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Abstract

We study the properties of realized high-order moments under a data generating process
accounting for key stylized features: infrequent discontinuities in unobserved equilibrium prices
and staleness in observed prices, a phenomenon linked to volume dynamics. Our focus is
on identification and pricing. In terms of identification, we show how the interplay between
price discontinuities and prices staleness will, in general, lead to biased and/or noisy high-
order moment estimates. We also show how a combination of thresholding and corrections
for staleness-induced biases can be deployed to extract reliable information about high-order
continuous and discontinuous variation. Regarding pricing, the use of thresholding and de-
biasing leads to ample evidence about the negative cross-sectional pricing of idiosyncratic price
discontinuities at high frequency. We show that accounting for staleness is (1) important for the
correct identification of high-order moments, (2) revealing about these moments’ cross-sectional

pricing and (3) informative about the pricing of illiquidity, for which staleness is a rich proxy.
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1 Introduction

The identification of volatility has been central to the econometric literature and has provided support
to empirical work in an array of fields, from finance to macroeconomics. Less emphasis has been
placed on higher-order moments. Yet, economic modeling is now beginning to be more attentive to
the full distributional properties of economic time series - to tail properties, in particular.

In light of this premise, we study the large sample features of empirical higher-order moments
computed from high-frequency (price) data, i.e., realized high-order moments. As is standard in
the high-frequency literature, we assume prices evolve continuously in time and work with equally-
spaced data on a sampling grid spanning the trading day. We obtain daily measures by suitably
aggregating intradaily price changes on the assumed grid. Asymptotics are derived by letting the
number of intradaily observations grow without bound and, therefore, by making the grid less and
less coarse as the sample size increases, i.e., infill asymptotics. In addition to other more standard
assumptions, the proposed data generating process incorporates two first-order features of the price
data. First, the observed process (on the sampling grid) can be stale, and therefore not move,
due to lack of (or limited) volume (price staleness), an empirical phenomenon illustrated by Bandi
et al. (2019). Second, the underlying (unobservable, in the presence of price staleness) price process
may display infrequent discontinuities associated with unexpected news arrivals (price jumps). The
impact of jumps on realized moment measures is studied in detail in the econometrics literature (see
Ait-Sahalia and Jacod, 2015, and the references therein). However, much less is known about the
effect of staleness and, in particular, about the theoretical interplay between jumps and staleness.
We show that this interplay - a central theme of the present paper - is key to the analysis of realized
moments, asymptotically and in any finite sample.

In large samples, it is important to distinguish between trajectories with and without jumps. In
the absence of jumps, the properties of realized moments depend on whether they are constructed
using even functions (the fourth moment case, for instance) or odd functions (as in the third moment
case). In general, even functions lead to staleness-induced asymptotic biases and limiting zero-
mean mixed normal distributions (the realized variance case being a notable exception for which
the staleness-induced bias is zero). Odd functions, instead, do not generate a bias but the limiting
distributions are uncentered mixed normal. We propose a simple methodology to bias-correct realized
moments, when needed, and show consistency and mixed normality of the resulting bias-corrected
estimates. On discontinuous trajectories, importantly, the realized moments have to be re-scaled.
When suitably re-scaled, they are shown to be consistent for sums of (odd or even) functions of
the jumps with limiting mixed normal variates whose variances are augmented (relative to the case
without staleness) by the presence of staleness.

In a finite sample, the interaction between staleness and jumps can be understood as follows.
Extended periods of price staleness ought to be associated with an ever-changing underlying (unob-
servable) efficient price process. When staleness comes to an end, observed prices revert to prevailing

efficient prices but the latter may be far from observed prices. This effect may generate spurious



jumps even on a purely continuous trajectory. These spurious jumps have the potential to influence
the finite sample properties of the realized moment estimates, particularly in the continuous case
and with even functions. The proposed asymptotic bias-correction for the case with discontinuous
trajectories is shown to alleviate this issue drastically.

The presence of staleness leads to one key modification in the evaluation of realized moments.
Because it generates random periods of time over which the price changes are zero, it modifies the
sampling grid (by making it random and coarser than the original grid) and, as a consequence, the
sample size (the effective sample size being smaller than the original one). Given that the limiting
order of the new sample size is the same as that of the old sample size, staleness does not yield
modifications of the convergence rates. It only leads to upward biases (with even functions, in the
continuous case) and increased estimation uncertainty. We provide methods to characterize both
and account for them.

Realized variance is a well-posed estimator in the presence of both staleness and jumps. It is
consistent for the overall quadratic variation and mixed normally distributed with an asymptotic
distribution whose variance is enhanced by staleness. Higher-order moments are more delicate, the
interaction between staleness and jumps playing a more critical role in this more general case. First,
differently from realized variance, for the limit of higher-order moments to be meaningful about the
tail properties of the price series, higher-order moments have to be re-scaled differently on trajectories
with and without jumps. Second, should we establish that a trajectory is continuous, depending on
the nature of the moment as defined by the corresponding function (odd or even), the required (to
alleviate the impact of staleness) bias-correction should be different. In all cases, staleness affects
limiting precision and should, therefore, be accounted for when evaluating limiting variances and
performing asymptotic inference.

Realized high-order moments are often used in the literature as inputs in traditional definitions of
skewness and kurtosis. We find that, on continuous trajectories, realized kurtosis may considerably
overstate true kurtosis due to staleness. Similarly, while unbiased, continuous skewness is noisier in
the presence of staleness. We also show that realized skewness and kurtosis diverge with the sample
size in the presence of discontinuous trajectories. While realized skewness is a signed measure of
jumps, more negative (res. positive) values being associated with more negative (res. positive)
jumps, realized kurtosis increases with the number of intra-daily observations (irrespective of the
magnitude and number of jumps on the continuous trajectory of the process). Both properties, the
latter in particular, are undesirable.

Thresholding, i.e., the use of truncation to identify small and large variation in asset prices,
provides a natural way to address these issues. We define (truncated) continuous notions of skewness
and kurtosis and show how bias-correcting kurtosis leads to accurate assessments of variation due
to uncertainty in price volatility. Similarly, we may define (truncated) discontinuous notions of
skewness and kurtosis, as well as various moments of the positive and negative jumps, not affected

by the presence of staleness.



We re-evaluate the existing empirical evidence on the cross-sectional pricing of idiosyncratic
skewness and kurtosis (c.f., Amaya et al., 2015 and Bollerslev et al., 2019). In order to do so, we use
a large cross-section of US stocks and a large sample of high-frequency price data spanning 20 years.
Consistent with the economic logic laid out in Amaya et al., 2015 and Bollerslev et al., 2019, we expect
measures that are positively correlated with positive price discontinuities and negatively correlated
with negative price discontinuities (like the skewness measure of Amaya et al., 2015 or the relative
signed jump variation of Bollerslev et al., 2019) to be priced negatively. Negative pricing would, in
fact, be symptomatic of aversion to negative skewness (or negative jumps) and attraction to positive
skewness (or positive jumps). We provide evidence in support of this logic but emphasize - both in
theory and with data - that simple measures based on sums of extracted positive/negative jumps
using truncation contain cleaner pricing signal than measures like skewness or relative signed jump
variation. The latter are, in fact, contaminated by continuous variation and, therefore, by staleness.
Regarding kurtosis, we show that its documented positive pricing (c.f. Amaya et al., 2015) is due
to the above-mentioned staleness-induced upward bias. When controlling for staleness, either by
bias-correcting directly or by inserting it as a control, the pricing of idiosyncratic kurtosis becomes
negative in much the same way in which the price of idiosyncratic volatility is negative. This result
may be suggestive of a volatility uncertainty pricing puzzle analogous to the more classical volatility
level puzzle of Ang et al. (2006). Finally, we document that a direct measure of staleness, like
the percentage of zero returns, commands a positive, and highly statistically-significant, illiquidity
premium in expected returns. Because staleness also affects the centering of the distribution of
realized kurtosis and the spread of the distribution of realized skewness, we conclude by stressing
that accounting for staleness is key to understanding the pricing of higher-order moments in addition
to the pricing of illiquidity. In sum, the interaction between illiquidity, as represented by staleness,
and estimated efficient price dynamics, as represented by the time series of the high-order price
moments, has both econometric and pricing implications. These implications are the focus of our
analysis.

The paper proceeds as follows. Section 2 presents the model, the general family of estimators
and limiting results for realized high-order moments in the continuous case (Subsection 2.2) and
in the discontinuous case (Subsection 2.3). Section 3 proposes a simple bias-correction for realized
moment estimates in the presence of staleness and studies its limiting properties. In Section 4
we study traditional realized skewness and kurtosis estimates and use their limiting features to
further characterize the interplay between staleness and jumps. Section 5 separates continuous from
discontinuous variation by thresholding. The section offers a simple strategy to evaluate continuous
and discontinuous higher-order moments and, in the former case, perform effective bias-correction to
alleviate the impact of staleness. The pricing relevance of discontinuous and continuous variation,
as well as that of illiquidity (as proxied by staleness), is re-evaluated in Section 6 using a large
cross-section of US stocks and a long span of high-frequency price observations. Section 7 concludes.

Proofs are in the Appendix.



2 Limit theory for realized moments

2.1 Setting and assumptions

We assume the underlying (sometimes unobserved) efficient price process follows a continuous-time
semimartingale with stochastic volatility and jumps while the observed price process (recorded on a
specific sampling grid over the finite interval [0,¢]) is contaminated by the presence of staleness.

Formally, let X; be the efficient logarithmic price process defined on a filtered probability space
(Q, F,(F;),P). The observed logarithmic price process X, is defined as:

~

Xia, = Xin, (1 —-B;,,) + X(ifl)AnBi,na (1)

where A,, = %, {tin =1A,]17=0,...,n} is a partition of the interval [0,¢] and B, ,, is a triangular
array of F;a, -measurable Bernoulli random variables defined on the same probability space as the
efficient price X;.

When volumes are zero (or limited, with zero price impacts), prices repeat themselves (B;,, = 1).!
When volumes are present (B;,, = 0), observed prices coincide with underlying efficient prices.
In the model, the probability of staleness is P(B;, = 1) = p2. When working with dependent
Bernoulli variates and a frequency-specific probability of staleness, the model specification in Eq.
(1) coincides with that in Bandi et al. (2017). The case of independent Bernoulli variates with a
constant probability of staleness P(B;,, = 1) = p2 = p? is studied in the work of Phillips and Yu
(2009). Rich empirical evidence for the proposed specification is contained in Bandi et al. (2019).

