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Abstract

We study whether a large set of financial ratios provides valuable information about future excess stock
returns. Confronted with a data-rich environment, we propose a novel “divide and conquer” methodology
that allows to efficiently retain all of the information available to investors. In particular, our method does
not assume, a priori, that some of the financial ratios may be irrelevant or easily reducible. We compare
our methodology against standard, recursive sparse and dense predictive regression methodologies, as well
as benchmark forecast combination strategies and non-linear machine learning methods. Forecasts based on
our method, not only outperform in out-of-sample predictive comparisons, but translate into out-of-sample
economic gains that are greater than the historical averages and all of the competing forecasting strategies.
Our results lend strong support for using accounting-based information in forecasting stock returns, both at
the industry and at the market level.

Keywords: Financial ratios, forecast combination, machine learning, returns predictability, data-rich mod-
els, industry portfolios.

JEL codes: C11, G11, G17, C32, C53, C55.

*This draft: November 16, 2020. We thank Roberto Casarin, Marco Del Negro, Dimitris Korobilis, Andrew Pat-
ton, Davide Pettenuzzo, Stijn Van Nieuwerburgh, Mike West (discussant), and seminar participants at the University
Ca Foscari of Venice, as well as participants at the NBER-NSF Seminar on Bayesian Inference in Econometrics and
Statistics at Stanford, the Barcelona GSE Summer Forum in Time Series Econometrics and Applications for Macroe-
conomics and Finance, the 10th ECB Workshop on Forecasting Techniques, the world meeting of the International
Society of Bayesian Analysis in Edinburgh, and the Workshop on Forecasting at the National Bank of Poland in
Warsaw for their helpful comments and suggestions. A previous version of this paper was circulating as “Large-scale
dynamic predictive regressions”.

fSchool of Economics and Finance, Queen Mary University of London, London, UK. Email:
d.bianchi@gmul.ac.uk Web: whitesphd.com

tDepartment of Statistical Science, Fox School of Business, Temple University, PA, USA. Email:
kenichiro.mcalinn@temple.edu



1 Introduction

Understanding the dynamics of future excess returns, and its implication for portfolio allocation
decisions, is one of the fundamental goals of empirical asset pricing. However, risk premia are
notoriously difficult to measure, since their time series variation is often buried in the noise of
realised returns. The issue of having a low signal-to-noise ratio is addressed by searching for
additional sources of conditional information, such as financial ratios, firm characteristics, and/or
aggregate macroeconomic variables.! As a result, investors are often left with tens — if not hundreds
— of possible observables and predictors, each one of them, a priori, may provide useful information

to capture future expected returns (see Harvey and Liu, 2019 and references therein).

Theoretical models, developed for these studies, offer guidance in identifying which predictors
or risk factors may matter. However, it is also the case that these models are often too stylized
to explicitly describe all sources of time series variation in financial returns. As a result, investors
and researchers, alike, typically face a trade-off: they could pre-select a set of candidate predicting
variables for returns by appealing to economic theories, existing empirical literature, and a variety
of heuristic arguments, with the risk of omitting important predictors, or, alternatively, they could

use the entire set of available predictors in a way that hopefully captures the effective signals.

Even when enlarging the investors’ information set, different papers argue in favour of different
groups of predictors that capture the time series variation of risk premia, and there is overall little
agreement amongst studies (see, e.g., Green et al., 2017, Kelly et al., 2019, DeMiguel et al., 2020,
and Freyberger et al., 2020). The difference stems from the fact that existing methods either
assume, a priori, that only an unknown sub-set of variables carry most of the predictive power —
such as shrinkage methods, e.g., lasso and its extensions — or they are based on the assumption
that all predictors could bring useful information, although the impact of some of these might be

small — such as data compression methods, e.g., PCA and its extensions. 2

Methodologically, we contribute to the literature on returns predictability and decision making
in a data-rich environment by proposing a novel class of Bayesian predictive techniques. We take
a significantly different approach — a divide and conquer approach — towards the bias-variance
trade-off by breaking a large dimensional regression into a set of smaller dimensional ones. More
specifically, we retain all of the information available and decouple a large predictive model into a
set of smaller regressions, constructed by clustering the set of financial ratios into J different groups,

each sub-regression containing significantly fewer regressors than the whole.> As a result, rather

!See, e.g., Daniel et al. (1997), Lewellen (2004), Green et al. (2017), Kelly et al. (2019), DeMiguel et al. (2020),
and Freyberger et al. (2020).

2Both of these approaches entail either an implicit or explicit reduction of the model space with the intention
to arbitrarily lower model complexity in order to potentially minimize predictive loss. For instance, in penalised
regressions, increasing the tuning parameter (i.e., increasing shrinkage) leads to a higher bias, thus, by utilizing cross-
validation, the researcher aims to balance the bias-variance trade-off by adjusting the tuning parameter. Similarly,
in factor models, the optimal number of latent common components is chosen by using some information criterion to
reduce the model variance at the cost of increasing the bias (see, e.g., Bai and Ng, 2002).

3Throughout the paper we use the terms “sub-model”, “sub-regression” or “Group-specific predictive regressions”



than assuming, a priori, the existence of a sparse structure, or few latent common components,
we make use of all of the information by estimating J different predictive regressions — one for
each group of predictors — for the same target variable and recouple them, dynamically, to generate
aggregate coherent predictions for decision making. By decoupling a large predictive regression
model into smaller, less complex regressions, we keep the aggregate model variance low, while
sequentially learning and correcting for the mis-specification bias that characterize each group of

predictors.

Empirically, we apply our proposed methodology, which we call decouple-recouple synthesis
(DRS), to a typical investment decision problem, whereby a representative investor faces the choice
of investing in a variety of industry-specific portfolios based on signals extracted from a large set
of financial ratios grouped into seven different categories. Surprisingly enough, the use of financial
ratios in time series returns predictability has been mostly relegated to few measures of stock prices
relative to fundamentals, such as the dividend yield, the book-to-market ratio, and the earnings-
to-price ratio. The main reason is that because each of these ratios has price in the denominator,
the ratio should be related to expected returns, either through a mispricing channel, i.e., ratios are
low when stocks are overpriced, or through a rational-pricing mechanism, whereby the ratios track
the time variation in discount rates (see, e.g., Cochrane, 2011). However, existing research show
that, for instance, profitability (see Fama and French, 2006 and Ball et al., 2016), liquidity (see
Péastor and Stambaugh, 2003), leverage (see Gomes and Schmid, 2010), and R&D investments (see
Li, 2011) — all indices that, to a large extent, can be classified as accounting ratios — turn out to

be key determinants of expected future returns on stocks.

Our focus on industry-sorted portfolios is motivated by keen interests from researchers (see,
e.g., Fama and French, 1997) and practitioners (for example, the increasing popularity of industry
ETFs). While there is a vast literature examining the out-of-sample predictability of U.S. aggregate
returns (see, e.g., Elliott and Timmermann, 2004, Timmermann, 2004, Goyal and Welch, 2008,
Rapach et al., 2010, Dangl and Halling, 2012, Johannes et al., 2014, Pettenuzzo et al., 2014, and
Rossi, 2018, among others), the question of whether industry-specific returns are predictable, out of
sample, has received little attention so far. Yet, the implications of industry returns predictability
are far from trivial. If all industries are unpredictable, then the market return should also be
unpredictable; the evidence of aggregate market return predictability, thus, implies that at least
some market component returns are predictable. Furthermore, industry return predictability could
have important implications for dynamic asset pricing models, since they ultimately affect the
efficient allocation of capital across sectors (e.g., Stambaugh, 1983, Campbell, 1987, Huang, 1987,
Kirby, 1998, and, more recently, Lewellen et al., 2010).

Studies on industry return predictability, however, are few. Early exceptions are Ferson and
Harvey (1991), Ferson and Korajczyk (1995) and Ferson and Harvey (1999), which use a set of

industry portfolio as test assets to look at the in-sample explanatory power of macroeconomic risk

interchangeably.



factors. Using a Bayesian approach, Avramov (2004) explores the predictive content of standard
Fama-French risk factors for a handful of industry portfolios and investigate the implications for
asset allocation decisions. More recently, Cohen and Frazzini (2008), Menzly and Ozbas (2010)
and Rapach et al. (2015) investigate the in-sample cross-industry return behavior and returns
predictability. Relative to these studies, which largely focus on in-sample predictability using a
small number of predictors, we analyze the out-of-sample predictability of all industry components
based on a large set of financial ratios. In this respect, to the best of our knowledge, this paper
represents the first comprehensive study on industry returns predictability within a large-scale

regression setting.

In terms of alternative forecasting frameworks, we compare our model against a set of main-
stream forecast combination techniques, such as standard Bayesian model averaging (BMA), in
which the forecast densities are combined with respect to recursively updated posterior model prob-
abilities (see, e.g., Harrison and Stevens, 1976, Sect 12.2 West and Harrison, 1997 and Pettenuzzo
and Ravazzolo, 2016), as well as against simpler, equal-weighted averages of the model-specific fore-
cast densities using linear pools, i.e., arithmetic means of forecast densities, with some theoretical
and practical underpinnings (see, e.g., West 1984 and Diebold and Shin, 2017). In addition to the
equal-weight forecast combination scheme, we follow Rapach et al. (2010) and also consider the
median sub-regression forecast and the trimmed equal-weight mean forecast, which sets to zero the
weight for the smallest and largest individual forecasts and assume equal weights for the remaining
sub-regressions. While some of these strategies might seem overly simplistic, they have been shown
to dominate more complex aggregation strategies in many contexts, and are considered benchmarks
in the literature (Genre et al., 2013).

Together with standard forecast combination strategies, we compare the forecasts from our DRS
strategy with a set of linear penalised regressions, such as lasso (see, e.g., Tibshirani, 1996), ridge
(see, e.g., Hsiang, 1975), and elastic net (see, e.g., Zou and Hastie, 2005), as well as PCA based
latent factor modeling (see, e.g., Stock and Watson, 2002 and McCracken and Ng, 2016). Finally,
we also consider two conventional non-linear machine learning predictive strategies, such as random
forest and a shallow long short-term memory neural network (see, e.g., Rossi and Timmermann,
2015; Rossi, 2018 and Gu et al., 2020).

As suggested by Campbell and Thompson (2007), we benchmark each of these strategies against
the simple historical average (HA) of the returns. We employ forecast encompassing tests to
elucidate the econometric sources of the benefits of our decouple-recouple predictive strategy. These
tests are both based on the conditional mean forecasts, i.e., the expected value of future returns,
as well as on conditional density forecasts, for given time indices ¢t. Both tests produce evidence of
statistically significant information in financial ratios in forecasting stock excess returns, both at
the industry and at the aggregate market level. Consistent with existing evidence on the aggregate
stock market (see, e.g., Rapach et al., 2010), we show that, also for industry portfolios, returns

tend to be more predictable during recessions than expansionary periods.



With regard to the out-of-sample economic performance, we test our predictive system on two
main portfolio optimization settings. First, we implement a mean-variance portfolio choice, where a
representative investor seeks to maximise her risk-return trade-off. Second, we test each predictive
strategy within the context of a power-utility representative investor. We follow DeMiguel et al.
(2014) and consider 10 basis points of linear transaction costs when calculating the returns on each
predictive strategy. The empirical results show that an investor, using our DRS predictions to con-
struct trading signals, consistently outperforms the competition. In practice, this translates to an
investor that is willing to pay a significant fee to have access to the predictions of the DRS, compared
to both the competing predictive models and the simple historical mean. Such outperformance is

confirmed by assuming both unconstrained and short-sales constrained investments.

The conceptual innovation of our decouple/recouple estimation strategies has been nucleated
by Zhao et al. (2016), though in a very different context. Since then, the utility to allow for the
sequential estimates to be decoupled — enabling fast, more efficient processing — and then ensembled
for decision making has been outlined in the context of Cholesky-type volatility modeling (see, e.g.,
Lopes et al., 2016 and Shirota et al., 2017), as well as for dynamic latent factor models (see, e.g., Irie
et al., 2019). Our methodology differs from existing model combination schemes by utilizing the the-
oretical foundations and recent developments in dynamic forecasts with multiple forecasts/models
(see, e.g., McAlinn and West, 2019). Under this framework, the inter-dependencies between the
group-specific predictive densities, as well as biases within each group, are effectively treated as
separate latent states that can be sequentially learned, updated, and corrected; information that is
critical for decision making, though lost in typical model combination techniques. Along this line,
Clemen (1989), Makridakis (1989), Diebold and Lopez (1996), and Stock and Watson (2004) have
pointed out that individual forecasting models are likely to be subject to mis-specification bias of
unknown form. Even in a stationary world, the data generating process is likely to be far more
complex than assumed by the best forecasting model and it is unlikely that the same set of regres-
sors dominates all others at all points in time. As a result, our forecasting approach can be viewed
as a way to robustify the aggregate prediction against model mis-specification and measurement

errors affecting each individual forecasts.

Delving further into the economic mechanism underlying our predictive model, we provide evi-
dence of three main findings of interest. First, we show that there is substantial time series variation
in the dynamics of the correlation amongst forecasts from different groups of financial ratios, with
visual differences pre- and post-financial crisis. This suggest that the “robustifying” benefits of
aggregating individual forecasts correlates with the aggregate macroeconomic conditions. Second,
we show that the marginal effects of different groups of financial ratios in forecasting industry stock
returns change both in the time series and across different industries. When averaged across indus-
tries, such marginal effects align with the value-weighted market portfolio. From an asset pricing
perspective, this suggests that different factors are priced differently across industries, while, al-
most by construction, the aggregate market portfolio represents a value-weighted average of the

industry-specific pricing kernels (see, e.g., Fama and French, 1997 and Huang et al., 2015). Third,



we show that the aggregate forecasting bias and the uncertainty around the expected future stock
returns tend to move in opposite directions. That is, while the predictive content of financial ratios
tend to increase during recessions, the associated forecast uncertainty also increases. These findings
lend empirical support for our time-varying forecast combination strategy and its implications for

industry returns predictability.

2 Modeling Expected Returns

A canonical and relevant approach to investigate if and which characteristic and/or risk factor help

to predict risk premia is to consider a basic linear regression;

n
ye=a+> BiCir+e, (1)
=1
where y; is the return in excess of the risk-free rate at time t, C;;_1, for ¢ = 1,...,n is a given

predictor in the previous period, f; is the corresponding slope coefficient, « is the intercept (or bias
term), and €; is some observation noise. A linear regression of the form in Eq. (1) still represents a
benchmark approach to capture the time series variation of stock excess returns (see, e.g., Campbell
and Thompson, 2007, Goyal and Welch, 2008, and Rapach et al., 2010).

Although simple to implement, a standard multiple linear predictive regression comes with
many pitfalls. In many practically important investment decisions, the information set relevant
to make an informed choice is large, possibly too large, to directly fit something as simple as an
ordinary linear regression. In almost all contexts, at least a priori, all of the available predictors
could provide relevant information. However, the out-of-sample performance of standard estimation
techniques for linear regressions, such as ordinary least squares, maximum likelihood, or Bayesian
inference with uninformative priors, tend to deteriorate as the dimension of the data increases,
which is the well known curse of dimensionality. Cochrane (2011) describes and elaborates many
of the challenges that multiple linear regressions face in the context of data-rich environments, and

suggests “we will have to use different methods”.

2.1 Current conventional approaches

To address the curse of dimensionality in standard predictive models of the form in Eq. (1), a
variety of alternative methods have been proposed in the literature. Broadly speaking, four classes
of methods emerged. The first, labelled penalised regressions, focuses on the selection/shrinkage
of a sub-set of variables, with the highest predictive power, out of a large set of predictors, and
discard those with the least relevance. The second class of models falls under the heading of model
combination techniques. The central idea in the context of stock returns predictability has been
outlined in Timmermann (2004) and Rapach et al. (2010). That is, even if the best set of predictors

can be identified at each point in time, combination of different predictions (from different subset of



variables) for the same variable of interest may still be attractive. The third class of models, dubbed
data compression techniques, is based on the assumption that, a prior:, all variables could bring
useful information for prediction, although the impact of some of these might be small. As a result,
the statistical features of predictors are captured by a smaller set of common latent components,
which could be either static or dynamic. Departing from linearity, a fourth class of models relates to
the idea that there may be an unknown, possibly sparse, non-linear mapping between returns and
predictors. Examples used in empirical finance are random forest regressions and neural networks
(see, e.g., Rossi, 2018, Gu et al., 2020, and Bianchi et al., 2020). In the following, we briefly review
the four classes of methods. We leave to Appendix C a more detailed explanation of each method

and estimation strategy.

