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CONTEMPORARY SCIENCE is characterised by “big data” and the low cost of
computing power. This allows multiple hypothesis testing to be rapid, cheap and
indiscriminate. The empirical documentation of correlation has dominated over
deliberation over causation. Across disciplines, a substantial number of the
relationships identified as statistically significant have subsequently not been
replicated. There is a currently a “crisis of confidence” in the statistical methods
we employ. A concise survey of selected highlights of contemporary science, from
the macro to the micro level, reflects the large amounts of data that are currently
being processed and the multiple hypotheses being tested:

For 10 days over the Christmas period in 1995 the Hubble space telescope took a
picture of a dark area of the sky roughly the size of a pinhead being held at arm’s
length. Within it approximately 3 000 galaxies were observed. With the naked eye
a person can see about 2000 distinct stars in the clear night sky - all of which are
in our own galaxy. Consider that, in a pinhead of the sky there are more galaxies
than this. Such was the richness of data collected that it was shared as a public
service and by 2014 there were over 900 citations that referred to the paper
associated with this data set (Williams et al, 1996).

The SETI@home project produces 100 to 200 terrabytes of data daily for
enthusiasts to analyse and search for signals of extra-terrestrial intelligence. In
2006, it performed the largest calculation in history comprising 102! floating point
operations (Guinness Book of Records, 2008,
https://en.wikipedia.org/wiki/SETI@home). The most well known radio signal
from space is the 1977 “Wow! observation made by a volunteer at Ohio State
University. Despite repeated searches, this signal has not been replicated. Indeed,
this field of enquiry appears to have had a 0% replication rate, so far.

Since its launch in 2009, the Kepler spacecraft has been dedicated to search for
planets outside our solar system. By October 2017, Kepler it had identified 5011
exoplanets, of which 2512 have since been confirmed (NASA Exoplanet Archive,
2019). A false positive rate of about 50%. It can be noted that this area of research
beneficially adopts the approach of “triangulation’ to confirm its hypotheses. Not
only are three observations of a shielding of light from the orbited sun required for
a “transit dip” to be recorded but also evidence of a gravitational wobble in the
sun’s location can be used for a “radial velocity” confirmation. In this example, the
planet’s existence is indicated through two independent mechanisms (gravity as
well as light).



Large data sets also exist on the micro level. The human genome has been found
to consist of about 3.3 million base-pairs within which there are approximately
22300 protein producing genes. The field of genetic epidemiology, which attempts
to relate these genes and their combinations to the occurrence of diseases, has
become notorious for non-replication. Ioniddas’s (2005) widely cited paper “ Why
most research findings are fals€’ was prompted by the widespread non replication
problem experienced in this field.

In July 2012, after some 6 quadrillion collisions in the Hadron Large Collider
(LHC), the discovery of the Higgs Boson was announced. Its decay pattern exists
for a zepto (1021 second - about the time it takes for light to travel across the
length of a hydrogen atom. To do the large amount of hypothesis testing involved
in processing this data, the Worldwide LHC Computing Grid was developed. In
2017 it incorporated over 170 computer centres in 42 countries. By 2012, 25
petabytes of data per year was being produced by the LHC
(http://wlcg.web.cern.ch). Notably the Higgs boson discovery was only formally
announced when three independent teams had observed the same decay pattern,
each as a 5 sigma event (https:/en.wikipedia.org/wiki/Higgs_boson).

In the discipline of finance, a “zoo” of factors explaining the cross-section of equity
returns has been documented (Cochrane 2010). However, replication of these
findings has been poor. For example, Mclean and Pontiff (2016) consider 97
previously documented anomalies. They find “Portfolio returns are 26% lower out-
of-sample and 58% post publication”. Harvey, Liu and Zhu (2016) re-evaluate 296
previously documented anomalies: “We argue that most claimed research findings
in financial economics are likely false”. Hou, Xue and Zhang (2017) examine 447
anomalies. Using updated (but overlapping) data they find a 64% non-replication
rate at the 95% level of confidence.

Indeed, across almost all disciplines, non-replication has been well in excess of the
5% “expected level” when applying a p value threshold of 0.05. Among the
consequences of this “replication crisis” is that the journal “Basic and Applied
Social Psychology” stopped publishing papers using p values in 2015. The
American Statistical Association (2016, 4) was sufficiently moved to put out a
statement on p values “...intended to steer research into a post p<0.05 era”.
However, aside from stressing caution in their interpretation, this statement
contained very little substance as to how this problem could be corrected. The
response by researchers has essentially been to raise the hurdle rate. The field of
physics has used five “sigma” (effectively a t statistic of 5) since the mid 1990s. In
a recent paper in Nature co-authored by over 70 academics, an argument is made
to “Redefine Statistical Significance” (Benjamin et al, 2017). The proposition they



all signed up to is to increase the hurdle p value from 0.05 to 0.005. They
acknowledge that this is not a complete solution to the problem but it is a practical
step that increases the likelihood of replicability.

The aim of this paper is to ascertain the correct adjustment for hurdle p values in
multiple hypothesis testing. Due to the broad relevance of the topic, it is written
in a manner intended to be accessible to academics across all disciplines despite
an example in the field of finance being used to illustrate its recommendations. In
order to appropriately adjust for multiple tests, it is also necessary to reconsider
hypothesis testing at the level of the individual test. Most of the arguments
presented here have been published in prior research. However, there is far from
a consensus as to how to interpret and apply Bayesian statistics “ ..there must be
at least as many Bayesian positions as there are Bayesians” (Edwards, Lindman
and Savage, 1963, 195). As a step towards a convergence of consensus there is
value in putting together pieces of pre-existing arguments so as to form, what is
motivated to be, the most coherent combination. Clarity of explanation and ease
of implementation are also required to facilitate practical application.

The paper is organised as follows. Section I reviews prior approaches to adjusting
p values in multiple hypothesis testing. The approaches are classified, almost
chronologically, into Family-Wise Error Restriction Methods, False Discovery
Rate Restriction methods and Bayes Factor approaches where each successive
approach attempts to rectify weaknesses in the former. It becomes apparent that,
in order to appropriately adjust for multiple tests, it is first necessary to reconsider
hypothesis testing at the level of the individual test and here a Bayes Factor
approach 1s motivated for. However, it requires the selection of an alternate
hypothesis and a prior. The Minimum Bayes Factor approach is reviewed as a
natural alternative that uses the maximum likelihood alternate. The BIC
approach is also reviewed as this does not require the specification of either prior
(selecting the unit information prior) or alternate. Both BF methods are
procedures that are applicable at the individual as well as the multiple hypothesis
testing level. Essentially, by providing a suitable prior for the MBF an adjustment
for multiple hypothesis testing is suggested in this paper. Section II considers the
most fundamental weakness of classical Null Hypothesis Statistical Testing
(NHST):p values are the probability of observing the data given the null
hypothesis is true, P(D | Ho) and not P(Ho| D) -which is actually a test of the null-
hypothesis. Bayes Rule is used to switch these conditional probabilities and this
requires the input of a base rate or “prior”, P(Ho). The case for a ‘positivist’
Bayesian approach is made whereby priors are empirically estimated or
analytically derived. In Sections III and IV, it is demonstrated how, in multiple
hypothesis testing, the prior can be empirically estimated from the total number
of tests conducted (M), the power of the tests (1-8),and the portion observed to be



statistically significant at the threshold a, P(D)). This allows the calculation of a
hurdle p value, a*= P(D|Hy), that is consistent with a prespecified P(Ho|D).
Section V applies this approach to a case of multiple tests in the field of asset
pricing i.e. Hou, Xue and Zhang’s (2017) retesting of 447 previously documented
equity market anomalies. This illustrative example provides a template for the
adjustment of hurdle p values in multiple testing that can be practically applied
in a broad range disciplines. Section VI summarises and concludes.

