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Abstract

We show that the two important sources of risk – market tail risk and extreme

market volatility risk – are priced in the cross-section of asset returns heteroge-

neously across horizons. Specifically, we find that tail risk is a short-term phe-

nomenon whereas extreme volatility risk is priced by investors in the long-term.

These risks stem from a dependence structures in the joint distribution of stochas-

tic discount factor and asset returns at various investment horizons that are more

general than usually assumed by traditional covariance-based measures. The risk

premium we document suggests that investors care about the transitory as well as

persistent shocks.

Keywords: Cross-sectional return variation, downside risk, tail risk, frequency,

spectral risk, investment horizons

JEL: C21; C58; G12
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1 Introduction

Classical result of asset pricing literature states that price of an asset should be equal to

its expected discounted payoff. In the Capital Asset Pricing Model (CAPM) introduced

by Sharpe (1964), Lintner (1965), Black (1972), we assume that stochastic discount factor

can be approximated by return on market portfolio and thus expected excess returns can

be fully described by their market betas based on covariance between asset return and

market return. While early empirical evidence validated this prediction, decades of the

consequent research has called the ability of traditional market beta to explain cross-

sectional variation in returns to question. We aim to show that in order to understand

formation of expected returns, one has to look deeper into the features of asset returns

that are crucial in terms of preferences of a representative investor. We argue that the

two important features are risk related to tail events, and frequency-specific (spectral)

risk capturing behavior at different investment horizons. To characterize such general

risks, we derive novel quantile spectral representation of beta that captures covariation

between indicator functions capturing fluctuations of different parts of joint risky asset’s

and market’s return distribution over various frequencies. Nesting the traditional beta,

the new representation captures tail -specific as well as horizon-, or frequency-specific

spectral risks.

Intuitively, covariation stemming from (extremely) negative return of the risky asset

and (extremely) negative returns of market known as downside risk in the literature,

should be positively compensated. While early literature (Ang et al., 2006) empirically

confirms the premium for bearing downside risk, Levi and Welch (2019) concludes that

estimated downside betas do not provide superior predictions compared to standard beta.

More recently, Bollerslev et al. (2020) argue that we need to look at finer representation

allowing combinations of positive and negative asset and market returns, and suggest

how such semibetas are priced.

In this paper we argue that these attempts fail to fully account for more subtle
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implications arising from heterogeneity of investment horizons. An asset’s drop that

covary with drop of market, and at the same time is also low-frequency event with

large persistence should be priced by investors differently in comparison to such extreme

situation due to high frequency, transitory event. While in the first situation investors

will be pricing a persistent crash resulting in the long-term fluctuations in the quantiles

of the market’s and risky asset’s joint distribution, in the latter case the investor cares

about transitory crash resulting in the short-run fluctuations. This essentially means that

a covariance between the risky asset and discount factor will not only be different across

all parts of the joint distribution but will be different across various investment horizons.

Intuitively, these co-occurrences of tail events will have short-term or long-term effect

on the marginal utility of investors. Looking on beta representation that will capture

such information empirically will be also informative for the results of the rare disaster

literature (Barro, 2006).

Economists have long recognized that decisions under risk are more sensitive to

changes in probability of possible extreme events compared to probability of a typical

event. The expected utility might not reflect this behavior since it weights probability of

outcomes linearly. Consequently, CAPM beta as an aggregate measure of risk may fail

to explain the cross-section of asset returns. Several alternative notions emerged in the

literature. Mao (1970) presents survey evidence showing that decision makers tend to

think of risk in terms of the possibility of outcomes below some target. For an expected

utility maximizing investor, Bawa and Lindenberg (1977) has provided a theoretical ra-

tionale for using lower partial moment as a measure of portfolio risk. Based on the

rank-dependent expected utility due to Yaari (1987), Polkovnichenko and Zhao (2013)

introduce utility with probability weights and derive corresponding pricing kernel. As

mentioned earlier, Ang et al. (2006); Lettau et al. (2014) argue that downside risk – risk

of negative returns – is priced across asset classes and is not captured by CAPM betas.

Further, Farago and Tédongap (2018) extend the results using general equilibrium model
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based on generalized disappointment aversion and show that downside risks in terms of

market return and market volatility are priced in the cross-section of asset returns.1

The results described above leads us to question the role of the expected utility max-

imizers in asset pricing. A recent strand of literature solves the problem by considering

quantile of the utility instead of its expectation. This literature complements the previ-

ously described empirical findings focusing on downside risk as it highlights the notion

of economic agents particularly averse to outcomes below some threshold compared to

outcomes above this threshold. The concept of a quantile maximizer and its features

was pioneered by Manski (1988), and later axiomatized by Rostek (2010). Most recently,

de Castro and Galvao (2019) develop a model of quantile optimizer in a dynamic setting.

A different approach to emphasizing investor’s aversion towards least favorable outcomes

defines theory based on Choquet expectations. This approach is based on distortion

function that alters probability distribution of future outcomes by accentuating proba-

bilities associated with least desirable outcomes. This approach was utilized in finance,

for example, by Bassett Jr et al. (2004).

Whereas aggregating linearly weighted outcomes may not reflect the sensitivity of

1In addition, it is interesting to note that equity and variance risk premium are also

associated with compensation for jump tail risk (Bollerslev and Todorov, 2011). More

general exploration of asymmetry of stock returns is provided by Ghysels et al. (2016),

who propose a quantile-based measure of conditional asymmetry and show that stock

returns from emerging markets are positively skewed. Conrad et al. (2013) use option

price data and find a relation between stock returns and their skewness. Another notable

approach uses high frequency data to define realized semivariance as a measure of down-

side risk (Barndorff-Nielsen et al., 2008). From a risk-measure standpoint, dealing with

negative events, especially rare events, is highly discussed theme in both practice and

academics. The most prominent example is Value-at-Risk (Adrian and Brunnermeier,

2016; Engle and Manganelli, 2004).
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investors to tail risk, aggregating linearly weighted outcomes over various frequencies, or

economic cycles may not reflect risk specific to different investment horizons. One can

suspect that an investor cares differently about short-term and long-term risk according

to their preferred investment horizon. Distinguishing between long-term and short-term

dependence between economic variables was proven to be insightful since the introduc-

tion of co-integration (Engle and Granger, 1987). Frequency decomposition of risk thus

uncovers another important feature of risk which cannot be captured solely by market

beta which captures risk averaged over all frequencies. This recent approach to asset

pricing enables to shed light on asset returns and investor’s behaviour from a different

point of view highlighting heterogeneous preferences. Empirical justification is brought

by Boons and Tamoni (2015) and Bandi and Tamoni (2017) who show that exposure

in long-term returns to innovations in macroeconomic growth and volatility of match-

ing half-life is significantly priced in variety of asset classes. The results are based on

decomposition of time series into components of different persistence proposed by Ortu

et al. (2013). Piccotti (2016) further sets portfolio optimization problem into frequency

domain using matching of utility frequency structure and portfolio frequency structure,

and Chaudhuri and Lo (2016) present approach to constructing mean-variance-frequency

optimal portfolio. This optimization yields mean-variance optimal portfolio for a given

frequency band, and thus optimizes portfolio for a given investment horizon.

From a theoretical point of view, preferences derived by Epstein and Zin (1989) en-

ables to study frequency aspects of investor’s preferences, and quickly became a standard

in the asset pricing literature. With the important results of Bansal and Yaron (2004),

long-run risk started to enter asset pricing discussions. Dew-Becker and Giglio (2016)

investigate frequency-specific prices of risk for various models and conclude that cycles

longer than business cycle are significantly priced in the market. Other papers utilize fre-

quency domain and Fourier transform to facilitate estimation procedures for parameters

hard to estimate using conventional approaches. Berkowitz (2001) generalizes band spec-
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trum regression and enables to estimate dynamic rational expectations models matching

data only in particular ways, for example, forcing estimated residuals to be close to white

noise. Dew-Becker (2016) proposes spectral density estimator of long-run standard devi-

ation of consumption growth, which is a key component for determining risk premiums

under Epstein-Zin preferences, and shows its superior performance compared to the pre-

vious approaches. Crouzet et al. (2017) develop model of multi-frequency trade set in

frequency domain and show that restricting trading frequencies reduces price informa-

tiveness at those frequencies, reduces liquidity and increases return volatility.

The debate clearly indicates that the standard assumptions leading to classical asset

pricing models do not correspond with reality. In this paper, we suggest that more

general pricing models have to be defined and they should take into consideration both

asymmetry of dependence structure among stock market, and relation of asymmetry to

different behavior of investors at various investment horizons.

