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ABSTRACT  

 

A crisis of non-replication has become associated with hypothesis testing that 

applies the conventional p value hurdle of 0.05. This paper extends the Minimum 

Bayes Factor approach of Edwards, Lindman and Savage (1963) to include an 

empirically estimated prior that can be applied in multiple hypothesis testing.  
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CONTEMPORARY SCIENCE is characterised by “big data” and the low cost of 

computing power. This allows multiple hypothesis testing to be rapid, cheap and 

indiscriminate. The empirical documentation of correlation has dominated over 

deliberation over causation. Across disciplines, a substantial number of the 

relationships identified as statistically significant have subsequently not been 

replicated. There is a currently a “crisis of confidence” in the statistical methods 

we employ.  A concise survey of selected highlights of contemporary science, from 

the macro to the micro level, reflects the large amounts of data that are currently 

being processed and the multiple hypotheses being tested: 

 

For 10 days over the Christmas period in 1995 the Hubble space telescope took a 

picture of a dark area of the sky roughly the size of a pinhead being held at arm’s 

length. Within it approximately 3 000 galaxies were observed. With the naked eye 

a person can see about 2000 distinct stars in the clear night sky - all of which are 

in our own galaxy. Consider that, in a pinhead of the sky there are more galaxies 

than this. Such was the richness of data collected that it was shared as a public 

service and by 2014 there were over 900 citations that referred to the paper 

associated with this data set (Williams et al, 1996). 

  

The SETI@home project produces 100 to 200 terrabytes of data daily for 

enthusiasts to analyse and search for signals of extra-terrestrial intelligence. In 

2006, it performed the largest calculation in history comprising 1021 floating point 

operations (Guinness Book of Records, 2008, 

https://en.wikipedia.org/wiki/SETI@home).  The most well known radio signal 

from space is the 1977 “Wow!” observation made by a volunteer at Ohio State 

University. Despite repeated searches, this signal has not been replicated. Indeed, 

this field of enquiry appears to have had a 0% replication rate, so far. 

 

Since its launch in 2009, the Kepler spacecraft has been dedicated to search for 

planets outside our solar system. By October 2017, Kepler it had identified 5011 

exoplanets, of which 2512 have since been confirmed (NASA Exoplanet Archive, 

2019). A false positive rate of about 50%. It can be noted that this area of research 

beneficially adopts the approach of “triangulation’ to confirm its hypotheses. Not 

only are three observations of a shielding of light from the orbited sun required for 

a “transit dip” to be recorded but also evidence of a gravitational wobble in the 

sun’s location can be used for a “radial velocity” confirmation. In this example, the 

planet’s existence is indicated through two independent mechanisms (gravity as 

well as light). 
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Large data sets also exist on the micro level. The human genome has been found 

to consist of about 3.3 million base-pairs within which there are approximately 

22300 protein producing genes. The field of genetic epidemiology, which attempts 

to relate these genes and their combinations to the occurrence of diseases, has 

become notorious for non-replication.  Ioniddas’s (2005) widely cited paper “Why 

most research findings are false” was prompted by the widespread non replication 

problem experienced in this field.   

 

In July 2012, after some 6 quadrillion collisions in the Hadron Large Collider 

(LHC), the discovery of the Higgs Boson was announced. Its decay pattern exists 

for a zepto (10-21) second - about the time it takes for light to travel across the 

length of a hydrogen atom. To do the large amount of hypothesis testing involved 

in processing this data, the Worldwide LHC Computing Grid was developed. In 

2017 it incorporated over 170 computer centres in 42 countries. By 2012, 25 

petabytes of data per year was being produced by the LHC 

(http://wlcg.web.cern.ch). Notably the Higgs boson discovery was only formally 

announced when three independent teams had observed the same decay pattern, 

each as a 5 sigma event (https://en.wikipedia.org/wiki/Higgs_boson). 

 

In the discipline of finance, a “zoo” of factors explaining the cross-section of equity 

returns has been documented (Cochrane 2010).  However, replication of these 

findings has been poor. For example, Mclean and Pontiff (2016) consider 97 

previously documented anomalies. They find “Portfolio returns are 26% lower out-

of-sample and 58% post publication”.  Harvey, Liu and Zhu (2016) re-evaluate 296 

previously documented anomalies: “We argue that most claimed research findings 

in financial economics are likely false”. Hou, Xue and Zhang (2017) examine 447 

anomalies. Using updated (but overlapping) data they find a 64% non-replication 

rate at the 95% level of confidence. 

 

Indeed, across almost all disciplines, non-replication has been well in excess of the 

5% “expected level” when applying a p value threshold of 0.05.  Among the 

consequences of this “replication crisis” is that the journal “Basic and Applied 

Social Psychology” stopped publishing papers using p values in 2015. The 

American Statistical Association (2016, 4) was sufficiently moved to put out a 

statement on p values “…intended to steer research into a post p<0.05 era”. 

However, aside from stressing caution in their interpretation, this statement 

contained very little substance as to how this problem could be corrected. The 

response by researchers has essentially been to raise the hurdle rate. The field of 

physics has used five “sigma” (effectively a t statistic of 5) since the mid 1990s. In 

a recent paper in Nature co-authored by over 70 academics, an argument is made 

to “Redefine Statistical Significance” (Benjamin et al, 2017). The proposition they 
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all signed up to is to increase the hurdle p value from 0.05 to 0.005. They 

acknowledge that this is not a complete solution to the problem but it is a practical 

step that increases the likelihood of replicability.   

 

The aim of this paper is to ascertain the correct adjustment for hurdle p values in 

multiple hypothesis testing. Due to the broad relevance of the topic, it is written 

in a manner intended to be accessible to academics across all disciplines despite  

an example in the field of finance being used to illustrate its recommendations. In 

order to appropriately adjust for multiple tests, it is also necessary to reconsider 

hypothesis testing at the level of the individual test. Most of the arguments 

presented here have been published in prior research. However, there is far from 

a consensus as to how to interpret and apply Bayesian statistics “ ..there must be 

at least as many Bayesian positions as there are Bayesians” (Edwards, Lindman 

and Savage, 1963, 195). As a step towards a convergence of consensus there is 

value in putting together pieces of pre-existing arguments so as to form, what is 

motivated to be, the most coherent combination. Clarity of explanation and ease 

of implementation are also required to facilitate practical application. 

 

 The paper is organised as follows. Section I reviews prior approaches to adjusting 

p values in multiple hypothesis testing. The approaches are classified, almost 

chronologically, into Family-Wise Error Restriction Methods, False Discovery 

Rate Restriction methods and Bayes Factor approaches where each successive 

approach attempts to rectify weaknesses in the former. It becomes apparent that, 

in order to appropriately adjust for multiple tests, it is first necessary to reconsider 

hypothesis testing at the level of the individual test and here a Bayes Factor 

approach is motivated for.  However, it requires the selection of an alternate 

hypothesis and a prior. The Minimum Bayes Factor approach is reviewed as a 

natural alternative that uses the maximum likelihood alternate. The BIC 

approach is also reviewed as this does not require the specification of either prior 

(selecting the unit information prior) or alternate. Both BF methods are 

procedures that are applicable at the individual as well as the multiple hypothesis 

testing level. Essentially, by providing a suitable prior for the MBF an adjustment 

for multiple hypothesis testing is suggested in this paper.  Section II considers the 

most fundamental weakness of classical Null Hypothesis Statistical Testing 

(NHST):p values are the probability of observing the data given the null 

hypothesis is true, P(D|H0) and not P(H0|D) -which is actually a test of the null-

hypothesis.   Bayes Rule is used to switch these conditional probabilities and this 

requires the input of a base rate or “prior”, P(H0).  The case for a ‘positivist’ 

Bayesian approach is made whereby priors are empirically estimated or 

analytically derived. In Sections III and IV, it is demonstrated how, in multiple 

hypothesis testing, the prior can be empirically estimated from the total number 

of tests conducted (M), the power of the tests (1-β),and the portion observed to be 
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statistically significant at the threshold α, P(D)). This allows the calculation of a 

hurdle p value, α*= P(D|H0), that is consistent with a prespecified P(Ho|D). 

