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Abstract 

 

The estimation of risk factors and their replication through mimicking 

portfolios are of critical importance for academics and practitioners in finance. 

We propose a general optimization framework to construct macro-mimicking 

portfolios  that encompasses existing mimicking approaches, such as two-pass 

cross-sectional regressions (Fama and MacBeth, 1973) and maximal 

correlation portfolio approach (Huberman et al., 1987). We incorporate 

machine learning estimation improvements to mitigate the impact of estimation 

errors in the observed macro factors on mimicking portfolios. We provide an 

application to the construction of mimicking portfolios that replicate three 

uncorrelated global macro factors: namely growth, inflation surprises, and 

financial stress indicators. We show how these machine-learning mimicking 

portfolios can be used to improve the risk-return profile of a typical endowment 

asset allocation.  
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1 – Introduction 

 

Factor investing is driving a significant change in the way investors approach asset management. 

In a broad sense, factors are the fundamental drivers of asset returns (Ang, 2014). Investment 

returns are rewards that investors harvest for holding assets that expose them to systematic source 

of risks. The main advantage of the factor representation lies in the dimensionality reduction of the 

problem investors face. Providing that the estimated factor model fits reasonably well the 

variability (variance) of asset returns, investors can focus on a narrower set of instruments (the 

factors) rather than having to forecast all portfolio components individually. The factor investing 

approach is not new and has been present in the academic literature for a long-time, as exemplified 

by the CAPM or the APT models.  

From theory to practice, investors need to empirically identify the underlying factors. Although of 

work has been devoted to statistical factors (Roll and Ross, 1980; Connor and Korajczyk, 1988) or 

fundamental factors (Fama and French, 1992 and 1993), macroeconomic factors have been 

somehow less popular. While it is clear that economic conditions are pervasive for the dynamics 

of financial asset returns (Chen et al., 1986; Ang and Bekaert, 2004), one major practical limitation 

of macro factors is that they are not tradable. A standard way to tackle this issue is to try to associate 

some investible asset classes to macroeconomic indicators, such as equities with growth or   spread 

between nominal and inflation-linked bonds with inflation (Greenberg et al., 2016).  

While simple and sensible, this approach remains arbitrary as the choice of asset classes aiming to 

replicate macroeconomic factors is not motivated by a statistical efficiency criterion. A more 

general solution adopted in the academic literature is to construct factor-mimicking portfolios 

(FMPs henceforth) which are investable portfolios replicating the underlying non-traded factors. 
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Although most of the existing literature has focused on the use of FMPs for pricing the cross section 

of equity or bond returns (Chen et al., 1986; Vassalou, 2003; and Pukthuantong et al., 2020), few 

studies are considering their relevance in a cross-asset allocation context. Bender et al. (2019) 

propose a comprehensive FMP-based multi-asset alpha framework to produce strategic and tactical 

asset allocations. Chousakos and Giamouridis (2020) expand the cross-asset efficient frontier with 

macro-mimicking portfolios (for growth, fragility, volatility). Amato and Lohre (2020) show that 

using a macro FMP-based multi-asset risk parity strategy leads to a better risk-adjusted 

performance than a traditional asset-based risk-based strategy. 

This article aims to complement these recent cross-asset applications. To do so, we propose a 

general FMP construction framework that encompasses popular factor-mimicking portfolio 

approaches, such as two-pass cross-sectional regressions (Fama and MacBeth, 1973) and 

maximum correlation portfolio approach (Huberman et al., 1987). One of the benefits of our 

general FMP construction framework is that it allows investors to easily integrate practical 

portfolio constraints such as short-sales or liquidity restrictions.  

Since the observed macro factors are measured imprecisely1, we also develop a new machine 

learning estimation procedure that corrects for the errors-in-variables (EIV) bias in the OLS-FMP 

weight estimates. Our method can be viewed as a modified version of the estimation approach of 

Connor and Korajczyk (1991) or Giglio and Xiu (2020) who are using the first statistical factors of 

the base asset returns as instruments for the observed macro factors. The difference being that we 

are relying on an alternative supervised statistical extraction approach where individual asset 

components are selected by a LASSO regression, the target PCA (tPCA; Bai and Ng, 2008), rather 

                                                 
1 Traditional macroeconomic indicators are notoriously noisy, published with some significant lag or revised ex-post. 

The diversity of measures or the recurrent debates between economists of how to measure GDP or define inflation 

illustrates how difficult it can be to measure economic variables. 
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than the standard PCA. This allows to take into account the predictive power of assets for each 

targeted macro factor.  

In our empirical analysis, we first compare the ability of various FMP methodologies to replicate 

the characteristics of three global macro factors (growth, inflation surprises and financial stress) 

over nearly fifty years spanning different economic regimes - both in-sample and out-of-sample - 

using a set of investible assets2 that are representative of cross-asset portfolios and can be invested 

through liquid and cost-efficient vehicles - such as futures/swaps derivatives or ETFs. Overall, the 

results prove the superiority of our machine learning (ML) macro-mimicking approach over the 

standard FMP approaches. We also present a case study where we illustrate how this FMP 

methodology can be used to hedge the macro risk exposures of an institutional investor allocation. 

We find that macro-hedging can improve the investor risk-return profiles significantly.  

The remainder of this paper is organized as follows. In Section 2, we introduce the general FMP 

analytical framework. In Section 3, we discuss the estimation of the FMPs in the presence of 

measurement errors. In Section 4, we detail the empirical estimation of macro FMPs before 

illustrating their potential use for hedging a representative institutional portfolio in Section 5. We 

conclude in Section 6. 

 

  

                                                 

2 We consider equities, nominal and inflation-linked government bonds, credit, commodities, and foreign exchange 

investible asset classes. 
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2 – Factor-Mimicking Portfolios Analytical Framework 

 

Factor-Mimicking Portfolios have been the subject of a vast academic literature (Balduzzi and 

Robotti, 2008). In general terms, they consist in forming portfolios of investable assets (so-called 

“base assets”) that replicate (“mimick”) the behavior of one or several (potentially non-investable) 

factors. In the asset pricing literature, two main FMP approaches have been proposed: the two-pass 

cross-sectional regressions (CSR) and the maximum correlation portfolios (MCP).  

Both approaches have in common to rely, for a set of 𝑁 assets, on factor models of the type:  

𝑹𝑡 = 𝝁 + 𝑩𝑭𝒕+𝒉 + 𝜺𝑡     (1) 

where 𝑹𝑡 and 𝝁 are the (𝑁 × 1) vectors of base asset returns and expected returns, respectively; 

𝑭𝑡+ℎ is the (𝐾 × 1) vector of innovations (“surprises”) in the 𝐾 factors that we want to replicate3. 

𝑩 is the (𝑁 × 𝐾) matrix of asset loadings to factors. 𝜺𝑡 is the (𝑁 × 1) vector of mean-zero 

disturbances. 

In the two-pass CSR approach, pioneered by Fama and MacBeth (1973), the asset loadings of the 

factor model (1) are estimated via time-series regressions of base asset returns onto the factors. In 

the second step, the FMPs are obtained jointly by regressing cross-sectionally the returns of the 

base assets onto the estimated betas. The estimated slope coefficients are the returns of the FMPs. 