2.1.1 Penalised regressions. The central idea of penalised regressions is to add a penalty term
to the minimisation of an otherwise standard loss function, with the explicit goal of shrinking small

coefficients towards zero, while leaving large coefficients mostly intact, i.e.,

LB;)= £B) + 9B) (2)

Loss Function  Penalty Term

where the loss function, £ (3), is commonly represented by the sum of squared residuals. Depending
on the functional form of the penalty term ¢ (3;-), the regression coefficients can be regularised
and shrunk towards zero, completely set to be zero, or a combination of the two. The penalised
minimisation problem in Eq. (2) can be rewritten as a Bayesian hierarchical model by using a specific
shrinkage prior. The main advantage of adopting a Bayesian approach is that the penalisation
parameters are treated as random variables with their own prior and posterior distributions. This
allows to make inference on the key shrinkage parameters in a transparent fashion, without relying
on often hard-to-implement cross-validation techniques. For instance, a ridge regression can be
simply cast as a Normal prior on the regression coefficients of the form, 3;|72,0% ~ N (0,7'202),
where 72 is the global shrinkage parameter (see, Hsiang, 1975). In addition to the ridge, we
implement both a sparse regression method in the form of a Bayesian lasso as well as a hybrid
shrinkage prior in the form of an elastic net (see, Li et al., 2010). The latter mitigates the lasso
concerns related to n > T and the presence of group-wise correlated regressors (see, Zou and Hastie,
2005).

2.1.2 Model averaging. From a purely theoretical perspective, unless a particular forecasting
model can be identified ex-ante, forecast combination offers diversification gains that make it at-
tractive (see, e.g., Bates and Granger, 1969 and Clemen, 1989). In its simplest form, the individual

forecast from the jth group of financial ratios, i.e., p(yt\Cgfl), can be aggregated via linear pooling



(see, e.g., Geweke and Amisano, 2011):

J
Pl Ci1) = wip (wlCLy) . 3)
j=1
with Cz_l = (C{t—l’ e ,ngt_1> represents a set of n; predictors in the group j = 1,...,J of

financial ratios and wy.y is the set of model weights.

Among others, two main reasons make forecast combination particularly appealing in the
context of financial forecasting. First, individual predictive regressions may be subject to mis-
specification bias of unknown form, since the data generating process of the returns is unobservable,
and any individual forecasting model merely represents a local approximation, which is unlikely to
dominate consistently over time (see, e.g., Diebold and Lopez, 1996). Second, individual models
can be vastly, differently affected by non-stationarities, such as structural breaks and parameter
changes. Both aspects are particularly relevant within the context of financial returns, which are
plagued by both low signal-to-noise ratios, as well as time-varying exposure to proxies of systematic

risk (see, e.g., Dangl and Halling, 2012).

We follow existing research and use established benchmarks for the model weights. The first
approach involves a simple equal-weighting scheme, whereby we simply assume w; = 1/J, for
J number of clusters of predictors. Despite being theoretically suboptimal, the equal weighting
scheme has been shown to generate substantial outperformance with respect to optimal weights
based on log-score and/or in-sample calibration (see, e.g., Smith and Wallis, 2009, and Diebold and
Shin, 2017). The second forecast combination scheme is based on a large and increasing literature
in time series forecasting, within the context of Bayesian methods: Bayesian Model Averaging
(BMA; Harrison and Stevens, 1976; West and Harrison, 1997; Avramov, 2002; Johannes et al.,
2014), where the weight, w;, is chosen based on the marginal predictive density score.* The third
and fourth forecast combination methods are borrowed from Rapach et al. (2010). In particular, we
give weight one to the median forecast at each time ¢ or implement a trimmed equal-weight average
scheme, whereby the largest and smallest forecasts are discarded and the remaining forecasts are

given a weight equal to w; =1/(J —2), for j=1,...,J.

2.1.3 Data compression methods. A third class of models used to address the proliferation of
predictors is based on the assumption that few latent components summarise most of the time series

variation in the data. The approach of treating conditioning information to characterise expected

“In our context, we estimate a separate predictive regression for each group of financial ratios and estimate its
weight in the aggregate forecast as

P(y:|Ci 1)

J IR
Zj:l p(ye|C1_y)
with the weights restricted to be inside the unit circle and their sum restricted to one. The restrictions on the weights,

wj, are necessary and sufficient to assure that p (yt|C§',1) is a density function for all values of the weights and all
arguments of the group-specific predictive regressions (see, e.g., Geweke and Amisano, 2011).

j=1...,J (4)

wj



returns as latent and use factor analytic techniques, such as principal components analysis (PCA),
has been pioneered by Chamberlain and Rothschild (1983) and Connor and Korajczyk (1986),
and became highly popular, especially in data-rich macroeconomic contexts (see, e.g., Stock and
Watson, 2002, 2004; De Mol et al., 2008; Manzan, 2015, and Stevanovic, 2017, and the references
therein). Information from a large panel of predictors is condensed into few statistical factors, which
are extracted from no previous knowledge of the dynamics of stock returns. Often, the optimal
number of factors is selected at each time ¢ using some information criterion (see, e.g., Bai and Ng,
2002).% Given all other methods are static in nature, that is each predictive regression does not

have time-varying betas, we consider a recursively estimated static factor model.®

2.1.4 Non-linear machine learning methods. In the main empirical analysis, we restrict,
on purpose, our focus to standard linear predictive frameworks. The reason is three-fold: first,
we want to make our results comparable, as much as possible, with linear predictive systems in
small and large data settings (see, e.g., Barberis, 2000; Lewellen, 2004; Pastor and Stambaugh,
2009; Johannes et al., 2014; Huang et al., 2015). Second, from a methodological perspective, our
main aim is to show the advantages of our approach towards the bias-variance trade-off relative
to classical approaches, such as principal component and shrinkage regressions, that have been
commonly used to deal with data-rich environments (see, e.g., Rapach et al., 2015; Feng et al.,
2019). Third, we believe that focusing on linear models allow to isolate, in a transparent way, the

underlying mechanism of the predictive strategy compared to non-linear machine learning methods.

Nevertheless, we consider it to be instructive to compare our DRS predictive strategy to several
widely used and popular non-linear machine learning methods, namely regression trees and neural
networks (see, e.g., Rossi and Timmermann, 2015; Rossi, 2018; Gu et al., 2020; Bianchi et al., 2020,
among others). In particular, we consider two non-linear forecasting strategies; random forests
and recurrent neural networks. Appendix C gives a detailed description of both methods and the

algorithmic procedures implemented.

2.2 OQOur “divide and conquer” approach

Our methodology exploits an existing intuition in multivariate time series analysis, whereby a large
set of multivariate outcomes is broken up into smaller-dimensional univariate and multivariate
models, and the full multivariate structure (i.e., the covariance matrix) is recovered via a post-

process (see, e.g., Gruber and West, 2016 and the recent developments in Gruber and West, 2017;

®More precisely, a factor model is built on the idea that y: relates to an underlying vector of ¢ < n latent variables
fi = (fit, ..., fqt) extracted from the set of n characteristics in C4, via

q
Yt = Q+Zﬂjfjt—1 + €.

j=1

5To explicit a given dynamics, one could model factor loadings as a linear function of exogenous variables (see
the IPCA method proposed by Kelly et al., 2019), or assume a stochastic dynamic for the factor loadings (see, e.g.,
Bernanke et al., 2005; Stock and Watson, 2005)



Chen et al., 2017). Our idea applies and extends this intuition to problems with large predictors:
a potentially large n—dimensional vector of predictors can be partitioned into smaller — possibly

inter-dependent — clusters, j = 1:J, modifying Eq. (1) to
ni gy o nJj
y=a+) BiCha+... Y BICh .+ O e (5)
i=1 i=1 i=1

where n = ijl

group, and ﬁij is the corresponding slope coefficient.”

n; is the total number of predictors, Ci];f_l is the ¢th predictor within the jth

Our predictive regression approach works in two intuitive steps. The first step is to decouple

Eq. (5) into J smaller predictive models with the same target variable y;, such as,

"y

Y = ZBZC{t,l + €4, (6)

=1

for all j = 1:J, producing forecast distributions p(yt\CLl), where Cg’q denotes each group of
characteristics. Since Eq. (6) is a linear projection of data from each group of financial ratios, we
can consider, without loss of generality, that p(yt|C{71) is reflecting the group-specific information

regarding the future behavior of excess returns on a given industry portfolio.

In the second step, we recouple the densities p(ythg_l) for j = 1:J in order to obtain a uni-
fied /synthesized forecast distribution p(y;|C}—1), reflecting and incorporating all of the information
that arises from each group of predictors. We describe the features of each of these two steps. A

detailed description of the estimation procedure is provided in Appendix B.

2.2.1 Group-specific predictive regressions. In order to be able to disentangle the pure
effect of our decouple-recouple modeling framework, we consider a simple setting for the individual,

group-specific, predictive regressions, p(yt|C{71), forj=1,...,J;
Yt = 5;0{,1 + ey, €y ~ N(0,v5), (7)

where the coefficients are assumed to have a conjugate Normal-inverse Gamma prior distribution,
such that B,lv; ~ N(my,(v;/s;)I) and 1/v; ~ G(n;/2,n;s;/2). Note that our model would
work exactly the same if the individual predictive regressions are assumed to have time-varying
betas with, for instance, a random-walk type of dynamics. While such time-varying specification is

appealing, since it reflects the dynamic predictive content of financial ratios,® this would make the

"These groups can be partitioned based on some qualitative categories (e.g. group of predictors related to the
same economic phenomenon), or by some quantitative measure (e.g. clustering based on similarities, correlation,
etc.), though the dimension of each partitioned group should be relatively small in order to obtain sensible estimates.

8See, e.g., Jostova and Philipov (2005), Nardari and Scruggs (2007), Adrian and Franzoni (2009), Pastor and
Stambaugh (2009), Binsbergen et al. (2010), Dangl and Halling (2012), Pastor and Stambaugh (2012), and Bianchi
et al. (2017), among others.



comparison with penalised regressions and machine learning methods unfair, as they assume betas
are constant in the data generating process. As a result, we consider a static predictive regression
for each cluster of financial ratios, which is more consistent with the underlying assumption of other
competing methods. In addition, this gives a more direct comparison with some of the existing
research on the predicting content of financial ratios and the predictability of industry stock returns,

more generally (see, e.g., Lewellen, 2004, Rapach et al., 2010, Rapach et al., 2015 among others).

2.2.2 Predictive synthesis. Arguments against using forecast combination strategies are as
numerous as the arguments in favour. For instance, whereas the instability in the underlying
data generating process can be an argument in favour of forecast combination, it can also lead to
instabilities in the weights and cause great difficulty in deriving a set of combination weights that
perform well (see, e.g., Clemen and Winkler, 1999, 2007), which, again, is why equal-weighting is
considered a hard benchmark to beat. In addition, it may be reasonable to assume that information
sets used in the primitive forecasting regressions may overlap, leading to a dependence between
p(yt|Cg_1) and p(y:|C}_,), for j # g. This, in turn, could affect the estimates of the combination
weights that are performance based and often do not explicitly take into account such dependence
(see, e.g., Eq. 4). Finally, the individual forecasts, p (yt\Cg_l), are possibly affected by omitted

variable biases, being built on a smaller set of predictors.

To address these issues, efficient forecast combination weights should be chosen to minimize the
expected loss of the combined forecast, which, by definition, reflects both the forecasting accuracy
of each sub-model and the correlation across forecasts.” This is a key feature of our econometric
strategy. In particular, the prediction from each group of predictors in the first step is considered to
be a latent state, such that z;; ~ p(yt|C{_1) represents a distinct prior on the individual predictive
models. That is, each x;; represents a random sample from the predictive content of a group of
financial ratios regarding the expected excess returns of the given industry portfolio; the collection
of which defines the information set X; = {p(y:|CL_,),...,p(y:|C/ 1)}. These latent states are then
calibrated and learned using standard prior-posterior updating rules. More precisely, for a given
prior, p(y:), and (prior) information set, X}, we can update using the Bayes’ theorem to obtain a

posterior p(y;|X;).

Due to the complexity of X; — a set of J predictions with cross-sectional time-varying depen-
dencies, as well as individual biases — the synthesised prediction is often difficult to define. We
build on West and Crosse (1992) and West (1992) (which extend the basic theorem of Genest and
Schervish, 1985), and the recent developments by McAlinn and West (2019) that show that, under

9For instance, it is evident that the marginal predictive power of, for example, valuation ratios may be correlated
with variables that are directly related to solvency. In addition, correlations across predictive densities are arguably
latent and dynamic. For instance, the spillover effects between solvency, liquidity, and aggregate financial variables
possibly changed before and after the great financial crisis of 2008/2009.
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a specific consistency condition, the time-varying posterior density takes the form,

0, 6) = [ (ol ®) T pulCL)dos; ®)
j=1:J
where x; = (x41,...,2¢7) can be thought of as a J—dimensional latent state vector at time ¢,

7 (y¢|xs, ®¢) is a conditional synthesis function, which reflects how the latent states, x;, are to be

synthesised, and ®, represents some time-varying parameters.

Although the theory does not specify 7(y:|z;, ®;),'° a natural choice is to impose linear dy-
namics, such that 7(y|z:, ®;) = N(y|F,0;,02), where F; = (1,2})" and 0, = (0ot, 01, ..., 01)'
represents a (J + 1)—vector of time-varying synthesis coefficients (see, e.g., McAlinn and West,
2019; McAlinn et al., 2020). More precisely, we assume that both 8; and o7 evolve as a random
walk to allow for stochastic changes over time and recast Eq. (5) as a Dynamic Linear Model (DLM)
of the form (see West and Harrison 1997; Dangl and Halling 2012),

ye = Fi0+ e, e~ N(0,07), (9a)
0, =0, 1 +w;, w~N(O, U,:QWt)a (9b)
such that the time-varying latent parameters are defined as ®; = (Ot,atz). Few comments are

in order. First, by representing forecast combination as a state-space model, the “observation
noise”, €, can be directly interpreted as the measurement error. As a result, the latent parameter
o? increases (decreases) when the synthesised forecast is less (more) uncertain; thus providing a
direct check on the quality of the forecast combination scheme, something that existing methods do
not provide. Second, the time-varying correlations of individual forecasts are explicitly controlled
for, through the dynamics of the state equation Eq. (9b); take, for instance, Covy (0i,6;:) =
o2Couvy (wit, wjt) = U?Wij,t, with Wj;, the ij-th element of the state covariance matrix W. Third,
McAlinn and West (2019); McAlinn et al. (2020) show that the aggregate intercept, 6y, can be
interpreted as the “bias” in the predictive system, Eqgs. (9a)-(9b). In this respect, and given
the nature of the forecasting problem, 6y can be interpreted as the fraction of expected excess
returns on industry portfolios that is not explained by financial ratios and additional predictors,
i.e., the omitted variable bias of the entire set. Fourth, despite the fact that the individual predictive
regressions are constant within windows of observations, the time-varying synthesis in Eq. (9a)-(9b)
implies that our method, similar to model averaging techniques, can respond to non-stationarities,
such as structural breaks caused, for example, by changes in the fundamental relationship between
financial ratios and stock returns (see, e.g., Timmermann, 2004 for a related discussion on forecast

combination).