Section V applies this approach to a case of multiple tests in the field of asset 

pricing i.e. Hou, Xue and Zhang’s (2017) retesting of 447 previously documented 

equity market anomalies. This illustrative example provides a template for the 

adjustment of hurdle p values in multiple testing that can be practically applied 

in a broad range disciplines.  Section VI summarises and concludes.  

 

 

I. Prior Approaches to Adjusting the p value for Multiple Hypothesis Testing 

 

A. Family Error Wise Rate Restriction 

 

The Bonferroni (1936) approach aims to keep the “family wise error rate” (i.e. the 

probability that all M null hypotheses in the group being tested are 

simultaneously true) at the α level. The adjusted significance level in order to do 

so is 1 − (1 − 𝛼)
1

𝑀. As an approximation, the Bonferroni adjusted hurdle of 

significance is simply the level of significance applied to a single test divided by 

the total number of tests conducted: 

 

α∗ = 
α

M
 

 

Where: α  = the level of significance applied to a single test (usually 0.05) 

             M = the number of hypotheses being tested 

             α∗ = the adjusted level of significance used for multiple hypothesis  

           testing 

 

This adjustment likely to be extremely punitive in situations where a large 

number of tests have been conducted. Applying the equivalent approach of 

multiplying up estimated p values by M, it would be quite possible to get p >1.   

 

The Holm (1979) adjustment follows a similar theme and is relatively more 

lenient than that of Bonferonni: 
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𝛼𝑚
∗ = 

α

M + 1 −m
 

 

Ranking the tests from lowest to highest p values m=1,…, M,  each test m has its 

own hurdle rate. The first test (with the lowest p value) would have the same 

hurdle as Bonferonni. However, for the second, the first test is effectively ‘removed 

from the pool’ and the divisor becomes M-1. This procedure is repeated down the 

ranked list of tests. The first test that does not meet the hurdle is rejected together 

with all the remaining tests that have higher p values.  

 

First, these adjustments takes no account of Type II errors (rejecting H0 when it 

is true) and the resulting decrease in the power of the tests after the adjustment. 

Adjustments intended to be conservative for the Type I errors (not rejecting the 

H0 when it is false) could well be reckless for Type II errors.  In many cases, the 

Type II errors generated are likely to be more serious than the Type I errors that 

they are intended to prevent. 

 

Second, in the Bonferroni (1936) and Holm (1979) measures there is no account of 

the correlations between tests. For example, various value measures (e.g. earnings 

yield, dividend yield, book to price) all involved dividing by price and, thus, by 

construction are likely to be correlated. In such a realistic situation, the number 

of independent tests is likely to be correspondingly overstated. Recognising this 

problem, Harvey and Liu (2014) conduct simulation studies to investigate the 

effect of correlated explanatory variables. 

 

Third, the total number of tests conducted (M) is rarely directly observable. Due 

to a selection bias toward significant results, many tests that have been conducted 

but have turned out insignificant have not been published. Basing a tally on prior 

published research is likely to vastly understate M.  However, when conducting 

an out of sample test of multiple hypotheses, M is directly observable and this fact 

is used later in this paper. This direct observability should not be incorrectly 

conflated with the fact that the base rate in the out-of-sample is test will be lower 

the more that the initial selection of M is based on overfitting and selection bias 

(see Section V). Thus, the problem of the inobservability of M can be avoided by 

applying these metrics to out–of-sample batch tests and this problem  is also not 

specific to the FWER restriction methods. 

 

More fundamentally, Pergneger (1998) has argued that the family-wise error rate 

is the incorrect metric to be constraining. Rubin (2017, 6) argues this point as 

follows “… consider a gambler who purchases 100 lottery tickets. Although this 
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mass purchase increases the probability that the gambler will win the lottery, it 

does not increase the probability that any one of her lottery tickets will be the 

winning ticket. In the same way, a researcher who undertakes single tests of 100 

different null hypotheses will have a relatively high probability on incorrectly 

rejecting one of these hypotheses, but she will not increase the probability of 

rejecting each hypothesis”. Rubin proceeds to make the case that the family-wise 

error rate is only applicable in multiple tests of the same hypothesis.  

 

These adjustments to p values commit the “standard error of science” i.e. using 

P(D|H0), rather than P(H0|D), as its hurdle metric.  An explanation of this error 

requires returning to the first principles of hypothesis testing. Reconsider a 

streamlined version of Fisher’s (1935) famous example: Can Dr Muriel Bristol (her 

real name) tell the difference if her tea is made by adding the milk first or not? If 

five cups are used in the taste test and she gets all 5 right there is a 1/(25 ) = 1/32 

= 3.125% chance that we would get this result (the observed data, D) under the H0 

of her having no skill i.e. P(D|H0) under a one tailed test. However, P(D|H0)  is 

not particularly useful to know in isolation. It seems to be commonly interpreted 

as the much more useful P(H0|) which is, in fact a  measure of whether the null 

hypothesis in true. Any adjustment to p values, be it at the individual or multiple 

test level, that does not account for the need to switch the above conditional 

probabilities is fundamentally flawed. This critique applies to all members of the 

FWER class of approach. 

 

 

 

B. False Discovery Rate Restriction 

 

Unlike the Bonferroni and Holm adjustments which aim to avoid a single false 

discovery, the Benjamini and Hochberg (1995) adjustment applies a False 

Discovery Rate (FDR) hurdle which they label “q”. The FDR is the expected ratio 

of False Positives to All Positives conditioned on their being at least one positive 

result (Storey, 2003) The FDR is discussed in more detail in Section II and shown 

to be equivalent to P(H0|D) and, in this manner, these approaches avoid the 

‘standard error of science’ weakness that characterised the FWER methods.. 

 

Ordering observed p values from smallest to largest and defining imax to be the 

largest index in this ranking such that: 
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𝑝𝑖 ≤
𝑖

𝑀
𝑞 

 

The Benjamini and Hochberg (1995) rule is that H0 is rejected for all tests 𝑖 ≤ 𝑖𝑚𝑎𝑥.  

They provide a proof that such a threshold p value ensures a conservative FDR 

threshold of q. Benjamini and Yekutieli (2001) also adopt a FDR hurdle approach 

and demonstrate the following adjustment to be robust to dependency between the 

test statistics: 

 

𝛼𝑚
∗ = 

m. q

M. c(M)
 

 

Where: 𝑐(𝑀) = ∑
1

𝑚
𝑀
𝑚=1  

 

Again, each test has its own hurdle rate. Ranking from highest to lowest p values, 

the null hypothesis is rejected for all of those tests below and including the first 

case where this hurdle is met. Especially when M is large, it is generally more 

lenient than the two former approaches. Harvey, Liu and Zhu (2015) employ an 

equally weighted composite of the Bonferroni, Holm and Benjamini and Hochberg 

measures to suggest an adjusted t value of 3 for current asset pricing tests. 

However, in later work, Harvey (2017, 2) emphasizes “..that making a decision 

based on t>3 is not sufficient either” and a Bayesian approach is suggested (see 

the following section).  

