
Machine Learning and Factor-Based Portfolio Optimization* 

 

Thomas Conlona, John Cotterb, and Iason Kynigakisc 

 

Current Version: March 9, 2022 

 

  

 
 The authors gratefully acknowledge the support of Science Foundation Ireland under grant number 16/SPP/3347 

and 17/SPP/5447. We also acknowledge the comments of Andrea Barbon, Martin Brown, Gregory Connor, and 

seminar participants at the University of St. Gallen. 
a Smurfit Graduate Business School, University College Dublin, Dublin, Ireland. Email: conlon.thomas@ucd.ie 
b Smurfit Graduate Business School, University College Dublin, Dublin, Ireland. Email: john.cotter@ucd.ie 
c Smurfit Graduate Business School, University College Dublin, Dublin, Ireland. Email: iason.kynigakis@ucd.ie 



1 
 

Machine Learning and Factor-Based Portfolio Optimization 

 

Abstract 

We adopt a factor-based framework to construct the covariance matrix by using latent factors 

based on machine learning, with the goal of enhancing minimum-variance portfolio 

optimization. We find that factors based on autoencoder neural networks exhibit a weaker 

relationship with commonly used characteristic-sorted portfolios than popular dimensionality 

reduction techniques. Machine learning also leads to covariance and portfolio weight structures 

that diverge from simpler estimators. Portfolios using latent factors derived from autoencoders 

and sparse methods outperform simpler benchmarks in terms of risk minimization. The 

improved performance is amplified for investors with increased sensitivity to risk and during 

high volatility periods. 
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I. Introduction 

In this paper we synthesize the areas of covariance matrix estimation and minimum-variance 

optimization with that of machine learning. Specifically, we examine the characteristics and 

benefits of minimum-variance portfolios based on factor-implied covariance matrices when the 

latent factors are generated from machine learning dimensionality reduction techniques. 

The frequently described issues associated with expected mean estimation in the mean-

variance rule by Markowitz (1952) have led many researchers to instead focus on covariance 

estimation applied to the minimum-variance framework (see e.g., Merton, 1980; Best and 

Grauer, 1991; Kan and Zhou, 2007). Minimum-variance portfolios have been frequently 

advocated in the finance literature. Chan, Karcesky, and Lakonishok (1999) show that 

minimum-variance portfolios based on forecasted variances and covariances yield lower risk 

than simpler benchmarks such as the equally weighted portfolio (EW). Jagannathan and Ma 

(2003) find that minimum-variance portfolios generate better out-of-sample performance than 

mean-variance portfolios. Kempf, Korn and Saßning (2015), also show that estimating 

covariance matrices relying on forward-looking information leads to minimum-variance 

portfolios that outperform index investing and the EW portfolio, experiencing significant gains 

during recessions. Ledoit and Wolf (2017) introduce a nonlinear shrinkage estimator for the 

covariance matrix and show that minimum-variance portfolios based on the new estimator 

outperform those based on linear shrinkage, sample moments or the EW portfolio. More 

recently, Shi, Shu, Yang and He (2020), propose a structure-free and computationally efficient 

estimator of the covariance matrix that regularizes the sample eigenvalues and yields improved 

performance over alternative portfolio strategies in various settings.  

Although the minimum-variance framework avoids the problem of estimation error 

associated with expected returns, its performance remains crucially dependent on the quality 

of the estimated covariance matrix (DeMiguel, Garlappi, Nogales and Uppal, 2009). The 
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approach we follow to lessen the impact of covariance misspecification on the optimal weights, 

is to impose a factor structure on the covariance matrix (Chan, Karceski and Lakonishok, 

1999), which reduces the number of parameters to be estimated.4 Factor models assume that 

asset returns are driven by a set of observed or latent factors. It has been shown that introducing 

a factor structure to the covariance can improve portfolio performance (Green and Hollifield, 

1992; Chan, Karceski and Lakonishok, 1999). The benefits of using the factor model-based 

approach have also been investigated by Fan, Fan and Lv (2008) and Fan, Liao and Mincheva 

(2011; 2013) who propose estimators of the covariance for exact and approximate factor 

models respectively. More recently, De Nard, Ledoit and Wolf (2019), use a factor framework 

and evaluate portfolios for different estimates of the error covariance matrix.  

Machine learning has been shown to be well suited for risk premium predictability 

problems (e.g., Gu, Kelly and Xiu, 2020) or constructing factors that explain the cross-section 

of stock returns (e.g., Kozak, Nagel and Santosh, 2020). However, there exists fewer papers 

that focus on modelling the structure of the covariance matrix or examining the performance 

in a factor-based minimum-variance framework. In terms of modelling the covariance matrix 

using machine learning, Callot, Caner, Önder, and Ulasan (2019), use nodewise regression and 

the lasso to directly estimate the sparse precision matrix. Minimum-variance portfolios based 

on their proposed approach exhibit lower variances and higher Sharpe ratios compared to 

commonly used covariance estimators. Turning to factor-based portfolio optimization, 

Lassance, DeMiguel and Vrins (2020) estimate factor-risk-parity portfolios by choosing a set 

of uncorrelated factors using independent component analysis. They show that portfolios based 

 
4 The literature proposes several other approaches to reduce the impact of covariance misspecification on the 

impact of the optimal weights. One approach is to impose restrictions on the weights of the portfolios, either by 

introducing short-selling constraints (Jagannathan and Ma, 2003), or by limiting turnover via additional 

constraints (DeMiguel, Garlappi, Nogales and Uppal, 2009) or penalizing the objective function (Olivares-Nadal 

and DeMiguel, 2018). Another approach uses either shrinkage estimators of the covariance matrix (Ledoit and 

Wolf, 2004), which tend to shrink the covariance matrix towards a specific target covariance or sparse estimators 

that derive a regularized version of the precision matrix (Friedman, Hastie and Tibshirani, 2008). Using higher 

frequency data can also reduce estimation error (see e.g., Jagannathan and Ma, 2003).  
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on independent components provide greater diversification benefits and outperform those using 

principal components and other benchmarks. We also relate to papers that use autoencoder 

neural networks in financial applications. Gu, Kelly and Xiu (2021) propose a model for the 

cross-section of stock returns based on autoencoders, where factors are latent, and the time-

varying loadings depend on characteristics.  

Our contribution stems from the framework through which we bridge the gap between 

machine learning and finance. The aforementioned studies improve covariance estimation via 

shrinkage methods, focus on factor-risk-parity portfolios or explain the cross-section of returns 

using machine learning. We differ by using machine learning in a factor-based framework to 

model the covariance matrix and focusing on improving minimum-variance portfolio 

optimization. Specifically, we construct latent factors using machine learning, explore their 

impact on the structure of factor-based covariances and on the composition and performance 

of minimum-variance portfolios. We examine the economic value of latent factors generated 

using a variety of supervised and unsupervised dimensionality reduction methods and their 

relation to popular characteristics. In addition to classical approaches, such as principal 

component analysis (PCA) and partial least squares (PLS), we further consider their respective 

regularized versions that induce sparsity through a penalty in the objective function. We also 

investigate the performance of factors generated by autoencoders; a type of unsupervised 

neural network used for dimensionality reduction. Another contribution to the literature of 

factor-based portfolio optimization arises from conducting a comparative analysis of a static 

and several dynamic specifications of the covariance matrix, based on observed or latent 

factors. The structure of a dynamic covariances can differ based on whether the factor loadings, 

the factor covariance matrix or the residual covariance matrix are allowed to vary over time.   

To determine the effects of using factors based on machine learning in covariance 

estimation and portfolio optimization, we first explore the potential links between the latent 
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factors and popular factor proxies and examine the structure of the factor-implied covariance 

matrices. Moskowitz (2003) examines the covariance structure of returns with respect to 

various factors and finds that size can better explain covariance risk, both in and out of sample, 

while the book-to-market factor exhibits a weaker association and momentum factors appear 

unrelated to return second moments. Our findings indicate that latent factors produced by PCA 

and PLS based methods exhibit a stronger connection with well-known factors (such as those 

from the Fama and French (2015) five-factor model) throughout the out-of-sample period, 

compared to factors based on autoencoders. Furthermore, machine learning yields factors that 

cause the covariances to diverge from those based on commonly used estimators. Specifically, 

the covariance matrices whose structure deviates most from the sample estimator are based on 

unsupervised methods or allow the residual covariance matrix to be time-varying.  

In the baseline case, machine learning leads to portfolios that significantly outperform 

the equally weighted portfolio benchmark, which DeMiguel, Garlappi and Uppal (2009) show 

to be a very stringent benchmark and improves upon portfolios based on the sample estimator 

or observed factors. The best-performing methods to generate the covariance matrix are 

autoencoders and sparse principal component analysis, which can lead to portfolios with higher 

risk-adjusted return and standard deviation that is 3% lower per annum than the equally 

weighted one. Certainty equivalent returns are also improved relative to the benchmark as the 

investor’s aversion to risk increases, which is in keeping with the optimization goal. In 

particular, investors with moderate or conservative risk preferences using machine learning 

factors would realize significant utility gains that are between 2.5% and 4.5% higher than those 

of the EW portfolio on an annual basis. The performance of portfolios based on machine 

learning is amplified during periods of high volatility. 

Portfolios based on machine learning also have weights that are smaller, vary less over 

time and are more diversified, than those based on observed factors. Covariances based on 
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unsupervised methods also lead to portfolios with lower turnover and thus reduced sensitivity 

to transaction costs. Specifically, all machine learning portfolios generate positive breakeven 

transaction costs, indicating they outperform EW. The factor-based portfolios continue to 

outperform the benchmark after increasing the number of assets. Turnover increases 

considerably with the size of the portfolio, while the breakeven transaction costs decrease. 

Machine learning models still generate the highest performance across larger portfolio sizes.  

Similar to recent studies, the results indicate that shallow learning outperforms deeper 

learning, which can be attributed to the small size of the data set and the low signal-to-noise 

ratio. When we consider factors based on neural networks with one to four hidden layers, we 

find that for the baseline optimization framework the shallowest network outperforms those 

with deeper architectures. This decline in portfolio performance is potentially associated with 

the high degree of turnover of strategies based on autoencoders with more hidden layers. 

Additionally, unsupervised methods tend to perform better than supervised methods. When we 

compare PLS and sparse PLS with PCA and sparse PCA, the results show that the PCA based 

approaches significantly outperform the EW benchmark more often. Otherwise, the ranking 

among factors persists across specifications of the covariance matrix. When comparing the 

results across the alternative specifications of the factor-based covariance matrix, the 

differences become less pronounced, with approaches that allow the loadings or the residual 

covariance matrix to vary over time yielding higher risk-adjusted performance. Overall, the 

results indicate that machine learning improves factor-based portfolio optimization. 

The remainder of this study is organized as follows. Section II describes the 

methodology. Section III provides details on the data, sample splitting and hyperparameter 

tuning. Section IV and V examine the properties and economic value of the portfolios using 

the alternative covariance estimates, while Section VI concludes. 
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II. Methodology  

In this section we introduce the machine learning methods for dimensionality reduction used 

to construct the latent factors, we then describe the different specifications under which the 

factor-based covariance matrices are estimated and finally, present the optimization framework 

used to derive the portfolios. 

A. Latent Factors via Machine Learning 

The presence of a factor structure in asset returns has been widely accepted in the economic 

literature. The capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965) implies 

a simple factor structure. Other early studies that support the presence of a factor structure in 

asset returns include the APT of Ross (1976) and the intertemporal CAPM of Merton (1973). 

Factors can be observable quantities, such as macroeconomic indicators (Chen, Roll and Ross, 

1986) or observable proxies, where factors are the returns of portfolios constructed by sorting 

stocks based on firm characteristics, such as the single index model of Sharpe (1963) or the 

three-factor model of Fama and French (1993) and its variations.  

A factor model for the returns of every asset, 𝑟𝑖,𝑡, with 𝑖 = 1, … , 𝑁 assets, 𝑡 = 1, … , 𝑇 

observations and 𝑘 = 1, … , 𝐾 observed factors takes the form 

𝑟𝑖,𝑡 = 𝑎𝑖 + 𝛽𝑖F𝑡 + 𝑢𝑖,𝑡, (1) 

where 𝛽𝑖 = (𝛽𝑖,1, … , 𝛽𝑖,𝐾) are the time-invariant factor loadings for factors F𝑡 = (𝑓𝑡,1, … , 𝑓𝑡,𝐾), 

𝑎𝑖 is the intercept and 𝑢𝑖,𝑡 is the error term for asset 𝑖 at date 𝑡. The intercepts and loadings can 

be estimated by ordinary least squares (OLS) using the different factor representations.  

Factors can also be latent quantities, which are derived from the data using 

dimensionality reduction techniques. When factors are latent, principal component analysis is 

a very common approach to reduce dimensionality. The studies of Chamberlain and Rothschild 

(1983) and Connor and Korajczyk (1988) are among the first to use latent factors in 

applications of the APT. The general form of a latent factor model is given by 
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𝑟𝑖,𝑡 = 𝑎𝑖 + 𝛽𝑖(R𝑡W) + 𝑢𝑖,𝑡 = 𝑎𝑖 + 𝛽𝑖F𝑡 + 𝑢𝑖,𝑡, (2) 

where R𝑡 = (𝑟1,𝑡, … , 𝑟𝑝,𝑡) is the 𝑇 × 𝑁 matrix of asset returns and W = (𝑤1, … , 𝑤𝐾) is the 

𝑁 × 𝐾 matrix of weights, with 𝐾 ≪ 𝑁. Each 𝑤𝑘 is the vector of weights used to construct the 

𝑘th latent factor, 𝑓𝑘. The 𝑇 × 𝐾 matrix of latent factors is given by F𝑡 = R𝑡W. 

The two most commonly used dimensionality reduction techniques are principal 

component analysis and partial least squares. They are both designed to uncover a lower 

dimensional linear combination of the original dataset, however, PCA derives the latent factors 

in an unsupervised way, while in the case of PLS the factors are constructed in a supervised 

way. The methods differ in the way the latent factor matrix, F𝑡, is extracted, since PCA 

produces the weight matrix W reflecting the covariance structure between assets, while PLS 

computes weights so as the latent factors have maximal correlation with the target.  

PCA and PLS have the drawback that for each latent factor the weights are typically non-

zero, which leads to difficulties in high dimensional settings. To address this issue, we consider 

methods that produce modified latent factors with sparse weights, such that each latent factor 

is a linear combination of only a few of the original variables. Specifically, we use sparse 

principal component analysis (SPCA), developed by Zou, Hastie and Tibshirani (2006) and 

sparse partial least squares (SPLS) by Chun and Keles (2010). Both methods impose a penalty 

based on the combination of the 𝑙1 and 𝑙2 allowing for the construction of sparse latent factors. 

Finally, we construct latent factors using autoencoders (see e.g., Hinton and Zemel, 1994; 

Gu, Kelly and Xiu, 2021) which are a type of unsupervised neural network. Autoencoders are 

nonlinear generalizations of PCA. The goal of PCA and autoencoders is to learn a parsimonious 

representation of the original input data, R𝑡, through a bottleneck structure. The autoencoder 

behaves differently from PCA and SPCA, which reduce the dimensionality by mapping the 

original 𝑁 inputs into 𝐾 ≪ 𝑁 factors in a linear way, while the autoencoder uses non-linear 

activation functions to discover non-linear representations of the data. We consider four 
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different network architectures based on the depth of the network. First, we construct a shallow 

autoencoder (AEN1) with a single hidden layer. The other three models include additional 

hidden layers to network representation, up to a maximum of three layers (AEN2, AEN3 and 

AEN4). Recent applications in finance (see e.g., Gu, Kelly and Xiu, 2020) find that shallower 

networks generate better performance. Further details on the machine learning approaches and 

related literature are provided in the Appendix. 

B. Factor-based Covariance Estimation 

After the factor model is estimated from equation (1) or (2) the covariance matrix of returns, 

Σ𝑟, is obtained by its decomposition into two components: the first is based on the factor 

loadings and the factor covariance matrix, while the second is the covariance matrix of the 

errors. The time-invariant covariance matrix of the returns R = (𝑟1, … , 𝑟𝑁) is given by: 

Σ𝑟 = Β′Σ𝑓Β + Σ𝑢, (3) 

where Β is a 𝐾 × 𝑁 matrix with the 𝑖th column containing the vector of time-invariant factor 

loadings 𝛽𝑖 and Σ𝑓 and Σ𝑢 denote the time-invariant covariance matrices of the factors and the 

errors respectively. We focus on exact factor models (Fan, Fan and Lv, 2008), where the 

covariance matrix of the residuals 𝑢𝑡 is diagonal, Σ𝑢 ≡ 𝑑𝑖𝑎𝑔(Σ𝑢), by assuming cross-sectional 

independence. 

The models presented so far rely on a static specification. However, Sargent and Sims 

(1977) and Geweke (1977) introduce dynamic factor models (DFM) as an extension. There are 

various definitions of DFMs (see Stock and Watson, 2011), the one we follow in this study is 

a model that allows the factor loadings to be time varying (Avramov and Chordia, 2006; Engle, 

2016 and Bali, Engle and Tang, 2017) or models in which either the factor or residual 

covariance matrix varies over time (Engle, Ng and Rothchild, 1990). In the description below, 

the factors can be observed quantities or latent factors. 
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A dynamic factor model is one in which at least one of the following three generalizations 

holds true: (i) the intercept and factor loadings are time-varying, (ii) the covariance matrix of 

the factors is time-varying or (iii) the covariance matrix of the errors is time-varying.  

In the static case the betas of the assets remain constant over the estimation period. This 

assumption may not be plausible since betas typically vary over time. To this end we consider 

a time-varying estimator of the factor loadings. When the intercepts 𝑎𝑖 and factor loadings 𝛽𝑖 

are allowed to be time-varying the conditional dynamic factor model takes the following form 

𝑟𝑖,𝑡 = 𝑎𝑖,𝑡 + 𝛽𝑖,𝑡F𝑡 + 𝑢𝑖,𝑡. (4) 

The estimates of the time-varying regression coefficients are then obtained by 𝛽̂𝑖,𝑡 = Σ𝑓,𝑡
−1𝜎𝑓𝑟𝑖,𝑡. 

The coefficients, 𝛽̂𝑖,𝑡, of this expression are the dynamic conditional betas and are based on 

time-varying estimates of the factor covariance matrix Σ𝑓,𝑡 and the vector of covariances, 𝜎𝑓𝑟𝑖,𝑡 

between the returns of asset 𝑖, 𝑟𝑖 and factor 𝑓𝑘, with 𝑘 = 1, … , 𝐾. The intercept can be obtained 

by 𝑎̂𝑖,𝑡 = 𝑟̅𝑖 − 𝛽̂𝑖,𝑡F̅. The time-varying covariance matrix of R𝑡 is given by: 

Σ𝑟,𝑡 = B𝑡
′ Σ𝑓Β𝑡 + Σ𝑢, (5) 

where Β𝑡 is a 𝐾 × 𝑁 matrix with the 𝑖th column containing the vector of time-varying factor 

loadings 𝛽𝑖,𝑡.  