YNote that McAlinn and West (2019) show that many forecast combination methods, from linear combinations (in-
cluding equal-weighting and BMA) to more advanced density pooling methods (e.g. Aastveit et al., 2014; Kapetanios
et al., 2015; Pettenuzzo and Ravazzolo, 2016), are special cases of Eq. (8).
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2.2.3 Estimation strategy. Estimation for the decouple step is straightforward and depends on
the model assumptions for each group-specific model. For instance, for a typical linear regression,
we can compute draws from each of the forecasting densities, x; ~ p(yt|C{71), using standard

conjugate Bayesian updating.'!

As for the recoupling step, some discussion is needed. In particular, the joint posterior distribu-
tion of the latent states and the structural parameters is not available in closed form. We implement
a Markov Chain Monte Carlo (MCMC) approach using an efficient Gibbs sampling scheme. In our
framework, the latent states are represented by the predictions from the models, x¢;, for j = 1,..., J,
and the synthesis parameters, ®;, = (9’ , af). In a nutshell, our MCMC algorithm involves a se-
quence of standard steps in a customized two-component block Gibbs sampler; the first component
simulates from the conditional posterior distribution of the latent states given the synthesis param-
eters and the data, and the second component simulates the synthesis parameters given the latent
states and the data.

The residual ¢; and the evolution innovation ws are independent over time and mutually inde-
pendent for all £, s. The dynamics of W is imposed by a standard, single discount factor specifica-
tion, as in West and Harrison (1997) (Ch.6.3) and Prado and West (2010) (Ch.4.3). The residual
variance, o7, follows a beta-gamma random-walk volatility model, such that o2 = o2 /7, where
d € (0,1] is a discount parameter, and ; ~ Beta (dn;/2, (1 — ) ny/2) are innovations independent

over time and independent of o, w, for all £, s, r, with n; = dn;_1 + 1, the degrees of freedom.

The discount factors for the conditional volatilities in Eqs. (9a)-(9b) are set to 6 = (0.95,0.99).
Results are qualitatively the same using different specifications. Priors for each decoupled predictive
regression are assumed to be fairly uninformative, such as 3;|v; ~ N(my, (v;/s;)I) with m; = 0’
and 1/v; ~ G(nj/2,n;s;/2) with n; = 10,so = 0.01. Similarly, for the recouple step, we use
the following uninformative marginal priors: @g|vg ~ N(my, (vo/so)I) with mg = (0,1’/J)" and
1/vg ~ G(ng/2,n0s0/2) with ng = 10, sp = 0.01. A more detailed description of the algorithm and

how forecasts are generated can be found in Appendix B.

3 Empirical Findings

The empirical analysis for DRS is conducted as follows. First, the individual predictions (cf.,
Section 2.2.1) are analysed in parallel over 1970:01-2000:01 as a training period, simply estimating
the regression in Eq. (7) to the end of that period to estimate the forecasts from each subgroup. This
continues over 2000:01-2018:12, but with the calibration of the recouple strategy, which, at each
quarter ¢ during this period, is run with the MCMC-based DRSS analysis using data from 2000:02
up to time t. We discard the forecast results from 2000:02-2004:01 as training data and compare
predictive performance from 2004:02-2018:12. Similarly, for the other methods, the forecasts are

"'Notice that x¢; ~ p(yt|C{_1) are forecasting densities and not merely conditional means, as we work under a
standard prior-posterior Bayesian updating scheme.
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recursively calculated starting from 2004:01 using information from 1970:01. That means that each
predictive system uses the same in-sample information to generate the one-step ahead forecast at

any given time ¢, and is tested across the same out-of-sample period.'?

Importantly, we assume the J groups of predictors are determined ez-ante based on their eco-
nomic meaning. In this respect, we let the economics guide the construction of the modeling
framework, instead of using a more data-driven approach based on the classification explained
below (see, e.g., Bianchi et al., 2020 for an application of a similar concept on neural networks).
Alternative algorithmic classification procedures, such as the k-nearest neighbors algorithm, can be
used to group variables based on their correlation structure. Yet, exactly the same methodology
would apply, since neither the model specification, nor the estimation, is dependent on the method

used to cluster the financial ratios.

3.1 Data

To approximate the largest possible set of financial ratios, we use the WRDS Financial Ratio
(WFR, henceforth) database. Such data collects, in total, over 70 financial ratios grouped into
seven categories: Valuation, Profitability, Capitalization, Financial soundness, Solvency, Liquidity,

Efficiency, and Other ratios.

Table A.1 in Appendix A provides a full description of the variables, how they are constructed,
as well as their group classification. Capitalization measures the debt component of a firm’s capital
structure; Efficiency measures capture the effectiveness of a firm’s usage of assets and liabilities;
Financial soundness and Solvency measures capture a firm’s ability to meet long-term obligations,
whereas Liquidity measures focus more on short-term obligations; Profitability measures capture
the ability of a firm to generate profit, whereas Valuation measures estimate the attractiveness of a
firm’s stock. Finally, Other measures contain miscellaneous variables, such as R&D-related ratios.

In order to mitigate the effect of small- and micro-cap stocks, the aggregation of financial ratios
at the industry level is constructed by taking the value-weighted mean of firm-specific values.!
Industry aggregation for both portfolio returns and financial ratios is based on the four-digit SIC
codes of the existing firm at each time t. We use the ten industry classification codes obtained
from Kenneth French’s website. All original accounting variables are obtained from Compustat
Quarterly and Annual file, whereas pricing related data are obtained from CRSP and Compustat.
Earnings-related variables are obtained from IBES. We also consider a market-wide aggregation,
where we consider a value-weighted aggregation of the financial ratios and returns. The sample size
is from 1970:01 to 2018:12, monthly. The length of the time series is limited by the data provider.

In addition to financial ratios, we also consider a ninth group of variables that we labeled as

12The time frame of the testing period includes key events, such as the early 2000s — marked by the passing of
the Gramm-Leach-Bliley act, the inflating and bursting of the dot.com bubble, the ensuing financial scandals such as
Enron and Worldcom and the 9/11 attacks — and the great financial crisis of 2008-2009, which was led by the burst
of the sub-prime mortgage crisis.

13We winsorize values at the 1% and 99% percentiles to mitigate the effect of outliers.
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Macro, which contains five additional aggregate predictors that are taken from existing studies, such
as Goyal and Welch (2008), Rapach et al. (2010), and Dangl and Halling (2012). In particular, we
consider the monthly realised volatility of the value-weighted market portfolio (svar), the ratio of
12-month moving sums of net issues divided by the total end-of-year market capitalization (ntis),
the default yield spread (dfy) calculated as the difference between BAA and AAA-rated corporate
bond yields, the term spread (tms) calculated as the difference between the long term yield on

government bonds and the T-bill, and the growth rate of inflation (infl).

3.2 Forecasting performance

We compare the forecasts obtained from each methodology to a naive prediction based on the
historical mean of excess stock returns. In particular, we calculate the out-of-sample predictive
R?, as suggested by Campbell and Thompson (2007). The R?

2 < is akin to the in-sample R? and is

calculated as

R _ Zgzz (ye — T (M))?
St o —7)°

; (10)

where 7, is the historical mean and 7 (My) is the expected forecast from model Mg, for each
industry, and ¢ is the date of the first prediction. Forecast errors are obtained by comparing the

excess industry portfolio returns during the 2004:02 - 2018:12 period.

We also build a portfolio-level return forecast from the individual industry forecasts produced by

our models. We construct forecasts of an equally-weighted portfolio, y(EW = ZN ’(n (M),

where yi n) (M) is the forecast for a given industry, at a given time ¢, from the model /\/l We

compute Rgos gw by constructing forecast errors using the realised return y,g =~ Z —1 y§”)

and comparing it to the historical cross-sectional mean of sample average returns for each industry,
HEW) _ f(n
Le., Uy =N Zn 19t -

Testing the null hypothesis, R? ., < 0, against the alternative hypothesis, R2, . > 0, is tanta-

008 008

mount to testing whether the predictive model has a significantly lower mean squared prediction
error (MSPE) than the historical average benchmark forecast. Thus, to test whether R2
nificant, we implement the MSPE-adjusted Clark and West (2007) statistic.

008 is S1g-

3.2.1 Out-of-sample R2, .. Table 1 reports both the RZ,
the null hypothesis, R2
only if R?

lower mean squared prediction error (MSPE) than the historical average benchmark forecast.

. and the corresponding p-value for

< 0, against the alternative hypothesis, R? , > 0. We report the p-value

00Ss 008

20s > 0, which is equivalent to testing whether the predictive model has a significantly

With regard to the individual industries, three results emerge. First, both non-linear methods
and forecast combination strategies tend to outperform recursive sparse predictive regressions, with
lasso and elastic-net type penalties, and the full OLS model, i.e., no penalty, performing the worst.
This result echoes the findings in Rossi (2018); Gu et al. (2020) for equity and Bianchi et al.
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(2020) for bond returns. Second, forecast combination methods, which consider only the median
prediction or a trimmed mean of all models, considerably outperform standard linear pooling, in
turn. The performance of more “regularised” model averaging techniques is consistent with Rapach
et al. (2010), especially for the aggregate stock market. Third, and more importantly, although
with differences across industries, our decouple-recouple strategy is the only one that consistently
delivers positive and significant out-of-sample R2,..1* When looking at the R2 _ and their statistical
significance, the empirical evidence suggests that predicting industry stock returns is somewhat
harder than forecasting the aggregate stock market, even using conventional predictive strategies.
The results at the industry level are confirmed by looking both at the equal-weight portfolio of
all industries. That is, although the median and the trimmed combination slightly outperform the
other competing methods, our DRS model delivers the highest performance with regard to mean

squared predictive error.

3.2.2 Cumulative sum of square residuals. Upon reporting the complete out-of-sample fore-
casting results, we follow Goyal and Welch (2008) and present time series plots of the differences
between the cumulative square prediction error for the historical average benchmark forecast and
the cumulative square prediction error for the forecasts based on four of the most representative
competing predictive strategies in Figure 1.1° As pointed out in Rapach et al. (2010), this is an
informative graphical device that provides a visual impression of the consistency of an individual

predictive regression model’s out-of-sample forecasting performance over time.

In particular, we compare our DRS method against some of the best performing competing
forecasting schemes: median, equal-weight pooling, BMA, and trimmed average forecast. When the
curve Figure 1 is positive, the corresponding predictive regression model outperforms the historical

average benchmark, while the opposite holds when the curve is negative.'®

The left panel of Figure 1 reports the results averaged across industries, whereas the right panel
reports the results for the aggregate market.!” For ease of exposition, the results for all competing
strategies and our DRS method are reported on two different scales, on the left and on the right of

the graph, respectively.

14The only exception are Durables and Hi-tech industries, whereby the positive R2, is only marginally statistically
significant, i.e., significant below a 10% threshold.

15More precisely, the cumulative sum of squared errors (SSE) for the historical average versus the ith model is
computed as:

t t

ACumSSEe; = > (erma)® = (er:)?,

T=t T=t

where er i 4 is the prediction error from the historical average forecast and e ; is the prediction error of the competing
strategy at time 7.

'%Egsentially, we compare the height of the curve at the two points corresponding to the beginning and end of a
given out-of-sample period: if the curve is higher (lower) at the end of the out-of-sample period than at the beginning,
the predictive regression model (historical average) has a lower predictive error over the out-of-sample period.

17 Although there is some heterogeneity across industries, the qualitative conclusion of the results do not change
by looking at the cross-sectional average.
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Three interesting facts emerge. First, the historical mean forecast turns out to be a challeng-
ing benchmark for typical model averaging techniques, such as BMA and equal-weight pooling.
Noticeably, although BMA improves with respect to the historical mean at the beginning of the
sample, the latter performs worse throughout the great financial crisis of 2008/2009. This result
is in line with previous research, such as Campbell and Thompson (2007) and Goyal and Welch
(2008). Second, both selecting the median forecast and trimming the average prediction seems to
pay off in terms of forecasting accuracy, especially in the aftermath of the great financial crisis
of 2008/2009. Third, our dynamic predictive synthesis strategy turns out to consistently outper-
form the HA benchmark throughout the sample, with a significantly better forecasting performance
starting from the great financial crisis to the end of the sample. When looking at the aggregate
stock market (right panel of Figure 1) the evidence suggests that forecasting industry portfolios is
much harder than predicting the market. As a matter of fact, while standard forecast combination
strategies still underperform our DRS approach, their performance compares much more favourably

against the recursive sample mean.

3.2.3 Industry returns predictability over the business cycle. Recent studies, such as
Rapach et al. (2010), Henkel et al. (2011), and Dangl and Halling (2012), report that the pre-
dictability of aggregate stock market returns is primarily concentrated in economic recessions,
while it is largely absent during economic expansions. Similarly, Sarno et al. (2016), Gargano et al.
(2019), and Bianchi et al. (2020) show that, for bond returns as well, there are typically larger
gains during times of high macroeconomic uncertainty and/or drop in aggregate economic activ-
ity. These findings are important, as they suggest that return predictability may be linked to the

cyclical variation in economic fundamentals and/or firm characteristics.

To test if industry returns predictability varies over the business cycle, we split the data into
recession and expansionary periods using the NBER, dates of peaks and troughs. This information
is used ez-post and is not used at any time in the estimation of the predictive models.!® Table 2
shows the R2

‘0s Separately for expansions (Panel A) vs recessions (Panel B). Consistent with the

existing evidence on the aggregate stock market returns, the results suggest that the out-of-sample
returns predictability is higher in recessions compared to expansions. This is true, not only for
our DRS predictive strategy, but also for the forecast combination methods and the random forest.

Interestingly, the increasing forecasting performance is stronger at the industry level than at the

2

o0s LUINS

aggregate market level for the equal-weight portfolio of industries. In fact, while the R
from negative to positive for a relatively substantial set of forecast combination techniques at the
industry level, for both the market portfolio and the equal-weight aggregation, the same models

still underperform the prediction from the recursive sample mean.

In order to test if the differences in the forecasting performance over the business cycle are

statistically significant, we implement the bootstrap approach proposed by Gargano et al. (2019).

8Note that it is not our goal to predict business cycles. The rationale of this analysis is to investigate if and how
each of the predictive models perform differently over the business cycle.
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The idea is simply to exploit the monotonic relationship between the out-of-sample mean squared
2

20s- For the interested reader, a detailed description of the bootstrap

prediction error and the R,
procedure is outlined in Appendix E. The null hypothesis is that the accuracy of a given forecasting

model relative to the benchmark is the same across the business cycle, whereas the alternative
hypothesis that the relative predictive accuracy is higher in expansions.'?
The outcomes of the tests are indicated by highlighting in bold the results in the recessions

2
005

at the conventional 5% significance threshold. With the notable exception of sparse and dense

panel of Table 2. In particular, we highlight those RZ . which are higher, positive, and significant
linear predictive models, we find that not only is the fit of the industry returns prediction better

in recessions than in expansions, but this difference is highly significant for the vast majority of
2

forecast combination methods. Nevertheless, our DRS consistently outperforms, in terms of R},

each of the competing strategies for each of the industry portfolios, as well as for the aggregate

stock market and the equal-weight industry aggregation.?’

3.2.4 Returns predictions and macroeconomic variables. To shed more light on the rela-
tionship between industry returns predictability and the business cycle, we compare the forecasts
from the DRS and the time series of few macroeconomic variables, which are available at the same
frequency and have not been used as predictors. For ease of exposition, we compare the forecasts
for both the equal-weight portfolio of industries and the value-weighted stock market against the
monthly changes in industrial production and employment, as well as the index of economic policy
uncertainty proposed by Baker et al. (2016) and the VIX index.?! We observe some interesting
patterns in Figure 2. In the case of both industrial production (top-left panel) and employment
(top-right panel) we see that the large drop in economic activity occurred during the great fi-
nancial crisis coincide with a substantial decrease in forecasted returns. This holds for both the
equal-weight industry portfolio and the aggregate stock market. However, the strong positive cor-
relation between forecasts and economic activity tends to deteriorate from early 2010 on, with
industrial production diverging from the dynamics of expected industry returns and employment
changes largely fluctuating around 0.1% monthly change. In fact, if we calculate the time series

correlation between these two series and the model forecasts, we find a positive, but relatively small,

9More specifically, the null and alternative hypothesis can be defined as
Ho: E [6%,4,0 - 6?,0} =K [eiIA,l - 6?,1} vs Hi:FE [efHA,o - 6?,0] <FE [e%IA,l - 6?,1] )

with e a,; and e;; the squared out-of-sample prediction errors for the simple recursive mean and a given model
1, respectively. The subscript j = 0,1 refers to the expansion (zero) vs recession (one) period. As highlighted by
Gargano et al. (2019), by computing the relative mean squared prediction error with respect to the benchmark
historical average forecast we control for the differences in returns variances in recessions vs expansions.