While in the original Fama-MacBeth approach, the second-pass cross-sectional regressions are 

usually performed through Ordinary Least Squares (OLS), meaning that the base asset returns are 

equally weighted, several authors have also recommended alternative weighting schemes to deal 

                                                 

3 For macro factors, the horizon ℎ is typically superior to 0 as financial assets tend to predict the future evolution of 

economic variables. 
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with the heteroskedasticity and cross-correlations in (1), such as Weighted Least Squares (WLS; 

Litzenberger and Ramaswany, 1979) or Generalized Least Squares (GLS; Lehman and Modest, 

1988). In the MCP approach, pioneered by Breeden et al. (1989) and Lamont (2001), the FMPs are 

determined separately by regressing the base asset returns on each factor – meaning that the asset 

loadings of the factor model (1) are estimated for each factor through univariate regressions - or 

equivalently by projecting each factor on the base asset returns. The FMP weights are given by the 

coefficients estimated from these regressions. 

Following Huberman et al. (1987), the vector of weight of the k-th macro factor-mimicking 

portfolio 𝒘𝑘 is the solution to the variance-minimization program:  

Min
1

2
𝒘𝑘

𝑻  𝒘𝑘       (2) 

𝑠. 𝑡. 𝑩𝑻𝒘𝑘 = 𝜷𝑘        

where 𝛀 is the (𝑁 × 𝑁) variance-covariance matrix of the base assets and 𝜷𝑘 is the (𝐾 × 1) vector 

of risk exposures associated with the mimicking portfolio on the k-th factor. By convention, we 

assume that each FMP has unit-beta exposure to the factor it aims to replicate and pre-specified 

exposures to other factors; meaning that the vector 𝜷𝑘 has 1 in k-th entry and 𝛽𝑘𝑙 for 𝑙 ≠ 𝑘. As 

there are generally more investable assets than factors (𝑁 ≫ 𝐾), there are an infinite number of 

portfolios that can replicate the desired target factor exposures. Among all those portfolios, 

program (2) states that the FMP portfolio must be the one that maximizes the explanatory power 

of the factor model (1). Indeed, constraining factor exposures and minimizing variance 

simultaneously is equivalent to minimize the portfolio’s idiosyncratic risk4. As a result, the k-th 

FMP is maximally correlated with the k-th factor. In general terms, this means that FMPs are well-

                                                 

4 Substituting the residual risk matrix 𝛀𝜀 for the total risk matrix 𝛀 in the objective function (2) leads to the same FMP 

solution. See Melas et al. (2010) or Appendix 2. 
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diversified portfolios that target some specific risk exposures with respect to a set of factors of 

interest. 

Solving program (2), the portfolio weights for the full set of the FMPs are given by the column 

vectors of the (𝑁 × 𝐾)  weighting matrix (see Appendix 1): 

𝑾𝐾
∗ = 

−𝟏𝑩(𝑩𝑻
−𝟏𝑩)

−𝟏
𝑩𝐾    (3) 

 

where 𝑩𝐾 is the (𝐾 × 𝐾)  matrix collecting the target exposures for the various FMPs, with 𝑩𝐾 =

(𝜷1𝜷2 … 𝜷𝐾). The associated return of the k-th FMP is obtained as 𝐹𝑀𝑃𝑘,𝑡 = 𝒘𝑘
∗𝑻𝑹𝑡 5.  

In Table 1, we show how it is possible to recover all the traditional factor-mimicking portfolio 

solutions from the general formula (3). In particular, we can see that all FMP construction methods 

can be distinguished by three types of specifications: 

(i) the covariance matrix  that can be equal either to an identity matrix (OLS-CSR), 

a diagonal matrix (WLS-CSR), or a full matrix (GLS-CSR, Target-beta MCP and 

Unit-beta MCP);  

(ii) the factor loading matrix 𝑩 that can be obtained either by running single-factor 

(univariate) time-series regressions (all MCPs) or multifactor (multivariate) time-

series regressions (all CSRs). 

(iii) the target exposure matrix 𝑩𝐾 that can be equal either to an identity matrix (all 

CSRs) or a general matrix (all MCPs).  

                                                 
5 Note that while the FMP betas are by construction equal to the targeted ones, since 𝑩𝑻𝑾𝐾

∗ = 𝑩𝐾, their covariances 

are generally different from the true factor covariances, since 𝐶𝑜𝑣(𝑾𝐾
∗𝑻𝑹𝑡) = 𝑩𝐾

𝑻(𝑩𝑻−𝟏𝑩)
−𝟏

𝑩𝐾 ≠  𝐶𝑜𝑣(𝑭𝑡+ℎ). 
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Three remarks are worth mentioning regarding the general FMP optimization program (2). First, 

we note that the use of a variance minimization program to obtain FMP portfolios is not new. To 

the best of our knowledge, Huberman et al. (1987) are the first to have advocated such approach. 

More recently, this has also been considered by Melas et al. (2010) and Pukthuangthong et al. 

(2020). However, these authors always relate it to some specific FMP cases, while we show here 

that we can cast all the proposed FMP methodologies into one single generic formula (3). Our 

minimum variance mimicking portfolio solution is also very similar to the one proposed by Roll 

and Srivastava (2018). The difference being that their mimicking portfolios seek to match the 

systematic risk exposures of a given asset or portfolio, whereas our approach is designed to 

reproduce the systematic exposures of the macro factors themselves. Second, in the program (2) or 

in the applications below, we do not impose any additional portfolio constraints other than target 

exposures 𝜷𝑘. In particular, by default, FMPs are long-short portfolios. It is straightforward to add 

in the portfolio optimization program (2) various forms of constraints. For instance, the 

incorporation of long-only constraints, minimum or maximum per base asset, or even the addition 

of scores (based on liquidity, alpha etc…) are feasible as long as these constraints respect the 

convex nature of the optimization program. Obviously, in most of these cases, analytical solutions 

such as (3) are not available anymore. Third, while in the analytical expressions above or in our 

empirical applications, we are considering only static betas (e.g. FMP weights), our general 

framework can easily accommodate dynamic asset loadings through the use of lagged 

macroeconomic or asset specific instrumental variables as in Ferson and Harvey (1991).  
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3 – Machine Learning Factor-Mimicking Portfolio Estimates 

 

In theory, expression (3) provides the Best Linear Unbiased estimator of the FMP weights. In 

practice, however, the individual betas are estimated imprecisely due to the presence of 

measurement error in the observed macroeconomic factors 6. Since the estimated betas are used in 

the construction of the FMP, this introduces an error-in-variables (EIV) bias in the OLS FMP 

weight estimates. 

To correct for this bias, we follow the instrumental variables (IV) estimation approach of Connor 

and Korajczyk (1991) and Giglio and Xiu (2020) that uses the first principal components (PCs) of 

the base asset returns as instruments for the observed macro factors to estimate the factor loadings 

in (1). This approach can be viewed as an application of the two-stage least squares (2SLS) 

regression method. In the first step, we project the observed factors (𝑭𝑡+ℎ) against the L first PCs 

of the asset returns (𝑭𝑡+ℎ
𝑃𝐶 ), with 𝐿 ≤ 𝑁, to obtain the fitted values of the observed factors (𝑭̂𝑡+ℎ

𝑃𝐶 ). 

In the second step, we regress the base asset returns against the values of the factors estimated from 

PCA to obtain the EIV-corrected factor loadings that are substituted in (3) to estimate the FMP 

weights (see Appendix 3). 