The unconditional dynamic factor model under generalization (ii) and (iii) takes a form 

similar to equations (1) or (2), but with time-varying conditional covariance matrices for 𝑓𝑡 and 

𝑢𝑡 respectively. If Σ𝑓 is time-varying, then the covariance matrix of R𝑡 is given by 

Σ𝑟,𝑡 = Β′Σ𝑓,𝑡Β + Σ𝑢. (6) 

Otherwise, if Σ𝑢 is assumed to be time-varying, then  

Σ𝑟,𝑡 = Β′Σ𝑓Β + Σ𝑢,𝑡. (7) 

The factor covariance, Σ𝑓,𝑡 is estimated by the dynamic conditional correlation (DCC) model 

(Engle, 2002) and the diagonal elements of Σ𝑢,𝑡 are estimated by univariate GARCH models.  
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C. Minimum-Variance Portfolios 

The sensitivity of portfolio weights to estimates of asset means is well documented (Best and 

Grauer, 1991; Chopra and Turner, 1993). To this end, we focus on minimum-variance 

portfolios, which have frequently been used in the portfolio optimization literature (see e.g. 

Carroll, Conlon, Cotter, Salvador, 2017; Moura, Santos and Ruiz, 2020), thus avoiding the 

issue of estimation error in expected returns.  

Specifically, the different estimates of the covariance matrix, Σ̂𝑟, from the factor models 

are evaluated through the minimum-variance framework with short-selling constraints, where 

the goal is to minimize portfolio risk. Assuming there are 𝑁 assets in the investment universe 

and 𝑟𝑡 = (𝑟1,𝑡, … , 𝑟𝑁,𝑡) is a vector of asset returns, the objective is 

argmin
𝜔

𝜔′Σ̂𝑟𝜔,   s.t.   𝜔′i𝑁 = 1,   𝜔𝑖 ≥ 0, for 𝑖 = 1, … , 𝑁, (8) 

where 𝜔 = (𝜔1, … , 𝜔𝑁) is the portfolio weight vector and i𝑁 is a 𝑁 × 1 unit vector. The return 

of the portfolio can then be calculated as 𝑟𝑝,𝑡+1 = 𝜔̂′𝑟𝑡+1. All portfolios include short-selling 

and leverage constraints to avoid implausible positions, by imposing a lower bound of zero on 

all weights and that the sum of the weights does not exceed one. The additional non-negativity 

constraint on minimum variance portfolios has been shown (Jagannathan and Ma, 2003) to be 

equivalent to shrinking the elements of the covariance matrix.  

III. Data, Sample Splitting and Hyperparameter Tuning 

The data set consists of monthly total individual stock returns from the Center for Research in 

Security Prices (CRSP) starting on January 1960 to December 2019, for a period of 60 years 

(or 𝑇 = 720 monthly observations). Our approach regarding the backtest and the restrictions 

we impose on the data set is similar to that of Engle, Ledoit and Wolf (2019) and De Nard, 

Ledoit and Wolf (2019), but adapted to a monthly frequency. We restrict our data set to stocks 

listed on the NYSE, AMEX, and NASDAQ stock exchanges (exchange codes 1, 2 or 3) and to 

ordinary common shares (share codes 10 or 11).  
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We adopt a rolling window approach to examine the out-of-sample (OOS) performance 

of our models. The size of the rolling window is set to 𝑇0 = 240 monthly observations (or 20 

years), with the initial window spanning the period from January 1960 to December 1979. The 

rolling window moves across the full sample by one monthly observation at a time, leading to 

an out-of-sample size of 𝑇𝑂𝑂𝑆 = 𝑇 − 𝑇0 = 480 monthly observations (or 40 years), from 

January 1980 to December 2019. The portfolios are constructed in each iteration of the rolling 

window, based on stocks that have at least 97.5% history of returns available over the past 𝑇0 =

240 months (missing values are replaced by the mean of the series) and are also not missing 

the return observation for the following month after the end of the rolling window. This 

forward-looking restriction is commonly applied to allow for the out-of-sample evaluation of 

portfolios, which are based on in-sample estimates of the covariance matrix. Finally, we 

consider stocks whose price is greater than $5 within each iteration. In the baseline case, the 

latent factors, covariance matrices and portfolio weights are estimated based on the 𝑁 = 100 

stocks with the highest market capitalization within each iteration of the rolling window, before 

we expand the analysis to larger portfolios.5 In each iteration of the rolling window, we cross-

sectionally transform the asset returns, R𝑡, before estimating the latent factors. Specifically, we 

calculate the rank of a stock based on the return and then divide the ranks by the number of 

observations. We subtract 0.5, to map the features into the [−0.5, 0.5] interval. This 

transformation focuses on the ordering of the data and is insensitive to outliers. 

The machine learning models used to derive the latent factors rely on hyperparameter 

tuning. The choice of hyperparameters controls the amount of model complexity and is critical 

for the performance of the model. We adopt the validation sample approach, in which the 

optimal set of values for the tuning parameters is selected in the validation sample. One of the 

 
5 Figure A1 in the Appendix displays the number of stocks in the sample for each month for the full sample period, 

while the number of stocks in each iteration of the rolling window for the out-of-sample period is displayed in 

Figure A2.  
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advantages of using this approach over 𝑘-fold cross validation is that we maintain the temporal 

ordering of the data. Specifically, in each iteration of the rolling window, the in-sample (𝑇0 =

240) is split into two disjointed periods, the training subsample, 𝑇0
𝒯, consisting of 80% of the 

observations, with the remaining observations belonging to the validation subsample, 𝑇0
𝒱. In 

the training subsample the model is estimated for several sets of values of the tuning 

parameters. The second subsample is used to select the optimal set of tuning parameters, by 

using the latent factor weight and loading estimates for each set of hyperparameters from the 

training sample, forecasts are constructed for the observations in the validation sample.  

Specifically, the factor model is first estimated using information only from the training 

sample, from the following regression equation 

𝑟𝑖,𝑡 = 𝑎𝑖
𝒯 + 𝛽𝑖

𝒯(R𝑡W𝒯) + 𝑢𝑖,𝑡,   for 𝑡 = 1, … , 𝑇0
𝒯 , (9) 

where W𝒯 is the factor weight matrix estimated by one of the dimensionality reduction methods 

using a specific set of hyperparameters, 𝛽𝑖
𝒯 is one of the 𝑁 columns of the matrix of factor 

loadings, 𝐵𝒯, estimated by OLS using data only from 𝒯 and 𝑎𝑖
𝒯 is the intercept. The covariance 

over the training subsample is then calculated by 

Σ𝑟
𝒯 = 𝐵𝒯′Σ𝑓

𝒯𝐵𝒯 + Σ𝑢
𝒯 , (10) 

where Σ𝑓
𝒯 is the covariance of the factors R𝑡W𝒯 and Σ𝑢

𝒯 is the covariance of the errors 𝑢𝑡 for 

𝑡 = 1, … , 𝑇0
𝒯. The covariance over the training set is compared to that of the validation set, 

which is derived using the estimated matrices W𝒯 and 𝐵𝒯. The covariance using data from the 

validation subsample is estimated as 

Σ𝑟
𝒱 = 𝐵𝒯′Σ𝑓

𝒱𝐵𝒯 + Σ𝑢
𝒱, (11) 

where Σ𝑓
𝒱 is the covariance of the factors R𝑡W𝒯, for 𝑡 = 1, … , 𝑇0

𝒱 and Σ𝑢
𝒱 is the covariance of 

the errors, derived by 𝑢𝑖,𝑡 = 𝑟𝑖,𝑡 − (𝑎𝑖
𝒯 + 𝛽𝑖

𝒯(R𝑡W𝒯)), for 𝑡 = 1, … , 𝑇0
𝒱.  
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The covariance matrices based on different sets of hyperparameters are evaluated by 

employing a measure of economic performance related to the given portfolio application. 

Following Engle and Colacito (2006) and Becker, Clements, Doolan and Hurn (2015), the 

optimal set of hyperparameters is chosen to minimize the portfolio variance: 

ℒMVP(𝜔̂, Σ̂𝑟 ) = 𝜔̂′Σ̂𝑟𝜔̂. (12) 

The vector of portfolio weights, 𝜔, is obtained by solving the minimum-variance portfolio 

problem from equation (8), based on the covariance over the training set, Σ𝑟
𝒯. The portfolio 

variance, ℒMVP, is calculated using the weight estimates and setting Σ̂𝑟 = Σ𝑟
𝒱, for each set of 

hyperparameters. The set of optimal tuning parameters is the one that yields the lowest portfolio 

variance over the validation sample. The weights used to construct the latent factors and the 

factor loadings are re-estimated using all observations in the rolling window for the optimal set 

of tuning parameters. Finally, the true out-of-sample performance is evaluated by constructing 

the return of the portfolio using the asset returns one month ahead from the end of each rolling 

window, which are not included in the validation procedure or parameter estimation.  

IV. Characteristics of Latent Factors and Covariance Matrices  

In this Section we investigate how the factors based on the dimensionality reduction approaches 

relate to those of popular factor models and long-short anomaly portfolios and examine the 

structure of the alternative covariance matrix specifications.  

A. Links to Popular Factors 

Here we examine the links that the estimated factors have with popular characteristic-based 

factors from the literature. We investigate the links of the latent factors, first with the five-

factors from Fama and French (2015) 6 and then with a larger dataset which consists of the 

long-short anomaly portfolios constructed by Chen and Zimmermann (2020). 

 
6 Data on the Fama-French factors were downloaded from Kenneth French’s Data Library. 
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For each dimensionality reduction method, we regress each of the estimated latent factors 

𝑓𝑡,𝑘, for 𝑘 ∈ [1, 5], on the factors from the Fama and French (2015) five-factor model using 

OLS.7 To compare how well the Fama and French model explains the latent factors across 

dimensionality reduction approaches, we report the adjusted 𝑅2, averaged over the 438 

estimation windows, in Figure 1. A higher average adjusted 𝑅2 indicates that the Fama and 

French five-factor model is well suited to explain the variability of that specific latent factor 

throughout the out-of-sample period.  

[Insert Figure 1 about here] 

The factors based on supervised methods tend to have higher 𝑅2 than those of 

unsupervised methods, while the 𝑅2 of factors based on autoencoders varies less with 𝐾 

compared to the remaining approaches. Specifically, the results for PCA show that the Fama 

and French five-factor model is better at explaining the first and third principal components, 

with 𝑅2 between 34% and 36%, while the 𝑅2 for the remaining components is between 8% 

and 15%, decreasing as 𝐾 increases. The pattern for sparse principal components is similar, but 

the average 𝑅2 is smaller for the first and third factor, decreasing to about 33% and 27%, 

respectively, while for the remaining components it increases to between 14% and 22%. The 

Fama and French model explains almost 50% of the variability of the first factor by PLS or 

SPLS. For the remaining four factors the average 𝑅2 varies between approximately 13% and 

23%. The average 𝑅2 of latent factors based on autoencoders remains relatively stable across 

different values of 𝐾 and number of hidden layers, with values between 18% and 25%. 

 
7 Information on the five-factors by Fama and French (2015) is available from July 1963. Given a rolling window 

size of 240 observations, we have an out-of-sample size of 438 observations, from July 1983 to December 2019. 

The OLS regressions are re-estimated in each iteration of the rolling window for all combinations of 

dimensionality reduction techniques and fixed number of factors 𝐾. The OLS regressions include an intercept, 

but since we focus on the potential relationship between the latent factors with the observed factors, we omit the 

intercept from the Figures for the sake of brevity. 
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Following Gu, Kelly and Xiu (2020), we quantify the influence of the Fama-French 

factors as the change in 𝑅2 from setting the observations of a factor proxy to zero within each 

estimation window. The values are averaged to obtain a single variable importance measure 

for each of the five Fama and French factors and then scaled to sum to 100. The variable 

importance is presented in Figure 2. 

[Insert Figure 2 about here] 

According to the change in 𝑅2, the results for PCA indicate that the market factor 

(MKTRF) is most influential for the first principal component, 𝐾 = 1, while the value factor 

(HML) relates mainly to the third latent factor, 𝐾 = 3. The profitability (RMW) and investment 

(CMA) factors are better at explaining the 𝐾 = 4 and 𝐾 = 5 components, respectively. In 

contrast, none of the proxies particularly dominates in terms of explaining the second factor, 

𝐾 = 2. The characteristics that are influential to the corresponding sparse principal components 

are similar to those for PCA. However, their importance is decreased with the remaining 

proxies contributing more to the explanation of the latent factors. The fourth sparse principal 

component poses an exception since it relates more to the size factor (SMB) than RMW.  

Both PLS methods exhibit a similar pattern in their relation to the Fama-French five 

factor model. The first latent factor of both approaches exhibits a connection to the market, 

which is much stronger than the one observed for the respective principal component. The 

value characteristic can explain the second, third and fourth latent factors of PLS and SPLS, 

while RMW and CMA equally explain the fifth factor. The results for the autoencoders remain 

relatively unchanged when comparing across different values of 𝐾 and number of hidden 

layers. The value and, to a lesser extent, the market factors are those which exhibit the strongest 

relation to the latent factors.  

We further examine the connection of the latent factors to the Fama and French five-

factor model by aggregating the distributional properties of the 𝑡-statistics, estimated 
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throughout the out-of-sample period, using boxplots.8 We consider that a latent factor of a 

specific dimensionality reduction technique is linked to one of the observed factor proxies, 

when the median 𝑡-statistic is non-zero and when the size of the box (IQR) or the distance 

between the ends of the two whiskers (range) is large, indicating that the majority of the 𝑡-

statistics throughout the rolling window iterations are significantly different from zero. On the 

contrary, the relationship of a latent factor with a particular Fama-French factor will tend to be 

weak if the box falls within the lines depicting the Student's 𝑡 critical values at the 5% level. 

[Insert Figure 3 about here] 

The results based on the five factors by Fama and French (2015) are presented in Figure 

3 and corroborate those from the variable importance analysis. Overall, there is substantial 

significance for the latent factors based on PCA and PLS methods with some of the Fama-

French factors, and especially the market factor. When comparing PCA with SPCA, the 

relationship of the latent factors with the observed factors is diminished for the latter. In 

contrast, both PLS approaches generate latent factors that exhibit a similar pattern. 

Autoencoders do not display any strong links to a particular factor, indicating that latent factors 

based on neural networks cannot be adequately explained by the Fama-French factors.  

Focusing on the results for PCA, the first principal component, 𝐾 = 1, is primarily 

related to the market factor (MKTRF), with the middle 50% of the 𝑡-statistics exceeding 5 in 

absolute value and to the size factor (SMB) where most of the 𝑡-statistics are around three 

standard errors from zero. For both factors the distribution of 𝑡-statistics is right skewed since 

the median is located towards the left and the left whisker is shorter, indicating a negative 

relationship. The second factor, 𝐾 = 2, based on PCA does not exhibit any strong links to any 

 
8 Boxplots of the 𝑡-statistics provide a simple five-number summary of their distribution, which consists of the 

median (marked by the line within the box), first and third quartiles (the edges of the box, with its length 

representing the interquartile range, IQR), and the minimum and maximum individual 𝑡-statistics (depicted by the 

two lines or whiskers, with the distance from the end of each line representing the range). 
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of the observed proxies, since the 𝑡-statistics are less dispersed, as evidenced by the 

interquartile range and values that are clustered within the 5% critical values bands. The third 

principal component, 𝐾 = 3, has a strong relation to the value (HML) factor, with 𝑡-statistics 

in the range of -11 to 11. The fourth latent factor, 𝐾 = 4, relates to the size and profitability 

(RMW) characteristics, while the fifth factor, 𝐾 = 5, is primarily linked to the investment 

(CMA) factor. The pattern of the 𝑡-statistics for SPCA is similar to that of PCA, however the 

connection of the sparse principal components to the five factors is overall weaker, as 

evidenced by the smaller dispersion of the 𝑡-statistics.  

Turning to the results for supervised methods, the patterns observed when comparing the 

boxplots of both PLS-type approaches appear similar. The first factor of PLS and SPLS is 

positively related to the market factor and, to a lesser extent, the size factor according to the 

median, with the middle 50% of the 𝑡-statistics lying approximately between -9 and 8 for 

MKTRF and from approximately -2 to 5 for SMB. The remaining latent factors are all 

positively related to the market, albeit to a lesser degree than the first factor. The second latent 

factor of both methods is also related to HML, according to the negatively skewed boxplot, 

with the lower quartile being approximately equal to -1 and the third quartile to 5. The third 

factor is also linked to the value factor, although the distribution of the 𝑡-statistics is more 

symmetrical. The fourth factor displays a weak relationship with the size and value factors, 

while the fifth factor is weakly related to RMW and CMA. Finally, the results for the latent 

factors based on autoencoders do not reveal any significantly strong links with a particular 

proxy. For the majority of the autoencoder factors the boxes are symmetrical and smaller, with 

the middle 50% of the 𝑡-statistics being within the 5% critical value bands and concentrated 
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around the median, however, the whiskers are longer indicating a greater range of potential 

values over the out-of-sample period.9 

We extend the variable importance analysis to a larger dataset, by examining the 

relationship between the latent factors and long-short anomaly portfolios constructed by Chen 

and Zimmermann (2020).  The equity portfolios are based on a comprehensive reconstruction 

of firm-level characteristics, which have been replicated using the same data and methods as 

the original papers. Due to the large number of variables, the influence of each feature to the 

respective latent factor is derived based on the lasso (Tibshirani, 1996). The penalized model 

is estimated using a rolling window approach and the results are averaged throughout the out-

of-sample period, from January 1980 to December 2019. The variable importance is estimated 

as the change in 𝑅2 from setting the observations of a feature to zero within each iteration of 

the rolling window. The results are further aggregated by summing the variable importance of 

the characteristics-based portfolios belonging in the same group. We use the same 

categorization as Chen and Zimmermann (2020) to assign a variable to a group.10 Figure 4 

presents the results of the variable importance.  

[Insert Figure 4 about here] 

Across all different models the group comprised of portfolios sorted by accounting 

characteristics is the most influential according to the lasso. Important variables within this 

group include portfolios sorted on gross profits/total assets, dividend yield, book-to-market and 

leverage. The second most influential group is that of portfolios sorted on price characteristics. 

Individual portfolios with high variable importance values are based on characteristics such as 

 
9 We also examine the relationship of the latent factors with the Hou, Xue and Zhang (2015) q-factor model 

augmented by the expected growth factor (Hou, Mo, Xue and Zhang, 2021). The results based on OLS regressions 

of each of the five latent factors on factors from the augmented q-factor model are reported in Figures A3, A4 and 

A5 in the Appendix.  
10 Data on the long-short anomaly portfolios are obtained from Andrew Y. Chen’s website. We consider portfolios 

that have a full history of returns from January 1960 to December 2019, which reduces the initial number of 

available series from 205 to 110. Details on which anomaly portfolios belong in each of the six groups can be 

found in Table A1 in the Appendix. 



