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Abstract

Standard factor models focus on returns and leave prices undetermined. Thus,
we propose a novel (co-)integrated methodology to factor modeling based on both
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hold portfolios and factors, we argue that a term—mnaturally labeled Equilibrium
Correction Term (ECT)—should be included when regressing returns on factors.
We also advance to validate factor models by the existence of such a term. Em-
pirically, the ECT predicts equity portfolio returns. Furthermore, we find evidence
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forecasting ability for the aggregate market.
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“We have to answer the central question, what is the source of price variation?
When did our field stop being “asset pricing” and become “asset expected re-
turning”?”

John H. Cochrane (2011, p. 1063)

1 Introduction

It is common in the asset pricing literature to parsimoniously characterize
the dynamics of returns with factors that can explain the cross-section of
average returns (e.g., Fama and French, 2015a; Hou et al., 2015). However,
standard factor models posit a relationship between returns on any asset and
the factor returns but no relationship between the value of a buy-and-hold
asset portfolio and the value of the buy-and-hold factor portfolios. This is
surprising, since long-run investors (e.g., mutual funds) care whether the asset
and factor portfolios share the same stochastic trend.! Indeed, if there is
no shared trend, then deviations of asset portfolios from factor portfolios are
permanent and the chosen factor model is of little use to the buy-and-hold
investor. If instead the stochastic trend is common, not only the factor model
provides guidance to the long-run investors, but there are also consequences
for the prediction of returns and their distribution. These consequences are
left unexploited when price trends and their comovements are not properly

modeled. This paper proposes a new approach to factor-portfolio models based

'Many economic decision makers, like corporate manager, effectively face long holding
periods (see discussion in Cohen et al., 2009). Also, investors with preferences for locking
in long holding period returns would be consistent with the downward sloping equity term
structure (see, e.g., Binsbergen et al., 2012).



on the relation between drifting prices and returns.

To provide some graphical intuition for our approach, we consider a sta-
tistical factor model composed of five principal components extracted from
a large cross-section of equity portfolios, and we employ as a test asset the
returns from a value strategy investing in stocks that appear to be trading
for less than their book value.? The top panel in Figure 1 shows that the
statistical factor model provides an accurate description (dashed blue line) of
the returns value strategy (solid black line). However, looking at prices rather
than returns paints a completely different picture. This is clearly seen in the
mid left panel in Figure 1, where we overlay the cumulative returns to the
value strategy and the cumulative returns implied by the factor model, and
further emphasized in the bottom left panel where we plot the price difference
between the (realized) buy-and-hold portfolio and the level implied by the fac-
tor model. Despite the excellent fit with respect to returns, we observe large
and persistent fluctuations in prices that last for more than 40 years. These
observed price deviations suggest that the buy-and-hold asset and factor port-
folios follow two stochastic trends that are not related in the statistical factor

model.

In this paper, we invert the standard logic of starting from returns to go to

prices, and propose to start by modeling prices instead, to then obtain implica-

2Specifically, we use the top decile of book-to-market sorted portfolios. A detailed de-
scription of our data is provided in Section 3.1. Subsection 3.2 provides a discussion of
statistical factor models estimated via principal component analysis (PCA). Here, it is just
worth noticing that despite we employ standard PCA, our approach can be applied as-is to
modification of principal components techniques like the risk-premium PCA of Lettau and
Pelger (2020), or, in general, to any model based on tradeable factors, such as the “g-factor”
model of Hou et al. (2015) and the five-factor model of Fama and French (2015a).



tions for returns. Specifically, consider constructing a buy-and-hold portfolio
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Figure 1: Price Dynamics in PC5-Factor Model and its FECM Spec-
ification. This figure shows prices for the Value Portfolio (decile 10) in the 90 anomaly
portfolios constructed in Giglio et al. (2020) and Haddad et al. (2020) and reported in
Appendix A.1 and fitted values for prices related to the standard factor model (1) (mid
left panel) and its FECM specification (10) (mid right panel) associated to the PC5-factor
model. Bottom panels show the difference between actual and fitted values for the two
cases. Shaded areas are NBER recessions. The sample period is 1963 to 2019.

for the factors. There is a natural possibility for a (long-run) relationship be-



tween such a portfolio and the cumulative returns of an investment strategy
(such as value, growth, etc.) over the long-run. We define price-level risk
drivers as the value of buy-and-hold portfolios investing in factors (e.g., statis-
tical factors like principal components) and prices as the value of buy-and-hold

portfolios investing in any characteristic-sorted test assets.

When asset prices are modeled as affine in risk drivers, there are two pos-
sible scenarios. In the “bad scenario” there is no-common stochastic trend
between asset prices and risk drivers so that asset prices can deviate from risk
drivers for an arbitrary long time (see again Figure 1, bottom left panel).®
On the contrary, in the “good scenario” there exists a linear combination of
asset prices and risk drivers that is stationary; in this case the model cap-
tures the common long-term stochastic trend between asset prices and risk
drivers. Importantly the “good scenario” has implications for the specifica-
tion of the model relating asset returns to factors. In fact, the very presence
of a common stochastic trend between risk drivers and asset prices, i.e., their
cointegration, implies that a model for asset returns should include, in addi-
tion to the factors considered in the standard specification, a term that cap-
tures “disequilibria” in the long-run relationship between prices and factor-risk
drivers. Hence, we naturally label this term “Equilibrium Correction Term”
(henceforth, ECT), and the resultant factor model specification Factor Error
Correction Model (FECM). The ECT is the mechanism through which prices

converge to their equilibrium value determined by the cointegrating relation-

3Technically, in the bad scenario, the projection of asset prices on risk drivers delivers
non-stationary residuals.



ship with risk drivers. Practically, the ECT constitutes a natural predictor

for asset returns.

We show this exact mechanism in the mid right panel of Figure 1, where we
display the resultant cumulative returns of our FECM model. It is apparent
that the price level of the buy-and-hold asset successfully tracks the value of
the factor portfolios; furthermore, the bottom right panel makes clear that
the asset price deviations from risk drivers are temporary, since the ECT
guarantees convergence of asset prices to the equilibrium value dictated by the

risk drivers.

It is worth stressing that the misspecification in modeling price levels is
not evident when the factor model is applied directly to asset returns (c.f.
top panel in Figure 1). This is because the unit root in the residuals from
the projection of prices on risk drivers (evident in the bottom left panel)
is removed by differencing the model, i.e., by projecting returns on factors
as in the traditional approach to factor asset pricing models. Thus, even a
gross misspecification in modeling price levels with risk drivers goes easily

undetected in a model only relating returns to factors.

Motivated by this evidence, this paper shows that the ECT and our FECM
approach have profound implications for time-series predictability of characteristic-

sorted portfolios, and validation of (multi-)factor models.

We start by showing that the cointegration analysis between risk drivers
and asset prices is useful to assess the validity of factor models to describe long-

and short-run dynamics of assets. Risk drivers should explain the long-run per-



formance of any given portfolio. As risk drivers and prices are non-stationary
variables, the validity of a given set of risk drivers to explain portfolio prices
is naturally investigated by assessing if there exists a stationary linear com-
bination of them (i.e., if they are cointegrated). Importantly, the presence of
a stationary linear combination of prices and risk drivers rules out the possi-
bility of an omitted risk driver, because the omission of a relevant one would
prevent cointegration. Thus, our framework linking asset prices to risk drivers
can be employed to select the relevant (number of) factors in a model since a
non-stationary deviation of prices from risk drivers is an argument for long-
run misspecification of the factor model. Applying our FECM framework, we
show that five principal components are needed to deliver uniform evidence of
cointegration between prices and the equilibrium value implied by risk drivers.
Since the existence of cointegration discards the possibility of an omitted risk
driver, we conclude that it is unlikely that more than five factors are needed to
get (portfolio) prices right. In this respect, our FECM approach is informative

about the dimensionality of the (zoo of) factors’ space (Cochrane, 2011).

