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Abstract

We refine the approximate factor model of asset returns by distinguishing between
natural rate factors, whose sum of squared factor betas grow at the same rate as the
number of assets, and semi-strong factors, whose sum of squared factor betas grow
to infinity, but at a slower rate. We characterize the cross-sectional mean and mean-
square of semi-strong factor betas, and differentiate them from natural rate factors.
We apply the methodology to daily equity returns to characterize some pre-specified

factors as natural rate or semi-strong.
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1 Introduction

The approximate factor model of asset returns is a workhorse of research on asset pricing
and portfolio construction. It uses the many-asset framework of Ross’s (1976) Arbitrage
Pricing Theory, in which we consider a sequence of economies with a growing number of
assets and rely on limiting conditions as the number of assets grows large. In the classic
formulation of Chamberlain and Rothschild (1983), an approximate factor model is defined
by the asymptotic behavior of the eigenvalues of the asset return covariance matrix when the
number of assets, n,ygrows large. If the largest kyeigenvalues of the covariance matrix grow
unboundedly with n and the remaining eigenvalues are bounded above for all n, then returns
obey an approximate factor model with kyfactors. Chamberlain and Rothschild also show
that the eigenvectors of the return covariance matrix associated with the k largest eigenvalues
can serve as factor exposures (factor betas) up to an arbitrary nonsingular rotation of the
factors.

Chamberlain and Rothschild work with the true covariance matrix and do not directly
address estimation issues. In empirical implementations of their framework, it is standard to
impose slightly more structure. In particular, standard empirical implementations assume
that the kywlominant eigenvalues grow at the "natural" rate of n. See, for example, Connor
and Korajczyk (1986), Stock and Watson (2002), and Bai (2003) who all impose this natural
rate assumption. This paper considers the case in which the Chamberlain and Rothschild
assumptions hold, but some eigenvalues grow at a slower rate, ntf2 , 0 < <¢%.@NV€ show

that the associated factors can be interpreted as systematic, but less important, sources of



return variation. Following the terminology of Chudik, Pesaran, and Tosetti (2011), we call
these semi-strong factors. Semi-strong factors are stronger than weak factors which have
bounded eigenvalues, but weaker than natural rate factors whose eigenvalues grow at the
rate n.!

We work with the case in which factors are observed directly, so the eigenvalue condition
is more simply stated as a condition on the sum of squared betas for a given factor. A natural
rate factor has sum of squared betas going to infinity at rate nywhereas a semi-strong factor
has sum of squared betas going to infinity at rate n'=2? ywith 0[k <@%.2WVe estimate
the factor betas with simple time series ordinary least squares of individual returns data
regressed on the set of factors. We show that by using the large cross-section of time-series
regression-estimated factor betas one can measure cross-sectional features such as the average
factor beta and the mean-squared factor beta. We derive the asymptotic distributions of the
cross-sectional mean and mean-square of the time-series estimated factor betas, and propose
test statistics for distinguishing them from zero and for distinguishing natural rate from
semi-strong factors.

Uematsu and Yamagata (2019) provide a procedure for estimating latent semi-strong
factor models. They impose a sparsity condition, requiring that only a small proportion of
the semi-strong factor betas are substantially different from zero. We treat the much simpler

case in which the factors are directly observed, so that only the betas must be estimated.

INote that the term "grow" is used here in terms of the asymptotic approximation for large n; in actual
data, n is fixed. A difference in "rate of growth" means in practice that the approximation for natural rate

factors has different statistical properties than the approximation for semi-strong factors.



We do not impose a sparsity condition on the semi-strong factor betas; we allow the betas
to be diffusely spread across a large proportion of the assets.

Ross’s Arbitrage Pricing Theory has two basic steps: step one is identification of the
pervasive factors in random returns; step two is estimating the risk premium (if any) in asset
expected returns associated with each factor. In this paper we only address the former; we
do not consider the vexing problem of identifying risk premia associated with the factors. See
Lo and MacKinlay (1990), Kan and Zhang (1999), Harvey, Liu and Zhu (2015) for discussion
and overview on the vast array of potential factor risk premia which have been examined.

An important issue with semi-strong factors is that standard approaches to estimating
latent factors, such as factor analysis or asymptotic principal components, have difficulty
recovering semi-strong factors. This implies that standard latent factor approaches may
fail to identify semi-strong factors (we demonstrate this empirically below). Therefore, risk
models for portfolios with particular tilts toward those semi-strong factors may underestimate
the risk of the portfolios.

It is certainly possible that "smart beta" or factor investing might lead to portfolios tilted
toward a semi-strong factor without a PCA-based risk analysis detecting the exposure. In
unreported results, we find that the returns on a Quality minus Junk (QMJ) smart beta
portfolio (Asness, Frazzini, and Pedersen (2019)) has significant exposure to the gold factor
we use in our analysis.

As a concrete example of an application of our framework, consider the sensitivity of

individual US equities to fluctuations in the South Korean Won exchange rate against an



international currency basket. The many US companies who import Korean goods may
benefit from a relative decline in the Korean Won exchange rate, whereas many others, such
as domestic manufacturers exporting to Korea or competing against Korean imports, may
benefit somewhat from a relative increase. Economists may be interested in measuring the
cross-sectional features of assets’ exposures to this small common factor, even it is only a
negligible source of risk in most well-diversified portfolios. For example, we can examine
whether the aggregate features of the cross-section of individual betas of US firms to Korean
Won movements has changed over time. We may wish to measure the magnitude of the
(relatively small) influence of Korean exchange rate changes on US equities, and examine
whether the changing nature of the trade relationship between the US and Korea is reflected
in the changing magnitude of this influence over subperiods. Portfolio analysts may be
interested in measuring or hedging Korean Won risk if for some reason they are holding a
portfolio which included a non-negligible position in this risk.

Section 2 presents the statistical framework for our analysis. We use a random coefficients
specification to model both natural rate and semi-strong factors within a unified approximate
factor model framework. Section 3 presents theoretical results on the estimation of factor
betas and drawing inferences about their cross-sectional distribution (average and mean-
square). We give conditions such that the factor betas’ cross-sectional moments can be
consistently estimated from a large-n cross-section of individual fixed-Titime-series regression
coefficient estimates. We also devise a statistical test for distinguishing natural rate factors

from semi-strong factors.



We apply the methodology to individual US equity returns using the Fama-French mar-
ket, size and value indices and changes in foreign exchange rates and commodity prices as
factors. We use daily data over six five-year subperiods, 1989-2018. The Fama-French in-
dices are natural rate factors. Oil and gold price changes are statistically significant factors,
but the evidence is mixed as to whether they are better classified as natural rate or semi-
strong. Foreign exchange factors are significant only in the more recent subperiods and are
only semi-strong factors. Lumber is not significant as a natural rate or semi-strong factor;
it is at best a weak factor with average squared beta indistinguishable from zero. Section 5

concludes.

2 An approximate factor model with semi-strong fac-

tors

We begin by assuming a factor model of returns, and then differentiate between natural-rate
and semi-strong factors within the model. We consider a sequence of return models with
increasing cross-sectional dimension. For each n, let r;-denote the n—vector of asset returns.

We assume that for each niythe vector of returns obeys the following model:

th:af—i_Bftf’_gw t:17T7’l/} (1)

where atis an n—vector of constants, Biis a n X k—matrix of factor betas, f;is a k—vector of

random factors, and eg/is an n—vector of idiosyncratic returns. We assume that f; and epare



mutually independent and each is distributed i.i.d. through time. All elements of f;rand e}
are assumed to have zero means without loss of generality, due to the inclusion of the vector
of constants, a. Let , = E[(r—a)(r—a)],¢ p= E[ff']and .= E[ec’] denote covariance
matrices; we assume that all three are nonsingular. All the elements in (1) implicitly include
an nysuperscript, since we are working with asymptotic properties not fixed-nyproperties,
but we leave this implicit throughout. Of course, when we apply the econometric model to
actual data, the number of assets nywill be a constant; the increasing—niframework is just
an asymptotic model to derive meaningful approximations for large n.

We impose the standard Chamberlain-Rothschild assumptions that the largest k eigenval-
ues of the return covariance matrix increase unboundedly with n and the remaining eigenval-
ues are bounded. Let || - ||[denote the matrix norm over square matrices ||A|| = sup |x,(xf;|);

recall that in the case of a symmetric positive semidefinite matrix this equals the largest

eigenvalue. Since egpcaptures the idiosyncratic risks, we impose:

||Ce]] < ¢ for all n.y (2)

We also impose the Chamberlain-Rothschild unboundedness assumption on the first kwigen-
values, not restricting their rate of increase. Note that ,~=[By B+ ..¢Since . -has
bounded eigenvalues by assumption above, and the eigenvalues of j are fixed, kyanbounded
eigenvalues for ,-is identical to assuming that all kweigenvalues of the inner product matrix

of the betas, (B'B),iincrease without bound:

lim((min eigval[B'B]) = 0.1 (3)

n—ooll



Note that (3) implies that all the eigenvalues of B’Biare strictly positive except possibly
for n < mifor some finite 7.¢/All eigenvalues strictly positive means that B’Biis nonsingular.

Therefore, except possibly on a finite subset of n < 7,9(3) can be written equivalently as:
lim ||(B'B) || = 0,4 (4)

since the eigenvalues of a symmetric positive definite matrix are the reciprocals of the eigen-
values of its inverse.

We keep the two assumptions (2) and (3) throughout. We note however that these two
assumptions alone are not sufficient for empirical work. Empirical implementations typically
strengthen (3) slightly, in particular by requiring that all kylominant eigenvalues increase at

the "natural" rate n. That is, most empirical analysts replace (3) with:

1
limD—@Znin eigval[B'B] > 0,1 (5)

n—oolln,

or equivalently (ignoring some technically uninteresting cases?):

1
lim[—(B'B) = M s/a nonsingular matrix. (6)

n—ool M
which differs from (4) in the speed at which the eigenvalues must grow with n; (6) requires
that the eigenvalues of B’Bygo to infinity at rate nywhereas (4) only requires that they go
to infinity, at any rate.

We call (6) the "natural" rate of increase since many plausible specifications of the series

of factor beta matrices will result in (6). Condition (6) will also hold with probability one

2We must exclude the case in which the beta matrix grows explosively with n, and also exclude cases in
which the k x k—matrix series %B’ B only converges on a subsequence or on multiple subsequences. These

cases are automatically excluded with probability one in our random coefficients framework described later.



if the coefficients in Biare chosen randomly (over it>= 1,n) from an i.i.d. process with
nonsingular covariance matrix, by the strong law of large numbers (shown later).

By using a less straightforward rule for choosing the sequence of beta matrices, the natural
rate can be replaced with a slower, semi-strong, rate of increase; this is easily done by scaling
fixed factor betas so that the individual betas shrink with n.y50, as a simple example with
k= 1eonsider the sequence of n—vectors B”r:% X L,,ywhere 1,is an n—vector of ones.1)
This fulfils the Chamberlain-Rothschild condition (4), since B B"'= (n-ng?/?) = n'/3 — oo
but not the natural rate condition (6), since 1 B"”B" = (n™'-n-n=2/%) =n=2/* — 0. Stated
simplistically and intuitively, semi-strong factors have sum of squared factor betas going
to infinity but average squared factor beta going to zero with n.YA more precise definition
appears later.

Our empirical implementation does not require the natural rate assumption; it allows
some of the dominant kveigenvalues to have a slower, semi-strong rate of increase. To give
structure to the problem, we specify the factor exposure matrix Buwith a random coefficients

model as described in the next subsection.

2.1 Generating factor betas with a random coefficients model

In our factor model, the beta matrix and factors divide into two subsets with k"and k"

elements, depending upon the average cross-sectional magnitude of the factor betas:

Bf@@: Bnrfnr\ \_I_ BSSfSS (7)



where the superscript nriydenotes "natural rate" and ssydenotes "semi-strong." The beta
matrix Bis assumed to be generated from the first nyrandom draws of an i.i.d. sequence
of realizations of a k—vector random variable bywith finite mean vector and nonsingular
covariance matrix:

Eb] = pu; CE[(b — 1) (b — p1y)'] =11 4310

note that the block-diagonal submatrices 7""and ;% are also nonsingular given that

is nonsingular. We also assume that all kycomponents of the random vector bihave finite
fourth moments. We use the sequence of random draws of b to create the factor beta matrix,
scaling appropriately to differentiate between natural-rate and semi-strong factors.

Let B*“denote the n x k—matrix of the first nydraws of the vector stochastic process
b. We call B*“the beta generating matrix. Partition the beta generating matrix into the
first £"" and remaining £**' columns; B* =[[B"*|B***|. The first k™" factors are natural rate

factors; their betas are simply the random draws of the first £""“elements of b :[]
Bn'r:: BnT*;j

The remaining k*"=[ki- k™" factors are semi-strong. We fix a rate exponent  >wf)land
assume that the factors betas are of the order n~; they are generated by scaled versions of

the generating matrix:

BssD: (TL_D)BSS*.;Lb (8)

We impose the condition <¢%.¢As we will discuss later, this condition is required in
order for the sum of squared factor betas to increase with n. If we were to allow >1/% we

10



would generate "semi-weak" factors, using the terminology of Chudik et al. (2011). It is
possible (although cumbersome) to allow to vary across the semi-strong factors; we do not
pursue that here.

Since the vector stochastic process biis i.i.d. and has finite fourth moments, it follows
from the strong law of large numbers (see White (1984, Proposition 2.11)) that the first two

cross-sectional moments of Byconverge almost surely, so that:

1
limD(EiB”r'Bm’ =" as., 9)
n—ooll n -
and:
. 10 ss''>ss . n2 11 ssx' " Dss* 38
Mim (Si=57) B B =(lim (257)(3)B™ B™ =0 iias., (10)
and the cross-product matrix:
10 P 1 /
lim (Bl—)BSs B""=[lim (giﬂ)(ElEBss* B" =[] Zs’m",m S.. (11)
n—oo N+ n—00 m/} n B

The strong law of large numbers also applies to the first moment vectors (appropriately

scaled):
lim (é B =" /a.s (12)
ool ’I’L&' bl Sey
and:
. 1 sslqinll_ 71 nw 1 ssxlqnll_ 88
Jirgo&%‘w—)B 1 —TLILI&&%—)(% B¥ 1 =17, a.s.. (13)

From here on in the paper, we condition on a particular sequence of random realizations

of Byand so treat Buyfor estimation purposes as a nonrandom matrix. We assume that the

11



particular matrix sequence obeys the almost-sure limit conditions (9),(10), (11), (12) and

(13).

