
Projected 
Dynamic Conditional 

Correlations 

Christian Brownlees� Jordi Llorens� 

PRELIMINARY AND INCOMPLETE 
PLEASE DO NOT CITE WITHOUT PERMISSION 

January 10, 2020 

Abstract 

The Dynamic Conditional Correlation (DCC) model is one of the leading ap-
proaches in the literature for modeling time-varying correlation matrices. In the 
DCC framework the conditional correlation matrix is modeled as a function of the 
so called pseudo-correlation matrix, a symmetric positive-defnite proxy of the con-
ditional correlation matrix that, however, is not guaranteed to have a unit diagonal. 
Conditional correlations are then obtained by appropriately rescaling this matrix. 
In this work we propose a novel DCC specifcation based on an alternative normal-
ization of the pseudo-correlation matrix called Projected DCC (Pro-DCC). Rather 
than rescaling, we propose projecting the pseudo-correlation matrix onto the set of 
correlation matrices in order to obtain the correlation matrix closest to that pseudo-
correlation matrix. A simulation study shows that projecting performs better than 
rescaling when the dimensionality of the correlation matrix is large and the degree 
of dependence is high. An empirical application to the constituents of the S&P 100 
shows that the proposed methodology performs favourably to the standard DCC 
in an out-of-sample asset allocation exercise. 

Keywords: Multivariate Volatility, DCC, Bregman projection, nearest-correlation 
matrix, Stein’s loss. 

�Universitat Pompeu Fabra and Barcelona Graduate School of Economics. 
e-mail: christian.brownlees@upf.edu, jordi.llorens@upf.edu. 
We would like to thank Gabor Lugosi and Piotr Zwiernik for providing numerous helpful comments. 
Christian Brownlees acknowledges support from the Spanish Ministry of Science and Technology (Grant 
MTM2012-37195) and the Spanish Ministry of Economy and Competitiveness through the Severo Ochoa 
Programme for Centres of Excellence in R&D (SEV-2011-0075). 

1 

mailto:jordi.llorens@upf.edu
mailto:christian.brownlees@upf.edu


1 Introduction 

Estimating and forecasting the time-varying covariance matrix of asset returns is key for 

several applications in fnance including asset allocation, risk management and systemic 

risk measurement. Over the years, the GARCH-DCC methodology of Engle (2002) has 

established itself as one of the leading paradigms in the literature due to its fexibility and 

ease of estimation (see also Engle and Sheppard, 2001). In a nutshell, the GARCH-DCC 

approach consists in modeling separately the conditional variances and the conditional 

correlation matrix. The conditional variances are modeled using GARCH whereas the 

conditional correlation matrix is modeled using the Dynamic Conditional Correlation 

(DCC) model. Recent research in the literature that is based on GARCH-DCC includes 

Engle, Ledoit, and Wolf (2019), Brownlees and Engle (2017) and De Nard, Ledoit, and 

Wolf (2018). 

A key aspect of the DCC methodology is that the conditional correlation matrix is 

modeled as a function of the so called pseudo-correlation matrix. The pseudo-correlation 

matrix is a symmetric positive defnite proxy of the conditional correlation matrix that, 

crucially, is not guaranteed to be a proper correlation matrix as it does not have a 

unit diagonal (almost surely). In order to obtain correlations, the pseudo-correlation 

matrix has to be appropriately normalized, and the standard strategy followed in the 

literature consists in rescaling this matrix (Engle, 2002; Tse and Tsui, 2002; Aielli, 2013). 

Engle (2009, Section 4.3) contains a discussion and a comparison of di˙erent rescaling 

approaches used in the literature. Despite the fact that rescaling is natural and commonly 

employed, it is unclear whether such an approach is in any sense optimal. 

In this work we propose a modifcation of the standard DCC model based on an 

alternative normalization procedure of the pseudo-correlation matrix. Our modifcation 

consists in projecting the pseudo-correlation matrix onto the set of correlation matrices 

rather than rescaling it. In other words, we cast the normalization step of the pseudo-

correlation matrix as a nearest-correlation matrix problem, that is the problem of fnding 

the closest correlation matrix to a given pseudo-correlation matrix on the basis of an 

appropriate divergence function. 
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We begin this work by defning a class of projections for pseudo-correlation matrices. 

To do so, we frst introduce the notion of Bregman divergence between two symmetric 

positive defnite matrices (Bregman, 1967; Banerjee, Merugu, Dhillon, and Ghosh, 2005; 

Dhillon and Tropp, 2007; Patton, 2018). This family of divergences constitutes a rich 

collection of divergence functions that includes many familiar losses commonly encoun-

tered in the covariance estimation literature such as the Stein and square (Frobenius) 

losses (Stein, 1986; Dey and Srinivasan, 1985; Pourahmadi, 2013). We then defne the 

projection of a pseudo-correlation matrix onto the set of correlation matrices as the corre-

lation matrix that minimizes the Bregman matrix divergence with respect to that pseudo-

correlation matrix. It is straightforward to establish that such a projection exists and is 

unique. Within this broad class of projections we focus in particular on the one implied 

by Stein’s loss, which we name Stein’s projection. Stein’s loss is a natural loss function 

for covariance matrices that is related to the multivariate Gaussian log-likelihood, it is 

widely used (Ledoit and Wolf, 2018b), and it turns out that in our setting it delivers a 

fairly tractable projection. In fact, we derive a closed form expression to compute Stein 

projections in the two-dimensional case and an eÿcient iterative algorithm for the generic 

n-dimensional case. 

We then introduce a novel DCC specifcation based on our pseudo-correlation matrix 

projection called Projected DCC (Pro-DCC). Simply put, the Pro-DCC corresponds to 

the classic DCC of Engle (2002) with the rescaling step of the pseudo-correlation matrix 

replaced by our proposed projection. In particular, in this work we focus on a version of 

the Pro-DCC based on Stein’s projection. We acknowledge that alternative projections 

may be considered as well. In order to estimate the Pro-DCC we propose to follow the 

same multi-step procedure which is used to estimate other DCC-type models. 