Having determined the right number of factors, our analysis proceed by
documenting the pervasiveness of the ECT' for equity portfolios. To this end,
we consider a large cross-section of anomaly portfolios used in several recent
studies (Giglio et al., 2020; Haddad et al., 2020; Kozak et al., 2020). Our
analysis shows that the sign of the portfolio loading on the EC'T" is negative.
This is consistent with our economic intuition of the EC'T mechanism: when
asset prices are higher (lower) than the long-run equilibrium implied by their

relationship with risk drivers, we expect lower (higher) returns in the next



period so that the “disequilibrium” is corrected. In our sample, a positive 1%
log price deviation is associated with a log return over the next year which is

lower by 45 basis points across value-sorted portfolios.

Importantly, the ECT is not subsumed by the book-to-market of the test
assets, suggesting that the ECT captures an additional, new dimension of
return predictability. Interestingly, we also find that the comovement in Equi-
librium Correction Terms (proxied by the first principal component extracted
from the cross-section of ECT's) predicts the market. The ECT contains asset-
specific information that aggregates to generate market-return predictability.
A battery of out-of-sample tests confirm the robustness of the ability of the

common component in the ECTs to predict aggregate stock market returns.

The rest of the paper is organized as follows. We discuss the related liter-
ature next. Section 2 lays out the joint model for prices, returns, factors, and
risk drivers, and provides some simulation-based evidence on the relevance of
including price dynamics in factor-portfolio models. Section 3.1 describes our
data. We discuss the usage of our framework to detect (long-run) misspecifica-
tion in factor models in Section 3.2. Section 3.3 documents the pervasiveness
of the existence of the Equilibrium Correction Term in the equity space, and
illustrates the ability of our FECM model to forecast portfolio returns. Section
3.4 benchmarks the predictive ability of the ECT to that of other portfolio-

specific and aggregate predictors. Section 4 concludes.

Related Literature. Our paper speaks to the vast literature on factor mod-

els. Factor models are widely used in asset pricing (see Ang, 2014 for an



overview). Despite the great popularity of these models, the literature on
the relationship between the choice of factors and the investment horizon has
been much less developed. Specifically, the factor-based approach to port-
folio allocation and risk management has concentrated almost exclusively on
modeling one-period returns while not devoting enough attention to the rela-
tionship between the long-run performance of assets and factors. A notable
exception is Hansen, Heaton and Li (2008). These authors are among the first
to provide evidence on the importance of understanding long-run dynamics
for equity returns and assets valuation. Moreover, the factor models litera-
ture has traditionally focused on factor-representation of stationary variables
and only recently the factor framework has been extended to non-stationary
cointegrated factors (e.g., Barigozzi et al., 2020; Banerjee et al., 2017). In-
terestingly, the dynamic dividend growth model (Campbell and Shiller, 1988)
is built under the null that (log) prices are cointegrated with (log) dividends.
As a consequence the model-consistent relationship between returns and div-
idend growth contains an FCT term that guarantees that (log) prices and
(log) dividends share the same stochastic trend. It is somewhat curious that
this feature of the dynamic dividend growth model is not shared by any of the

factor models for returns available in the literature.

In a seminal contribution, Bauer and Rudebusch (2020) propose a dynamic
term structure model with an embedded stochastic interest rate trend. Our
cointegrating framework for equity factors shares several features with their
approach. Furthermore, our analysis of the time-series implications of mis-

pricing in the cross-section of equity complements their quantification of the



importance of time-varying macroeconomic trends for interest rates. Overall,
Bauer and Rudebusch (2020) and our work attest the need for (empirical and

theoretical) models featuring long-run trends that are shared across prices.

Our paper fits into the literature on the relationship between cointegrated
variables and error correction models (see, for example, Hendry, 1986; Engle
and Yoo, 1987; Johansen, 1995; Pesaran and Shin, 1998; Liu and Timmer-
mann, 2013). Lettau and Ludvigson (2001) are a first notable example of the
use of cointegration analysis in macro-finance. They show that aggregate con-
sumption, asset holdings, and labor income share a common long-term trend
and temporary trend-deviations successfully predict short- and medium-term
expected stock returns. In a series of papers, Bansal et al. (2007) and Bansal
and Kiku (2011) show that the cointegrating relationship between dividends
and consumption, a measure of long-run consumption risks, is a key determi-
nant of expected equity excess returns, particularly at long investment hori-
zons. While these works focus on economic variables, we are interested in
financial markets’ dynamics and the relation between asset values and risks.
Overall, our work provides new supportive evidence that cointegration analysis

can play a relevant role for financial markets and long-term investors.

Our paper relates to the large empirical literature that studies temporary
deviations of asset values from fundamentals. In an early contribution, Poterba
and Summers (1988) find positive autocorrelation in returns over short hori-
zons and negative autocorrelation over longer horizons which can be explained
by persistent, but transitory, divergences between prices and fundamental val-

ues. Concurrently, Fama and French (1988) argue that the U-shaped pattern



in first-order autocorrelation observed in U.S. stock returns is consistent with
the view that prices have a slowly decaying stationary component. Cohen et al.
(2009) show that cash-flow or long-horizon CAPM betas perform satisfactorily
in explaining cross-sectional variation in the level of asset prices. They con-
clude that, while the CAPM may fail to explain short-term expected returns
on dynamic trading strategies, it is effective in “getting” stock prices and
expected long-term returns approximately “right.” On the theoretical side,
Bossaerts and Green (1989) derive a dynamic pricing model with time-varying
risk premia in which the risk of individual securities and equilibrium risk pre-
mia change predictably, featuring the inverse relationship between prices and
returns. Brennan and Wang (2010) show that a premium in average returns
is created as a result of Jensen’s inequality when stock prices diverge from
fundamental values because of stochastic pricing errors, even when the mis-
pricing has an average of zero. Van Binsbergen and Opp (2019) investigate
the implications of financial market mispricing for the real economy and find
that pricing errors can cause allocative distortions. Although the literature
on mispricing (Chernov et al., 2018; Cho and Polk, 2020) is rapidly growing,
our cointegrating methodology and its usage to detect transitory asset-specific
price deviations is novel to the literature. Furthermore, our approach implies
a new definition of (long-term) misspecification of a factor model based on the

magnitude of cointegration in prices, or absence thereof.
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2 From Factors for Asset Returns to Risk Drivers

for Asset Prices

2.1 Traditional Factor Models for Returns

Factor models are commonly used to characterize parsimoniously the predic-
tive distribution of asset returns. Specifically, multi-factor models in which k
factors characterize in a lower parametric dimension the distribution of n asset

returns, have the following general form:

Tig1 = & + Bifii1 + g1, (1)

ft+1 = E (ft+1 | -[t) + €41 Wlth €t D (07 E) (2)

where Cov (v; 441, v;441) = 0 for i # j, £ is a k-dimensional vector of factors
at time t + 1, 7,441 is the return on the i-th of the n assets at time ¢ + 1, and
the vector f; contains the loadings for asset ¢ on the k factors. Equation (1)
specifies the conditional distribution of returns on factors, while equation (2)
specifies the predictive distribution for factors at time ¢ + 1 conditioning on
information available at time ¢. A baseline specification for this system as-
sumes away factors predictability thus implying that conditional expectations

of factors have no variance (i.e., E (fi1 | I;) = p).