I. Prior Approaches to Adjusting the p value for Multiple Hypothesis Testing
A. Family Error Wise Rate Restriction

The Bonferroni (1936) approach aims to keep the “family wise error rate” (i.e. the
probability that all M null hypotheses in the group being tested are
simultaneously true) at the a level. The adjusted significance level in order to do

1
so 18 1—(1—a)m. As an approximation, the Bonferroni adjusted hurdle of
significance is simply the level of significance applied to a single test divided by
the total number of tests conducted:

Where: a = the level of significance applied to a single test (usually 0.05)
M = the number of hypotheses being tested

a* = the adjusted level of significance used for multiple hypothesis
testing

This adjustment likely to be extremely punitive in situations where a large
number of tests have been conducted. Applying the equivalent approach of
multiplying up estimated p values by M, it would be quite possible to get p >1.

The Holm (1979) adjustment follows a similar theme and is relatively more
lenient than that of Bonferonni:



Ranking the tests from lowest to highest p values m=1,..., M, each test m has its
own hurdle rate. The first test (with the lowest p value) would have the same
hurdle as Bonferonni. However, for the second, the first test is effectively ‘removed
from the pool’ and the divisor becomes M-1. This procedure is repeated down the
ranked list of tests. The first test that does not meet the hurdle is rejected together
with all the remaining tests that have higher p values.

First, these adjustments takes no account of Type II errors (rejecting Ho when it
is true) and the resulting decrease in the power of the tests after the adjustment.
Adjustments intended to be conservative for the Type I errors (not rejecting the
Ho when it is false) could well be reckless for Type II errors. In many cases, the
Type II errors generated are likely to be more serious than the Type I errors that
they are intended to prevent.

Second, in the Bonferroni (1936) and Holm (1979) measures there is no account of
the correlations between tests. For example, various value measures (e.g. earnings
yield, dividend yield, book to price) all involved dividing by price and, thus, by
construction are likely to be correlated. In such a realistic situation, the number
of independent tests is likely to be correspondingly overstated. Recognising this
problem, Harvey and Liu (2014) conduct simulation studies to investigate the
effect of correlated explanatory variables.

Third, the total number of tests conducted (M) is rarely directly observable. Due
to a selection bias toward significant results, many tests that have been conducted
but have turned out insignificant have not been published. Basing a tally on prior
published research is likely to vastly understate M. However, when conducting
an out of sample test of multiple hypotheses, M is directly observable and this fact
1s used later in this paper. This direct observability should not be incorrectly
conflated with the fact that the base rate in the out-of-sample is test will be lower
the more that the initial selection of M is based on overfitting and selection bias
(see Section V). Thus, the problem of the inobservability of M can be avoided by
applying these metrics to out—of-sample batch tests and this problem 1is also not
specific to the FWER restriction methods.

More fundamentally, Pergneger (1998) has argued that the family-wise error rate
is the incorrect metric to be constraining. Rubin (2017, 6) argues this point as
follows “... consider a gambler who purchases 100 lottery tickets. Although this
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mass purchase increases the probability that the gambler will win the lottery, it
does not increase the probability that any one of her lottery tickets will be the
winning ticket. In the same way, a researcher who undertakes single tests of 100
different null hypotheses will have a relatively high probability on incorrectly
rejecting one of these hypotheses, but she will not increase the probability of
rejecting each hypothesis”. Rubin proceeds to make the case that the family-wise
error rate is only applicable in multiple tests of the same hypothesis.

These adjustments to p values commit the “standard error of science” i.e. using
P(D | Ho), rather than P(Ho | D), as its hurdle metric. An explanation of this error
requires returning to the first principles of hypothesis testing. Reconsider a
streamlined version of Fisher’s (1935) famous example: Can Dr Muriel Bristol (her
real name) tell the difference if her tea is made by adding the milk first or not? If
five cups are used in the taste test and she gets all 5 right there is a 1/(25) = 1/32
= 3.125% chance that we would get this result (the observed data, D) under the Ho
of her having no skill i.e. P(D|Ho) under a one tailed test. However, P(D|Ho) is
not particularly useful to know in isolation. It seems to be commonly interpreted
as the much more useful P(Ho|) which is, in fact a measure of whether the null
hypothesis in true. Any adjustment to p values, be it at the individual or multiple
test level, that does not account for the need to switch the above conditional
probabilities is fundamentally flawed. This critique applies to all members of the
FWER class of approach.

B. False Discovery Rate Restriction

Unlike the Bonferroni and Holm adjustments which aim to avoid a single false
discovery, the Benjamini and Hochberg (1995) adjustment applies a False
Discovery Rate (FDR) hurdle which they label “q”. The FDR is the expected ratio
of False Positives to All Positives conditioned on their being at least one positive
result (Storey, 2003) The FDR is discussed in more detail in Section II and shown
to be equivalent to P(Ho|D) and, in this manner, these approaches avoid the
‘standard error of science’ weakness that characterised the FWER methods..

Ordering observed p values from smallest to largest and defining imax to be the
largest index in this ranking such that:
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The Benjamini and Hochberg (1995) rule is that Ho is rejected for all tests i < i,,qy-
They provide a proof that such a threshold p value ensures a conservative FDR
threshold of q. Benjamini and Yekutieli (2001) also adopt a FDR hurdle approach
and demonstrate the following adjustment to be robust to dependency between the
test statistics:

., _ mgq
%m = MM

1

Where: ¢(M) = %:1;

Again, each test has its own hurdle rate. Ranking from highest to lowest p values,
the null hypothesis is rejected for all of those tests below and including the first
case where this hurdle is met. Especially when M is large, it is generally more
lenient than the two former approaches. Harvey, Liu and Zhu (2015) employ an
equally weighted composite of the Bonferroni, Holm and Benjamini and Hochberg
measures to suggest an adjusted t value of 3 for current asset pricing tests.
However, in later work, Harvey (2017, 2) emphasizes “.that making a decision
based on t>3 is not sufficient either” and a Bayesian approach is suggested (see
the following section).