 

There are, indeed, a number of remaining problems that characterise the above 

FDR methods. Like the FWER restrictions methods discussed previously they also 

do not take account of the power of the test. The above FDR restriction are also  

based merely on a ranking of p values and, thereby, inherit a number of the p 

value’s problems. 

 

One of the most serious problems with p values is that they have the problem of 

misrepresenting effect size.  To Illustrate, Harvey et al’s (2016) suggestion of 

raising the hurdle for significance to a t-statistic of 3 is used. Reading a table of p 

values associated with this t statistic would imply that one would have more 

confidence in the existence of an effect as the number of observations increases.  

The relationship between the t statistic and Sharpe Ratio of an investment 

strategy as the number of observations increases is illustrated in Figure 1 below. 
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𝑅̅ refers to mean returns in excess of the risk free rate and 𝜎 is the standard 

deviation of excess returns. 

 

Figure 1.  The Sharpe Ratio under a constant t statistic as the number of 

observations (n) increases 

 

It is clear that, for a constant t-statistic (3 in this example), as the number of 

observations increases the Sharpe Ratio actually gets weaker! For a given t 

statistic, the Sharpe Ratio needs to decrease in order to compensate for the effect 

of additional observations. Absurdly, the p value of the strategy will indicate 

increasing statistical significance as it does so. This is related to the bias 

introduced by the “stopping problem”. In the field of medicine, for example, the 

cost of obtaining each additional observation through a clinical trial may be 

expensive in terms of cost, time and, possibly, the health of the subjects. 

Observations are collected until n is big enough to find a significant result and 

then the study is completed. 

 

The ‘stopping problem’ is but one symptom of the effect of sampling design (see 

Wagenmakers 2007 for an excellent discussion of this problem from which this 

paper draws). Consider the lady drinking tea example mentioned in the previous 

section and assume she tasted a 6th cup but got it wrong obtaining 5/6 correct (x). 

Under the null of the binomial distribution with 6 observations the likelihood 

function for this result is: 

 

  𝑛 

𝑡 =
𝑅̅

𝜎
 𝑛 

  

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑅̅

𝜎
 

  1 

  3 
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𝐿(𝑝|𝑥) = (
6
1
)𝑝5(1 − 𝑝) 

 

Which is 6/64 =0.0938 under the null that p=0.5. As the p value is P(H0|p≥x) it 

requires the addition of the likelihood of obtaining the more extreme value of 6/6 

which is 1/64.  Thus, the p value associated with the observation x=5/6 is 7/64=0.11 

for a one tailed test. This would not meet the threshold level of 0.05. 

 

However, the experiment design Sir Fischer was applying was not a 6 cup test but 

to continue testing until she got one wrong and then end the experiment i.e. the 

negative binomial distribution was applied under the null. The density function 

for observing s successes before f failures is:  

𝐿(𝑝|𝑛) = (
𝑛 − 1
𝑓 − 1

)𝑝𝑠(1 − 𝑝)𝑓 

Where f=(n-s) mistakes. In this case under the null of p=0.5 it is 

(
5
0
) 0.56(0.5)1=1/64=0.016. Again, to calculate a p value the cumulative probability 

of more extreme cases needs to be added: 

 

∑  (
𝑛 − 1
0

) 0.5𝑛∞
𝑛=7  =1/64 

 

Note that this accounts for the effects of trials that may have but actually never 

happened under the negative binomial distribution. A ‘total’ p value of 2/64=0.032 

is calculated which would meet the threshold level of 0.05. The key point of this 

example is that in both cases the evidence is the same (5/6 correct) and consistent 

with both experiment designs. However, depending on which design was intended 

a different p value is obtained.  

 

This example also illustrates another problem with p values i.e. that it reflects the 

probability of more extreme results than that of the ‘border case’ that is observed. 

While an α threshold is by definition an inequality, this does not imply that the 

metric that attempts to meet it need also be. In the binomial example, the p value 

sums the probabilities of 5/6 and 6/6 based on the evidence of 5/6. Credit is given 

for two possible outcomes of the experiment when only one can happen. The 

likelihood of this sum is less than that of the border case, given that the border 

case is based on a single outcome of the experiment while the p value is based on 

two. The inequality specification of the p value thereby results in making 

observations appear more extreme than they actually are and, thereby, more likely 
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to reject the null.  This is explained in more detail for the continuous case in the 

following section. 

 

The companion, Figure 2 considers the alternative situation where the number of 

observations is kept constant across examples A and B.  It is clear that case B has 

the higher t statistic due to the lower proportional estimation error around its 

mean. However, even in a worst case scenario, A outperforms B.  This illustrates 

that even when the number of observations are constant, the t-statistic takes 

inadequate account of effect magnitude. Given a very small effect size, the more 

certain you are that it is, indeed, very small – the more statistically significant it 

gets! As illustrated, while not a formal hypothesis test, confidence intervals can be 

a useful supplementary metric for the NHST researcher to assess effect size. 

 

Figure 2. Effect Magnitude and t statistics with a constant number of 

observations.  In both case A and B there are the same number of observations (n). 

In Panel A the expected effect size is 10 with a best case scenario of 16 and a worst 

case of 4 (implying a mean absolute deviation of 6). In Panel B the expected effect 

size is 2 with a best case scenario of 3 and a worst case of 1 (implying a mean 

absolute deviation of 1). For the purposes of illustration, the mean absolute 

deviation is taken as a proxy for the standard deviation in order to calculate a t 

statistic in each scenario.   

 

 

 

  A   B 

  

10

00 

  2 

𝑡 ≈
10

6
 𝑛 ≈ 1.67 𝑛 

𝑡 ≈ 2 𝑛 



12 
 

C. Bayes Factor Approaches 

 

Unlike in NHST, the use of Bayes Factor (BF) requires the selection of an alternate 

hypothesis, H1, as well as the Prior Odds ratio associated with it, P(H0)/P(H1). 

Computational difficulties arise when a diffuse alternative is used. For example, 

when H0: μ=0, and the alternate is any value other than zero. Then the likelihood 

needs to be integrated over the distribution of the priors for each value other than 

zero to get the posterior distribution. Early work such as Edwards et al (1963)  

looked at conjugates – distributions whose properties are retained over integration 

in order to obtain a closed form solution. However, this only applies in selected 

cases. Also to facilitate application, Edwards et al (1963) consider under what 

conditions “stable estimation” is possible i.e. where a uniform prior may be used 

as a satisfactory approximation. Alternatively, the same increase in computational 

power that facilitates large scale multiple hypothesis testing also allows use of 

numerical methods such as Markov Chain Monte Carlo and the Gibbs Sampler.  

However, on a practical level, researchers would prefer to avoid these 

computational difficulties and this has deterred the application of Bayesian 

methods. 

  

The computational trouble of integration is eliminated if a specific rather than 

diffuse H1 is selected.  The maximum likelihood value of H1 is a natural candidate. 

The choice of H1 in the BF specification is selected to be what is the most likely 

estimate based on what has been observed. In other words, if a mean value of say 

5% is observed for x then H1 : μ=5%.  This is applied in the Minimum Bayes Factor 

(MBF) approach of Edwards, Lindman and Savage (1963) which is also 

recommended by Goodman (1999) and Harvey (2017) inter alia. When calculating 

Bayes Factor with H0 in the numerator i.e.  
P(D|H0)
P(D|H1)

,  it will be the BF with the 

minimum value out of all of the possible specifications of H1. It can be interpreted 

as the alternate most likely to reject H0.  If no relationship is found using the MBF, 

using another alternate will not alter this interpretation. Using H0 in the 

numerator also facilitates comparison with NHST p values where small values 

indicate a rejection of H0.  