In equation (1) it is often assumed without further qualification that returns

and factors are stationary variables.* Our paper is a reappraisal of this seem-

4The unconditional moments of returns are constant, although the conditional ones might
be time varying.
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ingly harmless hypothesis. In fact, next we show that the standard framework

relating asset returns to stationary factors leaves asset prices undetermined.

Consider a test asset ¢ and denote its log one-period return by r;;. We

define the log price of this asset as:

InP;=mnF,; +r, (3)

i.e., prices of any test asset are cumulative returns. The analogous of the (log)
price for an asset can be constructed for any given factor. We define as price-
level risk driver the cumulative returns of a portfolio investing in standard
factors (e.g., the aggregate market return).” The generic risk driver associated
to a factor with a log period return of f; evolves according to the following
process:

ln Ft = ln Ft—l + ft . (4)

If test assets returns and factors are stationary, then prices and risk drivers
are non-stationary. In fact, imagine now to simulate data using the model
given by equations (1), (2), (3), (4). The simulated data will deliver a linear
relationship between returns and factors but no relationship between prices
and risk-drivers. Prices and risk-drivers will follow two unrelated stochastic
trends. In technical jargon, the model given by (1)—(4) rules out the hypothesis
of cointegration between prices and risk drivers by assumption. The presence

of co-integration which is borne out by the data (c.f. Section 3) therefore

®Meucci (2011) introduces the concept of risk drivers of any given security as a set of
random variables that completely specifies the security price and that follow a stochastic
process homogeneous across time. We adopt the terminology here with some adaptation.

12



prevents it from being a valid representation.

Next, we propose a novel testable framework that, starting from the re-
lationship between asset prices and risk drivers, derives the mapping of asset

returns into factors.

2.2 A (Co-)Integrated Approach to Factor Modeling

If factor-risk drivers are the non-stationary variables that drive the non-stationary
dynamics of prices, then a linear combination of prices and risk drivers should

be stationary; i.e., prices and risk drivers should be cointegrated.

Consider the following model describing the exposure of a given portfolio

P+ to risk drivers:

InP,; =op; +art+ S InFy +u;y

The estimation of such regression delivers stationary residuals u;; anytime
the chosen set of risk drivers captures the stochastic trend that determines
the long-run dynamics of prices. In this case, the linear combination of the
left-hand side variables of the equation defines the long-run cointegrating re-
lationship and u;; captures temporary deviations of prices from the long-run
equilibrium value determined by risk drivers. Thus, it is natural to refer to
the residuals wu;; as the “Equilibrium Correction Term” (henceforth, ECT)

associated with asset ¢ at time ¢. Formally, we define the residual from the

13



long-run cointegrating relationship:

ECT;; =In Py —ag; — oyt — ﬂA; InF, .

For expository purposes, it is useful to specify the error term u;; as an
AR(1) process. In sum, we model the joint distribution of portfolio prices,

factors, and risk drivers as follows:

NP1 = ap; + ot + B InFypq + w4 (5)
Ujtr1 = Pillis + Vi1
fio1=FE 1 | L) + e
InP,=mInk,; 1 +ry,

ln Ft = ln Ft—l + ft

where €41 ~ D (0,X), u; ;41 and v; 441 have zero mean and variance 05 ; and

2

o, ;, respectively, and Cov (vi11,vj41) = 0 for i # j.

By taking first differences of our model in (5) we obtain a novel relationship

between returns and factors:

Tiger = o1 + Bifiir + (o — 1) wip  + vig- (6)
52‘ EECTi’t

Eq. (6) represents the Factor Error Correction Model.®

5The equilibrium correction representation (6) of cointegrated time-series (see the system
of equations in (5)) is warranted by the Engle and Granger (1987) representation theorem.
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Two comments are in order. First, we include a linear trend in Eq. (5) since
it allows to recover the standard short-run specification—returns are regressed
on factors plus a constant—when taking first-differences. In other words, a

positive o in the long-run relation (5) generates “alpha” in returns.”

Second, when ECT;; is stationary, then prices and risk drivers are coin-
tegrated. The stationarity of ECT;; implies that, in the relation (6) linking
returns to factors, this term appears with a coefficient §; capturing the speed
with which the system eliminates disequilibria with respect to the long-run

relationship. Indeed, d; is related to the persistence p; of ECT;4, see Eq. (6).

When risk drivers explain the buy-and-hold value of a portfolio, cointe-
gration implies that portfolio returns respond to the Equilibrium Correction
Term so far omitted in the empirical asset pricing literature. The inclusion
of the ECT ensures that the specification for returns is consistent with the
long-run relationship between risk drivers and portfolio prices. The omission
of the EC'T leads to a misspecification of the factor model, in the sense that

the factor model leaves price dynamics undetermined.

Interestingly, a traditional factor model would not be affected by omitting
the disequilibrium term only if risk drivers and prices are not cointegrated
(i.e., when | p; |=1). However, this case also implies that a given factor model
is unable to price the buy-and-hold portfolios since prices do not track risk
drivers in the long-run. In Section 3 we provide strong evidence in support of

the disequilibrium correction mechanism that operates through the FCT and,

"Moreover, as discussed by Engle and Yoo (1987) and MacKinnon (2010), the inclusion
of a trend is a simple way to avoid the dependence of the distribution of test statistics for
residuals on aq.
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thus, we reject the extreme case of | p; |= 1.

2.3 Evidence From Monte-Carlo Simulation of a Simple

DGP

We run a simple, but informative, simulation exercise to gauge the importance
of modeling price dynamics in factor models. Let’s assume the following Data

Generating Process (DGP):

InPy = ag+tait+FInFg +up (7)
U1 = pug+ o1/ 1 — p?o
fir1 = ptoEn

hlpt = lnPt,l—l—Tt
hl Ft = hl thl —+ ft
Ut

~ N.I.D.[0,]]

€t

In this simplified DGP, we consider only one test asset and one factor. The
cointegrating relationship between the price and the risk driver associated
respectively to the return and the factor is controlled by the parameter p.
We assume no predictability for the factor. We calibrate p and o9 to 5.33
and 15.37 respectively such that f; features the annualized mean and the
standard deviation of U.S. stock market excess returns (in percentage) over

the risk-free rate in the period 1963-2019. Similarly, we calibrate parameters

16



in the long-run regression (7) by considering the values delivered by projecting
(log) cumulative returns for the value portfolio (decile 10 of portfolios formed
on Book-to-Market) on the risk driver associated with our single-factor, the
market. Thus, aq is 12.08, oy is 5.61, and [ is 0.64. Finally, we set o1 = 26.53,

that equals the standard deviation of equation (6) for the value portfolio.

We study the effect of estimating a traditional factor model when the DGP
is given by the FECM in (7). The traditional factor model is specified as

follows:

Tep1 = o+ Bfipr + v (8)

frr1 = v+ €.