The main contribution of this paper is threefold. First, based on the frequency decom-

position of covariance between indicator functions, we define the quantile spectral beta of

an asset capturing frequency-specific tail risks and corresponding ways of measuring the

beta. The newly defined notion of beta can be viewed as disaggregation of a classical

beta to a frequency-, and tail- specific beta. With this notion, we describe how extreme

market risks are priced in the cross-section of asset returns at various horizons. We de-

fine frequency-specific tail market risk that captures dependence between extremely low

market and asset returns, as well as extreme market volatility risk that is characterized

by dependence between extremely high increments of market volatility and extremely

low asset returns. Second, we empirically motivate emergence of such types of risks in

the cross-section of asset returns. Third, we estimate models that provide considerable

improvements in explaining cross-section of asset returns. Results suggest that tail risk

is priced in the cross-section of asset returns in the short-term, while extreme market

volatility risk is priced mainly in the long-term. The result holds also when we control
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for popular factors including those moment-based that are designed to capture the asym-

metric features as well as popular down side risk models (Ang et al., 2006; Lettau et al.,

2014; Farago and Tédongap, 2018). We also discuss how our new beta representation

relates to other risk measures. Finally, we document that the final model capturing tail

specific risks across horizons significantly outperforms the other competing models that

capture downside risks.

The rest of the paper has the following structure. Section 2 motivates the importance

of tail risks across horizons. Section 3 introduces the concept of quantile spectral betas,

Section 4 defines the empirical models used for testing significance of extreme risks, and

Section 5 conducts the empirical analysis as well as robustness checks. Section 6 then

concludes. In Appendix A, we detail the estimation procedure of the quantile spectral

betas, and Appendix B describes specifications of the competing measures of risk, and

the rest of the Appendix reports results from the robustness checks.

2 Motivation: Why Should We Care About Tail Risks

across Horizons

The empirical search for explanation of why different assets earn different average returns

centers around return factor models arising from the Euler equation. With the only

assumption of ‘no arbitrage’, a stochastic discount factor mt+1 exists and, for the ith

excess return ri,t+1 satisfies E[mt+1ri,t+1] = 0, hence

E[ri,t+1] =
Cov(mt+1ri,t+1)

Var(mt+1)

(
− Var(mt+1)

E[mt+1]

)
= βiλ (1)

where loading βi can be interpreted as exposure to systematic risk factors, and λ as the

risk price associated with factors. Equation 1 assumes that risk premium of an asset or

a portfolio can be explained by its covariance with some reference economic or financial
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variable such as consumption growth or return on market portfolio. This simple pricing

relation also assumes that independent common sources of systematic risk exist in the

economy, and the exposure to them can explain the cross-section of asset returns.2 This

leads to the so-called factor fishing phenomenon, which tries to identify additional risk

factors beside the traditional market factor assumed by CAPM using linear combination

of factors that are assumed to have non-zero covariance with an risky asset, as well as

they are assumed to be independent between each other.

Covariance between the two variables of interest,

γki,j = Cov
(
rj,t+k, ri,t

)
≡ E[(rj,t+k − r̄j)(ri,t − r̄i)], (2)

that is central to the asset pricing literature, may not be sufficient in the cases in which the

investor cares about different parts of the distribution of her future wealth differently, or in

case an investor cares about a specific investment horizons. Empirical literature assumes

silently that the risk factors aggregate information over the distribution of returns as well

as investment horizons. Part of the literature tracing back to early work by Roy (1952);

Markowitz (1952); Hogan and Warren (1974); Bawa and Lindenberg (1977) argue that

the reason we do not empirically find the support for the above thinking is that pricing

relationship is fundamentally too simplistic. If investors are averse to volatility only when

it leads to losses, not gains, the total variance as a relevant measures of risk should be

disaggregated.

Later work by Ang et al. (2006); Lettau et al. (2014); Farago and Tédongap (2018)

show that investors require additional premium as a compensation for exposures to

disappointment-related risk factors called downside risk. Recently, Lu and Murray (2019)

argue that bear risk capturing the left tail outcomes is even more important, and Boller-

slev et al. (2020) introduce betas based on semi-covariances. In contrast to the promising

2E.g., this is the cornerstone of Arbitrage pricing theory (APT) of Ross (1976).
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results, Levi and Welch (2019) conclude that estimated downside betas do not provide su-

perior predictions compared to standard aggregated beta, partially due to the difficulties

of accurately determining downside betas from daily returns. With a similar argument of

too simplistic pricing relation, another part of the literature looks at frequency decompo-

sition and explores the fact that risk factors being claims on the consumption risk should

be frequency dependent since consumption has strong cyclical components (Bandi et al.,

2018; Dew-Becker and Giglio, 2016).

Being aware of such departures from too simplistic assumptions in the data, we need to

look at more general dependence measures since a simple covariance aggregating depen-

dence across distribution as well as investment horizons will not be a sufficient measure

of (in)dependence.

To illustrate this discussion, we consider dependence between market returns and a

popular small-minus-big portfolio (SMB) as well as momentum portfolio (MOM) respec-

tively. While literature assumes these factors represent two independent sources of risk

with contemporaneous correlation between them and the market being rather small, in-

vestigating the dependence in various parts of their joint distribution across different lags

and leads reveals interesting relations. Instead of aggregate covariance between market

return and a factor portfolio, figure 1 depicts tail, and lead/lag specific covariation for a

threshold value given by τ -quantile of market return and given lead/lag k of the following

form

Cov
(
I{rm,t−k ≤ qrm(τ))}, I{ri,t ≤ qrm(τ)}

)
, (3)

where rm,t is return of market factor, ri,t is return of either SMB or MOM portfolio,

I{.} is an indicator function and qrm is quantile function of the market return. This

simple measure captures the probability of both returns being below some threshold

value in some time interval given by lead/lag k. This can be seen from the fact that
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Figure 1: Dependence Structure between Market and SMB and MOM Factor Portfolios.
Plots display covariance in tail and across horizon defined by Eq. 3 that measures general
dependence between market return and SMB and MOM factor, respectively. Dashed
lines represents 95% confidence intervals under the null hypothesis that the two series
are jointly normally distributed correlated random variables. Data are sampled with
monthly frequency.
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Cov
(
I{rm,t−k ≤ qrm(τ))}, I{ri,t ≤ qrm(τ)}

)
= Pr

{
rm,t−k ≤ qm(τ), ri,t ≤ qm(τ)

}
− ττi.

So, this dependence essentially measures additional probability over the independence

copula of both variables being below some threshold value.

Looking at the median dependence of market return with SMB or MOM portfo-

lio returns (right column of plots for τ = 0.5), we observe that dependence can be fully

characterized by rather weak contemporaneous covariation between market and the SMB

and MOM portfolio returns, respectively since no significant relation exists at any lead or

lag in the relationship.3 Moving our attention towards the left tail of the joint distribu-

tion, more complicated dependence structures emerge. Departure from jointly Gaussian

3Note that the dashed lines in the figure represent confidence intervals under the

null hypothesis that the two series are jointly normally distributed correlated random

variables.
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distribution is strongest in the left tail (left column of plots for τ = 0.05). The co-

occurences of large negative market returns with large negative SMB or MOM portfolio

returns are significant and exist at various leads/lags.

For example, if we look at the dependence between market and SMB in the 5% tail, we

observe that if market is below this threshold, there is also significant probability that the

SMB portfolio will be below this threshold with some delay. Similarly, the SMB downturn

precedes the market downturn with significant probability.4 So, instead of arguing that

the SMB factor proxies for an independent economic risk,5 the results suggest that the

SMB portfolio captures more complicated market tail risk at some specific horizons.

In other words, the left tail dependence shows that extreme market drop is correlated

with extreme negative returns of SMB. This illustrates large negative market return being

correlated with the situation when big companies largely outperform small ones in the

SMB portfolio. Hence we document a joint probability of co-occurrence of the market

extreme left tail event and big companies outperforming small ones situation leading

to the increase of the default risk in the economy (Chan et al., 1985). An important

feature of the dependence not documented by earlier studies is its persistence structure

shown by autocorrelations and the same strength for leading one each other. At the same

time, while momentum is negatively correlated with market, second row of the figure 1

show significant lead-lag relationship of the momentum factor and stock market pointing

us to the intuition that extremely low market returns are cross-correlated with the low

momentum companies outperforming high momentum.