There are, indeed, a number of remaining problems that characterise the above
FDR methods. Like the FWER restrictions methods discussed previously they also
do not take account of the power of the test. The above FDR restriction are also
based merely on a ranking of p values and, thereby, inherit a number of the p
value’s problems.

One of the most serious problems with p values is that they have the problem of
misrepresenting effect size. To Illustrate, Harvey et al’s (2016) suggestion of
raising the hurdle for significance to a t-statistic of 3 is used. Reading a table of p
values associated with this t statistic would imply that one would have more
confidence in the existence of an effect as the number of observations increases.
The relationship between the t statistic and Sharpe Ratio of an investment
strategy as the number of observations increases is illustrated in Figure 1 below.



R refers to mean returns in excess of the risk free rate and ¢ is the standard
deviation of excess returns.

Figure 1. The Sharpe Ratio under a constant t statistic as the number of
observations (n) increases
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It is clear that, for a constant t-statistic (3 in this example), as the number of
observations increases the Sharpe Ratio actually gets weaker! For a given t
statistic, the Sharpe Ratio needs to decrease in order to compensate for the effect
of additional observations. Absurdly, the p value of the strategy will indicate
increasing statistical significance as it does so. This is related to the bias
introduced by the “stopping problem”. In the field of medicine, for example, the
cost of obtaining each additional observation through a clinical trial may be
expensive in terms of cost, time and, possibly, the health of the subjects.
Observations are collected until n is big enough to find a significant result and
then the study is completed.

The ‘stopping problem’ is but one symptom of the effect of sampling design (see
Wagenmakers 2007 for an excellent discussion of this problem from which this
paper draws). Consider the lady drinking tea example mentioned in the previous
section and assume she tasted a 6th cup but got it wrong obtaining 5/6 correct (x).
Under the null of the binomial distribution with 6 observations the likelihood
function for this result is:



Lol = ($)p*a-p)

Which is 6/64 =0.0938 under the null that p=0.5. As the p value is P(Ho | p>x) it
requires the addition of the likelihood of obtaining the more extreme value of 6/6
which is 1/64. Thus, the p value associated with the observation x=5/6 is 7/64=0.11
for a one tailed test. This would not meet the threshold level of 0.05.

However, the experiment design Sir Fischer was applying was not a 6 cup test but
to continue testing until she got one wrong and then end the experiment i.e. the
negative binomial distribution was applied under the null. The density function
for observing s successes before f failures is:

n

Ll = (32 1)pa-p/

Where f=(n-s) mistakes. In this case under the null of p=0.5 it is

(g) 0.5%(0.5)'=1/64=0.016. Again, to calculate a p value the cumulative probability

of more extreme cases needs to be added:

A (N D osm =1/64

Note that this accounts for the effects of trials that may have but actually never
happened under the negative binomial distribution. A ‘total’ p value of 2/64=0.032
is calculated which would meet the threshold level of 0.05. The key point of this
example is that in both cases the evidence is the same (5/6 correct) and consistent
with both experiment designs. However, depending on which design was intended
a different p value is obtained.

This example also illustrates another problem with p values i.e. that it reflects the
probability of more extreme results than that of the ‘border case’ that is observed.
While an a threshold is by definition an inequality, this does not imply that the
metric that attempts to meet it need also be. In the binomial example, the p value
sums the probabilities of 5/6 and 6/6 based on the evidence of 5/6. Credit is given
for two possible outcomes of the experiment when only one can happen. The
likelihood of this sum is less than that of the border case, given that the border
case 1s based on a single outcome of the experiment while the p value is based on
two. The inequality specification of the p value thereby results in making
observations appear more extreme than they actually are and, thereby, more likely
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to reject the null. This is explained in more detail for the continuous case in the
following section.

The companion, Figure 2 considers the alternative situation where the number of
observations is kept constant across examples A and B. It is clear that case B has
the higher t statistic due to the lower proportional estimation error around its
mean. However, even in a worst case scenario, A outperforms B. This illustrates
that even when the number of observations are constant, the t-statistic takes
inadequate account of effect magnitude. Given a very small effect size, the more
certain you are that it is, indeed, very small — the more statistically significant it
gets! As illustrated, while not a formal hypothesis test, confidence intervals can be
a useful supplementary metric for the NHST researcher to assess effect size.

Figure 2. Effect Magnitude and t statistics with a constant number of
observations. In both case A and B there are the same number of observations (n).
In Panel A the expected effect size is 10 with a best case scenario of 16 and a worst
case of 4 (implying a mean absolute deviation of 6). In Panel B the expected effect
size is 2 with a best case scenario of 3 and a worst case of 1 (implying a mean
absolute deviation of 1). For the purposes of illustration, the mean absolute
deviation is taken as a proxy for the standard deviation in order to calculate a t
statistic in each scenario.
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C. Bayes Factor Approaches

Unlike in NHST, the use of Bayes Factor (BF) requires the selection of an alternate
hypothesis, Hi, as well as the Prior Odds ratio associated with it, P(Ho)/P(Hy).
Computational difficulties arise when a diffuse alternative is used. For example,
when Ho: p=0, and the alternate is any value other than zero. Then the likelihood
needs to be integrated over the distribution of the priors for each value other than
zero to get the posterior distribution. Early work such as Edwards et al (1963)
looked at conjugates — distributions whose properties are retained over integration
in order to obtain a closed form solution. However, this only applies in selected
cases. Also to facilitate application, Edwards et al (1963) consider under what
conditions “stable estimation” is possible 1.e. where a uniform prior may be used
as a satisfactory approximation. Alternatively, the same increase in computational
power that facilitates large scale multiple hypothesis testing also allows use of
numerical methods such as Markov Chain Monte Carlo and the Gibbs Sampler.
However, on a practical level, researchers would prefer to avoid these
computational difficulties and this has deterred the application of Bayesian
methods.

The computational trouble of integration is eliminated if a specific rather than
diffuse Hi is selected. The maximum likelihood value of H1 is a natural candidate.
The choice of H; in the BF specification is selected to be what is the most likely
estimate based on what has been observed. In other words, if a mean value of say
5% 1s observed for x then Hi: p=5%. This is applied in the Minimum Bayes Factor
(MBF) approach of Edwards, Lindman and Savage (1963) which is also
recommended by Goodman (1999) and Harvey (2017) inter alia. When calculating

p(DHy) .. . .
P(D|H, )’ 1t will be the BF with the

minimum value out of all of the possible specifications of Hi. It can be interpreted
as the alternate most likely to reject Ho. If no relationship is found using the MBF,
using another alternate will not alter this interpretation. Using Ho in the
numerator also facilitates comparison with NHST p values where small values
indicate a rejection of Ho.