First, consider the case in which cointegration holds, i.e., we simulate the
DGP by calibrating p = 0.5. The top panel in Figure 2a reports—for one run
of the Monte-Carlo simulation—the simulated returns along with the returns
predicted respectively by the traditional (i.e., without ECT') factor model and
by the factor model that includes the ECT (i.e., the FECM). The figure il-
lustrates that when the (misspecified) traditional model (8) is used to predict
future returns, the predicted value (red solid line) has zero variance despite
the predictability implied by the DGP. This predictability, which can be rele-
vant for risk measurement, risk management, and asset allocation, is instead
exploited by the inclusion of the Equilibrium Correction Term in the FECM

specification (blue dotted line).® As shown in the bottom panel of Figure 2a,

8Interestingly, our approach delivers predictability through the ECT also when a con-

17



price deviations from the long-run equilibrium implied by the risk driver are

mean-reverting towards zero.

Next, we consider the case of no-cointegration by simulating the DGP
under p = 1. In this case, the FECM specification collapses to the traditional
factor model (8), and the ECT does not have power in forecasting returns.
Figure 2b illustrates simulated returns, and predicted returns by the standard
factor model. The figure makes clear that the model fits well the relation
between returns and factors (i.e., the solid red and dashed blue lines overlap,
see top panel), but price deviations from long-run equilibrium implied by the
risk driver are non-stationary (see bottom panel). Indeed, the single-factor

model is not able to track the value of the buy-and-hold portfolio.

3 Empirical Results

3.1 Data

We focus on U.S. data-NYSE, AMEX, and Nasdaq stocks from the Center for
Research in Security Prices (CRSP) and Compustat data required for sorting
— for the sample 1963-2019. Throughout we use monthly observations but
we focus on l-year holding-period excess return. Indeed, our co-integrated
approach to modeling asset prices and returns is designed for low-frequency
fluctuations in returns. Specifically, the horizon over which asset returns are

computed must be sufficiently long to allow for a reaction of returns at time

stant expected return specification for factors is assumed as in the DGP described by (7).
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Figure 2: Monte-Carlo Simulation. All simulations are based on the DGP
in the system of equation (7). The green line is simulated returns, the red solid line is
the predicted returns by the single-factor model (i.e., CAPM), the blue dashed line is the
predicted returns by FECM, and the solid blue line is the ECT. Panel (a) shows simulated
data when p = 0.5, i.e., with cointegration between prices and risk drivers. Panel (b) shows
simulated data when p = 1, i.e., without cointegration between prices and risk drivers.

t + 1 to disequilibrium in the relationship between risk drivers and prices at
time t. Without further qualification, then, r,,; will always denote the one-

year-ahead excess returns.’

Our empirical setting with monthly observations of annual returns requires
extra care when computing standard errors. To this end, we follow Ang and
Bekaert (2007) and rely on conservative standard errors from reverse regres-
sions proposed by Hodrick (1992). To remove the overlap in the error term,

this approach exploits the covariance of one-period returns with an h-period

9In our sample, there is evidence that returns react to disequilibrium within a quarter, i.e.,
;¢ manifests forecasting ability for r; ;43/12. We leave open the question of the economic
determinants of the timing of reaction to disequilibrium, and decide to focus on 1-year
holding-period returns in line with recent empirical studies on time-variation in anomaly
returns (Haddad et al., 2020; Lochstoer and Tetlock, 2020).
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sum of the predictor (h = 12 for monthly data and annual returns).'!!

To investigate the validity and performance of our factor model augmented
with the ECT, dubbed FECM, we consider as test assets a large cross-section
of anomaly portfolios based on single-sorts of 45 different characteristics. These
test assets, or a subset of it, have been used by Kozak et al. (2020), Giglio et al.
(2020), Haddad et al. (2020), and Lettau and Pelger (2020), among others.'?
Focusing on such a large cross-section allows us to confirm the ubiquitous pres-
ence of disequilibria in the long-run relationship between portfolio prices and

price-level risk drivers.

With regard to the empirical model for return, we employ principal com-
ponents analysis (PCA) to extract factors from the 45 long-short portfolios.
Despite our approach being applicable to classical factor models like the one
proposed by Fama and French (1993), we prefer to use PCA for three main
reasons. First, PCA uses a purely statistical criterion to derive factors, and
has the advantage of requiring no ex-ante knowledge of the structure of av-

erage returns. Second, PCA is grounded in Ross (1976) seminal Arbitrage

10 Ang and Bekaert (2007) show reverse regressions standard errors to have superior small-
sample properties compared with the commonly used Hansen-Hodrick or Newey-West errors,
both of which overreject the null hypothesis of no predictability in small sample. Similarly,
in our setting, we find Hodrick (1992) standard error to be more conservative than Newey-
West or GMM ones.

"¥Yearly frequencies remove issues associated with overlapping observations; moreover the
exploitable predictability in the mean is usually paired with a constant volatility specifica-
tion. Importantly, our conclusions are unchanged when we employ only returns at the end
of December (i.e., 57 annual observations).

12We kindly thank Serhiy Kozak for making his data available at https://sites.google.
com/site/serhiykozak/data?authuser=0. Appendix Table A.1 lists the categories and the
portfolios included in each category. Note that we follow the convention of labelling decile
10 the one with higher (than decile one) average return. E.g., decile 10 for size corresponds
to small stocks, whereas decile one to large stocks. In other words, characteristic are signed
so that they predicts returns with a positive sign.
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Pricing Theory (APT) and it is by far the most popular technique in finance
to analyze latent factor models for returns with key empirical contributions
dating back to Chamberlain and Rothschild (1983) and Connor and Korajczyk
(1986, 1988), and, more recently, Kozak et al. (2020)."* Third, at the managed-
portfolio level, the fit of PCA in terms of both cross-sectional and time-series
R? are generally excellent and superior to, e.g., the Fama and French (1993)
three-factor model and the Fama and French (2015a) five-factor model (c.f.,

Table 2 in Kelly et al., 2019).

We proceed as follows. We first use our co-integrated approach for asset
prices to select the number of factors. Given the number of factors, we then
show the pervasiveness of a “disequilibrium” long-run relationship between

prices and factor-risk drivers in our cross-section of anomaly portfolios.

3.2 ECT and the Detection of (Buy—and—Hold) Mis-

specification in Factor Models

Every factor structure that generates cointegration between risk drivers and
prices rules out permanent deviations of portfolio prices from their projection
on risk drivers, and it naturally leads to an Equilibrium Correction Term. The
ECT would not be significant to explain returns only in absence of cointegra-

tion between risk drivers and portfolio prices. The existence of cointegration

13Recently, Kelly et al. (2019) and Lettau and Pelger (2020) have extended classical PCA
along important dimensions. Kelly et al. (2019) propose instrumental principal component
analysis (IPCA) where the factor loadings are dynamic and can be instrumented with ob-
servable portfolio characteristics. Lettau and Pelger (2020) propose risk-premium PCA to
extract factors that fits not only the time-series but also the cross-sectional variation in
asset returns. For simplicity, we stick to the most classical PCA technique.
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discards the possibility of an omitted risk driver. Equivalently, the omission of
a factor whose associated risk driver is relevant to determine the price dynam-
ics of a given portfolio would prevent cointegration between portfolio prices
and any set of risk drivers that omits the relevant one. Non-stationarity of
the residual in Eq. (5) could in fact be taken as evidence of the factor model
to be misspecified. Simply put, the presence of cointegration, or lack thereof,
is revealing about the number of relevant (price-level) risk drivers and, hence,

factors for returns.

