]. (27)

We test whether the pricing errors are statistically indistinguishable from zero by observing the t-statistics
of the alphas for the nine currencies. We conduct the test for each of our twelve architectures: DLF with
number of hidden layers ranging from one to three and number of latent factors ranging from one to four.
Among all the architectures, none of the t-statistics of alphas for the nine currencies exceeds 3.0, indicating
that the no-arbitrage restriction is satisfied in the data.

Figure 8 reports the alphas against average realized returns of the nine currencies for the twelve different
architectures: DLF with the number of hidden layers ranging from one to three and the number of latent
factors ranging from one to four. Each subplot represents one of the twelve architectures, and each scatter
represents one of the nine currencies. As shown in the figure, the scatters become less spread out as the
number of latent factors increases. This corresponds to the DLF contemporaneous explanatory performance
as illustrated in Table 3, where RMSECont decreases as the complexity of the DLF architecture grows,
indicating that the pricing errors shrink as the complexity of the DLF architecture increases.
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Table 6: Results of Sharpe Ratios of Long-Two-Short-Two Portfolios. In this table, we report the out-of-sample Sharpe ratios
of long-short portfolios for the six latent factor models, i.e., PCA, FCA, FCA-DynFac, FCA-TSAN and DLF, with the number
of latent factors ranging from 1 to 4 and the number of hidden layers ranging from 1 to 3 (except for PCA, which does not
have multiple hidden layers). In each portfolio, we long the currencies with the top two highest predictive returns and short
the bottom two currencies, which are all equal-weighted.

Number of
Hidden Layers

Model
Number of Latent Factors

1 2 3 4
PCA 0.15 0.25 -0.07 -0.01

1

CA 0.27 0.06 0.43 0.24
FCA 0.30 0.42 0.24 0.12

FCA-DynFac 0.12 0.35 0.23 0.26
FCA-TSAN 0.24 0.38 0.27 0.13

DLF 0.15 0.14 0.35 0.56

2

CA 0.15 0.28 0.16 0.40
FCA 0.13 0.25 0.41 0.13

FCA-DynFac 0.10 0.09 0.11 0.04
FCA-TSAN 0.15 0.37 0.31 0.09

DLF 0.19 0.17 0.39 0.30

3

CA 0.00 0.20 0.32 0.05
FCA 0.27 0.13 0.29 0.29

FCA-DynFac 0.34 0.11 0.22 0.04
FCA-TSAN 0.41 0.27 0.33 0.09

DLF 0.15 0.02 0.05 0.17

Figure 8: Pricing Errors results. The figure reports the alphas (%) against average realized returns (%) of the nine currencies
for twelve different DLF model architectures: DLF with the number of hidden layers ranging from one to three and the number
of latent factors ranging from one to four.
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3.3.5 Interactive Effects and Characteristic Importance

We assess the characteristic importance and cross-country interactive effects based on the characteristic
sensitivity, which measures the sensitivity of the output returns with respect to the characteristic. A higher
sensitivity indicates that the characteristic has a greater influence on the output currency returns. Similar
to Chen et al. (2020), we define the characteristic sensitivity based on the average absolute gradient. That
is, for currency i, the sensitivity of a particular characteristic, xm, is defined as the average absolute gradient
of the output returns with respect to this characteristic. Mathematically,

Si(xm) =
1

T

∑
t∈Test

| ∂r̂
i
t

∂xm
|, (28)

where Si(xm) denotes the sensitivity of currency i with respect to characteristic xm, T is the number of
periods in the test set.

Figure 9 illustrates the sensitivity of output returns to all characteristics for each currency. To facilitate
comparison of sensitivity to a particular characteristic for different currencies, we convert the characteristic
sensitivity to its proportion of all characteristics in that currency. To describe mathematically,

S̃i(xm) =
Si(xm)∑
m Si(xm)

. (29)

The results are based on a DLF model with three hidden layer and four latent factors, the most complex
architecture among those provide the highest contemporaneous R2. Other model architectures provide
virtually the same results thus are not reported here.