Bayes Factor with Hp in the numerator i.e.

Bayes’ Factor (BF) is derived from the ratio (odds format) of two Bayes Laws
(where P(D) cancels out):

P(H,[D) _ P(DIHy) P(Ho)

P(H,|D) P(D|Hy)" P(Hy)
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Clearly evidence for both Hoand H; are considered. This can also be stated as the
Posterior Odds is equal to the BF, times the Prior Odds. BF can be interpreted as
the ratio which one should “change one’s mind” from the Prior Odds. It is based on
the evidence (D) and is independent of the Prior and as such can be interpreted as
an ‘objective’ measure of comparison between two hypotheses. For example, using
the hurdle rates suggested by Jeffreys (1961) a BF below 1/30 would be strong
evidence for the alternate and above 30 for the null. A BF of 1/20 would roughly
correspond to the NHST conventional level of 5% (albeit on a different metric) . A
notable feature of the BF hurdle tables is that, in contrast to those of NHST, they
are not contingent on the numbers of degrees of freedom in the test. In the case
where there is only one value for H;, BF, is the likelihood ratio. If a uniform prior
1s used then the BF is also the posterior odds.

The division entailed in calculating BF allows a lot of NHST’s difficulties to be
“cancelled out”. For example, the same sample design (e.g. binomial or reverse
binomial) is used is considering evidence for both Ho and Hi. The number of
observations are also the same for the denominator and the numerator. (The
number of observations does improve the standard errors of the estimated
difference between the two and hence its t statistic. However, the effect that a
given t statistic’s p value converges downwards to that of the Z score as n increases
- being equally beneficial to H; and Ho - is cancelled out). This division also solves
the problem of needing to convert a likelihood into a probability as it is possible to
find the ratio between two lines despite them having an area of zero. Edwards et
(1963) point out that the division entailed in calculating likelihood ratios is an
application of the “likelihood principal” of Barnard (1947) and Fisher (1957) i.e.
that multiplying a likelihood by a constant does not alter its influence. This is
because the constant is both in the numerator and dominator of the likelihood
function. Changing sampling designs and stopping rules would reflect in such a
constant. This has the important implication that “According to the likelihood
principle data stands on its own feet” (Edwards et al, 1963, 239).

Under the assumption of a Gaussian distribution of the true mean and standard
error of an estimate x of the mean Edwards et al show that the MBF for Ho:p=0
can be o be simplified as:

ZZ
MBF = e~ (%)
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Where Z ~N(0,1) is the standardised Z-score of x. Z=(x-pm)/c where p is the
hypothesised true value of x and o i1s its standard error. A comparison of the

(x=0)
normal pdf under Ho: u = 0 i.e. (P(Hy|D) = P(x|u = 0,0)= \l/z_e_(T)/Z with that

g

under Ho: ¢ = x is that only the term in the exponent changes from (x-0) to (x-x=0).

which scales the Gaussian function

This allows the cancellation of the term -
g T

such its area sums to one and this facilitates the simplification (see Appendix I in
Goodman (1999)).

The conventional t statistic may be used as an approximation for Z which makes
this version of the MBF easy to calculate using a familar metric the NHST toolkit.
It also provides a method of ‘translation of p-values into t-statistics (for a given
number of degrees of freedom) and, thereby, into corresponding MBFs. Note that
for a given p-value the corresponding t-statistic will increase as the number of
observations decreases. Thus, a given p-value from a smaller sample will actually
result in a lower (more significant) MBF.

Calculating the MBF for Z=1.96 (which is consistent with a two tailed p value of
0.05) obtains a value of 0.146. This value is the ratio of the odds of Ho versus Hj.
The BF can be converted from an odds ratio to a probability (p) by p=odds/(1+odds)
which 1s 0.127. Thus, the MBF probability of the null is about 2.5 times as large
as the p value of 0.05 in a two tailed test and double this for a single tailed test.
This discrepancy arises due to the fact that the NHST p value represents the
probability of the inequality p > x rather than the border value p=x that was
actually observed. This is comparison is illustrated in Figure 3 which shows the
probability density functions under Ho (on the left) and the maximum likelihood
observed value of H; (on the right).
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Figure 3 Graphical Representation of the Minimum Bayes Factor (MBF)
Hypothesis testing Approach. The Gaussian probability distribution of Z-scores
on the left represents the case under Ho while that on the right the case under H;
(where Hj is Zo, the observed Z-score in the MBF approach). Zr is the threshold Z-
score to be deemed statistically significant based on the selected a value in a two
tailed test.

The area under the distribution assuming Ho that is to the right of the observed
value of the Z-score, Zo, represents the p value of a single tailed test i.e. P(Z >
Hi|Ho). In a two tailed test, the area of the same magnitude under H; and to the
left of Ho i.e. P(Z < Hi|Ho) is added to this probability, doubling its value. In
textbooks this latter area is routinely depicted as the leftmost tail under Ho but,
in actual fact, it represents an area under a different distribution i.e. that of the
maximum likelihood Hi. This distribution is also used in calculating the power of
the test which is the area under it to the right of Zr. Thus despite NHST’s not
explicitly specifying an alternate, the maximum likelihood alternate plays a key
role in the calculation of both the power and two tailed p value metrics. As a MBF
approach explicitly selects an Hi, it knows in which direction the effect tested for
is and, thus, only a single tailed test would make sense (Edwards et al 1963).

In Figure 3, The length of the vertical line B represents the likelihood of the
observed value, Zo, under Ho while D is its likelihood under H;. The probability of
any particular event such as Zo occurring is vanishingly small in the continuous
case. Thus, NHST has used the integration of all values more extreme than Zo as
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an approximation to solve this problem. However, it is possible to calculate and
interpret relative likelihoods when an alternate has been specified. The ratio B/D
1s the likelihood ratio of the observed value under Ho relative to the maximum
likelihood Hi. A and C represent the analogous likelihood values at the p value
threshold. The likelihood ratio at Zr is similarly represented by the ratio A/C.
However, when the inequality P(Z >Zr| Ho) =a is (incorrectly) used in a one-tailed
test the likelihood becomes this area relative to the area P(Z >Zr|H1)=1-8.
Thereby, a relatively elegant expression for BF = a/(1-8) i.e. alpha divided by the
power of the test, is obtained at this threshold. Clearly, the MBF approach takes
the power of the test into account unlike the FWER and FDR restriction methods
reviewed earlier. However, this measure is imprecise in its use of equalities and
this ratio of areas will be less than that of the correct ratio A/C, making the test
result seem less likely under the Ho than it really 1is.