This may lead us to the conclusion that such general dependence structures can

hardly be described by the traditional contemporaneous correlation-based measures. The

illustration suggests that there is no need for many factors to explain the average asset

4Similar lead/lag investigation regarding business cycle indicators is performed in

Backus et al. (2010).
5E.g., Chan et al. (1985) argue that SMB proxies for default risk in the economy.
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return, as a carefully measured exposure to the market risk can capture the risk the

investors care about. A natural way how to summarize the dependence across these

lead/lag relationships, is to employ frequency analysis and summarize precisely this joint

structure for specific horizons.

From an economic perspective, it is reasonable to assume that future marginal utility

is affected by realization of low quantile returns today, as this event may lead, for example,

to a bankruptcy or in other way significantly shape behavior of economic agent in the

future. In other words, extreme market events can have either short-run or long-run effect

on the marginal utility of investors. Previous studies however fail to fully account for the

horizon specific information in tails while one of the main reasons turns to be inability

to measure such risks. Here we propose robust methods for measurement of such risks ,

and we argue that exploring the risk related to tail events as well as frequency-specific

risk is crucial.

To see how tail specific risks are priced across horizons by investors, we proceed

as follows. First, we define quantile risk measure based on covariance between indicator

functions, which has natural economic interpretation in terms of probabilities. Second, we

introduce its frequency decomposition, and combine these two frameworks into quantile

spectral risk measure, which is the building block for our empirical model. This measure

enables to robustly test for the presence of extreme market risks over various horizons in

the asset prices. The aim is not to convince the reader that the functional form of the

preferences follows precisely our model, but to show that there is a heterogeneity in the

weights that investors put to the risk for different investment horizons and different parts

of the distribution of their future wealth. By estimating prices of risk for short- and long-

term part, we are able to identify the horizon the investor care most about. Moreover,

by estimating prices of risk for various threshold values, we are able to identify the part

of the joint distribution towards which is the investor the most risk averse.6 This is done

6Our investigation complements work of Delikouras (2017) and Delikouras and
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by controlling for CAPM beta and the influence of these new measures is measured as

an incremental information over simplifying assumptions that lead to the CAPM beta

asset pricing models.

3 Measuring the Tail Risks across Horizons: A Quan-

tile Spectral Beta

As argued above, risk premium of an asset or a portfolio can be explained by its covari-

ance with some reference economic or financial variable such as consumption growth or

return on market portfolio. This measure may not be sufficient in the cases in which the

investor cares about different parts of the distribution of her future wealth differently

with horizon-specific preferences. Here we formalize the discussion and provide a more

general measures that are able to capture the departures from normality, and will serve

in defining the horizon specific tail risks.

3.1 Tail Risk

Since we are interested in pricing extreme negative events, we want to measure depen-

dence and risk in lower quantiles of the joint distribution, and propose a quantity of the

following form

γki,m(τ) ≡ Cov
(
I{mt+k ≤ qm(τ)}, I{ri,t ≤ qm(τ)}

)
, (4)

where mt and ri,t are two time series of random variables, qm(τ) is a quantile function

of mt for τ ∈ (0, 1), and I{A} is indicator function of event A. The measure is given by

Kostakis (2019). These studies investigate the position of the reference point of con-

sumption growth, and show that its correct location is crucial for fit of the model based

on Generalized disappointment aversion.
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the covariance between two indicator functions and can fully describe joint distribution

of the pair of random variables m and ri. If distribution functions of the variables are

continuous, the quantity is essentially difference between copula of pair m and ri and

independent copula, i.e. Pr
{
mt+k ≤ qm(τ), ri,t ≤ qm(τ)

}
− ττi where τi = Fri{qm(τ)}

and Fri is cdf of ri. Thus, covariance between indicators measures additional information

from the copula over independent copula about how likely is that the series are jointly

less or equal to a given quantile of the variable m. It enables to flexibly measure both

cross-sectional structure and time-series structure of the pair of random variables.

Note that the quantity introduced in Eq. (4) can be further generalized in the way

that one can replace qm(τ) by some general threshold values derived from distribution

of a reference variable. Being below the threshold value corresponds to an inconvenient

event for the investor and thus this measure of dependence adequately captures the

corresponding risk. In our model, we set threshold values to be equal. In case the

stochastic discount factor is linear in factors and we consider the market return as a risk

factor, we further look at the dependence between asset returns and market returns rm,t,

and the threshold values are based on quantiles of market returns qm(τ) = qrm(τ). A

market beta associated with the tail risk7 is then defined using quantity given in 4 for

7This is indicator beta defined in Equation 3 evaluated at lag k = 0. See Figure 1,

which depicts the market tail risk beta for two commonly researched factors.
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k = 0 and normalized by variance of the indicator function of the market return8

βi(τ) ≡
Cov

(
I{rm,t ≤ qrm(τ))}, I{ri,t ≤ qrm(τ)}

)
Var(I{rm,t ≤ qrm(τ)})

. (5)

Note that Var(I{rm,t ≤ qrm(τ)}) = τ(1− τ).

3.2 Tail Risks across Horizons: A Quantile Spectral Beta

It is further natural to assume that economic agents care not only about different parts of

the wealth distribution, but they care differently about long-, and short-term investment

horizon in terms of expected returns and associated risks. Investors may be interested in

long-term profitability of their portfolio and do not concern with short-term fluctuations.

Frequency-dependent features of an asset return then play an important role for an

investor. Bandi and Tamoni (2017) argue that covariance between two returns can be

decomposed into covariance between disaggregated components evolving over different

time scales, and thus the risk on these components can vary. Hence, market beta can

be decomposed into linear combination of betas measuring dependence at various scales,

i.e., dependence between fluctuations with various half-lives. Frequency specific risk at

given time plays an important role for determination of asset prices, and the price of

risk in various frequency bands may differ, this means that the expected return can be

decomposed into linear combination of risks in various frequency bands.

A natural way how to decompose covariance between two assets into dependencies

8This risk measure is similar to the tail risk measure of Schreindorfer (2019), which

is also function of τ quantile threshold of consumption growth; correlation between asset

return and consumption growth is then computed conditional on realizations of consump-

tion growth below the threshold. It is also related to the negative semibetas of Bollerslev

et al. (2020), which estimates the dependence between market return and asset return

conditional on the co-occurrence of negative events for both market and asset.
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over different horizons is in the frequency domain. A frequency domain counterpart

of cross-covariance is obtained as Fourier transform of the cross-covariance functions

Si,m(ω) = 1
2π

∑∞
k=−∞ γ

k
i,me

−ikω. Conversely, cross-covariance can be obtained from inverse

Fourier transform of its cross-spectrum as γki,m =
∫ π
−π Si,m(ω)eikωdω where Si,m(ω) is cross-

spectral density of random variables ri,t and mt, and γk is cross-covariance function given

by Eq. (2) and i =
√
−1.

This representation of covariation allows us to decompose the covariance and variance

into frequency components and disentangle the short-term from the long-term depen-

dence. Then, beta for an asset i and factor m can be decomposed to a given frequency

ω as

βi ≡
Cov(mt, ri,t)

Var(mt)
=

∫ π

−π
w(ω)

Si,m(ω)

Sm(ω)
dω =

∫ π

−π
w(ω)βi(ω)dω

where w(ω) = Sm(ω)∫ π
−π Sm(ω)dω

represent weights. Using similar approach, Bandi and Tamoni

(2017) estimate price of risk for different investment horizons and show that investors

posses heterogeneous preferences over various economic cycles instead of looking only on

averaged quantities over the whole frequency spectrum.

To uncover the general dependence structures, we propose to study the Fourier trans-

form of covariance of indicator functions γki,m(τ) instead. In this way, one can quantify

the horizon specific risk premium across the joint distribution. To define the new beta

representation that will allow us to characterize such general risks, we use the so-called

quantile spectral densities introduced by Baruńık and Kley (2019).

The cornerstone of the new beta representation lies in quantile cross-spectral density

kernels which are defined as

fi,m(ω; τ) ≡ 1

2π

∞∑
k=−∞

γki,m(τ)e−ikω =
1

2π

∞∑
k=−∞

Cov
(
I{mt+k ≤ qm(τ)}, I{ri,t ≤ qm(τ)}

)
e−ikω

(6)
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with = τ ∈ (0, 1) and . A quantile cross-spectral density kernel is obtained as a Fourier

transform of covariances of indicator functions defined in Equation 4, and will allow us

to define beta that will capture the tail risks as well as spectral risks.