In this section, we exploit the presence of mis-specification (or absence
thereof) about long-run dynamics in factor models to select the relevant num-
ber of factors to be used.'* Specifically, we estimate by ordinary least squares

the following regression:'”

In Pi,t = O, + OéLit + 51/ In Ft + Uyt 1= 1, ceny 90 (9)

where In P;; is the (log) price for the characteristic-sorted portfolio i at time
t, InF; are the risk drivers, and ¢ is a time trend. The risk drivers consist of
principal components that are added sequentially until we find evidence for

portfolio prices reverting to their equilibrium levels.

Table 1 reports summary statistics about the speed of mean reversion of

“Our long-run type of misspecification for prices is different from and complementary
to the large literature on misspecification of factor models for returns, see, e.g., Hansen
and Jagannathan (1997); Kan and Zhang (1999); Lewellen et al. (2010); Kan et al. (2013);
Gospodinov et al. (2014, 2017).

15Using the dynamic ordinary least squares (DOLS) technique (see Stock and Watson,
1993) for the long-run specification, as in e.g., Lettau and Ludvigson (2001), leaves the
evidence of cointegration and the estimates for the cointegrating relationship unaltered.
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the ECT's for the large cross-section of portfolios. Each row refers to a specific
factor model. The models are ranked by increasing complexity as proxied by
the number of principal components employed. It is immediately apparent
that the ECT's implied by a model using only the first principal component
fails to deliver cointegration with one-fourth of the portfolios requiring more
than five years for the disequilibrium to disappear, and one portfolio almost
never reverting back to the equilibrium dictated by the sole risk driver (the
half-life of 173 months corresponds essentially to prices permanently drifting
away from their equilibrium level). Adding principal components improves the
evidence for cointegration by reducing the half-life. However, even with three
principal components we continue to observe quite persistent deviations with
half of the equilibrium error being absorbed only after two and a half years for
25% of the portfolios. Selecting five principal components seems necessary in
order to have portfolio prices that revert quickly toward equilibrium, with an
half life that is around one year for 75% of the portfolios, and never greater
than two years.'%!” Since the existence of cointegration discards the possibility
of an omitted risk driver, we conclude that it is unlikely that more than five

factors are needed. Hence, we set

F, = | pCc1, PC2, PC3, PC4, PC5,

16The cumulative proportion of variance explained by PC1, PC2, PC3, PC4, and PC5 is
respectively 25.2%, 45.3%, 58.7%, 62.8%, and 66.6%.

"More formally, one can test for cointegration following the methodology proposed by
Engle and Granger (1987). In that case, using quarterly observations and simulated critical
values proposed by MacKinnon (2010) we reject the null of no-cointegration for PC1, PC2,
PC3, PC4, and PC5 respectively for the 76.7%, 93.3%, 92.2%, 98.9%, and 100% of portfolios.
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Table 1: Half-Life

This table reports the half-life (in months) for different specifications of the long-run re-
gression (9). For 1-PC, we employ only the first principal component extracted from the 45
long-short anomaly portfolio returns constructed in Giglio et al. (2020) and Haddad et al.
(2020) and reported in Appendix A.1; for 2-PC, we employ the first two principal compo-
nents; similarly for 3-PC, 4-PC, and 5-PC (we employ the first five principal components).
The half-life is calculated as log(0.5)/log(| p |), where p is the estimated first-order autore-
gressive parameter for the ECT related to the different specifications. We compute ECT
as in equation (10). Test assets are 90 decile 1 and decile 10 anomaly portfolios. Monthly
observations. The sample period is August 1963 to December 2019.

Half-Life Mean Min Pctl(25) Median  Pectl(75)  Max

1-PC 52.2 22.0 36.1 49.2 62.7 172.9
2-PC 32.8 16.6 25.6 30.5 35.7 76.7
3-PC 28.0 12.7 19.6 26.3 31.2 86.3
4-PC 19.3 9.1 13.8 17.9 22.6 57.4
5-PC 13.8 9.0 12.0 13.1 14.7 25.3

In this respect, our FECM approach is informative about the dimensionality

of the (zoo of) factors’ space (Cochrane, 2011).

With regard to the last point, it is interestingly to observe that the state-of-
the-art g-factor model of Hou et al. (2015) and the Fama and French (2015a)
model employ four and five factors, respectively. These models have become
the benchmarks in empirical finance since they have been shown to perform
well in the space of portfolio returns, e.g. Fama and French (2015b). We reach
a similar conclusion about the number of factors using a very difference criteria

which is based on a metric based on prices, not returns.
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3.3 The Statistical Evidence on the Equilibrium Cor-

rection Term

Given the evidence of cointegration when five risk drivers are used, in the rest

of the paper we employ a factor model with five principal components (PCs).

Specifically, for each portfolio returns, we specify a system of equations
that includes— in addition to the five PCs —the Equilibrium Correction Term

derived from the estimation of the long-run cointegrating relationship:

Tig1 = Q1+ Bifin + 6GECT, 4 + v (10)
ECT,; = InPy—g,; — ayt — B InF,

InP; = InP; 1 +ry

InF, = InF,_; +f

F, = | PC1, PC2, PC3, PC4, PC5,

where 7; 441 is the one-year ahead excess return of test asset ¢ and ECT;; is the
Equilibrium Correction Term for test asset ¢ observed at month ¢, estimated

as the residual from equation (9).'®

To show the pervasiveness of a “disequilibrium” long-run relationship be-
tween prices and factor-risk drivers, we employ a cross-section of anomaly
portfolios that is based on single-sorts of 45 different characteristics. For ease

of exposition, we group anomalies within categories (Table A.1 lists the port-

¥ Practically, we cumulate (log) returns on asset i in excess of the risk-free rate to remove
inflation-related trends in asset prices.
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folios included in each category).

Figures 3 and 4 display the estimated loading 3\1 of portfolio 7 on the EC'T;,
see equation (10), with their associated 95% confidence intervals. Figure 3
refers to decile one, whereas Figure 4 to decile ten. Two comments are in or-
der. First, for each category, the estimates of o; are negative and statistically
significant. This is consistent with our economic intuition of the FC'T' mech-
anism: When asset prices are higher (lower) than their long-run equilibrium
value implied by risk drivers, we expect lower (higher) returns in the next
period so that the “disequilibrium” disappears. Second, recall that the magni-
tude of the 4; is inversely related to the speed of adjustment of the correction
term (c.f. Eq. (6)). In this respect, Figures 3 displays value anomalies at one
extreme (high delta, and fast mean reversion to equilibrium) and momentum
and trading frictions at the other of the spectrum (low delta, and low mean
reversion to equilibrium).'” This evidence is consistent with the idea that fric-
tions make it difficult for feedback traders to close the disequilibrium, whereas
arbitrage activity is generally successful at stabilizing anchored strategies, like

value (see Stein, 2009; Lou and Polk, 2013).

Table 2 zooms in onto the value anomaly (decile ten of book-to-market
sorted portfolios). In the first column, we collect the estimates of the long-run
cointegrating relation (c.f., equation (9)), and in the second column we report
the estimates for the short-run factor error correction model (c.f., equation

(10)). Value returns are negatively related to PC1, and positively related to

198pecifically, for decile one, the median half life of strategies in the value category is about
10 months, whereas that of portfolios in the momentum and trading frictions categories is
about 16 months.