Figure 9(a) reports the sensitivity of output currency returns with respect to the country-specific charac-
teristics, with each sub-heatmap indicating the sensitivity of returns for all nine currencies to the characteris-
tics of a particular country. The sensitivity to common characteristics, namely the US and commodity-related
characteristics, is illustrated Figure 9(b).

Notably, the characteristic sensitivities exhibit an obvious cross-country interactive pattern, as illustrated
by the vertical pattern in the heatmap colors. The characteristics that have a greater impact on the output
return of one currency also tend to have a greater impact on other currencies. These cross-country interactive
effects support our assumption that a currency’s performance is affected not only by the characteristics of
the relevant two countries in the bilateral exchange rate, but also by the characteristics of other countries in
the cross section.

We further look at the characteristic importance based on the overall sensitivity, define as the character-
istic’s average sensitivity across all currencies:

S(xm) =
1

N

∑
i

Si(xm), (30)

We rank our total of 279 characteristics based on their characteristic importance. Figure 10 depicts the
top 50 characteristics. There is little evidence of top-tier dominance shown in the characteristic importance,
as the top 50 contribute just around 21% of total characteristic importance. Thus, to better observe the
characteristic importance, we categorize the characteristics into four groups – macroeconomic, interest rate-
related, technical, and commodity-related, as described in Table A1. Characteristics in the first three groups
can be further classified by country. Figure 11 illustrates the average characteristic importance of each
group. The UK interest rate group has the highest average importance and well outweighs the second group.
The top groups are dominated by interest rate-related and technical characteristics, indicating that monthly
exchange rate fluctuations might be driven more by higher frequency rate data rather than the relatively
low frequency macroeconomic data.

To further investigate the dynamics of dominant characteristics, we look into the characteristic impor-
tance for each year during the out-of-sample periods. Figure 12 illustrate how the rankings of dominant
characteristic groups evolve over time. Although the average characteristic importance of various groups
is not substantially different, the ranking is relatively consistent, as shown in the figure. The dominant
characteristics, for example the UK interest rate group, continue to outweigh other characteristic groups
in terms of the overall sensitivity, and the top groups remain dominated by higher frequency rate-related
characteristics.
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Figure 9: Cross-Country Interactive Effects Results. The figure reports the sensitivity of output returns to all characteristics
for each currency. Figure (a) reports the sensitivity to country-specific characteristics. Each sub-heatmap illustrates the
sensitivity of returns for all nine currencies to the characteristics of a particular country. Figure (b) reports the sensitivity to
common characteristics.

(a) Sensitivities to Country-Specific Characteristics

(b) Sensitivities to Common Characteristics
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Figure 10: Characteristic Importance. The figure reports the top 50 characteristics among the total 279 characteristics ranked
by their characteristic importance. Different bar colors depict characteristics of different countries.
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Figure 11: Characteristic Importance by Group. The figure reports the average characteristic importance of each group. The
characteristics are classified into four categories: macroeconomic, interest rate-related, technical, and commodity-related, with
the first three further grouped by country.
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Figure 12: Characteristic Importance over Time. The figure reports the average characteristic importance of the groups for
each year during the out-of-sample periods. It depicts how the rankings of dominant characteristic groups evolve over time. A
larger point in the figure indicates a greater importance of the characteristic.
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Figure 13: PRED-FC

3.4 Performance Evaluation: Deep Prediction Model

Our deep prediction model, which we note PRED-TSAN-FC, are designed to provide exchange rate return
prediction in time series. As introduced in Section 2.2 and illustrated in Figure 2, the prediction model maps
the historical characteristics of all countries to the forecasted returns for the next term. To evaluate the
forecasting performance, we compare PRED-TSAN-FC to several other models in our model comparison set
against the random walk benchmark, a widely studied robust benchmark in the literature of exchange rate
forecasting.