A quantile spectral (QS) betas for a given τ quantile of market returns are defined as

βi(ω; τ) ≡ fi,m(ω; τ)

fm(ω; τ)
≡
∑∞

k=−∞ γ
k
i,m(τ)e−ikω∑∞

k=−∞ γ
k
m(τ)e−ikω

. (7)

QS betas for given asset quantify the dependence between ith asset and market factor m

for a given frequency ω at chosen quantiles τ ∈ (0, 1) of the joint distribution.

For better interpretability, we construct quantile spectral beta for a given frequency

band corresponding to reasonable economic cycles as

βi(Ω; τ) ≡
∫

Ω

fi,m(ω; τ)

fm(ω; τ)
dω (8)

where Ω ≡ [ω1, ω2), ω1, ω2 ∈ [−π, π], ω1 < ω2 is a frequency band corresponding to an

investment horizon. This definition is important since it allows to define short-run, or

long-run bands covering corresponding frequencies, and hence disaggregate beta based

on the specific demands of a researcher.

Finally, we note that for serially uncorrelated variables (no matter of their joint or

marginal distributions), the Frećhet/Hoeffding bounds gives the limits that QS beta can

attain max{τ+τi−1,0}−ττi
τ(1−τ)

≤ βi(ω; τ) ≤ min{τ,τi}−ττi
τ(1−τ)

where τi is derived as described above.

4 Pricing Model for Extreme Risks across Frequency

Domain

Quantile spectral betas defined in the previous sections will be the cornerstone of our

empirical models. We assume that QS betas for low threshold values will be significant

determinants of risk priced heterogeneously across investment horizons. We will employ
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QS betas to study two kinds of risk related to the market return. First, we will investigate

tail market risk (TR), a risk representing dependence between extreme negative events of

both market as well as asset return at a given horizon. Our notion of tail risk relates to the

downside risk of Ang et al. (2006); Lettau et al. (2014). While downside risk stems from

covariation of asset returns and market return under some threshold, our notion stems

from joint probability of the co-occurrence of extreme negative returns in both asset’s as

well as market’s returns. This is more in line with approach of semibetas (Bollerslev et al.,

2020), but with important feature of persistence structure of such risks across investment

horizons. Second, we will examine extreme market volatility risk (EVR), a risk capturing

unpleasant situations in which extremely high increments of market volatility are linked

to the extremely low asset asset returns, again with respect to the investment horizon.

We argue that both these concepts capture important features of risk of an asset faced

by the investor, and thus should be priced in cross-section of asset returns.

In each of the models defined in the paper, we control for CAPM beta as a baseline

measure of risk. This ensures that if the QS betas are proven to be significant determi-

nants of risk premium, they do not simply duplicate the information contained in the

CAPM beta. Moreover, in case of tail market risk, we define relative betas that explicitly

capture the additional information over CAPM beta, only.

4.1 Tail Market Risk

We expect the dependence between market return and asset return during extreme neg-

ative joint events will be priced across assets positively. The stronger the relationship,

the higher the risk premium required by investors. In addition, we expect this risk to be

priced heterogeneously across different investment horizons.

To capture the tail market risk measuring the probability of co-occurrence between

(extreme) negative events of both market as well as asset return at a given horizon, we
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define

βTR
i (Ω; τ) ≡

∑
Ω≡[ω1,ω2)

∑∞k=−∞Cov
(
I{rm,t+k ≤ qrm(τ)}, I{ri,t ≤ qrm(τ)}

)
e−ikω∑∞

k=−∞Cov
(
I{rm,t+k ≤ qrm(τ), I{rm,t ≤ qrm(τ)}

)
e−ikω

 . (9)

The numerator of Eq. (9) captures probability of co-occurence of the negative events

at a given horizon, and denominator captures information related to probability of the

market tail events at a given horizon which is related to variation of market returns.

Similarly to Ang et al. (2006) and Lettau et al. (2014), we define relative betas which

capture additional information not contained in the classical CAPM beta. This way we

can test the significance of tail market risk decomposed into the long- and short-term

components in order to obtain their prices of risk separately. Because we want to quantify

risk which is not captured by CAPM beta, we propose to test significance of tail market

risk via differences of the QS beta and QS beta implied by the Gaussian white noise

assumption. We call it relative QS beta and compute it for a given frequency band Ωj

and given market τ -quantile level as

βrel
i (Ωj; τ) ≡ βTR

i (Ωj; τ)− βGauss
i (Ωj, τ), (10)

where βGauss
i (ω; τ) = CGauss(τ,τi;ρ)−ττi

τ(1−τ)
with CGauss being Gaussian copula with correlation

ρ between market return and an asset’s return.9

Assuming that all the relevant pricing information is contained in the CAPM beta,

contemporaneous covariance between two time series should capture all the priced infor-

mation. Moreover, if the series are jointly normally distributed and independent through

time, CAPM beta contains all the available information regarding the dependence. Hence

9This stems from the fact that quantile cross-spectral density corresponds to a differ-

ence of probabilities Pr
{
ri,t ≤ qrm(τ), rm,t ≤ qrm(τ)

}
−ττi, where τ and τi are probability

levels under Gaussian distribution, and τi is obtained as τi = Fri{qm(τ)}.
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under the hypothesis that market and asset returns are correlated Gaussian noises, the

βrel
i (Ωj; τ) will not carry any additional information, and CAPM characterizes the risks

well. Note that βGauss
i (Ωj, τ) is constant across frequencies and depends only on chosen

quantile and correlation coefficient. On the other hand, if the investors price an informa-

tion not captured by the CAPM beta, QS beta estimated without any restriction may

identify additional dimension of risk not contained in the CAPM beta. More specifically,

we can identify whether dependence in specific part of the joint distribution and/or over

specific horizon is significantly priced.

In case that CAPM beta captures all the information regarding risk priced in the cross-

section, risk premium corresponding to relative QS beta will be insignificant. Moreover,

if the returns are Gaussian, the relative QS beta will be zero at all frequencies and

quantiles.10

Our first model is hence a tail market risk (TR) model which is defined as

E[rei,t+1] =
2∑
j=1

βrel
i (Ωj; τ)λTR(Ωj; τ) + βCAPM

i λCAPM, (11)

10Here, we briefly note that we set the threshold values in the covariance between

indicators measure of dependence as a τ quantile of market return. In case of TR betas,

the threshold for market and asset return are the same and is given by τ quantile of

market return. In case of EVR betas, threshold for increments of market volatility is

given by τ quantile of the series of increments of market volatility, and threshold for

asset return is given by τ quantile of market return. Note that one could flexibly choose

the thresholds based on the best model fit specific to our datasets. For example, we may

choose the threshold value to be asset specific by corresponding to the τ quantile of the

asset return. We do not follow this approach because we do not explicitly care about

dependence between quantiles in the cross-section. We rather care about dependence in

extreme market situations.
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where rei,t+1 is excess return of asset i,11 βCAPM
i is an aggregate CAPM beta, λCAPM is

price of aggregate risk of market captured by the classical beta, and λTR(Ωj, τ) is price

of tail risk (TR) for given quantile and horizon (frequency band). We specify our models

to include disaggregation of risk into two horizons – long and short. Long horizon is

defined by corresponding frequencies of cycles of 3 years and longer, and short horizon

by frequencies of cycles shorter than 3 years.12 Procedure how to obtain these betas is

explained below.

4.2 Extreme Volatility Risk

Assets with high sensitivities to innovations in aggregate volatility have low average

returns (Ang et al., 2006). We further focus on extreme events in volatility and investigate

whether dependence between extreme market volatility and tail events of assets is priced

across assets. Because of the fact that time of high volatility within the economy is

perceived as a time with high uncertainty, investors are willing to pay more for the assets

that yield high returns during these turmoils and thus positively covary with innovations

in market volatility. This drives the prices of these assets up and decreases expected

returns. This notion is formally anchored in the intertemporal pricing model, such as

intertemporal CAPM model of Merton (1973) or Campbell (1993). According to these

models, market volatility is stochastic and causes changes in the investment opportunity

set by changing the expected market returns, or by changing the risk-return trade-off.

Market volatility thus determines the systematic risk and should determine expected

returns of individual assets or portfolios. Moreover, we assume that extreme events in

11Note that all the risk measures (in line with the literature) present in the paper are

calculated using excess returns.
12In Appendix C we perform robustness check by defining the horizons using 1.5 year

as a threshold and the results do not qualitatively differ. Different specifications are

available upon request.
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the market volatility play significant role in the perception of systematic risk, and that

the exposure to them affects the risk premium of the assets.