The realized high-order moment estimators are generalized power variation estimators defined as
PV(f;X) = n">71 Y F(AX), (2)
i=1

where either f(z) = |z|" or f(z) = 2, for some r > 0. Naturally, their asymptotics depend both on
the dynamics of the efficient price process and on those of the Bernoulli variates B, ,,, to which we

now turn.

Assumption 1. Assume X; evolves as

t t t t
X = XO—I—J as ds+f UdeS+J f ﬁ(S,é)(M—V)(ds,d5)+f J k(s,0)p(ds,dd), (3)
0 JJr(s,8)|<1 0 JJr(s,8)|>1

0 0

where p is a Poisson random measure on R x E with predictable compensator v(dt, dx) = dtA(dx),

! According to the nomenclature in Bandi et al. (2019), the term “staleness” defines zero returns, whereas the
term “idleness” defines zero returns with strictly zero volumes. Consistent with this terminology, we employ the term
“staleness” to include all zeros. This choice can be viewed as being less restrictive than solely focusing on idleness
and is economically-meaningful - if one views the probability of zeros as an illiquidity proxy - because the volumes
associated with staleness are either zero (idleness) or limited (c.f., Bandi et al., 2019).



A is a o-finite measure on the set (F, ) and the volatility function o satisfies the equation

~

t t t t
oy = 0g+ f al, ds + f oldWy + f J K(s,0)(ji—7)(ds,dd) + f J K(s,0)p(ds,dd), (4)
0 0 0 J|&(s,0)|<1 0 J|&(s,0)|>1

where, again, i is a Poisson random measure with compensator 7(dt, dz) = th(dx), W, and V; are
independent Brownian motions, and a, a’, ¢’ and v" are adapted cadlag bounded processes. Given a
sequence of increasing stopping times 7, and deterministic, nonnegative functions -, defined on F
so that {12(0)\(dd) < oo, we have that |k(w,t,0)] A 1 < 7,(0) for all uw and all (w,t,d) with ¢ < 7.

Assumption 2. Assume B, ,, is a triangular array of i.i.d. Bernoulli random variates, independent
of Xy, with E[B,,.] = p? € [0,1).

Assumption (1) is a standard sufficient condition required for the proof of the types of central
limit theorems (CLT's) obtained in high-frequency econometrics. It postulates that the efficient price,
as well as its spot volatility, evolve as Brownian semi-martingales with jumps. While we allow for
infinite activity (small) jumps, our main interest is in economically-informative large discontinuities.
The coefficients of the semi-martingales are assumed to be bounded, a condition which can be relaxed
by standard localization arguments. As discussed above, Assumption (2) is consistent with Phillips
and Yu (2009).

In order to distinguish between continuous and discontinuous trajectories, we consider two com-

plementary subsets of € defined as:

Qfoyy = {weQ: Xs(w) is continuous on [0,]}, (5)
Q{O,t] = {weQ: X (w) is discontinuous on [0,¢]} . (6)
Below, we establish F*-stable convergence in law (denoted by stably ”) of the power variation

estimates, where 7* = \/,.( F/, and (F}),5 is the sub-filtration of (F;)

is adapted to (F}),s,, any JF;-martingale is a F;-martingale, and J;" is independent of the o-algebras

such that the process X;

t=0°
generated by the Bernoulli variates.

2.2 Power variation on Qfo 1l
We begin by assuming that the trajectory of the efficient price process is continuous on [0, t], that
is, AX, = X, — X,— = 0Vu € [0,¢]. In this case, the limiting properties of the realized high-order

moments follow from the general limit theorem for realized power variation which we present next.

Theorem 2.1. Let Assumptions (1) and (2) hold and AX,, = 0 Yu € [0,t]. Set p(f) = E[f(U)]
and p(f,k) = E[f(U)U*] Yk > 0, where U ~ N'(0,1). Then, as n — oo,

)% (1_1?@)2 .

X i_r (p? ta " ds
PV(f; X L 0P) o) [ el s ™)



~ ( . t r stabl t t t
vin PV ) = BB 02) o) [ o as) % [asase [ o [ o ar,
(8)
where W’ is a Brownian motion defined on an extension of the original probability space and inde-
pendent of W,

r—1 / 1 / / / (1 _p@)Q : (%)
045(1) =0y asp(f) + 50-5 (p(f72> - p(f )) p—QLI—T;d (p ) ) (9)
(1-p9)? . ,
045(2) = p(f’ 1)p—@LI—T;71 (pQ) Os; (10)
and
as(3) :«p(f?)(l;#tur (12) — ((1))? (2 = ;)2> Lz (2 Ui_g_, (02) - “(p;?ﬁ (v 02) s (ﬂ)) - (p(f@)%u_%ﬂ <p®))2> o2,

an

Theorem 2.1 shows that both the probability limit and the asymptotic distribution of realized
power variation are affected by staleness (i.e., p©). The polylogarithm (or Jonquiere’s) function,

Lis (x), which appears in Eq. (7) and in Egs. (9)-(11), is a special function defined by the power

I_IS Z ]{;—

It is available in standard software packages. Using the properties of the polylogarithm function, it
is straightforward to show that, if p¢ = 0, then Theorem 2.1 coincides with the standard stable CLT
for generalized power variation derived by Kinnebrock and Podolskij (2008).

series

In order to reveal the meaning of Theorem 2.1, we specialize the statement to a series of corollaries,
depending on whether the function f is odd or even. If f is odd (for example, if f(z) = %), then

p(f) = 0 and the probability limit of the estimator is unbiased, as we formalize below.

Corollary 2.1.1. Assume f(x) = 2", where r is an odd integer. Let Assumptions (1) and (2) hold
and AX, =0 Yu e [0,¢]. Then, as n — o0,

ni i( )T’ﬂio (12)

and
n

. t t t
(a,)" f as(1)ds + J as(2) dWs+f as(3) AW, (13)
0

0 0

where W’ is a Brownian motion defined on an extension of the original probability space and inde-



pendent of W,

— pD)2
as<1) = 0—1;_1 (asﬂ'r—l + 10—; (Hr-ﬁ-l - ,ur—1>> (1p—£>l-|“2fl (pQ) ) (14)
— pD)2
as(2) = (1p—£)ﬂr+1|—ir;1 (pg) Jga (15)
and
a,(3) = \/ uw(l;—ﬁg)tw (19) 02 — (,(2))", (16)

with pu, = E[|U|"] and U ~ N(0, 1).

When f is odd, power variation is asymptotically unbiased for zero. Intuitively, this result reflects
the fact that increments of Brownian motion have symmetric distributions and staleness does not
affect symmetry (because of the local martingale features of the driving terms of the underlying
efficient price process). However, staleness influences convergence in law through the structure of
the estimator’s limiting variance.

Note that, if f is odd, power variation converges stably in law to the process U; defined as the

sum of three terms: .

Uy = Jt as(1)ds + Jt as(2) dW, + J as(3) dW..

0 0 0
The process U; is uncentered mixed normal. Its look differs from that of the standard limit of the
realized variance estimator because of the presence of the terms Sé as(1)ds and Sé as(2) dWy, which
depend on the drift process, i.e., uy, and on the driving shock of the local martingale portion of X,
i.e., the Brownian motion W;. Importantly, the difference is not driven by staleness, but emerges
solely due to the fact that f is an odd function (Kinnebrock and Podolskij (2008) provide details
in other contexts). As said, staleness, however, affects both the location and the scale of U; via the
form of the process ay(1), for i = 1,2, 3.

Consider, now, the case in which f is an even function (for example, f(z) = |z|", for a generic r >
0, or f(x) = 2", for an even r > 0). If f(z) = 2" with an even r > 0, then PV(z"; X) = PV(|z|"; X).

Corollary 2.1.2. Let Assumptions (1) and (2) hold and AX, = 0 Yu € [0,t]. Let u, = E[|U|"] and
U ~ N(0,1). Then, as n — o0,

r n ~IT we 1— )2 t
n 1Z‘AZX ey (1= 07) pﬁ : Lis (p@)urf jo|" ds, (17)
i=1 0
and
r " ~|7 1-— Y2 t sta t
\/ﬁ<n Slak] - S 67w [ ey ds) [y
i=1 0 0

where W’ is a Brownian motion defined on an extension of the original probability space and inde-



pendent of W and

1-p2)2 1—p2 1—p2)5 .
as=\/[uzr(p?§>m<p@>—<ur> (Uit 091t 02) - CoBEE Ly 02) s 02)) o
(19)

Corollary 2.1.2 shows that power variation measures computed from the absolute values of in-
crements of the observed price process are - in general - asymptotically biased due to staleness. The
case r = 2 is an important exception. If » = 2, the properties of the polylogarithm function imply
that, for any p9 € [0, 1) a p 2y Sl (p@) = 1. This case is considered below separately. If r > 2,
the bias term takes the form of a function of two variables, r and p9, which is increasing in both
arguments. Table 2.2 displays values of the bias of the realized fourth moment, r = 4, for different
values of p?. As shown, the percentage bias can be substantial even for moderate values of p<. For
any p? € (0, 1), the percentage bias, p a-p?)? Li_z (pg) — 1, is larger than 0 if » > 2 and it is smaller
than 0 for r < 2. In sum, the realized hlgh—order moment are overestimated due to the presence of

staleness.

Table 1: We report values of the bias of PV, with r = 4, for different p¥s.

p? 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

PPl L, (p9) | 1222 1500 1.857 2.333 3.000 3.999 5.651 8.558

Finally, if »r = 2, the power variation PV(ZL‘T;X ) coincides with realized variance, denoted by
RV()? ). The asymptotic properties of realized variance under staleness (but without jumps, as in
this subsection) are investigated by Phillips and Yu (2009), who show that RV(X) remains (asymp-
totically) unbiased for the quadratic variation of the efficient logarithmic price X;. However, the
limiting variance of RV()N( ) increases with the frequency of zeros. The results in Phillips and Yu
(2009) can be deduced from Theorem 2.1 by specializing it to the case r = 2, as shown in the

Corollary below.