 

Bayes’ Factor (BF) is derived from the ratio (odds format) of two Bayes Laws 

(where P(D) cancels out): 

P(𝐻0|D)

P(𝐻1|D)
  =   

P(D|𝐻0)

P(D|𝐻1)
.   
P(𝐻0)

P(𝐻1)
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Clearly evidence for both H0 and H1 are considered.  This can also be stated as the 

Posterior Odds is equal to the BF, times the Prior Odds. BF can be interpreted as 

the ratio which one should “change one’s mind” from the Prior Odds. It is based on 

the evidence (D) and is independent of the Prior and as such can be interpreted as 

an ‘objective’ measure of comparison between two hypotheses. For example, using 

the hurdle rates suggested by Jeffreys (1961) a BF below 1/30 would be strong 

evidence for the alternate and above 30 for the null. A BF of 1/20 would roughly 

correspond to the NHST conventional level of 5% (albeit on a different metric) . A 

notable feature of the BF hurdle tables is that, in contrast to those of NHST, they 

are not contingent on the numbers of degrees of freedom in the test.  In the case 

where there is only one value for H1, BF, is the likelihood ratio. If a uniform prior 

is used then the BF is also the posterior odds.    

 

The division entailed in calculating BF allows a lot of NHST’s difficulties to be 

“cancelled out”. For example, the same sample design (e.g. binomial or reverse 

binomial) is used is considering evidence for both H0 and H1. The number of 

observations are also the same for the denominator and the numerator. (The 

number of observations does improve the standard errors of the estimated 

difference between the two and hence its t statistic. However, the effect that a 

given t statistic’s p value converges downwards to that of the Z score as n increases 

- being equally beneficial to H1 and H0 - is cancelled out).  This division also solves 

the problem of needing to convert a likelihood into a probability as it is possible to 

find the ratio between two lines despite them having an area of zero. Edwards et 

(1963) point out that the division entailed in calculating likelihood ratios is an 

application of the “likelihood principal” of Barnard (1947) and Fisher (1957) i.e. 

that multiplying a likelihood by a constant does not alter its influence. This is 

because the constant is both in the numerator and dominator of the likelihood 

function. Changing sampling designs and stopping rules would reflect in such a 

constant. This has the important implication that “According to the likelihood 

principle data stands on its own feet” (Edwards et al, 1963, 239). 

 

 

Under the assumption of a Gaussian distribution of the true mean and standard 

error of an estimate x of the mean Edwards et al show that the MBF for H0:μ=0  

can be o be simplified as: 

 

𝑀𝐵𝐹 = 𝑒−( 
𝑍2

2
)
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 Where Z ~N(0,1) is the standardised Z-score of x. Z=(x-μ)/σ  where μ is the 

hypothesised true value of x and σ is its standard error. A comparison of the 

normal pdf under H0: 𝜇 = 0 i.e. (𝑃(𝐻0|𝐷) = 𝑃(𝑥|𝜇 = 0, 𝜎)= 
1

𝜎  2𝜋
𝑒−(

(𝑥−0)

𝜎
)/2 with that 

under H0: 𝜇 = 𝑥 is that only the term in the exponent changes from (x-0) to (x-x=0). 

This allows the cancellation of the term 
1

𝜎  2𝜋
  which scales the Gaussian function 

such its area sums to one and this facilitates the simplification (see Appendix I in 

Goodman (1999)).   

 

 

The conventional t statistic may be used as an approximation for Z which makes 

this version of the MBF easy to calculate using a familar metric the NHST toolkit. 

It also provides a method of ‘translation of p-values into t-statistics (for a given 

number of degrees of freedom) and, thereby, into corresponding MBFs. Note that 

for a given p-value the corresponding t-statistic will increase as the number of 

observations decreases. Thus, a given p-value from a smaller sample will actually 

result in a lower (more significant) MBF.  

 

Calculating the MBF for Z=1.96 (which is consistent with a two tailed p value of 

0.05) obtains a value of 0.146. This value is the ratio of the odds of H0 versus H1. 

The BF can be converted from an odds ratio to a probability (p) by p=odds/(1+odds) 

which is 0.127. Thus, the MBF probability of the null is about 2.5 times as large 

as the p value of 0.05 in a two tailed test and double this for a single tailed test. 

This discrepancy arises due to the fact that the NHST p value represents the 

probability of the inequality μ ≥ x rather than the border value μ=x that was 

actually observed. This is comparison is illustrated in Figure 3 which shows the 

probability density functions under H0 (on the left) and the maximum likelihood 

observed value of H1 (on the right). 
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 Figure 3 Graphical Representation of the Minimum Bayes Factor (MBF) 

Hypothesis testing Approach.  The Gaussian probability distribution of Z-scores 

on the left represents the case under H0 while that on the right the case under H1 

(where H1 is Zo, the observed Z-score in the MBF approach). ZT is the threshold Z-

score to be deemed statistically significant based on the selected α value in a two 

tailed test. 

 

 

 

The area under the distribution assuming H0  that is to the right of the observed 

value of the Z-score, Z0, represents the p value of a single tailed test i.e. P(Z ≥ 

H1|H0). In a two tailed test, the area of the same magnitude under H1 and to the 

left of H0 i.e. P(Z ≤ H1|H0) is added to this probability, doubling its value. In 

textbooks this latter area is routinely depicted as the leftmost tail under H0 but, 

in actual fact, it represents an area under a different distribution i.e. that of the 

maximum likelihood H1. This distribution is also used in calculating the power of 

the test which is the area under it to the right of ZT. Thus despite NHST’s not 

explicitly specifying an alternate, the maximum likelihood alternate plays a key 

role in the calculation of both the power and two tailed p value metrics. As a MBF 

approach explicitly selects an H1, it knows in which direction the effect tested for 

is and, thus, only a single tailed test would make sense (Edwards et al 1963). 

 

In Figure 3, The length of the vertical line B represents the likelihood of the 

observed value, Z0, under H0 while D is its likelihood under H1. The probability of 

any particular event such as Z0 occurring is vanishingly small in the continuous 

case. Thus, NHST has used the integration of all values more extreme than Z0 as 
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an approximation to solve this problem. However, it is possible to calculate and 

interpret relative likelihoods when an alternate has been specified. The ratio B/D 

is the likelihood ratio of the observed value under H0 relative to the maximum 

likelihood H1. A and C represent the analogous likelihood values at the p value 

threshold. The likelihood ratio at ZT is similarly represented by the ratio A/C. 

However, when the inequality P(Z ≥ZT|H0) =α is (incorrectly) used in a one-tailed 

test the likelihood becomes this area relative to the area P(Z ≥ZT|H1)=1-β. 

Thereby, a relatively elegant expression for BF = α/(1-β) i.e. alpha divided by the 

power of the test, is obtained at this threshold. Clearly, the MBF approach takes 

the power of the test into account unlike the FWER and FDR restriction methods 

reviewed earlier.  However, this measure is imprecise in its use of equalities and 

this ratio of areas will be less than that of the correct ratio A/C, making the test 

result seem less likely under the H0 than it really is.  

 

One of the possible weaknesses of the MBF approach is the need to specify a prior.  

A uniform prior, however, is a useful ‘base case’ to consider. An alternate BF 

approach that has minimal reliance on an empirically observed prior is that of 

Raftery, (1995) and Wagenmakers (2007). They show how BF can be approximated 

from standard regression analysis output, making it easy to practically apply.  