In addition, decomposition of volatility into short-run and long-run when determining

asset premium was proven to be useful as well (Adrian and Rosenberg, 2008). Moreover,

Bollerslev et al. (2020) incorporated notion of downside risk into concept of volatility risk

and showed that stocks with high negative realized semivariance yield higher returns.

Farago and Tédongap (2018) examine downside volatility risk in their five-factor model

and obtain model with negative prices of risk of volatility downside factor yielding low

returns for assets that positively covary with innovations of market volatility during

disappointing events. Thus, we want to investigate which horizon and part of the joint

distribution of market volatility and asset returns generate these findings.

We assume that assets that yield highly negative returns during times of large inno-

vations of volatility are less desirable for investors and thus holding these assets should

be rewarded by higher risk premium. In addition, we assume such risk will be horizon

specific. To measure the extreme volatility risk, we define the beta that will capture the

joint probability of co-occurrences of negative asset returns and extreme increment of

market volatility across horizons. Because of the nature of covariance between indicator

functions, we work with negative market volatility innovations −∆σ2
t = −(σ2

t − σ2
t−1),

where we estimate σt with a popular GARCH(1,1). Then the high volatility increments

correspond to low quantiles of distribution of the negative differences. If an asset pos-

itively covary with increments of market volatility, the extreme volatility risk beta will

be small, and vice versa. This is in contrast to most of the measures employed in the

similar analyses. We define the beta that captures extreme volatility risk across horizons

as

β∆σ2

i (Ωj; τ) ≡
∑

Ω≡[ω1,ω2)

 ∑∞
k=−∞Cov

(
I{−∆σ2

t+k ≤ q−∆σ2
t
(τ)}, I{ri,t ≤ qrm(τ)}

)
e−ikω∑∞

k=−∞Cov
(
I{−∆σ2

t+k ≤ q−∆σ2
t
(τ), I{−∆σ2

t ≤ q−∆σ2
t
(τ)}

)
e−ikω


(12)
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Threshold values for asset returns are obtained in the same manner as for tail market risk

and are derived from the distribution of the market returns, which means that qrm(τ) is

used as an asset threshold value. For example, for model with τ = 0.05, when computing

extreme market volatility beta, as a threshold for negative innovations of market squared

volatility, we use 5% quantile of its distribution (corresponding to 95% quantile of the

original distribution), and threshold for asset return is set to 5% quantile of distribution

of market returns.

Our second model, Extreme volatility risk (EVR) model will test the significance of

EVR betas and is defined as

E[rei,t+1] =
2∑
j=1

β∆σ2

i (Ωj; τ)λEV(Ωj; τ) + βCAPM
i λCAPM, (13)

where, as in the case of TR model, we include CAPM beta to control for the corre-

sponding risk premium. In line with results of current literature (e.g, Boons and Tamoni

(2015), Boguth and Kuehn (2013), or Adrian and Rosenberg (2008)), we expect positive

prices of risk corresponding to EVR betas. This is because EVR betas measures depen-

dence between extremely high increments of market volatility (i.e., low values of negative

innovations of market volatility) and low values of asset returns. So, if an asset yields

low returns in times of high market volatility, investor requires high premium in order to

hold it.

4.3 Full model

Finally, to show the independence of the two horizon specific tail market risks, we also

combine them into the third model that includes both tail market risk and extreme market

volatility risk for both short- and long-run horizons, again controlling for a traditional
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CAPM beta. Model possesses the following form

E[rei,t+1] =
2∑
j=1

βreli (Ωj; τ)λTR(Ωj; τ) +
2∑
j=1

β∆σ2

i (Ωj; τ)λEV(Ωj; τ) + βCAPM
i λCAPM. (14)

We denote this model as Full model. Assuming that TR and EVR are priced, using this

model, we will investigate whether these risks are subsumed by each other or whether

they describe independent dimensions of priced risk.

Throughout the paper, we focus on results for τ equal to 1%, 5%, 10%, 15%, 20%, and

25%. The choice of 1%, 5% and 10% quantiles is natural and arises in many economic

and finance applications. Probably the most prominent example is Value-at-Risk, which

is a benchmark measure of risk widely used in practice and studied among academics.

Remaining values of τ , i.e. 15%, 20%, and 25%, capture general downside risk and thus

more probable negative joint events.

4.4 Estimation

Estimation of QS betas (for both TR and EVR) relies on proper estimation of quan-

tile cross-spectral densities using rank-based copula cross-periodograms, which are then

smoothed in order to obtain consistency of the estimator. For this, we extend the results

of Baruńık and Kley (2019). Technical details are provided in the Appendix A.

To test our models, we use the standard Fama and MacBeth (1973) cross-sectional

regressions. In the first stage, we estimate all required QS betas, relative QS betas, and

CAPM betas for all assets. We define two non-overlapping horizons: short and long.

Horizon is specified by the corresponding frequency band. We specify long horizon by

frequencies with corresponding cycles 3 years and longer, and short horizon by frequencies

with corresponding cycles below 3 years.13 QS betas for these horizons are obtained by

averaging QS betas over corresponding frequency bands.

13For robustness check of using 1.5 year as a threshold value, see the Appendix C
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In the second stage, we use these betas as explanatory variables and regress average

asset returns on them and obtain the model fit. We assess significance of a given risk by

significance of its corresponding estimated price 14. In case of the full model, we obtain the

statistical inference on the estimated prices of risk by repeating cross-sectional regression

in every time point, i.e., in every month t = 1, . . . , T , we estimate model of the following

form

rei,t =
2∑
j=1

β̂rel
i (Ωj; τ)λTR

t (Ωj; τ) + β̂CAPM
i λCAPM

t +
2∑
j=1

β̂∆σ2

i (Ωj; τ)λEV
t (Ωj; τ) + et,i. (15)

We obtain T cross-sectional estimates of lambdas for each of the corresponding beta.

Then, we estimate the prices of risk by time series averages of the lambdas over the

whole period

λ̂k(Ωj; τ) =
1

T

T∑
t=1

λ̂kt (Ωj; τ), j = 1, 2, k = TR,EVR. (16)

Standard errors and corresponding t-statistics are computed from σ2
(
λ̂k(Ωj; τ)

)
= 1

T 2

∑T
t=1

(
λ̂ktΩj; τ)−

λ̂k(Ωj; τ)
)2

for both horizons j = {1, 2} and risks k = {TR,EVR}.

The same estimation logic applies to other studied models. To take into account

multiple hypothesis testing, we follow Harvey et al. (2016) and report t-statistics of

estimated parameters (below the actual estimates). Overall fit of the model is measured

from the OLS regression of average returns of the assets on their betas. Throughout the

paper, we use the root mean squared error (RMSPE) metric, which is widely used metric

for assessing model fit in asset pricing literature, to asses the overall model performance.

As mentioned earlier, we estimate our models for various values of threshold given

by τ quantile of market return. Further, we compare our newly proposed measures with

14As shown in Shanken (1992), if the betas are estimated over the whole period, the

second stage regression is T -consistent.
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i) classical CAPM ii) downside risk model of Ang et al. (2006) (DR1) iii) downside risk

model of Lettau et al. (2014) (DR2) iv) 3-factor model of Fama and French (1993) v)

GDA3 and GDA5 models of Farago and Tédongap (2018) vi) and coskewness and cokur-

tosis measures. Details regarding the estimation of the risk measures of the competing

models is summarized in Appendix B. All the models are estimated for comparison pur-

poses without any restrictions in two stages similarly as in the case of our three- and

five-factor models. Thus, GDA3 and GDA5 are, despite their theoretical background,

estimated without setting any restriction to their coefficients and are also estimated in

two stages.

5 Quantile Spectral Risk and the Cross-Section of

Expected Returns

Here we discuss how extreme risks are priced in the cross-section of asset returns across

horizons. We begin our empirical investigation by briefly discussing the data we use

in our investigation and then presenting the results from standard Fama and MacBeth

(1973) cross-sectional predictive regressions. We focus on the results from the three

maim models, look at a summary statistics of the distributional features of the resulting

beta estimates and finally investigate how the new features of priced risk relate to other

competing risk measures.