A simulation study is carried out to assess the performance of our projection-based 

methodology. We carry out two exercises. In the frst exercise we simulate i.i.d. data 

from a multivariate Gaussian distribution with mean zero and covariance parameter given 

by a correlation matrix. We then estimate the correlation matrix of the simulated data 

by rescaling the sample covariance matrix (i.e. the sample correlation matrix) and by 
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projecting the sample covariance matrix onto the set of correlation matrices using Stein’s 

projection. We fnd that the projection-based approach performs better than rescaling 

in terms of correlation estimation accuracy. Gains are greater when the dimensionality 

is larger and they are maximized when the cross-sectional dependence is high but not 

extreme. In the second exercise we compare the out-of-sample forecasting accuracy of 

DCC and Pro-DCC under misspecifcation, that is when the DGP di˙ers from both 

models. In particular, here we consider the exact same set of DGPs as in the simulation 

study of Engle (2002). We fnd that Pro-DCC outperforms standard DCC for all the 

DGPs proposed in Engle (2002) except when the correlation process is constant. 

A Global Minimum Variance Portfolio (GMVP) exercise using the constituents of the 

S&P 100 is used to measure the performance of Pro-DCC. The design of the exercise is 

close in spirit to the one of De Nard et al. (2018). We carry out two empirical exercises. 

In the frst exercise we consider 1000 pairs of assets from the set of S&P 100 constituents 

and for each pair we carry out a GMVP forecasting exercise. We construct GMVP on 

the basis of the DCC, Pro-DCC as well as a DCC model in which we do not apply any 

normalization to the pseudo-correlation matrix (i.e. we take the correlation matrix equal 

to the pseudo-correlation matrix). Results show that all specifcations have a similar 

out-of-sample performance. In the second exercise we carry out, again, a GMVP exercise 

using the entire set of assets. In this second exercise we consider the Pro-DCC, DCC, 

DCC with no rescaling and scalar VECH. We consider both the standard versions of these 

models as well as the versions based on nonlinear shrinkage. Results show that forecasts 

based on the standard and nonlinear shrinkage variant of the Pro-DCC achieve the best 

out-of-sample performance. 

This paper is related to di˙erent strands of the literature. First, it is related to the 

literature on multivariate volatility models and the DCC. Important contributions in this 

area include Bollerslev (1990) Pakel, Shephard, Sheppard, and Engle (2018). Classic 

surveys of the literature on multivariate volatility modeling are Bauwens, Laurent, and 

Rombouts (2006) and Silvennoinen and Teräsvirta (2008). Second, it is related to the 

literature on matrix projections based on Bregman divergences and the nearest-correlation 
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matrix problem. Contributions in this area include the work of Higham (2002), Dhillon 

and Tropp (2007) and Kulis, Sustik, and Dhillon (2009). 

The rest of the paper is structured as follows. Section 2 introduces the methodology. 

Section 3 contains the simulation study. Section 4 presents the empirical application. 

Section 5 concludes the paper. All proofs are collected in the Appendix. 

2 Methodology 

In this section we frst concisely review the DCC model of Engle (2002) and we then 

introduce the Pro-DCC model. 

2.1 The DCC Model 

Let rt = (r1 t, . . . , rn t)0 denote an n-dimensional vector of log returns observed at time t, 

for t ranging from 1 to T . The key object of interest of this work is the conditional covari-

ance matrix of returns given past information, that is �t = Covt−1(rt). The GARCH-

DCC framework is based on the following factorization of the conditional covariance 

matrix 

�t = Dt Rt Dt , 

where Dt is a n × n diagonal matrix of conditional volatilities (standard deviations) and 

Rt is the n × n conditional correlation matrix. 

The conditional volatility matrix Dt is modeled using some suitable GARCH speci-

fcation. Assuming, for instance, GARCH(1,1) dynamics we have that the i-th diagonal 

element of Dt, which we denote by di t, is specifed as 

d2 2 
i t = !i + airi t−1 + bid

2 
i t−1 , 

where !i, ai and bi are the GARCH(1,1) coeÿcients satisfying !i > 0, ai > 0, bi � 0 and 

ai + bi < 1. 

The conditional correlation matrix Rt is modeled using the DCC specifcation. The 
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DCC models the correlation process as a function of the so-called de-volatilized returns 

that are defned as �t = Dt 
−1 rt. In the DCC framework the focus is on modeling the 

so-called pseudo-correlation matrix Qt as 

Qt = (1 − − )C + �t−1�t 
0
−1 + Qt−1 , (1) 

where and are scalar parameters and C is an n × n positive defnite matrix. It is 

straightforward to see by recursive substitution that 

11 − − X
Qt = C + i�t−1−i�t 

0
−1−i . (2)1 − i=0 

A crucial aspect of the DCC model on which we build upon in the next section is that the 

pseudo-correlation matrix is not guaranteed to be a correlation matrix. In particular, it 

is clear from (2) that Qt is symmetric positive defnite but (generally) not unit diagonal. 

Thus, an appropriate normalization step is required to obtain a correlation matrix. The 

standard approach consists of rescaling the pseudo-correlation matrix, that is 

Rt = diag(Qt)−1/2 Qt diag(Qt)−1/2 , (3) 

where for an n × n matrix A, the notation diag(A) denotes the n × n diagonal matrix 

with the diagonal of A. 

The GARCH-DCC family of models is estimated using a multi-step procedure moti-

vated by a QML argument. The frst step consists of estimating the conditional standard 

deviation matrix Dt by estimating n univariate GARCH models. Next, the C matrix is 

estimated by correlation targeting as the sample second moment of the estimated stan-

dardized residuals, that is 
T1 X

Cb = �̂t�̂
0 
t ,T t=1 

where �̂i t = ri t/˙̂i t with ̇ˆi t being the estimated volatility of the frst step. Last, the 

DCC parameters are obtained by maximizing the (Gaussian) quasi log-likelihood. 

It is important to mention that the correlation targeting step has been subject to 

6 



some criticism. Albeit being intuitive, Engle’s model formulation has some subtle issues 

frst noted by Aielli (2013). The model “fxes the bug” of the DCC however the model 

dynamics are somehow not intuitive. Empirically, this model is found to perform similarly 

to the standard uncorrected DCC. 

2.2 The Projected DCC Model 

In this section we propose a novel DCC specifcation based on an alternative normal-

ization procedure. Rather than rescaling the pseudo-correlation matrix as in equation 

(3) we propose projecting it onto the space of correlation matrices. In other words, we 

cast the problem of rescaling the pseudo-correlation matrix as a nearest-correlation ma-

trix problem, that is fnding the closest correlation matrix to a given pseudo-correlation 

matrix. In order to introduce our projection-based model some additional machinery is 

required. 