29In an unreported set of results, we also consider alternative indicators of expansions vs recessions, such as the
unemployment gap recession indicator of Stock and Watson (2010). Except for few nuances, we continue to find that
(1) returns predictability tends to be stronger in recessions than in expansions across industries, and (2) our DRS
strategy consistently deliver positive R2,, while a large fraction of competing models do not outperform the forecast
from the recursive sample mean.

213We focus on the equal-weight aggregation of the industries and the aggregate value-weighted market portfolio for
the ease of exposition. The results for the single industries are available upon request.
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correlation of 0.3 and 0.5, respectively.

The bottom panels of Figure 2 shows the time series of both the Baker et al. (2016)’s economic
policy uncertainty index (bottom-left panel) and the VIX (bottom-right panel). As far as economic
policy uncertainty is concerned, there is no obvious correlation with the model-implied forecasts.
Apart from a strong negative correlation during the crisis of 2008/2009, there is no signal of
comovement to the end of the sample. On the other hand, the VIX strongly negatively correlates
with industry and market returns. Not only is such negative correlation evident during the financial
crisis, but also during the spikes in early 2010, late 2011, and 2016. This is particularly true
regarding the DRS forecasts for the aggregate stock market, whereby the negative correlation with
the VIX index takes a remarkable value of -0.75.

The time series comparison of the returns predictions obtained from our DRS strategy to a
selection of aggregate macroeconomic variables show reasonable patterns for predictions. This
is true both for the equal-weight aggregation of individual industry portfolios, as well as for the

value-weighted market portfolio.

3.3 Economic value of forecasts

So far, our analysis concentrated on statistical measures of predictive accuracy. However, it is
of paramount importance to evaluate the extent to which apparent gains in predictive accuracy
translates into better investment performances. Existing evidence of out-of-sample economic gains

of model averaging techniques are somewhat mixed (see, e.g., Rapach et al., 2010).

We contribute to this debate by computing the average utility for an investor with relative risk
aversion parameter vy, who allocates his or her portfolio, monthly, between each industry portfolio
and risk-free bills using forecasts from each model. Following existing literature (see, e.g., Campbell
and Thompson, 2007; Goyal and Welch, 2008; Rapach et al., 2010; Dangl and Halling, 2012 and
Pettenuzzo et al., 2014), we calculate realised utility gains for a mean-variance utility investor and

a power utility investor, both in a single- and multiple-asset setting.

For the mean-variance utility, at each time ¢, the decision-maker selects the weights on each

risky asset to maximize the quadratic utility s, (M) — 307, (M), where pp, ¢ (M) and o7, (M)

are the sample mean and variance, respectively, on the portfolio formed using forecasts of the equity
premium based on model s. More precisely, in the single-asset case, the investor selects between an

industry portfolio and the risk-free return based on the expected return implied by a given model,
gt (M)
YOt|t—1
O¢t—1, an estimate of time-varying volatility of the returns based on the forecasting residuals. For

Wy = , where y; (M) is the returns forecast for a given industry, given model Mg, and

the case with multiple assets, the vector of optimal portfolio weight, w; s, for the mean-variance
investor is expressed as w; s = %Eﬂf_ﬁt (M), where y, (My) is the vector of industry returns

forecasts obtained using model My, and Xy, = Var, (y, — Yy (Ms)).

In addition to a mean-variance utility, we also consider an extended framework, whereby a
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representative investor has a power utility (Constant Relative Risk Aversion (CRRA) preferences) of
the form, Ut,s = Wt1_7 (M) /(1—7), and W, (M), the wealth generated by the competing model, s,
at time, t. Campbell and Viceira (2004) show that, under conditionally normal returns, the optimal
portfolio allocation for a power utility investor can be expressed as w; = %Zﬂtl—l Y, + 0’?‘ v 1/2],
with a'f| .1 & vector containing the diagonal elements of ¥,;_; (see, Gargano et al., 2019). Given
the optimal weights, we compute the realised returns. We follow DeMiguel et al. (2014) and assume
a flat 10 basis point transaction cost for each trade.?? Then, following Fleming et al. (2001), we
obtain the certainty equivalent gains (annualized and in percentages) from the realised returns by
equating the average utility of the historical average forecast, u; 74, with the average utility of any
of the alternative models, u; . To test whether the certainty equivalent return (CER) values are

statistically significant, we use the Diebold and Mariano (1995) test.?3

This optimal portfolio allocation exercise requires the investor to use some sort of time-varying
volatility model to estimate, for example, X;;_;. However, different predictive strategies have
different estimates of the conditional variance of the returns. In fact, in the penalised regression
models, the returns variance is assumed constant in the data generating process. To address this
issue, and in order to mitigate the effect of alternative volatility estimates on the resulting optimal
weights, we consider, for each predictive strategy, the same rolling sample variance estimator as
in Thornton and Valente (2012): it+1|t = > 201 © €—i€,_;, where € the vector of forecast
errors, ;_; = dexp(—9)11’ is a symmetric matrix of weights, ® denotes element-by-element

5.2 We also winsorize the weights for each of

multiplication, and we set the decay rate § to 0.0
the industry portfolio to —1 < w; < 1.5 to prevent extreme investments; however, we evaluate
the robustness of our results to alternative assumptions about the portfolio weights. Finally, to
make our results directly comparable to other studies (e.g., Pettenuzzo et al., 2014; Pettenuzzo and

Ravazzolo, 2016; Johannes et al., 2014), we assume a risk aversion vy = 5.

3.3.1 Certainty equivalent returns. Table 3 reports the results for the mean-variance case by
looking both at a single industry portfolio, a more general multivariate cross-industry investment,
as well as at a value-weighted market portfolio. Similar to the predictive performance, we report
both the certainty equivalent gain and the p-value for the null hypothesis that the gain is null, with
the t-statistics calculated from Eq. (11), which follows the logic of Diebold and Mariano (1995).

Few comments are in order. First, from a pure economic standpoint, the forecast from a

22Considering we are not dealing with single stocks but with industry portfolios, a careful investigation of trans-
action costs would be rather prohibitive. In this respect, assuming industry portfolios can be thought of as passive
investment, a 10 basis point flat fee is rather in line with conventional passive investment strategies.

238pecifically, to evaluate the allocation implied by a given predictive strategy, we estimate the following regression:

Ut,s — Ut, HA = [+ €, (11)

where the test is based on the sample mean of the difference in utilities u. Standard error are robust to heteroskedas-
ticity and autocorrelation by using a Newey and West (1987) estimator with lags as suggested in Lazarus et al.
(2018).

24This is the same value as in Thornton and Valente (2012) and within the range of those reported in studies like
Fleming et al. (2001).
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recursive mean are quite challenging to beat. Although a large fraction of methods deliver a
positive certainty equivalent across industries, only for a handful of these the spread with respect
to the certainty equivalent from the sample mean is statistically significant. This confirms previous
evidence in, for example, Goyal and Welch (2008), Rapach et al. (2010), and Dangl and Halling
(2012). Second, our DRS model outperforms both the model averaging and the recursive penalised
regression estimates, even though some industry portfolios are borderline significant, with the health
industry portfolio being the exception in terms of significance. For instance, when looking at the
aggregate market portfolio, an investor is willing to pay 38 basis points to access the strategy based
on a dynamic factor model, while the same investor would be willing to pay more than double,
i.e., a 83 basis point fee, to have access to a strategy based on our DRS method. Consistent with
the existing evidence (see, e.g., Avramov, 2002 and Rapach et al., 2010), forecast combination
methods, such as equal-weight linear pooling, BMA, and both the median and the trimmed mean
forecast represent two challenging benchmarks to beat in an economic sense. On the other hand, all
penalised predictive regressions turn out to underperform the historical mean by a sizable margin,
whereas dense factor models and non-linear machine learning methods are placed somewhat in
between shrinkage methods and forecast combination strategies. More generally, the economic
performance across industry portfolios confirm and extends some of the existing evidence at the

market level (see, e.g., Pettenuzzo et al., 2014).

Similar to the statistical performance, we also report a more dynamic picture that shows the
cumulative CERs gain (or loss) from the same competing strategies reported in Figure 1 against
the historical mean. The top panels of Figure 3 reports the results for the mean-variance investor.
The evidence that emerges from the average value across industries (left panel) and the value for
the aggregate stock market (right panel), are similar. The trading signal coming from our DRS

strategy tend to systematically outperform the signal obtained from the conditional mean.

As a robustness check, Table D.1 investigate the consistency of the results for a mean-variance
investor when short sales are restricted, i.e., 0 < wy < 1. Although to a lesser extent, the results
continue to be largely in favour of our DRS predictive strategy, vis-a-vis both forecast combination
methods, non-linear machine learning methods, and sparse and dense penalised predictive regres-
sions. More precisely, although the economic magnitude of the performance is reduced throughout,
the pecking order and the rationale of the results remain intact. For instance, the implied fees an
investor would be willing to pay to access the DRS forecasts for the aggregate market portfolio
are around 40% higher than the one the very same investor would be willing to pay for either the

median or the trimmed mean forecasts.

Turning to a more general power utility investor (see, e.g., Barberis, 2000, Johannes et al., 2014,
Pettenuzzo et al., 2014, and Pettenuzzo and Ravazzolo, 2016), the general message of Table 3 is
consistent. In fact, Table 4 confirms that our large-scale predictive regression framework tends to
(1) significantly outperform the forecasts from a sample mean, and (2) outperform the competing

model combination strategies, the recursive sparse and dense regression methods, and non-linear
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machine learning methods. These results hold both at the univariate level, i.e., investing in a single
industry at a time, and at the multivariate level, i.e., investing in all industries at once, as well as at
the market level, i.e., investing in a value-weighted portfolio. Interestingly, the performance of all
competing methods tend to be slightly better within a power utility context than for mean-variance
preferences. For instance, for the equal-weight linear pooling, a mean-variance investor would be
willing to pay 9 basis points, net of fees, to access such strategy, whereas, for the same strategy, a

CRRA investor would pay a doubled 17 basis points.

Table D.2 shows the economic performance of each model when restricting the portfolio weights
to be non-negative. Similar to the mean-variance case, the main results of the paper are robust to
the inclusion of short-sales constraints in the investment process. In fact, the economic performance
slightly improves throughout, with only a few cases in which the forecast from the sample mean
delivers better performances. That is, there is no substantial variation in the pecking order across
models; sparse and dense regressions are outperformed by forecast combination techniques, which
in turn are outperformed by our DRS predictive strategy. This can be seen by looking at the p-
values in Panel B; although a large fraction of models deliver positive certainty equivalent returns
with respect to the sample mean, such positive spread is statistical significant in only a handful
of cases. The bottom panels of Figure 3 report the dynamics of the difference in CERs for the
investor with CRRA preferences. The main results confirm the economic gains obtained by a
mean-variance investor. Our DRS strategy tends to systematically outperform the signal obtained

from the conditional mean.

3.3.2 A discussion on the alternative predictive strategies. The main empirical results
suggest that our DRS strategy outperforms competing methods, both statistical and economically.
More importantly, our strategy outperforms sparse regressions and standard forecast combination
strategies, which have been shown to perform well, at least for the aggregate stock market (see,

e.g., Rapach et al., 2010, Rapach et al., 2015, and Bianchi and Tamoni, 2019 among others).

One of the key aspects of financial ratios is that they may be highly correlated to each other. This
affects the performance of sparse regression methods that make use of the whole set of regressors in
a single fashion (see, e.g., Giannone et al., 2017 for a discussion on the “illusion of sparsity” in dense
datasets). The left panel of Figure 4 shows the correlation structure of the predictors. For ease
of exposition, the industry specific financial ratios are averaged across industries. Two interesting
facts emerge. First, there is little correlation, on average, between industry financial ratios and
aggregate macroeconomic indicators. In principle, this evidence lends support for the use of both
industry-specific and aggregate macroeconomic predictors, which appear to not have too much
overlapping information. Second, there are no signs of sparse correlation within industry-specific
predictors. This lends support for explicitly taking into account dense modeling strategies, and
in particular cross-correlations among different individual predictive regressions. Popular model
selection and averaging priors do not explicitly model the correlation structure in the data when

determining which variables are restricted to enter the regression (see, e.g., Giannone et al., 2017).
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This could explain the underperformance of sparse penalised regressions.

A different, although related, issue is that even by clustering groups of financial ratios by their
economic meaning, there is still substantial correlation among sub-model forecasts, which is not
explicitly considered by standard forecast combination strategies. The right panel in Figure 4 shows
this case in point. The figure shows the unconditional correlation among forecasts generated by
using each of the groups of financial ratios, taken singularly. Notice this is not the DRS-implied
sub-models correlation, but is simply the sample co-movement of each sub-model prediction when
estimated separately. There is rather strong evidence that forecasts tend to co-move significantly
over the sample. However, such correlation is completely discarded by non-parametric forecast
combination strategies, such as the equal-weight linear pooling, the trimmed mean, and the median

forecast (see, e.g., Timmermann, 2004 for some detailed discussion).

As a whole, Figure 4 suggests that one possible reason why our DRS strategy outperforms
penalised regressions and forecast combination methods, for a large set of industry specific finan-
cial ratios, is that the dynamic synthesis, and the fact that smaller sets of ratios are efficiently
synthesised, allows to mitigate identification concerns due to correlation (see also the discussion
in Section 2.3). The next Section will delve further into the dynamics of the predictive synthesis

implied by the DRS approach.

4 Dissecting Predictive Synthesis

In the previous sections, we have seen that the performance generated by our DRS strategy outper-
forms competing methods, both statistically and economically. This implies that, when synthesised
carefully, financial ratios provide valuable information in forecasting stock returns, both at the in-
dustry and at the aggregate market level. We now delve further into the model dynamics, in an
attempt to provide further insights on the key ingredients that possibly make our model successful

in comparison to other alternative forecasting procedures.

To investigate the properties of our decouple-recouple predictive strategy, we show two different
sets of results. First, we provide evidence of time variation in the covariance structure across
forecasts. A key feature of our model is that it allows to capture, explicitly, the time-varying
correlations of individual forecasts through the dynamics of the state equation, Eq. (9b). Second,
we show that the dynamics of the aggregate bias, 0y;; the marginal effects of individual, group-
specific, forecasts, 0y;, for j = 1,...,J; and the uncertainty around the measurement error, o,

respond to aggregate macroeconomic conditions.

4.1 Model-implied covariance between sub-model forecasts

Figures 5-6 show the covariance among the individual forecasts for the aggregate stock market and

the average industry at four different time periods; before, during, and after the great financial
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crisis of 2008/2009.2

Figure 5 shows three interesting results. First, there is substantial time series variation in
the dynamics of the correlations amongst forecasts for the aggregate stock market. For instance,
the difference in pre- and post-crisis periods and 2008 are rather clear from a visual perspective,
with an increasing correlation between capitalization and financial soundness in January 2011,
vis-a-vis a positive correlation between macroeconomic variables and profitability in August 2006.
Second, the correlation across forecasts is primarily negative. This has important implications for
the “diversification benefits” of forecast combination. Bunn (1985) shows that the aggregate loss,
obtained by combining two models, is inversely related to the covariance between forecasts, that is,
the more negative the correlation, the lower the aggregate forecasting loss in a mean squared sense
(see, also Timmermann, 2004, for a discussion). Related to that, the third interesting result concerns
the flip in the sign — from negative to positive — of some forecast covariance during the great financial
crisis of 2008/2009. For instance, the covariance between the sub-models related to capitalization
and value goes from negative to positive. From November 2008, there is evidence of increasing
positive spillovers across the forecasts from different groups of financial ratios. This is consistent
with the existing evidence on systemic risk and macroeconomic conditions, whereby increased
correlation among financial and macroeconomic variables is observed during market crashes (see,
e.g., Billio et al., 2012 and Bianchi et al., 2019).