5.1 Data

We collect our data from the Center for Research in Securities Prices (CRSP) database

on monthly basis. The sample begins in July 1926 and ends in December 2015. We select

stocks with long enough history in order to obtain precise estimates of our measures of

risk. While the main results are presented with a sample of stocks with available history

of 60 years, to study the robustness of our results on larger cross-section of data, we
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report also results based on the stocks with shorter history of 50 years. On the other

hand, one can argue that a precision of the estimated measures of risk relies on number

of observations available in the tail, hence we also report results based on stocks with 70

years of available history as well. Market return is computed using value-weight average

return on all CRSP stocks. As a risk-free rate we use Treasury bill rate from Ibbotson

Associates.15

5.2 TR Model

We report estimation results of the TR model in the left panel of Table 1. We present

results for three different samples based on different number of minimum years of history

an asset has to posses in order to be included in a sample. Models are estimated for

different values of the threshold value given by the τ market quantile to capture the

different probability of event co-occurrences.

Results show that relative TR beta for short-horizon is more significant for low values

of τ corresponding 0.01, 0.05 and 0.10, while for τ ≥ 0.15, relative TR beta becomes

significant for long horizon. This pattern is observed across all three samples, but it

is weaker among stocks with history of 50 years, especially regarding the prices of risk

corresponding to the long relative TR betas. This result may be caused by the fact

that long relative TR betas require longer history of data to obtain precise estimates in

comparison to the short TR betas.

Signs of the estimated prices of risk are intuitive. More extreme dependence between

market and asset return in both horizons leads to the higher risk premium as we may

expect. If an asset is likely to deliver poor performance when the market is in downturn,

this asset is not desirable from the point of view of an investor, and in order to hold such

asset, she requires significant risk premium. From the magnitude of the coefficients we

infer that investors price the tail risk in short-term more than in long-term. Moreover,

15All the data were obtained from Kenneth French’s online data library.
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it is important to note that these features are not subsumed by the CAPM beta as we

explicitly control for it in the model, and also report TR betas relative to the CAPM

beta as discussed above.

5.3 EVR Model

Estimation results for the EVR model are captured in the middle panel of Table 1. In this

case, parameters are not significant for low values of τ , but starting with τ ≥ 0.1, long

EVR becomes significantly priced in the cross-section. On the other hand, short-horizon

EVR risk is not significantly priced for any values of τ .

Significant prices of risk corresponding to long-horizon EVR betas for τ ≥ 0.10 posses

intuitive positive signs as we expected. The EVR betas capture dependence between

extremely high increments of market volatility16 and extremely low asset returns, and

the results are consistent with current literature (Boons and Tamoni, 2015; Boguth and

Kuehn, 2013; Adrian and Rosenberg, 2008). Moreover, results are in line with conclusions

of long-run risk models, as well. We observe few instances of unintuitive negative signs of

prices of risk, but these coefficients are insignificant and observed mostly for low values

of τ , which may be caused by the measurement error for the corresponding betas. We

may conclude that EVR betas, especially their long-term component, provide priced

information regarding risk, which is moreover orthogonal to the information featured in

the CAPM beta.

In terms of the RMSPE, the TR model delivers better results as the EVR model for

low values of τ , as short TR betas are significantly priced for these values of τ . On the

other hand, for higher values of τ , EVR model delivers improved values of RMSPE, as

the long EVR betas for these τ values deliver a significant dimension of risk priced in the

cross-section and TR betas posses higher explanatory power for lower values of τ .

16Note that we work with negative of increments of market volatility when we estimate

the QS betas.
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Moreover, we identify the fact that there is a complex interplay between the horizons

and parts of the joint distribution priced in the cross-section. Extreme TR is mostly short-

run phenomenon, and TR associated with more probable joint events (higher values of

τ) is priced with respect to long-term dependence between market and assets. On the

other hand, EVR is not significantly priced in cases of extreme joint events, but as the

unpleasant events become more probable, the joint dependence between increments of

market volatility and asset return in the long-run become significant determinant of risk

premium. In Table 7 in Appendix C.1, we present the results for 1.5-year being the

threshold in the definition of the long horizon. Results are qualitatively very similar and

all the findings from the 3-year horizon hold for this case, as well.

5.4 Full Model

From the results above, we can conclude that the tail market and extreme market volatil-

ity risks are priced in the cross-section of stock returns across different horizons. Natural

question arises whether these risks capture different information or one measure can sub-

sume the other. For this purpose, we test the Full model, which contains both risks for

given τ level at the same time.

Estimated parameters of the full model can be found in the right panel of Table 1.

We observe results mostly consistent with the outcomes of the separate TR and EVR

models. Significantly priced determinants of the risk are short-term tail risk for low

values of τ , and long-term extreme volatility risk for the higher values of τ , both priced

across assets with expected positive signs. Tail risk is more significant for lower values

of τ meaning that dependence between market return and asset return during extremely

negative events is a significant determinant of the risk premium. On the other hand,

long-term extreme volatility risk is significant for higher values of τ - around 0.2. This

finding suggests that investors price downside dependence between asset returns and

market volatility, but focus on more probable market situations. We can deduce that
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price of long-run risk of Bansal and Yaron (2004) is hidden in this coefficient.

The main deviation of the Full model from the results of the separate TR and EV

models is that the long TR betas for higher values of τ become insignificant, in contrast

with the conclusions from the TR model. One potential explanation for this result is that

only a small fraction of the market return fluctuations is due to its long-term component

in comparison to the short-term one, and thus the risk premium for this risk is only

small. Other explanation is that the long-term aspect of the market tail risk may by

fully captured by the extreme volatility risk, namely the long TR betas are subsumed by

the long EVR betas. This make sense since variance is much more persistent than the

market return (high portion of variance due to the long-term component) and thus the

investors fear the fluctuation in long-term variance much more than the variance in the

short term.

5.5 Summary Statistics about Quantile Spectral Betas

Table 2: Descriptive Statistics. Table summarizes basic descriptive statistics and correlation
structure for all betas from our full model for the two choices of the quantile levels. Betas are
computed using CRSP database sampled between July 1926 and December 2015. Presented
results are computed on our largest sample, i.e., using stocks with at least 50 years of history.
Long horizon is given by frequencies corresponding to 3-year cycle and longer.

τ = 0.05 τ = 0.10

βCAPM βrellong βrelshort βEVlong βEVshort βCAPM βrellong βrelshort βEVlong βEVshort

Mean 1.068 0.310 0.098 0.726 0.016 1.068 0.197 0.051 0.632 0.015
Median 1.084 0.324 0.096 0.715 0.016 1.084 0.191 0.048 0.634 0.016
St. Dev. 0.372 0.208 0.083 0.296 0.065 0.372 0.164 0.064 0.212 0.051

βCAPM 1.000 0.234 -0.188 0.595 0.041 1.000 -0.040 -0.100 0.435 0.066
βrellong 0.234 1.000 0.147 0.688 0.032 -0.040 1.000 0.275 0.595 0.055

βrelshort -0.188 0.147 1.000 -0.062 -0.053 -0.100 0.275 1.000 0.104 -0.073
βEVlong 0.595 0.688 -0.062 1.000 0.025 0.435 0.595 0.104 1.000 0.112

βEVshort 0.041 0.032 -0.053 0.025 1.000 0.066 0.055 -0.073 0.112 1.000

Further we are interested to see what distributions of estimated quantile spectral

betas reveal, and so we display the unconditional distribution of the estimated betas

used in the TR, EVR and Full models. Table 2 summarizes descriptive statistics for all

estimated betas. We focus on two values of τ - 0.05, and 0.10, and present cross-sectional
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means, medians and standard deviations of the estimated parameters in the top panel.

We observe that all the betas are on average positive. This is particularly interesting

for relative TR betas, which means that, roughly speaking, average stock posses higher

tail dependence with market than suggested by the simple covariance based measures.

Bottom panel of Table 2 presents correlation structure of TR, EV and CAPM betas.

We observe higher values of correlation between long-term betas, and also between long-

term EV and CAPM betas. Nevertheless, all these correlation are far below 1, which

suggests that all the variables may posses different and potentially important information

regarding the risk associated with the assets. Another interesting observations is that the

relative TR betas, both long- and short-term, are almost uncorrelated with the CAPM

betas, which is exactly what we want to see given their definition.

To further visualize the distributional features, Figure 2 presents unconditional dis-

tributions of the betas for four different threshold value for quantile levels. We observe

the highest dispersion of betas for the lowest values of τ corresponding the the most

extreme case. As we move to higher values of τ , the distributions exhibit less and less

variance. Moreover, the distribution of long-term betas is wider than the distribution of

the short-term betas for the respective risks.