26



ECT coefficient

ECT coefficient

Figure 3: Anomaly Portfolios (Decile 1) and ECT. This figure shows
the estimated ECT coeflicients for the FECM specification (10) for the decile 1 anomaly
portfolios constructed in Giglio et al. (2020) and Haddad et al. (2020) in the Categories
reversal, momentum, value, investment, profitability, and trading frictions with respective
confidence intervals at 5% level of significance. Categories are reported in Appendix A.1.
We employ the first five principal components extracted from the 45 long-short anomaly
portfolio returns as factors. Standard errors are computed as in Hodrick (1992). Monthly
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observations of annual returns. The sample period is August 1963 to December 2019.
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Figure 4: Anomaly Portfolios (Decile 10) and ECT. This figure shows
the estimated ECT coefficients for the FECM specification (10) for the decile 10 anomaly
portfolios constructed in Giglio et al. (2020) and Haddad et al. (2020) in the Categories
reversal, momentum, value, investment, profitability, and trading frictions with respective
confidence intervals at 5% level of significance. Categories are reported in Appendix A.1.
We employ the first five principal components extracted from the 45 long-short anomaly
portfolio returns as factors. Standard errors are computed as in Hodrick (1992). Monthly

(e) profitability
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observations of annual returns. The sample period is August 1963 to December 2019.
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Table 2: FECM for the Value Portfolio

This table reports the estimated coefficients for the specifications in equations (9) and (10)
where P and r are respectively log prices and returns for the Value Portfolio (decile 10)
in the 90 anomaly portfolios constructed in Giglio et al. (2020) and Haddad et al. (2020)
and reported in Appendix A.1. We employ the first five principal components extracted
from the 45 long-short anomaly portfolio returns as factors. Column (1) reports results for
the long-run specification (log prices on log risk drivers). Column (2) reports least squares
estimates for the short-run specification (log returns on log factors plus the ECT'). Column
(3) reports the semi-partial R? for each regressor in Column (2). Constant estimates are
not tabulated. Values in parenthesis are heteroskedasticity and autocorrelation consistent
(HAC) standard errors using Newey and West (1987) with automatic bandwidth selection
procedure as described in Newey and West (1994). The standard error for ECT is computed
as in Hodrick (1992). Monthly observations of annual returns. The sample period is August
1963 to December 2019.

Long-Run FECM  SpR?
(1) (2) (3)

Trend 11.060
(6.796)
PC1 —0.182 —0.182 0.26

(0.075)  (0.029)

PC2 0.027 0.047  0.02
(0.157)  (0.036)

PC3 —0.239  0.050  0.01
(0.068)  (0.049)

PC4 0.245 0113 0.02
(0.121)  (0.069)

PC5 0.111 —0.032 0
(0.078)  (0.114)

ECT(-1) —0.426  0.12
(0.100)

Observations 677 665

Adjusted R? 0.987 0.616
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PC4 factors. The ECT coefficient is economically and statistically significant,
and negative: a positive deviation of (log) prices for the value portfolio from
their long-term relation with the risk drivers in this period implies a lower
expected return for the next period, with an order of magnitude of 43 basis

points per unit of deviation.

Further supporting evidence for the importance of the ECT for under-
standing the time-series dynamics of returns is provided by the analysis of the
semi-partial R?. The semi-partial R? is defined as the difference between the
overall regression R? and the R? of the regression that includes all regressors
except the i'"-regressor for which the semi-partial R? is computed. We show
the results for the semi-partial R? associated to each factor in the last column
of Table 2. The ECT is the second most relevant factor after the PC1, ex-
plaining by itself about 10% of the total variance of returns. We find similar
evidence for the other portfolios with the partial R? associated to the ECT

ranging from 8% to 16%.

We conclude that not only the cointegrating relationship between risk
drivers and asset prices is present in a large cross-section of anomaly port-
folios, but also the inclusion of the ECT improves the description of returns

dynamics.
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3.4 The Information in ECT

3.4.1 The ECT and Other Return Predictors

How is the ECT related to other return predictors? To address this question,
we compare the predictive power of ECT to that of valuation ratios. Valu-
ation ratios like the dividend-price ratio, are often used in forecasting return
regressions (e.g., Cochrane, 2005; Campbell, 2017) since they represent a nat-
ural predictor: The Campbell-Shiller log-linear present value model implies
that the dividend-price ratio is a good proxy for expected returns, if dividend

growth is unpredictable.

Table 3 reports the results from the regression:

Tite1 = & + Bifiyr + GECT,  + v BM; + €4,

where 7; ;11 denotes the log excess return of portfolio 7, BM;, is the log book-
to-market ratio for portfolio ¢ at time ¢, and ECT;, is the ECT for portfolio

7 at time t.

We consider the top and the bottom decile portfolios for five well known
anomalies, each one representative of a different category (c.f., Table A.1):
value (Rosenberg et al., 1984), leverage (Bhandari, 1988), investment (Chen
et al., 2011), gross profitability (Novy-Marx, 2013), and size (Fama and French,
1993). The first and third rows report the estimates for §; and ~;, whereas the

second and last row displays the partial R? associated with the ECT.

We start commenting on Book-to-Market sorted portfolios. These assets
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constitute a natural playing field since value strategies are predictable by (the
spread in) valuation multiples (Asness et al., 2000; Cohen et al., 2003; Baba-
Yara et al., 2020). We see that the statistical significance of the ECT continue
to be strong even after controlling for the book-to-market ratio.?’ Turning to
other anomalies, we continue to find a statistically significant and negative
loading on the FCT across portfolios. Moreover, the ECT captures a sub-
stantial amount of variability in future portfolio returns, with (partial) R?

ranging from 10% to 18%.

This evidence suggests that the EC'T conveys information about the time-
series dynamics of returns for a wide range of portfolios. Importantly the
informational content of the ECT is not subsumed by the book-to-market

ratio of the portfolios.

3.4.2 Common vs Portfolio Specific Components of ECT

Is the predictive ability of the ECT portfolio specific? Or does the ECT
predict common co-movement across portfolios? The answer to this question
is not trivial. It may well be the case that the prices of each portfolio deviate
from the risk drivers in a synchronous way. Indeed, we find that the first
principal component (PC) extracted from the ECT;; explains about 73.4% of

the overall ECT variability.?!

20In a simple regression, the sign of book-to-market is positive as implied by the classical
Campbell-Shiller decomposition. For example, value returns load on B/M with a coefficient
of about 0.19.

2IThe first three PCs explain 86.7% of the ECTs associated with the cross-section of
anomaly portfolios. More importantly, the percentage of variance explained by the PCs is
stable across time; e.g., we find that the first PC (the first three PCs) extracted from the
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To answer this question we decompose the ECT' of portfolio ¢ in a common
component and a portfolio-specific component. Given our set of portfolios, we
extract the first PC from the time series of the ECT;; and denote it with

PC1_ECT. We then run the following regression:
EC’T& = 51P01,E071t + €it-

We call 8, PC1_ECT, the common ECT component, and e, ; the portfolio spe-

cific component. We denote these two components by ECTSYM and ECTFC.