20 
 

CAPM beta, earnings-to-price ratio, tail risk beta, coskewness and idiosyncratic risk. Portfolios 

based on trading characteristics, such as liquidity and volume indicators, also relate 

significantly to the majority of the latent factors. The portfolios from the remaining categories 

contribute a relatively small part to the total variable importance. The variable importance 

pattern remains similar across autoencoders with different number of hidden layers, while the 

results for PCA and PLS methods are less homogenous.11 

B. Structure of the Covariance Matrices 

Given the dependence of the minimum-variance portfolio on the estimates of the covariance, 

it is informative to investigate how different factors affect the structure of the covariance 

matrix. We compare the structure of four factor-implied covariance specifications using latent 

factors based on machine learning and observed factors such as the single index (Market) 

model (Sharpe, 1963) or the three-factor model (FF3) by Fama and French (1993). The 

differences between factor-implied covariances are examined by comparing the structure of the 

alternative covariance, Σ, to that of the sample estimator (Sample), S.  

Following the analysis of Moskowitz (2003) we consider three measures. The first 

measure examines the similarity between two matrices and is given by 𝐸𝑖𝑔𝑡 =

√tr(Σ𝑡
′Σ𝑡) tr(S𝑡

′S𝑡)⁄ , where tr(∙) denotes the trace of a matrix. This metric represents the sum 

of the eigenvalues of the factor-implied covariance matrix as a fraction of the sum of the 

eigenvalues of the sample covariance matrix. The matrices are squared to capture the absolute 

amount of covariation. The sum of the eigenvalues provides a measure of total covariation 

represented by the matrix. The second measure compares the factor-implied covariance with 

the sample covariance in terms of magnitude and is calculated as 𝑀𝑎𝑔𝑡 =

(i′|S𝑡 − Σ𝑡|i) (i′|S𝑡|i)⁄ . This measure sums the absolute value of all the elements of the 

 
11 As an alternative we consider the macroeconomic dataset by McCracken and Ng (2015). The results based on 

the McCracken and Ng (2015) macroeconomic dataset can be found in Figure A6 in the Appendix, while details 

on the eight groups and the variables within each group are reported in Table A2. 



21 
 

difference between the two matrices and scales this sum with the sum of the absolute value of 

all the elements of the sample covariance matrix. Finally, we compare the alternative 

covariance estimates with the benchmark in terms of the direction of the covariances, by 

determining the fraction of the covariances from the alternative models that have the same sign 

with those of the sample covariance which is given by 𝐷𝑖𝑟𝑡 = (i′sign(S𝑡 ∘ Σ𝑡)i) rank(S𝑡)2⁄ .  

We report the average value of the measures across the out-of-sample period in Table 1. 

A high 𝐸𝑖𝑔 ratio indicates that the alternative covariance matrix is close to the sample 

estimator. Additionally, if the factor-implied covariance captures similar information to the 

sample covariance then the magnitude, 𝑀𝑎𝑔, should be close to zero and the direction, 𝐷𝑖𝑟, 

should be close to unity. We also examine whether the difference from the sample estimator of 

a factor-implied covariance is the same as that of a covariance matrix based on the market 

factor. The two-sided bootstrapped 𝑝-value is adjusted for autocorrelation up to 12-month lags.  

[Insert Table 1 about here] 

Overall, covariance matrices based on latent factors and especially those where the 

factors are derived from unsupervised methods, exhibit the greatest differences from the sample 

estimator, for all three measures. The structure of the covariances based on SPCA and shallow 

autoencoders are the ones that deviate most from the benchmark. In contrast, the structure of 

covariances using observed factors is closest to the sample estimator. When comparing across 

covariance specifications, the differences become more pronounced in the covariance structure 

when the residual covariance is dynamic. Furthermore, the information captured by the 

covariance matrices based on latent factors relative to the sample estimator is significantly 

different at the 1% level to that of the corresponding matrix based on the market factor.  

Specifically, according to the 𝐸𝑖𝑔 measure, the covariance matrices based on latent 

factors differ considerably from the sample estimator, by a range of 40% to 52%. In contrast, 

covariances based on the three Fama-French factors or the market factor, differ to the sample 
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covariance by only 1% to 7% or 7% to 9%, respectively. The results under the magnitude and 

direction measures, remain consistent, with covariances based on latent factors deviating 

considerably from the sample covariance, while those of observed factors remain very close to 

the benchmark. In particular, the values of the latent factors for the 𝑀𝑎𝑔 measure are closer to 

unity (0.60 to 0.77) further highlighting the difference from the sample estimator, while the 

results for the observed factors are much closer to zero (0.01 to 0.1). For 𝐷𝑖𝑟 the results show 

that on average, 36% to 65% of the covariances have a different sign from those of the 

benchmark, compared to observed factors where there is only a 2.5% to 5% difference. The 

values for the direction measure do not significantly change across covariance specifications.  

V. Asset Allocation  

In this Section we first explore the out-of-sample performance of the portfolios based on the 

different factor and covariance specifications using a variety of performance measures, analyze 

the properties of the portfolio weight vectors and investigate the effects of transaction costs on 

portfolio performance. We also analyze the behavior of the portfolios during high and low 

volatility subperiods and for a different number of assets. 

The buy-and-hold portfolio returns are calculated for the period of one month and the 

portfolio is rebalanced monthly until the end of the evaluation period (January 1980 to 

December 2019). The portfolios based on latent factors are compared to the sample estimator 

and covariances based on observed factors and to the equally weighted portfolio, a scheme 

which requires no parameter estimation, since the weights are 𝜔𝑖 = 1 𝑁⁄ , for 𝑖 = 1, … , 𝑁.  

A. Portfolio Performance 

We focus on evaluating the performance of the portfolios based on measures of risk and risk-

adjusted returns, since equation (8) is designed to minimize variance rather than maximize the 
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expected return.12 Therefore, similar to Ledoit and Wolf (2017) and De Nard, Ledoit and Wolf 

(2019), we primarily compare the economic value of the alternative covariance matrices using 

the standard deviation, followed by the Sharpe ratio.13 In Table 2 we report the monthly 

performance of the portfolios over the out-of-sample period, 𝑇𝑂𝑂𝑆, based on the standard 

deviation (SD) of the 480 out-of-sample portfolio returns in excess of the risk-free rate and the 

Sharpe ratio (SR) of the portfolio calculated as (𝑟̅𝑝 − 𝑟̅𝑓) SD⁄ , where 𝑟̅𝑝 is the average value of 

the portfolio returns and 𝑟̅𝑓 is the average value of the risk-free rate. 

We also consider the question whether one portfolio delivers improved out-of-sample 

performance relative to another portfolio at a level that is statistically significant. DeMiguel, 

Garlappi, and Uppal (2009) provide persuasive evidence that the simple equally weighted 

portfolio should serve as a natural benchmark to assess the performance of more sophisticated 

strategies. To avoid a multiple-testing problem and since one of the major goals of this study 

is to outperform the 1/𝑁 rule, we restrict our focus to the comparison of the EW with the 

alternative portfolios. For each case, a two-sided 𝑝-value is obtained by the prewhitened 

HACPW test proposed by Ledoit and Wolf (2011) for the null hypothesis of equal standard 

deviations and by Ledoit and Wolf (2008) for the null hypothesis of equal Sharpe ratios.  

[Insert Table 2 about here] 

The results indicate that portfolios using machine learning consistently outperform the 

EW benchmark in terms of standard deviation and Sharpe ratio by a wide margin. Using a 

covariance matrix based on machine learning factors, can lead to a statistically significant 

 
12 The baseline results are for minimum-variance portfolios with short-selling constraints. We also consider two 

alternative strategies based on portfolios in the absence of short-selling constraints and turnover-constrained 

portfolios (Olivares-Nadal and DeMiguel, 2018). The standard deviation and Sharpe ratio of the two alternative 

strategies are reported in Tables A3 and A4 in the Appendix. 
13 Tail risk is of particular importance for portfolios during periods of financial distress. Therefore, we examine 

the portfolio performance using several alternative risk measures, including the mean absolute deviation (MAD), 

value-at-risk (VaR) and conditional value-at-risk (CVaR) of the out-of-sample portfolio returns in excess of the 

risk-free rate. The results are reported in Table A5 in the Appendix. Results for the alternative risk criteria also 

point towards the benefits of using machine learning latent factors for covariance estimation, with all models 

outperforming the EW benchmark and offering a measure of protection to investors concerned with tail risk. 
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decrease in out-of-sample standard deviation of up to 29% and a significant increase in Sharpe 

ratio of over 25% relative to the 1 𝑁⁄  portfolio. Factors based on SPCA and autoencoders are 

found to yield the best performance, with shallower neural networks outperforming those with 

more hidden layers. Additionally, estimators that allow the loadings or error covariance to be 

time-varying outperform the static or dynamic factor covariance specifications.  

Unsupervised learning approaches used to derive the latent factors tend to produce 

portfolios with lower standard deviation. The best performing model is AEN1, with monthly 

standard deviation of 3.216% and 3.318% depending on covariance specification, except for 

dynamic beta covariance where SPLS yields the lowest standard deviation with a value of 

3.261%. The outperformance of the shallow autoencoder (AEN1) from the EW strategy is 

between 2.9% and 3.3% per annum, varying based on the covariance specification. The shallow 

autoencoder and SPCA have the highest SR, with values between 0.82 and 0.85 in annual 

terms. AEN1 has the highest ratio in the dynamic beta covariance specification, while SPCA 

is the best performing model for the remaining specifications. Overall, the best performing 

portfolios are based on the dynamic error or dynamic beta covariance specifications, while 

portfolios based on static or dynamic factor covariance generate comparable performance.  

The outperformance over 1 𝑁⁄  portfolio across factors and model specifications in terms 

of standard deviation is statistically significant at the 1% level. The outperformance in terms 

of Sharpe ratio is, however, statistically significant only for latent factor models. For the Sharpe 

ratio, latent factors generate statistically significant outperformance, compared to observed 

factors and the sample estimator that yield insignificant results. Specifically, SPCA 

consistently outperforms the 1 𝑁⁄  portfolio at the 1% level, while AEN1 is significant at the 

5% or 1% level depending on the covariance specifications.14  

 
14 The results throughout the paper are based on models using a validation window consisting of the last 20% of 

the observations in the rolling window. We also examine the performance of the portfolios when the size of the 

validation window is reduced to 10% or increased to 30% of the observations in the rolling window. The results 
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We further investigate the economic value of the covariance matrix estimates using the 

certainty equivalent return (CER), defined as: CER = 𝑟̅𝑃 − 0.5𝛾𝜎𝑃
2, where 𝑟̅𝑃 and 𝜎𝑃

2 are the 

mean and variance of the portfolio returns over the out-of-sample period. The CER can be 

interpreted as the risk-free return that a mean-variance investor with a coefficient of relative 

risk aversion 𝛾 is willing to accept instead of investing in the risky portfolio. We consider 

values of the risk aversion parameter 𝛾, that roughly correspond to an aggressive (𝛾 = 2), 

moderate (𝛾 = 5) or conservative (𝛾 = 10) investor.15 Given that the optimization objective is 

to minimize variance, the portfolios would be of interest to investors more sensitive to risk, 

which makes CER with higher values of 𝛾 a more representative performance measure. 

Following Neely, Rapach, Tu and Zhou (2014), we report the difference in monthly CER 

(ΔCER), which is equivalent to the percentage CER generated by the alternative portfolio minus 

that of the EW benchmark. ΔCER can be interpreted as the performance fee that the investor 

would be willing to pay to use the information of each alternative covariance estimator instead 

of the benchmark. To test the statistical significance of the CER gains, relative to the EW 

allocation approach, we use the two-sided 𝑝-value obtained by the test developed by DeMiguel, 

Garlappi and Uppal (2009), for the null hypothesis of equal CER.  

[Insert Table 3 about here] 

The results reported in Table 3 show that portfolios based on machine learning 

outperform simpler benchmarks, leading to statistically significant utility gains that exceed 

those of the EW by 2.5% to 4.5% on an annual basis, for investors with moderate or 

conservative risk preferences, respectively. Ideally the results would remain statistically 

significant across all values of 𝛾. However, since the objective of this asset allocation exercise 

is to minimize variance, the portfolios would primarily be of interest to investors that are not 

 
are reported in Table A6 in the Appendix and are qualitatively similar to the baseline case, with methods such as 

SPCA and autoencoders favoring the longer validation window.  
15 Similar values for the parameter of risk aversion have been used in DeMiguel, Garlappi and Uppal (2009). 
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willing to undertake a high degree of risk, while more aggressive investors would opt for an 

objective function that seeks to maximize return or Sharpe ratio. The CER for the 1/𝑁 strategy 

decreases as the parameter of risk aversion increases, turning negative when 𝛾 = 10. All 

portfolios generate positive ΔCER, with the outperformance from the EW portfolio increasing 

as the parameter of risk aversion, 𝛾, increases in value. The best performing model in the case 

of the static factor covariance is SPCA with monthly ΔCER between 0.109% and 0.346% 

depending on the degree of risk aversion. In the case of dynamic estimators, autoencoders yield 

the highest ΔCER for 𝛾 = 10. For 𝛾 = 5, AEN1 outperforms the other models for dynamic beta 

covariance, while SPCA performs best when Σ𝑓,𝑡 and Σ𝑢,𝑡 are time varying.  

B. Properties of Portfolio Weights 

We now explore how the weighing structure of the portfolios based on machine learning differs 

compared to the naïve allocation, which assigns equal weights to all assets, and to that of the 

sample estimator and the observed factors. 

We start by analyzing the properties of the portfolio weights, 𝜔̂, using the maximum 

weight (MAX), the standard deviation of the portfolio weights (SD𝜔) and in line with 

DeMiguel, Garlappi and Uppal (2009), we report the average monthly portfolio turnover (TO) 

computed as the average absolute change of the portfolio weights over the 𝑇𝑂𝑂𝑆 rebalancing 

periods across the 𝑁 assets. The turnover at time 𝑡 + 1 is given by ‖𝜔𝑡+1 − 𝜔𝑡‖1, where 𝜔𝑡+1 

is the vector of portfolio weights at time 𝑡 + 1 and 𝜔𝑡 are the portfolio weights at the time 

before rebalancing. Furthermore, we examine the concentration of the portfolio using the 

Herfindahl-Hirschman index (HHI) computed as ∑ 𝜔̂𝑖
2𝑁

𝑖=1 , with a lower HHI implying a more 

diversified portfolio. The similarities of each strategy with the 1/𝑁 are examined by using the 

mean absolute deviation from the equally weighted portfolio (MADEW) calculated as 
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1 𝑁⁄ ∑ |𝜔̂𝑖 − 1 𝑁⁄ |𝑁
𝑖=1  and the percentage of weights greater than 1 𝑁⁄  (𝜔𝑖 > 1/𝑁). Table 4 

reports the average value of each weight characteristic over the out-of-sample period.16 

[Insert Table 4 about here] 

Overall, the portfolios based on machine learning methods tend to produce weights which 

are smaller, less volatile, and closer to those of the EW portfolio, than models based on 

observed factors. In addition, covariance matrices based on latent factors lead to more 

diversified portfolios that require less frequent rebalancing, which is a positive indicator 

regarding the effects of transaction costs on portfolio performance. The lowest turnover is 

produced by portfolios based on PCA and SPCA factors (approximately 30%), followed by 

portfolios using autoencoder factors with turnover varying from 31% to 50%. Neural networks 

with more hidden layers have consistently higher rebalancing requirements than shallower 

networks. Comparing across different covariance specifications, portfolios based on the 

dynamic error covariance exhibit higher maximum weights, SD𝜔 and turnover, are more 

concentrated and diverge more from the EW, than the static factor covariance. 

We also examine how the quantiles of the portfolio weight vectors vary throughout the 

out-of-sample period. The results for ten quantiles 𝜏 ∈ [0.1,1] are presented in Figure 5 for the 

case of the static factor covariance specification.17 

[Insert Figure 5 about here] 

The weights of portfolios based on latent factors are more varied across quantiles, while those 

of the sample estimator and observed factors are zero for quantiles below 0.8. The weights of 

the Market and FF3 exhibit similar behavior, while unsupervised methods lead to portfolio 

weights that are more dissimilar throughout time.  

 
16 The properties of the portfolio weight vectors for minimum-variance portfolios that allow short-selling and 

portfolios with a turnover penalty are reported in Table A5 and Table A6 respectively, found in the Appendix. 
17 The results for the remaining covariance specifications are presented in Figures A7, A8 and A9 in the Appendix, 

for the cases when 𝐵, Σ𝑓 and Σ𝑢 are dynamic, respectively. Additionally, the results for autoencoders with two, 

three and four hidden layers were similar to those of an autoencoder with a single hidden layer and are not 

presented for the sake of brevity.  
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C. Effects of Transaction Costs 

Following Han (2006), we consider the monthly breakeven transaction costs in basis points 

that would cause an investor to be indifferent between a certain strategy and the benchmark 

strategy.18 The breakeven transaction costs in terms of Sharpe ratio of a portfolio relative to the 

equally weighted portfolio, 𝑐𝑒𝑤, are calculated as ΔSR ΔTO⁄ , where ΔSR = 𝑆𝑅𝑝 − 𝑆𝑅𝑒𝑤 is the 

difference in Sharpe ratios of the alternative portfolio from the equally weighted benchmark 

and ΔTO = 𝑇𝑂𝑝 − 𝑇𝑂𝑒𝑤 is the difference in the respective average turnover. Breakeven 

transaction costs become important in the absence of reliable estimates of transaction costs, 

with positive values of 𝑐𝑒𝑤 indicating that the alternative model outperforms the benchmark. 

[Insert Table 5 about here] 

Table 5 shows that all models generate positive 𝑐𝑒𝑤, indicating outperformance from the 

benchmark. However, an investor would realize greater economic benefits over the EW 

portfolio by choosing machine learning portfolios, since they exhibit higher breakeven 

transaction costs by a factor of three from portfolios based on observed factors. The breakeven 

transaction costs are higher for unsupervised methods than the sample estimator or the 

remaining factor models. Furthermore, static and dynamic factor covariance strategies produce 

the highest breakeven transaction costs across all specifications. Portfolios with factors 

estimated by SPCA have monthly breakeven transaction costs between 13.9 and 20.1 bps, 

while a shallow autoencoder would realize 𝑐𝑒𝑤 from 13.3 to 18.5 bps. On the contrary, the 

worst performing factor-based portfolios are those of the market factor, which yield the lowest 

breakeven transaction costs (4 to 6.4 basis points) and the sample estimator with breakeven 

transaction costs of 6.4 basis points. This concurs with the earlier evidence from portfolio 

 
18 We also examine the performance of the portfolio for specific levels of transaction costs. The results are reported 

in Table A9 in the Appendix, for transaction costs of 𝑐 ∈ {5, 20} basis points. The value of 5 bps may be low by 

academic standards, where values as high as 50 bps (Kirby and Ostdiek, 2012) have been used. Other studies are 

less conservative and use a range of values. Ledoit and Wolf (2017) consider values of 𝑐 ∈ {3, 50} bps, pointing 

out that 3 bps is representative for liquid stocks, while Moura, Santos and Ruiz (2020), use 𝑐 ∈ {5, 10} bps.  
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turnover, which shows that these strategies have lower rebalancing requirements. The results 

for average turnover and breakeven transaction costs suggest that rebalancing frequency is a 

key contributor to portfolio performance. This is in keeping with the literature (see Han, 2006), 

that finds increasing breakeven transaction costs for reduced rebalancing frequency.19 

D. Subperiod Analysis 

In this section we examine portfolio performance during different subperiods as defined by 

market volatility. The impact of different market regimes on asset allocation has been well 

documented in the literature (see Ang and Bekaert, 2002; Guidolin and Timmermann, 2008; 

Pettenuzzo and Timmermann, 2011). To analyze the results under different market regimes, 

we derive the periods of high and low market volatility using a Markov Switching model.20 

[Insert Table 6 about here] 

During high volatility periods (Panel A) all portfolios outperform the EW benchmark in 

terms of both standard deviation and Sharpe ratio.21 Strategies based on machine learning, 

especially unsupervised methods, generate the highest statistically significant results. 