2.2 Failure of Standard Factor Estimation Methods in Recovering
Semi-Strong Factors

Factor analysis and principal components-based methods are well-suited to recover natural
rate factors, but have difficulties estimating semi-strong and weak factors (see Chudik, Pe-
saran, Tosetti (2011), Onatski (2012), and Pesaran (2015)). We demonstrate this issue by
simulating a two-factor economy in which the first factors is a natural rate factor and the
second factor is a semi-strong factor. We then use the asymptotic principal components esti-
mator of Connor and Korajczyk (1986) to estimate the factors on the simulated data where
we know the true factors. We then regress the estimated factors on the true factors. For
natural rate factors, the estimated factors will converge to the true factors, up to the stan-
dard rotational indeterminacy of latent factor estimates. Thus the R? values will approach
1.0 as the cross-sectional sample increases. This does not happen for semi-strong factors.
We simulate daily factor realizations for 21,000 assets over a five-year period where each
factor has an annual standard deviation of 20%. B*'is an n x 2 matrix of factor loadings that
are drawn from an i.i.d. Normal distribution with mean 1 and standard deviation of 0.3. For

the first factor, B""is equal to the first column of B*.' For the second factor, the i*"element

thl] 5

of B**"is equal to the second i"*"element of column B* divided by n%%°. For increasing n,

the average squared beta for the semi-strong second factor shrinks at the rate n®! while the

12



sum of squared beta grows at rate n®Y. Therefore, the factor is semi-strong, but not natural
rate. The non-factor, idiosyncratic, returns are drawn from a normal distribution with zero
mean and annual standard deviation of 35%.

Let fj’tgdenote the asymptotic principal components estimator of factor jye(1,2)for
period tyand f; denote the true simulated 2 x 1[factor vector for time t. We estimate the

regression

J/C;',tu: ajirt bj frt wjen (14)
and report the results in Table 1. We show results for three cross-sectional sample sizes:
3,000 and 6,000 assets (which bracket our sample size in the empirical work below) as well
as 21,000 assets. We perform 10,000 iteration of the simulation. The first column of Table 1
shows the number of assets used in estimating f]t The second column lists the dependent
variable, either j/ituor j/;7t. The third and fourth columns list the percentage of the 10,000
simulations for which the ¢-statistics on b;; and b;» are greater than 1.96. The last column
is the average, across the simulations, R?. The table shows that fljt—is estimated very
precisely. One hundred percent of its coefficients, b, and b, o, are statistically significant,
for all cross-sectional sample sizes. The coefficient of the second true factor is significant due
to the rotational indeterminacy of principal components-based estimators of factor scores.
The average R? values are nearly 1.0, meaning that ﬁ’tmis nearly perfectly correlated with
a linear combination of the two factors. The table also shows that ]?Q,mis estimated very

imprecisely. While a very large number of its coefficients on the second true factor, b; 2,

13



are statistically significant, with the percentage growing in the cross-sectional sample size,
the average R? values are all below 1%. Thus, fgﬂmhas extremely low correlation with the
semi-strong factor. Increasing the cross-sectional sample size does not much improve the
precision of .]?2,t~ These results argue for a different approach when attempting to identify

semi-strong factors.

3 Estimation of betas and their cross-sectional average

and mean-square

We assume that the factors are observed exactly, so that the statistical problem involves
estimating the factor betas, and features of their cross-sectional distribution (in particular,
their average and mean-square). Since fiand eyare assumed mutually independent with ¢
conditionally mean zero, (1) gives a seemingly unrelated regression model (Zellner (1962))

without cross-equation restrictions:
riur= aitt Bifirt e i = Lyt =1, T (15)

We condition upon f; ¢t = 1, Th/and so treat it for the purposes of parameter estimation as a
nonrandom time series of fixed length T'. Since there are no cross-equation restrictions, the
regression system (15) is identical to nieparate time-series ordinary least squares problems.
Let Fydenote the Tix (k 4+ 1)—matrix of the explanatory variables in (15), where the first

column is a T'—vector of ones, and column ji+ 1[is the time-series of factor realizations for

14



factor j; the regression estimates for any particular iare:
(@, B;} = (F'F) " *F'Ryy)

where R;-is the T'—vector of asset returns. By standard regression theory for any jywe can

describe éijgas the true value plus a linear combination of the residuals, in particular:™]
T
Bij= Bz‘j]"‘@mjtﬁwﬂ/} (16)
t=1

where mj; = [(F'F)"'F'];11:.¢The ordinary least squares estimates are unbiased, with esti-
mation variance:
E((Bij— Byy)*] = [(F'F) j1,5+102:9 (17)

We consider the estimation-error corrected squared regression coefficient:
(Bij)* = [(F"F) 141020 (18)

T
~2 1 ~2 . . . . 2 . ~2
where o, =lF——> 1€it777bWhICh is an unbiased estimate of oZ. The estimate o7, can be
t—=

written as a quadratic function of eg), t = 1,7, in particular:

T T
asJﬂ = Ezpt'r@#'gw

t=1r=1
where py= ()l F(F'F) ' F'}; ;.

The estimation-error-adjusted squared beta (18) is a key input to our mean-squared beta
estimate in the next subsection. Since its two components, Eijgand b\gD are (respectively)
linear and quadratic functions of the innovations eg), ty= 1, T 1its estimation variance is a
linear combination of the first four moments and squared second moment of /T he weights

in this linear combination are products and cross-products of mj;-and py, i, 7= 1,T.9
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Define my;, ms;, maj-as the second, third and fourth power sums of mj;, t¢= 1,7, and

Magjas the sum of cross-products:
T
Toses =[] 2
Mmoo = Mjin
t=1
T
mg;q =L E m3
3500 Gt
t=1
T
My =L mA
Mg = jtO
t=1

T
— E :E : 2 2
Magjn =0 ijmjt.w

t=1 r£t0]

Similarly, define the following product sums and cross-product sums of p;,, t = 1, T; 7= 1, T2
T
py =l prm
t=1

T
p XY =03 (2pF 4 puper)C

t=1 T#tl]

T
pmy =[] Zpttmjtm
t=1

T
— 2 : 2
pmy =0 pttmjtu
t=1

T
p X mp =L ZZ(thijtu‘l‘ pttm%)

t=1 Tt

By straightforward algebra (see Appendix 1 for detailed steps) the estimation variance
of §2 — [(F’F)_l}jﬂ,jH&?; is:

2501

VCLT‘[(BU)Q — mgj”afj = clijagij—i— CgijE[€?] -+ C3jE[€?] + C4j<O'§D)2,77Z) (19)
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where:

— 2
Crijou = 4m2jBijD
CQZ‘J'D = 4Bijm3jg— 4m2jBij(Wj>ﬂ

ez =Myt (m21)21_72 — 279 (pMy; ) [

Cajr) = 3Miggjrt (m2j)2(p X p) — 2mag;(p x m)L]

Readers will be pleased to know (or at least relieved) that we do not estimate this
complicated variance expression directly, but instead invoke bootstrap methods (see below)

to obtain estimated standard errors.

3.1 Statistical identification of the cross-sectional average and mean-
square of semi-strong factor betas

In the case of a semi-strong factor, estimates of the individual betas have limited information

since B = n‘JB;}*Dimplies that the magnitude of most betas is too small to detect reliably.

However, as we now show, it is possible to detect the aggregate influence of semi-strong
factors by averaging the cross-section of individual time-series regression estimates and their
squares. Define p; and x;, ji= 1,k, as the cross-sectional averages and average sums of

squares of the factor betas:

nl]

1
pin =01 ﬁ§:Bm’;

1=1
nl]

1 :
X =053 B Lk

1=1
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We use the cross-section of estimated betas to construct simple estimation-error-adjusted

estimates:

1Rl ~
i = 23 Bl (20)

qu = _Z[EUD mQJO- a 77Z} (21)

We assume that e} iy= 1, niis independent across 7,ywith bounded fourth moments for

all 7.4It is possible in theory to extend our results to the case in which the idiosyncratic

returns are weakly cross-sectionally correlated, but that would substantially complicate the

derivation of the estimation variance and we do not pursue that extension here. Let mi

denote any fixed, finite T'—vector (constant across i = 1,n) and let €g4denote a T'—vector of

independent realization of egiFor a given jyelll,2,...k][define the random series ; =[M'gg

and 0; = 2B;;m'gip+ (m'gg)*.yWe assume that for any fixed mithe Lindeberg condition (see

White (1984, pp 111)) holds for both , and 6;.48ince the estimation error in R-j—has the

form m/gy) this guarantees that the central limit theorem applies to cross-sectional averages

of beta estimates and squared beta estimates. Since the regression estimates are independent

across 1, the variance of the cross-sectional average is %Dtimes the average of the variances.

Using (17) and (19):

nll
1
~ —0= 2
nVarlji;] = nzélm%ai

nll
. 1
TLVCLT[XJ-] =[] Eiclijagﬁ—l— CQijE[E% + ngE[Em + C4j(0—§i®2'w (22)

1=1

We assume that the cross-sectional averages converge for large nyand let ¢yand ;- denote

18



these convergent limits:

nll

CIR%,
o =" i~ 3%, (23)
=1
=[11 1~ 2 Ele3 E 232 24
jo =U M= crjoZ + ey Ble)] + e Elef} + caj(02)4) (24)
1=1

It is straightforward to derive the convergence conditions (23) and (24) from more funda-
mental assumptions, for example by placing bounds on the first four moments of egfor all
t,9and restricting the co-relations between B;;jand these moments for all 7.¢/I'his additional
complexity would add little value to the analysis so we simply directly assume that these
limits exist.

Since the test statistics are asymptotically normal we have:

dlim n#(fi; — ;) ~ N (0,7 (25)
and:
dUmmE(R;— x;) ~ N0 ), ji= 1 kg (26)

Note that for semi-strong factors j > k" we have lim[pu,=Climn~" pi = 0land lim[]
n—ooll J n—ool] J n—ool]

Xj =Ulim n~? x%'= 0. Aslong as <3 then the test statistic (25) has rejection power

n—ooLl
against HO: ,u;H: OCapproaching one for ny— ocolwhenever ,u}ﬁ% 0. Test statistic (26)
requires the stronger condition <z,§£ for unit asymptotic power against HO: X;f‘:E 0.
The population value of mean-squared beta is always positive if the true mean beta is
nonzero, whereas it is possible to have a positive mean-squared beta when the true mean

beta is exactly zero. This might give the false impression that the mean-squared beta test

19



"dominates" the mean beta test, but the relationship between the statistical tests for nonzero
mean-squared beta and nonzero mean beta is actually ambiguous. The estimation error in
the test of mean-square beta can be much higher than in the test of mean beta, so either test
can reject when the other does not. In the case of semi-strong factors, in terms of asymptotic
power, the test for a nonzero mean beta only requires <@% whereas the test for positive
mean-squared beta requires <1p31. In this sense, the mean beta test is asymptotically

stronger than the mean-squared beta test.

3.2 Bootstrap estimation of the mean-square beta estimation vari-
ance

We have derived an explicit formula for the variances of the mean-squared beta estimates,

j /nje= 1, kagn (22), but the formula involves the cross-sectional average of a complicated
linear combination of higher moments of asset-specific returns. A naive approach would be
to proxy each term in (22) with time-series estimates from each asset in the sample, and
then take cross-sectional averages. Instead we use a bootstrap methodology, which obviates
the need to estimate the individual components of (22); we discuss our motivation and
justification for this bootstrapped estimator in more detail in Appendix 2. The procedure
is as follows. Let Fidenote the kyx Tiymatrix of factor realizations. First, we randomly
resample with replacement the T'—vector of dates ty= 1, Ti/producing a random mapping

t*(t); te= 1, T./We then replace the matrix of returns Reyand factors Fiwith the resampled

20



alternatives R*"and F*"based on this random selection of dates:

Rjt:D =0 Ripery;li = 1,5t = 1, T4

FtD =0 Fjpey; = 1, k30 = 1, T

Using R*“and F*“in place of Ryand Fiwe re-estimate B and X;Yand repeat this random
bootstrap a large number of times, hi= 1, m.iFor each jithe variances nAjDare found from

the collection of mibootstrapped estimates of :

3.3 Distinguishing semi-strong from natural-rate factors

We now consider the problem of empirically distinguishing semi-strong factors from natural
rate factors. Either type of factor has sum of squared betas going to infinity with n, but a
natural rate factor has mean-squared beta converging to a strictly positive value whereas a
semi-strong factor has mean-squared beta going to zero. For large n, the semi-strong factors
are statistically significant (in terms of their mean squared betas being testably greater
than zero as the estimation variance shrinks) but also inconsequential (in terms of their
contribution to average explanatory power going to zero). In the subsections above we have
developed an estimation method which allows us to identify both natural-rate and semi-
strong factors. Now in this subsection we attempt to find methods to distinguish between
the two types. First we propose the use of marginal R? of each factor in our model as a
descriptive statistic; semi-strong factors will have "small" values for marginal R-square. Then
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we present a formal test statistic using a penalized version of our adjusted mean-squared

beta estimate.

3.3.1 DMarginal explanatory power of each factor

The seemingly unrelated regression system (15) can be viewed as a single stacked regres-
sion model with niintercepts (also called asset fixed effects) and nkyfactor betas, with het-
eroskedasticity across the niassets. Define the adjusted R? for this stacked regression model

as one minus unexplained variance over total variance:

-2 (Ty-1)00
e %m%%?i ?; e

where 7;-is the time-series sample mean return of asset i.yNext, we re-estimate the linear
regression model with all factors except factor j,sand re-calculate the stacked regression E%ﬁ

using the newly estimated residuals 25

R —1- <%%§<%%;Zw/(n%ﬁ2<r )

The difference between R?ﬂand R?j) gives our marginal R? statistic.

=2 2

ARp= Ri)— Ryl (27)

The intuition behind (27) is that when factor jiis only semi-strong, the marginal R?

should be small for large n,wince hleg = 0. To understand the intuition, define

0% = %Z frand ol 1m§ Z (1 —7;)%. Consider the population equivalents of the two R%s
t=1i=1

, that is, R? =1 — %g‘dlazi)/az and ;) =1 — (%{Eam + B}0%;)/ 07 yTaking the difference
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between these two population R-squareds gives:[]

2 n

e
AR =THENB2) g (28)

2
o n
r i=1

hence the population marginal R? is a scaled version of mean-squared beta. The estimated
marginal R? (27) is not a formal test statistic since we do not give its sample distribution,

but it is a useful descriptive statistic based on (28).

3.3.2 A penalized test statistic for mean-squared beta

We now construct a test statistic for empirically distinguishing natural-rate factors from
semi-strong factors. Either type of factor has sum of squared betas going to infinity with
n, but a natural rate factor has mean-squared beta converging to a strictly positive value

2 Consider

whereas a semi-strong factor has mean-squared beta shrinking to zero at rate n~

a nonrandom sequence a, =[a'n"2°"'with a >0,0k § <) . We allow the multiplicative

constant a{/to vary across factors j, setting ad)= (Og%—) /k.4[This choice of a’"is motivated by
fii

the marginal R? shown above, see (28).