Table 4 reports the results from the regression:
Titr1 = o + Bifq + 5z‘ECTtCOM + €it, (11)
in Panel A, and the results from
Tity1 = o + Bifiyr + 51‘E07ftPEC + €it, (12)

in Panel B. We let r;,1; denote the log excess return of portfolio 7. Since
ECTSFPEC is by construction orthogonal to ECTSYM the sum of R? from re-
gressions (11) and (12) is equal to the R? obtained from a multiple regression
of 73441 on both ECTSPEC and ECTFOM. For easy of exposition, we focus on
the same anomalies investigated in Table 3; however, our results extend to the
larger cross-section of anomalies.?? Table 4 shows that the statistical evidence

of the common FCT component is strong across anomalies and deciles. On the

ninety FCT's explain 84% (90%) of the variance in the sample before January 2000, and
89% (94%) afterwards. Similarly, when we exclude the financial crisis and stop our sample
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other hand, the variation in expected returns captured by the portfolio-specific
component is generally weak. Only for firms that are small (size portfolios,
decile 10), that have high growth (book-to-market, decile 1) and high invest-
ment (investment, decile 1) we do find that the asset-specific component of
the ECT is statistically strong. However, even in these cases, the common
component yields R2s that are on par or stronger than those implied by the

asset specific component.

The evidence in Panel A of Table 4 suggests that the common variation in
ECT may not be entirely diversified away, and thus it may help predicting the

aggregate market. To address this question, we run the following regression:

MKTi 1 = +1PCECT; + &4, (13)

where M KT}, is the log excess return on the market and PC_ECT is a vector
that contains the first three principal components extracted from the ECT's.
Inspired by the work of Engleberg et al. (2019), we claim that PC_ECT form

a systematic return predictor if 7, is statistically different from zero.

Table 5 reports the estimate of v, ; and the R? for regression (13). Over-
all, we find strong evidence for (the systematic component of) the ECTs to
forecast the market. This result contrasts with the analysis of Engleberg et al.
(2019) who find that cross-sectional predictors are not good time-series pre-

dictors. Comparing column (1) to (2), we see that all the information content

in 2007 the first PC still captures 75% of the ECT's variability.

228pecifically, the semi-partial R? for the common component range from 1.7% to 21.6%
with an average of 9.9% across portfolios, whereas the semi-partial R? for the asset-specific

component range from 0% to 14.1% with an average of 2.7%.
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Table 5: The Aggregate Market and Portfolio ECT's

This table reports the ordinary least squares estimate for +; and the adjusted R? from the
regression: M KT 11 = vo+71Xt+ €41, where M KT, 4 is the log market return in excess of
the risk-free rate at time t41 and x is a vector containing potential market predictors at time
t. In Column (1), we employ as market predictor the first principal component extracted
from the 90 decile 1 and decile 10 anomaly portfolio returns’ ECT's constructed in Giglio
et al. (2020) and Haddad et al. (2020) and reported in Appendix A.1. In Column (2),
we employ as market predictors the first three principal components extracted from the 90
decile 1 and decile 10 anomaly portfolio returns’ ECT's. In Column (3), we employ as market
predictor the variable cyclical comsumption (cc) constructed in Atanasov et al. (2019). In
Column (4), we employ as market predictor the first principal component extracted from
the 90 decile 1 and decile 10 anomaly portfolio returns’ ECT's plus cc. In Column (5), we
employ as market predictor the first three principal components extracted from the 90 decile
1 and decile 10 anomaly portfolio returns’ ECT's plus cc. Values in parenthesis are standard
errors computed as in Hodrick (1992). Monthly observations of annual returns. The sample
period is August 1963 to December 2019.

MKT

(1) (2) (3) 4) (5)
PC1.ECT(-1) —0.457 —0.451 —0.373  —0.365
(0.135)  (0.135) (0.133)  (0.134)
PC2.ECT(-1) 0.100 ~0.332
(0.489) (0.530)
PC3_ECT(-1) —0.657 —0.450
(0.558) (0.575)
ce(-1) ~1.736  —1.313 —1.429

(0.548)  (0.537)  (0.594)

Adjusted R? 0.165 0.187 0.135 0.236 0.255
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is conveyed by the first principal component.

In our market return predictive regressions, the sign of the loadings on the
common ECT component continues to be negative. This implies that when
portfolios prices are simultaneously below their long-run value determined by
the risk drivers, i.e., when the common ECT component is negative, we ex-
pected higher aggregate market returns going forward. Interestingly, the com-
mon component of the FCT is positively correlated at 26.4% with industrial
production growth; the countercyclical behavior is also apparent in Figure 5
with the common component decreasing sharply in correspondence of NBER

recessions.

Given this evidence, it is then natural to control for fluctuations in aggre-
gate consumption that, in agreement with economic theory, are well known pre-
dictors of aggregate stock market (see Lettau and Ludvigson, 2001; Atanasov
et al., 2019). Indeed, if investors in the economy exhibit external habit for-
mation as in Campbell and Cochrane (1999) then, in bad times (consumption
below its trend and high marginal utility), expected returns need to be high to
induce investors to postpone the valuable present consumption. Furthermore,
Atanasov et al. (2019) show that cyclical (i.e., business cycle) fluctuations in
consumption, referred to as cc;, has information content above and beyond
that of many alternative economic variables that are popular in the literature,
such as the consumption—-wealth ratio of Lettau and Ludvigson (2001), and
the labor-income-to-consumption ratio of Santos and Veronesi (2006). Thus,

next we run multiple regressions controlling for cc;.?*

Z3Furthermore, at our annual horizon, few predictors are known to perform well. Indeed,
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Figure 5: Countercyclicality of PC1_ECT. This figure shows the dynamics of
the first principal component extracted from the 90 decile 1 and decile 10 anomaly portfolio
returns’ ECTs constructed in Giglio et al. (2020) and Haddad et al. (2020) and reported in
Appendix A.1. Shaded areas are NBER recessions. The sample period is August 1963 to
December 2019.
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First, in column (3), we confirm the finding of Atanasov et al. (2019) in
our extended sample: the estimated coefficient on cc; is negative and strongly
statistically significant, and the associated R? is 14%, just below the R? in
column (1) when we employ our common ECT component. Column (4) shows
the results from a multiple regression where we control for cc;. Importantly, we
observe that our common FCT component continues to have a statistically and
economically sizable predictive effect on future excess stock market returns.

Together, ECTYOM and cc explain about 20% of the overall market variability.

Taking stock of the evidence in Tables 4 and 5, we conclude that the pre-
dictability of portfolio returns induced by the ECT is driven by the com-
mon ECT component and, to a lesser extent by the idiosyncratic component.
Moreover, the common variation in ECT's aggregates to generate market re-
turn predictability, suggesting that there is portfolio-specific information in

the ECT that cannot be diversified away.

3.4.3 Out-of-Sample Analysis

The main objective of this subsection is to examine the validity and stability of
the in-sample evidence that the ECT predicts future returns. In the interest

of space, we focus on the predictability for the aggregate equity market.

the variance risk premium and its variants (see Bollerslev et al., 2009; Martin, 2017) are
know to predict the market at monthly, hence shorter, horizon. On the other hand, the
dividend-price ratio captures longer term market fluctuations, often in the range of 3 to 7
years ahead. In line with this argument, Table X in Atanasov et al. (2019) register that at the
yearly horizon 17 out of 19 traditional predictive variables have negative out-of-sample R?,
and only the investment-to-capital ratio (i/k) proposed by Cochrane (1991) is statistically
significant. Table B.1 reports the results for the predictive regression (13) controlling for
i/k. Given that i/k is subsumed by PC1_ECT at the one-year horizon, in the remaining
analysis we control only for cc.
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We proceed as follows. We follow Lettau and Ludvigson (2001) and con-
sider a scenario in which the parameters in the ECT (i.e., the long-run coin-
tegrating relationship) are fixed at their values estimated over the full sample.
This technique might be advantageous because it does not induce sampling
error in the estimation of parameters in £CT. Next, we employ the ECT val-
ues in recursive predictive regressions for stock returns to form out-of-sample
forecasts. We use an expanding estimation window where the coefficients in
the return forecasting regression are estimated recursively using only the in-
formation available through time ¢ in forecasting over the next h = 12 months.
To ensure that our results are not sensitive to the choice of evaluation period,
we perform out-of-sample tests for three different out-of-sample forecasting

periods: 1980:1 to 2019:12, 1990:1 to 2019:12, and 2000:1 to 2019:12.