A sufficient condition for this procedure to remove the measurement error in the observed factors 

is that the first PCs of the base asset returns span the same space as the true factors 7.  In practice, 

                                                 
6
 See Ghysels et al. (2018) for an analysis of the impact of revisions on macroeconomic statistics or Rigobon and Sack 

(2008) for the impact of noise. More generally, following Stock and Watson (2002), a vast literature analyzes the issue 

of the measurement of the business cycle. The nowcasting approach presented in Beber et al. (2015) defines an 

alternative way to measure business cycle.  
7 Formally, consider the classical measurement error model: 𝑭𝑡+ℎ = 𝑭𝑡+ℎ

∗ + 𝜼𝑡+ℎ, with 𝑭𝑡+ℎ
∗  the true factors and 𝜼𝑡+ℎ 

the measurement errors such that 𝐶𝑜𝑣(𝜼𝑡+ℎ,𝑭𝑡+ℎ
∗ ) = 𝟎. The regression of the observed factors onto the first PCs of 

the asset returns yields the coefficients 𝒃̂𝐾 = 𝐶𝑜𝑣(𝑭𝑡+ℎ
𝑃𝐶 , 𝑭𝑡+ℎ)𝑻 𝑉𝑎𝑟(𝑭𝑡+ℎ

𝑃𝐶 )−1. If the first PCs can span the same space 

as the true factors, this means that there exists an invertible (𝐿 × 𝐾) matrix 𝑳, such that 𝑭𝑡+ℎ
𝑃𝐶 = 𝑳𝑭𝑡+ℎ

∗ . We can then 

write 𝒃̂𝐾 =  𝑉𝑎𝑟(𝑭𝑡+ℎ
∗ )𝑳𝑻[ 𝑳 𝑉𝑎𝑟(𝑭𝑡+ℎ

∗ ) 𝑳𝑻]−𝟏 = 𝑳−𝟏. The fitted values of the observed factors are then equal to 

𝑭̂𝑡+ℎ
𝑃𝐶 = 𝒃̂𝐾𝑭𝑡+ℎ

𝑃𝐶 = 𝑳−𝟏𝑭𝑡+ℎ
𝑃𝐶 = 𝑳−𝟏𝑳 𝑭𝑡+ℎ

∗ = 𝑭𝑡+ℎ
∗ .  

Electronic copy available at: https://ssrn.com/abstract=3363598



10 

 

however, this might not be necessarily the case if some of the latent factors are weak, i.e. affect 

only a small subset of base assets or affect all base assets only weakly. To mitigate this issue, we 

modify the IV estimation approach by replacing the traditional unsupervised PCA by an alternative 

supervised statistical approach, the target PCA (tPCA), that uses the predictive power of the base 

assets for each macro factor when extracting the statistical factors (Bair et al, 2006; Bai and Ng, 

2008). Following Bai and Ng (2008), we use a “soft” thresholding LASSO penalty rule to perform 

for each macro factor the subset selection of the base asset returns. We then perform a traditional 

PCA on the selected base asset returns to extract the first L PCs onto which the macro factor of 

interest is projected. We finally regress the individual base asset returns against the values of the 

macro factors estimated from the tPCA to obtain the machine learning (ML) factor loadings 

estimates 𝑩̂𝑀𝐿. We refer in the rest of the article to the ML FMPs (ML-CSR) as the mimicking 

portfolios obtained by replacing the OLS beta estimates by the ML ones into the OLS-CSR 

specification  8. 

 

  

                                                 

8 The ML-CSR FMP is thus given by: 𝑾𝐾
∗𝑀𝐿−𝐶𝑆𝑅 = 𝑩̂𝑀𝐿(𝑩̂𝑀𝐿𝑻

𝑩̂𝑀𝐿)
−𝟏

, with 𝑩̂𝑀𝐿 the (𝑁 × 𝐾) matrix of the factor 

loadings estimated from target PCA. 
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4 –Empirical Analysis of Macro FMPs 

 

As for any FMP, building macro factor-mimicking portfolios requires a set of base assets. In our 

case, these base assets need not only to be investable but also to be available over a long history as 

our empirical setting starts in the early seventies. Table 2 lists the nine selected base assets. They 

cover major asset classes such as equities, government bonds, credit, inflation-linked bonds9, 

commodities and foreign exchange. For base assets that are not spread of indices, returns are 

computed as excess returns over cash rates (USD Libor 1 month). For most investors, they can be 

invested through liquid and cost-efficient vehicles such as derivatives (futures or swaps) or ETFs.  

The sample period spans from January 1974 to March 2020 (555 monthly observations). These 

near-50-years data window covers different business cycles with various macroeconomic events 

such as the oil shock of the 70’s or several economic recessions and well-known episodes of market 

crashes.  

Regarding macro factors, we consider as in Ang (2014) three global macroeconomic variables: 

growth, inflation and financial stress10. Following the academic literature, we rely on 

macroeconomic innovations rather than levels. Growth is measured through the OECD Composite 

Leading Indicator (CLI), which is a popular predictive measure for global economic activity, as it 

focuses on indicators able to capture turning points in the global business cycle. Furthermore, the 

indicator removes the effect of long-term trends, providing a measure of innovations in future 

                                                 

9 U.S. Treasury inflation-linked bonds (TIPS) have been launched only in 1997. To replicate the return of TIPS before 

that date, we follow the methodology developed by Swinkels (2018) based on real rates. Consistently with the author, 

we obtain a correlation of 0.6 between the simulated returns and observed returns over the common sample post-1997.  
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growth for a large part of the world economy. Inflation is proxied by the six-month ahead difference 

between the realized and lagged past year OECD year-on-year inflation rates, hence assuming 

sticky expectations. Finally, for financial stress, we use an equal-weight combination of two 

popular indicators, the Chicago Fed's National Financial Conditions Index (NFCI) and the 

turbulence index developed by Chow et al. (1999)11.  

To facilitate their interpretation, the global growth, inflation and financial stress factors are first 

normalized to z-scores by subtracting their full-sample average from each observation and dividing 

by their full-sample standard deviations. To further improve their interpretability and their 

statistical properties, the three macro factors are orthogonalized following the approached 

described in Klein and Chow (2013). This “egalitarian” approach leads to orthogonal factors 

without being dependent on a specific order of variables (see Appendix 4 for more details). In 

Table 3, we report various correlation metrics involving original macro factors and orthogonalized 

ones. On the upper side of the matrix, we report correlation figures among original macro factors. 

Consistently with expectations, growth and inflation surprises are positively correlated, while 

growth and financial stress factors are negatively correlated. The correlation between inflation 

surprises and financial stress is close to zero. On the lower part of the matrix, we report the 

correlation among the orthogonalized macro factors which are zero by construction. On the 

diagonal, we report the correlation between the original and orthogonalized factors: the high 

correlation numbers (all above 0.96) shows that the orthogonalization structure does not change 

the economic nature of the factors, just renders them more statistically easy to handle. As a last 

                                                 

11 The NFCI index is a weighted average of a large spectrum of individual measures of financial conditions, mixing 

measures of liquidity and volatility in financial markets (such as VIX, swaptions or TED spread) with commercial 

banking conditions (such as FRB Senior Loan Officer Survey or Consumer Credit Outstanding) or health of financial 

institutions. The turbulence indicator is computed as the Mahalanobis distance metric applied to the monthly returns 

of the base asset listed in Table 1, and smoothed using a six-months rolling windows. 
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step, the resulting individual orthogonalized macro factors are finally scaled to a 1% monthly 

volatility.  

To construct macro FMPs, we first need to estimate a multifactor model linking base asset returns 

to the macro factors we want to mimick. For this, we use returns over 12-month rolling samples in 

order to account for the fact that financial assets can react to economic events ahead of their advent. 

In total, we regress the base assets excess returns from t-12 to t on the macro variables observed in 

month t.  

Table 4 reports the results of the OLS estimates of these multivariate regressions over the full 

sample (555 observations). T-statistics are corrected for the effect of overlapping due to the rolling 

windows through Newey-West estimates with a lag of twelve. All regressions are statistically 

significant, with R² ranging from 6% to 32%. The set of base assets are reacting very differently to 

the various orthogonalized macro factors. As emphasized by Lehman and Modest (1988), it is 

critical that the base assets used to form the macro factor-mimicking portfolios display sufficient 

dispersion in their macro betas to replicate them efficiently. Higher growth benefits to equities, 

credit, and industrial metals while it impacts negatively nominal bonds performance. Inflation 

surprise is beneficial to inflation-linked bonds versus nominal bonds, gold and energy and 

negatively impacts the U.S. dollar. Financial stress negatively impacts growth assets (equities, 

credit) and benefits to gold, energy and U.S. dollar.  