The sequence a,,-distinguishes natural rate from semi-strong factors, in the sense that:

lim(x;— a,) = X;;> 0 for all jy< k™ ywhereas

n—ool]

limsup (x;— a,) <00 for all j > k"¢

n—ool]

Once we have chosen the parameters of the sequence a,,, we compute the statistic:

-

e (20)

Sl
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and note that for a natural rate factor jy< k™ the statistic (29) has unit asymptotic power to
reject E[z;] = 0,ywhereas it has zero asymptotic power to reject E[z;] = 0 for a semi-strong
factor j > k™ .4/T'he test statistic establishes a penalized benchmark value for the sum of
squared betas as a function of n; if the estimated sum of squared betas is significantly above

this benchmark, the factor is identified as a natural-rate factor.

4 Application to U.S. equity returns using Fama-French,

currency, and commodity factors

In this section we apply the methodology to analyze the currency and commodity exposures

of US equity returns.

4.1 Data and Winsorization

We consider percentage changes in commodity prices and foreign exchange rates (against a
currency basket) as possible semi-strong factors. We use daily data on US equity returns
over six periods, 1989-1993, 1994-1998, 1999-2003, 2004-2008, 2009-2013, and 2014-2018.
In each subperiod we restrict the sample to equities with full return records over the 5-
year subperiod. To moderate the influence of extreme return observations (which are often
due to small, isolated trades of illiquid securities) we Winsorize the returns data at 99%;
setting all observations in the top 0.5% and bottom 0.5% within each subperiod equal to the

relevant boundary value. Table 2 shows the cross-sectional average of the first four time-
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series moments of returns in each of the subperiods, both before and after Winsorization. We
also show the maximum and minimum returns in each subperiod; for the after-Winsorization
case, these equal the Winsorization boundary values.

For currency factors, we use the U.S. Dollar, British Pound, Japanese Yen, and Korean
Won, each measured against the global currency basket maintained by the International
Monetary Fund (the Special Drawing Rights Index of the IMF). For commodities, we use
the prices of oil, gold, aluminum, and forest products. The currency and commodity factors
are obtained from Bloomberg. The daily factors are the percentage daily price changes.
The codes in Bloomberg are: U.S. Dollar (XDRUSD), British Pound (XDRUSD divided by
GBPUSD), Japanese Yen (USDJPY times XDRUSD), and Korean Won (USDKRW times
XDRUSD), Brent crude futures traded on ICE (CO1), gold (XAU), aluminum (LMAHDY),
random length lumber futures on the CME (LB1). In addition to the currency and com-
modity factors, we include the Fama and French (1993) market, size and value factors from
the Kenneth French data library.> Table 3 shows the first four time-series moments of the

eleven factors for each of the six subperiods.

4.2 Estimation of mean and mean-square factor betas

Since the seemingly unrelated regression model has the same independent variables for all
assets and no cross-equation restrictions, for the purpose of finding the cross-sectional av-

erages of the coefficients (20), the set of niregressions "collapses" into a single time-series

3 Available at: http://mba.tuck.dartmouth.edu/pages/faculty /ken.french/data_library.html.
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regression with an equally-weighted average of returns as the dependent variable. The re-
sults are shown in Table 4. The average asset betas for all three Fama-French factors are
statistically significant in all subperiods (with t-statistics in excess of 45). The average asset
betas relative to the currencies are significant in the post-2004 period, with the exception
of the Japanese Yen. Additionally, the average betas relative to the Korean Won are sig-
nificant in the second and third subperiods. The average betas for the Japanese Yen are
only significant in the first subperiod, 1989-1993. The average betas for oil and aluminum
are significant in all subperiods (aluminum) except one (oil). The average betas for lumber
are generally insignificant. Table 4 clearly shows that the Fama-French factors have a much
stronger average relation to individual equity returns than the other factors.

To estimate mean-squared betas, we perform individual factor regressions for each of the
securities in each subsample, and then compute the cross-sectional adjusted-mean-squared
estimated betas shown in Table 5. To estimate the variances of the estimated mean-squared
betas we repeat this full estimation process fifty thousand times with bootstrapped returns
and compute the fifty-thousand-sample bootstrap variances for each mean-squared beta. In
the latter three subperiods all of the factors except lumber have estimated mean-squared beta
significantly greater than zero. Oil and gold are also significant in the other three, earlier,
subperiods. The currency factors are mostly insignificant in these earlier three subperiods;

aluminum also has mixed results in these earlier subperiods.
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4.3 Distinguishing natural-rate from semi-strong factors

Table 6 shows the marginal R? found by dropping one factor ji= 1, kyfrom the stacked
regression model. Other than the three Fama-French factors, oil and gold show some non-
negligible explanatory power by this measure. The stacked regression R? shows evidence of
a secular increase from the earlier subperiods to the later ones.

Next we implement our test statistic (29) for distinguishing natural-rate from semi-strong
factors. We set (W:E% so that n~2% gives a reasonably small, but not excessively small,
benchmark for mean-squared beta;for ky=[11land ny=[4250,ywhich is roughly the cross-
sectional size in our subperiods, n=% /ki= 4250~(4 /11 = 0.0032. Interpreted using (28), a
factor must have a marginal R? above 0.3% to qualify as a natural-rate factor.

Table 7 shows the results of the statistical test for whether each factor has mean-square

o

beta greater than (%)n*"1 /11. The results in Table 7 provide strong support for the Fama-
French factors being natural rate factors. The penalized mean-squared betas of the market
factor MKTRF and size factor SMB are significantly positive in all subperiods; the value
factor HML is significantly positive in four of the six subperiods. Oil and gold are significantly
positive in two and three subperiods, respectively, thus showing mixed results as to whether
they are best classified as natural-rate or semi-strong factors. We cannot reject the hypothesis
that the remaining factors other than lumber are only semi-strong rather than natural rate
factors (recall from Table 5 that lumber does not even qualify as a semi-strong factor).

The results in Tables 4, 5, and 7 suggest that the Fama-French factors are natural rate

factors and that lumber is not a statistically identifiable semi-strong factor. Oil and gold
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are both significant factors, but give some conflicting results as to whether they should be
considered natural rate or semi-strong factors. The remaining factors seem to be semi-strong
but not natural-rate.

Lastly, to give an alternative perspective on the data, we use the Akaike Information
Criterion (AIC) to choose factors with positive explanatory power by this criterion. To do
this we must impose an assumption of normality on the asset-specific residuals in the stacked
regression model (15), while still allowing heteroskedasticity across assets. We continue to
assume independence of the asset specific returns across assets and across time. Under
this normality assumption the ordinary least squares estimates are maximum likelihood, as
is obvious. Including the unknown asset-specific return variances, the stacked regression

model has n(k + 2) parameters and nTyobservations, so the AIC criterion is:

~

AICY=2n(k +2) — 2log(L)C (30)
where L is the log likelihood, which in this stacked linear regression model is

~ nTy TR~ oy n
L=—og(2 —[—l—§ 1 ) L
5 log(2m) — 15 2 0g(0:;) — 5.4

Akaike’s approach is different from our earlier approach, in that it treats different specifica-
tions (in our case, models with more or fewer factors) as competing approximate models of
the data, rather than as nested models that are the true data generating process. Although
it does not fit exactly into our modeling framework we believe it gives a useful alternative
perspective on the data. (See also Bai and Ng (2002) who use an AIC-type metric to choose

natural-rate factors in a statistical factor model.) Table 8 shows the results from stepwise
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regression based on (30). The three Fama-French factors are always included in the final
model. Gold is included in the final model in all six subperiods, and oil in five of the six.
The results are mixed for aluminum and the four foreign exchange factors; they are dropped
in the earlier subperiods, but kept in the later ones. Lumber is the only factor to be dropped

in all six subperiods.

4.4 An empirical comparison of statistically-estimated and pre-
specified factors

As discussed in subsection 2.2 above, conventional statistical methodologies such as asymp-
totic principal components are not reliable for identifying semi-strong factors. Nonethe-
less, as an exploratory exercise, we examine the empirical relationship between statistically-
estimated factors and our pre-specified factors. For each subsample we compute the first
twenty eigenvectors of the cross-product matrix of excess returns. In Table 9 panel A we
show the adjusted R2s from time-series regression of these twenty eigenvectors on each of the
eleven pre-specified factors (we drop lumber from the list of pre-specified factors, based on its
poor performance above). In Table 9 panels B and C we do the reverse, regressing the eleven
pre-specified factors on each of the twenty eigenvectors. There are two interesting impres-
sionistic findings from this exploratory exercise. One, both for the larger eigenvectors and
for the more important pre-specified factors (Fama-French factors, oil, gold) there is a strong
secular increase in average R%s in more recent subperiods relative to earlier ones. Two, nei-

ther the smaller eigenvectors nor the less-important pre-specified factors are well-explained
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by these regressions. This reinforces the message found in the simulation exercise in sub-
section 2.2 above: conventional statistical methods do not seem able to identify semi-strong

factors in the panel data set of returns.

5 Conclusions

This paper develops and implements a new econometric methodology for estimating the
cross-sectional influence of "small" factors (that is, factors with only modest explanatory
power) in a large cross-section of asset returns. We build upon the approximate factor
modeling framework of Chamberlain and Rothschild (1983) in which pervasive factors are
identified by the unbounded growth of their sum of squared factor betas as the number
of assets nygrows large. Following Chudik et al. (2011), we differentiate between natural-
rate factors, whose sum of squared betas grow at rate n; semi-strong factors, whose sum of
squared betas grow to infinity, but at a slower rate; and weak factors, whose sum of squared
betas is bounded. We provide a unified framework by embedding a factor model with both
natural-rate and semi-strong factors into a random coefficients framework. We develop an
estimation methodology based on the large—nistatistical distributions of the cross-sectional
mean and mean-square of time-series regression-estimated factor betas. In asymptotically
large cross-sections, in order to be statistically identified the mean or mean-squared beta
must have a magnitude declining at a slower rate than the standard deviation of estimation,
which declines at rate square-root-n.y

We apply the methodology to the daily returns of U.S. equity returns using Fama and
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French’s market, size, and value factors, four currency factors (US dollar, British pound,
Japanese Yen, and Korean Won) and four commodity factors (oil, gold, aluminum and
lumber). The three Fama-French factors are clearly natural-rate factors. Oil and gold are
both significant factors but give some conflicting results as to whether they are natural-rate
or semi-strong factors. Aluminum and the four currency factors are semi-strong factors in
the more recent subperiods, but not natural-rate factors. Lumber is at best a weak factor,

that is, neither a natural-rate nor a semi-strong factor.
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Appendix 1: The Sample Variance of the Squared Regression Coefficient
This appendix derives the sample variance of the adjusted squared ordinary least squares
regression coefficient within the context of our model. Recall the expression (16) for the

time-series estimated regression coefficient:
T
Bij= Bz‘j‘i*gmjtﬁl% (A1)
t=1

and the adjusted square of this estimate (B;;)2— [(F'F)™j41,j4102, Note that [(F'F) ™41 j41
Majo(to see this, write (F'F)™' = (F'F)"'F'F(F'F)~" and note that ma;-is the jit 17 di-
agonal entry). It is easy to show that E[B 2 g0, 2] = B?.4Now we derive the variance of

this estimator, that is:
Var((Byj)? — ;62 ] = Var((Bij)?] + (ig;)?Var[62 ] — 27p;Cov|(Bi)%, 62]40  (A2)

We compute each of the three components on the right-hand side of (A2) separately, begin-

ning with the first. Note that:
Var((By)*] = B[(By)* — 0%, — B0 (A3)

Expressing (B\ij)Q using (A1) :
(By)? = B + 2B@]£mﬂ@w @Zmﬁmﬁm@@w " (A4)

t=11=1

Inserting (A4) into the right-hand side of (A3) gives:

E(((Bij)? — msj0?, — BE)Y) = 2&@%%@2%%%% Ma0%)?) 0 (A5)

t=1r1=1
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Expanding out the square on the right-hand side of (A5) gives three square terms and three

cross terms:

QBljgm]tS%Fisztm]TE%% m?] Q‘D ]

t=171=1

= 4B§jzzmﬁmﬁ5%;ﬁm (A6)
t=171=1
T T T T

SN g ueweseni+ (A7)

t=117=1s=1u=1

(mgjO'gD)2 +0 (A8)
T T T
4B¢jZZZmﬁmﬁm]’s§Zé@%@§ZQD— O (A9)
t=11=1s=1
T
4Bijm2j032mjt§wD (A10)
t=1
T T
szdggzzmjtmﬁﬁ%l/ﬂﬁ (All)
t=1 =1

We will consider each of the six additive components above in order. For (A6), all the cross

-terms Fegerh], t # mhave expectation of zero and all the pure terms F|[¢%] have expectation
2 . .
o?., giving

4B2 szjthTﬁlé@w] - 4szm2j qu/}

t=171=1

For (A7), there is one pure term where all four time indices are equal and three cross-product

terms where two pairs of time indices are equal:
T T T T
B[} D DD msmemjamjuetiesenent] = My Blef) + 3 (0%)"

t=1 7=1s=1u=1

(A8) is in a simple form already. For (A9), the only nonzero expectation is the pure sum
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when all three time indices are equal:

T T T
E[4B;> ) Y “mpmjemjeyepen] = 4B;ms; E[el]. 0
t=17=1s=1
Term (A10) has expectation zero. For (A11):
T T
E[2my;02 ) > “mjmeye] = 2(my07,) ¢
t=17=1

Adding together the components:

Var((Bij)?| = AB}i;02 + iy Blef] + 3Ma;(02)? + (g0 )? +1
4Bijm3jE[€?] — 2(m2j035)2

= dmy;Ba? + AB;ms; E[e}] + My Elef] + (3Maz; — (M2;)?)(02)*(A12)

T T
Next we derive the second term of (A2). Recall that 5;_ =D  prreyep.yTaking the
t=17=1

expectation of the square minus the squared expectation:

T T T T

Varg2] = EDY Y > Y pupaciesiien] — (02)°

t=11=1s=1u=1

and using that egris independent across time with zero mean:

5%§:ptm+ EZQPM'H_'_ puprr) — (02 )

t=1 T#t0

=05, Elef] + ((p x p) — 1)(02)? (A13)

The last term in (A2) involves the covariance between (Eij)2 and Eff? Taking the product

of their de-meaned values:

Cov|(By),52] = E|( EZptT@zz»ewr a2)( 2B”Zmﬂ@gpﬁ@2mﬁmﬁ@gw)] b (A14)

t=171=1 t=171=1
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Expanding out the four terms in (A14):

T T T

t=11=1s=1
T T T T

ED DY pemjimjueeipeben)

t=171=1s=1u=1

T T T
—UgﬁBuE[Emﬁélé’] - U?UE[Eijtij§%é§%’]'w
t=1

t=171=1

and then using the egris independent through time with zero mean:
= 2B, L Epttmjt]'i_ Ele Epttm

(02) ZZ 2pirmemyr - pumny,) — (07,) Zmi@m

t=1 7#t
— 2B, BIEY + Py, Bl + ((p x m) — ) (022 (A15)

Now we collect the terms from (A12), (A13), and (A15) and combine them into (A1), mul-
tiplying (A13) terms by (72;)? and (A15) terms by —2ms;,igiving:

~

Var([(B;)? —mjpo2] =
4T B 0% + 4B;jmis; Bl + T E[ef) 4+ (3Magji— (M2;)*) (02,)?
+(M2; ) (Do Elef] + ((p x p) — 1)(02)*)1]

27713, (2B, Bl + gy B+ ((p x m) — 71,)(07)%)).
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Sorting by the moments and simplifying, this becomes:

Var((By)? — mg52] =l cwjo?, + ca Blel] + e, Blef] + caj(02,)’
C1ij0) =[] 4m2jBi2jj

cajo =gt (May)?Py — 29 (g, ) U

Cq; =0 Bmggj\ + (mgj)Q(p X p) — 2m2j (p X m)D
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Appendix 2: Discussion of the Bootstrap Estimation of the Chi Statistic’s Estimation
Variance

This appendix discusses the application of random-case bootstrapping to our model. We
use the technique to estimate the variance of our chi-statistic (24).