We compare the forecasting error from a series of out-of-sample return
forecasts obtained from a prediction equation that includes a constant and
PC1 from the cross-section of the ECT's (the unrestricted model) to that from
a prediction equation that includes a constant as the sole forecasting variable

(the restricted model).

Table 6 displays our results. The out-of-sample R? statistics are all positive
and significant. Importantly, the statistically significant out-of-sample predic-
tive power for aggregate stock market returns holds regardless of whether the
out-of-sample forecasting starts in 1980, 1990, or 2000. Furthermore, the MSE-
F test of McCracken (2007) rejects the null hypothesis that the mean squared
errors from the unrestricted model are greater than or equal to those from

the historical average return. These results stand out since Goyal and Welch
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(2007) conclude instead that a long list of popular business cycle predictor

variables has been unsuccessful out-of-sample over the last few decades.

Table 6: Out-of-Sample Tests

This table reports results of out-of-sample forecasts of 1-year-ahead log market excess re-
turns. A time-varying excpected returns model with PC1_ECT as predictor is compared
against a constant expected returns model. The parameters used to calculate PC1_ECT
are estimated over the full sample. RZ g is the out-of-sample R? in percent. MSE-F is the
F-statistic of McCracken (2007). DM p-values are the one-sided p-values for testing the null
hypothesis of equal forecast accuracy against the alternative that the time-varying excpected
returns model is more accurate, using the method of Diebold and Mariano (2002). p-values
for R, are computed as in Clark and West (2007). The first observation in the out-of-
sample period is January 1980 in Column (1), January 1990 in Column (2), and January
2000 in Column (3), and the predictive model is estimated recursively until December 2019.
Monthly observations of annual returns. The sample period is August 1963 to December
2019.

From 1980  From 1990  From 2000
(1) (2) (3)

R o5 20.95 26.59 31.54
p-value 0.01 0.01 0.01
MSE-F 130.12 134.36 115.64
DM p-value 0.02 0.02 0.03

4 Conclusions

This paper has proposed a novel co-integrated approach to model factors and
asset returns and their prices. We find that focusing on both prices and re-
turns, rather than just returns, naturally leads to an “Equilibrium Correction

Term” that conveys new relevant information about the time-series dynamics
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of assets. Using a large cross-section of anomalies, we find that the FCT sig-
nificantly forecasts portfolio returns. We also document the presence across
portfolios of a common ECT component. This component turns out to be the
main driver of the predictability at the portfolio level. Furthermore, the com-
mon component is countercyclical, and it displays predictive information con-
tent about future expected market returns above and beyond state-of-the-art
economic predictive variables. Overall, accounting for dis-equilibria between
portfolio prices and (price-level) risk drivers has important consequences for

our understanding of the predictive distribution of returns.

We also argue that the existence of a long-run relationship between prices
and associated drivers of risk can be used to validate the ability of any factor
models to explain short- and long-run asset performances. Furthermore, our
model is flexible about the choice of factors and test assets, and it would be
natural to apply our framework to other asset classes like bonds and foreign

currencies.

Finally, in this paper we have taken a local perspective by focusing on U.S.
risk drivers. Future research could explore models based on the simultane-
ous utilization of local and global factors to model asset returns (e.g., Griffin,
2002). Cointegration among local and global risk drivers has an obvious poten-
tial for explaining the dynamics of local factors as determined by the response
to an Equilibrium Correction Term in which global risk drivers determine the

local ones.
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Online Appendix

A Anomaly Portfolios

Table A.1: Categories

We follow Freyberger et al. (2020) and Lettau and Pelger (2020) to group anomaly portfolios
constructed in Giglio et al. (2020) and Haddad et al. (2020). This table lists the categories
and the portfolios that we include in each category. In total, we consider 8 categories and
45 anomaly portfolios. Anomalies are defined in Kozak and Santosh (2019), Giglio et al.
(2020), Haddad et al. (2020), and Kozak et al. (2020).

Category Anomaly Portfolios

reversal indmomrev, indrrev, indrrevlv, Irrev, strev

value interaction  valmom, valmomprof, valprof

momentum indmom, mom, mom12, momrev

value cfp, divp, dur, ep, lev, sgrowth, sp, value, valuem
investment ciss, inv, invcap, igrowth, growth, nissa, nissm, noa
profitability gmargins, prof, roaa, roea

trading frictions  aturnover, betaarb, ivol, price, shvol, size

others accruals, age, divg, exchsw, fscore, season

Notes: lrrev is long-term reversal. strev is short-term reversal. indmomrev is industry
momentum-reversal. indrrev is industry relative reversal. indrrevlv is industry relative
reversal (low volatility). valmom is value-momentum. valmomprof is value-momentum-
profitability. valprof is value-profitability. mom is 6-months momentum. mom1l2 is 12-
months momentum. indmom is long-term reversal. momrev is momentum-reversal. value
is annual value. valuem is monthly value. divp is dividend yield. ep is earnings/price.
cfp is cash-flow/market value of equity. sp is sales-to-price. lev is leverage. sgrowth is
sales growth. dur is cash-flow duration. inv is investment. invcap is investment-to-capital.
igrowth is investment growth. growth is asset growth. noa is net operating asset. ciss is
composite issuance. nissa is annual share issuance. nissm is monthly share issuance. prof is
gross profitability. roaa is annual return on assets. roea is annual return on equity. gmargins
is gross margins. ivol is idiosyncratic volatility. shvol is share volume. aturnover is asset
turnover. size is size. price is size. betarb is size. accruals is accruals. age is firm age. divg
is dividend growth. fscore is Piotroski’s F'-score. season is seasonality.
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B Alternative Market Predictors

Table B.1: The Aggregate Market and Portfolio ECTs

This table reports the ordinary least squares estimate for «; and the adjusted R? from the
regression: MKT,+1 = v+ 71Xt + €141, where M KT, is the log market return in excess
of the risk-free rate at time ¢ + 1 and x is a vector containing potential market predictors
at time ¢. In Column (1), we employ as market predictor investment-to-capital ratio (i/k)
constructed in Campbell (1991). In Column (2), we employ as market predictor the first
principal component extracted from the 90 decile 1 and decile 10 anomaly portfolio returns’
ECTs plus i/k. In Column (3), we employ as market predictor the first three principal
components extracted from the 90 decile 1 and decile 10 anomaly portfolio returns’ ECT's
plus i/k. Values in parenthesis are standard errors computed as in Hodrick (1992). Monthly
observations of annual returns. The sample period is August 1963 to December 2019.

MKT
(1) (2) (3)

PC1.ECT(-1) ~0.396  —0.367
(0.157)  (0.153)

PC2.ECT(-1) 0.151
(0.492)
PC3_ECT(-1) —0.771
(0.545)
i/k(-1) ~14.306 —6.219 —8.306

(6.716)  (7.756)  (7.636)

Adjusted R? 0.078 0.175 0.206
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