Corollary 2.1.3. Let Assumptions (1) and (2) hold and AX, = 0 Vu € [0,¢]. Then, as n — o0,

jx

iy J o7 ds, (20)

and



with
2 4_2(1_17@) 4

o, = —————0,.
(1-p9)

(22)
2.3 Power variation on Q{O,t]

We now consider the situation in which the trajectories of the efficient price X; have discontinuities
on the observation interval [0,¢]. The case without staleness, with a focus on volatility, has been
considered at some length in the literature (see, e.g., Barndorff-Nielsen et al., 2006, and Veraart,
2010)

We devote our attention to the limiting behavior of power variation with large powers (r = 2),
namely the powers which are used in computing realized high-order moments and are affected by
the presence of jumps (as is well-known, jumps do not affect the convergence in probability of power
variation with r < 2, see -e.g.- Barndorff-Nielsen et al., 2006, and Jacod, 2008).

As is natural in the discontinuous case, we work with re-scaled (or, equivalently, non-normalized)
power variations defined as .

F(AX) = n' 75 PV(f; X). (23)
i=1
The standardization 1/n in Eq. (44) is now not needed because of convergence to a finite sum (that
of functions of the jumps over the interval [0,¢]). The standardization nz in Eq. (44) is also not
needed because one does not have to offset the limiting probability order of the driving Brownian
increments and we can let them vanish to zero to identify the genuine jump futures. Hence, we
multiply PV by n!~z.

First, we consider convergence in probability. In contrast to the continuous case, the probability

limit of power variation on Qj[ is robust to staleness.

0.1]

Theorem 2.2. Let Assumptions (1) and (2) hold. Let either f(z) = |x|" or f(z) = 2", for some
r > 2. Then, as n — o0,

f(AX) =2 Y pax,), (24)

1 s<t

n
1=

where AX, = X, — X,_.

On Q{O ;) power variation with powers larger than 2 depends asymptotically only on jumps.

For example, the quantities > | (AZ)? )3 and > | (AIX' )3, which will be employed to compute
realized skewness and realized kurtosis in Section 4, converge to the sums of the jumps of X on the
interval [0, ¢] raised to the third and the fourth power, respectively. The limiting behavior of realized
variance (i.e., the case r = 2) is different and is, therefore, considered separately at the end of this

subsection.

0,4]
and Protter (2012) for » > 3 and by Koike and Liu (2019) for » = 3. In the first case, power variation

In the absence of staleness, a general CLT for power variation on Q‘E was obtained by Jacod

10



converges stably in law to a complex mean-zero limiting process, which depends on the jumps of
X. In the second case, the centering of the limiting distribution depends on the features of the
continuous variation of the process. Our results are, as expected, contaminated by zeros, thereby

resulting in different limiting processes, as follows from the two theorems below.

Theorem 2.3. Let Assumptions (1) and (2) hold. Let either f(z) = |z|" or f(z) = 2", for some

r > 3. Then, as n — o0,

m(if@,f() -3 fax, )st“bl” M F(AXs )( &UT +o0s, ;U;), (25)

s<t p:Sp<t

where (S)),<1 18 a sequence of stopping times which exhausts the jumps of X and U, U,", &, {1 are
four sequences of independent random variables defined on an extension (KNZ, F , 75> of the probability
space (€2, F,P). The random quantities U, and U, follow standard normal distribution, §; = u, L,
and £ = (1 —uy,) L,, where the u,s have uniform distributions on [0, 1] and the L,s are discrete
random variables on {1,2,...} with P (L, = ¢) = (1 — p?) (p‘z)z_1 for € {1,2,...}.

The limiting process defined in Eq. (25) is a square-integrable F*-martingale. The existence
of such process follows from the same argument as in the proof of Proposition 5.1.1 in Jacod and

Protter (2012). Without staleness, the limiting process takes the form

D, F(AXs,) (05, Uy +0s,0/T=wU, ). (26)

p:Sp<t

Hence, staleness increases the asymptotic variance, thereby yielding an information loss when mea-
suring jump moments by virtue of power variation. Finally, we note that the stable convergence in
Theorem 2.3 holds for a fixed ¢ but it does not hold for the Skorokhod topology (see Remark 5.1.3
in Jacod and Protter (2012) for details). We now turn to the case r = 3.

Theorem 2.4. Let Assumptions (1) and (2) hold. Let either f(z) = |z|> or f(z) = 2®. Then, as
n — oo,

(M)

n ~ — D
ﬁ@ F(ak)-Y f(AXS)> ety CoP2P 0 02 o) [ ol s 3 70, (05,6 Uy +om/5i0; )
S <t

=1 s<t <

(27)
where p(f) = E[f(U)] with U ~ N(0,1), as above, and the second term on the right-hand side is
defined as in Theorem 2.3.

Theorem 2.4 shows that, if » = 3, the power variation converges stably to an uncentered limit
distribution. The bias is of the form %Li_ s (p?) p(f) S(t) o] ds, which coincides with the limit
in probability of power variation on Qfo,t]' Notice that, in the odd case f(x) = 23, the bias disappears,
as p(z3) = 0.

Finally, consider realized variance on Q{o, i As in the continuous case, RV()N( ) is a robust estimator

of the quadratic variation (now inclusive of the sum of the squared jumps) of the efficient price
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process. However, the limit distribution of RV()N( ) is contaminated by staleness, as evidenced by the

theorem below.

Theorem 2.5. Let Assumption (1) and (2) hold. Then, as n — o0,

V(X) %k J oo ds + ) (AX,) (28)

s<t

and

t
vn (RV f log|? ds — Z (AX,) ) stably 1, dW, +2 Z AXs, <05p_ & U, +os, §;U;>, (29)
0

s<t p:Sp<t

where a? = %04 and the second term on the right-hand side is defined as in Theorem 2.3.

3 Correcting for staleness

Theorem 2.1 implies that, on Q’f&t], odd power variation is robust to staleness (in the sense of
convergence in probability) while even power variation is asymptotically biased.

We note that the presence of zeros has the effect of turning the original deterministic sampling
grid into a new random (and coarser) grid. Hence, the limiting bias may be corrected by utilizing
the logic in Hayashi et al. (2011) for dealing with power variation on irregular grids.

Let t7,,,...,txn, be the (random) partition of the interval [0,¢] constructed from the original
and
denote by A¥X = Xt?‘n — Xt;k_l . the increments of the process X; over the new partition. Note that
A¥X = A;")N(, by construction.

We define the corrected power variation as:

(deterministic) partition by removing the points for which B;,, = 1. Set A(i,n) = ¢}, — t}

1—1n

PVE(f, X) = ZAzn ( A, ))’1/2A2‘X>. (30)

Naturally, the term A(i,n)~"/2 in the f function accounts for the new grid (and the new, effective
number of observations) by replacing the original standardization (i.e., n'/2). Similarly, the previous
standardization (of the sum) by the number of observations 1/n = A,, is now replaced by A(i,n).

The limiting properties of Eq. (30) can be derived from the work of Hayashi et al. (2011) provided
the random partition ¢7 , ... ,t}“vglvn generated by the Bernoulli variables satisfies suitable regularity
conditions discussed below.

First, due to the independence of the triangular array of Bernoulli variates B, ,, of the efficient price
process, the random durations A(i,n) are independent of X;, which guarantees that condition (C)

of Hayashi et al. (2011) holds. Next, the mutual independence of B; ,, implies that — sup  A(n, )
i=1,...NP+1
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converges in probability to zero as n — oo. Finally, under Assumption (2), the “power variations”

of the durations A(7,n) converge uniformly in probability, as follows from the following lemma.

Lemma 3.1. Let Assumption (2) hold. Then, for any ¢ > 0, as n — 0,

ol u.c. (]- _p@)Q
Aq)} =ni~ 12 |A(n, )" 25 p—@u_q (p9) t. (31)
1=1

Lemma 3.1 implies that condition (D(q)) of Hayashi et al. (2011) holds (with 7, = n in their
notations) for every ¢ > 0. We note that, by imposing economically-motivated structure on data
sparsity (due to staleness), our proposed approach provides a data generating process which permits
theoretical verification of the condition (D(gq)) in Hayashi et al. (2011).

We can now establish the limiting properties of the corrected power variation on Qfo,t]

Theorem 3.2. Let Assumptions (1) and (2) hold and f(z) = |z|" with r > 0. Then, on Qf 4, as

n — oo,

PVE(f: X) “B p, J 0| ds. (32)
Moreover, as n — o0,
c v ! r stably 2 (1 T pg)2 . (%) ! r /
vn [ PV (f;X)—,uTJ o ds | == (por — 112) p—ng_g (p )J or dW,. (33)
0 0

Theorem 3.2 shows that corrected power variation is robust to staleness: PV¢( f,)? ) converges
in probability to the same limit as PV¢(f, X)) and PV(f, X). The asymptotic variance of PV‘(f, X ) is,

o
however, contaminated by staleness. Specifically, it takes the form (g, — u?) (1 p ] Li_ ( ) éag’” ds
and, since (1 ) Li_s (p?) > 1 Vp? € (O 1), it is larger than the asymptotic variance of PV(f, X)
which takes the simpler form (po, — pi2) § 02" ds.

Due to Lemma 3.1, we can estabhsh an interesting convergence result, which can be used to

estimate the asymptotic variance of PV¢(f; X E

Theorem 3.3. Let Assumptions (1) and (2) hold and r > 0. Then, on Qfy 0 a8 0 — 0,

s 2 2r u.cp. (1 _p®)2 . ! 2r
n E A(n,i)* " AT X QTp—®L|_2 (p@)f los|”" ds. (34)
1=1 0

In light of Theorem 3.3, in spite of the information loss due to staleness, the asymptotic variance
of PVE(f; X) can be estimated as:

_2 M
—“”M MTnZA(n,i)Q*WA;XfT. (35)
2r i=1
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4 Realized skewness and kurtosis

This section applies the previous limiting results to skewness (S) and kurtosis (K) measures. Ignoring

means, write

i (ak) vax (ak) s (A%) ex (af)

= 3 5 and K = ~7 = T
n >\ 2 n S\2) 2 1 " v n o
o) () (o) ()
(36)
In terms of power variation, the quantities in Eq. (36) can also be expressed as
PV(z%; X PV(z%; X
CPVEHR) L PVES ) .