We have derived an exact formula for the variance of the chi-statistic under the assump-
tions of the model, but it is a function of the third and fourth moments of asset-specific
returns, which are difficult to estimate consistently from time-series regression residuals.
The boostrapping approach to estimating var[Y;]lis natural in this context. Bootstrapping
uses the full available sample to estimate this variance directly from the sample data. To
implement this estimator we act as if the time series i.i..d. multivariate probability distri-
bution generating returns and factors consists of an n + k-vector process, s,~which has T

discrete possible realizations

S.o= [vec|R;], vec[F,]].4

The discrete set of potential state realizations for s, are assumed equal to our observed
sample values, and each of these Tirandom states is assumed to have equal probability %ﬁw
This is fully consistent with all of our factor model assumptions on returns.

Within the context of this discretized probability distribution we can derive the exact
variance of the chi-statistic. We note that the chi-statistic is a function of a sample of T%

random realizations of the state process:

iju: f(Sb ceey ST)D
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where s1, ..., sp-are independently and identically distributed realizations, and the formula
for f(-) is the estimation formula for ;. Using the discretized probability distribution, the

exact variance of X is:

var[X;] szl—if(sl, oy ST)? — (Tiif(sl, oy 8T))? (31)

where the averages run across the set of all T'—tuples sy, ..., s7.¢Computing (31) is straight-
forward but impractical since with Ty=[1200[(roughly our sample size) there are 120012
terms in the averages. However the averages are easily and closely approximated by simply
averaging over a large number of random draws of (s, ..., s7); we use 50,000 draws in each

subperiod.
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Regression of estimated factors on the true factors in simulated panel data.

n — number of assets Dependent variable Independent variables, % significant t-statistics
f,, - natural rate factor f,, - semi strong factor Average Adjusted R?

)?” 100.0% 100.0% 99.91

3,000 ]? 0.0% 5.5% 0.08
2t

)?“ 100.0% 100.0% 99.95

6,000 ,2 0.0% 5.8% 0.08
2t

)t-“ 100.0% 100.0% 99.99

21,000 -
’ ;—2 . 0.0% 5.4% 0.09

Notes on Table 1: The table shows results from regressions of each of the two estimated factors on the true factors using simulated panel data sets with
one natural rate and one semi-strong factor. f1t and f2: are the estimated factors; fu and f2’t are the true natural rate and semi-strong factors,

respectively. The table reports the percentage of slope coefficients, over 10,000 simulations, which are significant at the 5% level, and well as the average

Adjusted R? of the regressions.
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Table 2: Cross-sectional averages of time-series moments of daily returns before and after Winsorization

Mean Variance Skewness | Kurtosis Minimum | Maximum n, T

1989-1993 | Before Winsorization 0.00106 0.00200 2.536 66.411 87.51% 483.32% | 4254; 1265
After Winsorization 0.00106 0.00156 0.672 11.471 | 18.75% 23.08%

1994-1998 | Before Winsorization 0.00076 0.00163 2.1913 61.048 | 86.02% 585.70% | 4817; 1263
After Winsorization 0.00081 0.00133 0.63243 10.194 | 16.67% 20.83%

1999-2003 | Before Winsorization 0.00097 0.00186 2.6552 80.335 | 95.66% 1595.50% | 4656; 1256
After Winsorization 0.00095 0.00143 0.77538 10.919 | 17.46% 22.92%

2004-2008 | Before Winsorization 0.00005 0.00102 2.6821 100.94 | 89.64% 600.00% | 4313; 1259
After Winsorization 0.00003 0.00072 0.53839 10.625 | 12.90% 14.54%

2009-2013 | Before Winsorization 0.00106 0.00090 3.6146 134.5 | 82.96% 360.49% | 4795; 1258
After Winsorization 0.00092 0.00064 0.6271 11.236 | 11.67% 14.29%

2014-2018 | Before Winsorization 0.00020 0.00069 4.2352 210.85 | 92.28% 677.49% | 4904; 1258
After Winsorization 0.00011 0.00043 0.33897 10.683 | 9.93% 11.11%

Notes on Table 2: The table shows the first four moments of returns and the minimum and maximum return within each of the six five-year subperiods,
before and after Winsorization at the 0.5% and 99.5% fractiles. The last column shows the number of cross-sectional (n) and time-series (T) observations.

CRSP daily returns in excess of the risk-free rate for all securities with full five-year return histories.
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Table 3: First four moments of time-series factors

MKTRF SMB HML USDSDR GBPSDR JPYSDR KRWSDR | Qil Gold Alum Lumber
1989-1993 | Mean 0.00035 0.00004 0.00009 0.00003 0.00019 0.00004 | 0.00017 0.00018 0.00001 0.00055 0.00093
Variance 0.000054 0.00002 0.00001 0.00002 0.000064 0.00004 | 0.00002 0.00056 0.000074{ 0.00022 0.00033
Skewness 0.518 0.496 0.463 0.088 0.008 0.091 0.022 2.376 0.942 0.189 0.904
Kurtosis 7.610 6.257 6.514 6.078 4.688 6.011 7.524 45.501 11.979 7.925 17.818
1994-1998 | Mean 1 0.000637 0.00032 0.00010 0.00003 0.00010 0.00005 | 0.000341 0.000027 0.00022 0.00011 0.00007
Variance 0.00007-4 0.00003 0.00002 0.000014 0.00003 0.00006 | 0.00022 0.000394 0.00004 0.000154 0.00057
Skewness 0.759 0.041 0.060 0.577 0.293 0.605 1.203 0.040 0.115 0.308 0.429
Kurtosis 11.485 4.458 6.006 7.589 5.549 7.398 55.386 7.618 7.224 7.000 10.484
1999-2003 | Mean 1 0.000027 0.00040 0.00031 0.00004 0.00002 7 0.00000 | 0.00003 0.001037 0.000337 0.00026 0.00030
Variance 0.00018 0.00006 0.00006 0.000014 0.00003 0.00004 | 0.00003 0.00055 0.00009 0.00010 0.00047
Skewness 0.140 0.734 0.060 0.284 0.044 0.002 0.390 0.310 1.349 0.299 0.654
Kurtosis 4.303 7.092 5.399 4.520 3.374 4.598 4.364 4.999 14.951 4.472 7.386
2004-2008 | Mean 0.000107 0.00001 0.00015 0.00003 0.00018 0.00008 | 0.000101 0.00072 0.00067 0.00009 0.00025
Variance 0.00018 0.00004 0.00004 0.00001 0.00003 4 0.00005 | 0.00007 0.00054 0.00018 0.000254 0.00048
Skewness 0.077 0.161 1.176 0.143 0.511 0.072 0.463 0.084 0.058 0.387 1.322
Kurtosis 17.675 9.384 20.043 6.141 7.883 10.465 62.219 6.143 8.841 4.885 14.892
2009-2013 | Mean 1 0.000767 0.00017 0.000027 0.00001 0.00014 0.00016 | 0.00014 0.000987 0.000267 0.00032 0.00089
Variance 0.00016 0.00003 4 0.00005 0.000014 0.00003 0.000057 0.00005 0.00035 0.00014 0.00024 0.00060
Skewness 0.179 0.166 0.236 0.186 0.074 0.084 0.460 0.007 0.641 0.027 1.448
Kurtosis 6.881 4.806 10.807 7.157 4.275 4.916 10.118 6.265 7.201 4.473 11.694
2014-2018 | Mean 1 0.00032 0.00009 0.00011 0.00008 0.00013 0.00004 | 0.00004 0.000207 0.00008 7 0.00014 0.00012
Variance 0.000074 0.000034 0.000034 0.00001 0.000034{ 0.000037 0.00002] 0.00047 0.00007 0.00014 0.00034
Skewness 0.44598 0.19017 0.54189 0.40807 1.4283 0.71277 | 0.03695 0.32194 0.31169 0.33381 0.17648
Kurtosis 6.4183 3.842 4.7662 - 7.5632 20.953 10.716 3.5675 5.6263 5.5637 6.0374 4 7.8895

Notes on Table 3: The table shows the first four moments of the eleven factors within each of the six five-year subperiods. MKTRF, SMB, and HML are the
Fama-French market, size and value factors; USDSDR, GBPSDR, JPYSDR and KRWSDR are the percentage change in the US dollar, British Pound Sterling,
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Japanese Yen, and Korean Won in units of IMF Special Drawing Rights; Qil, Gold, Aluminum and Lumber are the percentage changes in the prices of these
commodities. See text for details of data sources.
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Table 4: Cross-sectional average factor betas and their t-statistics

MKTRF SMB HML USDSDR | GBPSDR | JPYSDR | KRWSDR | Oil Gold Alum Lumber | Rbar2

1989-1993 0.803 0.671 0.225 -0.009 0.003 -0.016 0.004 0.006 0.007 0.005 0.003 | 94.42%

126.835 | 75.835 | 20.410 -0.506 | 0.619 -2.725 0.290] 4.127 1.749 2.098 1.654
1994-1998 0.843 0.659 0.291 0.006] 0.000 0.002 -0.006 | 0.004 0.009 0.007 0.003 | 95.35%

126.631 | 77.063 | 22.969 0.423 0.046 ] 0.463 -2.503 1.890 1.415 2.300 1.820
1999-2003 0.726 0.446 0.337 0.034 0.011] 0.015 -0.063 0.007 0.013 0.025 0.010 | 93.16%

105.838 | 45.254 | 27.443 1.287] 0.764] 1.397 -4.371 2.608 1.811 3.788 3.166
2004-2008 0.790 0.449 0.158 0.071/ 0.030] 0.003 -0.083 0.021 0.006 0.022 0.005 | 97.31%

157.293 | 48.342 | 17.563 3.697 | 2.858 0.274 | -12.389 7.950 1.186 5.898 1.857
2009-2013 0.805 0.410 0.159 0.105] 0.041 -0.002 -0.045 0.019 0.021 0.012 0.004 | 98.30%

141.050 | 45.772 | 19.549 6.103 | 4.555 -0.226 -6.462 6.180 5.036 3.314 1.911
2014-2018 0.733 0.417 0.129 0.066{ 0.043 -0.003 -0.062 0.030 0.054 0.011 0.003 | 96.51%

132.515 | 54.598 | 15.692 3.772] 6.152 -0.318 -7.681 | 14.665 9.614 3.160 1.434

Notes on Table 4: The table shows the regression coefficients (first row in each subperiod) and their t-statistics (second row in each subperiod) from the
regression of the equally-weighted asset return on the eleven factors and an intercept. Numbers in bold are significantly different from zero with at the 5%
confidence level.
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Table 5: Adjusted mean-squared beta estimates and their z-statistics

MKTRF SMB HML USDSDR GBPSDR JPYSDR = KRWSDR oil Gold Alum Lumber
1989-1993 0.844 0.647 0.164 0.035 0.005 0.004 0.025 0.001 0.019 -0.001 0.000
59.683  28.359 7.060 0.367 1.550 0.884 0.266 1.921 4.976 -0.612 0.274
1994-1998 0.873 0.627 0.259 0.003 0.000 0.004 0.001 0.001 0.040 0.001 - 0.000
48.788  26.927 12.156 0.166 0.070 1.279 0.433 1.947 7.404 0.615 0.109
1999-2003 0.753 0.422 0.310 0.011_ 0.005 0.004 _  0.023 0.003 0.023 0.003 0.000
50.787 18.841 16.105 0.490 0.888 0.933 2.149 5.062 5.753 1.681 0.126
2004-2008 0.791 0.469 0.183 0.064 0.022 0.017 0.038 0.009 0.021 0.004 0.000
56.175 23.876 @ 13.057 2.569 2.807 2.753 2.599 8.575 7.270 2.844 1.015
2009-2013 0.887 0.431 0.189 0.101 0.022 0.008 0.020 0.007 0.036 0.002 0.000
51.236 32.853  15.165 4.696 4.209 2.787 3.271 6.648 12.816 3.001 1.109
2014-2018 0.803 0.441 0.235 0.050 0.016 0.015 0.017 0.016 0.113 0.002 0.000
55.153 39.644  26.888 3.550 4.451 4.075 4.151 13.434 16.428 2.979 -0.020

Notes on Table 5: The table shows the adjusted mean-squared beta estimates (first row in each subperiod) and their z-statistics (second row in each
subperiod) for the test that the mean-squared beta of the factor is greater than zero. Numbers in bold are significantly greater than zero with 95%
confidence.
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Table 6: Panel regression marginal R2’s for each factor

MKTRF  SMB HML USDSDR  GBPSDR  JPYSDR  KRWSDR @ Oil Gold Alum Lumber | Stacked R-
squared
1989-1993 1.511% 0.594% 0.097% 0.008% 0.016% 0.009%  0.008%  0.035% 0.080% 0.007%  0.004% 2.640%
1994-1998 1.996% 0.868% 0.164% 0.002% 0.001% 0.015% 0.009% @ 0.022% 0.098% " 0.006% " 0.001% 4.109%
1999-2003 4.569%  1.237% 0.589% 0.004% 7 0.007% 0.011%~ 0.031% 0.090% 0.128% 0.018%  0.001% 9.552%

2004-2008 @ 10.670% 1.850% 0.769%  0.059% 0.065% 0.065%  0.288% | 0.441% 0.295% 0.085% 0.016% 22.726%
2009-2013 7.175% 1.414% 0.753% 0.091% 0.071% 0.036%  0.109% | 0.199% 0.535% 0.053% 0.021% 28.821%
2014-2018 8.144% 2.342% 1.075% 0.051% 0.100% 0.058%  0.080% 1.226% 1.103% 0.048%  0.000% 21.674%

Notes on Table 6: The table shows the marginal R-squared found by deleting each factor individually from the stacked regression model. The last column is
the R-squared of the stacked regression model; see the text for the precise formulas.
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Table 7: Test for natural rate versus semi-strong factors (z-statistics)