5.6 Robustness Checks: Tail Risk across Horizons and other

risk factors

Large number of other risk factors and firm characteristics have been documented by

the literature as significant drivers of the cross-sectional variation in equity returns (Har-

vey et al., 2016). While we do not attempt to include the whole exhaustive set of all

controls, we would like to see if our newly defined risk factors are not subsumed by a

subset of prominent variables, as well as variables related to the tails and moments of

the return distribution. Hence we naturally focus on the downside measures and we use

downside risks proposed by Ang et al. (2006), downside risk beta specification of Lettau
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Figure 2: Distribution of TR and EVT betas at different tails. Plots displays kernel density
estimates of the unconditional distribution of the short-term and long-term TR and EVT betas.
Presented results are computed on our largest cross-section, i.e., using stocks with at least 50
years of history. Long horizon is given by frequencies corresponding to 3-year cycle and longer.
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et al. (2014) as well as recently proposed five factor generalized disappointment aversion

(GDA5) model by Farago and Tédongap (2018). Further we use coskewness and cokur-

totis measures, as well as size, book-to-market and momentum factors used by Fama and

French (1993). Moreover, we present all these results with long horizon being 1.5 years

in Appendix C.

To investigate whether our newly proposed measures of risk can be driven out by other

determinants of risk proposed earlier in the literature, we include these risks as control

variables in the previous regressions. First, we focus on the GDA5 model proposed by

Farago and Tédongap (2018) as these are the risks most closely related to ours. It

contains two measures of tail market risk as well as two measures of extreme volatility

risk, but focuses on various specifications of downside dependence and does not take

into consideration frequency aspect of the risks. Based on these competing measures, we

compare risk measures associated with market return, and market volatility increments
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separately. The aim of this analysis is to decide which measures of risk better capture

the notion of extreme risks associated with risk premium. The detailed specification of

the corresponding betas can be found in Appendix B.

Table 3 reports the risk premium of our quantile spectral risks controlled for the GDA5

risks. In case of tail market risk presented in left panel, we see that GDA5 measures of risk

(λD and λWD) do not drive out our measures for any value of τ and remain insignificant

when we include our TR measures. Moreover, the pattern of prices of risk corresponding

to TR betas remain the same as in the TR and Full model specifications. This clearly

suggests that our measures captures the asymmetric features of risk priced in the cross-

section of assets.

In case of extreme volatility risk, we see from the right panel of Table 3 that the

situation is similar. Especially, the price of risk for long-term EVR betas stays signifi-

cantly strong for higher values of quantile. In addition, short-term EVR betas emerge

as a significant predictors for the lower values of τ . On the other hand, GDA5 measures

of volatility risk remain insignificant in all of the cases. All the results suggest that our

model brings an improvement in terms of identifying form of asymmetric risk which is

priced in the cross-section of asset returns.

From these results, we can infer that our QS measures may potentially provide an

additional information not captured by other risk measures. To further investigate this

hypothesis, we present correlation structure of our QS measures with all other highly dis-

cussed asset pricing risk measures in Figure 3. Details regarding their specifications are

contained in the Applendix B. We plot dependence between them and the QS measures

with respect to the value of quantile of the threshold value. Generally, our measures

posses the highest correlation with coskewness and cokurtosis and market beta (com-

puted using FF3 specification) in the extreme left tail and long horizon, while they show

high correlation with downside risk measures in extreme left tail at short horizon. This

suggests that downside risk measures capture short-term risk while moment-based risk
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Figure 3: Correlations with Other Risk Measures. Plots display correlations between the
QS betas and various other risk measures widely used in the asset pricing literature using
CRSP database between July 1926 and December 2015. Presented results are computed
on our largest sample, i.e., using stocks with at least 50 years of history. Long horizon is
given by frequencies corresponding to 3-year cycle and longer.
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measures are more related to the extreme volatility in the long-term. Although the corre-

lations in few cases exceed 0.5 in absolute value, all the values are well below 1 suggesting

potentially important additional information regarding the risk.

Next, we check whether these measures can drive out our QS measures in the cross-

sectional estimation. Table 4 reports the results of risk prices controlled for coskewness

and cokurtosis risks. We first include coskewness into our Full model and check whether it

can drive out our risk measures. We can see that although the coskewness is significant,

it does not drive out our QS measures, which follow the same pattern as in the case

of previous specifications of the models. Table 4 also reports in the right panel horse

race regression including cokurtosis. We observe that cokurtosis does not bring any new

explanatory information when included in our full model, as the corresponding estimated

coefficients for cokurtosis are insignificant for all specifications.
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In addition, Table 5 reports the results controlled for the two specification of relative

downside betas. In the left panel, we report results with downside risk specification of

Ang et al. (2006). We observe that the downside risk beta does not capture any additional

important dimension of risk when included in our full model specification. The same is

true for the downside risk model of Lettau et al. (2014), which is captured in the right

panel.

Finally, Table 6 reports regressions including additional betas from the three-factor

model of Fama and French (1993).17 This model is not explicitly related to the asym-

metric features of market or volatility risk, but as we show in the Section 3, these factors

may be just capturing market risk in different horizons in specific parts of the joint dis-

tribution of market and asset returns, so we should check whether they are not superior

in describing these kind of risks. As in the case of other horse race regressions, the addi-

tional risk factors do not drive out the QS measures, which repeat the same pattern as

in the cases without the additional variables.

Although the QS measures are correlated with some of the other variables discussed

previously in the literature, they do not drive out the QS measures of risk. Moreover,

these variables are, in most of the cases, subsumed by the variables from the full model.

Our results are in agreement with recent results of Bollerslev et al. (2020), which show

that the dependence characterized by the co-occurrence of negative asset and negative

market returns posses the highest explanatory power on formation of asset returns among

all specifications of disaggregated conventional beta. Importantly, we explicitly show that

premium for this risk is generated by the dependence in the extreme left tail and by its

short-term component. In addition, we extend the analysis to extreme volatility risk and

show that the investors focus on more probable joint negative outcomes which unfold

over the long horizon.

17We have to include only 2 additional betas as the market beta is already included in

our full model.
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Table 6: Estimated Coefficients of the TR, EVR and Full Models controlled for Fama and
MacBeth (1973) factors. Displayed are prices of risk of full models also including either HML
and SMB betas of Fama and French (1993). We use CRSP database between July 1926 and
December 2015. Models are estimated for various values of thresholds given by τ . We em-
ploy 3 samples with varying number of minimum years. Long horizon is given by frequencies
corresponding to 3-year cycle and longer. Below the coefficients, we include Fama-MacBeth
t-statistics.

τ λSMB λHML λTR
long λTR

short λEV
long λEV

short λCAPM RMSPE

70 years

(142 assets)

0.01 0.035 -0.050 0.133 0.636 -0.217 -0.174 0.838 26.281
0.266 -0.280 0.960 3.276 -1.558 -0.569 4.206

0.05 -0.073 -0.181 0.401 1.108 -0.238 0.093 0.893 26.349
-0.550 -1.034 1.238 3.072 -0.989 0.186 4.007

0.1 -0.009 -0.200 0.187 0.888 0.276 0.076 0.674 26.119
-0.066 -1.188 0.562 1.777 1.101 0.112 3.093

0.15 0.001 -0.165 0.376 0.612 0.231 0.289 0.702 25.969
0.010 -0.949 1.232 1.068 1.044 0.416 3.504

0.2 0.090 -0.150 0.016 0.535 0.712 -0.259 0.609 25.052
0.685 -0.869 0.050 0.827 2.965 -0.341 3.107

0.25 0.067 -0.150 0.118 0.171 0.753 -0.731 0.691 25.349
0.517 -0.873 0.359 0.251 2.759 -0.962 3.604

60 years

(267 assets)

0.01 -0.149 0.040 0.198 0.389 -0.233 0.281 0.851 29.218
-1.184 0.252 1.657 2.622 -1.979 1.053 4.481

0.05 -0.175 -0.016 0.291 1.216 -0.204 0.552 0.827 28.377
-1.434 -0.101 1.035 3.859 -1.018 1.410 3.858

0.1 -0.121 -0.051 0.063 0.996 0.255 0.341 0.650 28.578
-0.978 -0.333 0.216 2.589 1.152 0.676 3.045

0.15 -0.143 -0.052 0.414 0.837 0.025 0.442 0.751 28.833
-1.182 -0.340 1.561 1.831 0.137 0.821 3.926

0.2 -0.060 -0.054 -0.151 0.709 0.640 -0.261 0.618 28.464
-0.492 -0.359 -0.559 1.550 3.120 -0.448 3.258

