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Abstract

The Dynamic Conditional Correlation (DCC) model is one of the leading ap-
proaches in the literature for modeling time-varying correlation matrices. In the
DCC framework the conditional correlation matrix is modeled as a function of the
so called pseudo-correlation matrix, a symmetric positive-definite proxy of the con-
ditional correlation matrix that, however, is not guaranteed to have a unit diagonal.
Conditional correlations are then obtained by appropriately rescaling this matrix.
In this work we propose a novel DCC specification based on an alternative normal-
ization of the pseudo-correlation matrix called Projected DCC (Pro-DCC). Rather
than rescaling, we propose projecting the pseudo-correlation matrix onto the set of
correlation matrices in order to obtain the correlation matrix closest to that pseudo-
correlation matrix. A simulation study shows that projecting performs better than
rescaling when the dimensionality of the correlation matrix is large and the degree
of dependence is high. An empirical application to the constituents of the S&P 100
shows that the proposed methodology performs favourably to the standard DCC
in an out-of-sample asset allocation exercise.
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1 Introduction

Estimating and forecasting the time-varying covariance matrix of asset returns is key for
several applications in finance including asset allocation, risk management and systemic
risk measurement. Over the years, the GARCH-DCC methodology of [Engle (2002) has
established itself as one of the leading paradigms in the literature due to its flexibility and
ease of estimation (see also Engle and Sheppard, [2001)). In a nutshell, the GARCH-DCC
approach consists in modeling separately the conditional variances and the conditional
correlation matrix. The conditional variances are modeled using GARCH whereas the
conditional correlation matrix is modeled using the Dynamic Conditional Correlation
(DCC) model. Recent research in the literature that is based on GARCH-DCC includes
Engle, Ledoit, and Wolf| (2019), Brownlees and Engle (2017) and De Nard, Ledoit, and
Wolf (2018)).

A key aspect of the DCC methodology is that the conditional correlation matrix is
modeled as a function of the so called pseudo-correlation matrix. The pseudo-correlation
matrix is a symmetric positive definite proxy of the conditional correlation matrix that,
crucially, is not guaranteed to be a proper correlation matrix as it does not have a
unit diagonal (almost surely). In order to obtain correlations, the pseudo-correlation
matrix has to be appropriately normalized, and the standard strategy followed in the
literature consists in rescaling this matrix (Englel [2002; Tse and Tsui, 2002; Aielli, 2013).
Engle (2009, Section 4.3) contains a discussion and a comparison of different rescaling
approaches used in the literature. Despite the fact that rescaling is natural and commonly
employed, it is unclear whether such an approach is in any sense optimal.

In this work we propose a modification of the standard DCC model based on an
alternative normalization procedure of the pseudo-correlation matrix. Our modification
consists in projecting the pseudo-correlation matrix onto the set of correlation matrices
rather than rescaling it. In other words, we cast the normalization step of the pseudo-
correlation matrix as a nearest-correlation matrix problem, that is the problem of finding
the closest correlation matrix to a given pseudo-correlation matrix on the basis of an

appropriate divergence function.



We begin this work by defining a class of projections for pseudo-correlation matrices.
To do so, we first introduce the notion of Bregman divergence between two symmetric
positive definite matrices (Bregman, 1967; Banerjee, Merugu, Dhillon, and Ghosh, 2005;
Dhillon and Tropp, [2007; Patton) 2018)). This family of divergences constitutes a rich
collection of divergence functions that includes many familiar losses commonly encoun-
tered in the covariance estimation literature such as the Stein and square (Frobenius)
losses (Stein, |1986; Dey and Srinivasan, |1985; Pourahmadi, 2013). We then define the
projection of a pseudo-correlation matrix onto the set of correlation matrices as the corre-
lation matrix that minimizes the Bregman matrix divergence with respect to that pseudo-
correlation matrix. It is straightforward to establish that such a projection exists and is
unique. Within this broad class of projections we focus in particular on the one implied
by Stein’s loss, which we name Stein’s projection. Stein’s loss is a natural loss function
for covariance matrices that is related to the multivariate Gaussian log-likelihood, it is
widely used (Ledoit and Wolf, 2018b), and it turns out that in our setting it delivers a
fairly tractable projection. In fact, we derive a closed form expression to compute Stein
projections in the two-dimensional case and an efficient iterative algorithm for the generic
n-dimensional case.

We then introduce a novel DCC specification based on our pseudo-correlation matrix
projection called Projected DCC (Pro-DCC). Simply put, the Pro-DCC corresponds to
the classic DCC of Engle (2002) with the rescaling step of the pseudo-correlation matrix
replaced by our proposed projection. In particular, in this work we focus on a version of
the Pro-DCC based on Stein’s projection. We acknowledge that alternative projections
may be considered as well. In order to estimate the Pro-DCC we propose to follow the
same multi-step procedure which is used to estimate other DCC-type models.

A simulation study is carried out to assess the performance of our projection-based
methodology. We carry out two exercises. In the first exercise we simulate i.i.d. data
from a multivariate Gaussian distribution with mean zero and covariance parameter given
by a correlation matrix. We then estimate the correlation matrix of the simulated data

by rescaling the sample covariance matrix (i.e. the sample correlation matrix) and by



projecting the sample covariance matrix onto the set of correlation matrices using Stein’s
projection. We find that the projection-based approach performs better than rescaling
in terms of correlation estimation accuracy. Gains are greater when the dimensionality
is larger and they are maximized when the cross-sectional dependence is high but not
extreme. In the second exercise we compare the out-of-sample forecasting accuracy of
DCC and Pro-DCC under misspecification, that is when the DGP differs from both
models. In particular, here we consider the exact same set of DGPs as in the simulation
study of [Engle (2002). We find that Pro-DCC outperforms standard DCC for all the
DGPs proposed in [Engle (2002) except when the correlation process is constant.