Specifically, the best performing strategy is that of a shallow autoencoder with monthly SR 

ranging from 0.197 to 0.205 and significant at the 1% level. An exception is the case of 

covariances with loadings allowed to vary over time, which leads to the FF3 model having the 

highest performance with a ratio of 0.213 that is significant at the 5% level. For low volatility 

periods (Panel B) machine learning portfolios are less risky by up to 6%, albeit statistically 

indistinguishable from the 1/𝑁 portfolio. Furthermore, portfolios based on machine learning 

 
19 The performance in terms of 𝑐𝑒𝑤  for portfolios without short-selling constraints or with a turnover penalty are 

reported in Tables A10 and A11 in the Appendix. 
20 The regimes are determined based on the filtered probabilities of the following two-state Markov Switching 

model: 𝑟𝑚,𝑡 = 𝜇𝑠 + 𝑒𝑡,𝑠, with 𝑒𝑡,𝑠~𝑁(0, 𝜎𝑡,𝑠
2 ), where 𝑟𝑚 is the market factor return, 𝑠 represents the latent state and 

𝜇𝑠 and 𝜎𝑠
2 denote the state dependent mean and variance. When the filtered probability of the low volatility state 

is lower than 0.5 the market is in a high-volatility period, while observations where the filtered probability of the 

low volatility state is higher than 0.5 are low-volatility periods.  
21 The properties of the portfolio weight vectors during high and low volatility subperiods can be found in Tables 

A12 and A13 in the Appendix. 



30 
 

are statistically indistinguishable from the EW portfolio also in terms of Sharpe ratio. In 

contrast, portfolios based on observed factors are more negatively affected than those based on 

latent factors and exhibit significantly reduced performance from the benchmark.22 

E. Varying Number of Assets 

Here we examine how performance is affected according to the number of assets in the 

portfolio. Along with the baseline case for 𝑁 = 100, the results for portfolios for 𝑁 =

{30, 50, 200, 300, 400, 500} largest stocks by market capitalization are presented in Figure 6 

for the case of the static factor covariance specification.23 

[Insert Figure 6 about here] 

When the number of assets changes, the 1/𝑁 portfolio is still consistently outperformed 

by the alternative strategies, with SD increasing with the size of the portfolio, and SR remaining 

relatively flat. Decreasing the number of assets to 𝑁 = {30, 50}, simpler strategies based on 

observed factors tend to outperform those using latent factors in terms of SR and breakeven 

transaction costs, with the Market outperforming FF3. The pattern for observed factors is mixed 

for larger sizes, first increasing for 𝑁 = {200, 300} and then decreasing slightly for 𝑁 =

{400, 500}. The volatility of latent factor models slightly increases for 𝑁 = 200 and then 

remains relatively stable across different portfolio sizes. The SR for latent factors is highest for 

𝑁 = 100, decreases when 𝑁 = {200, 300} and then increases again for 𝑁 = {400, 500}, with 

latent factor models producing higher ratios than observed factors for larger portfolios.  

Average monthly turnover steadily increases with the number of stocks in the portfolio, 

with observed factor models generating higher turnover than latent factor models consistently 

 
22 Asset allocation is also affected by shifts in the economic environment due to inflation and credit spread, where 

the presence of separate regimes has been detected. To this end, we also investigate changes in portfolio 

performance during subperiods of high and low inflation or credit spread. The results can be found in Table A14 

and Table A15 in the Appendix. 
23 The results for the remaining covariance specifications exhibit a similar pattern to that of the static case and are 

presented in Figures A10, A11 and A12 in the Appendix, for the cases when 𝐵, Σ𝑓 and Σ𝑢 are dynamic, 

respectively. Furthermore, deeper autoencoders yielded similar results to those of a shallow autoencoder and are 

not presented for the sake of brevity. 
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across all portfolio sizes, indicating that portfolios based on the Market and FF3 factors are 

more sensitive to transaction costs. The results show that increasing the size of the portfolios 

has a considerable negative impact on breakeven transaction costs, with all models 

experiencing a sharp decrease in 𝑐𝑒𝑤, indicating larger portfolios are more sensitive to 

transaction costs. Comparing across factor specifications, unsupervised methods generate the 

highest 𝑐𝑒𝑤 for values of 𝑁 ≥ 100 and observed factor perform best when 𝑁 < 100.  

VI. Conclusion 

In this paper we explore the performance and properties of machine learning factor-based 

portfolios. Specifically, we examine whether factor-implied covariance matrices based on 

machine learning dimensionality reduction techniques can benefit minimum-variance 

portfolios comprised of individual stocks. Overall, our findings indicate that machine learning 

can help improve factor-based portfolio optimization.  

When exploring the characteristics of machine learning portfolios, we find that factors 

based on PCA and PLS exhibit a stronger relationship with commonly used factor proxies than 

autoencoders. Furthermore, the structure of covariance matrices that are dynamic or based on 

unsupervised methods diverges the most from that of the sample estimator. Our analysis also 

shows that methods which induce sparsity and autoencoder neural networks tend to be the best 

performing models. We find that the proposed models can lead to a statistically significant 

reduction in portfolio volatility and an increase in the Sharpe ratios relative to the 1 𝑁⁄  

portfolio. These findings become more acute as an investor’s sensitivity to risk increases. 

Unsupervised learning methods yield portfolios that require less frequent rebalancing, with 

weights that are less volatile and more diversified relative to their supervised counterparts or 

observed factors. Finally, when comparing across factor model specifications, the results 

indicate that models which allow the error component of the covariance matrix to vary over 

time can deliver increased performance but at the cost of higher portfolio turnover.  
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Tables 

TABLE 1 

Comparison of factor-based covariance matrices 

This table reports monthly measures that compare the factor-implied covariance matrices to the sample estimator, based on total 

covariation (Eig), Magnitude (Mag) and direction (Dir), over the out-of-sample period from January 1980 to December 2019. 

The results are presented for four factor-implied covariance specifications: static factor covariance, dynamic beta covariance, 

dynamic factor covariance and dynamic error covariance. The factor specifications are based on the single factor model (Market), 

the Fama-French 3-factor model (FF3), principal component analysis (PCA), partial least squares (PLS), sparse principal 

component analysis (SPCA), sparse partial least squares (SPLS) and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). The 

significant deviation from the sample estimator of the alternative factor-implied covariance matrices from a covariance matrix 

based on the market factor is denoted by * for significance at the 1% level. 

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 Eig Mag Dir Eig Mag Dir Eig Mag Dir Eig Mag Dir 

Market 0.913 0.076 0.973 0.933 0.105 0.954 0.926 0.070 0.973 0.908 0.082 0.973 

FF3 0.932 0.041 0.976 0.990 0.062 0.951 0.963 0.015 0.973 0.926 0.047 0.976 

PCA 0.501* 0.742* 0.393* 0.517* 0.754* 0.384* 0.523* 0.725* 0.394* 0.485* 0.750* 0.393* 

PLS 0.584* 0.616* 0.619* 0.603* 0.634* 0.580* 0.597* 0.601* 0.620* 0.573* 0.624* 0.619* 

SPCA 0.487* 0.763* 0.479* 0.513* 0.757* 0.462* 0.489* 0.764* 0.474* 0.469* 0.771* 0.479* 

SPLS 0.574* 0.626* 0.648* 0.595* 0.637* 0.610* 0.577* 0.619* 0.648* 0.563* 0.634* 0.648* 

AEN1 0.480* 0.761* 0.370* 0.501* 0.770* 0.363* 0.501* 0.745* 0.368* 0.461* 0.769* 0.370* 

AEN2 0.498* 0.744* 0.389* 0.501* 0.760* 0.380* 0.532* 0.720* 0.388* 0.479* 0.753* 0.389* 

AEN3 0.505* 0.735* 0.404* 0.501* 0.759* 0.397* 0.551* 0.701* 0.404* 0.487* 0.743* 0.404* 

AEN4 0.507* 0.734* 0.405* 0.501* 0.757* 0.396* 0.551* 0.702* 0.406* 0.489* 0.742* 0.405* 

 

  



 
 

TABLE 2  

Portfolio performance based on standard deviation and Sharpe ratio 
This table documents monthly portfolio performance measured using the standard deviation (SD) and Sharpe ratio (SR), over the out-

of-sample period from January 1980 to December 2019. The results are presented for the equally weighted portfolio (EW) and minimum-

variance portfolios based on the sample estimator (Sample) and four factor-implied covariance specifications: static factor covariance, 

dynamic beta covariance, dynamic factor covariance and dynamic error covariance. The factor specifications are based on the single 

factor model (Market), the Fama-French 3-factor model (FF3), principal component analysis (PCA), partial least squares (PLS), sparse 

principal component analysis (SPCA), sparse partial least squares (SPLS) and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). The 

significant outperformance of the alternative strategies from the equally weighted strategy is denoted by: *, **, and *** for significance 

at the 10%, 5%, and 1% level, respectively. 

 SD SR       

EW 4.159 0.183       

Sample 3.469*** 0.209       

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 SD SR SD SR SD SR SD SR 

Market 3.630*** 0.209 3.347*** 0.218 3.640*** 0.210 3.597*** 0.205 

FF3 3.522*** 0.218 3.329*** 0.241 3.538*** 0.213 3.469*** 0.223 

PCA 3.361*** 0.235** 3.290*** 0.239** 3.360*** 0.235** 3.268*** 0.241** 

PLS 3.330*** 0.229 3.276*** 0.232* 3.335*** 0.227 3.217*** 0.238* 

SPCA 3.373*** 0.241*** 3.307*** 0.243*** 3.378*** 0.240*** 3.263*** 0.246*** 

SPLS 3.339*** 0.233* 3.261*** 0.242** 3.347*** 0.231* 3.225*** 0.242* 

AEN1 3.318*** 0.239*** 3.285*** 0.243*** 3.315*** 0.239*** 3.216*** 0.244** 

AEN2 3.352*** 0.232** 3.297*** 0.235** 3.350*** 0.232** 3.259*** 0.237** 

AEN3 3.338*** 0.238** 3.283*** 0.240** 3.334*** 0.238** 3.235*** 0.246** 

AEN4 3.357*** 0.225* 3.301*** 0.227** 3.356*** 0.224* 3.256*** 0.227* 

 

TABLE 3 

Portfolio performance based on certainty equivalent return 
This table reports monthly portfolio performance measured using the difference in certainty equivalent return (ΔCER) for various levels 

of risk aversion, 𝛾, over the out-of-sample period from January 1980 to December 2019. For the EW portfolio the monthly CER is 

reported as a percentage, while for the remaining portfolios the percentage ΔCER is provided, which is calculated as the difference in 

monthly CER between the alternative strategies and the equally weighted strategy. The results are presented for the equally weighted 

portfolio (EW) and minimum-variance portfolios based on the sample estimator (Sample) and four factor-implied covariance 

specifications: static factor covariance, dynamic beta covariance, dynamic factor covariance and dynamic error covariance. The factor 

specifications are based on the single factor model (Market), the Fama-French 3-factor model (FF3), principal component analysis 

(PCA), partial least squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares (SPLS) and autoencoders 

with 1, 2, 3 and 4 hidden layers (AEN). The significant outperformance of the alternative strategies from the equally weighted strategy 

is denoted by: *, **, and *** for significance at the 10%, 5%, and 1% level, respectively. 

 γ=2 γ=5 γ=10          
EW 0.589 0.330 -0.103          
Sample 0.016 0.095 0.226*          
  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 γ=2 γ=5 γ=10 γ=2 γ=5 γ=10 γ=2 γ=5 γ=10 γ=2 γ=5 γ=10 

Market 0.036 0.098 0.201 0.029 0.120 0.273* 0.043 0.104 0.205 0.017 0.082 0.191 

FF3 0.056 0.129 0.252 0.101 0.194 0.350*** 0.040 0.111 0.231 0.065 0.144 0.276* 

PCA 0.087 0.177** 0.327*** 0.089 0.186** 0.348*** 0.087 0.177** 0.327*** 0.093 0.192* 0.358*** 

PLS 0.061 0.155 0.310*** 0.065 0.163 0.327*** 0.057 0.150 0.304*** 0.074 0.178 0.352*** 

SPCA 0.109 0.198** 0.346*** 0.104 0.200** 0.359*** 0.108 0.196** 0.343*** 0.106 0.206** 0.372*** 

SPLS 0.077 0.169 0.323*** 0.092 0.192* 0.359*** 0.071 0.162 0.315*** 0.086 0.190 0.362*** 

AEN1 0.095 0.189** 0.346*** 0.101 0.199** 0.362*** 0.093 0.188** 0.346*** 0.092 0.197** 0.371*** 

AEN2 0.075 0.166* 0.317*** 0.077 0.173* 0.334*** 0.074 0.165* 0.317*** 0.075 0.176* 0.343*** 

AEN3 0.092 0.185** 0.339*** 0.090 0.188** 0.351*** 0.093 0.185** 0.340*** 0.102 0.204** 0.375*** 

AEN4 0.052 0.143 0.294*** 0.051 0.147 0.307*** 0.050 0.140 0.291*** 0.043 0.143 0.311*** 

  



 
 

TABLE 4 

Characteristics of the portfolio weight vectors 
This table presents the monthly characteristics of the portfolio weight vectors. Panel A reports the standard deviation of the weights (SD𝜔), 

maximum weight (MAX) and portfolio turnover (TO), whereas the Herfindahl-Hirschman index (HHI), mean absolute deviation from the equally 

weighted benchmark (MADEW) and percentage of weights greater than 1/𝑁 (𝜔𝑖 > 1/𝑁) can be found in Panel B. The average value of each 

weight characteristic over the out-of-sample period from January 1980 to December 2019 is reported. TO, SD𝜔, MADEW and 𝜔𝑖 > 1/𝑁 are 

reported as a percentage. The results are presented for the equally weighted portfolio (EW) and minimum-variance portfolios based on the sample 

estimator (Sample) and four factor-implied covariance specifications: static factor covariance, dynamic beta covariance, dynamic factor covariance 

and dynamic error covariance. The factor specifications are based on the single factor model (Market), the Fama-French 3-factor model (FF3), 

principal component analysis (PCA), partial least squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares (SPLS) 

and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). 

Panel A Standard deviation of the weights, maximum weight and portfolio turnover 

 SD𝜔 MAX TO          

EW 0.000 0.010 1.081          

Sample 3.146 0.383 41.269                   

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 SD𝜔 MAX TO SD𝜔 MAX TO SD𝜔 MAX TO SD𝜔 MAX TO 

Market 2.824 0.302 41.297 2.452 0.296 60.745 2.769 0.433 43.957 3.433 0.445 56.045 

FF3 2.738 0.311 42.785 2.473 0.312 71.744 2.669 0.450 47.423 3.342 0.420 57.039 

PCA 1.091 0.070 29.737 1.048 0.078 35.064 1.098 0.073 30.017 1.323 0.139 46.098 

PLS 1.419 0.095 33.408 1.334 0.092 39.694 1.423 0.094 33.496 1.700 0.157 49.269 

SPCA 1.067 0.071 29.931 1.058 0.087 36.287 1.064 0.071 29.972 1.288 0.134 46.138 

SPLS 1.440 0.100 33.372 1.359 0.108 40.552 1.439 0.098 33.331 1.727 0.194 49.203 

AEN1 1.053 0.066 31.196 1.012 0.075 36.924 1.059 0.067 31.396 1.281 0.119 46.615 

AEN2 1.078 0.066 31.060 1.030 0.079 35.694 1.089 0.068 31.367 1.305 0.123 46.855 

AEN3 1.107 0.074 33.136 1.047 0.076 37.462 1.121 0.073 33.577 1.349 0.166 48.857 

AEN4 1.110 0.072 33.347 1.052 0.076 37.276 1.124 0.078 33.885 1.344 0.132 49.029 

Panel B Herfindahl-Hirschman index, mean absolute deviation from the 1/𝑁 portfolio and percentage of weights greater than 1/𝑁 

 HHI MADEW 𝜔𝑖 > 1/𝑁          

EW 0.010 0.000 0.000          

Sample 0.109 1.621 16.617                   

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 HHI MADEW 𝜔𝑖 > 1/𝑁 HHI MADEW 𝜔𝑖 > 1/𝑁 HHI MADEW 𝜔𝑖 > 1/𝑁 HHI MADEW 𝜔𝑖 > 1/𝑁 

Market 0.091 1.616 16.227 0.072 1.535 20.654 0.090 1.582 18.000 0.129 1.711 13.171 

FF3 0.085 1.582 18.454 0.072 1.520 20.792 0.084 1.546 19.242 0.124 1.669 14.640 

PCA 0.022 0.819 37.398 0.021 0.791 38.342 0.022 0.824 37.277 0.028 0.928 32.421 

PLS 0.030 1.050 34.058 0.028 0.997 35.352 0.030 1.052 34.083 0.039 1.165 28.840 

SPCA 0.022 0.772 35.688 0.022 0.777 36.985 0.022 0.771 35.708 0.027 0.882 32.027 

SPLS 0.031 1.033 33.035 0.029 0.993 33.875 0.031 1.032 33.050 0.040 1.153 27.915 

AEN1 0.022 0.802 37.927 0.021 0.771 38.362 0.022 0.806 37.881 0.027 0.909 32.904 

AEN2 0.022 0.815 37.533 0.021 0.779 38.388 0.022 0.822 37.413 0.027 0.920 32.467 

AEN3 0.023 0.835 37.217 0.021 0.793 38.304 0.023 0.844 37.042 0.029 0.943 32.206 

AEN4 0.023 0.836 37.367 0.022 0.795 38.417 0.023 0.846 37.192 0.029 0.943 32.310 

 

 

  



 
 

TABLE 5 

Portfolio performance based on breakeven transaction costs 
This table presents monthly portfolio performance measured breakeven transaction costs (𝑐𝑒𝑤) with respect to the equally 

weighted portfolio (EW), over the out-of-sample period from January 1980 to December 2019. The results are presented for 

the minimum-variance portfolios based on the sample estimator (Sample) and four factor-implied covariance specifications: 

static factor covariance, dynamic beta covariance, dynamic factor covariance and dynamic error covariance. The factor 

specifications are based on the single factor model (Market), the Fama-French 3-factor model (FF3), principal component 

analysis (PCA), partial least squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares (SPLS) 

and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). The breakeven transaction costs are reported in basis points and a 

positive value indicates that the alternative portfolio outperforms the EW. 