This is done through use of the Schwarz (1978) or “Bayesian Information 

Criterion” (BIC) of the model estimated:  

 

𝐵𝐼𝐶 = −2 ln(𝐿) + 𝑘. 𝑙𝑛(𝑛) 

 

Where:  L = the maximised value of the likelihood function 

              k = the number of parameters estimated 

              n = the number of observations 

 

The BIC is a measure of model fit (like R2) and used primarily for comparing 

models with the same dependent variable. Note that smaller values for the BIC 

indicate a better fit. Wagenmakers (2007) shows that, in the case of regression 

analysis, the BIC can be calculated as: 

 

𝐵𝐼𝐶 = 𝑛. ln(1 − 𝑅2) + 𝑘. ln (𝑛) 
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In other words the BIC is a function of the R2 of the model. The BF can then be 

approximated as a function of the difference in explanatory powers of two models, 

∆𝐵𝐼𝐶 = 𝐵𝐼𝐶(𝐻1) − 𝐵𝐼𝐶(𝐻0): 

 

𝐵𝐹 =
𝑃(D|𝐻0)

𝑃(D|𝐻1)
≈ 𝑒∆𝐵𝐼𝐶/2 

 

In this case, the model associated with H1 may, for example, have an additional 

explanatory variables(s) than that associated with H0. Indeed, H0 may just be a 

regression model with only an intercept term reflecting only the base rate mean of 

the dependent variable. The resulting estimated BF value can be interpreted as 

discussed earlier in this section. An accessible and more detailed tutorial to 

applying the BIC approach is provided by Masson (2011).  

 

Both a strength and weakness of this approach is that it does not require the 

specification of a prior as the unit information prior is implicitly applied. This prior 

essentially uses the observed mean and standard deviation in the dependent 

variable and accords it the information content of a single observation. Rafterty 

(1998, 1) argues that “Clearly a prior that represents the available information 

should be used, although the unit information prior often seems reasonable in the 

absence of strong prior information”. Raftery (1998) further argues that due to its 

‘spread-out’ nature the unit information prior will be conservative towards 

rejecting the null and can used as a “baseline reference analysis”. 

 

Despite the appeal of the BIC approach for individual hypothesis testing, due to 

its ease in calculation and not allowing the explicit selection of a prior, it is not 

clear how this approach can be adapted for multiple hypothesis testing. In 

contrast, the MBF approach can be facilitated by estimating an empirical prior 

that can be used in multiple hypothesis testing.  Section II below reviews the use 

of Bayes Law to switch conditional probabilities from P(D|H0) to P(H0|D). Section 

IV decomposes the proportions of expected test results under the permutations of 

True/False and Positive/Negative. This decomposition is used to obtain an 

estimate of the prior in Section V. The approach is illustratively applied in Section 

VI.   

 

 

II. The Bayesian Flip 
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The following analysis make two important simplifying assumptions. First it is 

assumed that the test is dichotomous in outcome i.e. it provides a binary True or 

False result. This avoids the problem of having a diffuse alternate and the need to 

choose a specific for H1.  The alternate is also, by default, the maximum likelihood 

H1. Second, it is assumed that that the ‘precise’ value for the p value is equivalent 

to the inequality value of the p value  i.e p=0.05 is equivalent to p≤0.05. In other 

words, when  p≤0.05 is obtained, an event with a 5% probability under H0 has 

happened. The avoids the complexities entailed due to the fact that the p value 

reflects the probability of more extreme results than that of the ‘border case’ that 

is observed (see Section I.B).  

 

Bayes Law allows us to switch conditional probabilities. When applied directly to 

the problem of hypothesis testing: 

 

P(𝐻0|D) = P(D|𝐻0)
P(𝐻0)

P(D)
 

 

Where:  P(𝐻0)     =  the “prior” (before getting data D) 

           P(D|𝐻0)    =  the “likelihood” (conventional p value in this application) 

       P(D)          =  P(D|𝐻0) P(𝐻0) + P(D|not 𝐻0) P(not 𝐻0)           

             P(𝐻0|D)    = the “posterior” (after getting data D) 

 

However, in order to conduct the ‘flip’ additional information in the form of an 

estimate of the probability of H0 being true, P(𝐻0), prior to receiving the new data 

(D) is required . Note that, P(D) is a normalising term that makes the posterior 

probabilities add up to one and does not provide any new information into the 

analysis.  Incorporation of the prior has been the most controversial feature of 

applying Bayes Law. It has been criticised as a means for subjective biases to enter 

the analysis. This need not be the case. The “Positivist Bayesian” approach 

suggested in this paper can use (i) empirical analysis i.e. it subsumes an 

“empirical” Bayes approach, or (ii) definitions and mathematical relationships to 

establish a prior and does not require the use of subjective probabilities.  

 

An example of (i) using empirical analysis to estimate the prior by doing tests on 

a broad based random sample of people to estimate that the base rate for a certain 

disease in the overall population, P(𝐻1), is say 1%. Combined with P(D|𝐻1) i.e. the 

probability of getting the data of a positive test result for the disease given that 
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you have it, it allows calculation of the probability that you have the disease given 

the test result P(𝐻1|D).  Omitting the prior in this calculation is, as mentioned, 

simply an error of logic. With some simplification,  if the p value of the test is 0.05 

and the base rate is 0.01, even if you have a significantly positive test result, the 

odds are approximately 5:1 (the P(H0|D) is 83.19% to be precise) that you do not 

have the disease. (For simplicity, a power of 1 for the test is assumed in this 

example. Given these odds, even for an individual in-sample test, it is no wonder 

that there will be pervasive non-replication of this result. The p value is not a 

measure of replicability nor a test of the null hypothesis.  

 

Importantly, estimating the base rate is just as valid an empirical analysis as the 

conventional estimation of P(D|𝐻0). The prior is not the probability before getting 

any data. It is the prior before getting the additional data used by the test 

concerned. In this sense, the term “base rate” maybe preferred to that of “prior”. 

An element of what is typically referred to as “descriptive statistics” (e.g. the 

empirically observed proportion of people with the disease in our example) is 

actually an essential input into the inference process. Furthermore, as more data 

accumulates and follow up tests are conducted, the initial base rate becomes less 

relevant. Bayes Theorem provides a mechanism to rationally update the prior 

based on new evidence. The BF can be multiplicatively updated for N independent 

tests: 

𝐵𝐹𝑁 =∏𝐵𝐹𝑖

𝑁

𝑖=1

 

 

In our disease example, given the initial positive result, a second independent test 

for the disease would commence from a 17% rather than 1% base rate. In this case, 

if a second positive result is found, the P(H0|D) drops to 19.62%. 

 

An example (ii) of using an apriori prior is the assumption that you are using a 

standard pack of playing cards. Thus, for example, you can state the base rate 

probability of randomly drawing a heart is 25%, based on the definition of what 

constitutes a standard pack. If you are provided with the data that the card is red 

you can revise your probability that the card is a heart to 50%. Note that using the 

uniform prior for obtaining a heart i.e.  that P(𝐻1) = 50%, the incorrect inference 

of 100% would be obtained. This uniformed prior ignores the information provided 

by the assumption that a standard pack of cards is used. 

 

Examples of analytically deriving a prior also occur when considering test design. 

For example, in ‘extreme performer’ research – trying to identify those shares with 
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the 10% best returns over the following year, by methodological construction, in 

the absence of additional information the prior can be inferred to be 10%.  

 

 

 

 

IV. Adjusting the p value and Supplementary Metrics 

      

 

Figure 4 considers the breakdown of research findings against true relationships. 

Here for simplicity, a dichotomous variable (having the disease or not i.e. 