Since Meese and Rogoff (1983a,b), the random walk has been shown to be the best predictor and used
extensively across papers in the literature. In this paper, we employ a random walk forecast without drift
(“RW”) as our predictor benchmark, which is well-known in the literature to be a harder model to beat than
its alternative, the random walk with drift (Rossi (2013)). It can be defined as:

Et−1(rit) = 0. (31)

3.4.1 Model Comparison Set

Our first comparison model, noted as PRED-FC, are designed as illustrated in Figure 13. The model
architecture is distinct from the PRED-TSAN-FC design in that it does not contain the TSAN architecture
(the network that extracts hidden states from long historical characteristics). Thus, instead of time series of
characteristics, the model input is the one-period lagged characteristics of all assets. The input characteristics
vector passes through an FFN, identical to the architecture described in Section 2, to form an N × 1 vector
of forecasted individual currency returns r̂t.

Our second comparison model, denoted PRED-TSAN, is distinct from PRED-TSAN-FC by employing a
distinct subnetwork for each currency. Each subnetwork is comprised of a TSAN and an FFN architecture.
All the TSANs and FFNs have the same architecture as detailed in Section 2 and share the same hyperpa-
rameters. As illustrated in Figure 14, the architecture of PRED-TSAN is identical to that of Beta Network
in DLF except for the output layer: in PRED-TSAN, for each currency i, the input characteristic time series

pass through a TSAN and an FFN to form a scalar representing the predicted return on that currency, r̂
(i)
t .

Our third comparison model, denoted PRED-PC, is motivated by Filippou et al. (2020) and takes a
“partially” connected architecture in the input characteristics layer. Unlike PRED-FC where the model
maps the lagged characteristics of all assets to an N × 1 vector of forecasted currency returns, PRED-PC
maps the lagged characteristics of one asset to a scalar of forecasted return for that asset. As illustrated in
Figure 15, for each currency i, the input one-period lagged characteristics, i.e., a combination of common

characteristics x
(0)
t−1 and country-specific characteristics x

(i)
t−1, pass through an FFN to form a scalar of

predicted return on that currency, r̂
(i)
t . When training the model, we pool the data so that the learnt

parameters are the same across currencies. In other words, all currencies share the same prediction model.
Our fourth comparison model, noted as PRED-TSAN-PC, extends PRED-PC by including a time-series

attention network (TSAN), as describe in section 2, before FFN to extract market hidden states from the
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Figure 14: PRED-TSAN

Figure 15: PRED-PC

historical characteristics. As illustrated in Figure 16, for each currency i, the input characteristics time
series, comprised of common characteristics X(0) and country-specific characteristics X(i), pass through a

TSAN to derive a hidden state vector s
(i)
t−1. The hidden state then pass through an FFN to form the output

scalar of predicted return on that currency, r̂
(i)
t . Similar to PRED-PC, we pool the data in the training step

and share the model across all currencies.
We summarize the distinctive architectures of five comparison models in Table 7. The constituent ar-

chitectures, which are associated with the full or partial interaction effects over countries and the historical
state extraction via attention network, reflect different performances in empirical analysis.

Table 7: This table summarizes the primary architecture differences among five prediction models. ✓indicates the inclusion
of components.

PRED-FC PRED-TSAN PRED-PC PRED-TSAN-PC PRED-TSAN-FC

Full interaction of characteristics over countries ✓ ✓ - - ✓
Partial interaction of characteristics - - ✓ ✓ -
Attention network to extract hidden states - ✓ - ✓ ✓
Distinct subnetwork for each currency - ✓ - - -

3.4.2 Statistical Performance Evaluation

To compare the predictive performance of our prediction model, PRED-TSAN-FC, to the two models in
the comparison set, we employ four different loss functions. The first is the root mean square forecast error
(RMSFE), as employed in Meese and Rogoff (1983a,b) and Meese and Rogofp (1988), which is defined as:

RMSFE =

√
1

NT

∑
i,t∈Test

(r̂it − rit)
2 (32)

28



Figure 16: PRED-TSAN-PC

The second loss function is the mean absolute errors (MAE), as in Meese and Rogoff (1983b), which is
defined as:

MAE =

√
1

NT

∑
i,t∈Test

|r̂it − rit| (33)

The third loss function is the Theil’s (1966) U statistic20, which is a widely used measure in the literature21

defined as the ratio of model’s RMSFE to the RMSFE of the benchmark model. The final one is the R2

statistic,22 which measures the relative accuracy of the model prediction against the benchmark prediction
and is defined as:

R2 = 1 −
∑

(i,t)∈Test(r̂
i
t − rit)

2∑
(i,t)∈Test r

i
t
2 , (34)

A Theil U-statistic less than one indicates a superior model performance compared to the benchmark.
The R2 evaluates the proportional reduction in mean squared errors of the model prediction relative to
the benchmark prediction. Thus, a positive R2 implies an outperformance in model prediction over the
benchmark, whilst a greater R2 suggests a better performance.