As explained in Section 3, poorly estimated factor models can undermine the quality of the FMPs. 

This is particularly relevant for macro factor models since they are inherently noisy. To correct for 

the classic errors-in-variables problem, we use the machine learning regression estimation 

framework described in the previous section. For each orthogonalized observed macro factor, we 

first extract the relevant statistical factors by performing a target PCA, where individual base asset 
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return components are selected by a LASSO regression12, and estimate the fitted value of the macro 

factor accordingly (see Section 3). We then regress the individual asset excess returns against the 

orthogonal macro factors estimated by the target PCA. The regression results of the machine 

learning factor model are displayed in Table 5. We observe that the explanatory power of the 

machine learning factor model is much larger than the equivalent OLS model in Table 5, with R² 

doubled or more for each base asset. This confirms the importance of the considered macro factors 

for the base asset returns.  

Equipped with factor loading estimates, one can then build macro FMPs based on the various 

methodologies presented above13. We consider four specific unit-beta FMP candidates: (i) OLS: 

the OLS-CSR Fama-McBeth model; (ii) WLS: FMP with WLS correction to estimate the variance-

covariance matrix of factor model residuals; (iii) MCP: unit-beta MCP; (iv) ML: the ML-CSR 

where we use machine learning beta estimates in the Fama-McBeth model.  

In Figure 1, we present the composition of these factor-mimicking portfolios for the three global 

macro factors. Some base assets display consistent exposures across the different FMP approaches. 

Growth FMPs are long equities, industrial metals, FX-carry strategies and U.S. dollar and are short 

nominal treasuries and gold. Inflation FMPs are short U.S. dollar and industrial metals, and long 

inflation-linked bonds, credit, energy and gold. Financial stress FMPs are long U.S. dollar, 

industrial metals and energy, and short equities, credit and inflation-linked bonds. Other capital 

exposures vary according to the FMP approach considered.  

                                                 

12 The LASSO shrinkage parameter is automatically selected according to the Bayesian Information Criterion (BIC). 

13 To build these macro FMPs, we use monthly excess returns of base assets. These returns are consistent with returns 

an investor would get in unfunded instruments (e.g. futures, swaps,…) replicating associated indices. 
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In Table 6, we report different characteristics of these macro FMPs. Through leverage (measured 

as sum of absolute positions), we observe that ML FMPs are much less extreme for all macro 

factors. As leverage is often associated to risk or limited for some investors, this is a key advantage. 

At the opposite, WLS FMP method, that corrects for the variance-covariance matrix of assets, lead 

to highly leveraged portfolios. The (full sample) volatility of the mimicking portfolios varies 

significantly across specifications. Here again, the ML approach leads to more reasonable numbers 

but also closer to the original volatility of the macro factors (set at 1% per annum by construction). 

We then display a set of statistics aiming at evaluating the goodness of fit of the FMPs relatively 

to macro factors over the full sample, and more precisely the correlation of macro FMPs with their 

underlying orthogonal macro factors, RMSE (Root Mean Square Errors) and MAE (Mean Absolute 

Error). While correlation metrics do not lead to a clear hierarchy, measures of average errors 

consistently point to the superiority of the ML approach, followed by MCP, while OLS (Fama and 

McBeth) is frequently offering the worst fit.  

In Figure 2, we represent the time-series evolution of the realized returns of the growth, inflation 

surprises and financial stress ML FMPs, jointly with the respective underlying orthogonalized 

observed macro factors. We use one-year moving average of realized ML FMPs to reduce the 

inherent noise in monthly returns. At such horizon, ML FMPs seem to track well the evolution of 

the orthogonalized observed macro factors while short-term (monthly) macro factors will be 

noisier. 

So far, the results are based on estimation over the full sample. To gauge how the different 

mimicking methodologies fare on an out-of-sample basis, we run two different types of tests. In 

the first out-of-sample test, we estimate the macro FMPs over the first half of the sample (from 

January 1974 to March 1996) and then analyze the goodness-of-fit metrics over the second half of 
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the sample. In the second test, starting from April 1996, we re-estimate the model every month by 

expanding the sample and apply the new estimated macro FMPs to the next month. The results for 

these two out-of-sample tests are summarized in Table 7. For almost all methodologies and all 

macro factors, we observe as expected a deterioration out-of-sample in all the goodness-of-fit 

metrics. Indeed, some correlations even turn negative, while RMSEs and MAEs are larger. Looking 

at the different methodologies, the ML FMP approach seems to be the most robust across the 

different out-of-sample tests, as volatility, RMSE or MAE remain frequently the lowest. This 

confirms the dominance of our methodology already observed over the full sample.  

 

5 – Practical use: Hedging macro risks for an endowment portfolio 

 

One of the main potential advantage of investable macro factor-mimicking portfolios is to allow 

investors to hedge macro risks they represent, i.e. recession, inflation surprise and financial stress 

in our case. We provide such an illustration with a representative endowment portfolio, with the 

following portfolio allocation 14: 35% Global Equities (MSCI World), 10% Global Treasuries 

(Bloomberg Barclays Global Treasuries), 5% US High Yield (Bloomberg Barclays US High 

Yield), 5% Commodities (Bloomberg Commodities Total Return), 20% Hedge Funds (Hedge Fund 

Research Fund of Funds), 10% Real Estate (NCREIF Property index) and 15% Private Equity 

(Cambridge Associates Private Equity index).  

To analyze this portfolio through a macro angle, we report in Table 8 regressions of the endowment 

portfolio excess returns on the three macro ML FMPs. The macro model explains more than 60% 

                                                 

14 This allocation is inspired by the 2018 version of Nacubo-TIAA study of endowments.  
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of the total variance of the endowment portfolio returns. We also see that this portfolio has an alpha 

equivalent to close to 4% per year. In Figure 3, we represent the breakdown of the portfolio in 

terms of risk contributions, risk being defined in terms of volatility. The portfolio is dominated by 

growth factor then inflation surprises and financial stress, while the idiosyncratic risk is near 40% 

of the total portfolio risk.  

The previous results suggest that an investor might be seeking to hedge the macro risks to improve 

her risk-return profile. A practical way to do such optimal hedging is to determine a combination 

of the endowment portfolio with macro FMPs that minimizes the variance of the combined 

portfolio. More precisely, we assume that the investor determines the weights 𝝎 so that:  

min
𝝎

𝑇−1 ∑ 𝐻𝑡
2𝑇

𝑡=1 ,      (5) 

with: 

𝐻𝑡 ≡ 𝐸𝑁𝐷𝑂𝑡 − 𝝎𝑻𝑭𝑴𝑷𝑡,      

where 𝐸𝑁𝐷𝑂𝑡 is the endowment portfolio return and 𝑭𝑴𝑷𝑡 are the macro ML FMPs returns15. To 

make the exercise more practically orientated, we run it as an out-of-sample exercise as follows. 

For each quarter, the optimization problem (5) is solved over the previous 10 years (40 quarterly 

observations) for FMP estimated on an expanding basis up (but excluding) the current quarter. The 

first out-of-sample hedged portfolio 𝐻1 is obtained in 2000Q1 (with data from 1990Q1 to 1999Q4) 

and the last one in 2020Q1, leading to 81 observations.  