True/False) is matched with by another dichotomous metric (a two-tailed test 

result that is found to have a p value of α or lower i.e. Positive/Negative). In the 

case of an single in-sample test, such as the probability of disease example used 

earlier, P(H1) would represent the base rate probability of having the disease 

without knowing the test result.  Given the α level and power of the test (β) this 

allows calculation of the expected number of cases for the permutations of 

True/False and Positive/Negative. 
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Figure 4. Test Results and True Relationships 

The total area of the rectangle below represents the full probability space of possible 

results and sums to unity.  Where P(H1)  represents the base rate,  α refers to the level of 

significance used and (1-β) to the power of the test.  The unshaded area represents the 

portion of positives identified by the test and the shaded area the negatives.    

 (1-β) Β 

 P(H1)     True Positives:  P(H1)(1-β) False Negatives: P(H1)β 

    False Positives: 

α (1- P(H1)) 

 

(1-

P(H1))   

 

 

True Negatives: 

 (1- P(H1))(1- α) 

 

 

 

The top row of Figure 4 represents the proportion of cases where the null 

hypothesis is false, P(H1). Some will be associated with positive test results (True 

Positives) and others negative test results (False Negatives). The proportion of 

each is determined by the power of the test (1-β) where β represents the probability 

of a Type II Error (i.e. rejecting the null hypothesis when it is true).  The area 

below the top column (1-P(H1)) represents all cases where the null hypothesis is 

true. This is broken down into False Positives and True Negatives. The proportion 

of each is determined by the Type I error rate (α) of the tests. 

 

Defining 𝑃(𝐷), such that the data (D) is a Positive test result and substituting  𝛼 

for P(𝐷|𝐻0) allows us to solve for P(𝐻0|D) using Bayes Law: 

 

P(𝐻0|D) = 𝛼 
 𝑃(𝐻0)

𝑃(𝐷)
 

 

From the breakdown in Figure 4, P(D) is the sum of the False Positives and the 

True Positives: 

 

𝑃(𝐷) =  𝛼(1 − 𝑃(𝐻1)) + 𝑃(𝐻1)(1 − 𝛽) 
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Given that 𝑃(𝐻0) = 1 − 𝑃(𝐻1), this allows the following substitution: 

 

P(𝐻0|D) =  
𝛼(1 − (𝑃(𝐻1))

𝛼(1 − 𝑃(𝐻1)) + 𝑃(𝐻1)(1 − 𝛽)
 

 

The influence of the power of the tests (1-β) can be explicitly seen here as 

influencing the True Positive  𝑃(𝐻1)(1 − 𝛽) portion of the denominator. A weaker 

power leads to less True Positives and a higher P(H0|D).  It is also evident by 

substitution that P(H0|D) can be more simply expressed as the ratio of false 

positives to all positives: 

 

P(𝐻0|D) =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐴𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 =FDR 

 

Unlike the p value –this measure is scaled by the probability of getting a positive 

result.  As mentioned in Section I.B, in the field of finance this ratio has been 

termed the “False Discovery Rate” (FDR)  (see Benjamini and Hochberg, 1995; 

Benjamini and Yekutieli, 2001 Harvey Liu and Zhu, 2016;, Harvey, 2017 inter 

alia).  Wacholder et al (2004) independently derive a “False Positive Report 

Probability” (FPRP) that is equivalent to this expression. In the context of the 

“replicability crisis” the FDR also has the relevant interpretation as a “Non 

Replication Rate” i.e. the probability that there is no True relationship when a 

Positive test result is observed.   The most important feature to recognise about 

this metric, however named, is that is equivalent to P(H0|D) – by definition the 

proper hypothesis testing metric.  

 

Ioanndis (2005) derives the “complement” to the FDR/FPRP which he calls the 

“Positive Predictive Value (PPV)” of a test. It represents the proportion of Positive 

results that are True: 

 

𝑃𝑃𝑉 = 
𝑃(𝐻1)(1 − 𝛽)

𝑃(𝐷)
 

 

Clearly, PPV+FPPR=1 and, thus, these measures are rearrangements of the same 

information. It can be similarly shown via Bayes Theorem that, PPV ≡ 𝑃(𝐻1|𝐷)  ≡ 

1- 𝑃(𝐻0|𝐷).  
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The approach adopted in this study (is that a threshold is applied to P(𝐻0|D) and 

then the p value that is consistent with this threshold (α∗) is solved for. Typically, 

we would want to keep P(H0|D) low, analogous to the 0.05 p value level used in 

NHST. Substituting 0.05 as the hurdle P(𝐻0|D) into Bayes Law and rearranging 

with the variable to be solved for on the left hand side: 

 

α∗ = 0.05
P(D)

P(𝐻0)
 

 

As can be seen, lower the base rate i.e. a larger value for P(𝐻0),  the stricter the 

threshold α∗ becomes. This equation cannot be directly solved algebraically due to 

the interdependence of P(D) and P(D|𝐻0) where each of these terms is needed to 

calculate the other. However, simple iterative procedures converge on a solution 

easily.  This allows us to solve for the p value (α∗) such that P(𝐻0|D) = 0.05. 

 

There also exist supplementary metrics which, although not tests of the null-

hypothesis, provide useful insight beyond that of the FDR. The “Miss Ratio” 

(RMISS) is the rate at which test will miss finding a true relationship (Genovese 

and Wasserman, 2002; Sarkar, 2004; Harvey and Liu, 2019) : 

 

𝑅𝑀𝐼𝑆𝑆 =
𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝐴𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

          =
𝑃(𝐻1)𝛽

𝑃(𝐻1)𝛽+(1−𝑃(𝐻1))(1−𝛼)
 

 

Analogous to the FDR, RMISS is set to zero if there are no Negative results. As 

can be seen the lower the hurdle α and the base rate 𝑃(𝐻1), the higher the 

proportion of True Negatives  and the lower the Miss Ratio. Given that the 

proportion of True Negatives is a positive number, an increase in the power of the 

test (1 − 𝛽) will decrease the Miss Ratio. It is probably good practice to report the 

power of the test(s) concerned when interpreting the RMISS. 

 

Harvey and Liu (2019) introduce a useful metric RRATIO, the “Ratio of False 

Discoveries over Misses”: 
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𝑅𝑅𝐴𝑇𝐼𝑂 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

               =
𝛼(1−𝑃(𝐻1))

𝑃(𝐻1)𝛽
 

 

This metric allows insight into the trade-off between Type I and Type II errors. for 

For example, in the identification of a dread disease that would benefit from being 

treated early, a Type II error (missing that something’s there) is likely to be much 

more costly that of a Type I (a stressful false alarm).  In contrast, making a false 

criminal conviction (Type I error) is generally deemed more costly to society than 

letting a guilty person get way (Type II error). Hence the criminal threshold 

“beyond a reasonable doubt” rather than the civil threshold of the “balance of 

probabilities”.  Harvey and Liu (2019) suggest solving for the α threshold level 

such that a desired RRATIO is achieved. In a similar manner, Storey (2003) 

analytically defines an investor’s loss function as a weighted average of RDR and 

RMISS and solves for a significance threshold that minimises its value. If, for 

example, there is an excess of False Positives the alpha level is dropped. There 

exists an interaction effect whereby 𝛽 will increase as a result and both will 

contribute to the RRATIO decreasing. 
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V.  An Empirical Prior for Multiple Hypothesis Testing 

 

At the level of multiple hypothesis testing there arise new difficulties that are 

more familiarly associated with the replication crisis.  There are the concerns 

regarding the false positives that we anticipate are going to arise for a given hurdle 

p value within the batch of tests conducted.  Due to selection bias, overfitting and 

the correlations between tests, the true number of independent tests that are 

represented in the batch is unobservable. As a result, when applied to multiple 

out-of-sample hypothesis testing, applying the 𝐹𝐷𝑅  has the practical difficulty 

that 𝑃(𝐻1) is not directly observable. In certain batches, where a field is well 

established, prior research may result in an informed selection of candidate 

variables to test and P(H1)  may be of a high value.  In contrast, exploratory studies 

may have a lower base rate.  