Table 8 reports the out-of-sample performances of the five prediction models and the random walk
benchmark. PRED-FC and PRED-PC fail to outperform the random walk benchmark systematically in
terms of all the measure statistics and model complexities. Whereas PRED-TSAN, PRED-TSAN-PC and
PRED-TSAN-FC consistently outperform PRED-FC and PRED-PC regardless of the model architecture or
evaluation statistic used, with PRED-TSAN-FC dominating and delivering the best predictive performance in
terms of each statistic and architecture. In our model architecture design, PRED-FC (PRED-PC) varies from
PRED-TSAN-FC (PRED-TSAN-PC) only in that it excludes the TSAN architecture. When comparing the
performance of those two, the significant underperformance of PRED-FC (PRED-PC) indicates the critical
necessity of TSAN architecture in prediction model. In other words, identifying hidden market states from
historical characteristics substantially improves the predictive accuracy.

In PRED-TSAN, we employ a distinct subnetwork for each currency. That is, we extract exclusive
hidden market states which are then fed into an FFN to generate a forecasted return of this currency.
Whereas in PRED-TSAN-FC all the currencies share the same hidden market states and FFN architecture.
The primary distinction between these two models is the model complexity and number of trainable pa-
rameters: PRED-TSAN has times the number of trainable parameters as PRED-TSAN-FC with a more
complicated architecture. The minor underperformance of PRED-TSAN is likely a result of the limited data
set in the training step and the low signal-to-noise ratio in exchange rate data compared to those industrial

20See Theil (1966).
21See Rossi (2013).
22See Campbell and Thompson (2008) and Filippou et al. (2020).
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Table 8: Statistical Performance. In this table, we report the out-of-sample statistical performance of five neural network
prediction models, namely PRED-TSAN-FC and four comparison models, against the random walk benchmark. For each
prediction model, we consider three different architectures with varying complexities, namely the number of hidden layers
ranging from 1 to 3.

Number of
Hidden Layers

Model RMSFE MAE Theil U R2 (%)

Random Walk 2.63 2.07 1 0
1

PRED-FC
3.22 2.54 1.225 -50.02

2 3.09 2.41 1.175 -38.13
3 2.94 2.31 1.120 -25.49
1

PRED-TSAN
2.69 2.12 1.024 -4.85

2 2.67 2.11 1.017 -3.48
3 2.69 2.13 1.025 -4.99
1

PRED-PC
3.50 2.78 1.331 -77.15

2 3.34 2.63 1.272 -61.75
3 3.19 2.51 1.214 -47.35
1

PRED-TSAN-PC
2.68 2.11 1.021 -4.31

2 2.65 2.09 1.009 -1.74
3 2.64 2.07 1.002 -0.48
1

PRED-TSAN-FC
2.62 2.05 0.996 0.72

2 2.64 2.08 1.006 -1.15
3 2.65 2.09 1.008 -1.68

data-intensive tasks in which deep learning thrives. This can also be supported by the outperformance of
PRED-TSAN-FC with less hidden layers compared to the deeper versions.

3.4.3 Economic Performance Evaluation

Similar to the performance evaluation of latent factor model, we further look into the economic performance
of prediction models by constructing long-short portfolios based on the out-of-sample predictive returns.
The currency excess return is defined as described in (26). For each prediction model, we construct two
zero-investment long-short portfolios: the long-one-short-one portfolio and the long-two-short-two portfolio,
which are equal-weighted and monthly rebalanced.