A Global Minimum Variance Portfolio (GMVP) exercise using the constituents of the
S&P 100 is used to measure the performance of Pro-DCC. The design of the exercise is
close in spirit to the one of De Nard et al|(2018]). We carry out two empirical exercises.
In the first exercise we consider 1000 pairs of assets from the set of S&P 100 constituents
and for each pair we carry out a GMVP forecasting exercise. We construct GMVP on
the basis of the DCC, Pro-DCC as well as a DCC model in which we do not apply any
normalization to the pseudo-correlation matrix (i.e. we take the correlation matrix equal
to the pseudo-correlation matrix). Results show that all specifications have a similar
out-of-sample performance. In the second exercise we carry out, again, a GMVP exercise
using the entire set of assets. In this second exercise we consider the Pro-DCC, DCC,
DCC with no rescaling and scalar VECH. We consider both the standard versions of these
models as well as the versions based on nonlinear shrinkage. Results show that forecasts
based on the standard and nonlinear shrinkage variant of the Pro-DCC achieve the best
out-of-sample performance.

This paper is related to different strands of the literature. First, it is related to the
literature on multivariate volatility models and the DCC. Important contributions in this
area include Bollerslev| (1990) |Pakel, Shephard, Sheppard, and Engle| (2018). Classic
surveys of the literature on multivariate volatility modeling are Bauwens, Laurent, and
Rombouts (2006) and [Silvennoinen and Terasvirtal (2008]). Second, it is related to the

literature on matrix projections based on Bregman divergences and the nearest-correlation



matrix problem. Contributions in this area include the work of Higham| (2002), |Dhillon
and Tropp| (2007) and Kulis, Sustik, and Dhillon/ (2009)).

The rest of the paper is structured as follows. Section [2| introduces the methodology.
Section [3| contains the simulation study. Section 4| presents the empirical application.

Section [5| concludes the paper. All proofs are collected in the Appendix.

2 Methodology

In this section we first concisely review the DCC model of Engle (2002)) and we then
introduce the Pro-DCC model.

2.1 The DCC Model

Let r = (r1¢,...,7n¢)" denote an n-dimensional vector of log returns observed at time ¢,
for tpanging from 1 to T'. The key object of interest of this work is the conditional covari-
ance matrix of returns given past information, that is ¥, = Cov,_;(r;). The GARCH-
DCC framework is based on the following factorization of the conditional covariance

matrix

X =D/:R,D; ¢

where D, is a nyx nyliagonal matrix of conditional volatilities (standard deviations) and
R, is the nyx nwonditional correlation matrix.

The conditional volatility matrix D, is modeled using some suitable GARCH speci-
fication. Assuming, for instance, GARCH(1,1) dynamics we have that the i-th diagonal

element of D;, which we denote by d;, is specified as
d?t = w; + airigt—l + bidzzt—l a0

where w;, a; and b; are the GARCH(1,1) coefficients satisfying w; >0, a; >0, b; > 0 and
a; + b; <77ll.

The conditional correlation matrix Ry is modeled using the DCC specification. The



DCC models the correlation process as a function of the so-called de-volatilized returns
that are defined as ¢, = D;'r,. In the DCC framework the focus is on modeling the

so-called pseudo-correlation matrix Q; as

Q=01- — )CH+ g+ Q10 (1)

where and are scalar parameters and C is an niyx nypositive definite matrix. It is
straightforward to see by recursive substitution that

%CJF Y e W (2)
=0

Q: =

A crucial aspect of the DCC model on which we build upon in the next section is that the
pseudo-correlation matrix is not guaranteed to be a correlation matrix. In particular, it
is clear from that Q; is symmetric positive definite but (generally) not unit diagonal.
Thus, an appropriate normalization step is required to obtain a correlation matrix. The

standard approach consists of rescaling the pseudo-correlation matrix, that is

R, = diag(Q;)"/? Q; diag(Q;)"/* 1 (3)

where for an niyx nymatrix A, the notation diag(A) denotes the nyx nydiagonal matrix
with the diagonal of A.

The GARCH-DCC family of models is estimated using a multi-step procedure moti-
vated by a QML argument. The first step consists of estimating the conditional standard
deviation matrix D, by estimating nyunivariate GARCH models. Next, the C matrix is
estimated by correlation targeting as the sample second moment of the estimated stan-

dardized residuals, that is

where &, = r;4/6;; with 6;; being the estimated volatility of the first step. Last, the
DCC parameters are obtained by maximizing the (Gaussian) quasi log-likelihood.

It is important to mention that the correlation targeting step has been subject to



some criticism. Albeit being intuitive, Engle’s model formulation has some subtle issues
first noted by |Aielli (2013)). The model “fixes the bug” of the DCC however the model
dynamics are somehow not intuitive. Empirically, this model is found to perform similarly

to the standard uncorrected DCC.

2.2 The Projected DCC Model

In this section we propose a novel DCC specification based on an alternative normal-
ization procedure. Rather than rescaling the pseudo-correlation matrix as in equation
we propose projecting it onto the space of correlation matrices. In other words, we
cast the problem of rescaling the pseudo-correlation matrix as a nearest-correlation ma-
trix problem, that is finding the closest correlation matrix to a given pseudo-correlation
matrix. In order to introduce our projection-based model some additional machinery is
required.

We begin by introducing the notion of Bregman divergence for symmetric positive
definite matrices, which is used in this work to measure nearness between two symmetric

positive definite matrices.