We begin by introducing the notion of Bregman divergence for symmetric positive 

defnite matrices, which is used in this work to measure nearness between two symmetric 

positive defnite matrices. 

Defnition (Bregman Divergence). Let Sn + be the set of n × n symmetric positive semi-

defnite matrices. Given a strictly convex and di˙erentiable function ° : S+ 
n ! R, we 

defne the Bregman matrix divergence d° : Sn + × ri(S+ 
n ) ! [0, 1) as 

d°(M1, M2) = °(M1) − °(M2) − tr(r°(M2)0(M1 − M2)) . 

Note that this can be seen as the di˙erence between the function ° evaluated at M1 

and its frst-order Taylor approximation around M2. Bregman divergences are a class 

of tractable divergences that enjoy a number of useful properties and are popular in the 

Machine Learning literature (Cesa-Bianchi and Lugosi, 2006). Bregman divergences are 

always positive, like distances, and are zero only when their arguments coincide. Unlike 

distances, they do not generally satisfy the triangle inequality and are only symmetric 

when ° is quadratic. Furthermore, they are always convex with respect to their frst 
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argument and satisfy a generalized Pythagorean property (Dhillon and Tropp, 2007; Kulis 

et al., 2009). Banerjee (2005) establishes the existence of a bijection between Bregman 

divergences and regular exponential families. If we set °(M) = − log det(M) then we 

have Stein’s loss, 

d°(M1, M2) = tr(M1M− 
2

1) − ln det(M1M2 
−1) − n , (4) 

which can also be interpreted as the negative of the zero mean n-dimensional Gaussian 

log-likelihood (up to a constant). If we set °(M) = kMk2 
F then we have the squared 

(Frobenius) loss 

d°(M1, M2) = tr[(M1 − M2)2] . (5) 

Finally, if we set °(M) = tr(M log M) then we have the Von Neumann loss 

d°(M1, M2) = tr(M1 log M1 − M1 log M2 − M1 + M2) . (6) 

We use Bregman divergences to introduce the following general class of projections 

for symmetric positive defnite matrices onto the set of correlation matrices. 

Lemma 1. Let Q be a symmetric positive defnite matrix and let Cn denote the set of 

correlation matrices. Defne the Bregman projection P°(Q) as 

P°(Q) = arg min d°(R, Q) . 
R2Cn 

Then we have that P°(Q) exists and is unique. 

We point out that existence and uniqueness of the Bregman projection follow from 

the fact that the set of correlation matrices is a convex set and that Bregman divergence 

is a convex function with respect to its frst argument. 
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Finally, we introduce the Pro-DCC(1,1) as the 

Qt = (1 − − )C + �t−1�
0 
t−1 + Qt−1 

Rt = P°(Qt) . 

In other words, the Pro-DCC replaces the rescaling equation of the DCC (3) with a 

projection. We point out that the Pro-DCC depends on a choice of an appropriate 

divergence function °(·). A natural choice for such a projection that also turns out to 

be computationally convenient is projection based on Stein’s loss (cf (4)) and the Von 

Neumann. We call these projections, respectively, Stein’s projection and Von Neumann 

projection for short. 

A number of comments are in order. As discussed at the end of section 2.1, the origi-

nal formulation of the DCC model was criticized in (Aielli, 2013) and a corrected version 

of the model was introduced. In particular, the correction involves replacing the stan-

dardized residuals �t by Q� t �t, where Q� t = diag(Qt)1/2. The mathematical justifcation of 

this correction is that the second moment of the innovations �t is in general not equal to 

the matrix C, so Qt cannot be thought of as a linear MGARCH process. Instead, in the 

corrected DCC specifcation, we have that E[Q� t �t�t 0 Q� t ] = E[Qt], and it is justifed to esti-
1 PT �t�

0 Q�mate C via correlation targeting, i.e. Ĉ = 
T t=1 Q� t t t . Crucially, this holds because 

in the DCC model Et−1[�t�t 0 ] = Rt = diag(Qt)−1/2Qt diag(Qt)−1/2. Unfortunately, in the 

Pro-DCC specifcation the last identity does not hold, hence it is not justifed to use the 

Aielli correction here. Therefore, we do not use the Aielli correction in the Pro-DCC 

methodology. As a sanity check, we carry out a simulated exercise where the DGP is 

Pro-DCC, and we observe that using Aielli’s estimator produces virtually the same loss 

as using standard correlation targeting. We show this in Appendix B. 

For high-dimensional settings, we propose to estimate the model by composite likeli-

hood as in Pakel et al. (2018). However, we note that in general, projecting the pseudo-

correlation of any 2 assets i and j is not equal to the (i, j) entry of the projection of the 

entire matrix P°(Qt). This is because the projection takes into account the full correlation 

9 



>>
ˆ >>

structure and not just the correlation between assets i and j. An exception occurs when 

we use the Stein’s projection of a pseudo-correlation matrix with a block-diagonal struc-

ture: in that case, the projection preserves the original structure and one can equivalently 

compute the projection block by block. 

It is widely known that the sample correlation matrix performs poorly when the 

concentration ratio n/T is large -see Lecture 4 in Stein (1986). For that reason, we 

consider using a nonlinear shrinkage estimator to rectify the in-sample bias of the sample 

correlation as in Ledoit and Wolf (2018a). 

2.2.1 Computing the Bregman Projection 

In order to apply the Pro-DCC in practice it is key to be able to compute the projections 

in a fairly cheap way. We derive a closed-form expression for the projection in the 

2 dimensional case for the Stein and von Neumann losses and we provide an eÿcient 

algorithm for the computation of the projection in the general n dimensional case for the 

Stein projection. 

The following two lemmas derive the closed form of the projection. 

Lemma 2. Let Q be a 2 × 2 symmetric positive defnite matrix. Consider the Bregman 

Projection of Q onto the set of correlation matrices under Stein’s Loss. The unique 

minimizer of this problem is given by 

8 
p>1− 1+4k2 < 2k k =6 0 

ˆ = , (7) >:0 k = 0 

where k = − q12 
det(Q) . 

Lemma 3. Let Q be a 2 × 2 symmetric positive defnite matrix. Consider the Bregman 

Projection of Q onto the set of correlation matrices under the Von Neumann Divergence. 