Table 9 reports the out-of-sample Sharpe ratios of the two long-short portfolios for each prediction model
with different complexities. Comparing the performance of the long-one-short-one portfolios, the models
without TSAN architectures, namely PRED-FC and PRED-PC, obviously underperform the other three
neural network prediction models, which is consistent with the statistical performance shown in Table 8.
The highest Sharpe ratio is delivered by PRED-TSAN with one hidden layer and PRED-TSAN-PC with
three hidden layers. Based on the results, the economic performance does not necessarily conform with the
statistical performance, in other words, a higher R2 (or lower RMSFE) does not necessarily translate to a
higher Sharpe ratio in long-short portfolios. This might be a result of the highly volatile performance of
prediction models, despite all the regularization and ensemble methods used. When considering the average
performance over different complexities, PRED-TSAN-FC delivers the best overall performance among the
candidate prediction models. The performance of long-two-short-two portfolios is obviously less volatile
compared to the long-one-short-one portfolios, with all neural network models generating positive Sharpe
ratios. The highest Sharpe ratio is still delivered by PRED-TSAN but with two hidden layers, while PRED-
TSAN-FC retains the best average performance.

3.4.4 Interactive Effects and Characteristic Importance

Similar to the latent factor model, we assess the characteristic importance and cross-country interactive
effects based on the characteristic sensitivity defined in (28) and (29).
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Table 9: Sharpe Ratios of Long-Short Portfolios. In this table, we report the Sharpe ratios of the long-one-short-one and long-
two-short-two zero-investment portfolios for the five neural network prediction models, namely the PRED-TSAN-FC and four
comparison models, against the random walk benchmark. For each prediction model, we consider three different architectures
- the model with hidden layers ranging from 1 to 3.

Number of
Hidden Layers

Model
Long-One-
Short-One

Long-Two-
Short-Two

Random Walk 0.24 0.26
1

PRED-FC
0.16 0.35

2 -0.10 0.06
3 0.01 0.45
1

PRED-TSAN
0.42 0.26

2 -0.07 0.50
3 0.01 0.12
1

PRED-PC
0.12 0.33

2 -0.05 0.23
3 -0.11 0.33
1

PRED-TSAN-PC
-0.04 0.18

2 0.30 0.17
3 0.42 0.23
1

PRED-TSAN-FC
0.20 0.37

2 0.34 0.35
3 0.26 0.48

Figure 17 illustrates the sensitivity of output predicted returns with respect to all characteristics for
each currency, based on a PRED-TSAN-FC model with one hidden layer, namely the architecture with the
highest out-of-sample R2. In the deep prediction model, there are still evident cross-country interactive
patterns as shown by the vertical color pattern in the heatmaps, which is consistent with results from the
latent factor model and indicates the cross-country interactions between the characteristics and the monthly
exchange rate movements.

We further examine the characteristic importance in the deep prediction model based on the overall
sensitivity defined in (30). Figure 18 illustrates the top 50 characteristics ranked by their characteristic
importance. The top 50 characteristics contributes to around 20% of total characteristic importance, with no
single characteristic significantly dominating. We also examine the characteristic groups as shown in Figure
19, which are similarly categorized as in Section 3.3 and based on Table A1. The results are consistent with
the latent factor model, all the top characteristic groups are technical or interest rate-related, indicating
the dominance of the relatively high frequency rate-related characteristics in driving monthly exchange rate
movements.

Figure 20 describes the evolution of characteristic importance over time during the out-of-sample periods.
Although the rate-related characteristic groups seem to exhibit a relatively greater importance compared to
macro characteristic groups, the differences are not as obvious as in the latent factor model. This might
be a result of the notoriously low signal-to-noise ratio in return prediction compared to cross-sectional
contemporaneous description.

3.5 Two Models Side by Side

Although sharing some homogeneous constituent architectures, the deep latent factor model and the deep
prediction model are fundamentally different in their design initiatives. The deep latent factor model is
constructed with a predefined risk-return factor structure in which both the factor exposure and factor
return are functions of asset characteristics, with the goal of reconstructing asset returns. While the deep
prediction model seeks to minimize the forecasting error for future terms without taking into account the
risk-return trade-off, it primarily captures the complex nonlinear relationships between future returns and
asset characteristics.