3 ~ N\ 2
(RV(X))’ (RV())
Eq. (36) is classical in the sense that it presents textbook notions of skewness and kurtosis broadly
applied in the literature. We will show that these typical notions have, in general, atypical limits
when doing infill asymptotics, as reasonable in the presence of high-frequency data.

Table 2 provides the summary of the limiting values (in the sense of convergence in probability)

for both measures, with and without the correction for zeros and with and without jumps.

Table 2: The table reports the limits in probability of realized skewness and
kurtosis in the absence (on ©¢) and the presence (on £’) of jumps and in the
presence (p? > 0) or absence (p? = 0) of return zeros

p2 >0 p? =0
c J c J
on Q[OJ] on Q[O,t] ‘ on Q[O,t] on Q[O,t]
S 0 0 0 0
) ;t(AXS)E’ ;t(Axs)?’
1lg 0 5% 0 =
Vo 3 2
<§3\a5|2 ds+ Z<]t(AXS)2> 2 {4102 ds+ ;t(AXSP) 2
(=22 |; (@) 3olosl®ds 3fglos|® ds
K e Li_o (p ) [loal? ds)? +00 (e lol? ds)? +00
3 (AX)4 3 (AX)*
1k 0 s<t - 0 sst 5
n
<§3\as|2 ds+ gt(AxSP) (Xé\asP ds+ gf(AXsP)
S¢ 0 0 0 0
O
20 (09) 3 (epaxs,)’ s (ax,)?®
LSC 0 p:Sp<t . 0 s<t 5
7= 3 3
(53\05|2 ds+ Y (AXS)2> 2 <56\05|2 ds+ Y (AXS)Q) 2
s<t s<t
c 3fploslds 3fglosltds
« Rk 0 WyloaI?45)? o
oD
lp% i (pg) p sz<t(¢pAXSp)4 T (axs)?
1 :Sp< s<t
1ke 0 5 0 2
! (Sé\asl"‘ ds+ 3 (AXS)2> (gg\m? ds+ Y (AXS)Z)
s<t s<t

Theorem 2.1 implies that realized skewness is robust to the presence of staleness on continuous
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trajectories. On discontinuous trajectories, irrespective of staleness, Theorems 5.2 and 2.5 (because
of the quadratic term in the denominator) require re-scaling (by n~"/2) to identify jump skewness.

For a large n, on Q{o g0 e have

Zsst (AX8>3 . +o0, if ngt (AX5)3 > 0,

S~ +/n 3 _ ,
(55 lol? ds + 2 (AX,)7) —oo, i 3o (AX,)” <0,

(38)

Therefore, in the absence of re-scaling, realized skewness may only be interpreted as a signed measure
of jumps on the interval [0, t]. Large positive (negative) values of S support the presence of sufficiently
many and/or sufficiently large (relative to the quadratic variation) positive (or negative) jumps on
[0,¢]. Small values of S are symptomatic of absence of large jumps on [0, ¢].

Realized kurtosis behaves differently. In the absence of jumps, the value of realized kurtosis
depends on volatility and the number of zeros. The bias associated with zeros takes the form

(1-p9)°

5 Li_s (p9) > 1, (39)

which increases with p? and may reach large values, as illustrated in Table 1. In the presence of

jumps, for large n values, we have:

—pdN2 .
B (07) 3ol ds + n S, (AX.)'

(Sl ds + Ty (AX)

—>w

: (40)

indicating that kurtosis ought to be large on Q{O q- In essence, kurtosis may result in large values on
QC

0] 85 well as on Q{O,t]'

We now consider corrected (as in Section 4) versions of realized skewness and kurtosis defined as
~ PVe(eh X)

- (41)
(RV(X))
Note that we do not correct the realized variance in the denominators of S¢ and K¢ as RV()? ) is
robust to staleness.

As expected, correcting realized skewness for the presence of staleness does not lead to any
asymptotic improvement of the measure. In the case of kurtosis, correcting for staleness eliminates
bias on Qﬁ)’t] at the cost of re-scaling the jumps on Qf07t]. On Qfat], for large n, corrected kurtosis
takes the usual form:

St ‘US|4 ds
Kexa 33— — . (42)

(8 lof? ds)
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In other words, if volatility is constant over the interval [0, ¢], K¢ = 3 as for the Gaussian distribution.

However, on Qfo 4> we have

Los|t ds D . 4
S L (F) 3 ()
0l9s p:Sp<t

K® ~ 5 : (43)
(Bl as+ 3 ax)?)

s<t

Hence, asymptotically, corrected realized kurtosis ought to take on large values on Qfo 1 due to the
exploding term produced by the jumps. In a finite sample, there is a chance of underestimation

because the random variables ¢, are such that |¢,| < 1 almost surely ( 1 () =

=)

In sum, whether one accounts for staleness or not, during jump days the limiting properties
of standard skewness and kurtosis measures depend on the sample size. Arguably, this is not a
favorable property of these classical measures when applied to high-frequency data. Below, we

provide a solution.

5 Disentangling continuous variation from jumps

In the absence of staleness, the continuous variation of X; can be separated from jumps using
truncated power variation, as in Mancini (2009). The truncation techniques remains valid under the
presence of zeros, provided staleness is properly taken into account, as explained below.

Realized truncated power variation is defined as
TPV(/; X) = WlZfAX [jaz |y (44

where I} denotes the indicator function and 6, is a (stochastic) sequence such that 6, — 0 with

On
Aplog(Ap)

C

presence of jumps (i.e., on both Qfy 4 and Q{OJ]), for sufficiently large n, we have:

— o a.s. Classical arguments as in Mancini (2009) imply that, irrespective of the

TPV(f; X) ~ TPV(f;: X"), (45)
where X’ denotes the continuous portion of X.

In order to account for the presence of zeros, the corrected version of truncated power variation

is now defined as:

TPVE(f, X) Zmn ((AG )™ AEX) - Iy st caaimey (46)
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where the ;s are some positive bounded random variables and p € (0,1/2).

Theorem 5.1. Let Assumptions (1) and (2) hold, let f(z) = |z|" with r > 0 and let the functions

7, in Assumption (1) satisfy {~2(8)A(dd) < oo for some 0 < 3 < 2. If either » < 2 or r > 2 and

r—2
p = 525> A8 M — 00,

TPVE(f, X) — PVe(f, X') “25 0. (47)

In addition, if 3 € (0,1], as n — oo,
Vn (TPVC( £.X) — PVE(f, X”)) weB ). (48)

Thus, the variation of the jump components can be measured by (non-normalized) jump power

variation defined as
n

IX) = D F(ATX)  Tjarx saatapy- (49)

i=1

On Qfo i J(f, X ) behaves as the non-normalized power variation in Theorem 5.2. However, the use
of truncation allows us to relax the assumption » > 2 of the theorem. In other words, we have the

following theorem.

Theorem 5.2. Let Assumptions (1) and (2) hold and f(z) = O (|z|") as  — 0 for some r > 0.

Then, as n — o0,
J(f. X)) F(AX,). (50)
s<t
This result allows us to simply employ the sum of the jumps (J(x,)N( )) when measuring the
(unsigned or signed) strength of the jump contribution.
In order to account for the sign of the jump variation, we consider the sum of the positive and

negative jumps measured respectively as:

J+(ZE,X> Z (AfX) . I{AZ“X?&AA(Z',TL)V’}? and J_((L’,X) = Z (A:X) . I{AfXéfozﬂA(i,n)V}' (51)
i=1 i=1
In applications, these measures may represent less noisy assessments of the contributions of jumps

than the more volatile jump skewness and kurtosis measures which could readily be obtained from
Eq. (49) above.

6 High-order moments and asset prices

The cross-sectional pricing of higher-order moments has been the subject of recent literature (e.g.,
Amaya et al., 2015 and Bollerslev et al., 2019) The work of Amaya et al. (2015) points to the neg-
ative pricing of idiosyncratic skewness, as measured by K in Eq. (36), an empirical finding justified

by market participants’ attention (resp. aversion) to large positive (resp. negative) payoffs. They
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also report on the positive pricing of idiosyncratic kurtosis, a somewhat less robust result possibly
explained by aversion to diffusive/jump variation in volatility. Just like idiosyncratic skewness, the
difference between positive semi-variance and negative semi-variance (‘“relative signed jumps” or
RSJ) is a measure of the relative contribution of positive and negative jumps to price variation. It is
expected to be positive (resp. negative) when positive (resp. negative) jumps dominate. Bollerslev
et al. (2019) argue that controlling for RSJ reduces drastically the impact of idiosyncratic skew-
ness, thereby implying that RSJ constitutes a superior measure of jump variation than idiosyncratic
skewness, at least for the purpose of asset pricing.

We re-evaluate this literature, and expand on its scope, along several dimensions. We have
previously shown that skewness and kurtosis are dominated by jumps in days in which jumps are
present (c.f. Section 4). In days without jumps, skewness is a noisy measure of zero, while kurtosis
captures stochastic volatility, inclusive of jumps in volatility. As discussed, continuous kurtosis suffers
from severe upward biases in the presence of staleness (c.f. Section 4). We have also shown that, more
generally (i.e., for every day in the sample), one may use thresholding to define continuous and jump
analogues of skewness and kurtosis (c.f. Section 5). Continuous (truncated) skewness should, again,
be a noisy measure of zero (and, therefore, not affect pricing). Continuous (truncated) kurtosis will,
once more, be upward biased due to staleness. Thus, the positive link between kurtosis and illiquidity;,
something which is emphasized by Amaya et al., 2015, may, at least in part, be a by-product of
staleness-induced biases. In light of these observations, relying on the theory laid out earlier, we
study the pricing of continuous and discontinuous variation through truncated (standardized or
unstandardized) high-order moments. The importance of bias-correcting continuous (truncated)
kurtosis will be evaluated using a sensible pricing metric.