 

At the level of multiple hypothesis testing it is possible to use the same framework 

as before where the probability space (area of Figure 4) constitutes M (individually 

properly specified) tests rather than N observations (as was the case for the 

individual in-sample tests). 𝑃(𝐻1)  is defined here as the probability of a True 

relationship being present across the batch of tests being conducted. As argued in 

Section II, the number of out-of-sample tests (M) is observable. The proportion of 

positive results for a batch of out-of-sample tests at a given α and 𝛽,  𝑃(𝐷) is, also 

observable.  It is possible to work back from this latter observation and solve for 

an estimate of 𝑃(𝐻1).  As before, P(D) is the sum of the False Positives and the 

True Positives: 

 

𝑃(𝐷) =  𝛼(1 − 𝑃(𝐻1)) + 𝑃(𝐻1)(1 − 𝛽) 

 

Simple algebra follows for expanding and grouping terms: 

 

𝑃(𝐷) =  𝑃(𝐻1)(1 − 𝛽 − 𝛼) + 𝛼 

 

And solving for 𝑃(𝐻1)  :   

𝑃(𝐻1) =
𝑃(𝐷) − 𝛼

(1 − 𝛽 − 𝛼)
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This argument is not circular as, in this case, P(D) is new empirical input that is 

gleaned from the batch of tests being conducted. Unlike in the individual test case, 

it is now possible to observe the results of all of the other tests in the batch and 

see how many were found to be significant. What was previously but a 

normalisation term is now a source of empirical information that allows the 

‘backing out’ of an estimate of the prior. For example, a batch of 1000 tests may be 

observed have 15% of the results being Positive. With some simplification, the 

numerator of this expression conveys the intuition that α (e.g. 5%) of the results 

are expected to be false positives by chance. So in this case 15% - 5% = 10% of the 

positive results are likely to be valid. This simplification would hold if the 

denominator of this expression is one i.e. as the power of the test and α level 

approach unity and zero respectively. However, as stated, it has the weakness of 

not considering the power of the tests concerned. As the power of the tests weaken, 

the estimated base rate increases to compensate for false negatives. Often in an 

out-of-sample replication study the number of time-series observations is lower 

and, hence, the power of the test will be weaker ceteris paribus. This will lead to 

a lower proportion of significant results being found. Thus, the power term is in 

the denominator of this metric and as it weakens the estimate for P(H1) will 

increase to cater for this this effect. 

 

A key precaution in estimating the base rate is to avoid using the same data twice. 

For this reason, it is more precise to exclude the test result of the particular test 

being evaluated and estimate 𝑃(𝐷) out of the remaining M-1 tests. As M becomes 

large these figures, of course converge.  When applied to a batch of M tests an 

estimate of P(D), 𝑃̂, is obtained with a standard error of: √
𝑃̂(1−𝑃̂)

𝑀−1
.  The estimate is 

likely to be robust to correlation between p values but its standard error is not. A 

refinement may to replace M with the number of orthogonalised strategies when 

estimating the standard error. This provides confidence intervals for the estimate 

of the prior and stress testing for the robustness of p values. Again, a larger batch 

of tests, M, is likely to mitigate estimation error. This approach is likely to work 

best on large batch tests where the Bonferroni based adjustments are weakest.   

 

To compare with prior work, unlike the Bonferroni (1936) and Holm (1979), 

Benjamini and Hochberg (1995) and Benjamini and Yekutieli (2001) approaches 

which only take  𝛼 and M into account, this adjustment also takes the power of the 

test and proportion of positive results within the batch as inputs to adjust the 

hurdle p value.  The analytic approach taken here differs from the bootstrapping 

approach applied in Harvey and Liu (2019) and Fama and French (2010). The 

analytic solution offers computational ease without further econometrics. It is, 

however, more sensitive to the violation of the somewhat restrictive assumptions 

on which it is based. The Positivist Bayesian approach described in Section II 
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would disagree with Harvey and Liu (2019,8) “… the choice of (prior) is inherently 

subjective”.  A Positivist Bayesian approach similarly differs from the “personal 

probability” approach of Edwards et al (1963, 197) which they illustrate as follows 

“For you now, the probability P(A) of an event A is the price you would be willing 

to pay in exchange for a dollar to be paid to you in case A is true. Thus, rain 

tomorrow has a probability 1/3 for you if you would pay just $.33 now for in 

exchange for $1 payable to you in the event of rain tomorrow”. It is also necessary 

for these probabilities to be consistent such that you cannot be trapped into 

accepting a combination of bets that assures a loss. In order to ensure consistency 

it is necessary to be willing to take both sides of each bet otherwise risk aversion 

could lead a universal lowering of probabilities i.e. you would require a payoff rate 

higher than the perceived probability of payment to take on risk. However, 

subjective opinions are nevertheless influenced by well documented behavioural 

biases such as underestimation of uncertainty. There may be ‘other interests’ such 

as owning an umbrella factory that may influence your required payoffs. The 

vaguarities of personal opinion aside, an important objective of the scientific 

method is to avoid the situation where two people may have different subjective 

beliefs and one cannot be considered more correct than the other.  In this case, a 

Bayesian approach based on an empirically estimated prior  “lets the data speak” 

in such a manner that two researchers presented with the same data would get to 

the same conclusion. Facilitating such communication between researchers and, 

thereby allowing  for the possibility of ‘replication’ is the primary motivation for 

the Positivist rather than Subjectivist view. Aside from this difference, this paper 

broadly agrees with and follows Edwards et al (1963). Harvey (2017) and also the 

very well written Goodman (1999a, 1999b). As a result, it is in the MBF context 

that multiple hypothesis testing is considered in this paper and an adjustment to 

p value hurdles is made by empirically estimating a prior that it can use. 

 

This adjustment for multiple testing is illustratively applied using an example in 

the field of asset pricing: Hou, Xue and Zhang (2017) examine a large batch 

comprising 447 previously documented firm specific variables that have been 

found to significantly explain the cross section of equity returns. Using updated 

(but overlapping) data they find a 64% non-replication rate at 95% level of 

confidence. It was enquired from these authors how many of the anomalies were 

still found to be significant in the non-overlapping later period. While this test had 

not explicitly been done an upper estimate of 20% was provided (email 

correspondence with Prof Zhang). For the purposes of this example, the 

simplifying assumption of a power level of 80% is applied across all tests (as the 

power of a test is readily measurable this could be adjusted on a case by case basis 

by the researcher who has access to the data). It is assumed that 15% of results 

are found to have a p value of 0.05 in the out of sample period.  
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Table I 

Illustrative example of adjusting the level of the p value in multiple testing 

In this example, α  refers to the hurdle p value used in the batch of tests which is set to 

0.05. β  refers to the type II (False Negative) error rate.  P(D)) is the proportion of 

relationships found to be significant (the Data being defined as Positive test result) in the 

batch of M tests.  P(H) is the probability of an hypothesis being true. The upper panel 

Table 1.a estimates the prior (base rate) probability of an effect being present, P(H1). This 

is an input into Table 1.b. which calculates the FDR or P(H0|D) at the p value of 0.05. 

Essentially, reversing the process, Table 1.c applies Bayes Theorem to calculate an 

adjusted hurdle p value consistent with P(H0|D) = 0.05. Outputs are formatted in bold.   