One of the possible weaknesses of the MBF approach is the need to specify a prior.
A uniform prior, however, is a useful ‘base case’ to consider. An alternate BF
approach that has minimal reliance on an empirically observed prior is that of
Raftery, (1995) and Wagenmakers (2007). They show how BF can be approximated
from standard regression analysis output, making it easy to practically apply.
This is done through use of the Schwarz (1978) or “Bayesian Information
Criterion” (BIC) of the model estimated:

BIC = =21In(L) + k.In(n)

Where: L =the maximised value of the likelihood function

k = the number of parameters estimated

n = the number of observations

The BIC is a measure of model fit (like R2?) and used primarily for comparing
models with the same dependent variable. Note that smaller values for the BIC
indicate a better fit. Wagenmakers (2007) shows that, in the case of regression
analysis, the BIC can be calculated as:

BIC = n.In(1 — R?) + k.In(n)
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In other words the BIC is a function of the R2 of the model. The BF can then be
approximated as a function of the difference in explanatory powers of two models,
ABIC = BIC(H,) — BIC(H,):

_ P(DIHo) _

— ABIC/2
P(D|H,)

BF

In this case, the model associated with Hi may, for example, have an additional
explanatory variables(s) than that associated with Ho. Indeed, Ho may just be a
regression model with only an intercept term reflecting only the base rate mean of
the dependent variable. The resulting estimated BF value can be interpreted as
discussed earlier in this section. An accessible and more detailed tutorial to
applying the BIC approach is provided by Masson (2011).

Both a strength and weakness of this approach is that it does not require the
specification of a prior as the unit information prior is implicitly applied. This prior
essentially uses the observed mean and standard deviation in the dependent
variable and accords it the information content of a single observation. Rafterty
(1998, 1) argues that “Clearly a prior that represents the available information
should be used, although the unit information prior often seems reasonable in the
absence of strong prior information’. Raftery (1998) further argues that due to its
‘spread-out’ nature the unit information prior will be conservative towards
rejecting the null and can used as a “baseline reference analysis’.

Despite the appeal of the BIC approach for individual hypothesis testing, due to
its ease in calculation and not allowing the explicit selection of a prior, it is not
clear how this approach can be adapted for multiple hypothesis testing. In
contrast, the MBF approach can be facilitated by estimating an empirical prior
that can be used in multiple hypothesis testing. Section II below reviews the use
of Bayes Law to switch conditional probabilities from P(D | Ho) to P(Ho | D). Section
IV decomposes the proportions of expected test results under the permutations of
True/False and Positive/Negative. This decomposition is used to obtain an

estimate of the prior in Section V. The approach is illustratively applied in Section
VI.

I1. The Bayesian Flip
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The following analysis make two important simplifying assumptions. First it is
assumed that the test is dichotomous in outcome i.e. it provides a binary True or
False result. This avoids the problem of having a diffuse alternate and the need to
choose a specific for Hi. The alternate is also, by default, the maximum likelihood
H:. Second, it is assumed that that the ‘precise’ value for the p value is equivalent
to the inequality value of the p value i.e p=0.05 is equivalent to p<0.05. In other
words, when p<0.05 is obtained, an event with a 5% probability under Ho has
happened. The avoids the complexities entailed due to the fact that the p value
reflects the probability of more extreme results than that of the ‘border case’ that
is observed (see Section I.B).

Bayes Law allows us to switch conditional probabilities. When applied directly to
the problem of hypothesis testing:

P(H
P(H,|D) = P(D|Ho)%

Where: P(H,) the “prior” (before getting data D)

P(D|H,) = the “likelihood” (conventional p value in this application)
P(D) = P(D|H,) P(Hy) + P(D|not Hy) P(not Hy)
P(Hy|D) = the “posterior” (after getting data D)

However, in order to conduct the ‘flip’ additional information in the form of an
estimate of the probability of Ho being true, P(H,), prior to receiving the new data
(D) is required . Note that, P(D) is a normalising term that makes the posterior
probabilities add up to one and does not provide any new information into the
analysis. Incorporation of the prior has been the most controversial feature of
applying Bayes Law. It has been criticised as a means for subjective biases to enter
the analysis. This need not be the case. The “Positivist Bayesian” approach
suggested in this paper can use (i) empirical analysis i.e. it subsumes an
“empirical” Bayes approach, or (i) definitions and mathematical relationships to
establish a prior and does not require the use of subjective probabilities.

An example of (i) using empirical analysis to estimate the prior by doing tests on
a broad based random sample of people to estimate that the base rate for a certain
disease in the overall population, P(H;), is say 1%. Combined with P(D|H;) i.e. the
probability of getting the data of a positive test result for the disease given that
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you have it, it allows calculation of the probability that you have the disease given
the test result P(H;|D). Omitting the prior in this calculation is, as mentioned,
simply an error of logic. With some simplification, if the p value of the test is 0.05
and the base rate is 0.01, even if you have a significantly positive test result, the
odds are approximately 5:1 (the P(Ho|D) is 83.19% to be precise) that you do not
have the disease. (For simplicity, a power of 1 for the test is assumed in this
example. Given these odds, even for an individual in-sample test, it is no wonder
that there will be pervasive non-replication of this result. The p value is not a
measure of replicability nor a test of the null hypothesis.

Importantly, estimating the base rate is just as valid an empirical analysis as the
conventional estimation of P(D|H,). The prior is not the probability before getting
any data. It 1s the prior before getting the additional data used by the test
concerned. In this sense, the term “base rate” maybe preferred to that of “prior”.
An element of what is typically referred to as “descriptive statistics” (e.g. the
empirically observed proportion of people with the disease in our example) is
actually an essential input into the inference process. Furthermore, as more data
accumulates and follow up tests are conducted, the initial base rate becomes less
relevant. Bayes Theorem provides a mechanism to rationally update the prior
based on new evidence. The BF can be multiplicatively updated for N independent

tests:
N
BFy = 1_[ BF;
i=1

In our disease example, given the initial positive result, a second independent test
for the disease would commence from a 17% rather than 1% base rate. In this case,
if a second positive result is found, the P(Ho | D) drops to 19.62%.

An example (ii) of using an apriori prior is the assumption that you are using a
standard pack of playing cards. Thus, for example, you can state the base rate
probability of randomly drawing a heart is 25%, based on the definition of what
constitutes a standard pack. If you are provided with the data that the card is red
you can revise your probability that the card is a heart to 50%. Note that using the
uniform prior for obtaining a heart i.e. that P(H;) = 50%, the incorrect inference
of 100% would be obtained. This uniformed prior ignores the information provided
by the assumption that a standard pack of cards is used.

Examples of analytically deriving a prior also occur when considering test design.
For example, in ‘extreme performer’ research — trying to identify those shares with
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the 10% best returns over the following year, by methodological construction, in
the absence of additional information the prior can be inferred to be 10%.