A slightly different dynamic is shown in Figure 6, regarding the average industry. The cross-
forecast covariances are primarily negative before the great financial crisis, suggesting significant
diversification benefits in combining forecasts. However, a greater set of covariance switched from
negative to positive, during the great financial crisis, the period until early 2011, and towards the
end of the sample. This suggests that industry portfolios, on average, may be less affected by

business cycles fluctuations.

4.2 Time-varying synthesis parameters

The dynamic properties of our decouple-recouple predictive model are summarised by the latent
time-varying parameters ®, = (9’,0?). In this section, we discuss the dynamics of ®; against

aggregate macroeconomic conditions.

4.2.1 Aggregate bias and observation uncertainty. Since the parameters of the recoupling
step are considered to be latent states, the conditional intercept, y, in Eq. (9a) can be interpreted
as the aggregate bias, namely a free-roaming component, which is not directly pinned down by any
group of predictors. Specifically, the time variation in the conditional intercept can be thought

of as a reflection of unanticipated (by the group-specific models, and as an extension, the group

25We report the results for the average industry for ease of exposition. The industry-specific results are available
upon request.
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indicators) economic shocks, which then affect equity premium forecasts with some lag.2°

For ease of exposition, the left panel of Figure 7 reports the posterior mean estimates of 6y,
averaged across industries (blue line with markers) and for the aggregate stock market (orange
solid line). Two interesting facts emerge. First, there is discrepancy between the dynamics of the
bias for the average industry, vis-a-vis the aggregate stock market, with a gap that is increasing
in the aftermath of the financial crisis of 2008/2009. More specifically, the bias for the average
industry is consistently lower than the aggregate market after 2008. This suggests that the variation
underpinned by financial ratios at the industry level seems higher, on average, than the variation
captured by the same financial ratios at the market level. The second finding is that there is a large
drop in the bias during the market turmoil of 2008/2009. As the bias captures the variation in the
data that is not underpinned by financial ratios, such drop in the bias suggests that the explanatory
power of financial ratios is higher in recessions vs expansions, conditional on the intercept. This
result confirms the unconditional evidence reported in Table 2 and expands some of the existing
results related to the counter-cyclical returns predictability of the aggregate stock market (see, e.g.,
Rapach et al., 2010) by adding a different perspective to the dynamics of the structural parameters
of the model, rather than at the R2 .27

00S8*

The right panel of Figure 7 reports another key parameter of our DRS predictive model, that
is the standard deviation, oy, in the observation equation, Eq. (9a). By representing forecast
combination as a state-space model, the “observation noise”, €, can be directly interpreted as
the measurement error. As a result, the latent parameter o; should increase (decrease) when the
aggregated forecast is more (less) uncertain. Again, one interesting aspect emerges. The uncertainty
around the one-step ahead forecasts increases during the great financial crisis. This is not surprising,
given such period corresponded to a profound market turmoil. However, consistent with the left
panel in Figure 7, it turns out that the possibly lower forecasting power of financial ratios proxied
by a higher 6y, (orange solid line) also corresponds to a higher forecast uncertainty (see blue line
with markers on the right panel). As a result, the dynamics of the 0y, o, parameters of our DRS
model suggests substantial time variation in the pure forecasting ability of financial ratios over the
business cycle. To the best of our knowledge, this result has not been previously shown in the

literature.

4.2.2 Marginal effects of sub-model forecasts. The time variation in 6y is reflected in
the dynamics of the latent inter-dependencies amongst individual forecasts through 6;. More
specifically, each 6;; represents, conditional at time ¢, the marginal effect of an individual prediction

for the target variable yq, i.e., Qy;/0xj; = 05 with xj ~ p(yt\CLl) (see Egs. 9a-9b).

Figure 8 shows some of the posterior mean estimates of 8, for j = 1,...,J, averaged across

26Note that the aggregate bias does not reflect, per se, the amount of predictability, which is a function of both the
fitted value of the regression and the bias. In this respect, a reduced intercept does not necessarily translates into
lower predictive performance, which is indeed the function, F36;.

2"In a time-varying setting, an increasing R2,s could be a function of a more significant intercept — that is capturing
more precisely a time trend — rather than a function of a higher explanatory power of the predictors.
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industries. The results show some interesting insights. First, there is a substantial time variation in
the marginal effects of individual forecasts. In particular, abrupt changes in the relative effects of
financial ratios can be identified around the great financial crisis, especially for the Manufacturing
and Other industries. This is likely not due to idiosyncratic volatility effects, as we explicitly
take into account time varying volatility for the unexpected returns for each of the group-specific
regressions (see Eq. 9a). Second, the marginal effect of valuation and capital ratios tend to move in
opposite directions. Although the interpretation of the dynamics of the latent inter-dependencies
is not always clean, this possibly suggests there is some offsetting effects of both groups of financial
ratios, especially in the aftermath of the great financial crisis. Similarly, the effects of financial
ratios that are classified as liquidity and efficiency tend to diverge in the few years from 2008 to
2014, then converge towards the end of the sample. Third, except from an abrupt change in 2008,
the marginal effect of profitability, financial soundness, and solvency remain rather stable. This is
not a trivial implication and instead shows that the fact that we impose a random-walk dynamics

to 04 does not prevent the model to be “spillovers” in individual forecasts to be stable over time.

Finally, the marginal effect of the forecast from macroeconomic variables tend to weigh neg-
atively on the stock returns forecasts at the industry level. Note that, this does not imply that
increasing macroeconomic conditions predict negative returns, but rather suggest that, conditional
on financial ratios, forecasts from aggregate macroeconomic and financial variables tend to have di-
versification benefits on the aggregate forecasting loss in a mean squared sense (see, Timmermann,
2004).

Figure (9) shows the same marginal effects, but for the aggregate stock market. Except for few
nuances, the picture that emerges from the model dynamics is similar to the average industry. For
instance, financial ratios that are classified as liquidity, efficiency, financial soundness, and other, all
have a marginal positive relationship with the aggregate forecast. Also, aggregate macroeconomic
variables keep their negative marginal effect. However, differently from the average industry results,
valuation, capitalization, and profitability variables all have a slightly negative marginal effect on

the aggregate forecast.

As a whole, Figures (8)-(9) show that (1) there is a substantial time variation in the way
individual predictions from groups of financial ratios interact to produce stock returns forecasts
from the model, and (2) such time variation reflects aggregate macroeconomic conditions. This
lends support for models with time-varying parameters in a data-rich environment, such as using

a large set of financial ratios.

However, Figures (7)-(8) show the average effect across industries and do not suggest any
insight into why different industries show different levels of predictability. To gain further insight
into the cross-sectional heterogeneity of returns predictability, we now focus on a more granular
representation of the time-varying synthesis parameters for each industry. For ease of exposition,
Figure (10) reports two key parameters of interest, that is the aggregate bias and the observation

uncertainty (top panels), and two representative examples of the marginal effects of sub-model
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forecasts (bottom panels).

Two interesting aspects emerge from the aggregate bias and the measurement error. First, a
substantial time series variation is coupled with a fairly relevant cross-sectional dispersion in the
parameters across industries. For instance, while the bias for sectors, such as Durables and Others,
turn from positive to negative during the great financial crisis, other industries, such as Energy and
Non-durables, consistently show a positive bias, albeit moving closer to zero during the 2008/2009
financial crisis. Second, there is a clear inverse relationship between the aggregate bias and the
observation uncertainty. For instance, Durables, which shows the most volatile bias, also shows the
highest observation uncertainty during the great financial crisis, while the opposite holds for the

Non-durables industry.

Turning to the marginal effects of the forecasts, we report, as an example, the effect of the
forecasts from sub-models, which include variables labelled as valuation ratios (left panel) and
profitability (right panel). Again, one clear pattern emerge. There is a substantial heterogeneity in
the marginal effects of valuation ratios across industries. For instance, while the vast majority of
industries show a positive marginal effect, ;; for the Durables sector turned persistently negative
after 2008/2009. This explains the effect on the aggregate stock market — see Figure (9) —, given
the weight of the Durables sector on the market portfolio. A similar argument holds for the average
industry — see Figure (8) —, although the effect is diluted, given all industries carry the same weight
in the cross-sectional average. Similarly, the marginal effect of profitability largely varies across
industries. For instance, while 6;; becomes increasingly positive after the 2008/2009 for the Others
and Manufacturing industries, the same does not hold for the vast majority of the other industries,
whereby there is a rather downward trending effect. Again, this reflects both in the marginal effect
of profitability on the aggregate stock market portfolio — see top-right panel of Figure (9) —, and
the average industry — see top-right panel of Figure (9).

As a whole, Figure (10) suggests that the difference in the statistical and economic significance
of our DRS predictive strategy in forecasting industry portfolio returns — see Tables (1)-(4) — can be
due to an substantial heterogeneity in the way groups of financial ratios interact when forecasting
returns. From an asset pricing standpoint, such heterogeneity suggests that different factors are
priced differently across industries. In addition, the fact that the average marginal effect and the
marginal effects on the market portfolio somewhat align, suggest that, almost by construction,
the aggregate market portfolio represents a value-weighted average of the industry-specific pricing

kernels (see, e.g., Fama and French, 1997 and Huang et al., 2015).

5 Conclusion

We are interested in the predictability of the equity premium across different industries in the
US, based on a large set of financial ratios. Methodologically, we contribute to the literature

by proposing a novel model combination scheme that retains all of the information available to
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investors.

The empirical results suggest that financial ratios, above and beyond typical measures of stock
prices relative to fundamentals, provide valuable information for forecasting stock returns, both
at the industry and at the aggregate market level. More precisely, our forecasting approach sig-
nificantly outperforms, both statistically and economically, forecasts from a variety of competing
strategies, such as sparse and dense regressions, forecast combination methods, and non-linear

machine learning methods.

Delving further into the key features of the model, we show that the dynamic properties of
our model correlate with aggregate macroeconomic conditions and differ across industries, lending

support to industry-specific asset pricing models.
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Appendix

This Appendix provides additional details regarding the data, the estimation strategy for our
methodology as well as for some of the competing methods for which estimation is non-standard,
some additional out-of-sample empirical results as well as the results from a simple simulation
study. Unless otherwise specified, all notations and model definitions are similar to those in the

main text.

A Description of the Financial Ratios

WRDS Financial Ratio (WFR hereafter) is a collection of most commonly used financial ratios
by academic researchers. There are in total over 70 financial ratios grouped into the following
seven categories: Capitalization, Efficiency, Financial Soundness/Solvency, Liquidity, Profitability,
Valuation and Others. Table A.1 provides a detailed description of all financial ratios used in the
empirical analysis.

Industry aggregation is based on the four-digit SIC codes of the existing firm at each timet. We
use the ten industry classification codes obtained from Kenneth French’s website. Aggregation of
firm-specific characteristics is constructed by taking the value-weighted mean of the firm-specific
values within a given industry.

The final outputs for both individual firm and industry-level aggregated value are at monthly
frequency. In order to populate the data to monthly frequency, we carry forward the most recent
quarterly or annual data item, whichever is most recently available at a given time stamp, to the
subsequent months before the next filing data becomes available.

In addition, in order to make sure that all data is publicly available at the monthly time stamp,

we lag all observations by two months to avoid any look ahead bias.

B MCMC Algorithm

In this section we provide details of the Markov Chain Monte Carlo (MCMC) algorithm imple-
mented to estimate the BPS recouple step. This involves a sequence of standard steps in a cus-
tomized two-component block Gibbs sampler: the first component learns and simulates from the
joint posterior predictive densities of the subgroup models; this the “learning” step. The second
step samples the predictive synthesis parameters, that is we “synthesize” the models’ predictions in
the first step to obtain a single predictive density using the information provided by the subgroup
models. The latter involves the FFBS algorithm central to MCMC in all conditionally normal
DLMs ( Frithwirth-Schnatter 1994; West and Harrison 1997, Sect 15.2; Prado and West 2010, Sect
4.5).

In our sequential learning and forecasting context, the full MCMC analysis is performed in

an extending window manner, re-analyzing the data set as time and data accumilates. We detail
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MCMC steps for a specific time ¢ here, based on all data up until that time point.

B.1 Initialization:

First, initialize by setting F'y = (1, 241, ..., x1y)’ for each ¢t = 1:T at some chosen initial values of the
latent states. Initial values can be chosen arbitrarily, though following McAlinn and West (2019)
we recommend sampling from the priors, i.e., from the forecast distributions, xs; ~ p(yt|Cg_1)
independently for all ¢ = 1:T and j = 1:J.

Following initialization, the MCMC iterates repeatedly to resample two coupled sets of con-
ditional posteriors to generate the draws from the target posterior p(x1.7, ®1.7|y1.7, H1.7). These

two conditional posteriors and algorithmic details of their simulation are as follows.

B.2 Sampling the synthesis parameters ®,.1

Conditional on any values of the latent agent states, we have a conditionally normal DLM with

known predictors. The conjugate DLM form,

Yt :Féet-i‘l/t, I/tNN(O,Ut),
0; =01 +w;, wi~N(O,vWy),

has known elements F;, W; and specified initial prior at ¢ = 0. The implied conditional posterior
for ®1.7 then does not depend on H1.7, reducing to p(®1.p|x1.7, y1.7). Standard Forward-Filtering
Backward-Sampling algorithm can be applied to efficiently sample these parameters, modified to
incorporate the discount stochastic volatility components for vy (e.g. Frithwirth-Schnatter 1994;
West and Harrison 1997, Sect 15.2; Prado and West 2010, Sect 4.5).

B.2.1 Forward filtering:. One step filtering updates are computed, in sequence, as follows:

1. Time t — 1 posterior:

01 1|vi—1, x1:0—1,Y1:0—1 ~ N(my—1,Cr_1vi—1/5¢-1),

v -1, Y11 ~ G(ne—1/2,m1-151-1/2),

with point estimates m;_1 of 8;_1 and s;_1 of v;_1.

2. Update to time t prior:

Ove, T14—1,Yy1:4—1 ~ N(my—1, Ryvy/si—1) with Ry = Cy—1/6,
vy M1, y—1 ~ G(Bny—1/2, Bru—151-1/2),

with (unchanged) point estimates m;_; of 6; and s;_; of v, but with increased uncertainty
relative to the time ¢ — 1 posteriors, where the level of increased uncertainty is defined by the

discount factors.
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3. 1-step predictive distribution: yi|®1.t,y1:t—1 ~ Tpn,_, (ft, qr) where
fe=Fm;_ and ¢ = FRF;+s1.
4. Filtering update to time t posterior:

0:|v, 1.4, y1:6 ~ N(my, Crve/se),

Ut_l‘xl:taylzt ~ G(nt/2,ntst/2),

with defining parameters as follows:
i. For O¢|v; : my = my_1 + Arey and Cy = ri (R — AL A}),
ii. For vy :ny = fng_1+ 1 and s¢ = 14841,
based on 1-step forecast error e; = y.— f;, the state adaptive coefficient vector (a.k.a. “Kalman

gain”) A; = Ry F/q;, and volatility estimate ratio ry = (Bny_1 + €7 /q;)/ny.

B.2.2 Backward sampling:. Having run the forward filtering analysis up to time 7', the back-
ward sampling proceeds as follows.
a. At time T': Simulate @7 = (67, vr) from the final normal /inverse gamma posterior p(®r|x1.7, y1.7)
as follows. First, draw v}l from G(nr/2,nrsr/2), and then draw @1 from N (myp, Crvr/sr).
b. Recurse back over timest =T —1,T —2,...,0: At time ¢, sample ®; = (64, v;) as follows:
i. Simulate the volatility v; via v, 1= B, +11 + ¢ where ~; is an independent draw from
Ve~ G((1 = B)ne /2, nuse/2),
ii. Simulate the state 8, from the conditional normal posterior p(8|0;1, v, €1.7, y1.7) With

mean vector my + 0(6411 — m;) and variance matrix C¢(1 — §)(vi/s¢).