MKTRF SMB HML USDSDR | GBPSDR | JPYSDR | KRWSDR oil Gold Alum Lumber
1989-1993 53.000 | 17.025 -8.847 2.981 25.246 25.791 2.364 14.527 13.513 27.095 23.122
1994-1998 45.576 | 20.222 0.681 _| 22.739-| 24.545-| 20.926-| 14.473-| 24.635-| 13.166°| 31.582-| 25.382
1999-2003 49.085 15.188 12.007. | -23.735-| 27.380-| 21.214-| 14.140-| 11.865-| 6.900 -| 25.959-| 28.110
2004-2008 55.069 19.973 8.296 -8.282 -| 7.378 | 6.449 -| 0.211 -| 3.566 -| 2.055-| -5.956 -| 18.687
2009-2013 50.343 27.261 11.290 -7.220 .| 9.734 _| 14.946_ 5.463 0.120 6.684 -9.493 -| 14.095
2014-2018 53.780 | 34.773 | 20.671 | -13.643_| 7.976-| 7.995 - 11.051_| 10.862 13.279 | -14.366-| 32.988

Notes on Table 7: The table shows the z-statistics for the test that the mean-square beta of the factor is significantly above the natural-rate benchmark
value. See the text for the definition of the natural rate benchmark value. Numbers in bold are significantly greater than zero.
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Table 8: Stepwise Regression Using the Akaike Information Criterion

MKTRF SMB HML USDSDR | GBPSDR | JPYSDR | KRWSDR oil Gold Alum Lumber
1989-1993 * * * 5 6 4 3 * * 2 1
1994-1998 * * * 5 4 6 2 * 3 1
1999-2003 * * * 2 3 5 6 * * 4 1
2004-2008 * * * * * * * * * * 1
2009-2013 u * * * * * * * * * 1

Notes on Table 8: The table shows the results of stepwise regression using the AIC benchmark to select factors with positive explanatory power. Asterisks
denote factors which pass the AIC test for inclusion at all steps. The integers denote the step order at which other factors were dropped (1 denotes the
factor dropped after the first step, and so on).
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Table 9: Time series regression fit of each statistically estimated factor using the eleven pre-specified factors and vice-
versa

Panel A: Regression fit of each pre-specified factor using twenty statistically estimated factors

MKTRF SMB HML USDSDR | GBPSDR | JPYSDR | KWRSDR | Oil Gold Silver Alum

1989-1993 87.56% | 34.63% | 32.21% 1.27% 0.03% 0.89% 0.51% 9.86% | 24.31% 0.70% 0.09%
1994-1998 90.12% | 52.91% | 59.10% 4.10% 0.92% 3.75% 0.28% 7.50% | 33.65% 0.96% 4 0.42%
1999-2003 94.23% | 74.91% | 71.09% 1.81% 4.66% 3.03% 1 4.31% | 19.54% | 46.72% 6.13% 1.05%
2004-2008 98.14% | 81.96% | 71.55% | 10.61% | 15.79% | 26.44% | 25.75% | 46.79% | 63.09% | 20.19% 1.41%
2009-2013 98.63% | 85.00% | 83.18% | 15.58% | 18.48% | 18.10% | 12.54% | 50.48% | 70.40% | 29.32% 4.78%
2014-2018 98.28% | 89.01% | 87.06% 4.09% | 16.26% | 34.10% 9.35% | 62.05% | 68.41% | 10.89% 1.75%

Panels B: Regression fit of each statistically estimated factor using the eleven pre-specified factors (statistical factors one
to ten)

APC1 APC2 APC3 APC4 APC5 APC6 APC7 APC8 APC9 APC10

1989-1993 96.78% | 37.98% 0.73% 6.60% 0.11% | 13.72% 0.26% 0.02% 0.76% 1.69%
1994-1998 95.83% | 33.87% | 39.19% | 30.96% 0.90% 0.85%4 1.01%-4 0.06% 3.71% 1.26%
1999-2003 93.30% | 53.22% | 18.72% | 11.34% | 19.19% | 40.74% 8.18% 4 37.60% 1.49% 0.81%
2004-2008 98.63% | 57.54% | 15.01% | 58.62% | 36.49% | 27.54% 5.28% 6.54% | 13.34% 8.46%
2009-2013 98.82% | 46.47% | 63.46% | 43.92% | 35.02% 9.10% | 21.85% | 16.14% 9.48% 6.88%
2014-2018 96.43% | 65.52% | 65.99% | 44.43% | 62.59% 9.07% 6.29% | 12.24% | 21.80% 4.28%
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Panels C: Regression fit of each statistically estimated factor using the eleven pre-specified factors (statistical factors
eleven to twenty)

APC11 APC12 APC13 APC14 APC15 APC16 APC17 APC18 APC19 APC20
1989-1993 0.59% 0.09% 0.69% 1.11% 0.82% 0.28% 0.10% 0.24% 0.69% 1.53%
1994-1998 3.99% 1.80% 0.39% 1.20% 0.06%4 1.47% 0.92% 0.13% 1.56% 0.12%
1999-2003 0.25% 2.82% 0.21% 0.15% 1.46% 0.07% 0.09% 0.62% 0.09% 0.52%
2004-2008 10.10% | 12.40% 7.89% 2.33% 3.44% 3.13% 7.50% 4.13% 3.03% 1 1.91%
2009-2013 2.62% 1.14% 6.84% 4.12% 4.25% 0.98% 2.24% 3.72% 0.42% 5.26%
2014-2018 1.49% 2.54% 3.35% 1.60% 3.07% 1.53% 7.95% 3.47% 4.38% 2.31%

Notes on Table 9: The table shows the Adjusted R? from the time-series regression of each factor on the full set of
alternative factors and an intercept. In Panel A the dependent variable in the regression is one of the eleven pre-specified
factors and the explanatory variables are the twenty statistically estimated factors; in panels B and C the dependent
variable is one of the statistically-estimated factors and the explanatory variables are the eleven pre-specified factors.
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	We begin by assuming a factor model of returns, and then di¤erentiate between natural-rate and semi-strong factors within the model. We consider a sequence of return models with increasing cross-sectional dimension. For each n;let rt denote the nŁvector of asset returns. We assume that for each n the vector of returns obeys the following model: 
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	since the eigenvalues of a symmetric positive de•nite matrix are the reciprocals of the eigenvalues of its inverse. 
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	We keep the two assumptions (2) and (3) throughout. We note however that these two assumptions alone are not su¢ cient for empirical work. Empirical implementations typically strengthen (3) slightly, in particular by requiring that all k dominant eigenvalues increase at the "natural" rate n. That is, most empirical analysts replace (3) with: 
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	which di¤ers from (4) in the speed at which the eigenvalues must grow with n; (6) requires that the eigenvalues of BB go to in•nity at rate n whereas (4) only requires that they go to in•nity, at any rate. 
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	We call (6) the "natural" rate of increase since many plausible speci•cations of the series of factor beta matrices will result in (6). Condition (6) will also hold with probability one 
	We must exclude the case in which the beta matrix grows explosively with n, and also exclude cases in 
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	which the k .kŁmatrix series BB only converges on a subsequence or on multiple subsequences. These 
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	cases are automatically excluded with probability one in our random coe¢ cients framework described later. 
	nonsingular covariance matrix, by the strong law of large numbers (shown later). 
	By using a less straightforward rule for choosing the sequence of beta matrices, the natural rate can be replaced with a slower, semi-strong, rate of increase; this is easily done by scaling •xed factor betas so that the individual betas shrink with n: So, as a simple example with k =1; consider the sequence of nŁvectors B= ..n; where .n is an nŁvector of ones: 
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	This ful•ls the Chamberlain-Rothschild condition (4), since BB=(n.n =n!1; but not the natural rate condition (6), since BB=(n.n.n)=n!0. Stated simplistically and intuitively, semi-strong factors have sum of squared factor betas going to in•nity but average squared factor beta going to zero with n: A more precise de•nition appears later. 
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	Our empirical implementation does not require the natural rate assumption; it allows some of the dominant k eigenvalues to have a slower, semi-strong rate of increase. To give structure to the problem, we specify the factor exposure matrix B with a random coe¢ cients model as described in the next subsection. 
	2.1 Generating factor betas with a random coe¢ cients model 
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	In our factor model, the beta matrix and factors divide into two subsets with kand kelements, depending upon the average cross-sectional magnitude of the factor betas: 
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	E[b]=.; E[(bŁ.)(bŁ.)]= b; 
	b
	b
	b
	0

	nr ss
	note that the block-diagonal submatrices and are also nonsingular given that b is nonsingular. We also assume that all k components of the random vector b have •nite fourth moments. We use the sequence of random draws of bto create the factor beta matrix, scaling appropriately to di¤erentiate between natural-rate and semi-strong factors. 
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	Let Bdenote the n.kŁmatrix of the •rst n draws of the vector stochastic process 
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	•rst kand remaining kcolumns; B= The •rst kfactors are natural rate factors; their betas are simply the random draws of the •rst kelements of b: 
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	The remaining k= k Łkfactors are semi-strong. We •x a rate exponent > 0 and assume that the factors betas are of the order n;they are generated by scaled versions of the generating matrix: 
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	We impose the condition < : As we will discuss later, this condition is required in order for the sum of squared factor betas to increase with n. If we were to allow > we 
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	possible (although cumbersome) to allow to vary across the semi-strong factors; we do not pursue that here. 
	Since the vector stochastic process b is i.i.d. and has •nite fourth moments, it follows from the strong law of large numbers (see White (1984, Proposition 2.11)) that the •rst two 
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	The strong law of large numbers also applies to the •rst moment vectors (appropriately scaled): 
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	From here on in the paper, we condition on a particular sequence of random realizations of B and so treat B for estimation purposes as a nonrandom matrix. We assume that the 
	From here on in the paper, we condition on a particular sequence of random realizations of B and so treat B for estimation purposes as a nonrandom matrix. We assume that the 
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	2.2 Failure of Standard Factor Estimation Methods in Recovering Semi-Strong Factors 
	2.2 Failure of Standard Factor Estimation Methods in Recovering Semi-Strong Factors 
	Factor analysis and principal components-based methods are well-suited to recover natural rate factors, but have di¢ culties estimating semi-strong and weak factors (see Chudik, Pesaran, Tosetti (2011), Onatski (2012), and Pesaran (2015)). We demonstrate this issue by simulating a two-factor economy in which the •rst factors is a natural rate factor and the second factor is a semi-strong factor. We then use the asymptotic principal components estimator of Connor and Korajczyk (1986) to estimate the factors 
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	1.0 as the cross-sectional sample increases. This does not happen for semi-strong factors. 
	1.0 as the cross-sectional sample increases. This does not happen for semi-strong factors. 
	We simulate daily factor realizations for 21,000 assets over a •ve-year period where each factor has an annual standard deviation of 20%. Bis an n.2matrix of factor loadings that are drawn from an i.i.d. Normal distribution with mean 1 and standard deviation of 0.3. For the •rst factor, Bis equal to the •rst column of B. For the second factor, the ielement of Bis equal to the second ielement of column Bdivided by n. For increasing n, the average squared beta for the semi-strong second factor shrinks at the 
	We simulate daily factor realizations for 21,000 assets over a •ve-year period where each factor has an annual standard deviation of 20%. Bis an n.2matrix of factor loadings that are drawn from an i.i.d. Normal distribution with mean 1 and standard deviation of 0.3. For the •rst factor, Bis equal to the •rst column of B. For the second factor, the ielement of Bis equal to the second ielement of column Bdivided by n. For increasing n, the average squared beta for the semi-strong second factor shrinks at the 
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	rate. The non-factor, idiosyncratic, returns are drawn from a normal distribution with zero mean and annual standard deviation of 35%. 

	Let fj;t denote the asymptotic principal components estimator of factor j 2 (1;2) for period t and ft denote the true simulated 2.1 factor vector for time t. We estimate the regression 
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	fj;t =aj +bjft +uj;t (14) 
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	and report the results in Table 1. We show results for three cross-sectional sample sizes: 3,000 and 6,000 assets (which bracket our sample size in the empirical work below) as well as 21,000 assets. We perform 10,000 iteration of the simulation. The •rst column of Table 1 shows the number of assets used in estimating fj;t. The second column lists the dependent variable, either f;t or f;t. The third and fourth columns list the percentage of the 10,000 simulations for which the t-statistics on bj;1 and bj;2 
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	is the average, across the simulations, R. The table shows that f;t is estimated very precisely. One hundred percent of its coe¢ cients, bj;1 and bj;2, are statistically signi•cant, for all cross-sectional sample sizes. The coe¢ cient of the second true factor is signi•cant due to the rotational indeterminacy of principal components-based estimators of factor scores. The average Rvalues are nearly 1.0, meaning that f;t is nearly perfectly correlated with a linear combination of the two factors. The table al
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	the average Rvalues are all below 1%. Thus, f;t has extremely low correlation with the semi-strong factor. Increasing the cross-sectional sample size does not much improve the precision of f;t. These results argue for a di¤erent approach when attempting to identify semi-strong factors. 
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	3 Estimation of betas and their cross-sectional average and mean-square 
	3 Estimation of betas and their cross-sectional average and mean-square 
	We assume that the factors are observed exactly, so that the statistical problem involves estimating the factor betas, and features of their cross-sectional distribution (in particular, their average and mean-square). Since f and " are assumed mutually independent with " conditionally mean zero, (1) gives a seemingly unrelated regression model (Zellner (1962)) without cross-equation restrictions: 
	rit =ai +Bift +" it; i=1;n;t=1;T: (15) 
	We condition upon ft t=1;T and so treat it for the purposes of parameter estimation as a nonrandom time series of •xed length T. Since there are no cross-equation restrictions, the regression system (15) is identical to n separate time-series ordinary least squares problems. Let F denote the T .(k+1)Łmatrix of the explanatory variables in (15), where the •rst column is a TŁvector of ones, and column j +1 is the time-series of factor realizations for 
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	where Ri is the TŁvector of asset returns. By standard regression theory for any j we can describe Bij as the true value plus a linear combination of the residuals, in particular: 
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	We consider the estimation-error corrected squared regression coe¢ cient: 
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	The estimation-error-adjusted squared beta (18) is a key input to our mean-squared beta estimate in the next subsection. Since its two components, Bij and .b, are (respectively) linear and quadratic functions of the innovations " it;t =1;T; its estimation variance is a linear combination of the •rst four moments and squared second moment of " i: The weights in this linear combination are products and cross-products of mjt and pt.; t;. =1;T: 
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	By straightforward algebra (see Appendix 1 for detailed steps) the estimation variance of BŁ[(FF)]j+1;j+1.bis: 
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	Readers will be pleased to know (or at least relieved) that we do not estimate this complicated variance expression directly, but instead invoke bootstrap methods (see below) to obtain estimated standard errors. 
	3.1 Statistical identi•cation of the cross-sectional average and mean-square of semi-strong factor betas 
	3.1 Statistical identi•cation of the cross-sectional average and mean-square of semi-strong factor betas 
	In the case of a semi-strong factor, estimates of the individual betas have limited information since Bij =nBimplies that the magnitude of most betas is too small to detect reliably. However, as we now show, it is possible to detect the aggregate in•uence of semi-strong factors by averaging the cross-section of individual time-series regression estimates and their squares. De•ne .and ., j =1;k, as the cross-sectional averages and average sums of squares of the factor betas: 
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	We use the cross-section of estimated betas to construct simple estimation-error-adjusted 
	estimates: 
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	We assume that " i;i =1;n is independent across i; with bounded fourth moments for all i: It is possible in theory to extend our results to the case in which the idiosyncratic returns are weakly cross-sectionally correlated, but that would substantially complicate the derivation of the estimation variance and we do not pursue that extension here. Let m denote any •xed, •nite TŁvector (constant across i=1;n) and let e" i denote a TŁvector of independent realization of " i: For a given j 2 [1;2;:::k] de•ne th
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	We assume that the cross-sectional averages converge for large n and let . and denote 
	j 