We consider a large cross-section of intraday prices for 4809 NYSE-listed stock. The data are
recorded on a one-minute grid from 9:30 a.m. to 4 p.m., from January 1, 1998, to June 29, 2018,
thereby amounting to a long sample of intra-daily data ideally suited for a pricing study. In order to
soften the effect of market microstructure noise, we aggregate returns up to the five-minute frequency
(A, in our previous notation). We remove from consideration days with more than 70% of zero
intraday returns and for which rounding (as represented by the rounding impact ratios of Bandi
et al., 2019) is estimated to be relatively larger. These quality cuts give us almost 12 million daily
observations of the realized quantities of interest.

We begin by illustrating the impact of staleness on skewness and kurtosis measures in our data.
Figure 1 shows percentiles (the 10", the 50 and the 90™) of the difference between traditional
realized skewness and kurtosis and the same measures corrected for the presence of zeros. The figure
fully supports our theoretical predictions. Regarding skewness, the presence of zeros does not induce
biases but makes the measure noisier (an implication of Corollary 2.1.1), as shown by the increase
in the width of the distribution of the difference as the percentage of zeros increases. Regarding
kurtosis, the presence of zeros yields a large positive bias which increases with the percentage of

zeros (an implication of Corollary 2.1.2). In essence, Figure 1 is a visual representation of the
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Figure 1: Panel A: median difference between daily raw skewness and daily
corrected (for staleness) skewness across the stocks in our sample (a total of
11,892,327 daily observations). We report it along with the 10*” and the 90"
percentile, as a function of the percentage of zeros during the day. Panel B:
median difference between daily raw kurtosis and daily corrected (for staleness)
kurtosis across the same stocks, again as a function of the percentage of zeros
during the day.

need for bias-correcting realized kurtosis, a measure whose documented correlation with illiquidity
proxies is, at least in part, a by-product of its correlation with zeros. It also provides a justification

for obtaining more precise skewness estimates by bias-correcting realized skewness.

6.1 Cross-sectional regressions

Next, we turn to asset pricing implications. We assess the relation between future excess returns
and past realized skewness and kurtosis by carrying out (over time) cross-sectional regressions, as in
Fama and MacBeth (1973). For each time ¢, we estimate the following model:

Tit+1 = Q4 + B, Xit + €ipe1, (52)

where 7;,.1 denotes the weekly excess return of the i-th stock over week ¢,¢ + 1 and X;; is a
vector of weekly characteristics for the i-th stock over week t — 1,¢. The vector includes the weekly
(averaged, over five consecutive trading days) measures of realized skewness and kurtosis (S and
K), the weekly measures of truncated skewness and kurtosis (TS and TK), weekly bias-corrected
truncated skewness and kurtosis (TS® and TK®), past weekly returns (R), the square-root of weekly
truncated realized variance (v/ TRV), the weekly average of jumps (J), the weekly average of positive
jumps (JT), the weekly average of negative jumps (J7), the weekly average percentage of zeros (RZ),
the weakly illiquidity ratio of Amihud (2002) (Ami) and the standardized (by realized variance)
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difference between positive semi-variance and negative semi-variance (RSJ). Table 3 reports the
time series averages of the estimated slopes gts as well as the associated t-statistics.

Model (1) is the same as the main model in Amaya et al. (2015) and confirms that, when
employing S, realized skewness is negatively priced. This finding is usually interpreted as being
symptomatic of market’s preference over positively skewed stocks and, symmetrically, aversion to
negative skew. Because positively skewed stocks usually display higher idiosyncratic volatility, the
negative price of skewness is sometimes invoked as a justification for the idiosyncratic volatility puzzle
of Ang et al. (2006), i.e., the negative dependence between average cross-sectional stock returns
and idiosyncratic volatility.? Realized kurtosis is, instead, priced with a positive sign representing
aversion to volatility uncertainty. The corresponding coefficient is, however, insignificant. In light
of the positive correlation between illiquidity and realized kurtosis, the positive pricing of realized
kurtosis may be induced by the positive association between illiquidity and expected returns, as
justifiable by compensation for illiquidity risk. We will show that at least a portion of this risk
compensation is induced by contaminations (i.e., biases) in estimated kurtosis.

Model (2) considers truncated (and, hence, continuous) versions of realized skewness and kurtosis.
While statistical significance decreases, thereby pointing to a critical, separate role for jumps in cross-
sectional pricing, results are qualitatively similar to what was found in model (1). Because continuous
skewness is, in principle, a noisy measure of zero, its pricing ability is surprising. We return to it,
and explain it, in model (5).

As emphasized, realized kurtosis is biased in the presence of staleness. It is, therefore, interesting
to add the weekly percentage of zeros to truncated skewness and kurtosis. We do so in model
(3). Consistent with theory, truncated skewness is hardly impacted. Truncated kurtosis, however,
now has a statistically-significant and negative partial effect on expected returns. In other words,
the positive partial effect of truncated kurtosis on expected returns has been entirely absorbed by
its previous source of bias once that source of bias, i.e., the extent of staleness, is accounted for
explicitly. In essence, since staleness provides information about volume dynamics (c.f., see Bandi
et al., 2019), the statistical significance of zeros reflects illiquidity pricing in expected returns. The
positive impact of uncorrected kurtosis on expected returns may therefore also be the consequence of
illiquidity pricing. When controlling for zeros explicitly, kurtosis impacts expected returns negatively.
This is reminiscent of the idiosyncratic volatility puzzle of Ang et al. (2006). Not only does higher
idiosyncratic volatility lead to lower expected returns, an unexpected result with several recent
justifications, but higher wvolatility of idiosyncratic volatility also seems to lead to lower expected
returns.

In order to provide direct evidence about the impact of staleness on realized measures, we now
bias-correct the truncated measures. In agreement with theory and the logic of model (3), in model

(4) we show that bias-corrected truncated kurtosis has, indeed, a statistically-significant, negative

2The association between low prices, high idiosyncratic volatility and positive skewness is, for instance, a feature
of lottery stocks, see Kumar, 2009.
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partial effect on cross-sectional returns. Bias-corrected truncated skewness also continues to have a
statistically-significant negative impact on expected returns, a result which was deemed earlier to be
surprising in light of the fact that truncated skewness should be a noisy measure of zero carrying no
pricing information. We address this issue next.

It is arguably the case that the previous specifications omit natural controls. The first is a
measure of the efficient price variance. The second is a measure of trend, something which may have
(and will be shown to have) a strong impact on continuous skewness in small sample. The third is
a measure of discontinuous variation, such variation being ruled out by truncation.

In model (5), we add R (the total return over the previous week) and v/ TRV. The loading on
TS® becomes insignificant, thereby supporting the idea that continuous skewness was - in previous
specifications - likely proxying for a trend. The trend variable has a strongly significant negative
coefficient, representing reversals. Truncated realized variance has a statistically-significant negative
coefficient in line with the negative pricing of idiosyncratic volatility first put forward by Ang et al.
(2006).

In model (6), we add jumps. The measure J is defined as the weekly sum of intra-daily returns
greater (in absolute value) than the truncation level. Jumps are strongly significant and with an
economically-sound negative sign. The economic interpretation of this negative sign is analogous to
that on the negative sign of skewness: market participants are naturally conjectured to fear large
negative returns and like large positive returns. These predispositions appear to be reflected in
equilibrium expected returns. By the same argument, because the justification for the pricing ability
of skewness (as reported, e.g., in Amaya et al., 2015) purely comes from jumps, it appears reasonable
to capture discontinuities directly (i.e., using J) rather than indirectly by way of measures (like K)
which, as shown, are more likely to be contaminated by continuous variation and staleness. In model
(7), and other specifications, we distinguish between positive and negative jumps. Both are generally
statistically-significant and consistently with a negative sign.

Our measure of illiquidity (RZ) is added in model (8) (with jumps) and model (9) (with both
positive and negative jumps) along with Amihud’s measure (Amihud, 2002), Ami. As emphasized,
the former has been found in Bandi et al., 2019 to capture intra-daily volume dynamics (volume
levels and volume clusters) and is internally consistent given the assumed data generating process,
the latter is a key benchmark in the literature defined as price impact per unit volume. We find -
once more - that the impact of realized zeros is strongly positive and significant, which is revealing
of an illiquidity premium. The Amihud measure is, instead, insignificant. When illiquidity is added,
the impact of continuous kurtosis disappear. Thus, staleness-corrected continuous kurtosis continues
to be correlated with illiquidity.

Finally, we evaluate robustness to the use of realized semi-variance. We employ the RSJ measure
of Bollerslev et al. (2019). In model (10), we confirm their main result, namely RSJ is a better proxy
for jumps than raw skewness. In model (11), where we add the trend measure, we notice that the

significance of RSJ is strongly attenuated. In model (12), which uses our measure of jumps based
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on truncation, separated into its positive and negative components, the coefficient on RSJ becomes
insignificant. While we support the logic in Amaya et al. (2015) and Bollerslev et al. (2019) regarding
the importance of jumps in cross-sectional pricing, their same logic justifies using measures that are
less contaminated by continuous variation (and by staleness, as a result). A simple jump measure
constructed using (staleness-adjusted) truncation appears to achieve this goal better than both raw
skewness and RSJ.

Our final specification (13) summarizes our main conclusions. Continuous (corrected) skewness
and kurtosis are insignificant. So is the RSJ measure of Bollerslev et al. (2019), when controlling for
jumps directly, and Amihud’s illiquidity measure, when controlling for staleness. Instead, we find
significant pricing impacts associated with idiosyncratic volatility, the trend variable and jumps, all

with a negative sign, and realized zeros, with a positive sign.

6.2 Single-sorted portfolios

We complement, and support, the previous results by constructing long-short (high-low) portfolios
and examining their payoffs. After sorting stocks into deciles based on the level of each characteristic,
we go long stocks in the highest characteristic decile and short stocks in the lowest characteristic
decile. We report both average returns and average returns in excess of the Fama-French 5-factor
model (alphas) over the next 5 days (c.f. Table 4) and over the next 22 days (c.f. Table 5).

Over the shorter 5 day horizon, the only unexpected findings (solely due to lack of conditioning
on other driving characteristics) have to do with the statistically-significant, negative average returns
associated with portfolios constructed on the basis of negative jumps and Amihud’s measure. Both
the former characteristic (a more direct measure of adverse price moves than skewness) and the latter
characteristic (a measure of illiquidity) should be associated with positive - rather than negative,
as in the data - long-short returns. Positive jumps and realized zeros, on the other hand, display
statistically-significant, negative and positive (respectively) average returns (and alphas), a result
which is consistent with economic logic. Over the longer 22 day horizons, zeros continue to be
associated with positive average returns and alphas. All other variables generally lose their pricing
ability (with the exception of idiosyncratic volatility which leads - as in much of the recent literature
following Ang et al. (2006) - to negative average returns).