B.3 Sampling the latent states xi.r

Conditional on the sampled values from the first step, the MCMC iterate completes with resampling
of the posterior joint latent states from p(x1.|®1.4, y1.¢, H1:¢). We note that x; are conditionally

independent over time ¢ in this conditional distribution, with time ¢ conditionals

P(@t|®e, ye, He) oc N(ye| Fy0y, 0r) H p|Cl_)) where Fp= (1,211,240, ....,715)" (B.1)
Jj=1J

Since x¢; ~ p(yt|C{71) has density Ty, ; (hij, Hyj), we can express this as a scale mixture of Normal,
N(hj, Hyj), with Hy = diag(Hp/éu, Hio/be2, ..., Hiy/¢rg), where ¢4 are independent over t,j
with gamma distributions, ¢¢; ~ G(ng;/2,n45/2).

The posterior distribution for each x; is then sampled, given ¢;;, from
p(xe|®t, yr, He) = N(hy + brer, Hy — bibigr) (B.2)
where ¢; =y — 0ot — hy01.1.5, 9t = vi + 04 1.74,01.1.5, and by = q,011.7/g:. Here, given the previous
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values of ¢, we have H; = diag(H1 /i1, Hia/ds2, ..., Hiy/Prs) Then, conditional on these new
samples of x;, updated samples of the latent scales are drawn from the implied set of conditional
gamma posteriors ¢z ~ G((ng;+1)/2, (nej+di;)/2) where dij = (x4 — htj)*/Hyj, independently
for each t,j. This is easily computed and then sampled independently for each 1:7T to provide

resimulated agent states over 1:7.

B.4 Forecasting

In terms of forecasting, at time ¢, we generate predictive distributions of the object of interest as
follows: (i) For each sampled ®; from the posterior MCMC above, draw v;11 from its stochastic
dynamics, and then ;41 conditional on 0, vy11 from Eq.(7b)— this gives a draw ®;11 = {6411, v141}
from p(®i41|y1:e, Hi:); (i) draw x;4q via independent sampling from x;41; ~ p(yt+1|C{) , (J =
1:J); (iii) conditional on the parameters and latent states draw y;11 from Eq.(7a). Repeating, this
generates a random sample from the 1-step ahead synthesized forecast distribution for time ¢ + 1.

Forecasting over multiple horizons is often of equal or greater importance than 1-step ahead
forecasting. However, forecasting over longer horizons is typically more difficult than over shorter
horizons, since predictors that are effective in the short term might not be effective in the long
term. Our modeling framework provides a natural and flexible procedure to recouple subgroups
over multiple horizons.

In general, there are two ways to forecast over multiple horizons, through traditional DLM
updating or through customized synthesis. The former, direct approach follows traditional DLM
updating and forecasting via simulation as for 1-step ahead, where the synthesis parameters are
simulated forward from time ¢ to t + k. The latter, customized synthesis involves a trivial mod-
ification, in which the model at time ¢t — 1 for predicting 1 is modified so that the k-step ahead
forecast densities made at time ¢ — k, replace x;;. While the former is theoretically correct, it does
not address how effective predictors (and therefore subgroups) can drastically change over time as
it relies wholly on the model as fitted, even though one might be mainly interested in forecasting
several steps ahead. McAlinn and West (2019) find that, compared to the direct approach, the
customized synthesis approach significantly improves multi-step ahead forecasts, since the dynamic

model parameters, {6;, v}, are now explicitly geared to the k-step horizon.

C Competing predictive strategies

In this section we describe in more detail the competing predictive strategies implemented in the

main empirical analysis.

C.1 Ridge regression

The ridge regression prior implies a closed-form penalised least squares representation of the form
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-1
B=(2z+51,) =
= zz—i—ﬁp zZy

where z and y are the matrix of predictors and the vector of response variable, respectively. The
posterior mean estimates correspond to the estimates obtained by using a standard Lo penalty
term, i.e., ¢ (B;-) = 772 5-’:1 5]2. The parameter 7 determines the amount of global shrinkage,
with smaller values resulting in more shrinkage and with 7 — co obtaining the OLS estimator.

C.2 Lasso

In addition to the ridge, we implement a sparse regression method in the form of Bayesian lasso,
as originally outlined by Tibshirani (1996). The intuition is that the lasso penalty is equivalent to

the posterior mode estimate under a Laplace prior of the form,

7'2 "
p(Blo?,...) o« exp (-aZwiy). (C.1)

Park and Casella (2008) build on this intuition and suggest that a consistent hierarchical prior can

be defined as a scale mixture of Normals, with an exponential mixing density, i.e.,?®

Blo*, Dy ~ N (0,6°D,) , D, =diag (A\],...,\2)
p 2
A~ %exp (=7202/2)dA2, Ao A >0
j=1
0% ~ 7 (0?) do?, a2 >0 (C.2)

With such prior, the posterior mode estimates are similar to the estimates under the penalty term
&(B;) =712 ?:1 |Bj]. This translates in a relatively standard Gibbs sampler which exploits the
conjugacy of the inverse Gaussian distribution. More precisely, the conditional distribution of the
regression parameters is given by

Blo? AL Az, y ~ N (A7'2'y, 0% A7) (C.3)
with A = (z' z+ D;l). Similarly, the posterior distribution for o2 is conjugate and takes the form

of a conditional inverse gamma, i.e.,

n—1+p 1

2 2 2
~ 1 —
o ’B7>\17 7)‘paz>y G( 9 a2

@ -20) - 20)+ ;9D8)  (Ca)

28 As highlighted in Bianchi and Tamoni (2019), on of the key advantages of the Bayesian lasso with respect to a
frequentist approach is that the penalization is done via both a global shrinkage parameter 72 and local, i.e., regressor
specific, shrinkage parameters. Hence, the Bayesian lasso expresses the penalised regression as a global-local shrinkage
estimator. This, in turn, increases the flexibility of the model.
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Finally, the conditional posterior distribution of the local shrinkage parameter 1/ )\? is the inverse
Gaussian distribution with local and scale parameters as follows,
72052

1/)\3 = 'Yj’/37(72, z,y ~ Inverse-Gaussian <W, 72> I(y; >0) (C.5)
J

C.3 Elastic net

Under certain conditions, Polson and Scott (2010) show that the lasso penalty can lead to over-
shrinkage, namely it does not enjoy the so-called “oracle property”; the model selected by the
lasso is not necessarily the true data generating process. Originally proposed by Zou and Hastie
(2005), the elastic net mitigates the lasso concerns related to n > T and the presence of group-wise
correlated regressors. Li et al. (2010) show that the shrinkage prior for the elastic net can be

expressed as

2 " 2 "
p(Blo*,...) x exp (ﬁjgﬁﬂggﬁ?), (C.6)

where the two parameters 72 and 75 determine the relative effect of the lasso and the ridge penalty,
respectively. Li et al. (2010) show that the scale mixture of normals prior (C.6) implies a set of full

conditional distributions as follows,?"

Blo® X, 2z, y ~ N (A*12'g,0° A7),

n—1+p 1 _ - T *,—
21BN, .. A2 2,y ~ IG (2, 5@ —28) (y—2B)+ 58Dy 15) )
2 2 e
1/)\]. =,|B8,0°, z,y ~ Inverse-Gaussian 7,7'1 I(vy; >0) (C.7)
J

where A* = (z’ z+ Df\_l), and D* is a diagonal matrix with diagonal elements ()\]-_2 + 7'22) ! ,J =
1,...,p. It is easy to see that in their functional form the conditional distribution of the elastic
net parameters is very similar to the lasso, with only minor exceptions. As far as the shrinkage
parameters are concerned, assuming two gamma priors G (rp, dy), for h = 1,2, the full conditional

distribution of the shrinkage parameters is as follows,
12
2 2 42 2 2
218,02 A%, .. M2,z y ~ G p+T1,§Z)\j +0 |,
J

=1
12

7—22|B,0-2,)\%,-.-,)\§,Z,yNG p/2+r2720.22/8]2+52 (C'S)
j=1

29The advantage of the Bayesian approach is that the parameters 72 and 75 can be estimated jointly, while in the
standard frequentist approach, one needs to implement a sequential cross-validation procedure. However, the latter
has been shown to result in over-shrinkage of the coefficients (see, Zou and Hastie, 2005).
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C.4 Random forest

Random forest is a supervised learning algorithm that uses ensemble learning methods by averaging
over multiple regression trees (see Breiman, 2001). Similar to model averaging, ensemble learning
combines predictions from a set of submodels to make a more accurate prediction. Each regression
tree is a nonparametric model that approximates an unknown nonlinear function with piece-wise
constant functions, using recursive partitioning of the covariate space (see Breiman, 1996). While
standard regression trees are flexible in approximating nonlinear functions, such methods suffer
from over-fitting, leading to low bias, high variance predictions. To mitigate this, random forests
average over multiple regression trees based on bootstrapped samples, effectively reducing variance.
Given the industry portfolio returns, y, the financial ratios, C, and a number of terminal nodes,
K, the partitioning of the covariates space is determined by minimizing the sum of squared errors

of the following regression model

K
Yy = Z Ckﬂk(c; Ok),
k=1

where ¢y is the regression coefficient and I (C'’; 6%) is an indicator function

1 if C € Ry(6y)
I(C; 6y) =
0 otherwise,

such that 6y is the set of parameters that define the kth partition state Ry(€) in the covari-
ate space. As a result, a random foreast is equivalent to a regression with K indicator func-
tions that condition the covariates. The model is implemented by using the Statistics and
Machine Learning Toolbox in Matlab 2020a; in particular, we used the default options for the
RegressionBaggedEnsemble object created by fitrensemble for regression. In order to isolate
the effect of non-linearities vs weighting of each of the regression tree, the aggregation of each

sub-model in the random forest is done by equal weighting each of the regression trees.?°

C.5 Neural network

In this exercise, we use a popular neural network structure for time series forecasting, called long
short-term memory (LSTM; Hochreiter and Schmidhuber, 1997). LSTM is a type of recurrent
neural network (RNN), which belongs a broader class of fully connected neural networks (NN)
developed for time series data. Compared to regular NNs, RNNs consists of a NN that is repeated
for the number of data lags in the input. RNN has two important implications for time series
predictions. The first is that the network is explicitly informed of the temporal relation, in particular

how y;_1 comes after y;_o, thus reflecting how more recent data are more relevant for prediction.

30 Alternatively, one could weight each regression tree based on past measures of accuracy in the submodels forecasts,
i.e., boosted regression tree.
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The second, compared to more traditional auto-regressive-type models, is that it retains memory
of distant input lags. LSTMs, on top of RNNs, has an internal structure of what are called gates.
These gates allow the network to automatically decide what part of the network state to remember
or forget, thus allowing for the model to remember the relevant input lags, while forgetting the
irrelevant ones. For this study, the amount of information remembered between time steps, is set to
50 time lags, considering the persistence of some of the financial ratios. The model is implemented

using the default options in the Deep Learning Toolbox in Matlab 2020a.3!

D Further results

In this section, we report additional results on the economic significance of our large-scale dynamic
predictive regression strategy, vis-a-vis competing sparse and dense dynamic and recursive forecast-
ing methods. More specifically, we consider a restriction on the investment decision process, that is
an investor is forbidden to go short on the risky asset. This translates in a restriction on the vector
of portfolios weights which now must be non-negative and sum to one. Table D.1 shows the results
for a mean-variance investor with a moderate level of risk aversion equal to v = 5. Similar to the
findings in the main paper, our DRS predictive modeling outpeforms the competing strategies for
the vast majority of industries as well as the aggregate stock market. Interestingly, when short sales
are in place, the overall performance of both model combination and penalised regressions tend to
deteriorate. Table D.2 extends the results to a representative investor with more general Constant
Relative Risk Aversion (CRRA) preferences. Again, we consider an investor with moderate risk
aversion equal to v = 5. Similar to the unconstrained case, our DRS model outperforms by and
large the competing strategies, both for individual industries and for the aggregate stock market.
As a whole, Tables D.1-D.2 show that the economic significance of our large-scale dynamic pre-
dictive regression model persists after restricting the optimal portfolio allocation to non-negative

weights.

E Bootstrap test for returns predictability across economic states

We implement the bootstrap approach proposed by Gargano et al. (2019) to test if the differences in
the forecasting performance over the business cycle are statistically significant. Let A; = e% Aj —e?’ 0
with e%{ A and e; j the squared out-of-sample prediction errors for the simple recursive mean and a
given model i, respectively. The subscript j = 0,1 refers to the expansion (zero) vs recession (one)
period. The null hypothesis is that of equal predictability across economic states, and is imposed

by substracting the mean to the sample predictions in both states;

Procedure

31An example of time series forecasting using LSTM can be found here https://uk.mathworks.com/help/
deeplearning/ug/timeseries-forecasting-using-deep-learning.html
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Compute Aj =A; — [ (A;), with 1 (A;) the sample average prediction error in the state j.

for all bootstrap iterations b=1,..., B
— Draw a random sample Ab, AI{ from Ao, A.
— Compute the bootstrap statistic J® = u <A8) — 1 (A?) with p <A§’> the sample average
of A;’-.
end
Compute the p-value as p = % Zszl I [J > Jb], where J = 1 (Ag) — i (A?) is based on the

original data.

F Simulation Study

We consider a simple— yet relevant— simulation study to illustrate and highlight our proposed
methodology and its implications for real data applications. More specifically, this simulation study
allows to isolate the gains coming from the combination and re-calibration steps as opposed to the
inherent dynamics of the synthesis function, since the data generating process impose stationarity.

To construct a meaningful simulation study, the data generating process must contain certain
characteristics that represent conditions often observed empirically. The first characteristic is that
all covariates need to be correlated, since most covariates in financial applications are — to a varying
degree— correlated. Intuitively, this is a characteristic that is coherent with observation, though
not always taken into account or explicitly considered. In terms of dimension reduction techniques,
lasso-type shrinkage methods fail with inconsistent model selection when covariates are highly
correlated (see Zhao and Yu, 2006). On the other hand, latent factor methods perform well when
the correlation is high, due to its ability to extract the underlying latent correlation structure,
though underperforms when the correlation is mild and change over time.

The second characteristic is that there are omitted variables and the true data generating
process is unattainable, i.e., all models are wrong. This is indeed a critical feature, as we cannot
realistically expect any model to be fully specified in economic or financial studies. Additionally,
the omitted variable might be the key component in understanding the data process. For example,
if we are interested in modeling/forecasting the economy, we might consider a latent variable, such
as the economic activity, that, while realises itself through observed variables, e.g., unemployment,
is not observed. Thus, a critical component of a modeling technique would necessarily have to
account for the biases induced by the omitted variables. These two characteristics build the main

components of our simulation study.
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We simulate data by the following data generating process:

y=—221+32+523+€ €~ N(0,0.01), (F.1a)
1 2

znn==-z3+v;, rn~N{(O0 =], (Flb)
3 3
1 4

Zo=—-23+1v3, vo~N[O0 =], (F.lc)
5 )

23 = V3, V3~ N(O, 001), (Fld)

where only {y, 21, 22} are observed and z3 is omitted. We note that, due to {z1, 22} being generated
from z3, they are both correlated, though not to an extreme degree to be unrealistic. Since {z1, 22}
are the only two variables observed, we satisfy the aforementioned first characteristic. Secondly,
since {y, z1, 22} are all generated by z3, and z3 is not observed, we have a serious omitted variable
that drives all the data observed. Because of this, all models that can be constructed will be
mis-specified (possible models are z; or zs only, or both {21, 22}). Additionally, because z3 drives
everything else, there is significant bias in all models generated (i.e. models have high bias and
small variance).

One comment is in order. This simulation study explicitly explores two key characteristics
above and beyond the dimensionality of the set of predictors, that are (1) correlated regressors and
(2) omitted variables. Both these approaches are explicitly addressed by our DRS method through
a time-varying synthesis parameters and aggregate bias. In this respect, by enlarging the set of
regressors in the simulation would only increase complexity without adding anythin to the main
message.