Let ln(·) denote the natural logarithm, and log(·) the matrix logarithm.1 Then, the unique 
1For symmetric positive defnite matrices, the matrix logarithm is log Q = U log �U 0, where U�U 0 is 

the eigendecomposition of Q and log � involves taking the natural logarithm of the eigenvalues. 
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minimizer of this problem is given by 

ˆ = tanh(k) 

where k denotes the (2, 1)-entry of log Q.2 

It is important to emphasize that the optimal projection in these two cases looks very 

di˙erent from rescaling, thus implying that rescaling, at least as far as the Stein and 

Von Neumann divergences are concerned, is not optimal. We point out that we were not 

able to obtain informative closed form expressions for n > 2. However, computations 

show that in general the optimal projection of each correlation pair depends on the entire 

covariance matrix (not just that pair), implying, again, that rescaling cannot be optimal. 

In the n-dimensional case we can derive an algorithm. Let Q be an n × n symmetric 

positive defnite matrix and d°(·, ·) be a matrix Bregman divergence with strictly convex 

function °(·). 

Computing the Bregman projection P°(Q) is equivalent to solving the following op-

timization problem with n aÿne constraints (one for each diagonal element of R): 

min d°(R, Q) subject to tr(Reie 0 i) = 1 for all i = 1, . . . , n. (8)
R 

where ei stands for the ith canonical basis vector. 

Let Ci be the set of n-dimensional symmetric positive defnite matrices whose ith 

ndiagonal element is unity. Clearly, the set of correlation matrices Cn = 
T 
i=1 Ci. 

To solve this problem, we use Bregman’s cyclic projections method. This is an iterative 

algorithm in which one must project successively onto each basic constraint set Ci in the 

hope that the sequence of iterates will converge to the Bregman projection onto the 
1 ln �1 2 ln �22Computations show that k has the following analytical expression k = + where1+ 1+2

1 
2
2 � q � 

2�i =
1 

q11 + q22 + (−1)i−1 (q11 − q22)2 + 4q122 � q � 
q11 − q22 + (−1)i (q11 − q22)2 + 4q2 

i = −2q12/ 12 

and i = 1, 2. 
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intersection Cn. 

Theorem 1 establishes the correctness of Bregman’s algorithm. We refer to Dhillon 

and Tropp (2007) for a proof. 

Theorem 1. Suppose 

(i) ° is a convex function of Legendre type. 

(ii) the domain of the conjugate function of ° is an open set. 

(iii) C1, . . . , Cn are aÿne spaces with intersection Cn. 

(iv) Cn \ ri(dom(°)) is nonempty. 

(v) the control mapping m : N ! {1, . . . , n} is a sequence that takes each output value 

an infnite number of times. 

Defne P°,m(k)(R(k−1)) as the projection of R(k−1) onto Cm(k). Choose R(0) from 

ri(dom(°)), and form a sequence of iterates via successive Bregman projections 

R(k) = P°,m(k)(R(k−1)) 

Then the sequence of iterates {R(k)} converges in norm to P°(R(0)) . 

Lemma 4 establishes a closed-form formula for P°,m(k)(R(k−1)) and is a special case of 

the derivation in Kulis et al. (2009) when °(·) = − ln det(·). 

Lemma 4. Consider the setting in Theorem 1 and let °(·) = − ln det(·). Then, for all 

i 2 {1, . . . , n}, 

]−2 
� 
1 − R(k−1)� R(k−1) 0 R(k−1)P°,i(R(k−1)) = R(k−1) + [R(k−1) 

eieii ii i 

where Rii 
(k) stands for the ith diagonal element of the matrix R(k). 

We concisely describe this procedure in Algorithm 1. We point out that the algorithm 

has a complexity per iteration of O(n2). 
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Algorithm 1 Stein’s Projection 
Compute Stein’s projection of a symmetric positive defnite matrix Q onto the set of 
correlation matrices. 
Input: A symmetric positive defnite matrix Q. 
Initialization 
Set R(0) = Q. 
Iterate until convergence 
In the k-th iteration of the algorithm choose the i-th constraint as 

i = arg max |1 − R(k−1)| ,ss 
s2{1,...,n} 

and update the projection according to the formula h i−2
R(k) = R(k−1) + R(k−1) (1 − R(k−1))R(k−1) 0 R(k−1)eie ,ii ii i 

where ei is defned as the ith canonical basis vector. 
Covergence criteria 
If maxs |1 − R(k)| < tolerance then stop. ss 

Output: The projected correlation matrix R(k). 

2.3 Rescaling vs Projecting a Pseudo-Correlation matrix 

In the previous sub-section we argue that it is possible to project a pseudo-correlation 

matrix onto the set of correlation matrices with a very simple approach from a computa-

tional perspective. In this sub-section we show that the di˙erence between rescaling and 

projecting is relevant enough in many cases. 

For simplicity, consider a 2-dimensional pseudo-correlation matrix Q with diagonal 

elements q11, q22 and o˙-diagonal element q12. Simple algebra shows that when q11q22 = 1, 

then the expression in equation 7 boils down to q12, which trivially coincides with rescaling 

q12 by 
p
q11q22. When q11q22 6= 1, this is generally not true, as it is shown in Figure 1. 

In the top-left panel we give an example of a combination of diagonal elements whose 

product is one, and observe that rescaling and projecting are equivalent. If the product 

is greater than 1, the projected correlation is below the rescaled one, and the di˙erence 

increases as the product moves away from 1. The reverse pattern occurs when the product 

between the diagonal elements is lower than 1. We also note that the point at which the 

maximum di˙erence occurs does not correspond to the same correlation level but is a 
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function of the product of the diagonal elements of Q. 

In Figure 1 we report only positive correlations, but a similar pattern emerges when 

they are negative (if the product of diagonal elements is greater than one, then the 

projected correlation is above the rescaled one, and it is below otherwise). 

Figure 1: Projecting versus rescaling a pseudo-correlation matrix. Red: correlation com-
puted using Stein’s projection -see equation 7 - as a function of the rescaled correlation p
q12/ q11q22. Black: 45 degree line. Cross: point of maximum di˙erence between project-
ing and rescaling. 