Sample 6.470    

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

Market 6.465 5.866 6.297 4.003 

FF3 8.392 8.208 6.474 7.148 

PCA 18.146 16.479 17.971 12.884 

PLS 14.230 12.690 13.574 11.414 

SPCA 20.104 17.043 19.729 13.983 

SPLS 15.484 14.948 14.883 12.261 

AEN1 18.595 16.739 18.473 13.397 

AEN2 16.345 15.023 16.179 11.797 

AEN3 17.158 15.668 16.925 13.187 

AEN4 13.017 12.156 12.498 9.177 

 

 

  



 
 

TABLE 6 

Portfolio performance during different volatility regimes 
In this table, we document the monthly portfolio performance measured using the standard deviation (SD) and Sharpe ratio (SR), during 

high (Panel A) and low (Panel B) volatility periods based on the filtered probabilities of a Markov-switching model estimated using the 

market factor. Observations where the filtered probability of the low volatility regime is above 0.5 are considered low-volatility periods, 

and observations where the filtered probability of the low volatility regime is below 0.5 are considered high-volatility periods. The 

results are presented for the equally weighted portfolio (EW) and minimum-variance portfolios based on the sample estimator (Sample) 

and four factor-implied covariance specifications: static factor covariance, dynamic beta covariance, dynamic factor covariance and 

dynamic error covariance. The factor specifications are based on the single factor model (Market), the Fama-French 3-factor model 

(FF3), principal component analysis (PCA), partial least squares (PLS), sparse principal component analysis (SPCA), sparse partial 

least squares (SPLS) and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). The significant outperformance of the alternative 

strategies from the equally weighted strategy is denoted by: *, **, and *** for significance at the 10%, 5%, and 1% level, respectively. 

Panel A High volatility regime 

 SD SR       
EW 5.037 0.128       
Sample 3.994*** 0.179       
  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 SD SR SD SR SD SR SD SR 

Market 4.075*** 0.177 3.732*** 0.197 4.153*** 0.173 3.958*** 0.180 

FF3 3.978*** 0.192 3.792*** 0.213** 4.048*** 0.175 3.846*** 0.205 

PCA 3.968*** 0.181** 3.874*** 0.183** 3.965*** 0.181** 3.820*** 0.187** 

PLS 3.882*** 0.180 3.820*** 0.179 3.888*** 0.178 3.700*** 0.196* 

SPCA 3.988*** 0.188** 3.893*** 0.188** 3.994*** 0.187** 3.832*** 0.192** 

SPLS 3.896*** 0.186* 3.798*** 0.191* 3.907*** 0.183 3.714*** 0.200* 

AEN1 3.904*** 0.198*** 3.859*** 0.198*** 3.899*** 0.197*** 3.759*** 0.205*** 

AEN2 3.952*** 0.178* 3.878*** 0.179* 3.949*** 0.178* 3.819*** 0.184* 

AEN3 3.930*** 0.189** 3.857*** 0.188** 3.923*** 0.189** 3.776*** 0.197** 

AEN4 3.956*** 0.179** 3.882*** 0.178* 3.953*** 0.179* 3.801*** 0.182* 

Panel B Low volatility regime 

 SD SR       
EW 2.283 0.411       
Sample 2.493* 0.298*       
  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 SD SR SD SR SD SR SD SR 

Market 2.846*** 0.285 2.677*** 0.269** 2.705*** 0.307 2.986*** 0.258* 

FF3 2.705*** 0.288 2.485* 0.319 2.602** 0.315 2.820*** 0.267* 

PCA 2.157 0.414 2.14* 0.423 2.160 0.414 2.199 0.410 

PLS 2.268 0.377 2.229 0.393 2.271 0.377 2.319 0.357 

SPCA 2.150* 0.423 2.151* 0.423 2.151* 0.423 2.148 0.420 

SPLS 2.269 0.378 2.230 0.396 2.269 0.378 2.316 0.361 

AEN1 2.171 0.381 2.163* 0.392 2.173 0.381 2.167 0.372 

AEN2 2.163 0.409 2.154* 0.415 2.165 0.409 2.169 0.402 

AEN3 2.174 0.399 2.158 0.408 2.177 0.399 2.195 0.398 

AEN4 2.176 0.377 2.160 0.388 2.181 0.376 2.207 0.366 

 

 

  



 
 

Figures 

FIGURE 1 

Average 𝑅𝑎𝑑𝑗
2  of the regressions of the latent factors on the Fama and French (2015) factors 

This figure shows the 𝑅𝑎𝑑𝑗
2  as a percentage based on OLS estimation results for regressions of the latent factors on factors from the Fama and 

French (2015) five-factor model. The average over the out-of-sample period from July 1983 to December 2019 is given. The latent factor 

specifications are based on principal component analysis (PCA), partial least squares (PLS), sparse principal component analysis (SPCA), 

sparse partial least squares (SPLS) and autoencoders with 1, 2, 3 and 4 hidden layers (AEN).  

 
 

 

  



 
 

FIGURE 2 

Variable importance of the Fama and French (2015) factors 
This figure shows the variable importance based on OLS estimation results for regressions of the latent factors on factors from the Fama 

and French (2015) five-factor model. The measure of variable importance is calculated as the change in 𝑅2 from setting the observations of 

a factor proxy to zero within each estimation window. The average over the out-of-sample period from July 1983 to December 2019 is 

given. The variable importance measures for each latent factor are scaled to sum to 100. The latent factor specifications are based on 

principal component analysis (PCA), partial least squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares 

(SPLS) and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). MKTRF, SMB, HML, RMW, and CMA are the Fama and French (2015) 

excess returns of the market from the risk-free rate, size, value, profitability, and investment factors, respectively. 

 
 

 

 



 
 

FIGURE 3 

Explaining the latent factors based on the Fama and French (2015) five-factor model 
This figure shows boxplots of the 𝑡-statistics based on OLS regressions of each of the five latent factors on factors from the Fama and French (2015) five-factor model. The 

horizontal axis reports 𝑡-statistics values ranging from -10 to 10, whereas the vertical axis reports the latent factors, 𝐾 = 1, … ,5. The sample period is from July 1963 to 

December 2019. The median is marked by the line within the box, the edges of the box denote the first and third quartiles, while the minimum and maximum 𝑡-statistics are 

depicted by the end of the lines outside the box. The latent factor specifications are based on principal component analysis (PCA), partial least squares (PLS), sparse principal 

component analysis (SPCA), sparse partial least squares (SPLS) and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). MKTRF, SMB, HML, RMW, and CMA are the 

Fama and French (2015) excess returns of the market from the risk-free rate, size, value, profitability, and investment factors, respectively. The 𝑡-statistics are computed using 

heteroskedasticity and autocorrelation-robust standard errors (Newey and West, 1987). The red lines depict the Student's t critical values at the 5% level. 

 
 



 
 

FIGURE 4 

Variable importance of the long-short anomaly portfolio returns from the Chen and Zimmermann (2020) dataset 
This figure shows the variable importance based on lasso regressions of the latent factors on long-short anomaly portfolio returns. The 

measure of variable importance is calculated as the change in 𝑅2 from setting the observations of a feature to zero within each estimation 

window. The results are aggregated by summing the variable importance of the characteristics-based portfolios belonging in the same 

group. Details on the portfolios within each group can be found in Table A1 in the Appendix. The average over the out-of-sample period 

from January 1980 to December 2019 is given. The variable importance measures for each group are scaled to sum to 100. The latent factor 

specifications are based on principal component analysis (PCA), partial least squares (PLS), sparse principal component analysis (SPCA), 

sparse partial least squares (SPLS) and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). The explanatory variables are 110 anomaly 

portfolios from the open-source asset pricing dataset by Chen and Zimmermann (2020), that have no missing values over the full sample 

period, from January 1960 to December 2019.  

 
  



 
 

FIGURE 5 

Quantiles of portfolio weight vectors: Static Factor Covariance 
This figure shows the quantiles of the portfolio weight vectors across the out-of-sample period, from January 

1980 to December 2019. The quantiles for 𝜏 ∈ [0.1,1] are depicted. The results are presented for the sample 

estimator (Sample) and for the static factor covariance. The factor specifications are based on the single factor 

model (Market), the Fama-French 3-factor model (FF3), principal component analysis (PCA), partial least 

squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares (SPLS) and an 

autoencoders with 1 hidden layer (AEN1).  

 
  



 
 

FIGURE 6 

Portfolio performance for a different number of stocks: Static Factor Covariance 
This figure shows the monthly portfolio performance for a varying number of assets. Performance is based on the standard deviation, Sharpe ratio, average turnover and breakeven transaction 

costs with respect to the EW portfolio. The out-of-sample period is from January 1980 to December 2019. The results are presented for the equally weighted portfolio (EW) and for the static 

factor covariance. The factor specifications are based on the single factor model (Market), the Fama-French 3-factor model (FF3), principal component analysis (PCA), partial least squares 

(PLS), sparse principal component analysis (SPCA), sparse partial least squares (SPLS) and an autoencoder with 1 hidden layer (AEN1). The standard deviation and average turnover are 

reported as a percentage. The breakeven transaction costs are reported in basis points and a positive value indicates that the alternative portfolio outperforms the EW. 

 



 
 

Appendix for  

“Machine Learning and Factor-Based Portfolio Optimization” 

I. Description of Machine Learning Dimensionality Reduction Methods 

In this part of the Appendix we expand on the machine learning methods for dimensionality 

reduction used to construct the latent factors. 

Principal component analysis can be viewed as a regression-type problem where the goal 

is to find the first 𝐾 principal component weight vectors by minimizing: 

argmin
W

‖R𝑡 − R𝑡WW′‖2,    s.t.   W′W = I𝐾 , (13) 

where I𝐾 is a 𝐾 × 𝐾 identity matrix. The solution to this problem is most often obtained via 

singular value decomposition: R𝑡 = UDV′, by setting W = V. The columns of V = (𝑣1, … , 𝑣𝐾) 

are the principal components weights. Each 𝑣𝑗  is used to derive the 𝑘th principal component, 

𝑓𝑘 = R𝑡𝑣𝑘, thus, F𝑡V is the dimension reduced version of the original data. The derived variable 

𝑓1 is the first principal component of R𝑡 and has the largest sample variance amongst all linear 

combinations of the columns of  R𝑡. 

Partial least squares, introduced by Wold (1966), identifies the features in a supervised 

way, by constructing 𝐾 linear combinations of R𝑡 that have maximum correlation with the 

target. In order to find the PLS component matrix F𝑡, the columns of the weight matrix W need 

to be obtained through consecutive optimization problems. The criterion to find the 𝑘th 

estimated weight vector 𝑤𝑘 is 

argmax
𝑤

[𝑤′M𝑤],    s.t.   𝑤′𝑤 = 1,   𝑤′ΣRR𝑤𝑘  = 0, (14) 

where ΣRR is the covariance of R𝑡 and M = R𝑡
′ R𝑡R𝑡

′ R𝑡. The latent factor matrix is then given 

by F𝑡 = R𝑡W. The version of PLS we employ is SIMPLS proposed by de Jong (1993).  

Sparse principal component analysis (SPCA), developed by Zou, Hastie and Tibshirani 

(2006), is based on the regression/reconstruction property of PCA and produces modified 



 
 

principal components with sparse weights, such that each principal component is a linear 

combination of only a few of the original variables. They show how PCA can be viewed in 

terms of a ridge regression problem and by adding the 𝑙1 penalty, they convert it to an elastic 

net regression, which allows for the estimation of sparse principal components. The following 

regression criterion is proposed to derive the sparse principal component weights 

argmin
W,C

[‖R𝑡 − R𝑡WC′‖2 + 𝜆1‖𝑤‖1 + 𝜆2‖𝑤‖2],    s.t.   W′W = I𝐾 , (15) 

where W and C are both 𝑁 × 𝐾. If 𝜆1 = 𝜆2 = 0, 𝑇 > 𝑁 and we restrict C = W, then the 

minimizer of the objective function is exactly the first 𝐾 weight vectors of ordinary PCA. When 

𝑁 ≫ 𝑇, in order to obtain a unique solution, 𝜆2 > 0 is required. The 𝑙1 penalty on 𝑐𝑘 induces 

sparseness of the weights, with larger values of 𝜆1 leading to sparser solutions.  

Sparse partial least squares (SPLS) is an extension of PLS that imposes the 𝑙1 penalty to 

promote sparsity onto a surrogate weight vector 𝑐 instead of the original weight vector 𝑤, while 

keeping 𝑤 and 𝑐 close to each other (Chun and Keles, 2010). The first weight vector solves 

argmin
𝑤,𝑐

[−
1

2
𝑤′M𝑤 +

1

2
(𝑐 − 𝑤)′M(𝑐 − 𝑤) + 𝜆1‖𝑐‖1 + 𝜆2‖𝑐‖2] ,    s.t.   𝑤′𝑤 = 1, 

(16) 

 

where M = R𝑡
′ R𝑡R𝑡

′ R𝑡, 𝜆1 and 𝜆2 are non-negative tuning parameters. To solve SPLS a large 

𝜆2 value is usually required and setting 𝜆2 = ∞ yields a solution that has the form of the soft 

threshold estimator by Zou and Hastie (2005). This reduces the number of tuning parameters 

to two, the tuning parameter 𝜆1 and the number of latent factors 𝐾.  

Another approach we use to construct the latent factors is based on autoencoders 

(Bourlard and Kamp, 1988; LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel, 

1989; Hinton and Zemel, 1994), which are a type of unsupervised neural network that can be 

used for dimensionality reduction. Autoencoders have a similar structure to feed-forward 

neural networks, which have been shown to be universal approximators for any continuous 

function (Hornik, Stinchcombe and White, 1989; Cybenko, 1989). However, an autoencoder 



 
 

differs in that the number of inputs is the same as the number of outputs and that it is used in 

an unsupervised context. Autoencoders have also been shown to be nonlinear generalizations 

of PCA. The goal of PCA and autoencoders is to learn a parsimonious representation of the 

original input data, R𝑡, through a bottleneck structure. The autoencoder behaves differently 

from PCA, which reduces the dimensionality by mapping the original 𝑁 inputs into 𝐾 ≪ 𝑁 

factors in a linear way, while the autoencoder uses non-linear activation functions to discover 

non-linear representations of the data (Japkowicz, Hanson and Gluck, 2000).  

An autoencoder is trying to learn an approximation to the identity function so as the 

output R̂𝑡 is similar to the input R𝑡. The network consists of two parts: an encoder and a 

decoder. The encoder creates a compressed representation of R𝑡 when the input variables pass 

through the units in the hidden layers, which are then decompressed to the output layer through 

the decoder. By placing constraints on the network, such as limiting the number of hidden units, 

it is forced to learn a compressed representation of the input, potentially uncovering an 

interesting structure of the data. Most often the encoding and decoding parts of an autoencoder 

are symmetrical, in that they both feature the same number of hidden layers with the same 

number of hidden units per layer. The output of the decoder is most commonly used to validate 

information loss, while the smallest hidden layer of the encoder (or code, at the bottleneck of 

the network) corresponds to the dimension-reduced data representation. 

Let 𝐿 denote the number of hidden layers and 𝐾(𝑙) denote the number of hidden units in 

each layer, for 𝑙 = 1, … , 𝐿, while the output of unit 𝑘 in layer 𝑙 is defined as the vector 𝑧𝑘
(𝑙)

 and 

the output of layer 𝑙 as the matrix Z(𝑙) = (𝑧1
(𝑙)

, … , 𝑧
𝐾(𝑙)

(𝑙)
). The original data, R𝑡, enters the 

network through the input layer (𝑙 = 0), while in each hidden layer inputs from the previous 

layer are transformed through nonlinear activation functions ℎ(∙) before being passed as inputs 

onto the next layer. The output of each hidden unit 𝑘 in layer 𝑙 is based on the function 



 
 

𝑧𝑘
(𝑙)

= ℎ(Z(𝑙−1)W(𝑙−1) + 𝑏(𝑙−1)), (17) 

where W(𝑙−1) is a 𝐾(𝑙−1) × 𝐾(𝑙) weight matrix and 𝑏(𝑙−1) is a 1 × 𝐾(𝑙) bias vector. For the first 

hidden layer the matrix of asset returns is used as input, Z(0) = R𝑡, such that 𝑧𝑘
(1)

=

ℎ(R𝑡W(0) + 𝑏(0)). We use the hyperbolic tangent (tanh) activation function defined as ℎ(𝑥) =

2 (1 + 𝑒−2𝑥)⁄ − 1, which is a zero-centered function whose range lies between -1 to 1. The 

results from each hidden layer are aggregated in the output layer  

R̂𝑡 = ℎ(Z(𝐿−1)W(𝐿−1) + 𝑏(𝐿−1)). (18) 

Since an autoencoder tries to approximate R𝑡 the dimensions of the input and the output 

layer are identical, 𝐾(0) = 𝑁 = 𝐾(𝐿). We consider four different network architectures based 

on the depth of the network. First, we construct a shallow autoencoder (AEN1) with a single 

hidden layer (the code). The other three models include additional hidden layers to the encoder 

and decoder representation, up to a maximum of three layers (AEN2, AEN3 and AEN4). The 

number of hidden nodes in each layer is selected according to the geometric pyramid rule by 

Masters (1993). 

It can also be shown that linear autoencoders are equivalent to PCA (Baldi and Hornik, 

1989; Karhunen and Joutsensalo 1995). Specifically, when the autoencoder has a single hidden 

layer, so the network representation becomes R𝑡 → Z(1) → R̂𝑡 and all activation functions are 

linear, it can be shown that the 𝐾(1) latent variables at the bottleneck correspond to the first 𝐾 

principal components of the data. Hinton and Salakhutdinov (2006) show that deep 

autoencoders outperform shallow or linear autoencoders in image recognition tasks, however, 

recent applications in finance (see e.g., Gu, Kelly and Xiu, 2020) find that shallower networks 

generate better performance. 

The parameters of the neural network are estimated by minimizing the square loss of the form 

argmin
𝑏,W

ℒ(R𝑡, R̂𝑡) = argmin
𝑏,W

‖R𝑡 − R̂𝑡‖
2

,    s.t.   ‖W(𝑙)‖
2

= i𝐾(𝑙) . (19) 



 
 

The estimates of the parameters of a neural network are solutions of a non-convex optimization 

problem. The neural network is trained using stochastic gradient descent (SGD), which 

evaluates the gradient from a random subset of the data and iteratively minimizes the objective 

function through back propagation. The version of SGD we implement is the adaptive moment 

estimation algorithm (Adam), introduced by Kingma and Ba (2015). Adam computes 

individual adaptive learning rates for the model parameters using estimates of first and second 

moments of the gradients.  

Training a neural network can be challenging due to the large number of parameters to 

be estimated and the nonconvexity of the objective function. To alleviate those concerns we 

modify the loss function by adding a penalty on the output of the layers (activations), 

encouraging the activations of the nodes to be sparse (Goodfellow, Bengio and Courville, 

2016). We consider activity regularization based on the elastic net penalty that shrinks the 

output of the bottleneck layer. Following papers such as Gu, Kelly and Xiu (2020), we 

implement early stopping, which prevents overfitting and significantly speeds up the training 

process. Specifically, the optimization process halts when the maximum number of iterations 

is reached or if the validation error has not improved for a certain number of consecutive 

iterations. In both cases the parameter estimates of the best performing model are retrieved.  
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II. Supplementary Tables and Figures 

Tables 

TABLE A1 

Constituents of each group for the Chen and Zimmermann (2020) dataset 
Information on the six groups of variables for the Chen and Zimmermann (2020) dataset. 