Definition (Bregman Divergence). Let S} be the set of nyx nisymmetric positive semi-
definite matrices. Given a strictly convex and differentiable function ¢y S — R, we

define the Bregman matrix divergence dy : S x 1i(S") — [0,10) as

d¢(M1,M2) = ¢(M;) — ¢(My) — tr(Vp(Mz)' (M; — My)) ¢

Note that this can be seen as the difference between the function ¢wevaluated at M,
and its first-order Taylor approximation around Mjs. Bregman divergences are a class
of tractable divergences that enjoy a number of useful properties and are popular in the
Machine Learning literature (Cesa-Bianchi and Lugosi, [2006). Bregman divergences are
always positive, like distances, and are zero only when their arguments coincide. Unlike
distances, they do not generally satisfy the triangle inequality and are only symmetric

when ¢uis quadratic. Furthermore, they are always convex with respect to their first



argument and satisfy a generalized Pythagorean property (Dhillon and Tropp, [2007; |Kulis
et al), 2009). Banerjee (2005) establishes the existence of a bijection between Bregman
divergences and regular exponential families. If we set ¢(M) = —logdet(M) then we

have Stein’s loss,
d¢(M1,M2) = tI‘(Mle_l) —1In det(MlMgl) —n ,¢ (4)

which can also be interpreted as the negative of the zero mean n-dimensional Gaussian
log-likelihood (up to a constant). If we set ¢(M) = |[M]|% then we have the squared

(Frobenius) loss

dg(My,M,) = tr[(My — M,)?] ¢ (5)

Finally, if we set ¢(M) = tr(Mlog M) then we have the Von Neumann loss
dg(My,M3) = tr(M; log M; — M, log My — M, + My) .4 (6)
We use Bregman divergences to introduce the following general class of projections

for symmetric positive definite matrices onto the set of correlation matrices.

Lemma 1. Let Q be a symmetric positive definite matriz and let C" denote the set of

correlation matrices. Define the Bregman projection Py(Q) as
Ps(Q) = arg min dy(R.Q) ¢

Then we have that P,(Q) exists and is unique.

We point out that existence and uniqueness of the Bregman projection follow from
the fact that the set of correlation matrices is a convex set and that Bregman divergence

is a convex function with respect to its first argument.



Finally, we introduce the Pro-DCC(1,1) as the

Q = (1— — C+ a6+ Qi

R, = P¢(Qt) @b

In other words, the Pro-DCC replaces the rescaling equation of the DCC with a
projection. We point out that the Pro-DCC depends on a choice of an appropriate
divergence function ¢(-). A natural choice for such a projection that also turns out to
be computationally convenient is projection based on Stein’s loss (cf ) and the Von
Neumann. We call these projections, respectively, Stein’s projection and Von Neumann
projection for short.

A number of comments are in order. As discussed at the end of section 2.1, the origi-
nal formulation of the DCC model was criticized in (Aielli, [2013)) and a corrected version
of the model was introduced. In particular, the correction involves replacing the stan-
dardized residuals ¢, by Q}¢;, where Q = diag(Q,)'/2. The mathematical justification of
this correction is that the second moment of the innovations ¢; is in general not equal to
the matrix C, so Q; cannot be thought of as a linear MGARCH process. Instead, in the
corrected DCC specification, we have that E[Q; e, Q;] = E[Q,], and it is justified to esti-
mate C via correlation targeting, i.e. C = 15, Qiee,Q;. Crucially, this holds because
in the DCC model E;_[¢€}] = R; = diag(Q;)~*/?Q; diag(Q;)~'/2. Unfortunately, in the
Pro-DCC specification the last identity does not hold, hence it is not justified to use the
Aielli correction here. Therefore, we do not use the Aielli correction in the Pro-DCC
methodology. As a sanity check, we carry out a simulated exercise where the DGP is
Pro-DCC, and we observe that using Aielli’s estimator produces virtually the same loss
as using standard correlation targeting. We show this in Appendix [B]

For high-dimensional settings, we propose to estimate the model by composite likeli-
hood as in [Pakel et al| (2018). However, we note that in general, projecting the pseudo-
correlation of any 2 assets itand jiis not equal to the (i,4) entry of the projection of the

entire matrix Py(Q,). This is because the projection takes into account the full correlation



structure and not just the correlation between assets itand j. An exception occurs when
we use the Stein’s projection of a pseudo-correlation matrix with a block-diagonal struc-
ture: in that case, the projection preserves the original structure and one can equivalently
compute the projection block by block.

It is widely known that the sample correlation matrix performs poorly when the
concentration ratio n/Tis large -see Lecture 4 in [Stein| (1986)). For that reason, we
consider using a nonlinear shrinkage estimator to rectify the in-sample bias of the sample

correlation as in Ledoit and Wolf] (2018a)).

2.2.1 Computing the Bregman Projection

In order to apply the Pro-DCC in practice it is key to be able to compute the projections
in a fairly cheap way. We derive a closed-form expression for the projection in the
2 dimensional case for the Stein and von Neumann losses and we provide an efficient
algorithm for the computation of the projection in the general nwlimensional case for the
Stein projection.

The following two lemmas derive the closed form of the projection.

Lemma 2. Let Q be a 2 x 2 symmetric positive definite matriz. Consider the Bregman
Projection of Q onto the set of correlation matrices under Stein’s Loss. The unique

minimizer of this problem is given by

= R (7)
k=0

where k= — de‘?ﬁq).

Lemma 3. Let Q be a 2 x 2 symmetric positive definite matriz. Consider the Bregman
Projection of Q onto the set of correlation matrices under the Von Neumann Divergence.

Let In(-) denote the natural logarithm, and log(-) the matrix logarithm.E] Then, the unique

!For symmetric positive definite matrices, the matrix logarithm is log Q = Ulog AU’, where UAU’ is
the eigendecomposition of Q and log A involves taking the natural logarithm of the eigenvalues.

10



minimizer of this problem is given by

pie= tanh(k)

where kydenotes the (2,%)-entry of log QE|

It is important to emphasize that the optimal projection in these two cases looks very
different from rescaling, thus implying that rescaling, at least as far as the Stein and
Von Neumann divergences are concerned, is not optimal. We point out that we were not
able to obtain informative closed form expressions for n >¢2. However, computations
show that in general the optimal projection of each correlation pair depends on the entire
covariance matrix (not just that pair), implying, again, that rescaling cannot be optimal.