In Figure 4, we jointly represent the quarterly returns of the endowment portfolio and its (minimum 

variance) macro-hedged counterpart on the top of the chart, while we represent their respective 

maximum drawdowns on the bottom chart. Table 9 displays descriptive statistics on both 

                                                 

15  Note that the macro FMPs are self-financed as the base assets are adjusted for cash returns when they are not defined 

as return spreads. 
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portfolios. While the average returns are slightly reduced, the macro-hedging allows the investor 

to achieve more consistent returns over time, with a much lower volatility or lower maximum 

drawdown. Overall, the risk-adjusted metrics (Sharpe and Calmar ratios) are significantly 

improved thanks to macro hedging. This corroborates the findings of Herskovic et al. (2020) in a 

different set-up.  

 

6 – Conclusion  

 

Investors frequently form views on macro factors. Still, acting on the basis of these views remains 

a challenge as macro factors are not directly investable. In the asset pricing literature, the issue of 

non-tradability of economic factors has been handled through a variety of different methodologies 

grouped under the common label of “factor-mimicking portfolios” (FMPs). In this article, we 

introduce a general FMP framework that encompasses existing factor-mimicking approaches, such 

as the two-pass cross-sectional regressions (CSR) and maximum correlation portfolio (MCP) 

approach.  

We also show how investors can improve the estimation of macro FMPs by combining machine 

learning methods such as supervised principal component analysis and LASSO regressions. We 

apply our macro factor-mimicking framework to three orthogonal global macro factors (growth, 

inflation surprises and financial stress) over the period 1974-2018, and show how the estimated 

machine learning macro FMPs can be used to improve a typical endowment portfolio risk-return 

profile through macro-hedging.  
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Empirical applications of our methodological framework can naturally be extended to deal with 

macro factor correlation dynamics or practically relevant portfolio constraints such as transaction 

costs, liquidity or regulatory guidelines. We leave these extensions to future research. 
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Appendix 1. General FMP Portfolio Optimization Program 
 

For each macro factor k, the factor-mimicking portfolio (FMP) can be obtained as the solution of 

the following variance minimization problem: 

min
𝒘𝑘

1

2
 𝒘𝑘

𝑻 𝒘𝑘       (A.1.1) 

𝑠. 𝑡. 𝑩𝑻𝒘𝑘 = 𝜷𝑘       

where  is the positive definite (𝑁 × 𝑁) covariance matrix, 𝑩 is the (𝑁 × 𝐾) factor loading matrix 

(univariate or multivariate) and 𝜷𝑘 is an (𝐾 × 1) vector of portfolio factor exposures, with the k-

th entry equal to 1 and all others equal to 𝛽𝑘𝑙. 

The Lagrangian of the system (A.1.1) is given by 

𝐿(𝒘𝑘; 𝑘) =
1

2
𝒘𝑘

𝑻 𝒘𝑘 − 𝑘
𝑻(𝑩𝑻𝒘𝑘 − 𝜷𝑘)   (A.1.2) 

where 𝑘  is the (𝐾 × 1) vector of the Lagrangian multipliers. The first-order condition of (A.1.2) 

is given by: 

𝜕𝐿(𝒘𝑘;𝑘)

𝜕𝒘𝑘
=  𝒘𝑘 − 𝑩𝑘 = 0     (A.1.3) 

Pre-multiplying by the inverse matrix  −𝟏 and solving for the optimal weights, we have: 

𝒘𝑘 = 
−𝟏𝑩𝑘      (A.1.4) 

Premultiplying (A.1.4) by 𝑩𝑻 leads to: 

𝑩𝑻𝒘𝑘 = 𝑩𝑻
−𝟏𝑩𝑘 = 𝜷𝑘     (A.1.5) 

We infer: 

𝑘 = (𝑩𝑻
−𝟏𝑩)

−𝟏
𝜷𝑘       (A.1.6) 

Equation (A.1.4) can then be rewritten as: 

𝒘𝑘
∗ = 

−𝟏𝑩(𝑩𝑻
−𝟏𝑩)

−𝟏
𝜷𝑘     (A.1.7) 

Taken together, the factor-mimicking portfolio weight matrix is: 
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𝑾𝐾
∗ = 

−𝟏𝑩(𝑩𝑻
−𝟏𝑩)

−𝟏
𝑩𝐾     (A.1.8) 

where 𝑩𝐾 is the (𝐾 × 𝐾) target factor beta matrix, with 𝑩𝐾 = (𝜷1 𝜷2 …  𝜷𝐾). 

 

Appendix 2. Equivalence between Specific Risk and Total Risk FMP Solutions 

Following the approach of Grinblatt and Titman (1987), define: 

𝑨 = 
−𝟏𝑩(𝑩𝑻

−𝟏𝑩)
−𝟏

     (A.2.1) 

which implies: 

{
𝑩𝑻𝑨 = 𝑰𝑁

 𝑨(𝑩𝑻
−𝟏𝑩) = 𝑩

        (A.2.2) 

Substituting  = 𝑩 𝐾 𝑩𝑻 + 𝜺 , where 𝛀𝐾 is the covariance matrix of factors and 𝛀𝜀 is the 

covariance matrix of idiosyncrasic risks, into the latter equation of (A.2.2) and using (A.2.1) yields: 

𝑩 𝐾(𝑩𝑻
−𝟏𝑩) + 𝜺𝑨(𝑩𝑻

−𝟏𝑩) = 𝑩   (A.2.3) 

That is: 

𝑨 = 𝜺
−𝟏𝑩 [(𝑩𝑻

−𝟏𝑩)
−1

− 𝐾]       (A.2.4) 

Premultiplying by 𝑩𝑻 and using (A.2.1) yields: 

(𝑩𝑻𝜺
−𝟏𝑩)

−𝟏
= [(𝑩𝑻

−𝟏𝑩)
−1

− 𝐾]   (A.2.5) 

Substituting this into (A.2.4) leads to the desired result, that is: 


−𝟏(𝑩𝑻

−𝟏𝑩)
−1

= 𝜺
−𝟏𝑩(𝑩𝑻𝜺

−𝟏𝑩)
−1

   (A.2.6) 

So that: 

                               𝑾𝐾
∗ = 

−𝟏𝑩(𝑩𝑻
−𝟏𝑩)

−𝟏
𝑩𝐾 = 𝜺

−𝟏𝑩(𝑩𝑻𝜺
−𝟏𝑩)

−1
𝑩𝐾 (A.2.7) 
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Appendix 3. Principal Components Instrumental Variables FMP Estimator 

 

We assume that the individual asset returns have a macro factor structure that can be represented 

as: 

𝑹𝑡 = 𝝁 + 𝑩𝑭𝑡+ℎ + 𝜺𝑡     (A.3.1) 

where 𝑹𝑡 and 𝝁 are the (𝑁 × 1) vector of the base asset returns and associated expected returns, 

respectively. 𝑩 is the (𝑁 × 𝐾) matrix of asset loadings to factors; 𝑭𝑡+ℎ is the (𝐾 × 1) vector of 

zero-mean observable factors; and 𝜺𝑡 is the (𝑁 × 1) vector of zero-mean disturbances. 

Let 𝑹̅ correspond to the (𝑁 × 𝑇) matrix of asset centered returns, 𝑭 denote the (𝐾 × 𝑇) matrix of 

observed factors and 𝜺 be the (𝑁 × 𝑇) matrix of disturbances. The factor model can then be 

represented in matrix form as: 

𝑹̅ = 𝑩𝑭 + 𝜺       (A.3.2) 

Given the base asset returns and the factors of interest, the principal components Instrumental 

Variables (IV) FMP weight estimator proceeds as follows: 

1. PC extraction step:  Extract the first L principal components of base asset returns by 

conducting the PCA of the covariance matrix ̂ = (𝑇)−1𝑹̅𝑹̅
𝑻

 , so that: 

𝑭𝑃𝐶 = 𝑬𝑳
𝑻 𝑹̅       (A.3.3) 

where 𝑭𝑃𝐶 is the (𝐿 × 𝑇) matrix of PCs and 𝑬𝐿 corresponds to the (𝑁 × 𝐿) eigenvector matrix 

associated with the largest L eigenvalues of ̂, with 𝐿 ≤ 𝑁. 