Group # of Variables Variables 

13F 2 RIO_Turnover, RIO_Volatility 

Accounting 46 Accruals, AM, AssetGrowth, BMdec, BookLeverage, CashProd, CF, ChAssetTurnover, ChInv, 

ChInvIA, ChNNCOA, ChNWC, CompEquIss, CompositeDebtIssuance, DelCOA, DelCOL, 

DelFINL, DelLTI, DelNetFin, DivYieldST, EarningsConsistency, EntMult, GP, grcapx, 

grcapx3y, GrLTNOA, GrSaleToGrInv, GrSaleToGrOverhead, IntanCFP, IntanEP, IntanSP, 

Investment, InvestPPEInv, InvGrowth, MeanRankRevGrowth, OPLeverage, OrgCap, RD, 

RDAbility, ShareIss1Y, ShareIss5Y, SP, tang, Tax, TotalAccruals, VarCF 

Event 5 ConvDebt, DivInit, DivSeason, Spinoff, SurpriseRD 

Other 5 FirmAge, Herf, HerfAsset, HerfBE, sinAlgo 

Price 41 Beta, BetaFP, BetaTailRisk, Coskewness, EP, High52, IdioRisk, IdioVol3F, IdioVolAHT, 

IndMom, IndRetBig, IntMom, Leverage, LRreversal, MaxRet, Mom12m, Mom12mOffSeason, 

Mom6m, MomOffSeason, MomOffSeason06YrPlus, MomOffSeason11YrPlus, 

MomOffSeason16YrPlus, MomRev, MomSeason, MomSeason06YrPlus, MomSeason11YrPlus, 

MomSeason16YrPlus, MomSeasonShort, MomVol, MRreversal, NetPayoutYield, PayoutYield, 

Price, PriceDelayRsq, PriceDelaySlope, PriceDelayTstat, ResidualMomentum, ReturnSkew, 

ReturnSkew3F, Size, STreversal 

Trading 11 BidAskSpread, DolVol, Illiquidity, ShareVol, std_turn, VolMkt, VolSD, VolumeTrend, 

zerotrade, zerotradeAlt1, zerotradeAlt12 

 

 

Table A2 

Constituents of each group for the McCracken and Ng (2015) dataset 
Information on the eight groups of variables for the McCracken and Ng (2015) dataset. 

Group # of Variables Variables 

Consumption, 

orders, and 

inventories 

7 DPCERA3M086SBEA, CMRMTSPLx, RETAILx, AMDMNOx, AMDMUOx, BUSINVx, 

ISRATIOx 

Housing 5 HOUST, HOUSTNE, HOUSTMW, HOUSTS, HOUSTW 

Interest and 

exchange rates 

19 FEDFUNDS, TB3MS, TB6MS, GS1, GS5, GS10, AAA, BAA, TB3SMFFM, TB6SMFFM, 

T1YFFM, T5YFFM, T10YFFM, AAAFFM, BAAFFM, EXSZUSx, EXJPUSx, EXUSUKx, 

EXCAUSx 

Labor market 31 HWI, HWIURATIO, CLF16OV, CE16OV, UNRATE, UEMPMEAN, UEMPLT5, 

UEMP5TO14, UEMP15OV, UEMP15T26, UEMP27OV, CLAIMSx, PAYEMS, USGOOD, 

CES1021000001, USCONS, MANEMP, DMANEMP, NDMANEMP, SRVPRD, USTPU, 

USWTRADE, USTRADE, USFIRE, USGOVT, CES0600000007, AWOTMAN, 

AWHMAN, CES0600000008, CES2000000008, CES3000000008 

Money and credit 14 M1SL, M2SL, M2REAL, BOGMBASE, TOTRESNS, NONBORRES, BUSLOANS, 

REALLN, NONREVSL, CONSPI, MZMSL, DTCOLNVHFNM, DTCTHFNM, INVEST 

Output and income 16 RPI, W875RX1, INDPRO, IPFPNSS, IPFINAL, IPCONGD, IPDCONGD, IPNCONGD, 

IPBUSEQ, IPMAT, IPDMAT, IPNMAT, IPMANSICS, IPB51222S, IPFUELS, CUMFNS 

Prices 20 WPSFD49207, WPSFD49502, WPSID61, WPSID62, OILPRICEx, PPICMM, CPIAUCSL, 

CPIAPPSL, CPITRNSL, CPIMEDSL, CUSR0000SAC, CUSR0000SAD, CUSR0000SAS, 

CPIULFSL, CUSR0000SA0L2, CUSR0000SA0L5, PCEPI, DDURRG3M086SBEA, 

DNDGRG3M086SBEA, DSERRG3M086SBEA 

Stock market 4 SP500, SPindust, SPdivyield, SPPEratio 

  



 
 

TABLE A3 

Portfolio performance when short-selling is allowed 
This table documents monthly portfolio performance, based on minimum-variance portfolios without short-selling constraints, 

measured using the standard deviation (SD) and Sharpe ratio (SR), over the out-of-sample period from January 1980 to December 

2019. In this case the portfolio objective becomes 

argmin
𝜔

𝜔′Σ̂𝑟𝜔,   s.t.   𝜔′i𝑁 = 1.  

The results are presented for the equally weighted portfolio (EW) and minimum-variance portfolios based on the sample estimator 

(Sample) and four factor-implied covariance specifications: static factor covariance, dynamic beta covariance, dynamic factor 

covariance and dynamic error covariance. The factor specifications are based on the single factor model (Market), the Fama-

French 3-factor model (FF3), principal component analysis (PCA), partial least squares (PLS), sparse principal component 

analysis (SPCA), sparse partial least squares (SPLS) and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). The significant 

outperformance of the alternative strategies from the equally weighted strategy is denoted by: *, **, and *** for significance at 

the 10%, 5%, and 1% level, respectively. 

 SD SR       

EW 4.159 0.183       

Sample 4.380 0.163       

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 SD SR SD SR SD SR SD SR 

Market 4.109 0.211 3.639** 0.231 4.136 0.207 4.332 0.214 

FF3 4.120 0.214 3.515*** 0.242 4.163 0.202 4.441 0.206 

PCA 3.387*** 0.231** 3.305*** 0.238** 3.386*** 0.231** 3.292*** 0.240** 

PLS 3.41*** 0.224 3.289*** 0.234* 3.411*** 0.223 3.308*** 0.237 

SPCA 3.425*** 0.235** 3.342*** 0.241*** 3.426*** 0.235** 3.305*** 0.241** 

SPLS 3.432*** 0.223 3.279*** 0.239* 3.435*** 0.222 3.326*** 0.234 

AEN1 3.328*** 0.239*** 3.283*** 0.244*** 3.324*** 0.239*** 3.226*** 0.245** 

AEN2 3.375*** 0.229** 3.309*** 0.235** 3.373*** 0.229** 3.28*** 0.234** 

AEN3 3.362*** 0.237** 3.298*** 0.241** 3.359*** 0.237** 3.258*** 0.246** 

AEN4 3.374*** 0.225* 3.316*** 0.226* 3.373*** 0.225* 3.278*** 0.228* 

 

 

  



 
 

TABLE A4 

Portfolio performance using a penalized minimum-variance objective function 
This table documents monthly portfolio performance, on minimum-variance portfolios with a turnover penalty, measured using 

the standard deviation (SD) and Sharpe ratio (SR), over the out-of-sample period from January 1980 to December 2019. The 

new constrained optimization problem becomes 

argmin
𝜔

𝜔′Σ̂𝑟𝜔 + 𝜅‖𝜔 − 𝜔0‖1,   s.t.   𝜔′i𝑁 = 1,   𝜔𝑖 ≥ 0, for 𝑖 = 1, … , 𝑁 

where 𝜅 = 5 bps is the transaction cost parameter that controls for the degree to which portfolio turnover is penalized and 𝜔0 

are the weights of the portfolio from the previous period before rebalancing. The results are presented for the equally weighted 

portfolio (EW) and minimum-variance portfolios based on the sample estimator (Sample) and four factor-implied covariance 

specifications: static factor covariance, dynamic beta covariance, dynamic factor covariance and dynamic error covariance. The 

factor specifications are based on the single factor model (Market), the Fama-French 3-factor model (FF3), principal component 

analysis (PCA), partial least squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares (SPLS) and 

autoencoders with 1, 2, 3 and 4 hidden layers (AEN). The significant outperformance of the alternative strategies from the 

equally weighted strategy is denoted by: *, **, and *** for significance at the 10%, 5%, and 1% level, respectively. 

 SD SR       

EW 4.159 0.183       

Sample 3.626*** 0.206       

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 SD SR SD SR SD SR SD SR 

Market 3.522*** 0.228 3.331*** 0.243* 3.59*** 0.221 3.456*** 0.225 

FF3 3.554*** 0.232 3.33*** 0.242* 3.591*** 0.217 3.517*** 0.229 

PCA 3.645*** 0.207 3.527*** 0.222** 3.623*** 0.209 3.593*** 0.214* 

PLS 3.547*** 0.231** 3.444*** 0.225** 3.553*** 0.230** 3.458*** 0.238*** 

SPCA 3.648*** 0.216** 3.539*** 0.212* 3.656*** 0.215** 3.606*** 0.218** 

SPLS 3.551*** 0.227** 3.426*** 0.221* 3.563*** 0.223** 3.484*** 0.231** 

AEN1 3.647*** 0.203 3.532*** 0.215* 3.626*** 0.206 3.607*** 0.208 

AEN2 3.655*** 0.204 3.538*** 0.219* 3.633*** 0.206 3.615*** 0.213* 

AEN3 3.606*** 0.210* 3.514*** 0.224** 3.564*** 0.213* 3.565*** 0.219** 

AEN4 3.621*** 0.206 3.524*** 0.215* 3.599*** 0.206 3.567*** 0.218** 

  



 
 

TABLE A5 

Portfolio performance based on alternative risk measures 

In this table, we present the monthly portfolio performance measured using the mean absolute deviation (MAD), value-at-risk (VaR) 

and conditional value-at-risk (CVaR), over the out-of-sample period from January 1980 to December 2019. The VaR and CVaR are 

calculated at the 95% confidence level. The results are presented for the equally weighted portfolio (EW) and minimum-variance 

portfolios based on the sample estimator (Sample) and four factor-implied covariance specifications: static factor covariance, dynamic 

beta covariance, dynamic factor covariance and dynamic error covariance. The factor specifications are based on the single factor model 

(Market), the Fama-French 3-factor model (FF3), principal component analysis (PCA), partial least squares (PLS), sparse principal 

component analysis (SPCA), sparse partial least squares (SPLS) and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). 

 MAD VaR CVaR          
EW 3.693 6.079 7.817          
Sample 3.111 4.981 6.431          
  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 MAD VaR CVaR MAD VaR CVaR MAD VaR CVaR MAD VaR CVaR 

Market 3.220 5.215 6.732 3.187 4.775 6.173 3.106 5.223 6.745 3.370 5.181 6.684 

FF3 3.168 5.024 6.495 3.065 4.674 6.065 3.178 5.066 6.545 3.254 4.932 6.381 

PCA 2.819 4.739 6.143 2.775 4.625 6.000 2.826 4.737 6.141 2.917 4.586 5.952 

PLS 2.882 4.715 6.107 2.886 4.627 5.995 2.911 4.728 6.121 2.798 4.525 5.869 

SPCA 2.773 4.736 6.146 2.696 4.637 6.019 2.788 4.745 6.157 2.767 4.565 5.929 

SPLS 2.963 4.715 6.111 2.897 4.577 5.940 2.952 4.734 6.132 2.883 4.526 5.874 

AEN1 2.774 4.664 6.050 2.699 4.605 5.978 2.780 4.661 6.046 2.785 4.504 5.848 

AEN2 2.841 4.737 6.137 2.867 4.648 6.025 2.847 4.735 6.135 2.874 4.590 5.952 

AEN3 2.772 4.697 6.092 2.818 4.613 5.984 2.806 4.691 6.084 2.831 4.526 5.878 

AEN4 2.893 4.767 6.169 2.853 4.681 6.061 2.894 4.768 6.171 2.878 4.618 5.978 

 

  



 
 

TABLE A6 

Portfolio performance for different validation window size 
This table documents monthly portfolio performance measured using the standard deviation (SD) and Sharpe ratio (SR), over 

the out-of-sample period from January 1980 to December 2019. The hyperparameters are selected using two alternative 

validation window sizes to the 20% of the baseline results: 10% (Panel A) and 30% (Panel B). The results are presented for 

the four factor-implied covariance specifications: static factor covariance, dynamic beta covariance, dynamic factor covariance 

and dynamic error covariance. The factor specifications are based on principal component analysis (PCA), partial least squares 

(PLS), sparse principal component analysis (SPCA), sparse partial least squares (SPLS) and autoencoders with 1, 2, 3 and 4 

hidden layers (AEN). The significant outperformance of the alternative strategies from the equally weighted strategy is denoted 

by: *, **, and *** for significance at the 10%, 5%, and 1% level, respectively. 

Panel A Validation subsample set to 10%  

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 SD SR SD SR SD SR SD SR 

PCA 3.361*** 0.235** 3.29*** 0.239** 3.36*** 0.235** 3.268*** 0.241** 

PLS 3.33*** 0.229 3.276*** 0.233* 3.335*** 0.227 3.217*** 0.238* 

SPCA 3.387*** 0.235** 3.322*** 0.236** 3.392*** 0.234** 3.273*** 0.244*** 

SPLS 3.328*** 0.232* 3.264*** 0.236* 3.337*** 0.23* 3.21*** 0.241* 

AEN1 3.333*** 0.232** 3.288*** 0.237** 3.331*** 0.232** 3.235*** 0.239** 

AEN2 3.356*** 0.23** 3.294*** 0.236** 3.357*** 0.229** 3.271*** 0.235** 

AEN3 3.353*** 0.234** 3.305*** 0.238** 3.351*** 0.234** 3.245*** 0.244** 

AEN4 3.361*** 0.225* 3.304*** 0.228** 3.361*** 0.225* 3.265*** 0.234** 

Panel B Validation subsample set to 30%  

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 SD SR SD SR SD SR SD SR 

PCA 3.367*** 0.236** 3.312*** 0.237** 3.368*** 0.235** 3.265*** 0.242** 

PLS 3.349*** 0.226 3.296*** 0.231* 3.354*** 0.225 3.231*** 0.237* 

SPCA 3.386*** 0.237** 3.309*** 0.238** 3.395*** 0.235** 3.292*** 0.243** 

SPLS 3.338*** 0.232* 3.262*** 0.24** 3.346*** 0.230 3.218*** 0.242* 

AEN1 3.34*** 0.238*** 3.297*** 0.24*** 3.338*** 0.239*** 3.23*** 0.243** 

AEN2 3.36*** 0.23** 3.316*** 0.229** 3.36*** 0.23** 3.268*** 0.234** 

AEN3 3.338*** 0.226* 3.302*** 0.231** 3.336*** 0.226* 3.241*** 0.236** 

AEN4 3.363*** 0.228** 3.322*** 0.229** 3.366*** 0.229* 3.257*** 0.236** 

 

 

 

  



 
 

TABLE A7 

Characteristics of the portfolio weight vectors when short-selling is allowed 
This table presents the monthly characteristics of the portfolio weight vectors when short-selling is allowed. Panel A reports the standard deviation 

of the weights (SD𝜔), maximum weight (MAX) and portfolio turnover (TO), whereas the Herfindahl-Hirschman index (HHI), mean absolute 

deviation from the equally weighted benchmark (MADEW) and percentage of weights greater than 1/𝑁 (𝜔𝑖 > 1/𝑁) can be found in Panel B. The 

average value of each weight characteristic over the out-of-sample period from January 1980 to December 2019 is reported. TO, SD𝜔, MADEW and 

𝜔𝑖 > 1/𝑁 are reported as a percentage. The results are presented for the equally weighted portfolio (EW) and minimum-variance portfolios based 

on the sample estimator (Sample) and four factor-implied covariance specifications: static factor covariance, dynamic beta covariance, dynamic factor 

covariance and dynamic error covariance. The factor specifications are based on the single factor model (Market), the Fama-French 3-factor model 

(FF3), principal component analysis (PCA), partial least squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares 

(SPLS) and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). 

Panel A Standard deviation of the weights, maximum weight and portfolio turnover 

 SD𝜔 MAX TO          

EW 0.000 0.010 1.081          

Sample 6.317 0.378 220.992                   

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 SD𝜔 MAX TO SD𝜔 MAX TO SD𝜔 MAX TO SD𝜔 MAX TO 

Market 2.855 0.226 78.726 2.412 0.176 96.922 2.803 0.253 79.290 3.319 0.297 117.430 

FF3 3.242 0.237 93.821 2.628 0.201 121.381 3.132 0.278 96.111 3.929 0.309 144.916 

PCA 1.051 0.064 30.216 1.014 0.065 35.686 1.056 0.063 30.437 1.261 0.132 47.821 

PLS 1.320 0.078 35.856 1.255 0.072 42.399 1.322 0.078 35.928 1.556 0.140 55.090 

SPCA 1.010 0.060 29.738 1.014 0.073 36.120 1.009 0.060 29.798 1.216 0.128 47.115 

SPLS 1.316 0.082 35.123 1.266 0.077 42.530 1.316 0.081 35.075 1.554 0.163 54.283 

AEN1 1.024 0.062 31.497 0.984 0.064 37.252 1.028 0.062 31.683 1.234 0.114 47.918 

AEN2 1.042 0.058 31.598 0.997 0.068 36.269 1.049 0.059 31.860 1.251 0.112 48.511 

AEN3 1.070 0.063 33.660 1.016 0.066 38.092 1.078 0.063 33.954 1.288 0.130 50.529 

AEN4 1.071 0.067 34.001 1.018 0.069 37.986 1.080 0.067 34.410 1.283 0.128 50.839 

Panel B Herfindahl-Hirschman index, mean absolute deviation from the 1/𝑁 portfolio and percentage of weights greater than 1/𝑁 

 HHI MADEW 𝜔𝑖 > 1/𝑁          

EW 0.010 0.000 0.000          

Sample 0.410 4.873 47.229                   

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 HHI MADEW 𝜔𝑖 > 1/𝑁 HHI MADEW 𝜔𝑖 > 1/𝑁 HHI MADEW 𝜔𝑖 > 1/𝑁 HHI MADEW 𝜔𝑖 > 1/𝑁 

Market 0.095 2.122 42.087 0.071 1.864 43.906 0.093 2.082 42.044 0.125 2.327 39.610 

FF3 0.117 2.383 42.885 0.081 2.001 45.460 0.113 2.313 42.231 0.169 2.765 40.913 

PCA 0.021 0.785 40.904 0.021 0.763 41.294 0.021 0.789 40.919 0.026 0.894 35.206 

PLS 0.028 0.979 40.656 0.026 0.940 40.817 0.028 0.981 40.683 0.034 1.095 34.835 

SPCA 0.020 0.727 39.717 0.021 0.743 40.158 0.020 0.726 39.698 0.025 0.839 34.673 

SPLS 0.028 0.947 40.110 0.026 0.927 40.108 0.028 0.947 40.098 0.034 1.069 34.110 

AEN1 0.021 0.776 40.354 0.020 0.748 40.773 0.021 0.780 40.348 0.026 0.883 35.202 

AEN2 0.021 0.783 40.633 0.020 0.752 41.179 0.021 0.788 40.640 0.026 0.888 35.069 

AEN3 0.022 0.803 40.590 0.021 0.765 41.040 0.022 0.810 40.600 0.027 0.911 34.952 

AEN4 0.022 0.804 40.746 0.021 0.766 41.190 0.022 0.810 40.727 0.027 0.911 35.233 

 

 

 

  



 
 

TABLE A8 

Characteristics of the portfolio weight vectors when using a penalized minimum-variance objective function 
This table presents the monthly characteristics of the portfolio weight vectors when using a penalized minimum-variance objective function. Panel 

A reports the standard deviation of the weights (SD𝜔), maximum weight (MAX) and portfolio turnover (TO), whereas the Herfindahl-Hirschman 

index (HHI), mean absolute deviation from the equally weighted benchmark (MADEW) and percentage of weights greater than 1/𝑁 (𝜔𝑖 > 1/𝑁) can 

be found in Panel B. The average value of each weight characteristic over the out-of-sample period from January 1980 to December 2019 is reported. 