In the n-dimensional case we can derive an algorithm. Let Q be an nyx niymmetric
positive definite matrix and dg(-,4) be a matrix Bregman divergence with strictly convex
function ¢(-).

Computing the Bregman projection P4(Q) is equivalent to solving the following op-

timization problem with niaffine constraints (one for each diagonal element of R):
m&n ds(R, Q) subject to tr(Re;el) = 1 for all ive= 1,0ahlfah.1) (8)

where e; stands for the i*" canonical basis vector.

Let C; be the set of n-dimensional symmetric positive definite matrices whose ‘"
diagonal element is unity. Clearly, the set of correlation matrices C* = N, C,.

To solve this problem, we use Bregman’s cyclic projections method. Thif is an iterative

algorithm in which one must project successively onto each basic constraint set C; in the

hope that the sequence of iterates will converge to the Bregman projection onto the

1ln)\1
1+ 37

+ —2In22 where

2Computations show that kvhas the following analytical expression k= -
2

1 i
A= 5 | + g2 + (—1)° 1\/((]11 —q22)% + 4Q%2]

w= —2q12/%W g1 — q22 + (—U%/f]n —q22)% + 4(]%2)

and = 1,2.

11



intersection C".
Theorem 1 establishes the correctness of Bregman’s algorithm. We refer to [Dhillon

and Tropp (2007) for a proof.

Theorem 1. Suppose
(i) ¢iis a convex function of Legendre type.
(ii) the domain of the conjugate function of ¢ifis an open set.
(iii) Cy, ..., &, are affine spaces with intersection C™.
(iv) C" N ri(dom(¢)) is nonempty.
(v) the control mapping my N — {1,...,n} is a sequence that takes each output value

an infinite number of times.
Define Py (RED) as the projection of R Y onto Cpy. Choose RO from

ri(dom(¢)), and form a sequence of iterates via successive Bregman projections
R® — P¢),m(k)(R(k_1))

Then the sequence of iterates {R™} converges in norm to Ps(R©") .

Lemma |4 establishes a closed-form formula for Py .,y (R*~Y) and is a special case of

the derivation in |Kulis et al.| (2009) when ¢(-) = — Indet(-).
Lemma 4. Consider the setting in Theorem 1 and let ¢(-) = —Indet(-). Then, for all

i {1,...,n},

(2

Py (RD) = RED 4 R ((_ R() (*(k_”eie;w—”

where Rgf) stands for the i*" diagonal element of the matriz R™.

We concisely describe this procedure in Algorithm 1. We point out that the algorithm

has a complexity per iteration of O(n?).
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Algorithm 1 STEIN’S PROJECTION
Compute Stein’s projection of a symmetric positive definite matrix Q onto the set of
correlation matrices.

INPUT: A symmetric positive definite matrix Q.

INITIALIZATION
Set RO = Q.
ITERATE UNTIL CONVERGENCE

In the k-th iteration of the algorithm choose the i-th constraint as

= arg ohax 1 —RED|

s
1,...,n

and update the projection according to the formula

R®* = R*-D | [R(k—l)} -2 (1— R(k_l))R(k_l)eiegR(k_l) 7

i i
where e; is defined as the i** canonical basis vector.

COVERGENCE CRITERIA
If max, |1 — R{®)| <tolerance then stop.

OutpuT: The projected correlation matrix R®).

2.3 Rescaling vs Projecting a Pseudo-Correlation matrix

In the previous sub-section we argue that it is possible to project a pseudo-correlation
matrix onto the set of correlation matrices with a very simple approach from a computa-
tional perspective. In this sub-section we show that the difference between rescaling and
projecting is relevant enough in many cases.

For simplicity, consider a 2-dimensional pseudo-correlation matrix Q with diagonal
elements ¢;1, g2 and off-diagonal element ¢15. Simple algebra shows that when ¢;1q20 = 1,
then the expression in equation[7]boils down to g9, which trivially coincides with rescaling
q12 by /q11q22. When qi1g20 # 1, this is generally not true, as it is shown in Figure .
In the top-left panel we give an example of a combination of diagonal elements whose
product is one, and observe that rescaling and projecting are equivalent. If the product
is greater than 1, the projected correlation is below the rescaled one, and the difference
increases as the product moves away from 1. The reverse pattern occurs when the product
between the diagonal elements is lower than 1. We also note that the point at which the

maximum difference occurs does not correspond to the same correlation level but is a

13



function of the product of the diagonal elements of Q.
In Figure [I] we report only positive correlations, but a similar pattern emerges when
they are negative (if the product of diagonal elements is greater than one, then the

projected correlation is above the rescaled one, and it is below otherwise).

g11=2 g22=0.5 1= 2 g=2 q11= 10 qz=2
[ee]
©
<
o
o |
e T T T T T
[=%
- 00 02 04 06 08 10
(0]
3]
2
g 911=0.5 g2»=0.5
(o]
©
< |
o
o |
e T \ I T
00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08
rescaled p

Figure 1: Projecting versus rescaling a pseudo-correlation matrix. Red: correlation com-
puted using Stein’s projection -see equation [7] - as a function of the rescaled correlation
¢12/\/@11G22- Black: 45 degree line. Cross: point of maximum difference between project-
ing and rescaling.