 

Table 1.a  Estimating the Prior: 𝑃(𝐻1) =  
𝑃(𝐷)−𝛼

(1−𝛽−𝛼)
 

 α β P(D)) P(H1)   

 0.05 0.2 0.15 0.13   

       

Table 1.b  Calculating:  P(𝐻0|𝐷)  

 Likelihood Prior 

Raw 

Posterior Posterior 

  

 P(D|H) P(H) P(D|H)*P(H) P(H|D)   

H1 (is an 

effect): 0.80 0.13 0.1067 0.71 

  

H0 (no effect): 0.05 0.87 0.0433 0.29   

P(D):   0.15    

       

Table 1.c  Doing the ‘Bayesian Flip’:  α∗ =  P(D|𝐻0) = 0.05
P(D)

P(𝐻0)
 

 

 Likelihood Prior 

Raw 

Posterior Posterior 

  

 P(D|H) P(H) P(D|H)*P(H) P(H|D)   

H1 (is an 

effect): 0.80 0.13 0.1067 0.95 

  

H0 (no effect): 0.0065 0.87 0.0056 0.05   

P(D):   0.1123    

       

         

 

Table 1.a Estimates the prior P(H1) given inputs of α, β and the proportion of tests 

found to be significant in an out of sample multiple test batch,  P(D)).   
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Table 1.b. Calculates  P(H0|D) given inputs of α, β and P(H1).  The leftmost column 

of table 1.b has 0.05 inputted for P(D|H0) and 0.8 for P(D|H1) . Note that P(D|H1) 

is not (1-α) but rather the power of the test (1-β). Calculated figures in this example 

are: The chance of a True Positive (when there is an effect and the test is powerful 

enough to pick it up) is 0.1067. The chance of a False Positive is 0.0433. The total 

chance of getting any positive result, P(D), is the sum of these two: 0.15. This value 

is to be expected as it is the empirically observed input that is consistent with the 

estimated prior.  Scaling the “Raw Posterior” numbers calculated above by 

dividing by P(D) results in the Posterior distribution summing to unity. In this 

case, the chance of a false positive given a positive test result is 0.0433/0.15 =0.29. 

This is P(H0|D) or the FDR. From this metric it can be said that the null 

hypothesis can, in this case, be rejected at the 71% level of confidence (rather than 

the 95% level routinely incorrectly inferred from the p value). As pointed out in 

Section III, P(H1|D) (=0.71 in our example) corresponds to the Positive Predictive 

Value (PPV) of Ioanndis (2005). The BF (which is also the likelihood ratio in this 

case) can be calculated as P(D|H0)/ P(D|H1)=0.05/0.80=0.065. Converting from 

odds format to probability format we obtain 0.065/(1+0.65)=0.0588. In this case, is 

higher than the p value of 0.05.  This is due the fact that stated in probability 

format the MBF is α/(1-β+α) and this is >α if β>α,, as it is in this case. 

 

Table 1.c. Calculates the P(D|H0) i.e. adjusted p value,  given inputs of target 

P(H0|D), β and P(H1).  Here the rightmost column of table 1.c has 0.05 inputted 

for the desired hurdle for the P(H0|D).  By comparison with Table 1 1.b it can be 

seen that the more stringent p value decreases the chance of a false positive to 

0.0056 and, as a result, drops the total proportion of positives to 0.1133.  These 

figures are solved for such that such that False Positives as a proportion of Total 

Positives i.e. P(H0|D) is lowered to 0.05. The p value calculated to be associated 

with this hurdle is 0.0065. In this example, this is the hurdle that should be used 

for hypothesis testing in an out of sample batch test. 

 

Table 2 calculates the supplementary metric of the Miss Ratio. Here the data, D, 

is defined as a negative test result. Here the proportion of False Negatives is 

0.0267 while True Negatives are 0.8233. The total proportion of Negatives is 0.85. 

Thus about 3% of Negatives are likely to be false and 97% correct. The RRATIO of 

False Positives to False Negatives is 0.0433 to 0.0267 which is 1.625. Thus, the 

test is more likely to find false effects that miss true ones. Depending on their 

relative cost this may result in an adjustment to the p value. If we assume that 

the cost is even i.e. the desired RRATIO=1 then the hurdle p value would need to 

decrease to 0.036 (under the conservative but incorrect assumption that the power 

of the test remains constant). As the power of the test weakens the drop in the 

alpha value will be less than this. In contrast to the FDR, the Miss Ratio rewards 

lower powered tests with easier threshold levels. If a p value threshold of 0.0065 
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consistent with a FDR of 5% is applied then the RMISS remains relatively 

unchanged. However, the number of false positives drops dramatically resulting 

an RRATIO of 0.18. In cases where the cost of relative cost missing an effect is 

assessed as being larger than this, it may motivate a relaxing of the p value hurdle 

for practical application (Harvey and Liu, 2019).  Clearly, the supplementary 

metrics of RMISS, RRATIO and an awareness of test power, provide a much richer 

‘dashboard’ is provided to the researcher than the myopia of overusing p values.    

 

 

Table II 

Calculating the Miss Ratio (RMISS) 

This table is analogous to Table I with the difference that P(D)) is the proportion of 

relationships found to be insignificant (the Data being defined as Negative test result). As 

before, α  refers to the hurdle p value used in the batch of tests which is set to 0.05. β  

refers to the type II (False Negative) error rate.  Outputs are formatted in bold.   

 

 Calculating:  P(𝐻0|𝐷) where D = Negative Test Result 

 Likelihood Prior 

Raw 

Posterior Posterior 

  

 P(D|H) P(H) P(D|H)*P(H) P(H|D)   

H1 (is an 

effect): 0.20 0.13 0.0267 0.03 

  

H0 (no effect): 0.95 0.87 0.8233 0.97   

P(D):   0.85    

       

 

 

 

VI. Conclusion 

 

Reviewing the problems in prior approaches to adjusting the p value hurdle for 

multiple hypothesis testing has necessitated a reconsideration of the foundations 

of individual hypothesis testing methods. The most serious problem with FWER 

restriction methods such as that of Bonferonni (1936) and Holm (1978) is that do 

not cater for the fact on the individual test level the p value is not a test of H0. This 

is corrected for in the attempts at FDR restriction such as Benjamini and 

Hochberg (1995) and Benjamini and Yekutieli (2001). However, these approaches 

being based on a ranking of  p values inherit a number of its problems that are 

addressed by the ‘division’ entailed in a Bayes Factor approach where a specific 

alternate is required.  Following Edwards, Lindman and Savage (1963), Goodman 
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(1999) and Harvey (2017) a MBF approach is supported where the observed mean 

value is selected as the maximum likelihood alternate. However, this approach 

also requires the specification of a prior.  This paper advocates a “fully blown” but 

“Positivist” Bayesian approach which uses empirical observation and logical 

relationships, rather than subjective beliefs, to estimate the base rate or prior. 

Replication of conclusions is thereby facilitated, which is clearly germane in the 

context of the ‘replication crisis’. For the individual hypothesis tests where the 

prior is observable or can be analytically derived it can be used directly to estimate 

the P(H0) of the individual test. In such a vein, the appealing and easy to estimate 

BIC approach of Raftery (1995) and  Wagenmakers (2007) uses the mean observed 

value of the explanatory variable as a prior but only accords it the explanatory 

power of one observation. While the BIC can be recommended as a the individual 

test case, the MBF approach has greater flexibility in setting a prior and this is 

useful in the multiple hypothesis testing context.  Here, a method of empirically 

estimating the prior is presented and applied in an illustrative example. As 

demonstrated, this approach is easy to apply, has a closed form solution and makes 

an incremental contribution by demonstrating how to adjust p value hurdles for 

multiple hypothesis testing.  
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