To further illustrate, consider a higher-dimensional setting. Assume that the n-

dimensional pseudo-correlation matrix is given by 

Q = (1 − �2)R(�1) + �2vv 
0 , 

where �1, �2 2 (0, 1). The vector v = (v1, . . . , vn)0 has a general entry vi = sin(xi), where 

x1 = �, xn = 2ˇ − �, and xi+1 = xi + 2 · 
n
ˇ 
−
− 

1 
" , for " > 0. The frst parameter �1 controls for 

the magnitude of the correlations and the second parameter �2 controls for the distance 

to an admissible correlation matrix R(�1), which is assumed to have a Toeplitz structure 
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- that is, its frst row (or column) is given by the entries 1, �1, �
2 . . , �n−1 . In Figure 1, . 1 

2 we see that the di˙erence -measured with the squared Frobenius norm 5 divided by 

n- between projecting and rescaling is monotonically increasing as Q moves away from 

the admissible correlation matrix R(�1), but it has an inverse-U shape with respect to 

the magnitude of the correlations. Moreover, the di˙erences become more acute as the 

matrix dimension grows large. 

Figure 2: Projecting versus rescaling an n-dimensional pseudo-correlation matrix. Y-axis: 
||Rresc − Rproj||22/n = tr((Rresc − Rproj)2)/n, where Rresc = diag(Q)−1/2Q diag(Q)−1/2, 
and Rproj = Pstein(Q). Solid black line: n = 50. Red dashed line: n = 75. Green 

0dotted line: n = 100. The pseudo-correlation matrix is Q = (1 − �2)R(�1) + �2vv , 
with �1, �2 2 (0, 1), v is an n × 1 vector with ith entry given by vi = sin(xi), where 
xi+1 = xi + 2(ˇ − ")/(n − 1), x1 = ", xn = 2ˇ − ". Finally, the notation R(�1) is used to 
denote a Toeplitz correlation matrix with parameter �1, i.e. with frst row/column equal 
to 1, �1, �

2
1, . . . , �

n 
1 
−1 . 
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3 Simulation Study 

3.1 Static estimators of multivariate Gaussian correlation ma-

trix (known unit variance) 

Let rt ̆ N (0, R), where R is an n-dimensional correlation matrix modelled with a single 

correlation parameter ̂ , and consider a random sample (iid) of T observations from that 

distribution. Assume that population variances are known to be 1. In particular, we let 

R = (1 − ̂)I + ˆ��0, where � is an n-dimensional vector of ones. 
0Let S = T −1 PT

t=1 rtrt be the sample covariance matrix of the data, which is the MLE 

for the population covariance. It is crucial to note that if the variances are unknown, 

then the MLE for the correlation coeÿcient would be Pearson’s sample correlation, i.e. 

R̂ (1) = diag(S)−1/2S diag(S)−1/2 . 

However, since the variances are constrained to be 1, the constrained MLE for the corre-

lation matrix is not necessarily given by Pearson’s sample correlation. In fact, Example 

18.3 in Kendall and Stuart (1979) shows that the MLE in the bivariate Gaussian case is 

obtained by solving a cubic equation - which in large samples has only one real solution. 

We consider two di˙erent candidates to estimate the correlation matrix R. The frst 

one consists in rescaling S to turn it into a correlation, whereas the second one projects S 

onto the correlation set using Stein’s projection. From the example in section 2.2, we have 

that the zero-mean multivariate Gaussian density corresponds to Stein’s loss, which is a 

Bregman divergence with °(·) = − ln det(·). This means that computing the projection 

is indeed a very similar problem to fnding the Gaussian MLE for the correlation matrix 

assuming unit variance. As discussed in the previous section, computing the projection 

involves solving a convex problem - as opposed to the MLE - and is much simpler to 

compute. We can write the proposed estimator as 

R̂ (2) = P°(S) . 
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We evaluate the performance of our candidate estimators using a Montecarlo experiment. 

In each replication, we draw 500 observations from a multivariate Gaussian distribution 

with covariance parameter R. We compute the loss of both candidate estimators with 

respect to the true correlation matrix. The following loss functions are used to assess the 

accuracy of each estimator: 

s 
LF rob(R̂ , R) = 

1 tr[(R̂ − R)2] 
n 

1 X 
LMAE(R̂ , R) = |R̂ 

ij − Rij|
n i,j 

LStein(R̂ , R) = tr( ̂  RR−1) − nRR−1) − ln det( ̂  

Note that we divide the squared Frobenius loss and the sum of absolute errors by n 

to establish a fair comparison as the dimension increases. We estimate E[L] using the 

sample average of the losses obtained across Montecarlo replications. 

We repeat the same exercise for di˙erent levels of the correlation parameter ̂  as well 

as for the cross-sectional dimension n. 

Figure 3 shows the excess loss in estimation accuracy which results from using sam-

ple correlation instead of projecting the sample covariance onto the correlation set with 

Stein’s projection, where the truth is given by an equicorrelation matrix with parameter 

ˆ. From this fgure, we conclude that the gap between both methods increases with the 

dimensionality of the correlation matrix. In the equicorrelation model, we see that the 

gap is maximized at some intermediate value of the ̂  parameter. 
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Figure 3: Static simulation study: Sample correlation versus Stein’s projection of the sam-
ple covariance matrix onto the correlation set. From left to right panel, the y-axis shows 
E[LMAE,resc] − E[LMAE,proj], E[LF rob,resc] − E[LF rob,proj], and E[LStein,resc] − E[LStein,proj], 
respectively. For each Montecarlo replication, we draw T = 500 observations from 
N (0, R), where R = (1 − ̂)I + ˆ��0. Black, red, green and blue lines correspond to 
n = 10, 23, 36, 50, respectively. 

3.2 Estimation accuracy of competing dynamic correlation es-

timators 

In this subsection we perform a Montecarlo simulation exercise with 500 replications to 

compare the estimation accuracy of Pro-DCC versus DCC. 

�1/2Let n = 2. The return vector is generated as rt = t zt, where zt ˘ N (0, I), and 

�t = Covt−1[rt] = DtRt 1320Dt, symmetric positive defnite. 

1 ˆtBBB@ 6664 CCCA 7775 = D−1 
tClearly, �t | Ft−1 ˘ N 0, , where �t rt. 