	X
	1 
	n 

	. = lim .(23) 
	2 
	" 
	i 

	n!1 n 
	i=1 
	X 
	= lim cij.+cijE["]+cjE[" ]+cj(.): (24) 
	j 
	1 
	n 
	1
	" 
	2 
	i 
	2
	3 
	i
	3
	i 
	4
	4
	"i 
	2 
	2

	n!1 n 
	i=1 
	It is straightforward to derive the convergence conditions (23) and (24) from more fundamental assumptions, for example by placing bounds on the •rst four moments of " i for all i; and restricting the co-relations between Bij and these moments for all i: This additional complexity would add little value to the analysis so we simply directly assume that these limits exist. 
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	The population value of mean-squared beta is always positive if the true mean beta is nonzero, whereas it is possible to have a positive mean-squared beta when the true mean beta is exactly zero. This might give the false impression that the mean-squared beta test 
	The population value of mean-squared beta is always positive if the true mean beta is nonzero, whereas it is possible to have a positive mean-squared beta when the true mean beta is exactly zero. This might give the false impression that the mean-squared beta test 
	mean-squared beta and nonzero mean beta is actually ambiguous. The estimation error in the test of mean-square beta can be much higher than in the test of mean beta, so either test can reject when the other does not. In the case of semi-strong factors, in terms of asymptotic power, the test for a nonzero mean beta only requires < whereas the test for positive mean-squared beta requires < . In this sense, the mean beta test is asymptotically stronger than the mean-squared beta test. 
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	3.2 Bootstrap estimation of the mean-square beta estimation variance 
	3.2 Bootstrap estimation of the mean-square beta estimation variance 
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	We have derived an explicit formula for the variances of the mean-squared beta estimates, =n j =1;k; in (22), but the formula involves the cross-sectional average of a complicated linear combination of higher moments of asset-speci•c returns. A naive approach would be to proxy each term in (22) with time-series estimates from each asset in the sample, and then take cross-sectional averages. Instead we use a bootstrap methodology, which obviates the need to estimate the individual components of (22); we disc
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	Using Rand Fin place of R and F we re-estimate Band .b; and repeat this random bootstrap a large number of times, h =1;m: For each j; the variances nare found from the collection of m bootstrapped estimates of .b: 
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	3.3 Distinguishing semi-strong from natural-rate factors 
	3.3 Distinguishing semi-strong from natural-rate factors 
	We now consider the problem of empirically distinguishing semi-strong factors from natural rate factors. Either type of factor has sum of squared betas going to in•nity with n, but a natural rate factor has mean-squared beta converging to a strictly positive value whereas a semi-strong factor has mean-squared beta going to zero. For large n, the semi-strong factors are statistically signi•cant (in terms of their mean squared betas being testably greater than zero as the estimation variance shrinks) but also
	We now consider the problem of empirically distinguishing semi-strong factors from natural rate factors. Either type of factor has sum of squared betas going to in•nity with n, but a natural rate factor has mean-squared beta converging to a strictly positive value whereas a semi-strong factor has mean-squared beta going to zero. For large n, the semi-strong factors are statistically signi•cant (in terms of their mean squared betas being testably greater than zero as the estimation variance shrinks) but also
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	3.3.1 Marginal explanatory power of each factor 
	3.3.1 Marginal explanatory power of each factor 
	The seemingly unrelated regression system (15) can be viewed as a single stacked regression model with n intercepts (also called asset •xed e¤ects) and nk factor betas, with heteroskedasticity across the n assets. De•ne the adjusted Rfor this stacked regression model as one minus unexplained variance over total variance: 
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	where i is the time-series sample mean return of asset i: Next, we re-estimate the linear regression model with all factors except factor j; and re-calculate the stacked regression R .2
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	The di¤erence between R and Rgives our marginal Rstatistic. 
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	hence the population marginal Ris a scaled version of mean-squared beta. The estimated marginal R(27) is not a formal test statistic since we do not give its sample distribution, but it is a useful descriptive statistic based on (28). 
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	3.3.2 A penalized test statistic for mean-squared beta 
	3.3.2 A penalized test statistic for mean-squared beta 
	We now construct a test statistic for empirically distinguishing natural-rate factors from semi-strong factors. Either type of factor has sum of squared betas going to in•nity with n, but a natural rate factor has mean-squared beta converging to a strictly positive value whereas a semi-strong factor has mean-squared beta shrinking to zero at rate n. Consider a nonrandom sequence an = anwith a> 0; 0 <.< . We allow the multiplicative 
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	the marginal Rshown above, see (28). The sequence an distinguishes natural rate from semi-strong factors, in the sense that: 
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	reject E[zj]=0; whereas it has zero asymptotic power to reject E[zj]=0for a semi-strong factor j>k: The test statistic establishes a penalized benchmark value for the sum of squared betas as a function of n; if the estimated sum of squared betas is signi•cantly above this benchmark, the factor is identi•ed as a natural-rate factor. 
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	4 Application to U.S. equity returns using Fama-French, currency, and commodity factors 
	4 Application to U.S. equity returns using Fama-French, currency, and commodity factors 
	In this section we apply the methodology to analyze the currency and commodity exposures of US equity returns. 
	4.1 Data and Winsorization 
	4.1 Data and Winsorization 
	We consider percentage changes in commodity prices and foreign exchange rates (against a currency basket) as possible semi-strong factors. We use daily data on US equity returns over six periods, 1989-1993, 1994-1998, 1999-2003, 2004-2008, 2009-2013, and 2014-2018. In each subperiod we restrict the sample to equities with full return records over the 5year subperiod. To moderate the in•uence of extreme return observations (which are often due to small, isolated trades of illiquid securities) we Winsorize th
	We consider percentage changes in commodity prices and foreign exchange rates (against a currency basket) as possible semi-strong factors. We use daily data on US equity returns over six periods, 1989-1993, 1994-1998, 1999-2003, 2004-2008, 2009-2013, and 2014-2018. In each subperiod we restrict the sample to equities with full return records over the 5year subperiod. To moderate the in•uence of extreme return observations (which are often due to small, isolated trades of illiquid securities) we Winsorize th
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	also show the maximum and minimum returns in each subperiod; for the after-Winsorization case, these equal the Winsorization boundary values. 

	For currency factors, we use the U.S. Dollar, British Pound, Japanese Yen, and Korean Won, each measured against the global currency basket maintained by the International Monetary Fund (the Special Drawing Rights Index of the IMF). For commodities, we use the prices of oil, gold, aluminum, and forest products. The currency and commodity factors are obtained from Bloomberg. The daily factors are the percentage daily price changes. The codes in Bloomberg are: U.S. Dollar (XDRUSD), British Pound (XDRUSD divid
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	4.2 Estimation of mean and mean-square factor betas 
	4.2 Estimation of mean and mean-square factor betas 
	Since the seemingly unrelated regression model has the same independent variables for all assets and no cross-equation restrictions, for the purpose of •nding the cross-sectional averages of the coe¢ cients (20), the set of n regressions "collapses" into a single time-series 
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	Available at: . 
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	http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

	sults are shown in Table 4. The average asset betas for all three Fama-French factors are statistically signi•cant in all subperiods (with t-statistics in excess of 45). The average asset betas relative to the currencies are signi•cant in the post-2004 period, with the exception of the Japanese Yen. Additionally, the average betas relative to the Korean Won are signi•cant in the second and third subperiods. The average betas for the Japanese Yen are only signi•cant in the •rst subperiod, 1989-1993. The aver
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	To estimate mean-squared betas, we perform individual factor regressions for each of the securities in each subsample, and then compute the cross-sectional adjusted-mean-squared estimated betas shown in Table 5. To estimate the variances of the estimated mean-squared betas we repeat this full estimation process •fty thousand times with bootstrapped returns and compute the •fty-thousand-sample bootstrap variances for each mean-squared beta. In the latter three subperiods all of the factors except lumber have

	4.3 Distinguishing natural-rate from semi-strong factors 
	4.3 Distinguishing natural-rate from semi-strong factors 
	Table 6 shows the marginal Rfound by dropping one factor j =1;k from the stacked regression model. Other than the three Fama-French factors, oil and gold show some non-negligible explanatory power by this measure. The stacked regression Rshows evidence of a secular increase from the earlier subperiods to the later ones. 
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	Next we implement our test statistic (29) for distinguishing natural-rate from semi-strong factors. We set . = so that ngives a reasonably small, but not excessively small, benchmark for mean-squared beta; for k = 11 and n = 4250; which is roughly the cross-sectional size in our subperiods, n=k =4250=11=0:0032. Interpreted using (28), a factor must have a marginal Rabove 0:3%to qualify as a natural-rate factor. 
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	Table 7 shows the results of the statistical test for whether each factor has mean-square 
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	beta greater than ()n=11. The results in Table 7 provide strong support for the Fama
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	French factors being natural rate factors. The penalized mean-squared betas of the market factor MKTRF and size factor SMB are signi•cantly positive in all subperiods; the value factor HML is signi•cantly positive in four of the six subperiods. Oil and gold are signi•cantly positive in two and three subperiods, respectively, thus showing mixed results as to whether they are best classi•ed as natural-rate or semi-strong factors. We cannot reject the hypothesis that the remaining factors other than lumber are
	The results in Tables 4, 5, and 7 suggest that the Fama-French factors are natural rate factors and that lumber is not a statistically identi•able semi-strong factor. Oil and gold 
	The results in Tables 4, 5, and 7 suggest that the Fama-French factors are natural rate factors and that lumber is not a statistically identi•able semi-strong factor. Oil and gold 
	considered natural rate or semi-strong factors. The remaining factors seem to be semi-strong but not natural-rate. 

	Lastly, to give an alternative perspective on the data, we use the Akaike Information Criterion (AIC) to choose factors with positive explanatory power by this criterion. To do this we must impose an assumption of normality on the asset-speci•c residuals in the stacked regression model (15), while still allowing heteroskedasticity across assets. We continue to assume independence of the asset speci•c returns across assets and across time. Under this normality assumption the ordinary least squares estimates 
	AIC =2n(k+2)Ł2log(L) (30) 
	b

	where Lis the log likelihood, which in this stacked linear regression model is X
	b 

	nT T n
	n 

	b 
	.
	2

	L=Ł log(2.)Ł log(b)Ł : 
	"i

	22 2 
	i=1 
	Akaike•s approach is di¤erent from our earlier approach, in that it treats di¤erent speci•cations (in our case, models with more or fewer factors) as competing approximate models of the data, rather than as nested models that are the true data generating process. Although it does not •t exactly into our modeling framework we believe it gives a useful alternative perspective on the data. (See also Bai and Ng (2002) who use an AIC-type metric to choose natural-rate factors in a statistical factor model.) Tabl
	Akaike•s approach is di¤erent from our earlier approach, in that it treats di¤erent speci•cations (in our case, models with more or fewer factors) as competing approximate models of the data, rather than as nested models that are the true data generating process. Although it does not •t exactly into our modeling framework we believe it gives a useful alternative perspective on the data. (See also Bai and Ng (2002) who use an AIC-type metric to choose natural-rate factors in a statistical factor model.) Tabl
	-

	model. Gold is included in the •nal model in all six subperiods, and oil in •ve of the six. The results are mixed for aluminum and the four foreign exchange factors; they are dropped in the earlier subperiods, but kept in the later ones. Lumber is the only factor to be dropped in all six subperiods. 


	4.4 An empirical comparison of statistically-estimated and prespeci•ed factors 
	4.4 An empirical comparison of statistically-estimated and prespeci•ed factors 
	-

	As discussed in subsection 2.2 above, conventional statistical methodologies such as asymptotic principal components are not reliable for identifying semi-strong factors. Nonetheless, as an exploratory exercise, we examine the empirical relationship between statistically-estimated factors and our pre-speci•ed factors. For each subsample we compute the •rst twenty eigenvectors of the cross-product matrix of excess returns. In Table 9 panel A we show the adjusted Rs from time-series regression of these twenty
	As discussed in subsection 2.2 above, conventional statistical methodologies such as asymptotic principal components are not reliable for identifying semi-strong factors. Nonetheless, as an exploratory exercise, we examine the empirical relationship between statistically-estimated factors and our pre-speci•ed factors. For each subsample we compute the •rst twenty eigenvectors of the cross-product matrix of excess returns. In Table 9 panel A we show the adjusted Rs from time-series regression of these twenty
	-
	-
	2
	-
	2
	-

	section 2.2 above: conventional statistical methods do not seem able to identify semi-strong factors in the panel data set of returns. 



	5 Conclusions 
	5 Conclusions 
	This paper develops and implements a new econometric methodology for estimating the cross-sectional in•uence of "small" factors (that is, factors with only modest explanatory power) in a large cross-section of asset returns. We build upon the approximate factor modeling framework of Chamberlain and Rothschild (1983) in which pervasive factors are identi•ed by the unbounded growth of their sum of squared factor betas as the number of assets n grows large. Following Chudik et al. (2011), we di¤erentiate betwe
	We apply the methodology to the daily returns of U.S. equity returns using Fama and 
	We apply the methodology to the daily returns of U.S. equity returns using Fama and 
	Japanese Yen, and Korean Won) and four commodity factors (oil, gold, aluminum and lumber). The three Fama-French factors are clearly natural-rate factors. Oil and gold are both signi•cant factors but give some con•icting results as to whether they are natural-rate or semi-strong factors. Aluminum and the four currency factors are semi-strong factors in the more recent subperiods, but not natural-rate factors. Lumber is at best a weak factor, that is, neither a natural-rate nor a semi-strong factor. 