We generate N = 510 samples, use the first ten to fit the initial model, and forecast 500 data
points. We consider eight different strategies that are also considered in the empirical application.
A more detailed description of these models will be provided in Section 3 below. The first three
models are subset of the possible models with either {z1}, {22}, or {z1,22} are considered as
regressors and the models are estimated using ordinary least squares. We also consider a lasso
regression and a dynamic factor model.

Further, we construct two model combination strategies combining two models generated from
linear regressions with only {21} or {22}, i.e., p(ylA4;) = Bz; + ¢ for j = 1,2, where each f; is
the ordinary least squares estimate. The first model combination scheme is a simple average of
the two models, also known as equal weight averaging. It is important to note that, since we only
have two covariates, the equal weight averaging is equivalent to the complete subset regression of
Elliott et al. (2013). We also consider Bayesian model averaging (BMA), where the weights are
determined by the marginal likelihood of the predictive density.

Finally, we compare the seven competing strategies against a simplified, namely time invariant,
version of our proposed “decouple-recouple” predictive strategy. Here, the latent states are, as with

the two forecast combination schemes, the forecasts from the two linear regressions with {2} or
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{22}, but the synthesis function is time invariant instead of the dynamic specification. This yields
a simpler setup for DRS by removing the dynamics from the equation and following suit with
the model and strategies compared. Here, the synthesis parameters are estimated using a simple
Bayesian linear regression with non-informative priors (Jeffreys’ prior).

We test the predictive performance by measuring the Root Mean Squared one-step ahead Fore-
cast Error (RMSE) for the first n = 10, 50, 100, 250, 500, as well as for the last [ = 400, 300, 200, 100
data points to emulate a extending window analysis. Table E.1 shows the results from the simu-
lation study, with Panel A being the result of the first n samples and Panel B being the result of
the last [ samples. Looking at Panel A, we see that, with very small samples, DRS significantly
improves over the other methods with an improvement of approximately 60%.

As the sample increases, we see the improvements of DRS shrink, finally settling around 1%.
Overall, the gains are small, but is clearly persistent, showing how DRS is able to improve forecasts
by learning biases and interdependencies and incorporating the information to improve forecasts.
Comparatively, we note that lasso does the worst of the models and strategies considered, while
factor models does the best, which is what we expect, since z; and zy are substantially correlated.
Equal weight averaging and BMA also fail and the RMSE does not improve on both models,
and in fact its predictive performance is roughly the average of the two models. The full model,
interestingly, does worse than the model combination strategies, suggesting that model combination
is a legitimate strategy when the covariates are correlated and variables are omitted.

Panel B emulates a setting where a researcher decides to use the first number of samples as
a learning period and focuses on sampling the last [ in an extending window fashion, a setting
familiar in time series analysis. Here, the results are more pronounced, with DRS improving over
the other methods by nearly 2% for all [ considered. Overall, the simulation study validates the
predictive properties of our predictive strategy in a controlled setting; where the study is set up to

emulate data often observed in economics and finance, albeit simplified.
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Table 1: Out-of-sample predictive R

This table reports the out-of-sample R2,, of a forecasting model where the dependent variable is the industry stock
returns in excess of the risk free rate, and the dependent variables consist of a large set of financial ratios and
aggregate macroeconomic variables. To compute the out-of-sample RZ2,,, we compare the forecasts obtained from
each methodology to the prediction based on the historical mean. The table reports the R2,, values, as well as the
p-value for the null hypothesis R%,, < 0 calculated as in Clark and West (2007). Notice, we report the p-value only
when the out-of-sample R2, is non-negative, which means a given model outperform a forecast based on the recursive
sample average. The out-of-sample prediction errors are obtained by recursive forecasts starting at February 2002.
The sample period is from 1970:01-2018:12, monthly.

Panel A: Out-of-sample R?

008

Industries Mkt EW Port

Durables NonDurables Manuf Energy HiTech  Health Other Shops  Telecomm  Utils

OLS

Lasso

Ridge -0.584

E-net 0767  -0.802 -0.687 -0.787

Random Forest  -0.143 -0.188 -0.183  -0.205 -0223 -0.193  -0.100 -0.207  -0.168  -0.298 -0.160  -0.189
Neural Net [ 20962 -0.815 0.634  -0906 -0.780  -0.986 -0.380 -0.868  -0.745  -0.564  -0.693  -0.758
Factor Model  -0.600 0136 0538 -0218 -0120 -0157 0615 0237  -0.202  -0150 -0.403  -0.307
Equal-weight — -0.089 -0.073 0039 0070 -0.122 -0.115 = 0.006 -0.116  -0.044  0.000 100127 -0.059
BMA -0.198 -0.025 -0.075  -0.056 -0.105  -0.068 -0.144  -0.157  -0.089  0.000  -0.083  -0.091

Median -0.087 0.039 [00087 -0.010 -0084 -0.086 -0.075  -0.037 -0.035

Trimmed Mean  -0.065 -0.048 0.000 -0.039 -0.080  -0.089 - -0.100 -0.025 -0.011 -0.039

Macro -0.182 -0.100 -0.068 -0.059 -0.151 -0.084 -0.144 -0.102 -0.172 -0.020 -0.199 -0.116

Panel B: P-values

Industries Mkt EW Port

Durables NonDurables Manuf Energy HiTech Health Other Shops Telecomm Utils

OLS - - - - - - - - - - - -
Lasso - - - - - - - - - - - _
Ridge - - - - - - - - - - - -
E-net - - - - - - - - - - - _
Random Forest - - - - - - - - - - - -
Neural Net - - - - - - - - - - - _
Factor Model - - - - - - - _
Equal-weight - - - - - - 0.073 - - - 0.056 -
BMA - - - - - -
Median - - 0.063 - - - 0.078 - - 0.090 0.121 -
Trimmed mean - - - - - - 0.064 - - - 0.067 -

Macro - - - - - - - - - - - -

DRS 0.064 0.021 0.005  0.017 0.092 0.056  0.008 0.020 0.000 0.014  0.002 0.027
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Table 2: Industry returns predictability over the business cycle

This table reports the out-of-sample RZ,, of a forecasting regression across different economic cycles. To test if
industry returns predictability varies over the business cycle, we split the data into recession and expansionary
periods using the NBER dates of peaks and troughs. To compute the out-of-sample RZ,,, we compare the forecasts
obtained from each methodology to the prediction based on the historical mean in each economic state. The table
reports the R2,, values in each regime as well as the p-value for the null hypothesis of equal probability in recession
vs expansion calculated as in Gargano et al. (2019). Notice, we report in bold the positive RZ,, for which the null
hypothesis is rejected at the 5% conventional threshold. The out-of-sample prediction errors are obtained by recursive
forecasts starting at February 2002. The sample period is from 1970:01-2018:12, monthly.

Panel A: Out-of-sample R2,, in expansions

Industries Mkt EW Port

Durables NonDurables Manuf Energy HiTech Health — Other Shops ~ Telecomm  Utils

OLS

Lasso -0.447

Ridge -0.572

E-net -0.714

Random Forest -0.221 -0.271 -0.380 -0.240 -0.312 -0.241 -0.267 -0.230 -0.278 -0.485 -0.255 -0.289
Neural Net -0.640

Factor Model -0.511 -0.121 -0.570 -0.205 -0.070 -0.119 -0.527 -0.376 -0.201 -0.092 -0.545 -0.303
Equal-weight -0.102 -0.104 -0.126 -0.075 -0.205 -0.112 -0.051 -0.109 -0.044 -0.056 -0.032 -0.092
BMA -0.320 -0.146 -0.106 -0.043 -0.185 -0.065 -0.182 -0.135 -0.086 -0.056 -0.132 -0.132
Median -0.109 -0.082 -0.070 -0.032 -0.174 -0.071 -0.020 -0.049 -0.049 -0.109 -0.021 -0.072
Trimmed mean -0.084 -0.097 -0.099 -0.052 -0.165 -0.083 -0.036 -0.086 -0.029 -0.126 0.002 -0.078
Macro -0.312 -0.143 -0.127 -0.044 -0.150 -0.071 -0.181 -0.114 -0.178 -0.030 -0.188 -0.140
DRS

Panel B: Out-of-sample R2,, in recessions

Industries Mkt EW Port

Durables NonDurables Manuf Energy HiTech Health Other Shops Telecomm — Utils

OLS

Lasso
Ridge
E-net

-0.422 -0.727

Random Forest -0.041 -0.007
Neural Net -0.583 -0.013 -0.292
Factor Model -0.716 -0.299 -0.052 -0.312
Equal-weight -0.072 -0.125 -0.044 -0.015
BMA -0.039 -0.078 -0.090 -0.216 -0.095 -0.068
Median -0.058 -0.141 -0.148 -0.009 -0.003
Trimmed mean -0.042 -0.109 - -0.139 -0.015 -0.002

Macro -0.013 -0.130  -0.090  -0.066 -0.159 0.002 -0.119 -0.073

DRS 0.002
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Table 3: Out-of-sample economic significance: Mean-variance utility

This table reports the annualized certainty equivalent values (annualised, in %) for portfolio decisions based on the
out-of-sample forecasts of industry returns for an investor with mean-variance utility and a coefficient of risk aversion
~v = 5. The table reports three asset allocation exercises. The first case is a single investment in a given industry; the
second a multiple investment in different industries; the third is a single investment in the aggregate stock market.
The asset allocation decision is made at each time ¢ and is based on the predictions from each of the alternative models
outlined in the main text. The models are benchmarked against the signal obtained from a recursive sample mean
estimate. The predictions are obtained starting in February 2002, and the sample period is from 1970:01-2018:12,
monthly. Statistical significance is based on a one-sided Diebold and Mariano (1995) test as extended by Harvey
et al. (1997) to account for correlation. We report only the p-values when the difference in the certainty equivalent
is positive, i.e., a model outperforms the sample mean forecast.

Panel A: Certainty equivalent

Industries Mkt  EW Port
Durables NonDurables Manuf Energy HiTech Health Other Shops Telecomm  Utils
OLS -1.128 -0.291 -0.478 | -1.734 -1.182 -0.808 -0.425 -0.486 -0.753 -1.057 -0.480 -0.409
Lasso -0.687 -0.757 -0.100 = -1.176  -0.474 -0.294 -0.238  -0.289 0.247 0.083  -0.128 -0.567
Ridge -0.019 -0.225 -0.416 = -1.332 -0.146  0.099 -0.562 -0.495 -0.169 -0.786  -0.306 -0.455
E-net -0.453 -0.644 -0.465 -0.145 -0.539 0.124 -0.160  0.002 -0.599 0.293  0.117 -0.490
Random Forest 0.580 -0.037 0.276  -0.260 0.441 0.176 0.519  -0.265 0.556 -0.276  0.379 0.190
Neural Net -0.018 -0.069 0.024  0.095 -0.121 -0.093 0.036 -0.068 0.011 0.040  0.026 -0.012
Factor Model 0.413 0.285 0.195 0.098 0.016  -0.050  0.338 0.286 0.446 0.147 0.357 0.001
Equal-weight 0.114 0.081 0435  0.200 -0.207 -0.115 0.158  -0.046 0.309 -0.242  0.312 0.091
BMA -0.161 0.437 0.263 -0.114  0.055 -0.177 -0.254 -0.279 0.181 -0.242  -0.073 -0.033
Median 0.042 0.040 0.624 0.435 -0.001 -0.012  0.574 0.113 0.278 0.248 0.197 0.231
Trimmed mean 0.191 0.090 0.561 0.294 -0.010 -0.068  0.701  -0.029 0.325 0.176  0.276 0.228
Macro 0.769 0.021 0.261 -0.130  -0.096 -0.233 -0.254  0.161 -0.333 -0.033  0.109 0.022
DRS 1.008 1.215 1.102 1.090 0.405  0.114  0.592  1.007 1.137 1.120  0.832 0.782
Panel B: P-values
Industries Mkt EW Port
Durables NonDurables Manuf Energy HiTech Health Other Shops Telecomm Utils

OLS - - - - - - - - - - - -
Lasso - - - - - - - - 0.265 0.035 - -
Ridge - - - - - - - - - - - -
E-net - - - - - 0.487 - - - 0.186 0.150 -
Random Forest 0.098 - 0.320 - 0.071 0.269  0.045 - 0.078 - 0.098 0.231
Neural Net 0.068 0.371 0.233  0.366 0.236 - 0.441 - 0.175 0.279 0.189 -
Factor 0.120 0.403 0.389  0.223 0.383 - 0.188  0.365 0.093 0.234 0.146 0.254
Equal-weight 0.376 0.348 0.079  0.288 - - 0.316 - 0.118 - 0.173 0.242
BMA - 0.091 0.125 - 0.429 - - - 0.254 - - -
Median 0.460 0.418 0.026  0.108 - - 0.040  0.270 0.133 0.171 0.258 0.209
Trimmed mean 0.315 0.330 0.043  0.190 - - 0.040 - 0.101 0.243 0.207 0.184
Macro 0.039 0.466 0.166 - - - - 0.193 - - 0.404 0.254
DRS 0.023 0.048 0.034  0.011 0.098 0.113  0.035 0.014 0.045 0.027 0.033 0.038
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Table 4: Out-of-sample economic significance: Power utility

This table reports the annualized certainty equivalent values (annualised, in %) for portfolio decisions based on the
out-of-sample forecasts of industry returns for an investor with power utility and a coefficient of risk aversion v = 5.
The table reports three asset allocation exercises. The first case is a single investment in a given industry; the second
a multiple investment in different industries; the third is a single investment in the aggregate stock market. The
asset allocation decision is made at each time ¢ and is based on the predictions from each of the alternative models
outlined in the main text. The models are benchmarked against the signal obtained from a recursive sample mean
estimate. The predictions are obtained starting in February 2002, and the sample period is from 1970:01-2018:12,
monthly. Statistical significance is based on a one-sided Diebold and Mariano (1995) test as extended by Harvey
et al. (1997) to account for correlation. We report only the p-values when the difference in the certainty equivalent
is positive, i.e., a model outperforms the sample mean forecast.

Panel A: Certainty equivalent

Industries Mkt  EW Port
Durables NonDurables Manuf Energy HiTech Health Other Shops Telecomm  Utils
OLS -2.004 -1.745 -1.207  -3.308 -4.770 -3.643 -2.530 -2.556 -3.771 -6.575 -3.833 -3.267
Lasso -1.341 -0.580 -0.685 -2.581 -1.192 -0.388 -0.083 -0.895 -0.390 -1.773  -1.043 -0.996
Ridge -1.489 -2.314 -1.940 -1.510 -2.028 -0.907 -0.683 -0.855 -1.812 -1.441  -0.389 -1.397
E-net -0.911 -0.994 -0.971 -1.861 -2.282 -0.880 -0.668 -1.091 0.569 -1.594  0.207 -0.952
Random Forest -0.146 -0.222 -0.082 0.123 -0.070  -0.158  0.036  -0.185 -0.075 -0.047  -0.044 -0.079
Neural Net -0.776 -0.457 -0.154 -0.913  0.120 -0.814  0.400 -0.205 0.139 0.178  0.209 -0.207
Factor Model 0.239 -0.244 -0.137  0.037 0.331 0.295 -0.231  0.537 0.244 0.660 0.035 0.161
Equal-weight 0.261 -0.010 0.510  0.408 0.187 -0.131  0.515  0.335 0.550 -1.036  0.338 0.175
BMA -0.962 0.244 0.440 -0.111  0.078 -0.233 -0.258  0.029 0.128 -1.036  -0.031 -0.156
Median 0.099 -0.065 0.676  0.646 0.440  0.075  0.579  0.565 0.493 0.146  0.335 0.381
Trimmed mean 0.298 -0.017 0.683  0.508 0.463 -0.035 0.609 0.370 0.544 0.027  0.345 0.345
Macro -0.143 -0.146 0.456  -0.133 0.081 -0.262  -0.260  0.194 -0.725 -0.033  0.143 -0.075
DRS 0.854 0.458 0.809 0937 0.779  0.490  0.915  0.553 1.255 0.720  0.872 0.785
Panel B: P-values
Industries Mkt EW Port
Durables NonDurables Manuf Energy HiTech Health Other Shops Telecomm Utils
OLS - - - - - - - - - - - -
Lasso - - - - - - - - - - - -
Ridge - - - - - - - - - - - -
E-net - - - - - - - - 0.200 - 0.183 -
Random Forest - - - 0.300 - - 0.139 - - - - -
Neural Net - - - - 0.451 - 0.103 - 0.234 0.320 0.386 -
Factor Model 0.215 - - 0.389 0.092 0.153 - 0.081 0.288 0.062 0.337 0.202
Equal-weight 0.314 - 0.087  0.080 0.314 - 0.018 0.125 0.067 - 0.222 0.153
BMA - 0.257 0.111 - 0.433 - - 0.464 0.374 - - -
Median 0.424 - 0.049  0.069 0.110 0.384  0.014 0.062 0.075 0.267 0.232 0.167
Trimmed mean 0.282 - 0.033  0.076 0.105 - 0.018  0.080 0.060 0.456 0.224 0.148
Macro - - 0.168 - 0.434 - - 0.251 - - 0.407 -
DRS 0.021 0.012 0.018  0.011 0.032 0.091  0.013 0.032 0.011 0.028 0.032 0.027
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Figure 1: Cumulative sum of squared forecasting error differentials

This figure reports the differences between the cumulative square prediction error for the historical average benchmark

and for the forecasts based on some of the most successful competing predictive strategies.