IV. Adjusting the p value and Supplementary Metrics

Figure 4 considers the breakdown of research findings against true relationships.
Here for simplicity, a dichotomous variable (having the disease or not i.e.
True/False) is matched with by another dichotomous metric (a two-tailed test
result that is found to have a p value of a or lower i.e. Positive/Negative). In the
case of an single in-sample test, such as the probability of disease example used
earlier, P(H1) would represent the base rate probability of having the disease
without knowing the test result. Given the a level and power of the test (8) this
allows calculation of the expected number of cases for the permutations of
True/False and Positive/Negative.
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Figure 4. Test Results and True Relationships

The total area of the rectangle below represents the full probability space of possible
results and sums to unity. Where P(H1) represents the base rate, a refers to the level of
significance used and (1-8) to the power of the test. The unshaded area represents the
portion of positives identified by the test and the shaded area the negatives.

(1-B) B
P(H1) { | True Positives: P(H)(1-B) | False Negatives: P(H1)B
i False Positives:
a (1- P(Hy))
1 ]
P(HY) True Negatives:
(1- PHD)(1- o)

The top row of Figure 4 represents the proportion of cases where the null
hypothesis is false, P(H1). Some will be associated with positive test results (True
Positives) and others negative test results (False Negatives). The proportion of
each is determined by the power of the test (1-8) where B represents the probability
of a Type II Error (i.e. rejecting the null hypothesis when it is true). The area
below the top column (1-P(H1)) represents all cases where the null hypothesis is
true. This is broken down into False Positives and True Negatives. The proportion
of each is determined by the Type I error rate (a) of the tests.

Defining P(D), such that the data (D) is a Positive test result and substituting «
for P(D|H,) allows us to solve for P(H,|D) using Bayes Law:

P(H,)

P(Hy|D) = & 5t

From the breakdown in Figure 4, P(D) is the sum of the False Positives and the
True Positives:

P(D) = a(1—P(Hy))+P(H)(1—p)
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Given that P(H,) = 1 — P(H,), this allows the following substitution:

a(1 - (P(Hy))

P(Ho|D) = a(1—P(H))+PH)( - B)

The influence of the power of the tests (1-8) can be explicitly seen here as
influencing the True Positive P(H;)(1 — B) portion of the denominator. A weaker
power leads to less True Positives and a higher P(Ho|D). It is also evident by
substitution that P(Ho|D) can be more simply expressed as the ratio of false
positives to all positives:

P(HO |D) _ False Positives —FDR

All Positives

Unlike the p value —this measure is scaled by the probability of getting a positive
result. As mentioned in Section I.B, in the field of finance this ratio has been
termed the “False Discovery Rate” (FDR) (see Benjamini and Hochberg, 1995;
Benjamini and Yekutieli, 2001 Harvey Liu and Zhu, 2016;, Harvey, 2017 inter
alia). Wacholder et al (2004) independently derive a “False Positive Report
Probability” (FPRP) that is equivalent to this expression. In the context of the
“replicability crisis” the FDR also has the relevant interpretation as a “Non
Replication Rate” i.e. the probability that there is no True relationship when a
Positive test result is observed. The most important feature to recognise about
this metric, however named, is that is equivalent to P(H,|D) — by definition the
proper hypothesis testing metric.

Toanndis (2005) derives the “complement” to the FDR/FPRP which he calls the
“Positive Predictive Value (PPV)” of a test. It represents the proportion of Positive
results that are True:

_ PU)(A-p)

PPV P(D)

Clearly, PPV+FPPR=1I and, thus, these measures are rearrangements of the same
information. It can be similarly shown via Bayes Theorem that, PPV = P(H,|D) =
1- P(H,|D).
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The approach adopted in this study (is that a threshold is applied to P(H,|D) and
then the p value that is consistent with this threshold (a*) is solved for. Typically,
we would want to keep P(Ho| D) low, analogous to the 0.05 p value level used in
NHST. Substituting 0.05 as the hurdle P(H,|D) into Bayes Law and rearranging
with the variable to be solved for on the left hand side:

P(D)

o = 0.05
P(H))

As can be seen, lower the base rate i.e. a larger value for P(H,), the stricter the
threshold a* becomes. This equation cannot be directly solved algebraically due to
the interdependence of P(D) and P(D|H,) where each of these terms is needed to
calculate the other. However, simple iterative procedures converge on a solution
easily. This allows us to solve for the p value (a*) such that P(H,|D) = 0.05.

There also exist supplementary metrics which, although not tests of the null-
hypothesis, provide useful insight beyond that of the FDR. The “Miss Ratio”
(RMISS) is the rate at which test will miss finding a true relationship (Genovese
and Wasserman, 2002; Sarkar, 2004; Harvey and Liu, 2019) :

False Negatives

RMISS =
55 All Negatives

— P(H.)B
P(H)B+(1-P(Hy))(1-a)

Analogous to the FDR, RMISS is set to zero if there are no Negative results. As
can be seen the lower the hurdle a and the base rate P(H;), the higher the
proportion of True Negatives and the lower the Miss Ratio. Given that the
proportion of True Negatives is a positive number, an increase in the power of the
test (1 — ) will decrease the Miss Ratio. It is probably good practice to report the
power of the test(s) concerned when interpreting the RMISS.

Harvey and Liu (2019) introduce a useful metric RRATIO, the “Ratio of False
Discoveries over Misses”
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False Positives
RRATIO =

False Negatives

_ a(1-P(Hy))
P(H)B

This metric allows insight into the trade-off between Type I and Type II errors. for
For example, in the identification of a dread disease that would benefit from being
treated early, a Type II error (missing that something’s there) is likely to be much
more costly that of a Type I (a stressful false alarm). In contrast, making a false
criminal conviction (Type I error) is generally deemed more costly to society than
letting a guilty person get way (Type II error). Hence the criminal threshold
“beyond a reasonable doubt” rather than the civil threshold of the “balance of
probabilities”. Harvey and Liu (2019) suggest solving for the a threshold level
such that a desired RRATIO is achieved. In a similar manner, Storey (2003)
analytically defines an investor’s loss function as a weighted average of RDR and
RMISS and solves for a significance threshold that minimises its value. If, for
example, there 1s an excess of False Positives the alpha level is dropped. There
exists an interaction effect whereby f will increase as a result and both will
contribute to the RRATIO decreasing.

24



V. An Empirical Prior for Multiple Hypothesis Testing

At the level of multiple hypothesis testing there arise new difficulties that are
more familiarly associated with the replication crisis. There are the concerns
regarding the false positives that we anticipate are going to arise for a given hurdle
p value within the batch of tests conducted. Due to selection bias, overfitting and
the correlations between tests, the true number of independent tests that are
represented in the batch is unobservable. As a result, when applied to multiple
out-of-sample hypothesis testing, applying the FDR has the practical difficulty
that P(H,) is not directly observable. In certain batches, where a field is well
established, prior research may result in an informed selection of candidate
variables to test and P(H1) may be of a high value. In contrast, exploratory studies
may have a lower base rate.