In order to account for the impact of alternative characteristics, we now turn to double sorts. We
focus exclusively on key variables resulting from the previous theoretical and empirical treatment:

jumps and zeros.

6.3 Double-sorted portfolios

We double-sort into 25 quantile portfolios. We focus on realized zeros and aggregate jumps, realized
zeros and positive jumps and realized zeros and negative jumps and double sort in both directions,
first based on one characteristic and then the other (c.f., Table 6 and Table 7).
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In agreement with previous findings, the average returns on portfolios long high zero/low jump
stocks (irrespective of whether the jumps are positive, negative or aggregate) and short low zero/high
jump stocks are positive. So are their 5-factor Fama-French alphas. Similarly, the average returns
and alphas on portfolios long low zero/high jump stocks and short high zero/low jump stocks are
negative.

We conclude that the interplay between granular features of the efficient price distribution (i.e.,
price discontinuities) and features of the trading process affecting the way in which efficient prices

are revealed (i.e., zeros) has important pricing implications at high frequencies.

7 Conclusions

This paper evaluates the properties of high-frequency high-order moments under a data generating
process accounting for two key stylized features, namely infrequent discontinuities in unobserved
equilibrium prices and staleness in observed prices. The latter is a phenomenon known to be linked
to trading volumes’ first and second moments and, therefore, to the level and variability of liquidity
(c.f., Bandi et al., 2019).

We study identification and pricing. In terms of identification, we discuss how the interaction
between price discontinuities and prices staleness will, in general, lead to biased and/or noisy high-
order moment estimates. A combination of thresholding and corrections for staleness-induced biases
is, however, shown to be effective in yielding information about high-order variation, both in its
continuous and in its discontinuous notion.

In terms of pricing, we document an interesting interaction between genuine features of the
equilibrium price process (jumps) and features of the trading mechanism (staleness). Because, in
our framework, jumps and staleness are aspects of the same data generating process for observed
prices, not only is our measure of liquidity (zeros) natural, it is model-driven. We, therefore, view
the proposed approach as a first step in the analysis of the high-frequency pricing of both granular
price features and trading frictions in the context of an econometric model which, cohesively, allows

for (and permits identification of) both.
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Table 3: Reports Fama-MacBeth cross-sectional regressions of weekly stock

returns on stock characteristics.
(1) (2) (3) (5) (6) (7) (8) 9) (10) (11) (12) (13)
S —0.098%**
(—6.415)
K 0.004
(1.143)
TS —0.098%** —0.096%** —0.010 0.009
(—5.043) (—4.933) (—0.710) (0.639)
TK 0.004 —0.017%* 0.002 0.003
(0.668) (—2.131) (0.356) (0.409)
TS° 0.017 0.029%* 0.031°%* 0.028% 0.027* 0.033%*
(1.019) (1.679) (1.836) (1.696) (1.660) (1.991)
TK¢ —0.007 —0.007 —0.012 —0.007 —0.007 —0.008
(~0.931) (—0.960) (=1.575) (—1.033) (—1.067) (—1.168)
R —2.102%%* —2.009%*:* —1.997%%* —1.904%%3* —1.905%%* —1.110%%%* —1.392%%% —1.833%%%*
(=7.277) (—6.836) (—6.830) (—6.700) (—6.718) (—3.052) (~3.909) (~5.991)
TRV —0.073%** —0.073%** —0.083%** —0.075%** —0.075%** —0.076%**
(—3.763) (—3.730) (—3.975) (—3.432) (—3.456) (—3.482)
J —0.026%* —0.037%**
(—2.575) (—3.682)
Jt —0.016 —0.040%** —0.036%%%* —0.039%%*
(—1.434) (—3.556) (—2.866) (—3.347)
J- —0.052%%* —0.032%%* —0.028%* —0.031%%%*
(—4.240) (—2.770) (—2.290) (—2.629)
RZ 0.384%%:* 0.386%** 0.412%%* 0.409%**
(2.978) (3.738) (3.715) (3.695)
AMI —0.291 —0.267 —0.265
(—1.045) (—0.859) (—0.856)
RSJ —0.745%%* —(0.333%%* —0.116 —0.059
(—6.695) (—3.367) (—1.240) (—0.700)
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Table 4: Average returns on long-short (high-low) portfolios over 5 trading

days

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) | high —low | high —low o

S 0.206%*  0.178%  0.132  0.071  0.066  0.044  0.012 0.005 —0.016  —0.035 | —0.241%%% | _(.245%**
(2.007) (1.704) (1.262) (0.705) (0.646) (0.439) (0.125) (0.056) (—0.162) (—0.369) (—6.019) (—6.205)
K 0.055 0.026  0.083  0.064 0.060 0.073  0.060 0.095 0.070 0.079 0.024 —0.002
(0.537) (0.257) (0.843) (0.641) (0.599) (0.722) (0.593) (0.942) (0.702) (0.816) (0.496) (—0.044)

TS 0.200% 0.133  0.129  0.086  0.069  0.050  0.015 0.026 —0.022  —0.023 | —0.224%%% | _(.226%**
(1.929) (1.260) (1.247) (0.847) (0.681) (0.503) (0.154) (0.272) (—0.228) (—0.250) (—5.681) (—5.884)
TK 0.054 0.032  0.070  0.092 0.068  0.057  0.060 0.086 0.082 0.063 0.009 0.001
(0.532) (0.313) (0.712) (0.935) (0.684) (0.572) (0.589) (0.854) (0.806) (0.647) (0.189) (0.027)

TS*® 0.187% 0.158  0.123  0.095 0.051  0.054 0.015 0.007 0.003 —0.029 | —0.216%%* | _(.223%**
(1.785) (1.499) (1.189) (0.935)  (0.507)  (0.548)  (0.156) (0.072) (0.034) (—0.313) (—5.202) (—5.654)
TK® 0.121 0.054  0.078  0.056  0.062  0.090  0.047 0.066 0.048 0.043 —0.077* —0.073%
(1.209) (0.552) (0.792) (0.567) (0.621) (0.900) (0.464) (0.652) (0.470) (0.430) (—1.816) (—1.808)
R —0.054  0.101 0.154  0.144 0.112  0.088  0.093 0.048 0.013 —0.034 0.020 —0.006
(—0.388) (0.908) (1.553) (1.579) (1.281) (1.020) (1.066) (0.521) (0.134) (—0.282) (0.284) (—0.090)

VTRV | 0.128%*% 0.114* 0.130* 0.135 0.101  0.106  0.085 —0.013 —0.015 —0.107 —0.235 —0.241%**
(2.220) (1.655) (1.697) (1.609) (1.116) (1.058) (0.767) (—0.100) (—0.103) (—0.625) (—1.640) (—3.155)

J 0.159 0.072  0.083  0.107 0.072 0.070  0.072 0.025 0.027 —0.057 | —0.216%%* | _(.224%%**
(1.278) (0.643) (0.834) (1.170) (0.810) (0.782) (0.822) (0.263) (0.246) (—0.477) (—4.849) (—5.097)

Jt 0.068 0.091 0.099  0.076 0.066 0.069  0.036 0.047 0.040 —0.046 | —0.113%* —0.096**
(0.719) (1.072) (1.066) (0.774) (0.649) (0.642) (0.330) (0.418) (0.347) (—0.375) (—1.983) (—2.113)
J- 0.089 0.064  0.057  0.079  0.037  0.067  0.080 0.097 0.116 0.037 —0.051 —0.071
(0.713) (0.538) (0.511) (0.713) (0.341) (0.643) (0.814) (1.050) (1.355) (0.397) (—0.836) (—1.411)

RZ —0.045  0.002  0.068 0.062 0.098  0.074  0.084 0.095 0.155 0.147% 0.192%* 0.144%3%:
(—0.377) (0.022) (0.705) (0.618) (0.953) (0.679) (0.782) (0.926) (1.575) (1.661) (2.439) (2.586)

AMI 0.161% 0.107  0.099  0.090  0.029  0.057  0.043 0.033 0.107 —0.061 | —0.222%%* | _(.222%%*%*
(1.905) (1.180) (1.041) (0.925) (0.284) (0.554) (0.404) (0.309) (0.969) (—0.532) (—3.526) (—5.518)

RSJ | 0.252%*%  0.206%*  0.113  0.089  0.060 0.034 0.035 —0.023 —0.048 —0.057 | —0.309%%* | _(0.311%**
(2.322) (1.941) (1.083) (0.867) (0.600) (0.351) (0.356) (—0.234) (—0.513) (—0.611) (—5.911) (—6.216)
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Table 5: Average returns on long-short (high-low) portfolios over 22 trading