ˆt 1 

Consider the DGP’s proposed in Engle (2002). The conditional variances follow the 

recursions 

d2
1,t = .01 + .05 r1

2 
,t−1 + .94 d1

2 
,t−1 

2d2
2,t = .3 + .2 r2,t−1 + .5 d2

2,t−1 

and we consider fve di˙erent process for the conditional correlation: 1) Constant: ̂ t = .9, 

2) Sine: ˆt = .5 + .4 cos(2ˇt/200), 3) Fast Sine: ˆt = .5 + .4 cos(2ˇt/20), 4) Step: 

ˆt = .9 − .5(t > 500) and 5) Ramp: ˆt = mod (t/200). 
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Dynamic correlations for the SINE process are displayed in fgure 4. We employ 

the following methodologies for estimation: 1) DCC: standard version of the Dynamic 

Conditional Correlation model, 2) Pro-DCC, the Projected DCC model presented in 

section 2.2, and 3) DCC-NoResc, a variant of the DCC model that omits the rescaling 

step, so it assumes that Rt = Qt. For every replication, we draw T = 1500 realizations 

from the DGP, and evaluate estimation accuracy using i) Stein’s Loss as in 4, and ii) q
Root Mean Squared Error, which in practice we compute as 

T 
1 P 

t
T 
=1(ˆt − ̂t)2. 

The distribution of excess losses across Montecarlo simulations is reported in fgure 5. 

Finally, fgure 6 reports the distribution of the estimated parameter across Montecarlo 

replications for each methodology. 

We draw the following conclusions from this simulated exercise: 1) Pro-DCC outper-

forms DCC for all DGP’s proposed in Engle (2002). The only exception is the constant 

correlation process when we use Stein’s loss. However, for this process, rescaling is not 

really relevant since neither DCC nor Pro-DCC are able to beat the DCC-NoResc bench-

mark, and 2) The estimated parameter, which regulates the sensitivity of the conditional 

(pseudo) correlations to the innovations, is generally larger for Pro-DCC than for DCC. 

It has been documented that DCC usually underestimates this parameter. This would be 

less of a concern in our proposed algorithm. However, since these are actually di˙erent 

models and the relationship between both is not trivial, we should not claim that our 

model corrects this bias. 
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Figure 4: Simulation study: bivariate dynamic conditional correlations. Purple: true 
conditional correlation process (Sine). The remaining lines represent conditional corre-
lation ftted values and one-step ahead forecasts for DCC (green), Pro-DCC (blue) and 
DCC-NoResc (dark orange). 

Figure 5: Simulation study: bivariate dynamic conditional correlations. Excess Stein’s 
Loss (Cumulative) for di˙erent dynamic correlation processes. Purple: excess loss of DCC 
with respect to Pro-DCC. Green: excess loss of DCC-NoResc with respect to Pro-DCC. 
Blue: excess loss of DCC with respect to DCC-NoResc. 
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�Figure 6: Simulation study: bivariate dynamic conditional correlations. Estimated 
parameter for di˙erent dynamic correlation processes. Purple: distribution of alpha esti-
mates for DCC. Green: distribution of alpha estimates for Pro-DCC. Blue: distribution 
of alpha estimates for DCC-NoResc. 

4 Empirical Application 

4.1 Top-1000 pairs by correlation in S&P 100 

We consider S&P 100 constituents’ daily log returns ranging from 2007-01-01 to 2019-

06-24 (source: Alpha Vantage). We carry out the exercise for 1000 pairs in the index, 

selected in decreasing order of their sample correlation coeÿcient across the whole period. 

We train Pro-DCC, DCC and DCC-NoResc (as in the previous section) until 2012-12-

31 and use the remaining observations to test the performance of di˙erent covariance 

matrix estimators using the sample standard deviation of the Global Minimum Variance 

Portfolio (GMVP). 
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To compute the standard deviation of the Global Minimum Variance Portfolio (GMVP) 
00for dimension n, we need the (dynamic) weights wt that solve minw �=1 wt�twt, where � t 

is an n-dimensional vector of ones. It is easy to show that the minimizer is given by the 

following expression: 
�−1 

wt 
� = t � (9)

�0�− t 1� 

Clearly, the optimal weight vector in 9 is an infeasible quantity. Hence we estimate the 

standard deviation of the GMVP using weights that are based on a suitable estimator of 

:3�t vuut T +X̋ 
t=T +1 

�̂ −1 
� t|t−1�where ŵ = .t �0�̂ −1 

t|t−1� 

From fgures 7b and 7a we conclude with two main observations: 1) In terms of the 

standard deviation of the GMVP, it is not clear that any of the candidate estimators is 

able to outperform the equal-weighted portfolio (also known as "1/N"). In terms of the 

average GMVP standard deviation across pairs, the ranking is (from best to worst): 1/N, 

Pro-DCC, DCC, DCC-No Rescaling, Sample covariance. 2) Looking at the distribution 

of the estimated parameter across pairs suggests that P ro−DCC > DCC , same as in 

the simulation study. 

4.2 Portfolio selection with all constituents in S&P 100 

In this sub-section we test our algorithm in a higher-dimensional setting. We carry out a 

similar exercise as in the previous sub-section but for 86 (we have to discard 14 stocks for 

which the series is not long enough) instead of n = 2. We follow the common convention 

that 21 consecutive trading days constitute one "month". The training period ranges 

from 01/01/2007 to 31/12/2012. The out-of-sample period ranges from 01/01/2013 to 

24/06/2019, resulting in a total of 77 months (1630 trading days). Following De Nard 

et al. (2018), we update portfolios every month and denote investment dates by h = 

3Figures are reported in annualized terms. For daily log returns, this amounts to multiplying by p
252. 

˝−1 0 �ŵ�
0 
rtr ŵSDGMV P = t t t 
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(a) (b) 

Figure 7: (a) Distribution (across 1000 di˙erent pairs from the S&P 100) of the estimated 
parameter for each methodology. (b) Distribution (across 1000 di˙erent pairs from the 

S&P 100) of the standard deviation of the Global Minimum Variance portfolio based on 
di˙erent candidate estimators of the conditional covariance matrix. The last two boxes 
correspond to static candidates for the purposes of benchmarking. Sample Cov stands 
for the unconditional sample covariance matrix, and 1/N refers to the equal-weighted 
portfolio, which in this case invests half of total wealth in each asset for each pair. 

1, . . . , 77. At any investment date h, a covariance matrix is fltered based on the estimated 

model. 