TO, SD𝜔, MADEW and 𝜔𝑖 > 1/𝑁 are reported as a percentage. The results are presented for the equally weighted portfolio (EW) and minimum-

variance portfolios based on the sample estimator (Sample) and four factor-implied covariance specifications: static factor covariance, dynamic beta 

covariance, dynamic factor covariance and dynamic error covariance. The factor specifications are based on the single factor model (Market), the 

Fama-French 3-factor model (FF3), principal component analysis (PCA), partial least squares (PLS), sparse principal component analysis (SPCA), 

sparse partial least squares (SPLS) and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). 

Panel A Standard deviation of the weights, maximum weight and portfolio turnover 

 SD𝜔 MAX TO          

EW 0.000 0.010 1.081          

Sample 2.912 0.330 19.862                   

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 SD𝜔 MAX TO SD𝜔 MAX TO SD𝜔 MAX TO SD𝜔 MAX TO 

Market 2.647 0.258 24.110 2.466 0.296 30.240 2.873 0.392 25.008 3.305 0.351 25.953 

FF3 2.659 0.271 22.064 2.456 0.289 33.572 2.819 0.354 23.963 3.228 0.336 24.011 

PCA 1.209 0.073 13.250 1.298 0.085 16.390 1.259 0.079 14.116 1.446 0.145 14.634 

PLS 1.447 0.081 15.203 1.453 0.092 18.306 1.487 0.101 15.552 1.726 0.150 16.912 

SPCA 1.188 0.072 14.039 1.290 0.087 16.826 1.212 0.076 14.307 1.447 0.168 15.759 

SPLS 1.465 0.085 15.538 1.503 0.107 18.814 1.476 0.095 15.526 1.726 0.193 16.999 

AEN1 1.144 0.071 13.546 1.259 0.090 17.031 1.183 0.076 14.056 1.390 0.128 15.416 

AEN2 1.202 0.070 13.954 1.304 0.085 17.089 1.262 0.083 14.812 1.456 0.137 15.078 

AEN3 1.225 0.074 13.808 1.299 0.080 16.851 1.286 0.085 14.660 1.478 0.139 15.326 

AEN4 1.246 0.075 14.253 1.309 0.083 16.691 1.299 0.082 15.240 1.476 0.147 15.577 

Panel B Herfindahl-Hirschman index, mean absolute deviation from the 1/𝑁 portfolio and percentage of weights greater than 1/𝑁 

 HHI MADEW 𝜔𝑖 > 1/𝑁          

EW 0.010 0.000 0.000          

Sample 0.096 1.514 20.517                   

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 HHI MADEW 𝜔𝑖 > 1/𝑁 HHI MADEW 𝜔𝑖 > 1/𝑁 HHI MADEW 𝜔𝑖 > 1/𝑁 HHI MADEW 𝜔𝑖 > 1/𝑁 

Market 0.081 1.547 19.375 0.073 1.522 20.815 0.096 1.572 18.850 0.121 1.624 16.198 

FF3 0.082 1.513 20.858 0.072 1.501 21.363 0.092 1.539 20.121 0.116 1.602 16.306 

PCA 0.025 0.982 39.885 0.027 1.042 37.392 0.026 1.017 37.765 0.031 1.071 34.485 

PLS 0.031 1.148 33.844 0.031 1.144 34.288 0.032 1.168 33.529 0.040 1.238 30.908 

SPCA 0.024 0.984 40.862 0.027 1.051 37.565 0.025 0.990 39.317 0.031 1.054 35.823 

SPLS 0.031 1.169 35.465 0.032 1.173 33.117 0.032 1.172 34.985 0.040 1.227 32.221 

AEN1 0.023 0.931 39.710 0.026 1.005 38.185 0.024 0.950 38.756 0.030 1.014 37.190 

AEN2 0.024 0.981 39.419 0.027 1.050 36.200 0.026 1.020 38.473 0.032 1.077 35.052 

AEN3 0.025 0.999 39.288 0.027 1.048 36.367 0.027 1.039 37.442 0.033 1.097 35.677 

AEN4 0.026 1.001 38.469 0.027 1.048 35.979 0.027 1.037 37.281 0.032 1.072 35.019 

 

 

 

  



 
 

Table A9 

Portfolio performance for different levels of transaction costs 
This table presents monthly portfolio performance measured using the standard deviation (SD) and Sharpe ratio (SR), after 

transaction costs are taken into account. In this setting transaction costs would arise from changes to the stock universe from one 

month to the next and from the change in weights of stocks that remain in the stock universe for multiple iterations. The 

portfolio’s return is modified to account for transaction costs based on portfolio turnover. Given a transaction cost of 𝑐, the 

trading cost of the entire portfolio is 𝑐‖𝜔𝑡+1 − 𝜔𝑡‖1. The return of the portfolio after transaction costs becomes 𝑟𝑝,𝑡+1
𝑇𝐶 =

(1 + 𝑟𝑝,𝑡+1)(1 − 𝑐‖𝜔𝑡+1 − 𝜔𝑡‖1) − 1. Panel A reports the results for transaction costs of 𝑐 = 5 bps, while Panel B presents the 

results for transaction costs of 𝑐 = 20 bps. The out-of-sample period is from January 1980 to December 2019. The results are 

presented for the equally weighted portfolio (EW) and minimum-variance portfolios based on the sample estimator (Sample) and 

four factor-implied covariance specifications: static factor covariance, dynamic beta covariance, dynamic factor covariance and 

dynamic error covariance. The factor specifications are based on the single factor model (Market), the Fama-French 3-factor 

model (FF3), principal component analysis (PCA), partial least squares (PLS), sparse principal component analysis (SPCA), 

sparse partial least squares (SPLS) and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). The significant outperformance of 

the alternative strategies from the equally weighted strategy is denoted by: *, **, and *** for significance at the 10%, 5%, and 

1% level, respectively. 

Panel A Transaction costs of 5 bps 

 SD SR       

EW 4.159 0.183       

Sample 3.470*** 0.203       

 Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 SD SR SD SR SD SR SD SR 

Market 3.630*** 0.203 3.346*** 0.209 3.640*** 0.204 3.596*** 0.197 

FF3 3.521*** 0.212 3.327*** 0.23 3.538*** 0.206 3.468*** 0.215 

PCA 3.361*** 0.230** 3.290*** 0.234** 3.359*** 0.230** 3.267*** 0.234** 

PLS 3.329*** 0.224 3.276*** 0.226 3.334*** 0.222 3.216*** 0.231 

SPCA 3.373*** 0.236** 3.306*** 0.237** 3.377*** 0.236** 3.262*** 0.239** 

SPLS 3.339*** 0.228 3.260*** 0.236* 3.346*** 0.226 3.224*** 0.234 

AEN1 3.317*** 0.235** 3.284*** 0.238*** 3.314*** 0.234** 3.215*** 0.237** 

AEN2 3.351*** 0.227** 3.296*** 0.230** 3.349*** 0.227** 3.258*** 0.229* 

AEN3 3.337*** 0.233** 3.282*** 0.234** 3.333*** 0.233** 3.234*** 0.238** 

AEN4 3.356*** 0.22 3.300*** 0.221* 3.355*** 0.219 3.255*** 0.219 

Panel B Transaction costs of 20 bps 

 SD SR       

EW 4.159 0.183       

Sample 3.471*** 0.185       

 Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 SD SR SD SR SD SR SD SR 

Market 3.629*** 0.186 3.344*** 0.182 3.641*** 0.186 3.595*** 0.173 

FF3 3.520*** 0.194 3.323*** 0.197 3.537*** 0.186 3.464*** 0.19 

PCA 3.361*** 0.217 3.291*** 0.218 3.359*** 0.217 3.266*** 0.213 

PLS 3.328*** 0.209 3.276*** 0.208 3.333*** 0.207 3.213*** 0.208 

SPCA 3.371*** 0.223* 3.305*** 0.221* 3.376*** 0.222* 3.26*** 0.217 

SPLS 3.337*** 0.213 3.260*** 0.217 3.345*** 0.211 3.222*** 0.211 

AEN1 3.315*** 0.220* 3.282*** 0.221* 3.312*** 0.220* 3.213*** 0.215 

AEN2 3.349*** 0.213 3.295*** 0.213 3.347*** 0.213 3.256*** 0.208 

AEN3 3.335*** 0.218 3.281*** 0.217 3.331*** 0.218 3.232*** 0.216 

AEN4 3.355*** 0.205 3.299*** 0.204 3.354*** 0.204 3.253*** 0.196 

 

 

 

  



 
 

TABLE A10 

Portfolio performance based on breakeven transaction costs when short-selling is allowed 
This table presents monthly portfolio performance measured breakeven transaction costs (𝑐𝑒𝑤) with respect to equally weighted 

portfolio (EW), over the out-of-sample period from January 1980 to December 2019. The results are presented for the minimum-

variance portfolios based on the sample estimator (Sample) and four factor-implied covariance specifications: static factor 

covariance, dynamic beta covariance, dynamic factor covariance and dynamic error covariance. The factor specifications are 

based on the single factor model (Market), the Fama-French 3-factor model (FF3), principal component analysis (PCA), partial 

least squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares (SPLS) and autoencoders with 1, 

2, 3 and 4 hidden layers (AEN). The breakeven transaction costs are reported in basis points and a positive value indicates that 

the alternative portfolio outperforms the EW. 

Sample -0.909    

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

Market 3.606 5.008 3.069 2.664 

FF3 3.343 4.904 1.999 1.599 

PCA 16.476 15.894 16.351 11.981 

PLS 11.790 12.343 11.478 9.998 

SPCA 18.146 16.553 18.108 12.599 

SPLS 11.750 13.511 11.473 9.586 

AEN1 18.411 16.864 18.299 13.237 

AEN2 15.074 14.778 14.945 10.964 

AEN3 16.575 15.671 16.427 12.741 

AEN4 12.758 11.652 12.602 9.044 

 

 

Table A11 

Portfolio performance based on breakeven transaction costs when using a penalized minimum-variance 

objective function 
This table presents monthly portfolio performance measured breakeven transaction costs (𝑐𝑒𝑤) with respect to the equally 

weighted portfolio (EW), over the out-of-sample period from January 1980 to December 2019. The results are presented for the 

minimum-variance portfolios based on the sample estimator (Sample) and four factor-implied covariance specifications: static 

factor covariance, dynamic beta covariance, dynamic factor covariance and dynamic error covariance. The factor specifications 

are based on the single factor model (Market), the Fama-French 3-factor model (FF3), principal component analysis (PCA), 

partial least squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares (SPLS) and autoencoders 

with 1, 2, 3 and 4 hidden layers (AEN). The breakeven transaction costs are reported in basis points and a positive value indicates 

that the alternative portfolio outperforms the EW. 

Sample 12.246    

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

Market 19.540 20.575 15.881 16.885 

FF3 23.351 18.158 14.858 20.495 

PCA 19.721 25.475 19.945 22.873 

PLS 33.987 24.382 32.477 34.738 

SPCA 25.467 18.419 24.195 23.845 

SPLS 30.433 21.428 27.689 30.153 

AEN1 16.045 20.063 17.725 17.440 

AEN2 16.313 22.489 17.479 21.432 

AEN3 21.213 25.999 22.091 25.974 

AEN4 17.460 20.498 16.243 24.145 

 

  



 
 

TABLE A12 

Characteristics of the portfolio weight vectors during high volatility subperiods 
This table presents the monthly characteristics of the portfolio weight vectors during high volatility subperiods based on the filtered probabilities 

of a Markov-switching model estimated using the market factor. Observations where the filtered probability of the low volatility regime is above 

0.5 are considered low-volatility periods, and observations where the filtered probability of the low volatility regime is below 0.5 are considered 

high-volatility periods. Panel A reports the standard deviation of the weights (SD𝜔), maximum weight (MAX) and portfolio turnover (TO), whereas 

the Herfindahl-Hirschman index (HHI), mean absolute deviation from the equally weighted benchmark (MADEW) and percentage of weights greater 

than 1/𝑁 (𝜔𝑖 > 1/𝑁) can be found in Panel B. The average value of each weight characteristic over the out-of-sample period from January 1980 

to December 2019 is reported. TO, SD𝜔, MADEW and 𝜔𝑖 > 1/𝑁 are reported as a percentage. The results are presented for the equally weighted 

portfolio (EW) and minimum-variance portfolios based on the sample estimator (Sample) and four factor-implied covariance specifications: static 

factor covariance, dynamic beta covariance, dynamic factor covariance and dynamic error covariance. The factor specifications are based on the 

single factor model (Market), the Fama-French 3-factor model (FF3), principal component analysis (PCA), partial least squares (PLS), sparse 

principal component analysis (SPCA), sparse partial least squares (SPLS) and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). 

Panel A Standard deviation of the weights, maximum weight and portfolio turnover 

 SD𝜔 MAX TO          

EW 0.000 0.010 1.208          

Sample 3.184 0.383 47.160                   

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 SD𝜔 MAX TO SD𝜔 MAX TO SD𝜔 MAX TO SD𝜔 MAX TO 

Market 2.896 0.302 47.216 2.395 0.296 66.893 3.050 0.433 51.436 3.333 0.445 60.647 

FF3 2.791 0.311 48.873 2.415 0.312 78.049 2.928 0.450 55.147 3.179 0.381 61.934 

PCA 1.067 0.065 33.122 1.076 0.078 39.918 1.077 0.073 33.592 1.279 0.129 48.594 

PLS 1.421 0.095 38.636 1.391 0.092 46.131 1.427 0.094 38.707 1.674 0.157 53.274 

SPCA 1.111 0.066 33.836 1.140 0.087 41.577 1.112 0.065 33.932 1.310 0.132 48.559 

SPLS 1.444 0.100 38.499 1.419 0.108 46.859 1.443 0.098 38.444 1.705 0.194 52.944 

AEN1 1.039 0.066 35.783 1.054 0.075 43.273 1.046 0.067 35.998 1.253 0.117 49.684 

AEN2 1.078 0.066 34.409 1.079 0.079 40.743 1.092 0.067 34.865 1.289 0.123 49.069 

AEN3 1.070 0.069 35.464 1.065 0.076 41.728 1.088 0.072 35.978 1.292 0.141 50.060 

AEN4 1.073 0.069 36.310 1.066 0.076 42.017 1.091 0.076 37.049 1.290 0.124 50.665 

Panel B Herfindahl-Hirschman index, mean absolute deviation from the 1/𝑁 portfolio and percentage of weights greater than 1/𝑁 

 HHI MADEW 𝜔𝑖 > 1/𝑁          

EW 0.010 0.000 0.000          

Sample 0.112 1.624 16.542                   

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 HHI MADEW 𝜔𝑖 > 1/𝑁 HHI MADEW 𝜔𝑖 > 1/𝑁 HHI MADEW 𝜔𝑖 > 1/𝑁 HHI MADEW 𝜔𝑖 > 1/𝑁 

Market 0.094 1.629 16.125 0.069 1.516 21.594 0.104 1.661 15.069 0.123 1.693 13.875 

FF3 0.088 1.592 18.201 0.070 1.503 21.556 0.097 1.621 16.837 0.113 1.649 15.451 

PCA 0.022 0.806 37.503 0.022 0.820 38.122 0.022 0.813 37.354 0.027 0.899 32.358 

PLS 0.030 1.052 34.000 0.030 1.042 34.524 0.031 1.055 34.052 0.038 1.153 28.878 

SPCA 0.022 0.799 35.594 0.023 0.835 36.736 0.023 0.800 35.538 0.027 0.894 31.573 

SPLS 0.031 1.038 32.545 0.030 1.040 33.094 0.031 1.036 32.583 0.039 1.141 27.740 

AEN1 0.021 0.791 37.868 0.022 0.807 38.083 0.021 0.796 37.826 0.026 0.890 33.024 

AEN2 0.022 0.814 37.476 0.022 0.819 38.017 0.022 0.824 37.278 0.027 0.906 32.250 

AEN3 0.022 0.810 37.389 0.022 0.811 38.028 0.022 0.822 37.132 0.027 0.906 32.434 

AEN4 0.022 0.813 37.385 0.022 0.813 38.226 0.022 0.825 37.142 0.027 0.908 32.455 

 

  



 
 

TABLE A13 

Characteristics of the portfolio weight vectors during low volatility subperiods 
This table presents the monthly characteristics of the portfolio weight vectors during low volatility subperiods based on the filtered probabilities of 

a Markov-switching model estimated using the market factor. Observations where the filtered probability of the low volatility regime is above 0.5 

are considered low-volatility periods, and observations where the filtered probability of the low volatility regime is below 0.5 are considered high-

volatility periods. Panel A reports the standard deviation of the weights (SD𝜔), maximum weight (MAX) and portfolio turnover (TO), whereas the 

Herfindahl-Hirschman index (HHI), mean absolute deviation from the equally weighted benchmark (MADEW) and percentage of weights greater 

than 1/𝑁 (𝜔𝑖 > 1/𝑁) can be found in Panel B. The average value of each weight characteristic over the out-of-sample period from January 1980 

to December 2019 is reported. TO, SD𝜔, MADEW and 𝜔𝑖 > 1/𝑁 are reported as a percentage. The results are presented for the equally weighted 

portfolio (EW) and minimum-variance portfolios based on the sample estimator (Sample) and four factor-implied covariance specifications: static 

factor covariance, dynamic beta covariance, dynamic factor covariance and dynamic error covariance. The factor specifications are based on the 

single factor model (Market), the Fama-French 3-factor model (FF3), principal component analysis (PCA), partial least squares (PLS), sparse 

principal component analysis (SPCA), sparse partial least squares (SPLS) and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). 