days
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) | high —low | high — low o
S 0.431 0.174 0.220 0220 0.264 0.221  0.290  0.202 0.288 0.399 —0.032 0.123
(0.906) (0.357) (0.476) (0.475) (0.592) (0.501) (0.674) (0.474) (0.673) (0.958) (—0.208) (0.842)
K 0.168 0.089 0.186 0236 0.157 0.334  0.305  0.332 0.282 0.617 0.450%* 0.372%*
(0.397) (0.210) (0.431) (0.522) (0.348) (0.713) (0.642) (0.714) (0.610) (1.388) (2.071) (2.311)
TS 0.310 0.138 0.179 0281 0.258 0.319 0238  0.308 0.296 0.380 0.070 0.217
(0.631) (0.280) (0.376) (0.624) (0.587) (0.734) (0.550) (0.732) (0.702) (0.926) (0.428) (1.354)
TK 0.119 0.114 0.225  0.161  0.235 0.334  0.307  0.288 0.406 0.518 0.400% 0.357%%
(0.288) (0.268) (0.520) (0.362) (0.527) (0.724) (0.654) (0.595) (0.849) (1.162) (1.746) (2.126)
TS*® 0.237 0.116 0.278  0.365 0.335  0.236  0.157  0.331 0.247 0.406 0.169 0.303*
(0.476) (0.237) (0.598) (0.808)  (0.757) (0.536)  (0.358)  (0.784) (0.599) (0.991) (0.939) (1.756)
TK® 0.424 0.312 0.282  0.191  0.185  0.291  0.361  0.247 0.226 0.189 —0.235 —0.270
(1.002) (0.745) (0.661) (0.433) (0.414) (0.627) (0.794) (0.528) (0.470) (0.398) (—1.057) (—1.465)
R —0.515 0.363 0.373  0.486  0.304  0.457  0.394  0.340 0.217 0.289 0.803%** 0.754%%*
(—0.740) (0.712) (0.851) (1.198) (0.782) (1.179) (1.030) (0.858) (0.507) (0.529) (2.068) (2.050)
VTRV | 0.633%*%  0.551*  0.566* 0.530  0.509  0.519  0.260 0.013  —0.347 —0.525 —1.157* —1.355%**
(2.418) (1.796) (1.645) (1.424) (1.284) (1.201) (0.521) (0.022) (—0.510) (—0.651) (—1.703) (—3.851)
J 0.228 0.285 0.307  0.370  0.353  0.340 0430  0.228 0.018 0.131 —0.097 —0.049
(0.406) (0.580) (0.702) (0.940) (0.930) (0.898) (1.081) (0.517) (0.036) (0.246) (—0.725) (—0.362)
Jt 0.391 0.299 0.430 0248 0201 0.116  0.149  0.111 0.226 0.411 0.020 0.122
(1.039) (0.795) (1.113) (0.608) (0.460) (0.247) (0.294) (0.209) (0.427) (0.723) (0.062) (0.596)
J- 0.442 0.294 0.205  0.140  0.088  0.244  0.359  0.284 0.269 0.331 —0.112 —0.170
(0.766) (0.541) (0.402) (0.276) (0.189) (0.564) (0.879) (0.712) (0.716) (0.888) (—0.356) (—0.850)
RZ —0.184  —0.087 0.164  0.206 0219  0.355 0.536  0.256 0.456 0.811% 0.995%#:* 0.723% %
(—0.335) (—0.206) (0.393) (0.482) (0.508) (0.794) (1.122) (0.509) (0.959) (1.832) (2.627) (3.164)
AMI 0.625% 0.491 0.395 0289 0274 0.135 0246  0.175 0.313 —0.236 | —0.860%%* | _(.849%**
(1.719) (1.248) (0.956) (0.680) (0.611) (0.289) (0.518) (0.352) (0.622) (—0.439) (—2.827) (—4.887)
RSJ 0.213 0.180 0.161 0239  0.342  0.191 0478  0.351 0.246 0.307 0.093 0.337*
(0.413) (0.364) (0.331) (0.514) (0.767) (0.440) (1.123) (0.839) (0.605) (0.781) (0.438) (1.749)
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Table 6: Table reports the average 1-week ahead returns sorted on double-
sorted portfolios. For each panel, entitled as A — B, all stocks in the sample
are first sorted into 5 quintiles on the basis of the first variable A (columns).
Within each quintile, the stocks are then sorted into 5 quintiles according to

the second variable B (rows).

RZ—J J—>RZ
(1) —0.015 0.042 0.178 0.199 0.213%* 0.123 —0.038 0.054 —0.019 —0.041 —0.183 —0.045
(—0.112) (0.343) (1.377) (1.572) (1.998) (1.049) (—0.268) (0.494) (—0.167) (—0.390) (—1.321) (—0.386)
(2) 0.062 0.128 0.110 0.123 0.203** 0.125 0.131 0.102 0.063 0.005 —0.056 0.049
(0.612) (1.361) (1.093) (1.197) (2.197) (1.339) (0.981) (1.070) (0.698) (0.054) (—0.446) (0.471)
(3) —0.011 0.091 0.074 0.065 0.115 0.067 0.152 0.094 0.074 0.097 0.005 0.084
(—0.109) (1.001) (0.775) (0.663) (1.294) (0.740) (1.204) (0.956) (0.820) (1.020) (0.043) (0.827)
(4) —0.005 0.072 0.107 0.094 0.143 0.082 0.170 0.093 0.109 0.088 0.075 0.107
(—0.049) (0.788) (1.092) (0.958) (1.517) (0.901) (1.517) (0.886) (1.168) (0.883) (0.657) (1.064)
(5) —0.216 —0.067 —0.052 0.011 0.081 —0.048 0.201%* 0.141 0.078 0.094 0.098 0.123
(—1.627) (—0.547) (—0.419) (0.092) (0.757) (—0.425) (2.089) (1.506) (0.824) (1.029) (1.016) (1.352)
high — low —0.201%** —0.108%* —0.230%** —0.188%%%* —0.133%* —0.172%%%* 0.239*** 0.086 0.096 0.135%** 0.281*** 0.168***
(—3.548) (—2.236) (—4.384) (—3.014) (—2.313) (—5.392) (2.796) (1.234) (1.401) (1.973) (3.099) (2.597)
high — low o | —0.190%%%* —0.118%* —0.226%** —0.179%%* —0.141%* —0.171%%% | 0,219%** 0.039 0.038 0.082 0.248%** 0.125%**
(—3.376) (—2.466) (—4.213) (—2.905) (—2.446) (—5.418) (3.404) (0.739) (0.750) (1.514) (3.578) (2.931)
RZ—JF JFSRZ
(1) 0.015 0.098 0.115 0.121 0.199%* 0.110 —0.016 —0.022 —0.063 —0.115 —0.350%* —0.113
(0.146) (1.064) (1.192) (1.211) (2.255) (1.197) (—0.142) (—0.193)  (—0.486) (—0.805) (—2.132) (—0.898)
(2) 0.019 0.140 0.140 0.120 0.167* 0.117 0.064 0.045 0.037 —0.028 —0.013 0.021
(0.190) (1.584) (1.415) (1.228) (1.926) (1.317) (0.693) (0.453) (0.331) (—0.215) (—0.093) (0.192)
(3) —0.023 0.085 0.123 0.108 0.182% 0.095 0.098 0.150 0.100 0.104 0.154 0.121
(—0.208) (0.835) (1.164) (1.033) (1.891) (0.973) (1.093) (1.543) (0.930) (0.911) (1.280) (1.202)
(4) —0.067 0.010 0.099 0.123 0.175% 0.068 0.077 0.143 0.131 0.126 0.107 0.117
(—0.532) (0.091) (0.832) (1.108) (1.668) (0.633) (0.814) (1.428) (1.242) (1.205) (1.027) (1.203)
(5) —0.256%* —0.123 —0.104 0.026 —0.003 —0.092 0.142 0.108 0.142 0.158* 0.102 0.130
(—1.697) (—0.853) (—0.724) (0.191) (—0.024) (—0.707) (1.436) (1.161) (1.523) (1.792) (1.022) (1.444)
high — low —0.272%*% (221 %** —0.219%%* —0.095 —0.202%%* —0.202%%* 0.158%* 0.130* 0.205%*  (.273%** 0.452%** 0.244%%*
(—3.695) (—2.662) (—2.657) (—1.253) (—2.987) (—3.378) (2.326) (1.687) (2.325) (2.897) (4.292) (3.424)
high —low o | —0.237***% (. 186%** —0.200%** —0.077 —0.192%%* —0.178%%* 0.094* 0.057 0.146%*  0.237%%* 0.463%** 0.199%**
(—4.067) (—3.454) (—3.537) (—1.295) (—3.095) (—5.251) (1.911) (0.970) (2.327) (3.493) (5.778) (4.462)
RZ—J— J~—>RZ
(1) —0.089 —0.037 0.045 0.190 0.150 0.052 —0.065 —0.006 —0.052 —0.020 —0.039 —0.036
(—0.585) (—0.258) (0.303) (1.367) (1.251) (0.390) (—0.388) (—0.043)  (—0.395) (—0.169) (—0.346) (—0.282)
(2) —0.026 0.069 0.118 0.067 0.100 0.065 0.097 0.065 0.074 0.130 0.024 0.078
(—0.199) (0.603) (1.007) (0.595) (0.963) (0.599) (0.699) (0.505) (0.647) (1.318) (0.263) (0.718)
3) —0.004 0.058 0.054 0.054 0.127 0.058 0.162 0.041 0.064 0.089 0.074 0.086
(—0.032) (0.577) (0.488) (0.515) (1.326) (0.590) (1.314) (0.360) (0.569) (0.897) (0.821) (0.838)
(4) 0.034 0.099 0.112 0.059 0.205%* 0.102 0.119 0.058 0.088 0.092 0.085 0.088
(0.343) (1.080) (1.147) (0.594) (2.297) (1.133) (1.133) (0.556) (0.852) (0.940) (0.908) (0.917)
(5) —0.027 0.076 0.082 0.106 0.159% 0.079 0.143 0.178%* 0.088 0.140 0.113 0.132
(—0.265) (0.828) (0.869) (1.090) (1.816) (0.875) (1.427) (2.062) (0.911) (1.507) (1.162) (1.473)
high — low 0.062 0.114 0.037 —0.084 0.009 0.028 0.207* 0.184% 0.140 0.160%* 0.152%* 0.169%*
(0.822) (1.329) (0.434) (—1.088) (0.132) (0.434) (1.955) (1.892) (1.628) (2.025) (2.157) (2.363)
high — low « 0.048 0.078 0.015 —0.095 —0.009 0.007 0.225%**  (,165%* 0.080 0.081 0.086* 0.127%%*
(0.793) (1.341) (0.248) (—1.550) (—0.146) (0.190) (2.731) (2.408) (1.283) (1.442) (1.709) (2.937)




Table 7: Performance of high — low double-sorted portfolios.