AV SD Sharpe Turnover Leverage MaxWeight MinWeight 

ProDCC-NLS 10.54 11.36 0.93 0.07 0.51 0.54 -0.12 

DCC-NLS 11.22 11.37 0.99 0.08 0.50 0.50 -0.14 

ProDCC 10.53 11.44 0.92 0.08 0.50 0.57 -0.15 

DCC 11.11 11.44 0.97 0.08 0.49 0.52 -0.16 

DCCNoresc-NLS 9.93 11.45 0.87 0.07 0.50 0.51 -0.13 

DCCNoresc 9.96 11.54 0.86 0.07 0.49 0.57 -0.15 

NLS 10.66 11.69 0.91 0.00 0.48 0.22 -0.09 

SampleCov 10.54 11.84 0.89 0.00 0.49 0.25 -0.10 

ScalarVECH-NLS 15.48 12.09 1.28 0.07 0.47 0.48 -0.28 

ScalarVECH 15.35 12.21 1.26 0.08 0.47 0.51 -0.30 

1/N 13.04 12.60 1.03 0.00 0.00 0.01 0.01 

Table 1: Empirical Application: Portfolio selection with all constituents in S&P 100. 
GMVP metrics for full out-of-sample period 

We consider various covariance matrix estimators in this section. Since the dimen-

sionality of the problem is considerably large, we also implement the analytical nonlinear 

shrinkage (NLS) methodology from Ledoit and Wolf (2018a) for each of them. The esti-

mators are 1) DCC: the standard version of the DCC model, 2) Pro-DCC: the Projected 

DCC model based on Stein’s projection as in section 2.2, 3) Scalar VECH: scalar-diagonal 

version of the VECH model, 4) DCC-Noresc: DCC model omitting the rescaling step, 

5) Sample Cov: Sample covariance computed from training sample. This is a static 
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estimator, and 6) NLS: Analytical nonlinear shrinkage formula computed from training 

sample (also a static estimator). For benchmarking purposes, we also report metrics for 

the equal-weighted portfolio ("1/N"). 

We report the following three out-of-sample performance measures: 1) AV: the an-

nualized out-of-sample average of portfolio returns, 2) SD: the annualized out-of-sample 

standard deviation of portfolio returns, and 3) Sharpe: the Sharpe ratio computed as AV 

/ SD.4 

The resulting portfolio metrics are presented in tables 1 and a breakdown by year can 

be found in table C1. These can be summarized as follows: a) Overall, Pro-DCC-NLS 

and Pro-DCC outperform all other candidate estimators in terms of both the standard 

deviation and the Sharpe ratio of the GMVP. b) The overall ranking in terms of the 

SD of the GMVP is 1) Pro-DCC-NLS, 2) DCC-NLS, 3) Pro-DCC, 4) DCC, 5) DCC-

Noresc-NLS, 6) DCC-Noresc, 7) NLS, 8) Sample Cov, 9) Scalar VECH-NLS, 10) Scalar 

VECH, 11) 1/N. c) All dynamic estimators outperform static estimators (except for 

the scalar VECH). d) The (analytical) nonlinear shrinkage versions of all estimators 

considered in the exercise present superior performance than doing no shrinkage at all. 

Moreover, the relative ranking between models does not change when introducing the 

nonlinear shrinkage methodology, which suggests that it uniformly improves performance 

irrespective of the modeling choice for the time-varying covariance matrix. 

5 Conclusions 

In this paper we contribute to the multivariate GARCH-DCC literature with a novel 

DCC specifcation inspired by the literature on Bregman matrix projections and the 

nearest-correlation matrix problem. We demonstrate the benefts of using our proposed 
4Additionally, the following portfolio metrics are computed: 

• Turnover: 1 PT +˝ P 
i
N 
=1 |wi,t − wi,t−1|.N(˝−1) t=T +2 PT +˝ PN• Proportion of leverage: 1 

i=1 1{wi,t < 0}.N˝ t=T +1 

• Maximum weight: maxi,t wi,t. 

• Minimum weight: mini,t wi,t. 
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methodology (Pro-DCC) with respect to the standard GARCH-DCC model in a simulated 

exercise with 2 stocks. We also carry out a global minimum variance portfolio exercise 

based on historical data for 1000 pairs of stocks, and the di˙erences in terms of out-of-

sample performance turn out to be negligible. However, when we consider a setting where 

the cross-sectional dimension is considerably larger (n = 86), we fnd that the standard 

and nonlinear shrinkage versions of Pro-DCC outperform all other candidate estimators 

of the conditional covariance matrix in terms of the standard deviation and Sharpe ratio 

of the GMVP. As a secondary contribution, we illustrate on simulated iid data that 

when the DGP is a multivariate Gaussian process with unit variance, the estimator that 

results from projecting the sample covariance matrix onto the correlation set performs 

better than the sample correlation matrix in terms of Stein loss and -rather surprisingly-

the excess portfolio variance of the GMVP. 
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A Proofs 

Proof of Lemma 1. See p. 206 in Bregman (1967). 

Proof of Lemma 2. Let K = Q−1. Consider the n = 2 case: 

323232 
R = 

6664 1 ˆ 7775 , Q = 
6664 q11 q12 7775 and K = 

6664 k1 k 7775 
ˆ 1 q12 q22 k k2 

Therefore, 

tr(RK) = k1 + 2kˆ + k2, and det(RK) = det(K) det(R) = (k1k2 − k2)(1 − ̂2) 

and our minimization problem can be formulated as a univariate problem: 

min f(ˆ) = min k1 + 2kˆ + k2 − ln(k1k2 − k2) − ln(1 − ̂2) − 2 
ˆ ˆ 

Since the problem is convex and the domain of f is the open interval (−1, 1), it suÿces 

to take the frst order condition and solve for ̂ , which yields 

ˆ = 

8 >< 
>: 

p
1− 1+4k2 

2k k 6= 0 

0 k = 0 

where k = − q12 
det(Q) . 