At the level of multiple hypothesis testing it is possible to use the same framework
as before where the probability space (area of Figure 4) constitutes M (individually
properly specified) tests rather than N observations (as was the case for the
individual in-sample tests). P(H;) is defined here as the probability of a True
relationship being present across the batch of tests being conducted. As argued in
Section II, the number of out-of-sample tests (M) is observable. The proportion of
positive results for a batch of out-of-sample tests at a given a and 8, P(D) is, also
observable. It is possible to work back from this latter observation and solve for
an estimate of P(H,). As before, P(D) is the sum of the False Positives and the
True Positives:

P(D) = a(1—P(Hy))+P(H)(1-p)

Simple algebra follows for expanding and grouping terms:

P(D)=PH)A-B—-a)+«a

And solving for P(H;) :
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This argument is not circular as, in this case, P(D) is new empirical input that is
gleaned from the batch of tests being conducted. Unlike in the individual test case,
it is now possible to observe the results of all of the other tests in the batch and
see how many were found to be significant. What was previously but a
normalisation term is now a source of empirical information that allows the
‘backing out’ of an estimate of the prior. For example, a batch of 1000 tests may be
observed have 15% of the results being Positive. With some simplification, the
numerator of this expression conveys the intuition that a (e.g. 5%) of the results
are expected to be false positives by chance. So in this case 15% - 5% = 10% of the
positive results are likely to be valid. This simplification would hold if the
denominator of this expression is one i.e. as the power of the test and a level
approach unity and zero respectively. However, as stated, it has the weakness of
not considering the power of the tests concerned. As the power of the tests weaken,
the estimated base rate increases to compensate for false negatives. Often in an
out-of-sample replication study the number of time-series observations is lower
and, hence, the power of the test will be weaker ceteris paribus. This will lead to
a lower proportion of significant results being found. Thus, the power term is in
the denominator of this metric and as it weakens the estimate for P(H;) will
increase to cater for this this effect.

A key precaution in estimating the base rate is to avoid using the same data twice.
For this reason, it is more precise to exclude the test result of the particular test
being evaluated and estimate P(D) out of the remaining M-1 tests. As M becomes
large these figures, of course converge. When applied to a batch of M tests an

%. The estimate is
likely to be robust to correlation between p values but its standard error is not. A
refinement may to replace M with the number of orthogonalised strategies when
estimating the standard error. This provides confidence intervals for the estimate
of the prior and stress testing for the robustness of p values. Again, a larger batch
of tests, M, is likely to mitigate estimation error. This approach is likely to work
best on large batch tests where the Bonferroni based adjustments are weakest.

estimate of P(D), P, is obtained with a standard error of:

To compare with prior work, unlike the Bonferroni (1936) and Holm (1979),
Benjamini and Hochberg (1995) and Benjamini and Yekutieli (2001) approaches
which only take a@ and M into account, this adjustment also takes the power of the
test and proportion of positive results within the batch as inputs to adjust the
hurdle p value. The analytic approach taken here differs from the bootstrapping
approach applied in Harvey and Liu (2019) and Fama and French (2010). The
analytic solution offers computational ease without further econometrics. It is,
however, more sensitive to the violation of the somewhat restrictive assumptions
on which it i1s based. The Positivist Bayesian approach described in Section II
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would disagree with Harvey and Liu (2019,8) “... the choice of (prior) is inherently
subjective”. A Positivist Bayesian approach similarly differs from the “personal
probability” approach of Edwards et al (1963, 197) which they illustrate as follows
“For you now, the probability P(A) of an event A is the price you would be willing
to pay in exchange for a dollar to be paid to you in case A is true. Thus, rain
tomorrow has a probability 1/3 for you if you would pay just $.33 now for in
exchange for $1 payable to you in the event of rain tomorrow”. It is also necessary
for these probabilities to be consistent such that you cannot be trapped into
accepting a combination of bets that assures a loss. In order to ensure consistency
1t 1s necessary to be willing to take both sides of each bet otherwise risk aversion
could lead a universal lowering of probabilities i.e. you would require a payoff rate
higher than the perceived probability of payment to take on risk. However,
subjective opinions are nevertheless influenced by well documented behavioural
biases such as underestimation of uncertainty. There may be ‘other interests’ such
as owning an umbrella factory that may influence your required payoffs. The
vaguarities of personal opinion aside, an important objective of the scientific
method 1s to avoid the situation where two people may have different subjective
beliefs and one cannot be considered more correct than the other. In this case, a
Bayesian approach based on an empirically estimated prior “lets the data speak”
in such a manner that two researchers presented with the same data would get to
the same conclusion. Facilitating such communication between researchers and,
thereby allowing for the possibility of ‘replication’ is the primary motivation for
the Positivist rather than Subjectivist view. Aside from this difference, this paper
broadly agrees with and follows Edwards et al (1963). Harvey (2017) and also the
very well written Goodman (1999a, 1999b). As a result, it is in the MBF context
that multiple hypothesis testing is considered in this paper and an adjustment to
p value hurdles i1s made by empirically estimating a prior that it can use.

This adjustment for multiple testing is illustratively applied using an example in
the field of asset pricing' Hou, Xue and Zhang (2017) examine a large batch
comprising 447 previously documented firm specific variables that have been
found to significantly explain the cross section of equity returns. Using updated
(but overlapping) data they find a 64% non-replication rate at 95% level of
confidence. It was enquired from these authors how many of the anomalies were
still found to be significant in the non-overlapping later period. While this test had
not explicitly been done an upper estimate of 20% was provided (email
correspondence with Prof Zhang). For the purposes of this example, the
simplifying assumption of a power level of 80% is applied across all tests (as the
power of a test is readily measurable this could be adjusted on a case by case basis
by the researcher who has access to the data). It is assumed that 15% of results
are found to have a p value of 0.05 in the out of sample period.
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Table I

Illustrative example of adjusting the level of the p value in multiple testing

In this example, a refers to the hurdle p value used in the batch of tests which is set to
0.05. B refers to the type II (False Negative) error rate. P(D)) is the proportion of
relationships found to be significant (the Data being defined as Positive test result) in the
batch of M tests. P(H) is the probability of an hypothesis being true. The upper panel
Table 1.a estimates the prior (base rate) probability of an effect being present, P(H1). This
is an input into Table 1.b. which calculates the FDR or P(Ho|D) at the p value of 0.05.
Essentially, reversing the process, Table 1.c applies Bayes Theorem to calculate an
adjusted hurdle p value consistent with P(Ho|D) = 0.05. Outputs are formatted in bold.