2. Fitted factor estimation step: Regress the K observed economic factors 𝑭𝑡+ℎ onto the L 

statistical factors extracted from the PCA to obtain the fitted values of the observed factors 

and their multivariate factor exposures, that is 

𝑭̂𝑃𝐶 = 𝒃̂𝐾𝑭𝑃𝐶 and 𝒃̂𝐾 = 𝑭𝑭𝑃𝐶𝑻
(𝑭𝑃𝐶𝑭𝑃𝐶𝑻

)
−1

  (A.3.4) 
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The observable fitted factors and their exposures can be written equivalently more compactly as: 

𝑭̂𝑃𝐶 = 𝑭𝑷       (A.3.5) 

where 𝑷 is a (𝑇 × 𝑇) projection matrix, with 𝑷 = 𝑭𝑃𝐶𝑻
(𝑭𝑃𝐶𝑭𝑃𝐶𝑻

)
−𝟏

𝑭𝑃𝐶 . 

3. Times-series regression step: Regress the excess asset returns 𝑹̅ onto the K fitted values 

of the observable factors 𝑭̂
𝑃𝐶

 to obtain the Instrumental Variables (IV) macro beta 

estimates, that is: 

𝑩̂𝑃𝐶𝐼𝑉 = 𝑹̅ 𝑭̂𝑃𝐶𝑻
(𝑭̂𝑃𝐶𝑭̂𝑃𝐶𝑻

)
−𝟏

    (A.3.6) 

Substituting in (A.3.6) 𝑭̂𝑃𝐶  by its expression (A.3.5) and rearranging leads to:  

𝑩̂𝑃𝐶𝐼𝑉 = 𝑹̅ 𝑷𝑻𝑭𝑻(𝑭𝑷𝑷𝑻𝑭𝑻)−𝟏    (A.3.7) 

where 𝑷 is the (𝑇 × 𝑇) projection matrix defined in step 2.  

The instrumental variables estimator of the FMP weights is then obtained by substituting in (A.1.8) 

𝑩̂ by 𝑩̂𝑃𝐶𝐼𝑉. That is: 

𝑾𝐾
∗𝑃𝐶𝐼𝑉 = ̂

−𝟏
𝑩̂𝑃𝐶𝐼𝑉 (𝑩̂𝑃𝐶𝐼𝑉𝑇

̂
−𝟏

𝑩̂𝑃𝐶𝐼𝑉)
−𝟏

𝑩𝐾    (A.3.8) 

where 𝑩𝐾 is the (𝐾 × 𝐾)  target beta matrix. One can remark that the IV estimator (A.3.8) provides 

an unbiased estimator of the FMP weights when the first PCs of the base asset returns can recover 

the same space as the true latent macro factors (Bai and Ng, 2002).  

 

Appendix 4. Egalitarian Orthogonalization Procedure  

 

To orthogonalize the original macro factors, we follow the “Egalitarian” procedure described in 

Klein and Chow (2013). The Egalitarian orthogonalization method presents a variety of benefits 

relative to other orthogonalization approaches such as Principal Component Analysis (PCA), 
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Gram-Schmidt (GS) process or Minimum Torsion (MT) transformation. First, it produces 

orthogonalized factors that are the closest in the least squares sense to the original factors, while 

PCA is struggling to maintain a meaningful one-to-one correspondence from the original factors 

to the orthogonalized ones. Second, it treats all factors equally, while the GS process is sequential 

and therefore dependent of the ordering of the factors. Finally, the Egalitarian orthogonalization 

approach leads to a simple analytical closed-form solution, while the MT transformation solution 

can only be obtained numerically.  

Formally, let 𝑭 corresponds to the (𝐾 × 𝑇) matrix of observed original factors and  ̂𝐾 =

(𝑇 − 1)−1𝑭𝑭𝑻 be the covariance matrix of the factors’ returns. To derive the set of uncorrelated 

and variance-preserving macro factors, denoted by 𝑭⊥, we define the following linear 

transformation: 

𝑭⊥ = 𝑳𝑭       (A.4.1) 

where 𝑳 is a (𝐾 × 𝐾) invertible matrix. The new basis 𝑭⊥ will be orthonormal if: 

𝑭⊥𝑭⊥𝑻
= (𝑇 − 1) 𝑳 ̂𝐾𝑳𝑻 = 𝑰     (A.4.2) 

or equivalently: 

𝑳𝑻𝑳 = 𝟏

(𝑇−1)
 ̂𝐾

−𝟏
      (A.4.3) 

The general solution of (A.4.3) is: 

𝑳 = 1

√𝑇−1
 ̂𝐾

−𝟏
𝟐       (A.4.4) 

From the spectral decomposition of the inverse square root of the matrix (𝑇 − 1) ̂𝐾, we obtain: 

𝑳 = 𝑬𝐾 𝚲𝐾

−𝟏
𝟐 𝑬𝐾

𝑻       (A.4.5) 

where 𝑬𝐾 and 𝚲𝐾 are the (𝐾 × 𝐾) matrix of the eigenvectors and the (𝐾 × 𝐾) diagonal matrix of 

the eigenvalues of  (𝑇 − 1)̂𝐾, respectively. 
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Substituting in (A.4.1) 𝑳 by its expression (A.4.5) and rescaling the orthogonal factors to the 

original factor variances, leads to: 

𝑭⊥ = √𝑇 − 1 𝐷𝑖𝑎𝑔(̂𝐾)
𝟏
𝟐 (𝑬𝐾 𝚲𝐾

−𝟏
𝟐𝑬𝐾

𝑻 )  𝑭    (A.4.6) 

One can verify that the orthogonalized factors are uncorrelated and retains the same variances as 

the original factors since: 

̂ = 𝐷𝑖𝑎𝑔(̂𝐾)
𝟏
𝟐 (𝑬𝐾 𝚲𝐾

−𝟏
𝟐𝑬𝐾

𝑻 )  (𝑇 − 1) ̂𝐾 (𝑬𝐾 𝚲𝐾

−𝟏
𝟐𝑬𝐾

𝑻 ) 𝐷𝑖𝑎𝑔(̂𝐾)
𝟏
𝟐  

= 𝐷𝑖𝑎𝑔(̂𝐾)
𝟏
𝟐 (𝑬𝐾 𝚲𝐾

−𝟏
𝟐𝑬𝐾

𝑻 ) 𝑬𝐾𝚲𝑬𝐾
𝑻 (𝑬𝐾 𝚲𝑲

−𝟏
𝟐𝑬𝐾

𝑻 ) 𝐷𝑖𝑎𝑔(̂𝐾)
𝟏
𝟐   (A.4.7) 

= 𝐷𝑖𝑎𝑔(̂𝐾)           

 

where we are using in (A.4.7) the spectral decomposition of  (𝑇 − 1) ̂𝐾 and the orthonorm²al 

property of the eigenvectors, e.g  (𝑇 − 1) ̂𝐾 = 𝑬𝐾𝚲𝐾𝑬𝐾
𝑻  and 𝑬𝐾

𝑻 𝑬𝐾 = 𝑰.  
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Table 1. Factor-Mimicking Portfolio Construction Methodologies 

 
Methodology  Properties Specifications Portfolio Weight Matrix 𝑾𝐾 

Two-Pass Cross-Sectional Regression Approach (CSR) 