Panel A Standard deviation of the weights, maximum weight and portfolio turnover 

 SD𝜔 MAX TO          

EW 0.000 0.010 0.890          

Sample 3.089 0.345 32.387                   

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 SD𝜔 MAX TO SD𝜔 MAX TO SD𝜔 MAX TO SD𝜔 MAX TO 

Market 2.717 0.258 32.372 2.538 0.274 51.475 2.347 0.243 32.679 3.583 0.429 49.105 

FF3 2.658 0.261 33.606 2.560 0.287 62.236 2.280 0.235 35.777 3.586 0.420 49.657 

PCA 1.128 0.070 24.632 1.005 0.073 27.745 1.130 0.069 24.627 1.389 0.139 42.335 

PLS 1.415 0.080 25.524 1.249 0.079 29.987 1.418 0.081 25.639 1.739 0.152 43.231 

SPCA 1.001 0.071 24.042 0.937 0.064 28.310 0.994 0.071 24.001 1.255 0.134 42.486 

SPLS 1.435 0.082 25.642 1.270 0.081 31.043 1.435 0.085 25.622 1.759 0.146 43.562 

AEN1 1.074 0.066 24.280 0.949 0.073 27.352 1.079 0.067 24.456 1.323 0.119 41.986 

AEN2 1.079 0.066 26.011 0.955 0.064 28.081 1.084 0.068 26.093 1.330 0.123 43.516 

AEN3 1.163 0.074 29.626 1.022 0.073 31.028 1.171 0.073 29.957 1.435 0.166 47.043 

AEN4 1.167 0.072 28.879 1.030 0.070 30.128 1.174 0.078 29.115 1.425 0.132 46.562 

Panel B Herfindahl-Hirschman index, mean absolute deviation from the 1/N portfolio and percentage of weights greater than 1/N 

 HHI MADEW 𝜔𝑖 > 1/𝑁          

EW 0.010 0.000 0.000          

Sample 0.105 1.617 16.729                   

  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 HHI MADEW 𝜔𝑖 > 1/𝑁 HHI MADEW 𝜔𝑖 > 1/𝑁 HHI MADEW 𝜔𝑖 > 1/𝑁 HHI MADEW 𝜔𝑖 > 1/𝑁 

Market 0.085 1.597 16.380 0.075 1.564 19.245 0.068 1.464 22.396 0.140 1.737 12.115 

FF3 0.081 1.568 18.833 0.076 1.545 19.646 0.064 1.432 22.849 0.141 1.699 13.422 

PCA 0.023 0.839 37.240 0.020 0.747 38.672 0.023 0.841 37.161 0.030 0.971 32.516 

PLS 0.030 1.047 34.146 0.026 0.929 36.594 0.030 1.048 34.130 0.040 1.184 28.781 

SPCA 0.020 0.732 35.828 0.019 0.690 37.359 0.020 0.727 35.964 0.026 0.864 32.708 

SPLS 0.031 1.026 33.771 0.026 0.922 35.047 0.031 1.026 33.750 0.041 1.170 28.177 

AEN1 0.022 0.818 38.016 0.019 0.718 38.781 0.022 0.821 37.964 0.028 0.937 32.724 

AEN2 0.022 0.816 37.620 0.020 0.719 38.943 0.022 0.819 37.615 0.028 0.940 32.792 

AEN3 0.024 0.872 36.958 0.021 0.766 38.719 0.024 0.878 36.906 0.031 0.998 31.865 

AEN4 0.024 0.872 37.339 0.021 0.768 38.703 0.024 0.877 37.266 0.031 0.996 32.094 

 

  



 
 

TABLE Α14 

Portfolio performance during different inflation regimes 
In this table, we document the monthly portfolio performance measured using the standard deviation (SD) and Sharpe ratio 

(SR), during periods of high (Panel A) and low (Panel B) inflation. Periods of high (low) inflation are those when inflation for 

the specific month is higher (lower) than the median over the out-of-sample period. Inflation is based on the year-on-year change 

of Consumer Price Index for all urban consumers, retrieved from FRED. The results are presented for the equally weighted 

portfolio (EW) and minimum-variance portfolios based on the sample estimator (Sample) and four factor-implied covariance 

specifications: static factor covariance, dynamic beta covariance, dynamic factor covariance and dynamic error covariance. The 

factor specifications are based on the single factor model (Market), the Fama-French 3-factor model (FF3), principal component 

analysis (PCA), partial least squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares (SPLS) 

and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). The significant outperformance of the alternative strategies from the 

equally weighted strategy is denoted by: *, **, and *** for significance at the 10%, 5%, and 1% level, respectively. 

Panel A High inflation regime 

 SD SR       
EW 4.515 0.072       
Sample 3.800*** 0.178**       
  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 SD SR SD SR SD SR SD SR 

Market 3.696** 0.224** 3.385*** 0.261*** 3.730** 0.217* 3.521*** 0.258** 

FF3 3.657*** 0.222** 3.412*** 0.261*** 3.693** 0.209** 3.548*** 0.258*** 

PCA 3.529*** 0.186*** 3.488*** 0.200*** 3.519*** 0.187*** 3.420*** 0.206*** 

PLS 3.552*** 0.193*** 3.510*** 0.203*** 3.558*** 0.191*** 3.335*** 0.237*** 

SPCA 3.570*** 0.184*** 3.502*** 0.201*** 3.574*** 0.182*** 3.450*** 0.206*** 

SPLS 3.564*** 0.199*** 3.488*** 0.223*** 3.572*** 0.195*** 3.347*** 0.240*** 

AEN1 3.552*** 0.185*** 3.513*** 0.198*** 3.547*** 0.186*** 3.417*** 0.210*** 

AEN2 3.539*** 0.180*** 3.510*** 0.193*** 3.530*** 0.181*** 3.438*** 0.204*** 

AEN3 3.513*** 0.190*** 3.498*** 0.201*** 3.500*** 0.191*** 3.404*** 0.212*** 

AEN4 3.547*** 0.175*** 3.518*** 0.183*** 3.543*** 0.175*** 3.417*** 0.195*** 

Panel B Low inflation regime 

 SD SR       
EW 3.926 0.259       
Sample 3.271*** 0.231       
  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 SD SR SD SR SD SR SD SR 

Market 3.598* 0.199 3.327*** 0.193 3.594* 0.206 3.642 0.175 

FF3 3.448** 0.216 3.285*** 0.228 3.453** 0.215 3.426*** 0.202 

PCA 3.264*** 0.265 3.176*** 0.264 3.268*** 0.264 3.182*** 0.263 

PLS 3.200*** 0.252 3.140*** 0.252 3.205*** 0.250 3.153*** 0.239 

SPCA 3.258*** 0.277 3.193*** 0.270 3.263*** 0.277 3.155*** 0.271 

SPLS 3.209*** 0.255 3.129*** 0.254 3.216*** 0.253 3.159*** 0.243 

AEN1 3.179*** 0.275 3.151*** 0.272 3.178*** 0.273 3.099*** 0.266 

AEN2 3.243*** 0.264 3.173*** 0.262 3.246*** 0.263 3.157*** 0.257 

AEN3 3.237*** 0.267 3.157*** 0.264 3.239*** 0.267 3.140*** 0.267 

AEN4 3.246*** 0.256 3.174*** 0.255 3.248*** 0.255 3.165*** 0.246 

 

 

  



 
 

TABLE Α15 

Portfolio performance during different credit spread regimes 
In this table, we document the monthly portfolio performance measured using the standard deviation (SD) and Sharpe ratio (SR), 

during periods of high (Panel A) and low (Panel B) credit spread. Periods of high (low) credit spread are those when the spread 

for the specific month is higher (lower) than the median over the out-of-sample period. Credit spread is based on the year-on-

year change of Consumer Price Index for all urban consumers, retrieved from FRED. Periods of high (low) credit spread are 

defined by whether credit spread for a specific month is higher (lower) than the median over the out-of-sample period. The 

results are presented for the equally weighted portfolio (EW) and minimum-variance portfolios based on the sample estimator 

(Sample) and four factor-implied covariance specifications: static factor covariance, dynamic beta covariance, dynamic factor 

covariance and dynamic error covariance. The factor specifications are based on the single factor model (Market), the Fama-

French 3-factor model (FF3), principal component analysis (PCA), partial least squares (PLS), sparse principal component 

analysis (SPCA), sparse partial least squares (SPLS) and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). The significant 

outperformance of the alternative strategies from the equally weighted strategy is denoted by: *, **, and *** for significance at 

the 10%, 5%, and 1% level, respectively. 

Panel A High credit spread regime 

 SD SR       
EW 5.343 0.127       
Sample 3.843*** 0.176       
  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 SD SR SD SR SD SR SD SR 

Market 3.966*** 0.178 3.580*** 0.223 4.112*** 0.167 3.850*** 0.195 

FF3 3.782*** 0.192 3.555*** 0.247** 3.964*** 0.168 3.662*** 0.232 

PCA 4.050*** 0.177 3.773*** 0.192 4.053*** 0.176 3.774*** 0.201* 

PLS 3.868*** 0.185 3.701*** 0.198 3.883*** 0.181 3.624*** 0.224* 

SPCA 4.090*** 0.171 3.844*** 0.188 4.106*** 0.169 3.769*** 0.204* 

SPLS 3.901*** 0.186 3.674*** 0.211 3.926*** 0.181 3.621*** 0.228* 

AEN1 3.931*** 0.188* 3.781*** 0.195 3.923*** 0.186 3.702*** 0.214** 

AEN2 3.988*** 0.170 3.736*** 0.184 3.989*** 0.169 3.759*** 0.196 

AEN3 4.009*** 0.180 3.770*** 0.189 4.004*** 0.181 3.737*** 0.206* 

AEN4 4.002*** 0.184 3.764*** 0.193 4.002*** 0.183 3.755*** 0.205* 

Panel B Low credit spread regime 

 SD SR       
EW 3.701 0.213       
Sample 3.344** 0.222       
  Static Factor Covariance Dynamic Beta Covariance Dynamic Factor Covariance Dynamic Error Covariance 

 SD SR SD SR SD SR SD SR 

Market 3.520 0.220 3.272** 0.216 3.479 0.227 3.516 0.208 

FF3 3.438 0.228 3.256*** 0.238 3.394 0.230 3.409 0.220 

PCA 3.109*** 0.261* 3.122*** 0.258 3.106*** 0.262* 3.091*** 0.259 

PLS 3.140*** 0.247 3.131*** 0.246 3.141*** 0.247 3.078*** 0.244 

SPCA 3.110*** 0.273** 3.117*** 0.266* 3.110*** 0.273** 3.085*** 0.263 

SPLS 3.141*** 0.253 3.120*** 0.254 3.141*** 0.252 3.091*** 0.247 

AEN1 3.098*** 0.262* 3.112*** 0.263** 3.098*** 0.262* 3.046*** 0.257 

AEN2 3.122*** 0.259* 3.146*** 0.256 3.119*** 0.259* 3.084*** 0.254 

AEN3 3.094*** 0.264* 3.113*** 0.261* 3.090*** 0.264* 3.060*** 0.263 

AEN4 3.124*** 0.243 3.141*** 0.241 3.123*** 0.243 3.082*** 0.236 

 

 

  



 
 

Figures 

FIGURE A1 

Number of stocks per month after the filters have been applied to the CRSP dataset 
This figure shows the monthly number of stocks that are listed to the NYSE, AMEX, and NASDAQ stock exchanges 

(exchange codes 1, 2 or 3) and are ordinary common shares (share codes 10 or 11), over the full sample period from 

January 1960 to December 2019 (720 observations). 

 
 

Figure A2 

Number of stocks per month that fulfil the conditions of the rolling window 
This figure shows the number of stocks in each iteration of the rolling window. Stocks are considered if they have at 

least 97.5% of the in-sample observations available, if they are not missing a return observation for the next month after 

the end of the rolling window and have a price greater than $5. The out-of-sample period is from December 1980 to 

December 2019 (480 observations).  

 
  



 
 

FIGURE A3 

Average 𝑅𝑎𝑑𝑗
2  of the regressions of the latent factors on factors from the augmented q-factor model 

This figure shows the 𝑅𝑎𝑑𝑗
2  as a percentage based on OLS estimation results for regressions of the latent factors on factors from the augmented 

q-factor model. The average over the out-of-sample period from January 1987 to December 2019 is given. The latent factor specifications are 

based on principal component analysis (PCA), partial least squares (PLS), sparse principal component analysis (SPCA), sparse partial least 

squares (SPLS) and autoencoders with 1, 2, 3 and 4 hidden layers (AEN).  

 
 

 

  



 
 

FIGURE A4 

Variable importance based on the augmented q-factor model 
This figure shows the variable importance based on OLS estimation results for regressions of the latent factors on factors from the 

augmented q-factor model. The measure of variable importance is calculated as the change in 𝑅2 from setting the observations of a factor 

proxy to zero within each estimation window. The average over the out-of-sample period from January 1987 to December 2019 is given. 

The variable importance measures for each latent factor are scaled to sum to 100. The latent factor specifications are based on principal 

component analysis (PCA), partial least squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares (SPLS) 

and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). MKTRF, ME, IA, ROE and EG are the Fama and French excess returns of the 

market from the risk-free rate, the Hou, Xue and Zhang (2015) size, investment, return-on-equity factors and the Hou, Mo, Xue and 

Zhang (2021) expected growth factor, respectively. 

 
 

 

  



 
 

FIGURE A5 

Explaining the latent factors based on the augmented q-factor model 
This figure shows boxplots of the 𝑡-statistics based on OLS regressions of each of the five latent factors on factors from the augmented q-factor model. The horizontal axis reports 

𝑡-statistics values ranging from -10 to 10 whereas, the vertical axis reports the latent factors, 𝐾 = 1, … ,5. The sample period is from January 1967 to December 2019. The median is 

marked by the line within the box, the edges of the box denote the first and third quartiles, while the minimum and maximum 𝑡-statistics are depicted by the end of the lines outside 

the box. The latent factor specifications are based on principal component analysis (PCA), partial least squares (PLS), sparse principal component analysis (SPCA), sparse partial 

least squares (SPLS) and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). MKTRF, ME, IA, ROE and EG are the Fama and French excess returns of the market from the risk-

free rate, the Hou, Xue and Zhang (2015) size, investment, return-on-equity factors and the Hou, Mo, Xue and Zhang (2021) expected growth factor, respectively. The 𝑡-statistics 

are computed using heteroskedasticity and autocorrelation-robust standard errors (Newey and West, 1987). The red lines depict the Student's t critical values at the 5% level.  

 
  



 
 

FIGURE A6 

Variable importance of the economic indicators from the McCracken and Ng (2015) dataset 
This figure shows the variable importance based on lasso regressions of the latent factors on economic indicators. The measure of variable 

importance is calculated as the change in 𝑅2 from setting the observations of a feature to zero within each estimation window. The results 

are aggregated by summing the variable importance of the economic indicators belonging in the same group. Details on the variables within 

each group can be found in Table A2 in the Appendix. The average over the out-of-sample period from January 1980 to December 2019 is 

given. The variable importance measures for each group are scaled to sum to 100. The latent factor specifications are based on principal 

component analysis (PCA), partial least squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares (SPLS) 

and autoencoders with 1, 2, 3 and 4 hidden layers (AEN). The explanatory variables are the 116 lagged economic indicators from the 

FRED-MD dataset by McCracken and Ng (2015) that have no missing values over the full sample period, from January 1960 to December 

2019. 

 
 

 

  



 
 

FIGURE A7 

Quantiles of portfolio weight vectors: Dynamic Beta Covariance 
This figure shows the quantiles of the portfolio weight vectors across the out-of-sample period, from January 

1980 to December 2019. The quantiles for 𝜏 ∈ [0.1,1] are depicted. The results are presented for the sample 

estimator (Sample) and for the dynamic beta covariance. The factor specifications are based on the single factor 

model (Market), the Fama-French 3-factor model (FF3), principal component analysis (PCA), partial least 

squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares (SPLS) and an 

autoencoders with 1 hidden layer (AEN1).  

 
 

  



 
 

FIGURE A8 

Quantiles of portfolio weight vectors: Dynamic Factor Covariance 
This figure shows the quantiles of the portfolio weight vectors across the out-of-sample period, from January 

1980 to December 2019. The quantiles for 𝜏 ∈ [0.1,1] are depicted. The results are presented for the sample 

estimator (Sample) and for the dynamic factor covariance. The factor specifications are based on the single 

factor model (Market), the Fama-French 3-factor model (FF3), principal component analysis (PCA), partial 

least squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares (SPLS) and an 

autoencoders with 1 hidden layer (AEN1).  

 
 

  



 
 

FIGURE A9 

Quantiles of portfolio weight vectors: Dynamic Error Covariance 
This figure shows the quantiles of the portfolio weight vectors across the out-of-sample period, from January 

1980 to December 2019. The quantiles for 𝜏 ∈ [0.1,1] are depicted. The results are presented for the sample 

estimator (Sample) and for the dynamic error covariance. The factor specifications are based on the single 

factor model (Market), the Fama-French 3-factor model (FF3), principal component analysis (PCA), partial 

least squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares (SPLS) and an 

autoencoders with 1 hidden layer (AEN1).  

 
 

  



 
 

FIGURE A10 

Portfolio performance for a different number of stocks: Dynamic Beta Covariance 
This figure shows the monthly portfolio performance for a varying number of assets. Performance is based on the standard deviation, Sharpe ratio, average turnover and breakeven transaction 

costs with respect to the EW portfolio. The out-of-sample period is from January 1980 to December 2019. The results are presented for the equally weighted portfolio (EW) and for the dynamic 

beta covariance. The factor specifications are based on the single factor model (Market), the Fama-French 3-factor model (FF3), principal component analysis (PCA), partial least squares (PLS), 

sparse principal component analysis (SPCA), sparse partial least squares (SPLS) and an autoencoder with 1 hidden layer (AEN1). The standard deviation and average turnover are reported as a 

percentage. The breakeven transaction costs are reported in basis points and a positive value indicates that the alternative portfolio outperforms the EW. 

 
  



 
 

FIGURE A11 

Portfolio performance for a different number of stocks: Dynamic Factor Covariance 
This figure shows the monthly performance for a varying number of assets. Performance is based on the standard deviation, Sharpe ratio, average turnover and breakeven transaction costs with 

respect to the EW portfolio. The out-of-sample period is from January 1980 to December 2019. The results are presented for the equally weighted portfolio (EW) and for the dynamic factor 

covariance. The factor specifications are based on the single factor model (Market), the Fama-French 3-factor model (FF3), principal component analysis (PCA), partial least squares (PLS), sparse 

principal component analysis (SPCA), sparse partial least squares (SPLS) and an autoencoder with 1 hidden layer (AEN1). The standard deviation and average turnover are reported as a percentage. 

The breakeven transaction costs are reported in basis points and a positive value indicates that the alternative portfolio outperforms the EW. 

 
  



 
 

FIGURE A12 

Portfolio performance for a different number of stocks: Dynamic Error Covariance 

This figure shows the monthly performance for a varying number of assets. Performance is based on the standard deviation, Sharpe ratio, average turnover and breakeven transaction costs with 

respect to the EW portfolio. The out-of-sample period is from January 1980 to December 2019. The results are presented for the equally weighted portfolio (EW) and for the dynamic error 

covariance. The factor specifications are based on the single factor model (Market), the Fama-French 3-factor model (FF3), principal component analysis (PCA), partial least squares (PLS), sparse 

principal component analysis (SPCA), sparse partial least squares (SPLS) and an autoencoder with 1 hidden layer (AEN1). The standard deviation and average turnover are reported as a percentage. 

The breakeven transaction costs are reported in basis points and a positive value indicates that the alternative portfolio outperforms the EW. 
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