Proof of Lemma 3. Let K = log Q. In the bivariate case, we have that 

!
1 + ˆtr(R log R) − tr(RK) = ln(1 − ̂2) + ˆ ln 1 − ̂ 

− 2kˆ + const := f(ˆ) 
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which follows since the matrix logarithm of R is given by 

323232 
1 −1 6664 7775 ln(1 + ˆ) 0 6664 7775 1 11log R = 2 

6664 7775
1 1 0 ln(1 − ̂) −1 1 

Hence, the problem is equivalent to minimizing f with respect to ̂ .5 Since the problem 

is convex and the domain of f is the open interval (−1, 1), it suÿces to take the frst 

order condition and solve for ̂ : 

! 
−2ˆ 1 + ˆ 1 − ̂ 2 

(1 − ̂)2 
− 2k = 0+ ln + ˆ1 − ̂2 1 − ̂ 1 + ˆ 

e2k − 1 =) ̂ = = tanh(k) 
e2k + 1 

To fnd an analytical expression for k, let V�V0 be the eigendecomposition of Q, where 

V is orthonormal. It is easy to verify that the eigenvalues of Q are given by 

��1 q 
q11 + q22 + (−1)i−1 2(q11 − q22)2 + 4q12�i = 2 

where i = 1, 2. Their corresponding eigenvectors are vi = [vi1, vi2]0, where 

�� q
(q11 − q22)2 + 4q2

12 = −2q12/ q11 − q22 + (−1)i vi2 := ivi2vi1 

2)−1/2Imposing unit norm eigenvectors, we have that vi2 = (1 + i . Hence, it is easy to 

see that the (2,1) entry of the K matrix is given by 

2 2 1 ln �1 2 ln �2
k = (ln �1)v11v12 + (ln �2)v21v22 = (ln �1) 1v12 + (ln �2) 2v22 = 2 + 21 + 1 1 + 2 

5Note that we can ignore the terms tr(R) and tr(Q) that appear in d°(R, Q) as these do not depend 
on ̂ . 
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Proof of Lemma 4. Let R(0) = Q. Note that 

, R(k−1)P°,i(R(k−1)) = arg min d° 
� 
R(k) 

� 
R(k)2Ci 

The frst order condition of the Lagrangian yields the following matrix update for R(k): 

8 > 0<r°(R(k)) = r°(R(k−1)) + eiei 

> 0:tr(R(k)eiei) = 1 

When °(·) = − ln det(·), we have that r°(R(k)) = −[R(k)]−1, and the frst equation 

of the system becomes 

�−1
R(k) 

� 
[R(k−1)]−1 − 0= eiei 

Using Sherman-Morrison’s formula, we can re-write the frst equation as 

R(k) = R(k−1) + R(k−1) 0 R(k−1) 
0 R(k−1) 

eie1 − ei ei
i 

0 0 R(k−1) = R(k−1) 0 R(k−1) 0Note that tr(R(k−1)eiei) = ei ei ii . It follows that tr(R(k−1)eiei eiei) = 

0 R(k−1) = [R(k−1)(ei ei)2 
ii ]2. Plugging the frst equation in the second one and solving for 

we get

 " # ! 
R(k−1) + R(k−1) 0 R(k−1) 0tr eie eie = 1

R(k−1) i i1 − ii 

= [R(k−1) 
ii ]−1 − 1 

Replacing in the frst equation of the system yields the desired result, since 

[R(k−1)]−1 − 1 � � 
ii = [R(k−1)]−2−[R(k−1)]−1 = [R(k−1)]−2 1 − R(k−1)= ii ii ii ii1 − ii ii iiR(k−1) 1 − ([R(k−1)]−1 − 1)R(k−1) 
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B Aielli’s Critique 

Figure B1: Covariance targeting vs Aielli correction in Pro-DCC. The ratio compares thePTloss of the sample second moment of the standardized residuals 
T 
1 

t=1 �t�
0 
t (covariance PTtargeting) to the loss of Aielli’s estimator, which is given by 

T 
1 

t=1 Q� t �t�0 tQ� t . The loss PSof each estimator Ĉ 
s for simulation s is defned as 1 

s=1 ||C − Ĉ 
s||F 2 , where S is the 

S

number of Montecarlo simulations, C is the true unconditional correlation matrix and q 
||A||F = tr(A0A)/n for some A 2 Rn×n. 
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C Additional Tables 

AV SD Sharpe Turnover Leverage MaxWeight MinWeight 

2013 

ScalarVECH-NLS 20.2645 9.6293 2.1045 0.0668 0.4678 0.4802 -0.1602 

ScalarVECH 19.9699 9.7213 2.0542 0.0693 0.4650 0.5133 -0.1719 

DCC-NLS 16.5642 10.0014 1.6562 0.0776 0.4992 0.5007 -0.1310 

2014 

DCC-NLS 15.6294 9.3944 1.6637 0.0784 0.4882 0.3998 -0.1292 

DCC 15.1084 9.4188 1.6041 0.0816 0.4863 0.3994 -0.1369 

DCCNoresc 14.4356 9.4522 1.5272 0.0688 0.4983 0.3685 -0.1050 

2015 

NLS 3.8565 14.3740 0.2683 0.0000 0.4767 0.2208 -0.0856 

SampleCov 3.6372 14.4431 0.2518 0.0000 0.4884 0.2455 -0.1024 

ScalarVECH-NLS 9.3066 14.9324 0.6232 0.0934 0.4747 0.4692 -0.2772 

2016 

ProDCC-NLS 19.9057 10.1197 1.9670 0.0717 0.5310 0.3640 -0.1215 

DCC-NLS 19.6058 10.1252 1.9363 0.0747 0.5134 0.3912 -0.1039 

ProDCC 20.9271 10.1287 2.0661 0.0749 0.5233 0.3641 -0.1344 

2017 

EqualWeighted 17.2063 6.4566 2.6649 0.0000 0.0000 0.0116 0.0116 

DCCNoresc-NLS 14.3169 6.8502 2.0900 0.0549 0.5078 0.2802 -0.0933 

DCC-NLS 12.2975 6.8950 1.7835 0.0590 0.4883 0.2863 -0.1176 

2018 

DCC-NLS -6.2292 14.3685 -0.4335 0.0726 0.4853 0.3062 -0.1044 

DCC -6.6338 14.4764 -0.4582 0.0750 0.4852 0.3161 -0.1144 

ProDCC-NLS -5.5740 14.5076 -0.3842 0.0681 0.4900 0.3159 -0.1018 

2019 

DCCNoresc-NLS 17.9405 10.5199 1.7054 0.0647 0.4874 0.2800 -0.0863 

ProDCC-NLS 13.0457 10.5955 1.2312 0.0753 0.5030 0.3159 -0.0796 

DCCNoresc 18.1649 10.5963 1.7143 0.0681 0.4813 0.2929 -0.0921 

Table C1: GMVP metrics by year (showing top 3 by SD) 
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