To further illustrate, consider a higher-dimensional setting. Assume that the n-

dimensional pseudo-correlation matrix is given by

Q = (1 — r2)R(k1) + Kovoithth

where k1, ko € (0,20). The vector vie= (vy, ..., v,)" has a general entry v; = sin(z;), where
T = 6w, = 2m-€, and x;11 = x; +2- 7=, for € >10. The first parameter x; controls for
the magnitude of the correlations and the second parameter ko controls for the distance

to an admissible correlation matrix R(x;), which is assumed to have a Toeplitz structure
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- that is, its first row (or column) is given by the entries 1, sy, x2,.9., s}~ . In Figure

[ we see that the difference -measured with the squared Frobenius norm [5] divided by
n- between projecting and rescaling is monotonically increasing as Q moves away from
the admissible correlation matrix R(x;), but it has an inverse-U shape with respect to
the magnitude of the correlations. Moreover, the differences become more acute as the

matrix dimension grows large.

Ky =047 Ky =0.53 K =0.67
o | w0 o |
N o o o -———
| 7' P ~a -_.
----- Vi \\ :
1o} 0 ro) Vi N i
- - o - N
Lot TTeel - =~ N
i UL R . P \\\ ] R
o |--" ~ o /N . /‘\
o /——_—"-\‘:~ o o
] [ I I T [ I [ I [
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Kq Kq K1
k1=0.13 k1 =047 k1=0.72
0w [ 0
< - < - < -

K2 K2 K2

Figure 2: Projecting versus rescaling an n-dimensional pseudo-correlation matrix. Y-axis:
Rrese = Rprojl[3/n¢= t1((Rrese — Rprog)?) /1, where Ry, = diag(Q)~/2Q diag(Q) ™"/,
and Ryo; = Pstein(Q). Solid black line: ny= 50. Red dashed line: niy= 75. Green
dotted line: ny= 100. The pseudo-correlation matrix is Q = (1 — k2)R (k1) + Kovvl)
with k1, k9 € (0,), vifis an nyx 1 vector with i'" entry given by v; = sin(z;), where
Ti1 = x; + 2(mp-e) /(- 1), 11 = e, = 2w €. Finally, the notation R.(k;) is used to
denote a Toeplitz correlation matrix with parameter k1, i.e. with first row/column equal

2 n—1
to 1, k1, KT, . .., K]
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3 Simulation Study

3.1 Static estimators of multivariate Gaussian correlation ma-

trix (known unit variance)

Let r; ~ N(0,JR), where R is an n-dimensional correlation matrix modelled with a single
correlation parameter p, and consider a random sample (iid) of Tiobservations from that
distribution. Assume that population variances are known to be 1. In particular, we let
R = (1 — p)I + pu/, where wifs an n-dimensional vector of ones.

Let S = Tg' -1 | v} be the sample covariance matrix of the data, which is the MLE
for the population covariance. It is crucial to note that if the variances are unknown,

then the MLE for the correlation coefficient would be Pearson’s sample correlation, i.e.
R = diag(S)~/2S diag(S) /2 .4

However, since the variances are constrained to be 1, the constrained MLE for the corre-
lation matrix is not necessarily given by Pearson’s sample correlation. In fact, Example
18.3 in [Kendall and Stuart| (1979)) shows that the MLE in the bivariate Gaussian case is
obtained by solving a cubic equation - which in large samples has only one real solution.

We consider two different candidates to estimate the correlation matrix R. The first
one consists in rescaling S to turn it into a correlation, whereas the second one projects S
onto the correlation set using Stein’s projection. From the example in section 2.2} we have
that the zero-mean multivariate Gaussian density corresponds to Stein’s loss, which is a
Bregman divergence with ¢(-) = —Indet(-). This means that computing the projection
is indeed a very similar problem to finding the Gaussian MLE for the correlation matrix
assuming unit variance. As discussed in the previous section, computing the projection
involves solving a convex problem - as opposed to the MLE - and is much simpler to

compute. We can write the proposed estimator as

R® = Py(S) .4
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We evaluate the performance of our candidate estimators using a Montecarlo experiment.
In each replication, we draw 500 observations from a multivariate Gaussian distribution
with covariance parameter R. We compute the loss of both candidate estimators with
respect to the true correlation matrix. The following loss functions are used to assess the

accuracy of each estimator:

‘CFrob \/QQZ R R
Lyap(R *; (R R,
2¥)

A

LStezn (R IB, —1In det(RR )

Note that we divide the squared Frobenius loss and the sum of absolute errors by ny
to establish a fair comparison as the dimension increases. We estimate E[£] using the
sample average of the losses obtained across Montecarlo replications.

We repeat the same exercise for different levels of the correlation parameter pias well
as for the cross-sectional dimension n.

Figure |3 shows the excess loss in estimation accuracy which results from using sam-
ple correlation instead of projecting the sample covariance onto the correlation set with
Stein’s projection, where the truth is given by an equicorrelation matrix with parameter
p. From this figure, we conclude that the gap between both methods increases with the
dimensionality of the correlation matrix. In the equicorrelation model, we see that the

gap is maximized at some intermediate value of the pyparameter.
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Figure 3: Static simulation study: Sample correlation versus Stein’s projection of the sam-
ple covariance matrix onto the correlation set. From left to right panel, the y-axis shows
E[EMAE,resc] - ]E[['MAE,proj]v ]E[EFrob,resc] - E[£Frob,p7“oj]7 and ]E[['Stein,resc] - E[£Stein,proj]7
respectively. For each Montecarlo replication, we draw Ti= 500 observations from
N(O,R), where R = (1 — p)I + pu/. Black, red, green and blue lines correspond to
ny= 10,23,86,H0, respectively.

3.2 Estimation accuracy of competing dynamic correlation es-
timators

In this subsection we perform a Montecarlo simulation exercise with 500 replications to
compare the estimation accuracy of Pro-DCC versus DCC.
Let ny= 2. The return vector is generated as r; = Ei/ QZt,@bwhere 2 ~ N(0,4), and

3, = Covy_1[ry] = D;R;Dy, symmetric positive definite.

L pe .
, where ¢, = Dy "ry.