 

OLS-CSR 

(Fama and MacBeth, 

1973) 

Minimum variance portfolio with unit beta to the k-

th factor and zero betas with respect to all other 

factors 

𝛀 = σ2𝑰𝑁: Uncorrelated assets with constant variance   

𝑩: Multivariate 

𝑩𝐾 = 𝑰𝐾   

 

𝑩(𝑩𝑻𝑩)−𝟏 

 

WLS-CSR 

(Litzenberger and 

Ramaswany, 1979) 

Same 𝛀 = 𝐷𝑖𝑎𝑔(𝝈2): Uncorrelated assets  

𝑩: Multivariate  

𝑩𝐾 = 𝑰𝐾   

 

𝐷𝑖𝑎𝑔(𝛔−2)𝑩(𝑩𝑻𝐷𝑖𝑎𝑔(𝛔−2)𝑩)−𝟏 

GLS-CSR  

(Lehman and Modest, 

1988) 

Same 𝛀: Unconstrained 

𝑩: Multivariate  

𝑩𝐾 = 𝑰𝐾   

 

𝛀−𝟏𝑩(𝑩𝑻𝛀−𝟏𝑩)−𝟏 

Maximum Correlation Portfolio Approach (MCP) 

 

Unit-beta MCP (Grinold 

and Kahn, 2000) 

Minimum variance portfolio with unit beta to the k-

th factor and non-null associated betas with respect 

to all other factors 

𝛀: Unconstrained 

𝑩: Univariate  

𝑩𝐾 = (𝑩𝑻𝛀−𝟏𝑩)𝐷𝑖𝑎𝑔(𝑩𝑻𝛀−𝟏𝑩 )−1  

 

𝛀−𝟏𝑩 𝐷𝑖𝑎𝑔(𝑩𝑻𝛀−𝟏𝑩)−1 

 

Target-beta MCP  

(Huberman et al., 1987, 

Breeden et al., 1989) 

Minimum variance portfolio with pre-specified beta 

to the k-th factor and non-null associated betas with 

respect to all other factors 

𝛀: Unconstrained 

𝑩: Univariate  

𝑩𝐾 = 𝑩𝑻𝛀−𝟏𝐁   

 

𝛀−𝟏𝑩 

 

MCP  

(Lamont, 2001) 

Minimum variance portfolio with beta to the k-th 

factor equals to the R² in the regression of the k-th 

factor on the base asset returns and non-null 

associated betas with respect to all other factors  

𝛀: Unconstrained 

𝑩: Univariate  

𝑩𝐾 = (𝑩𝑻𝛀−𝟏𝑩)𝐷𝑖𝑎𝑔(𝛀𝐾)  

𝛀−𝟏𝑩 𝐷𝑖𝑎𝑔(𝛀𝐾)  

Notes. The table summarizes the various specifications of the FMPs. 𝛀 is the (𝑁 × 𝑁) covariance matrix of the base asset returns, 𝛀𝐾  is the (𝐾 × 𝐾) covariance matrix of the 

factors, 𝑩 is the (𝑁 × 𝐾) factor loading matrix, 𝑩𝐾  is the (𝐾 × 𝐾) matrix of target risk exposures, 𝑰𝐾  is the (𝐾 × 𝐾) identity matrix. 
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Table 2 – Definition of base assets 

Base asset Acronym Indices used 

Equities WEQ MSCI World in USD 

 

Treasuries (nominal) GLT Bloomberg Barclays U.S. Treasury  

 

Credit CRE Bloomberg Barclays U.S. Credit Baa index vs Aaa index 

 

Inflation-Linked Bonds ILB From April 1997 onwards, Bloomberg Barclays U.S. TIPS vs US 

Treasury All maturities. Before that date, spread return based on 

estimated real yields changes 

 

Gold GOLD Gold  

 

Industrial Metals INM From February 1977 onwards, S&P GSCI Industrial Metals. 

Before that date, equally-weighted basket made of Aluminum, 

Copper, Lead, and Zinc 

 

Energy commodity ENG From February 1983 onwards, S&P GSCI Energy. Before that 

date, equally-weighted basket made of Crude Oil and Natural Gas  

 

U.S. Dollar DXY US dollar trade-weighted index 

 

Commodity vs safe 

heaven currencies 

FXCS Spread of returns (against USD) between commodity currencies 

(equally-weighted basket made of Canadian dollar, Norwegian 

krona, Australian dollar) vs safe-heaven currencies (equally-

weighted basket made of Japanese yen, Swiss franc) 

 

Notes. Sources for data are Bloomberg and World Bank.  

 

 

Table 3 – Original and orthogonalized macro factors: 

Correlation structure 
 Growth Inflation Surprises Financial Stress 

Growth 0.96 0.38 -0.39 

Inflation Surprises 0.00 0.98 0.01 

Financial Stress 0.00 0.00 0.98 

Notes. The table displays correlation metrics in different dimensions: correlation among original macro factors above 

the diagonal; correlation among orthogonalized macro factors below the diagonal; correlation between original and 

orthogonalized factors on the diagonal. Sample period: January 1974-March 2020. 
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Table 4– OLS regressions of base asset returns on macro factors 

 
Growth Inflation Surprises Financial Stress Explained 

variance 

  
(t-stat) 

(% variance) 

(t-stat) 

(% variance) 

(t-stat) 

(% variance)  

WEQ 0.67 0.11 -0.46 32.4% 

  (6.34) (0.66) (-2.96)  

 (21.8%) (0.5%) (10.1%)  

GLT -0.17 -0.07 0.03 12.8% 

  (-3.28) (-1.88) (-0.23)  

 (10.8%) (1.6%) (0.4%)  

CRE 0.10 0.00 -0.14 17.5% 

  (2.84) (0.03) (-2.62)  

 (5.6%) (0.0%) (11.9%)  

ILB 0.21 0.27 -0.05 17.9% 

  (1.70) (2.94) (-0.53)  

 (6.4%) (11.1%) (0.4%)  

GOLD 0.03 0.94 0.67 27.9% 

  (-0.01) (4.96) (1.72)  

 (0.0%) (18.5%) (9.3%)  

INM 1.36 0.57 0.23 27.9% 

  (3.99) (1.30) (0.65)  

 (23.2%) (4.0%) (0.7%)  

ENG 0.17 1.51 1.57 21.3% 

  (0.24) (2.18) (2.08)  

 (0.1%) (10.2%) (11.0%)  

DXY -0.07 -0.25 0.10 12.4% 

  (-0.76) (-4.25) (2.14)  

 (0.8%) (10.1%) (1.5%)  

FXCS 0.19 0.04 0.00 5.9% 

  (1.79) (0.42) (0.72)  

 (5.7%) (0.2%) (0.0%)  

Notes. The table represents individual monthly multivariate OLS regressions of base assets past yearly 

returns over realized macro factors. For each base asset, large-font numbers represent beta estimates and 

adjusted R², while small-font numbers represent t-stat. T-stats are based on heteroscedasticity and 

autocorrelation consistent Newey-West standard errors with twelve lags. Sample period: January 1974-

March 2020. 
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Table 5 – Machine learning macro factor models 

 
Growth Inflation Surprises Financial Stress Explained 

variance 

  
(t-stat) 

(% variance) 

(t-stat) 

(% variance) 

(t-stat) 

(% variance)  

WEQ 1.31 0.22 -1.03 57.2% 

  (8.22) (1.00) (-4.89)  

 (38.0%) (0.6%) (18.6%)  

GLT -0.36 -0.14 0.03 24.7% 

  (-4.98) (-1.54) (0.31)  

 (22.7%) (1.8%) (0.1%)  