	Appendix 1: The Sample Variance of the Squared Regression Coe¢ cient 
	This appendix derives the sample variance of the adjusted squared ordinary least squares regression coe¢ cient within the context of our model. Recall the expression (16) for the time-series estimated regression coe¢ cient: 
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	We compute each of the three components on the right-hand side of (A2) separately, beginning with the •rst. Note that: 
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	b 
	2 

	T TT
	X XX 
	(Bij)=B+2Bij mjt " it + mjtmj. " it " i.: (A4) t=1 t=1 .=1 
	b 
	2 
	ij 
	2 

	Inserting (A4) into the right-hand side of (A3) gives: 
	T TT
	X XX 
	E[((Bij)Łmj.ŁB)]=E[(2Bij mjt " it + mjtmj. " it " i. Łmj.)]: (A5) t=1 t=1 .=1 
	b 
	2 
	2
	2 
	" 
	i 
	ij 
	2 
	2
	2
	2 
	" 
	i 
	2

	cross terms: 
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	We will consider each of the six additive components above in order. For (A6), all the cross 
	-terms E[" it " i.];t=6 . have expectation of zero and all the pure terms E["]have expectation 
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	For (A7), there is one pure term where all four time indices are equal and three cross-product 
	terms where two pairs of time indices are equal: 
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	(A8) is in a simple form already. For (A9), the only nonzero expectation is the pure sum 
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	The last term in (A2) involves the covariance between (Bij)and .b. Taking the product of their de-meaned values: 
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	Appendix 2: Discussion of the Bootstrap Estimation of the Chi Statistic•s Estimation 
	Variance 
	This appendix discusses the application of random-case bootstrapping to our model. We use the technique to estimate the variance of our chi-statistic (24). 
	We have derived an exact formula for the variance of the chi-statistic under the assumptions of the model, but it is a function of the third and fourth moments of asset-speci•c returns, which are di¢ cult to estimate consistently from time-series regression residuals. The boostrapping approach to estimating var[.b] is natural in this context. Bootstrapping uses the full available sample to estimate this variance directly from the sample data. To implement this estimator we act as if the time series i.i..d. 
	-
	j
	-

	s. =[vec[R.];vec[F.]]: 
	The discrete set of potential state realizations for s. are assumed equal to our observed sample values, and each of these T random states is assumed to have equal probability : This is fully consistent with all of our factor model assumptions on returns. 
	T 
	1 

	Within the context of this discretized probability distribution we can derive the exact variance of the chi-statistic. We note that the chi-statistic is a function of a sample of T random realizations of the state process: 
	.b=f(s;:::;sT) 
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	for f(.)is the estimation formula for .b. Using the discretized probability distribution, the 
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	where the averages run across the set of all TŁtuples s;:::;sT: Computing (31) is straightforward but impractical since with T = 1200 (roughly our sample size) there are 1200terms in the averages. However the averages are easily and closely approximated by simply averaging over a large number of random draws of (s;:::;sT);we use 50;000draws in each subperiod. 
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	Table 1: Regression of estimated factors on the true factors in simulated panel data. 
	n – number of assets 
	n – number of assets 
	n – number of assets 
	Dependent variable 
	Independent variables, % significant t‐statistics 
	Average Adjusted R2

	TR
	f ‐natural rate factor 1,t 
	f ‐semi strong factor 2,t 

	3,000 
	3,000 
	f1,t 
	100.0% 
	100.0% 
	99.91 

	f2,t 
	f2,t 
	0.0% 
	5.5% 
	0.08 

	6,000 
	6,000 
	f1,t 
	100.0% 
	100.0% 
	99.95 

	f2,t 
	f2,t 
	0.0% 
	5.8% 
	0.08 

	21,000 
	21,000 
	f1,t 
	100.0% 
	100.0% 
	99.99 

	f2,t 
	f2,t 
	0.0% 
	5.4% 
	0.09 


	Notes on Table 1: The table shows results from regressions of each of the two estimated factors on the true factors using simulated panel data sets with one natural rate and one semi‐strong factor. f1,t and f2,t are the estimated factors; f and f are the true natural rate and semi‐strong factors, 
	
	

	1,t 2,t 
	respectively. The table reports the percentage of slope coefficients, over 10,000 simulations, which are significant at the 5% level, and well as the average Adjusted Rof the regressions. 
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	Table 2: Cross‐sectional averages of time‐series moments of daily returns before and after Winsorization 
	Table
	TR
	Mean 
	Variance 
	Skewness 
	Kurtosis 
	Minimum 
	Maximum 
	n; T 

	1989‐1993 
	1989‐1993 
	Before Winsorization 
	0.00106 
	0.00200 
	2.536 
	66.411
	 ‐87.51% 
	483.32% 
	4254; 1265 

	After Winsorization 
	After Winsorization 
	0.00106 
	0.00156 
	0.672 
	11.471
	 ‐18.75% 
	23.08% 

	1994‐1998 
	1994‐1998 
	Before Winsorization 
	0.00076 
	0.00163 
	2.1913 
	61.048
	 ‐86.02% 
	585.70% 
	4817; 1263 

	After Winsorization 
	After Winsorization 
	0.00081 
	0.00133 
	0.63243 
	10.194
	 ‐16.67% 
	20.83% 

	1999‐2003 
	1999‐2003 
	Before Winsorization 
	0.00097 
	0.00186 
	2.6552 
	80.335
	 ‐95.66% 
	1595.50% 
	4656; 1256 

	After Winsorization 
	After Winsorization 
	0.00095 
	0.00143 
	0.77538 
	10.919
	 ‐17.46% 
	22.92% 

	2004‐2008 
	2004‐2008 
	Before Winsorization 
	0.00005 
	0.00102 
	2.6821 
	100.94
	 ‐89.64% 
	600.00% 
	4313; 1259 

	After Winsorization 
	After Winsorization 
	0.00003 
	0.00072 
	0.53839 
	10.625
	 ‐12.90% 
	14.54% 

	2009‐2013 
	2009‐2013 
	Before Winsorization 
	0.00106 
	0.00090 
	3.6146 
	134.5
	 ‐82.96% 
	360.49% 
	4795; 1258 

	After Winsorization 
	After Winsorization 
	0.00092 
	0.00064 
	0.6271 
	11.236
	 ‐11.67% 
	14.29% 

	2014‐2018 
	2014‐2018 
	Before Winsorization 
	0.00020 
	0.00069 
	4.2352 
	210.85
	 ‐92.28% 
	677.49% 
	4904; 1258 

	After Winsorization 
	After Winsorization 
	0.00011 
	0.00043 
	0.33897 
	10.683
	 ‐9.93% 
	11.11% 


	Notes on Table 2: The table shows the first four moments of returns and the minimum and maximum return within each of the six five‐year subperiods, before and after Winsorization at the 0.5% and 99.5% fractiles. The last column shows the number of cross‐sectional (n) and time‐series (T) observations. CRSP daily returns in excess of the risk‐free rate for all securities with full five‐year return histories. 
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	Table 3: First four moments of time‐series factors 
	Table
	TR
	MKTRF 
	SMB 
	HML 
	USDSDR 
	GBPSDR 
	JPYSDR 
	KRWSDR 
	Oil 
	Gold 
	Alum 
	Lumber 

	1989‐1993 
	1989‐1993 
	Mean 
	0.00035
	 ‐0.00004 
	0.00009 
	0.00003 
	0.00019
	 ‐0.00004 
	0.00017 
	0.00018 
	0.00001
	 ‐0.00055 
	0.00093 

	Variance 
	Variance 
	0.00005 
	0.00002 
	0.00001 
	0.00002 
	0.00006 
	0.00004 
	0.00002 
	0.00056 
	0.00007 
	0.00022 
	0.00033 

	Skewness
	Skewness
	 ‐0.518
	 ‐0.496 
	0.463 
	0.088 
	0.008 
	0.091
	 ‐0.022
	 ‐2.376
	 ‐0.942 
	0.189 
	0.904 

	Kurtosis 
	Kurtosis 
	7.610 
	6.257 
	6.514 
	6.078 
	4.688 
	6.011 
	7.524 
	45.501 
	11.979 
	7.925 
	17.818 

	1994‐1998 
	1994‐1998 
	Mean 
	0.00063
	 ‐0.00032 
	0.00010 
	0.00003
	 ‐0.00010 
	0.00005 
	0.00034 
	0.00002
	 ‐0.00022 
	0.00011
	 ‐0.00007 

	Variance 
	Variance 
	0.00007 
	0.00003 
	0.00002 
	0.00001 
	0.00003 
	0.00006 
	0.00022 
	0.00039 
	0.00004 
	0.00015 
	0.00057 

	Skewness
	Skewness
	 ‐0.759
	 ‐0.041 
	0.060 
	0.577 
	0.293
	 ‐0.605 
	1.203 
	0.040
	 ‐0.115
	 ‐0.308 
	0.429 

	Kurtosis 
	Kurtosis 
	11.485 
	4.458 
	6.006 
	7.589 
	5.549 
	7.398 
	55.386 
	7.618 
	7.224 
	7.000 
	10.484 

	1999‐2003 
	1999‐2003 
	Mean
	 ‐0.00002 
	0.00040 
	0.00031 
	0.00004
	 ‐0.00002 
	0.00000 
	0.00003 
	0.00103 
	0.00033 
	0.00026 
	0.00030 

	Variance 
	Variance 
	0.00018 
	0.00006 
	0.00006 
	0.00001 
	0.00003 
	0.00004 
	0.00003 
	0.00055 
	0.00009 
	0.00010 
	0.00047 

	Skewness 
	Skewness 
	0.140
	 ‐0.734 
	0.060 
	0.284 
	0.044 
	0.002 
	0.390
	 ‐0.310 
	1.349 
	0.299 
	0.654 

	Kurtosis 
	Kurtosis 
	4.303 
	7.092 
	5.399 
	4.520 
	3.374 
	4.598 
	4.364 
	4.999 
	14.951 
	4.472 
	7.386 

	2004‐2008 
	2004‐2008 
	Mean
	 ‐0.00010 
	0.00001 
	0.00015 
	0.00003 
	0.00018
	 ‐0.00008 
	0.00010 
	0.00072 
	0.00067 
	0.00009
	 ‐0.00025 

	Variance 
	Variance 
	0.00018 
	0.00004 
	0.00004 
	0.00001 
	0.00003 
	0.00005 
	0.00007 
	0.00054 
	0.00018 
	0.00025 
	0.00048 

	Skewness
	Skewness
	 ‐0.077
	 ‐0.161 
	1.176
	 ‐0.143 
	0.511 
	0.072
	 ‐0.463 
	0.084
	 ‐0.058
	 ‐0.387 
	1.322 

	Kurtosis 
	Kurtosis 
	17.675 
	9.384 
	20.043 
	6.141 
	7.883 
	10.465 
	62.219 
	6.143 
	8.841 
	4.885 
	14.892 

	2009‐2013 
	2009‐2013 
	Mean 
	0.00076 
	0.00017
	 ‐0.00002 
	0.00001
	 ‐0.00014 
	0.00016
	 ‐0.00014 
	0.00098 
	0.00026 
	0.00032 
	0.00089 

	Variance 
	Variance 
	0.00016 
	0.00003 
	0.00005 
	0.00001 
	0.00003 
	0.00005 
	0.00005 
	0.00035 
	0.00014 
	0.00024 
	0.00060 

	Skewness
	Skewness
	 ‐0.179 
	0.166 
	0.236 
	0.186 
	0.074 
	0.084 
	0.460 
	0.007
	 ‐0.641
	 ‐0.027 
	1.448 

	Kurtosis 
	Kurtosis 
	6.881 
	4.806 
	10.807 
	7.157 
	4.275 
	4.916 
	10.118 
	6.265 
	7.201 
	4.473 
	11.694 

	2014‐2018 
	2014‐2018 
	Mean 
	0.00032
	 ‐0.00009
	 ‐0.00011
	 ‐0.00008 
	0.00013
	 ‐0.00004
	 ‐0.00004
	 ‐0.00020 
	0.00008 
	0.00014 
	0.00012 

	Variance 
	Variance 
	0.00007 
	0.00003 
	0.00003 
	0.00001 
	0.00003 
	0.00003 
	0.00002 
	0.00047 
	0.00007 
	0.00014 
	0.00034 

	Skewness
	Skewness
	 ‐0.44598 
	0.19017 
	0.54189
	 ‐0.40807 
	1.4283
	 ‐0.71277 
	0.03695 
	0.32194 
	0.31169 
	0.33381
	 ‐0.17648 

	Kurtosis 
	Kurtosis 
	6.4183 
	3.842 
	4.7662 
	7.5632 
	20.953 
	10.716 
	3.5675 
	5.6263 
	5.5637 
	6.0374 
	7.8895 


	Notes on Table 3: The table shows the first four moments of the eleven factors within each of the six five‐year subperiods. MKTRF, SMB, and HML are the Fama‐French market, size and value factors; USDSDR, GBPSDR, JPYSDR and KRWSDR are the percentage change in the US dollar, British Pound Sterling, 
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	Japanese Yen, and Korean Won in units of IMF Special Drawing Rights; Oil, Gold, Aluminum and Lumber are the percentage changes in the prices of these commodities. See text for details of data sources. 
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	Table 4: Cross‐sectional average factor betas and their t‐statistics 
	Table
	TR
	MKTRF 
	SMB 
	HML 
	USDSDR 
	GBPSDR 
	JPYSDR 
	KRWSDR 
	Oil 
	Gold 
	Alum 
	Lumber 
	Rbar2 

	1989‐1993 
	1989‐1993 
	0.803 
	0.671 
	0.225 
	‐0.009
	 ‐0.003 
	‐0.016 
	0.004
	 ‐0.006 
	0.007 
	0.005 
	0.003 
	94.42% 

	126.835 
	126.835 
	75.835 
	20.410 
	‐0.506
	 ‐0.619 
	‐2.725 
	0.290
	 ‐4.127 
	1.749 
	2.098 
	1.654 

	1994‐1998 
	1994‐1998 
	0.843 
	0.659 
	0.291 
	0.006 
	0.000
	 ‐0.002 
	‐0.006 
	0.004 
	0.009 
	0.007 
	0.003 
	95.35% 

	126.631 
	126.631 
	77.063 
	22.969 
	0.423 
	0.046
	 ‐0.463 
	‐2.503 
	1.890 
	1.415 
	2.300 
	1.820 

	1999‐2003 
	1999‐2003 
	0.726 
	0.446 
	0.337 
	0.034
	 ‐0.011
	 ‐0.015 
	‐0.063 
	0.007 
	0.013 
	0.025 
	0.010 
	93.16% 

	105.838 
	105.838 
	45.254 
	27.443 
	1.287
	 ‐0.764
	 ‐1.397 
	‐4.371 
	2.608 
	1.811 
	3.788 
	3.166 

	2004‐2008 
	2004‐2008 
	0.790 
	0.449 
	0.158 
	0.071
	 ‐0.030 
	0.003 
	‐0.083 
	0.021 
	0.006 
	0.022 
	0.005 
	97.31% 

	157.293 
	157.293 
	48.342 
	17.563 
	3.697
	 ‐2.858 
	0.274 
	‐12.389 
	7.950 
	1.186 
	5.898 
	1.857 

	2009‐2013 
	2009‐2013 
	0.805 
	0.410 
	0.159 
	0.105
	 ‐0.041 
	‐0.002 
	‐0.045 
	0.019 
	0.021 
	0.012 
	0.004 
	98.30% 