Clearly, ¢ | F1—1 ~ N |0,
Q th 1
Consider the DGP’s proposad in [Engld (2002). The conditional variances follow the

recursions

01+ .05 77,y +.94d},

B4+ 205,  +.5d3,

and we consider five different process for the conditional correlation: 1) Constant: p, = .9,
2) Sine: p; = .5+ .4cos(27t/200), 3) Fast Sine: p; = .5 + .4cos(2nt/20), 4) Step:

pr = .9 — .5(t >1H00) and 5) Ramp: p; = mod (¢/200).
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Dynamic correlations for the SINE process are displayed in figure [ We employ
the following methodologies for estimation: 1) DCC: standard version of the Dynamic
Conditional Correlation model, 2) Pro-DCC, the Projected DCC model presented in
section , and 3) DCC-NoResc, a variant of the DCC model that omits the rescaling
step, so it assumes that R; = Q;. For every replication, we draw Ti= 1500 realizations

from the DGP, and evaluate estimation accuracy using i) Stein’s Loss as in |4 and ii)

Root Mean Squared Error, which in practice we compute as \/ % ST (b — po)2.

The distribution of excess losses across Montecarlo simulations is\reported in figure 5]
Finally, figure [6] reports the distribution of the estimated —parameter across Montecarlo
replications for each methodology.

We draw the following conclusions from this simulated exercise: 1) Pro-DCC outper-
forms DCC for all DGP’s proposed in [Engle| (2002)). The only exception is the constant
correlation process when we use Stein’s loss. However, for this process, rescaling is not
really relevant since neither DCC nor Pro-DCC are able to beat the DCC-NoResc bench-
mark, and 2) The estimated parameter, which regulates the sensitivity of the conditional
(pseudo) correlations to the innovations, is generally larger for Pro-DCC than for DCC.
It has been documented that DCC usually underestimates this parameter. This would be
less of a concern in our proposed algorithm. However, since these are actually different
models and the relationship between both is not trivial, we should not claim that our

model corrects this bias.

19



1.8 T
SINE ——

1.6 1 DCC ——
14k Pro-DCC a
: DCC-NoResc

conditional correlation

0 200 400 600 800 1000 1200 1400 1600
t

Figure 4: Simulation study: bivariate dynamic conditional correlations. Purple: true
conditional correlation process (Sine). The remaining lines represent conditional corre-
lation fitted values and one-step ahead forecasts for DCC (green), Pro-DCC (blue) and
DCC-NoResc (dark orange).
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Figure 5: Simulation study: bivariate dynamic conditional correlations. Excess Stein’s
Loss (Cumulative) for different dynamic correlation processes. Purple: excess loss of DCC
with respect to Pro-DCC. Green: excess loss of DCC-NoResc with respect to Pro-DCC.
Blue: excess loss of DCC with respect to DCC-NoResc.
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Figure 6: Simulation study: bivariate dynamic conditional correlations. Estimated
parameter for different dynamic correlation processes. Purple: distribution of alpha esti-
mates for DCC. Green: distribution of alpha estimates for Pro-DCC. Blue: distribution
of alpha estimates for DCC-NoResc.

4 Empirical Application

4.1 Top-1000 pairs by correlation in S&P 100

We consider S&P 100 constituents’ daily log returns ranging from 2007-01-01 to 2019-
06-24 (source: Alpha Vantage). We carry out the exercise for 1000 pairs in the index,
selected in decreasing order of their sample correlation coefficient across the whole period.
We train Pro-DCC, DCC and DCC-NoResc (as in the previous section) until 2012-12-
31 and use the remaining observations to test the performance of different covariance

matrix estimators using the sample standard deviation of the Global Minimum Variance

Portfolio (GMVP).
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To compute the standard deviation of the Global Minimum Variance Portfolio (GMVP)
for dimension n, we need the (dynamic) weights w, that solve min,,—; w;¥;w;, where 11
is an n-dimensional vector of ones. It is easy to show that the minimizer is given by the

following expression:
pINRY)
U )

*
wy =

(9)

Clearly, the optimal weight vector in [J] is an infeasible quantity. Hence we estimate the

standard deviation of the GMVP using weights that are based on a suitable estimator of

=

TH+T
A ! A
SDayve = |71 Z W} ryrif
=T+
-1
tjt—1%
L’ﬁ:t_ltl_lL ’

From figures |7b| and [7a] we conclude with two main observations: 1) In terms of the

where W] =

standard deviation of the GMVP, it is not clear that any of the candidate estimators is
able to outperform the equal-weighted portfolio (also known as "1/N"). In terms of the
average GMVP standard deviation across pairs, the ranking is (from best to worst): 1/N,
Pro-DCC, DCC, DCC-No Rescaling, Sample covariance. 2) Looking at the distribution
of the estimated parameter across pairs suggests that p,.._pcc >% pcoc, same as in

the simulation study.

4.2 Portfolio selection with all constituents in S&P 100

In this sub-section we test our algorithm in a higher-dimensional setting. We carry out a
similar exercise as in the previous sub-section but for 86 (we have to discard 14 stocks for
which the series is not long enough) instead of ni= 2. We follow the common convention
that 21 consecutive trading days constitute one "month". The training period ranges
from 01/01/2007 to 31/12/2012. The out-of-sample period ranges from 01/01/2013 to
24/06/2019, resulting in a total of 77 months (1630 trading days). Following De Nard

et al| (2018), we update portfolios every month and denote investment dates by hi=

3Figures are reported in annualized terms. For daily log returns, this amounts to multiplying by

vV 252.
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Figure 7: (a) Distribution (across 1000 different pairs from the S&P 100) of the estimated
parameter for each methodology. (b) Distribution (across 1000 different pairs from the
S&P 100) of the standard deviation of the Global Minimum Variance portfolio based on
different candidate estimators of the conditional covariance matrix. The last two boxes
correspond to static candidates for the purposes of benchmarking. Sample Cov stands
for the unconditional sample covariance matrix, and 1/Nyrefers to the equal-weighted
portfolio, which in this case invests half of total wealth in each asset for each pair.