Following the economic interpretation of factor models, the deep latent factor model provides a compact
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Figure 17: Cross-Country Interactive Effects. The figure reports the sensitivity of output predicted returns to all characteristics
for each currency. Figure (a) reports the sensitivity to country-specific characteristics. Each sub-heatmap illustrates the
sensitivity of predicted returns for all nine currencies to the characteristics of a particular country. Figure (b) reports the
sensitivity to common characteristics, namely the US and commodity-related characteristics.

(a) Sensitivities to Country-Specific Characteristics

(b) Sensitivities to Common Characteristics
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Figure 18: Characteristic Importance. The figure reports the top 50 characteristics among the total 279 characteristics ranked
by their characteristic importance. Different bar colors depict characteristics of different countries.
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Figure 19: Characteristic Importance by Group. The figure reports the average characteristic importance of each group. The
characteristics are classified into four categories: macroeconomic, interest rate-related, technical, and commodity-related, with
the first three further grouped by country.
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Figure 20: Characteristic Importance over Time. The figure reports the average characteristic importance of the groups for
each year during the out-of-sample periods, based on the results of PRED-TSAN-FC with one hidden layer. It depicts how the
rankings of dominant characteristic groups evolve over time. A larger point in the figure indicates a greater importance of the
characteristic.
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statistical description of the cross-sectional dependence structure, making it an excellent candidate for con-
temporaneous explanation. However, when forecasting future terms, as indicated by the RMSEPred in Table
4 and RMSFE in Table 8, the prediction model emerges as the superior alternative, albeit at the expense of
economic sensibility.

In both models, the sequence modelling architecture, which is used to extract the hidden state from
historical characteristics, exhibits a considerable beneficial effect on performance enhancement. The charac-
teristic sensitivity suggests a clear cross-country interaction in both models with the influential characteristics
consistently dominated by rate-related groups.

4 Conclusion

In this paper, we explore the asset pricing problem in the Forex market from two canonical perspectives,
namely cross-sectional description and time series prediction. To accomplish this, we propose two asset
pricing models in the context of deep learning, the deep latent factor model and deep prediction model. Our
deep latent factor model maintains the economic interpretation of factor models and extends the work of Kelly
et al. (2019) and Gu et al. (2021). The model adapts to the Forex market and imposes economic restriction of
no-arbitrage. Our deep prediction model explores the efficiency of deep learning in forecasting exchange rate
movements, without taking into account the risk-return trade-off. Both models employ sequence modelling
techniques to capture information from historical characteristics and allows for cross-country interactions.

In our empirical analysis of G10 currencies, both the deep latent factor model and deep prediction model
provide superior performance compared to models in the comparison set. The characteristic sensitivity
analysis reveals obvious cross-country interactive patterns and identifies influential characteristics that con-
sistently dominate. In our comparative analysis of model architectures, we highlight the beneficial effects
of the time-series attention network (TSAN) for both problems, suggesting the critical importance of in-
corporating information from long-range historical data for both cross-sectional description and time-series
prediction problems.
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Table A1: Characteristics List

Macroeconomic Fundamental Characteristics Frequency Abbreviation in Model
CPI Monthly CPI

GDP Deflator Change Quarterly GDPDeflator
PMI Monthly PMI

Money Supply Monthly MoneySupply
International Trade Balance Monthly TradeBal

Government Debt Annually GvmtDebt
Commodity Terms of Trade Monthly CommToT

Real GDP Growth Quarterly GDP
GDP Nominal Demestic Currency Quarterly GDPNomDom

IMF’s Estimate of Real Effective Exchange Rate Monthly REER
Total International Reserves, US Dollars Monthly IntlReserve

Current Account Balance, US Dollars Quarterly CurrentAcconBal
Current Account Balance, % of GDP Quarterly CABaltoGDP

Current Account 3-Year Change in Balance, % of GDP Quarterly CABal3yChg

Interest Rate Related Characteristics Frequency Abbreviation in Model
Short-term Interest Rate Monthly InterestRate

10-year Interest Rate Monthly 10yRate
10y-2y Term Spread Monthly 10y2ySpread

Term Structure of Interest Rates, Level Monthly Level
Term Structure of Interest Rates, Slope Monthly Slope