	141.050 
	141.050 
	45.772 
	19.549 
	6.103
	 ‐4.555 
	‐0.226 
	‐6.462 
	6.180 
	5.036 
	3.314 
	1.911 

	2014‐2018 
	2014‐2018 
	0.733 
	0.417 
	0.129 
	0.066
	 ‐0.043 
	‐0.003 
	‐0.062 
	0.030 
	0.054 
	0.011 
	0.003 
	96.51% 

	132.515 
	132.515 
	54.598 
	15.692 
	3.772
	 ‐6.152 
	‐0.318 
	‐7.681 
	14.665 
	9.614 
	3.160 
	1.434 


	Notes on Table 4: The table shows the regression coefficients (first row in each subperiod) and their t‐statistics (second row in each subperiod) from the regression of the equally‐weighted asset return on the eleven factors and an intercept. Numbers in bold are significantly different from zero with at the 5% confidence level. 
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	Table 5: Adjusted mean‐squared beta estimates and their z‐statistics 
	Table
	TR
	MKTRF 
	SMB 
	HML 
	USDSDR 
	GBPSDR 
	JPYSDR 
	KRWSDR 
	Oil 
	Gold 
	Alum 
	Lumber 

	1989‐1993 
	1989‐1993 
	0.844 
	0.647 
	0.164 
	0.035 
	0.005 
	0.004 
	0.025 
	0.001 
	0.019 
	‐0.001 
	0.000 

	59.683 
	59.683 
	28.359 
	7.060 
	0.367 
	1.550 
	0.884 
	0.266 
	1.921 
	4.976 
	‐0.612
	 ‐0.274 

	1994‐1998 
	1994‐1998 
	0.873 
	0.627 
	0.259 
	0.003 
	0.000 
	0.004
	 ‐0.001 
	0.001 
	0.040 
	0.001 
	0.000 

	48.788 
	48.788 
	26.927 
	12.156 
	0.166
	 ‐0.070 
	1.279
	 ‐0.433 
	1.947 
	7.404 
	0.615 
	0.109 

	1999‐2003 
	1999‐2003 
	0.753 
	0.422 
	0.310 
	0.011 
	0.005 
	0.004 
	0.023 
	0.003 
	0.023 
	0.003 
	0.000 

	50.787 
	50.787 
	18.841 
	16.105 
	0.490 
	0.888 
	0.933 
	2.149 
	5.062 
	5.753 
	1.681 
	0.126 

	2004‐2008 
	2004‐2008 
	0.791 
	0.469 
	0.183 
	0.064 
	0.022 
	0.017 
	0.038 
	0.009 
	0.021 
	0.004 
	0.000 

	56.175 
	56.175 
	23.876 
	13.057 
	2.569 
	2.807 
	2.753 
	2.599 
	8.575 
	7.270 
	2.844 
	1.015 

	2009‐2013 
	2009‐2013 
	0.887 
	0.431 
	0.189 
	0.101 
	0.022 
	0.008 
	0.020 
	0.007 
	0.036 
	0.002 
	0.000 

	51.236 
	51.236 
	32.853 
	15.165 
	4.696 
	4.209 
	2.787 
	3.271 
	6.648 
	12.816 
	3.001 
	1.109 

	2014‐2018 
	2014‐2018 
	0.803 
	0.441 
	0.235 
	0.050 
	0.016 
	0.015 
	0.017 
	0.016 
	0.113 
	0.002 
	0.000 

	55.153 
	55.153 
	39.644 
	26.888 
	3.550 
	4.451 
	4.075 
	4.151 
	13.434 
	16.428 
	2.979 
	‐0.020 


	Notes on Table 5: The table shows the adjusted mean‐squared beta estimates (first row in each subperiod) and their z‐statistics (second row in each subperiod) for the test that the mean‐squared beta of the factor is greater than zero. Numbers in bold are significantly greater than zero with 95% confidence. 
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	Table 6: Panel regression marginal R2’s for each factor 
	Table
	TR
	MKTRF 
	SMB 
	HML 
	USDSDR 
	GBPSDR 
	JPYSDR 
	KRWSDR 
	Oil 
	Gold 
	Alum 
	Lumber 
	Stacked R‐squared 

	1989‐1993 
	1989‐1993 
	1.511% 
	0.594% 
	0.097% 
	0.008% 
	0.016% 
	0.009% 
	0.008% 
	0.035% 
	0.080%
	 ‐0.007%
	 ‐0.004% 
	2.640% 

	1994‐1998 
	1994‐1998 
	1.996% 
	0.868% 
	0.164% 
	0.002%
	 ‐0.001% 
	0.015%
	 ‐0.009% 
	0.022% 
	0.098% 
	0.006% 
	0.001% 
	4.109% 

	1999‐2003 
	1999‐2003 
	4.569% 
	1.237% 
	0.589% 
	0.004% 
	0.007% 
	0.011% 
	0.031% 
	0.090% 
	0.128% 
	0.018% 
	0.001% 
	9.552% 

	2004‐2008 
	2004‐2008 
	10.670% 
	1.850% 
	0.769% 
	0.059% 
	0.065% 
	0.065% 
	0.288% 
	0.441% 
	0.295% 
	0.085% 
	0.016% 
	22.726% 

	2009‐2013 
	2009‐2013 
	7.175% 
	1.414% 
	0.753% 
	0.091% 
	0.071% 
	0.036% 
	0.109% 
	0.199% 
	0.535% 
	0.053% 
	0.021% 
	28.821% 

	2014‐2018 
	2014‐2018 
	8.144% 
	2.342% 
	1.075% 
	0.051% 
	0.100% 
	0.058% 
	0.080% 
	1.226% 
	1.103% 
	0.048% 
	0.000% 
	21.674% 


	Notes on Table 6: The table shows the marginal R‐squared found by deleting each factor individually from the stacked regression model. The last column is the R‐squared of the stacked regression model; see the text for the precise formulas. 
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	Table 7: Test for natural rate versus semi‐strong factors (z‐statistics) 
	Table
	TR
	MKTRF 
	SMB 
	HML 
	USDSDR 
	GBPSDR 
	JPYSDR 
	KRWSDR 
	Oil 
	Gold 
	Alum 
	Lumber 

	1989‐1993 
	1989‐1993 
	53.000 
	17.025 
	‐8.847
	 ‐2.981
	 ‐25.246
	 ‐25.791
	 ‐2.364
	 ‐14.527
	 ‐13.513
	 ‐27.095
	 ‐23.122 

	1994‐1998 
	1994‐1998 
	45.576 
	20.222 
	0.681
	 ‐22.739
	 ‐24.545
	 ‐20.926
	 ‐14.473
	 ‐24.635
	 ‐13.166
	 ‐31.582
	 ‐25.382 

	1999‐2003 
	1999‐2003 
	49.085 
	15.188 
	12.007 
	‐23.735
	 ‐27.380
	 ‐21.214
	 ‐14.140
	 ‐11.865
	 ‐6.900
	 ‐25.959
	 ‐28.110 

	2004‐2008 
	2004‐2008 
	55.069 
	19.973 
	8.296 
	‐8.282
	 ‐7.378
	 ‐6.449
	 ‐0.211 
	3.566 
	2.055 
	‐5.956
	 ‐18.687 

	2009‐2013 
	2009‐2013 
	50.343 
	27.261 
	11.290 
	‐7.220
	 ‐9.734
	 ‐14.946
	 ‐5.463
	 ‐0.120 
	6.684 
	‐9.493
	 ‐14.095 

	2014‐2018 
	2014‐2018 
	53.780 
	34.773 
	20.671 
	‐13.643
	 ‐7.976
	 ‐7.995
	 ‐11.051 
	10.862 
	13.279 
	‐14.366
	 ‐32.988 


	Notes on Table 7: The table shows the z‐statistics for the test that the mean‐square beta of the factor is significantly above the natural‐rate benchmark value. See the text for the definition of the natural rate benchmark value. Numbers in bold are significantly greater than zero. 
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	Table 8: Stepwise Regression Using the Akaike Information Criterion 
	Table
	TR
	MKTRF 
	SMB 
	HML 
	USDSDR 
	GBPSDR 
	JPYSDR 
	KRWSDR 
	Oil 
	Gold 
	Alum 
	Lumber 

	1989‐1993 
	1989‐1993 
	* 
	* 
	* 
	5 
	6 
	4 
	3 
	* 
	* 
	2 
	1 

	1994‐1998 
	1994‐1998 
	* 
	* 
	* 
	5 
	4 
	6 
	2 
	7 
	* 
	3 
	1 

	1999‐2003 
	1999‐2003 
	* 
	* 
	* 
	2 
	3 
	5 
	6 
	* 
	* 
	4 
	1 

	2004‐2008 
	2004‐2008 
	* 
	* 
	* 
	* 
	* 
	* 
	* 
	* 
	* 
	* 
	1 

	2009‐2013 
	2009‐2013 
	* 
	* 
	* 
	* 
	* 
	* 
	* 
	* 
	* 
	* 
	1 

	2014‐2018 
	2014‐2018 
	* 
	* 
	* 
	* 
	* 
	* 
	* 
	* 
	* 
	* 
	1 


	Notes on Table 8: The table shows the results of stepwise regression using the AIC benchmark to select factors with positive explanatory power. Asterisks denote factors which pass the AIC test for inclusion at all steps. The integers denote the step order at which other factors were dropped (1 denotes the factor dropped after the first step, and so on). 
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	Table 9: Time series regression fit of each statistically estimated factor using the eleven pre‐specified factors and vice‐versa 
	Panel A: Regression fit of each pre‐specified factor using twenty statistically estimated factors 
	Panel A: Regression fit of each pre‐specified factor using twenty statistically estimated factors 
	Panel A: Regression fit of each pre‐specified factor using twenty statistically estimated factors 

	TR
	MKTRF 
	SMB 
	HML 
	USDSDR 
	GBPSDR 
	JPYSDR 
	KWRSDR 
	Oil 
	Gold 
	Silver 
	Alum 

	1989‐1993 
	1989‐1993 
	87.56% 
	34.63% 
	32.21% 
	1.27% 
	0.03% 
	0.89% 
	0.51% 
	9.86% 
	24.31% 
	0.70%
	 ‐0.09% 

	1994‐1998 
	1994‐1998 
	90.12% 
	52.91% 
	59.10% 
	4.10% 
	0.92% 
	3.75%
	 ‐0.28% 
	7.50% 
	33.65% 
	0.96% 
	0.42% 

	1999‐2003 
	1999‐2003 
	94.23% 
	74.91% 
	71.09% 
	1.81% 
	4.66% 
	3.03% 
	4.31% 
	19.54% 
	46.72% 
	6.13% 
	1.05% 

	2004‐2008 
	2004‐2008 
	98.14% 
	81.96% 
	71.55% 
	10.61% 
	15.79% 
	26.44% 
	25.75% 
	46.79% 
	63.09% 
	20.19% 
	1.41% 

	2009‐2013 
	2009‐2013 
	98.63% 
	85.00% 
	83.18% 
	15.58% 
	18.48% 
	18.10% 
	12.54% 
	50.48% 
	70.40% 
	29.32% 
	4.78% 

	2014‐2018 
	2014‐2018 
	98.28% 
	89.01% 
	87.06% 
	4.09% 
	16.26% 
	34.10% 
	9.35% 
	62.05% 
	68.41% 
	10.89% 
	1.75% 


	Panels B: Regression fit of each statistically estimated factor using the eleven pre‐specified factors (statistical factors one to ten) 
	Table
	TR
	APC1 
	APC2 
	APC3 
	APC4 
	APC5 
	APC6 
	APC7 
	APC8 
	APC9 
	APC10 

	1989‐1993 
	1989‐1993 
	96.78% 
	37.98% 
	0.73% 
	6.60% 
	0.11% 
	13.72%
	 ‐0.26%
	 ‐0.02% 
	0.76% 
	1.69% 

	1994‐1998 
	1994‐1998 
	95.83% 
	33.87% 
	39.19% 
	30.96% 
	0.90% 
	0.85% 
	1.01%
	 ‐0.06% 
	3.71% 
	1.26% 

	1999‐2003 
	1999‐2003 
	93.30% 
	53.22% 
	18.72% 
	11.34% 
	19.19% 
	40.74% 
	8.18% 
	37.60% 
	1.49% 
	0.81% 

	2004‐2008 
	2004‐2008 
	98.63% 
	57.54% 
	15.01% 
	58.62% 
	36.49% 
	27.54% 
	5.28% 
	6.54% 
	13.34% 
	8.46% 

	2009‐2013 
	2009‐2013 
	98.82% 
	46.47% 
	63.46% 
	43.92% 
	35.02% 
	9.10% 
	21.85% 
	16.14% 
	9.48% 
	6.88% 

	2014‐2018 
	2014‐2018 
	96.43% 
	65.52% 
	65.99% 
	44.43% 
	62.59% 
	9.07% 
	6.29% 
	12.24% 
	21.80% 
	4.28% 
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	Panels C: Regression fit of each statistically estimated factor using the eleven pre‐specified factors (statistical factors eleven to twenty) 
	Table
	TR
	APC11 
	APC12 
	APC13 
	APC14 
	APC15 
	APC16 
	APC17 
	APC18 
	APC19 
	APC20 

	1989‐1993
	1989‐1993
	 ‐0.59% 
	0.09% 
	0.69% 
	1.11% 
	0.82%
	 ‐0.28% 
	0.10% 
	0.24% 
	0.69% 
	1.53% 

	1994‐1998 
	1994‐1998 
	3.99% 
	1.80% 
	0.39% 
	1.20% 
	0.06% 
	1.47% 
	0.92% 
	0.13% 
	1.56% 
	0.12% 

	1999‐2003 
	1999‐2003 
	0.25% 
	2.82% 
	0.21% 
	0.15% 
	1.46% 
	0.07% 
	0.09% 
	0.62% 
	0.09%
	 ‐0.52% 

	2004‐2008 
	2004‐2008 
	10.10% 
	12.40% 
	7.89% 
	2.33% 
	3.44% 
	3.13% 
	7.50% 
	4.13% 
	3.03% 
	1.91% 

	2009‐2013 
	2009‐2013 
	2.62% 
	1.14% 
	6.84% 
	4.12% 
	4.25% 
	0.98% 
	2.24% 
	3.72% 
	0.42% 
	5.26% 

	2014‐2018 
	2014‐2018 
	1.49% 
	2.54% 
	3.35% 
	1.60% 
	3.07% 
	1.53% 
	7.95% 
	3.47% 
	4.38% 
	2.31% 


	Notes on Table 9: The table shows the Adjusted Rfrom the time‐series regression of each factor on the full set of alternative factors and an intercept. In Panel A the dependent variable in the regression is one of the eleven pre‐specified factors and the explanatory variables are the twenty statistically estimated factors; in panels B and C the dependent variable is one of the statistically‐estimated factors and the explanatory variables are the eleven pre‐specified factors. 
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