The predictions are

obtained starting in February 2004, and the sample period is from 1970:01-2018:12, monthly.
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Figure 2: DRS predictions vs macroeconomic variables

This figure reports the average DRS forecast across industries and the aggregate value-weighted market portfolio
against a set of macroeconomic variables such as industrial production (top-left panel), employment (top-right panel),
a measure of economic policy uncertainty (bottom-left panel), and the VIX (bottom-right panel). The predictions
are obtained starting in February 2004, and the sample period is from 1970:01-2018:12, monthly.
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Figure 3: Cumulative sum of certainty equivalent returns differentials

This figure reports the cumulative average Certainty Equivalent Return (CER) of a given predictive strategy against
the historical average. The top panels show the results for a mean-variance investor whereas the bottom panels show
the results for an investor with Constant Relative Risk Aversion (CRRA) utility function. The left panels show
the results for the equal-weight portfolio of industries, whereas the right panel show the results for the aggregate

value-weighted market portfolio. The sample period is from 1970:01-2018:12, monthly.
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Figure 4: Correlation among financial ratios and sub-model forecasts

This figure reports the correlation among the set of predictors for the average industry (left panel) and the correlation
across the forecasts from each sub-regression model (right panel). The red (blue) areas represent positive (negative)
correlation. The sample period is from 1970:01-2018:12, monthly.
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Figure 5: Covariance between sub-model predictions: Aggregate market

This figure reports the model-implied covariance of the sub-models in the DRS strategy, one for each group of financial
ratios, i.e., Cov (0;t,0;:). The figure reports the results for the aggregate stock market. We report the covariances for
four different time period, that are August 2006, November 2008, January 2011 and December 2015.
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Figure 6: Covariance between sub-model predictions: Average industry

This figure reports the model-implied covariance of the sub-models in the DRS strategy, one for each group of financial
ratios, i.e., Cov (0, 0;:). The figure reports the results for the average industry portfolio. We report the covariances
for four different time period, that are August 2006, November 2008, January 2011 and December 2015.
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Figure 7: Aggregate bias and observation uncertainty

This figure reports the posterior estimates of the aggregate intercept, 6o, (left panel) and the standard deviation of
the measurement error, o:. We report the results for both the average industry (blue line with markers) and for the
aggregate stock market (orange solid line). The predictions are obtained starting in January 2001, and the sample
period is from 1970:01-2018:12, monthly.
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Figure 8: Marginal effects of individual forecasts: Average industry

This figure reports the posterior estimates of the latent parameters 6;:, j = 1,...,J. We report the estimates
for the average industry from January 2004 to December 2018. Top panels report the estimates for capital and
valuation groups (left panel) and profitability, financial soundness and solvency (right panel). Bottom panels report
the estimates for the liquidity and efficiency groups (left panel) and the “other” group of financial ratios and aggregate
macroeconomic variables.
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Figure 9: Marginal effects of individual forecasts: Aggregate market

This figure reports the posterior estimates of the latent parameters 6;;, j = 1,...,J. We report the estimates for the
aggregate value-weighted market portfolio from January 2004 to December 2018. Top panels report the estimates for
capital and valuation groups (left panel) and profitability, financial soundness and solvency (right panel). Bottom
panels report the estimates for the liquidity and efficiency groups (left panel) and the “other” group of financial ratios
and aggregate macroeconomic variables.
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Figure 10: Industry-specific parameters

This figure reports the posterior estimates of the bias (top-left panel) and observation uncertainty (top-right panel),
as well as two representative marginal effects on the aggregate forecasting from two groups of financial ratios, i.e.,
0j¢, 3 =1,...,J, namely value and profitability. We report the estimates for from January 2004 to December 2018.
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Table D.1: OOS economic significance w/o short sales: Mean-variance utility

This table reports the annualized certainty equivalent values (annualised, in %) for portfolio decisions based on the
out-of-sample forecasts of industry returns for an investor with mean-variance utility, a coefficient of risk aversion
~v = 5, and with short sales forbidden, i.e., w; € (0,1). The table reports three asset allocation exercises. The first
case is a single investment in a given industry; the second a multiple investment in different industries; the third is a
single investment in the aggregate stock market. The asset allocation decision is made at each time ¢t and is based on
the predictions from each of the alternative models outlined in the main text. The models are benchmarked against
the signal obtained from a recursive sample mean estimate. The predictions are obtained starting in February 2002,
and the sample period is from 1970:01-2018:12, monthly. Statistical significance is based on a one-sided Diebold and
Mariano (1995) test as extended by Harvey et al. (1997) to account for correlation. We report only the p-values when
the difference in the certainty equivalent is positive, i.e., a model outperforms the sample mean forecast.

Panel A: Certainty equivalent

Industries Mkt  EW Port
Durables NonDurables Manuf Energy HiTech Health Other Shops Telecomm  Utils
OLS -0.478 -0.425 -0.291  -0.734  0.182 -0.081 0.135 -0.753 -1.057 -0.248  0.000 -0.032
Lasso 0.151 0.256 -0.138 | -1.027 -0.138 0.328  0.187 -0.097 -0.188 -0.202  -0.718 -0.144
Ridge 0.013 -0.553 -0.346  0.048  -0.434 -0.499 -0.086 -0.582 -1.250 -0.092  0.225 -0.323
E-net -0.142 0.020 -0.202 = -0.919 -0.606 0.058  0.500 -0.681 0.555 0.082  0.127 -0.110
Random Forest 0.409 0.158 0.284 -0.211 0467 0337 0.417 0.018 0.335 0.126  0.249 0.235
Neural Net -0.049 -0.073 0.027  0.090 -0.140 -0.114 -0.015 -0.079 -0.036 0.040  0.031 -0.029
Factor Model 0.496 0.262 0422 -0.009 0486 0.066  0.389  0.403 0.352 0.331  0.347 0.259
Equal-weight 0.023 0.032 0.435 0.122 -0.080 0.033  0.393 0.044 0.186 -0.242  0.268 0.111
BMA 0.028 0.336 0.396  0.103  0.137 -0.048 -0.022 -0.019 0.092 -0.242  0.031 0.072
Median -0.051 0.004 0.432  0.367 0.204 0.102 0.240 0.172 0.150 0.117  0.258 0.181
Trimmed mean 0.021 0.047 0468 0.268  0.077  0.069  0.317  0.073 0.181 0.100  0.242 0.169
Macro 0.464 -0.030 0.415 0.090 0.102 -0.060 -0.021  0.310 -0.161 0.005  0.152 0.115
DRS 0.690 0.383 0.677 0.394 0.724 0.704 0.941 0.292 0.391 0.571  0.438 0.500
Panel B: P-values
Industries Mkt EW Port
Durables NonDurables Manuf Energy HiTech Health Other Shops Telecomm Utils

OLS - - - - 0.304 - 0.424 - - - 0.500 -
Lasso 0.386 0.224 - - - 0.072  0.401 - - - - -
Ridge 0.492 - - 0.475 - - - - - - 0.208 -
E-net - 0.481 - - - 0.435  0.067 - 0.077 0.391  0.036 -
Random Forest 0.109 0.198 0.159 - 0.087  0.078 0.071  0.462 0.170 0.274 0.223 0.183
Neural Net - - 0.264  0.383 - - - - - 0.145 0.241 -
Factor Model 0.057 0.109 0.074 - 0.003  0.308 0.020 0.061 0.070 0.035 0.065 0.080
Equal-weight 0.454 0.409 0.012  0.340 - 0.402  0.025 0.376 0.178 - 0.055 0.250
BMA 0.447 0.080 0.014  0.184 0.174 - - - 0.270 - 0.410 0.226
Median - 0.487 0.018  0.107 0.197  0.180 0.178 0.145 0.198 0.231 0.128 0.187
Trimmed mean 0.455 0.366 0.007  0.167 0.361 0.274  0.046 0.279 0.164 0.277 0.062 0.223
Macro 0.078 - 0.032  0.130 0.281 - - 0.016 - 0.471 0.213 0.174
DRS 0.024 0.057 0.014  0.020 0.019  0.058 0.020 0.049 0.049 0.027  0.029 0.033
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Table D.2: OOS economic significance w/o short sales: Power utility

This table reports the annualized certainty equivalent values (annualised, in %) for portfolio decisions based on the
out-of-sample forecasts of industry returns for an investor with power utility, a coefficient of risk aversion v = 5, and
with short sales forbidden, i.e., w; € (0,1). The table reports three asset allocation exercises. The first case is a
single investment in a given industry; the second a multiple investment in different industries; the third is a single
investment in the aggregate stock market. The asset allocation decision is made at each time ¢t and is based on the
predictions from each of the alternative models outlined in the main text. The models are benchmarked against
the signal obtained from a recursive sample mean estimate. The predictions are obtained starting in February 2002,
and the sample period is from 1970:01-2018:12, monthly. Statistical significance is based on a one-sided Diebold and
Mariano (1995) test as extended by Harvey et al. (1997) to account for correlation. We report only the p-values when
the difference in the certainty equivalent is positive, i.e., a model outperforms the sample mean forecast.

Panel A: Certainty equivalent

Industries Mkt EW Port
Durables NonDurables Manuf Energy HiTech Health Other Shops Telecomm  Utils
OLS -0.176 -0.154 -1.737 -0.121  -0.205 -0.200 -0.448 -0.116 -0.520 -0.068  -0.054 -0.290
Lasso -0.949 -0.724 -1.447 -0.573 0.304 0.289  0.566 -0.057 0.172 0.145  0.133 0.157
Ridge 0.465 0.038 -0.854  0.162 0.371 0.262  0.229  0.045 0.080 0.026  0.340 0.222
E-net 0.338 0.490 -0.032  0.454 0.540  0.473  0.242  0.343 0.285 0.095  0.366 0.159
Random Forest 0.271 0.242 0.490  0.454 0.540  0.473 0.218 0.285 0.309 0.366  0.338 0.362
Neural Net -0.204 -0.224 -0.076  0.121  -0.205 -0.200 -0.041 -0.201 -0.294 -0.047  -0.028 -0.127
Factor Model 0.446 0.471 0.194  0.342 0.168  0.286  0.203  0.383 0.322 0.401  0.345 0.324
Equal-weight 0.551 0.174 0.187  0.378 0.527  0.331 0437  0.260 0.262 0.360  0.179 0.331
BMA 0.482 0.466 0.465  0.293 0.533  0.084 0.396  0.448 0.378 0.360  0.438 0.395
Median 0.600 0.070 0.271  0.309 0.520 0435 0379  0.277 0.359 0.205  0.506 0.357
Trimmed mean 0.736 0.131 0.273  0.420 0428  0.360 0.398  0.522 0.532 0.160  0.361 0.393
Macro 0.179 0.051 0.355  0.277  0.058  0.099 0.394  0.056 -0.165 0.037  0.168 0.137
DRS 1.115 1.124 0.712  0.892 0.796 1.035 0983 1.114 1.087 1.069  1.053 0.998
Panel B: P-values
Industries Mkt EW Port
Durables NonDurables Manuf Energy HiTech Health Other Shops Telecomm Utils

OLS - - - - - - - - - - - -
Lasso - - - - 0.325 0.018  0.084 - 0.094 0.443 0.388 0.225
Ridge 0.012 0.384 - 0.098 0.175 0.403  0.110 0.403 0.357 0.284 0.053 0.228
E-net 0.001 0.360 - 0.240 0.150 0.026  0.005 0.437 0.005 0.208 0.004 0.144
Random Forest 0.012 0.206 0.113  0.172 0.001 0.005  0.005 0.194 0.004 0.113 0.016 0.076
Neural Net - - - 0.001 - - - - - - - -
Factor 0.048 0.059 0.141  0.176 0.311 0.249  0.512 0.516 0.401 0.580 0.313 0.301
Equal-weight 0.039 0.053 0.368  0.246 0.056 0.154  0.164 0.136 0.125 0.092 0.137 0.143
BMA 0.103 0.103 0.104  0.096 0.044  0.330 0.070 0.036 0.082 0.040 0.029 0.094
Median 0.067 0.364 0.089  0.059 0.012 0.069  0.148 0.158 0.262 0.134 0.025 0.126
Trimmed mean 0.046 0.268 0.110  0.102 0.014 0.028  0.125 0.101 0.079 0.216 0.005 0.099
Macro 0.255 0.414 0.033  0.141 0.326 0.304  0.070  0.147 - 0.362 0.127 0.218
DRS 0.011 0.001 0.020  0.012 0.031 0.038  0.039 0.020 0.004 0.028 0.038 0.022
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Table E.1: Simulation results

This table reports the out-of-sample comparison for different simulated data for our DRS predictive model against
a variety of alternative forecasting methods, such as a model with all regressors, the lasso, a latent factor model,
an equal-weight linear pooling, and BMA. The performance comparison is based on the Root Mean Squared Error
(RMSE).

Panel A: Forecasting based on first n samples

n 21 29 {71,209}  Lasso Factor EW BMA DRS

10 2.8768  2.8820  2.8830  2.7988  2.8613  2.8793  2.8793 1.7923
-60.51% -60.80% -60.85% -56.16% -59.64% -60.65% -60.65% -
50 2.8538  2.8618  2.8578  2.8557  2.8464  2.8577  2.8575  2.7568
-3.52%  -3.81% -3.66% -3.58% -3.25%  -3.66%  -3.65% -
100 2.9091 2.9121 29114  2.8993 29020 29106  2.9105 2.8977
-0.39%  -0.50% -047%  -0.06% -0.15% -0.44% -0.44% -
250 2.8564  2.8583  2.8577  2.8606  2.8532  2.8573  2.8573 2.8475
-0.31%  -0.38%  -0.36% -0.46% -0.20% -0.35%  -0.34% -
500  2.7506  2.7520  2.7516  2.7526  2.7494 27513  2.7513  2.7197
-1.14%  -1.19%  -1.17%  -1.21% -1.09% -1.16% -1.16% -

Panel B: Forecasting based on last [ samples

l 21 29 {z1,22} Lasso Factor EW BMA  DRS

400 2.6926 2.6934 2.6931 2.6973 2.6931 2.6930 2.6930 2.6573
-1.33% -1.36% -1.35% -1.51% -1.35% -1.34% -1.34% -
300 2.6269 2.6278  2.6272  2.6237 2.6281 2.6274 2.6273 2.5852
-1.62% -1.65% -1.63% -149% -1.66% -1.63% -1.63% -
200 2.6772 2.6779 2.6777 2.6797 2.6777 2.6776 2.6776 2.6183
-2.25% -227% -2.27% -2.34% -2.27T% -2.26% -2.26% -
100 2.6186 2.6191 2.6188 2.6214 2.6182 2.6189 2.6189 2.5717
-1.83% -1.85% -1.83% -1.93% -1.81% -1.84% -1.84% -
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