Table 1.a Estimating the Prior: P(H,) = (i(_D;:Z)
a B P(D)) P(H,)
0.05 0.2 0.15 0.13
Table 1.b Calculating: P(H,|D)
Raw
Likelihood Prior Posterior Posterior
P(D|H) P(H) PD|H)*P(H) PMH|D)
H: (is an
effect): 0.80 0.13 0.1067 0.71
Ho (no effect): 0.05 0.87 0.0433 0.29
P(D): 0.15
. . . ek P(D)
Table 1.c Doing the ‘Bayesian Flip™ o = P(D|H,) = 0.0Sm
0
Raw
Likelihood Prior Posterior Posterior
P(D | H) P(H) PO |H)*P(H) PMH|D)
H; (is an
effect): 0.80 0.13 0.1067 0.95
Ho (no effect): 0.0065 0.87 0.0056 0.05
P(D): 0.1123

Table 1.a Estimates the prior P(H;) given inputs of a, B and the proportion of tests

found to be significant in an out of sample multiple test batch, P(D)).
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Table 1.b. Calculates P(Ho| D) given inputs of a, 8 and P(H1). The leftmost column
of table 1.b has 0.05 inputted for P(D | Ho) and 0.8 for P(D | H1) . Note that P(D | Hy)
is not (1-a) but rather the power of the test (1-8). Calculated figures in this example
are: The chance of a True Positive (when there is an effect and the test is powerful
enough to pick it up) is 0.1067. The chance of a False Positive is 0.0433. The total
chance of getting any positive result, P(D), is the sum of these two: 0.15. This value
1s to be expected as it is the empirically observed input that is consistent with the
estimated prior. Scaling the “Raw Posterior” numbers calculated above by
dividing by P(D) results in the Posterior distribution summing to unity. In this
case, the chance of a false positive given a positive test result i1s 0.0433/0.15 =0.29.
This is P(Ho|D) or the FDR. From this metric it can be said that the null
hypothesis can, in this case, be rejected at the 71% level of confidence (rather than
the 95% level routinely incorrectly inferred from the p value). As pointed out in
Section III, P(H; | D) (=0.71 in our example) corresponds to the Positive Predictive
Value (PPV) of Ioanndis (2005). The BF (which is also the likelihood ratio in this
case) can be calculated as P(D|Ho)/ P(D|H1)=0.05/0.80=0.065. Converting from
odds format to probability format we obtain 0.065/(1+0.65)=0.0588. In this case, is
higher than the p value of 0.05. This is due the fact that stated in probability
format the MBF is a/(1-B+a) and this is >a if B>a,, as it is in this case.

Table 1.c. Calculates the P(D|Ho) i.e. adjusted p value, given inputs of target
P(Ho|D), 8 and P(H;). Here the rightmost column of table 1.c has 0.05 inputted
for the desired hurdle for the P(Ho| D). By comparison with Table 1 1.b it can be
seen that the more stringent p value decreases the chance of a false positive to
0.0056 and, as a result, drops the total proportion of positives to 0.1133. These
figures are solved for such that such that False Positives as a proportion of Total
Positives i.e. P(Ho| D) is lowered to 0.05. The p value calculated to be associated
with this hurdle is 0.0065. In this example, this is the hurdle that should be used
for hypothesis testing in an out of sample batch test.

Table 2 calculates the supplementary metric of the Miss Ratio. Here the data, D,
1s defined as a negative test result. Here the proportion of False Negatives is
0.0267 while True Negatives are 0.8233. The total proportion of Negatives is 0.85.
Thus about 3% of Negatives are likely to be false and 97% correct. The RRATIO of
False Positives to False Negatives is 0.0433 to 0.0267 which is 1.625. Thus, the
test is more likely to find false effects that miss true ones. Depending on their
relative cost this may result in an adjustment to the p value. If we assume that
the cost is even i.e. the desired RRATIO=1 then the hurdle p value would need to
decrease to 0.036 (under the conservative but incorrect assumption that the power
of the test remains constant). As the power of the test weakens the drop in the
alpha value will be less than this. In contrast to the FDR, the Miss Ratio rewards
lower powered tests with easier threshold levels. If a p value threshold of 0.0065
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consistent with a FDR of 5% 1s applied then the RMISS remains relatively
unchanged. However, the number of false positives drops dramatically resulting
an RRATIO of 0.18. In cases where the cost of relative cost missing an effect is
assessed as being larger than this, it may motivate a relaxing of the p value hurdle
for practical application (Harvey and Liu, 2019). Clearly, the supplementary
metrics of RMISS, RRATIO and an awareness of test power, provide a much richer
‘dashboard’ is provided to the researcher than the myopia of overusing p values.

Table II
Calculating the Miss Ratio (RMISS)

This table is analogous to Table I with the difference that P(D)) is the proportion of
relationships found to be insignificant (the Data being defined as Negative test result). As
before, a refers to the hurdle p value used in the batch of tests which is set to 0.05. B
refers to the type II (False Negative) error rate. Outputs are formatted in bold.

Calculating: P(H,|D) where D = Negative Test Result

Raw
Likelihood Prior Posterior Posterior
P(D |H) P(H) P(D |H)*P(H) PH|D)
H; (is an
effect): 0.20 0.13 0.0267 0.03
Ho (no effect): 0.95 0.87 0.8233 0.97
P(D): 0.85

VI. Conclusion

Reviewing the problems in prior approaches to adjusting the p value hurdle for
multiple hypothesis testing has necessitated a reconsideration of the foundations
of individual hypothesis testing methods. The most serious problem with FWER
restriction methods such as that of Bonferonni (1936) and Holm (1978) is that do
not cater for the fact on the individual test level the p value is not a test of Ho. This
is corrected for in the attempts at FDR restriction such as Benjamini and
Hochberg (1995) and Benjamini and Yekutieli (2001). However, these approaches
being based on a ranking of p values inherit a number of its problems that are
addressed by the ‘division’ entailed in a Bayes Factor approach where a specific
alternate is required. Following Edwards, Lindman and Savage (1963), Goodman
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(1999) and Harvey (2017) a MBF approach is supported where the observed mean
value is selected as the maximum likelihood alternate. However, this approach
also requires the specification of a prior. This paper advocates a “fully blown” but
“Positivist” Bayesian approach which uses empirical observation and logical
relationships, rather than subjective beliefs, to estimate the base rate or prior.
Replication of conclusions is thereby facilitated, which is clearly germane in the
context of the ‘replication crisis’. For the individual hypothesis tests where the
prior is observable or can be analytically derived it can be used directly to estimate
the P(Ho) of the individual test. In such a vein, the appealing and easy to estimate
BIC approach of Raftery (1995) and Wagenmakers (2007) uses the mean observed
value of the explanatory variable as a prior but only accords it the explanatory
power of one observation. While the BIC can be recommended as a the individual
test case, the MBF approach has greater flexibility in setting a prior and this is
useful in the multiple hypothesis testing context. Here, a method of empirically
estimating the prior is presented and applied in an illustrative example. As
demonstrated, this approach is easy to apply, has a closed form solution and makes
an incremental contribution by demonstrating how to adjust p value hurdles for
multiple hypothesis testing.
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