1,...,%7. At any investment date h, a covariance matrix is filtered based on the estimated

model.

AV SD  Sharpe Turnover Leverage MaxWeight MinWeight

ProDCC-NLS 10.54 11.36 0.93 0.07 0.51 0.54 -0.12
DCC-NLS 11.22  11.37 0.99 0.08 0.50 0.50 -0.14
ProDCC 10.53 11.44 0.92 0.08 0.50 0.57 -0.15
DCC 11.11  11.44 0.97 0.08 0.49 0.52 -0.16
DCCNoresc-NLS 9.93 11.45 0.87 0.07 0.50 0.51 -0.13
DCCNoresc 9.96 11.54 0.86 0.07 0.49 0.57 -0.15
NLS 10.66  11.69 0.91 0.00 0.48 0.22 -0.09
SampleCov 10.54 11.84 0.89 0.00 0.49 0.25 -0.10
ScalarVECH-NLS  15.48  12.09 1.28 0.07 0.47 0.48 -0.28
ScalarVECH 15.35 12.21 1.26 0.08 0.47 0.51 -0.30
1/N 13.04 12.60 1.03 0.00 0.00 0.01 0.01

Table 1: Empirical Application: Portfolio selection with all constituents in S&P 100.
GMVP metrics for full out-of-sample period

We consider various covariance matrix estimators in this section. Since the dimen-
sionality of the problem is considerably large, we also implement the analytical nonlinear
shrinkage (NLS) methodology from Ledoit and Wolf (2018a)) for each of them. The esti-
mators are 1) DCC: the standard version of the DCC model, 2) Pro-DCC: the Projected
DCC model based on Stein’s projection as in section 3) Scalar VECH: scalar-diagonal
version of the VECH model, 4) DCC-Noresc: DCC model omitting the rescaling step,

5) Sample Cov: Sample covariance computed from training sample. This is a static
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estimator, and 6) NLS: Analytical nonlinear shrinkage formula computed from training
sample (also a static estimator). For benchmarking purposes, we also report metrics for
the equal-weighted portfolio ("1/N").

We report the following three out-of-sample performance measures: 1) AV: the an-
nualized out-of-sample average of portfolio returns, 2) SD: the annualized out-of-sample
standard deviation of portfolio returns, and 3) Sharpe: the Sharpe ratio computed as AV
/ snf

The resulting portfolio metrics are presented in tables|l/and a breakdown by year can
be found in table [CI] These can be summarized as follows: a) Overall, Pro-DCC-NLS
and Pro-DCC outperform all other candidate estimators in terms of both the standard
deviation and the Sharpe ratio of the GMVP. b) The overall ranking in terms of the
SD of the GMVP is 1) Pro-DCC-NLS, 2) DCC-NLS, 3) Pro-DCC, 4) DCC, 5) DCC-
Noresc-NLS, 6) DCC-Noresc, 7) NLS, 8) Sample Cov, 9) Scalar VECH-NLS, 10) Scalar
VECH, 11) 1/N. ¢) All dynamic estimators outperform static estimators (except for
the scalar VECH). d) The (analytical) nonlinear shrinkage versions of all estimators
considered in the exercise present superior performance than doing no shrinkage at all.
Moreover, the relative ranking between models does not change when introducing the
nonlinear shrinkage methodology, which suggests that it uniformly improves performance

irrespective of the modeling choice for the time-varying covariance matrix.

5 Conclusions

In this paper we contribute to the multivariate GARCH-DCC literature with a novel
DCC specification inspired by the literature on Bregman matrix projections and the

nearest-correlation matrix problem. We demonstrate the benefits of using our proposed

4 Additionally, the following portfolio metrics are computed:

e Turnover: ﬁ ZtTfTZQ Z% | Wi 4o Wi t—1]-

e Proportion of leverage: ﬁ@tf;ﬁfl Zf\il 1{w; 1y<10}.
o Maximum weight: max; 140; ;.

e Minimum weight: min; ¢g0; ;.
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methodology (Pro-DCC) with respect to the standard GARCH-DCC model in a simulated
exercise with 2 stocks. We also carry out a global minimum variance portfolio exercise
based on historical data for 1000 pairs of stocks, and the differences in terms of out-of-
sample performance turn out to be negligible. However, when we consider a setting where
the cross-sectional dimension is considerably larger (ni¢= 86), we find that the standard
and nonlinear shrinkage versions of Pro-DCC outperform all other candidate estimators
of the conditional covariance matrix in terms of the standard deviation and Sharpe ratio
of the GMVP. As a secondary contribution, we illustrate on simulated iidydata that
when the DGP is a multivariate Gaussian process with unit variance, the estimator that
results from projecting the sample covariance matrix onto the correlation set performs
better than the sample correlation matrix in terms of Stein loss and -rather surprisingly-

the excess portfolio variance of the GMVP.
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A  Proofs

Proof of Lemma[1. See p. 206 in Bregman| (1967). O

Proof of Lemma[9 Let K = Q~'. Consider the ni= 2 case:

(1 P Qi1 Q12 ki k
R = Q= and K =

<ﬂ¢1 <Q12 q22 (k ko (

Therefore,
tr(RK) = ki + 2kpit kyfand det(RK) = det(K) det(R) = (ki1ky — k*)(1 — p?)
and our minimization problem can be formulated as a univariate problem:
mpin flp) = mpin ki + 2kpt ky — In(kyky — k?) — In(1 — p*) — 2

Since the problem is convex and the domain of filis the open interval (—1,1b), it suffices

to take the first order condition and solve for p, which yields

PR o
pe=
k=0

where k= — de‘ilfQ).