Term Structure of Interest Rates, Curvature Monthly Curvature

Technical Characteristics Frequency Abbreviation in Model
Value Monthly Value
Trend Monthly Trend

Exchange Rate Return Volatility in 1 Month Monthly RETVOL
Exchange Rate Return Downside Volatility in 1 Month Monthly RETDVOL

Exchange Rate Return Upside Volatility in 1 Month Monthly RETUPVOL
Maximum Exchange Rate Return in 1 Month Monthly MAXRET

Slope of Exchange Rate in 1 Month Monthly SLOPE1M
Intercept of Exchange Rate Return in 1 Month Monthly ITC1M

Commodities Related Characteristics Frequency Abbreviation in Model
ICE Brent Crude, 1-Month Return Monthly OilRet

COMEX Gold, 1-Month Return Monthly GoldRet
COMEX Copper, 1-Month Return Monthly CopperRet

ICE Brent Crude, Slope of Price in 1 Month Monthly OilSlope
COMEX Gold, Slope of Price in 1 Month Monthly GoldSlope

COMEX Copper, Slope of Price in 1 Month Monthly CopperSlope
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Table A2: List of Country-Specific Characteristics

Country-Specific Characteristics Abbreviation in Model
GDP Deflator Change GDPDeflator

CPI CPI
Real GDP Growth GDP

GDP Nominal Demestic Currency GDPNomDom
PMI PMI

Current Account Balance, US Dollars CurrentAcconBal
Current Account Balance, % of GDP CABaltoGDP

Current Account 3-Year Change in Balance, % of GDP CABal3yChg
Total International Reserves, US Dollars IntlReserve

International Trade Balance TradeBal
Commodity Terms of Trade CommToT

Government Debt GvmtDebt
Money Supply MoneySupply

IMF’s Estimate of Real Effective Exchange Rate REER
Value Value

Short-term Interest Rate InterestRate
Term Structure of Interest Rates, Level Level
Term Structure of Interest Rates, Slope Slope

Term Structure of Interest Rates, Curvature Curvature
10-year Interest Rate 10yRate
10y-2y Term Spread 10y2ySpread

Trend Trend
Exchange Rate Return Volatility in 1 Month RETVOL

Exchange Rate Return Downside Volatility in 1 Month RETDVOL
Exchange Rate Return Upside Volatility in 1 Month RETUPVOL

Maximum Exchange Rate Return in 1 Month MAXRET
Slope of Exchange Rate in 1 Month SLOPE1M

Intercept of Exchange Rate Return in 1 Month ITC1M
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Table A3: List of Common Characteristics

Common Characteristics Abbreviation in Model
ICE Brent Crude, 1-Month Return OilSlope

COMEX Gold, 1-Month Return OilRet
COMEX Copper, 1-Month Return GoldSlope

ICE Brent Crude, Slope of Price in 1 Month GoldRet
COMEX Gold, Slope of Price in 1 Month CopperSlope

COMEX Copper, Slope of Price in 1 Month CopperRet
US GDP Deflator Change USDGDPDeflator

US CPI USDCPI
US Real GDP Growth USDGDP

US GDP Nominal Demestic Currency USDGDPNomDom
US PMI USDPMI

US Current Account Balance, US Dollars USDCurrentAcconBal
US Current Account Balance, % of GDP USDCABaltoGDP

US Current Account 3-Year Change in Balance, % of GDP USDCABal3yChg
US Total International Reserves, US Dollars USDIntlReserve

US International Trade Balance USDTradeBal
US Commodity Terms of Trade USDCommToT

US Government Debt USDGvmtDebt
US Money Supply USDMoneySupply

US IMF’s Estimate of Real Effective Exchange Rate USDREER
US Value USDValue

US Short-term Interest Rate USDInterestRate
US Term Structure of Interest Rates, Level USDLevel
US Term Structure of Interest Rates, Slope USDSlope

US Term Structure of Interest Rates, Curvature USDCurvature
US 10-year Interest Rate USD10yRate
US 10y-2y Term Spread USD10y2ySpread
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