CRE 0.21 -0.03 -0.36 38.5% 

  (4.27) (-0.35) (-3.98)  

 (11.8%) (0.1%) (26.5%)  

ILB 0.35 1.14 -0.24 59.3% 

  (3.56) (7.64) (-2.43)  

 (8.4%) (47.7%) (3.2%)  

GOLD 0.08 3.44 1.36 77.5% 

  (0.54) (9.38) (3.63)  

 (0.1%) (63.0%) (14.4%)  

INM 3.09 1.74 1.10 69.8% 

  (7.73) (5.22) (3.66)  

 (54.7%) (9.5%) (5.6%)  

ENG 0.90 4.98 3.87 54.0% 

  (1.73) (4.20) (3.12)  

 (1.7%) (27.9%) (24.5%)  

DXY -0.01 -1.13 0.45 65.4% 

  (-0.14) (-10.66) (4.16)  

 (0.0%) (53.4%) (12.0%)  

FXCS 0.47 -0.01 0.11 16.2% 

  (3.94) (-0.08) (0.79)  

 (15.6%) (0.0%) (0.6%)  

Notes: The table represents individual multivariate OLS regressions of base assets over target PCA-fitted 

macro factors. For each base asset, large-font numbers represent beta estimates and adjusted R², while 

small-font numbers represent t-statistics. T-stats are based on heteroscedasticity and autocorrelation 

consistent Newey-West standard errors with twelve lags. Sample period: January 1974-March 2020. 
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Table 6 – In-sample characteristics of FMPs 

 Growth Inflation Surprises Financial Stress 

Method: OLS WLS MCP ML OLS WLS MCP ML OLS WLS MCP ML 

Leverage 184% 418% 317% 66% 406% 493% 298% 77% 427% 607% 449% 116% 

Volatility 4.8% 5.3% 4.0% 1.9% 6.9% 6.2% 4.9% 1.5% 6.6% 5.4% 4.1% 2.1% 

Correlation with 

original factor 
0.16 0.12 0.11 0.13 0.21 0.21 0.26 0.25 0.10 0.17 0.27 0.10 

RMSE 4.78% 5.31% 3.98% 2.06% 6.74% 6.11% 4.75% 1.55% 6.60% 5.34% 3.98% 2.22% 

MAE 3.59% 4.11% 2.99% 1.55% 5.08% 4.75% 3.53% 1.17% 5.10% 4.07% 2.89% 1.70% 

Notes. The table represents the characteristics of the macro FMPs estimated through four methodologies: OLS, WLS, MCP, and ML. Leverage is estimated 

as the sum of absolute weights. Volatility is the full sample (monthly) volatility. Correlation is the correlation between each FMP and the underlying 

orthogonal observed macro factor. RMSE and MAE are the Root Mean Squared Error and Mean Absolute Error statistics. In both cases, errors are defined 

as the difference between each macro FMP and underlying observed orthogonal macro factor. Sample period: January 1974 to March 2020. 
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Table 7 – Out-of-sample characteristics of FMPs  

 Growth Inflation Surprises Financial Stress 

Method: OLS WLS MCP ML OLS WLS MCP ML OLS WLS MCP ML 

OOS #1 - Two subperiods 

Correlation 0.02 -0.02 -0.09 -0.03 0.08 0.14 0.18 0.12 -0.22 -0.18 0.11 -0.20 

Volatility 3.7% 5.2% 5.6% 2.4% 5.3% 6.0% 4.7% 1.4% 5.0% 5.0% 4.3% 1.6% 

RMSE 0.05% 0.04% 0.23% 0.11% 0.45% 0.13% 0.10% 0.07% 0.05% 0.02% 0.04% 0.18% 

MAE 2.90% 3.72% 3.55% 1.93% 4.13% 4.81% 3.61% 1.11% 3.90% 3.90% 3.00% 1.34% 

OOS #2 – Expanding sample 

Correlation -0.01 -0.04 -0.07 -0.02 0.23 0.18 0.18 0.23 -0.21 0.09 0.15 -0.20 

Volatility 4.3% 5.3% 4.3% 2.4% 4.5% 3.9% 4.8% 1.3% 4.1% 3.7% 4.6% 1.4% 

RMSE 0.12% 0.02% 0.06% 0.07% 0.02% 0.06% 0.22% 0.02% 0.22% 0.01% 0.07% 0.26% 

MAE 3.35% 3.69% 3.13% 1.94% 3.36% 2.96% 3.61% 0.99% 3.27% 2.68% 3.14% 1.33% 

Turnover 9.13% 19.98% 43.31% 6.82% 2.89% 20.85% 52.21% 1.24% 4.90% 32.14% 51.83% 2.19% 

Notes. The table displays the out-of-sample metrics associated to the macro FMPs estimated through four methodologies: OLS, WLS, MCP, and ML. We run two types of out-of-

sample tests. In the first test (OOS #1), the macro FMP models are estimated over the first half of the sample and maintained over the second subperiod where we estimate the 

metrics. In the second test (OOS #2), we re-estimate the model every month over a rolling window of half the sample (278 months) and applying the estimated weights to the next 

month. Correlation is the correlation between each macro FMP and the underlying orthogonal observed macro factor. Volatility is the volatility of FMP. RMSE is the Root Mean 

Squared Errors statistics where errors are defined as the difference between each macro FMP and underlying observed macro factor. MAE is the Mean Absolute Error statistics 

where errors are defined as the difference between each macro FMP and underlying orthogonal observed macro factor. Sample period: January 1974 to March 2020.  
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Table 8 – Exposure of the endowment portfolio 

to ML macro FMPs  

Notes. The table summarizes the regression results of the returns of the 

endowment portfolio on the returns of the ML macro FMPs. Sample period is 

2000Q1 –2020Q1.  

 

 

 

Table 9 – Endowment portfolio and its macro-hedged version: 

Portfolio performance metrics 

  Original Macro-Hedged 

Annualized return 5.3% 4.9% 

Volatility 9.2% 4.6% 

Maximum Drawdown 29.5% 9.4% 

Sharpe Ratio 0.32 0.57 

Calmar ratio 0.07 0.18 
Notes. The table represents the performance metrics of the endowment portfolio 

and of its macro-hedged version. Sample period is 2000Q1 –2020Q1. 

 

 

 

 Coefficients t-stat 

Intercept 1.05% 4.27 

Growth 0.89 11.95 

Inflation 0.83 6.69 

Stress -0.17 -2.74 

Adjusted R²   0.63                                      F-stat  66.36 (p-val: 0.00)  
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Figure 1 – Macro FMP composition as estimated by different methods 

 

 

Notes: The figure represents the weights of the macro FMPs estimated through four methodologies: OLS, GLS, MCP, and ML. Sample period: January 

1974 to March 2020.  
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Figure 2 – ML macro FMPs vs underlying macro factors 

 
Source: OECD, Chicago Fed, Bloomberg. ML-CSR are machine learning macro factor-mimicking 

portfolios where macro factor models are estimated by the machine learning factor model presented in 

Section 3. Macro factors are orthogonalized by using an Egalitarian procedure (see Appendix 4) and 

studentized to a 1% (monthly) volatility. 
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Figure 3 – Macro Risk Contributions 

 
Notes. The figure displays the contributions to the volatility of the 

endowment portfolio, as obtained through the regression of the 

endowment returns on ML macro FMPs. Sample period is 2000Q1 –

2020Q1.  

 

 

Figure 4 – Endowment portfolio and its macro-hedged version: 

Quarterly returns and Maximum Drawdowns 

 
Notes. The figure jointly represents the endowment portfolio returns and its (minimum 

variance) macro hedged version. Sample period is 2000Q1 –2020Q1. 
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