0.25 -0.102 -0.059 0.014 0.623 0.505 -0.534 0.726 29.051
-0.850 -0.388 0.055 1.243 2.506 -0.940 4.000

50 years

(528 assets)

0.01 -0.087 0.006 -0.005 0.457 -0.081 0.493 0.874 29.354
-0.761 0.041 -0.063 3.577 -0.921 2.582 4.805

0.05 -0.088 -0.051 0.135 1.172 -0.213 0.708 0.905 28.909
-0.806 -0.361 0.604 4.502 -1.349 2.251 4.504

0.1 -0.044 -0.096 0.022 0.791 0.137 0.120 0.774 29.182
-0.394 -0.697 0.092 2.507 0.781 0.289 3.917

0.15 -0.095 -0.126 0.612 0.730 -0.347 0.153 0.950 29.086
-0.854 -0.919 2.645 1.926 -2.262 0.344 5.144

0.2 -0.042 -0.084 0.091 0.682 0.201 -0.306 0.804 29.402
-0.376 -0.613 0.422 1.710 1.202 -0.652 4.429

0.25 -0.055 -0.090 0.101 0.914 0.163 -0.166 0.835 29.519
-0.499 -0.662 0.476 2.004 1.033 -0.354 4.793

6 Conclusion

We introduce a novel approach how to isolate effects of various risk dimensions on forma-

tion of expected returns. Until this point, studies focused either on exploring downside

features of risk, or on investigating its horizon-specific properties. We define novel mea-

sures that estimates risk in specific part of the joint distribution over specific horizon, and

we show that extreme risks are priced in cross-section of asset returns heterogeneously
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across horizons. Further, we argue that it is important to distinguish between tail mar-

ket risk and extreme volatility risk. Tail market risk is characterized by the dependence

between highly negative market and asset events. Extreme volatility risk is defined as

co-occurrence of extremely high increases of market volatility and highly negative asset

returns. Negative events are derived from distribution of market returns and its respec-

tive quantile is used for determining threshold values for computing quantile spectral

betas.

Based on these results, we show that the price of risk varies over horizons and different

parts of the joint distribution of asset and market return. More specifically, our TR model

identifies that premium for tail market risk is mostly featured in its short-term component

in the extreme left tail of the joint distribution. On the other hand, we discover that the

premium for extreme volatility risk is mostly associated with its long-term component

and higher values of threshold.

In order to consistently estimate the models, data with long enough history has to

be employed. But if the data are available, our measures of risk are able to outperform

competing measures and their performance is best for low threshold values suggesting that

investors require risk premium for holding assets susceptible to extreme risks. Moreover,

we show that the state-of-the-art downside risk measures does not capture the information

contained in our newly proposed ones. Our results have important implications for asset

pricing models. We show that taking into account only contemporaneous dependence

averaged over the whole distribution when measuring risk exposure leads to omitting

important information regarding the risk.
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A Estimation of quantile spectral betas

Estimation of QS betas defined in our paper is based on the smoothed quantile cross-

periodograms studied in Baruńık and Kley (2019). For a strictly stationary time se-

ries X0,j, . . . , Xn−1,j, we define I{F̂n,j(Xt,j) ≤ τ} = I{Rn;t,j ≤ nτ} where F̂n,j(x) ≡

n−1
∑n−1

t=0 I{Xt,j ≤ x} is the empirical distribution function of Xt,j and Rn;t,j denotes

the rank of Xt,j among X0,j, . . . , Xn−1,j. We have seen that the cornerstone of quantile

spectral beta is quantile cross-spectral density defined in Equation 6. Its population

counterpart is called rank-based copula cross-periodogram, CCR-periodogram, and is

defined as

Ij1,j2n,R (ω; τ1, τ2) ≡ 1

2πn
dj1n,R(ω; τ1)dj2n,R(−ω; τ2) (17)

where

djn,R(ω; τ) ≡
n−1∑
t=0

I{F̂n,j(Xt,j) ≤ τ}e−iωt =
n−1∑
t=0

I{Rn;t,j ≤ nτ}e−iωt, τ ∈ [0, 1]. (18)

As discussed in Baruńık and Kley (2019), CCR-periodogram is not a consistent estimator

of quantile cross-spectral density. Consistency can be achieved by smoothing CCR-

periodogram across frequencies. Following Baruńık and Kley (2019), we employ the

following

Ĝj1,j1
n,R (ω; τ1, τ2) ≡ 2π

n

n−1∑
s=0

Wn(ω − 2πs/n)Ij1,j2n,R (2πs/n, τ1, τ2) (19)

where Wn is defined in Section 3 of Baruńık and Kley (2019). Estimator of quantile

spectral beta is defined as

β̂j1,j2n,R (ω; τ1, τ2) ≡
Ĝj1,j2
n,R (ω; τ1, τ2)

Ĝj2
n,R(ω; τ2)

. (20)
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Consistency of the estimator can be proven using exactly same logic as in Theorem 3.4

in Baruńık and Kley (2019) by replacing quantile coherency with quantile spectral beta.
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B Specification of the Competing Models

In this section, we briefly describe the specification of the models we use in the main

part of the paper. We denote market excess return as rm and its mean and variance as

µm and σ2
m, respectively. Excess return of an asset is denoted as ri with mean µi and

variance σ2
i .

We present how we estimate betas in the first-stage regression. The second-stage

regression is the same for all the models and is performed via OLS by regressing the

average asset returns on their betas. This then leads to the estimated values of RMSPE.

B.1 Downside Risk Models

We follow two specifications of the downside risk models. First, we use specification of

Ang et al. (2006) and estimate their relative downside risk betas as

βDR1
i ≡ β−i,µm − βi =

Cov(ri, rm|rm < µm)

Var(rm|rm < µm)
− Cov(ri, rm)

Var(rm)
. (21)

Downside risk beta specification of Lettau et al. (2014) is then obtained as

βDR2
i ≡ β−i,δ − βi =

Cov(ri, rm|rm < δ)

Var(rm|rm < δ)
− Cov(ri, rm)

Var(rm)
(22)

where we define the threshold value as δ ≡ µm − σm.

B.2 Generalized Disappointment Aversion Models

We employ specification of Generalized Disappointment Aversion (GDA) models of Farago

and Tédongap (2018) and estimate two main versions of their cross-sectional models.

Their models are based on disappointment events Dt.
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B.2.1 GDA3

First model is their three-factor model, which does not contain volatility-related factors.

The betas posses the following form

βi,m ≡
Cov(ri, rm)

Var(rm)
(23)

βi,D ≡
Cov(ri, I(D))

Var(I(D))
(24)

βi,mD ≡
Cov(ri, rmI(D))

Var(rmI(D))
(25)

where we follow the specification and set Dt = {rm,t < b} where b = −0.03 and I is an

indicator function.

B.2.2 GDA5

Five-factor specification of the GDA model contains, in addition to the betas from the

three-factor model, the following betas

βi,X ≡
Cov(ri,∆σ

2
m)

Var(∆σ2
m)

(26)

βi,XD ≡
Cov(ri,∆σ

2
mI(D))

Var(∆σ2
mI(D))

(27)

where the disappointment events are given by Dt =
{
rm,t− aσmσX ∆σ2

m,t < b
}

where ∆σ2
m,t

are increments of market volatility, σ2
X = Var(∆σ2

m), a = 0.5 and b = −0.03.
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B.3 Coskewness and Cokurtosis

Following work of Kraus and Litzenberger (1976); Harvey and Siddique (2000); Dittmar

(2002); Ang et al. (2006), we estimate the coskewness and cokurtosis as

CSKi ≡
E[(ri − µi)(rm − µm)2]√
E[(ri − µi)2]E[(rm − µm)2]

, (28)

CKTi ≡
E[(ri − µi)(rm − µm)3]√

E[(ri − µi)2]E[(rm − µm)3/2]
. (29)

B.4 Fama-French Three-Factor Model

Betas of the three-factor model of Fama and French (1993) are estimated via time-series

regression of excess asset return on three factors: SMB (obtained by sorting stocks based

on their size), HML (obtained by sorting stocks based on their book-to-market vale) and

MKT (market factor)

ri,t = αi + βSMB
i SMBt + βHML

i HMLt + βMKT
i MKTt + ei,t. (30)

Factor data were obtained from Kenneth French’s online data library.

C Different Definition of Long horizon - 1.5 years

C.1 TR and EVR Models
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