Proof of Lemma (3. Let K =log Q. In the bivariate case, we have that

tr(RlogR) — tr(RK) = In(1 — p*) + pin 1:/0)7) — 2kp# consty= f(p)
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which follows since the matrix logarithm of R is given by

1 (1 —1 | | In(1+p) 0 11

? (1 1 ( 0 In(1 — p) (—11

Hence, the problem is equivalent to minimizing fywith respect to pE] Since the problem

logR =

is convex and the domain of fiis the open interval (—1,3), it suffices to take the first

order condition and solve for p:

—25 L[ 1—pb 2
P +pj<ﬂ3 pu k= 0

R ¥ A i
ek — 1
— p@b: 762]?_'_1 :tanh(k)

To find an analytical expression for k, let VAV’ be the eigendecomposition of Q, where

V is orthonormal. It is easy to verify that the eigenvalues of Q are given by

1

i = 3 {QH + g2 + (—1)i_1\/<911 — q22)* + 4(1%2}

where 1= 1,@. Their corresponding eigenvectors are v; = [v;1, v;2|’, where

Vi = —2q12/ <Q11 — Q2+ (—1)i\/(Q11 —q2)? + 4CI%2> Vig = iVi2
Imposing unit norm eigenvectors, we have that vy = (1 + 2)~%/2. Hence, it is easy to

see that the (2,1) entry of the K matrix is given by

11H)\1 21n)\2
1+ § 1+ 3

k@b: (ln )\1)1}111}12 + (ln )\2)1)211)22 = (ln )\1) 1’0%2 + (hl )\2) 21)32 =

[]

®Note that we can ignore the terms tr(R) and tr(Q) that appear in ds(R,®) as these do not depend
on p.

27



Proof of Lemma[]. Let R = Q. Note that

(RF-DY = ' *) R*-1
P,;(R"V) = arg RI(%ISQ dy ( R ) (

The first order condition of the Lagrangian yields the following matrix update for R®):

o(RW) = Vo(REV) + ese]

(RPezel) =1

When ¢(-) = —Indet(-), we have that Vo(R®) = —[R®™]~!, and the first equation

of the system becomes

R®) — ((R(k1)]1 . eieg)il

Using Sherman-Morrison’s formula, we can re-write the first equation as

*h) _ g1 (k-1)p R (k1)
RY = RO + g R eeiR

Note that tr(R*Dege!) = e R*De; = RF™. Tt follows that tr(R*De;e/REDeel) =
(e R*De;)? = [RF V]2 Plugging the first equation in the second one and solving for

(e

we get

=1

0N

tr (k=1) R(k_l)eie;R(k_l)] eie'>
([ #

i

=R -1

Replacing in the first equation of the system yields the desired result, since

[R(k—l)}—l 1

10

— — [Rgf_l)]_z—[R(k_l)]_l — [R(k—l)]—2 (1 o R(k‘—l)

(e (e i

1- RV 1 (R 1R

() ()

]
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B Aielli’s Critique
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Figure B1: Covariance targeting vs Aielli correction in Pro-DCC. The ratio compares the
loss of the sample second moment of the standardized residuals X 37, ¢, (covariance
targeting) to the loss of Aielli’s estimator, which is given by %Zle Q;ee;Q;. The loss
of each estimator C, for simulation siis defined as LY ]C - C.||%, where Siis the
number of Montecarlo simulations, C is the true unconditional correlation matrix and

[|Al|F = \/{r(A’A) /nifor some A € R™*".
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Additional Tables

AV SD  Sharpe Turnover Leverage MaxWeight MinWeight
2013
ScalarVECH-NLS  20.2645 9.6293  2.1045 0.0668 0.4678 0.4802 -0.1602
ScalarVECH 19.9699 9.7213  2.0542 0.0693 0.4650 0.5133 -0.1719
DCC-NLS 16.5642 10.0014  1.6562 0.0776 0.4992 0.5007 -0.1310
2014
DCC-NLS 15.6294 9.3944 1.6637 0.0784 0.4882 0.3998 -0.1292
DCC 15.1084 9.4188 1.6041 0.0816 0.4863 0.3994 -0.1369
DCCNoresc 14.4356 9.4522 1.5272 0.0688 0.4983 0.3685 -0.1050
2015
NLS 3.8565 14.3740  0.2683 0.0000 0.4767 0.2208 -0.0856
SampleCov 3.6372  14.4431  0.2518 0.0000 0.4884 0.2455 -0.1024
ScalarVECH-NLS 9.3066 14.9324  0.6232 0.0934 0.4747 0.4692 -0.2772
2016
ProDCC-NLS 19.9057 10.1197  1.9670 0.0717 0.5310 0.3640 -0.1215
DCC-NLS 19.6058  10.1252 1.9363 0.0747 0.5134 0.3912 -0.1039
ProDCC 20.9271  10.1287  2.0661 0.0749 0.5233 0.3641 -0.1344
2017
EqualWeighted 17.2063 6.4566 2.6649 0.0000 0.0000 0.0116 0.0116
DCCNoresc-NLS 14.3169 6.8502  2.0900 0.0549 0.5078 0.2802 -0.0933
DCC-NLS 12.2975 6.8950 1.7835 0.0590 0.4883 0.2863 -0.1176
2018
DCC-NLS -6.2292  14.3685 -0.4335 0.0726 0.4853 0.3062 -0.1044
DCC -6.6338  14.4764  -0.4582 0.0750 0.4852 0.3161 -0.1144
ProDCC-NLS -5.5740  14.5076  -0.3842 0.0681 0.4900 0.3159 -0.1018
2019
DCCNoresc-NLS 17.9405 10.5199 1.7054 0.0647 0.4874 0.2800 -0.0863
ProDCC-NLS 13.0457  10.5955 1.2312 0.0753 0.5030 0.3159 -0.0796
DCCNoresc 18.1649  10.5963 1.7143 0.0681 0.4813 0.2929 -0.0921

Table C1: GMVP metrics by year (showing top 3 by SD)
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