0 ) ) ) 5 (©
mean 0.429***  —0.384*** 0.456*** —0.492*** 0.177** —0.182**
(4.796) (—4.364) (4.078) (—4.801) (2.304) (—2.341)
« 0.383***  —(0.358*** 0.402*** —0.465*** 0.175** —0.163**
(5.018) (—5.258) (4.990) (—6.352) (2.452) (—2.486)
conditional mean | 0.101** 0.006 —0.050
(2.425) (0.096) (—0.941)

Note. (1) — long high RZ and low J stocks and short low RZ and high J stocks. (2) — long low RZ and high J stocks and short high RZ
and low J stocks. (3) — long high RZ and low J¥ stocks and short low RZ and high J* stocks. (4) — long low RZ and high J* stocks and
short high RZ and low JT stocks. (5) — long high RZ and low J~ stocks and short low RZ and high J~ stocks. (6) — long low RZ and high
J~ stocks and short high RZ and low J~ stocks. The last row reports the constant after regressing the returns on portfolios (1), (3) and

(5) on each other.
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A Appendix: Preliminary Proofs

Proof of Theorem 2.1. In order to shorten the proofs, and to simplify notation, we present the proofs under
the additional assumption that there are no jumps in volatility. That is, we assume the volatility process o

satisfies the equation

t t
Jt=00+fa’5ds+fadW—l—JvdVS, (53)
0 0

where W; and V; are independent Brownian motions while a/, ¢’ and v’ are adapted cadlag bounded processes.
Let tin, e ,t}“\,ﬁ’n be the partition of the interval [0, t], constructed from the original partition by removing

the points for which B;,, = 1. Thus, the power variation can be expressed as

Nn
PV(f,X) = n"/*" 12 f(ATX), (54)
where AFX = Xx — X«  are the increments of the process X; over the new partition. Let 5" = oy AFW
be an approximation of the increments AP X and set A(i,n) =tf, —ti .

We start with preliminary computations of the conditional moments of f(5}"), A(Z,n) and related quantities,

which are used in the subsequent proofs. First, notice that, for £ =1,2,...,

P{ATW = Wie | ya, = Wi b= (1=pP) 2 (55)
By the law of iterated expectations, this implies, that
o0
E[fATW) | Fi | | = A720(0) 3 K20 = pP)pt (56)
k=1
Hence, we have
n r r T r k-1
B[ | Fo | =on E[f@rwW)[Fe | =t A Z (1= ) (oP)
- (57)
r/2 _r —-p
= An/ O.t;k_lnp(f) p@ LI,% (pQ)
Similarly, we obtain
n r 2r 1- pQ
|((FE | Far | = Ao o) o5 Li-r (7)), (58)
1—pd
E|AGn) | Fe, | =a0—2Lia (09), (59)
and more generally, for r > 0,
_Aarlo pg ; (%]
E [(A in) ‘]—"tz M] = AL (1), (60)
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Now, notice that, for any p< € [0, 1),

_ D)2
(1—p@)E[ in ‘]—"tl ] - An(lpg)u_l (p?) = A,. (61)
Finally, observe that
AGi,n) f(BY) £ AG,n) "ol F(U), (62)

i—1,n
where U ~ N(0,1) and £ denotes equality in law. Therefore, we have

1—p9

E[AGmIE) | Fa,, | = A0 ol p(h)— i (7). (63)

tz 1,n

Next, consider the four quantities defined as
- ﬁNg (netren) - i B [1A10) | A )
i \/HNZ wit ((1arx0) —E[sr0 | 7o ]) = (r6m -2 [r6m | 7).
Fra)

A4—WZ (n E[rarx) | 7y, |- (1;2% ) fyasy ds)

The proof of the main result follows from three statements:

Ad—fznz (B |rarx) - £(81)

o
: -1 ny (1_p®)2 i . (D ! oul” ds stably ta ta '
ﬁg(n e - B 02) i) fo o] d) jo @+ [a@an, @

0

ﬁ% it ((Farx) ~E[raix) | Fe ) = (1680 ~E[187) | Fe
=1

i—1,n

D)o

an (B [rarx) - (ftm])ﬂf;asu)ds, (67)

which are proven in three sequential steps.
Step 1. We start by proving the stable convergence of Eq. (65). Express the right-hand side of Eq. (65) as

follows: .
t , o T\2 t
D> <"2‘1f(ﬂ?) - upé’j)ti—; (v?) o) fo ol ds) = A1+ A, (68)
i=1

where

oY
\FZ( 18 _(1pg)u_ (07) p(H)at A(@”))’ (©9)

i—1,n

(M
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N{ t L \2
Az = | D of  Alin) - fo 0" ds upé)tig (p?) p(f)- (70)
i=1 ’

By the same arguments as in Barndorff-Nielsen et al. (2006), A2 280, Therefore, it is sufficient to prove

that .

t
Ay Y 0 (2) AW + f as(3) dW. (71)
0 0

Express A; as the sum of F;+ -measurable random variables:
i,n

N{
A= (72)
1=1

where . o0
¢t =i (it - OB 02) o)

i—1,n

A(i,n)) . (73)

As pointed out in Hayashi et al. (2011), since we are proving only F*-stable convergence, it is sufficient to
verify the conditions of Theorem IX.7.28 of Jacod and Shiryaev (2003) with respect to the filtration (.thk )
Using Eq. (57) and Eq. (59) we obtain:

(1-p9)% .

E[¢ i

K3

— D — 9
Fa, ) = v (&t Bl 02) o) - 07) oy, AT i (7))

1—p9 .
= \/an—gu,m (09) p(f)os

(74)
where the last equality follows from Eq. (61). Next, using Eq. (58), Eq. (60) and Eq. (63), we obtain
n 1-— p@ . 7
B\ ] A, | = o) gLi 07) o8, A
1— p® 2 2 1 _pQ _ .
+ <(p@)|—'—r/2 (pg) P(f)) ] Lio (pg) Uf;’ilynA" (75)
(1-p9)% . 1—p2 .
- 27'—'—7’/2 (»?) P(f)pTL'—r/2—1 (»?) P(f)0t2117nAn~
Hence,
N{' N
DE[@F | A, | =T ek, A (76)
where T is a constant of the form
~ 1—p9 (1—p9)? (1—p9)°

T o (52) -6t 2 Ly (62) Uiy () —

(p2)?
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NTL
Now, consider the sum Z O't A,. We have

i=1 L

t

Ny
D oH Z o7 miran (1= Bin) Ay = (1 —pg)f o? ds, (78)
-

0

where k(n,i) is the number of consecutive events {B;_j, = 1} prior to the instant ¢; , and the convergence
follows from the fact that

zn: [ k(n,i)An (1_Bi,n)

Consequently,

t

i = ZUWW )8 (1=p7) [ oFds (1)

0

N{ p t
MNE [(CW ‘ For | ] £, TJ o ds, (80)
Z=1 1—1,n 0

where T is a constant of the form

(1—p9)°

_ )2 _ o T\4
= o) (2) -0 (z“(pgj)ﬁu_r/2<p@>u_r/2_1(p@>— (p@)g (Li_r/g(pg)fm(p@))
(51)

Next, since E [A(n,z’) AW ‘ .7-",;*_1 ] = 0, using Eq. (55) we obtain

E[C?A;"W‘}‘t;km]:E[an(ﬁf)AQkW‘}‘t;km]:1_p®Li 1 (02) p(f 1) 0l Ay (82)

pQ T2 tifl,n
which implies (analogously to the proof of Eq. (80)) that
N7L
I (1 _pQ)Q . ! r
Z E [gz AW ‘ Foe Ln] () Sl (07) olds (83)

Finally, for any bounded martingale N, which is orthogonal to W and defined on the same probability space,
we immediately deduce that:

E [gi" AXN ‘ ftf_l’n] ~0. (84)

Now, the assertion of Step I follows from Eqgs. (74), (80), (83), (84) and Theorem IX.7.28 in Jacod and Shiryaev
(2003).

Step 2. The proof of the convergence in Eq. (66) is the same as that in Barndorff-Nielsen et al. (2006), hence
it is omitted.

Step 3. Now, we prove the statement in Eq. (67). Write

Ny
Vn Zm (B[rarx) - 180 | 7o ]) = D6 (85)
=1

where

& =0T E[FARX) - F8) | Fe |- (6)
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Notice that A¥X — 7" = (1) + ([*(2), where

t;-k t¥ U U U
n " . o / o ’
(1) = L* . <au atﬁ1,n> du + L*_l [L* . agds + Jt* ) (O’s 015311,”) dWy + L*_l (vs vtikq,n) dVs | dW,,
| | (87)
thn thn thn
c(2) = L*_l ap  du ol L*_l (W= Wi, ) dWy v i Lk 1 (V= Vie, )W (38)
Consequently, £ can be decomposed as
G=&"1)+&2)+&03), (89)
with
&) =E 0= renee) | Fe | (90)
@) =E[n T (¢ | Fe | (91)

§3) =E[nT (£ = £(89) () + @) | Far.

; M] . (92)

where 77 is a random variable satisfying |y — 8| < |[AFX — 57|. The same arguments as in Barndorff-Nielsen

et al. (2006) imply that
Nn

2 (€r2) +€13)) 0.

i=1

Nn
Hence, we are left to prove that Zt: £ (1) £, SS as(1)ds. Conditionally on the event Ay = {A(i,n) = kA,},
i=1

for some k= 1,2,..., we have
r 1 r— rtl
B[/ | Far o] = (@, o o)+ 500 it (o(F2) = o) ) (A k) . (93)
—Ln Y_1n 2 1 In Yi—1n
Therefore, using Eq. (60) and the law of iterated expectations, we obtain
n 7‘ ]- r— . r+1
E|[n = f(8)6@) | Fr | = A ( T o ol ol (o(72) —p(f’>)) E[(AGn)F | F |
1 1—p9 ..
—1 o' 1
S R N RS A S R 1)) Bt )
(94)
Analogously to the proof of Eq. (80), the expression in Eq. (94) implies that
N » [t
DM — | as(1)ds, (95)
=1 0
where o
r 1-— p
(1) = 7 (aupl) 4 g (o8'2) = () ) S By 0) (96)
O
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Proof of Corollary 2.1.1. The proof is straightforward. O
Proof of Corollary 2.1.2. The proof is straightforward. O

Proof of Corollary 2.1.3. Corollary 2.1.3 is a particular case of the Corollary 2.1.2 with r = 2. Indeed, if r = 2,
r ~|T n ~|2
nz~t Dy ’AiX' = > |1AX|, ur =1, por =3 and ( ) Ll_z (pg) ( ) Li_q (pg) =1, Vp?. Hence,
=1
Corollary 2.1.2 implies that

> [ak] LJ 0|2 ds, (97)
i=1 0
and
n t
ﬁ(Z ‘AlX‘ —f Exe d5> St“_béyf as dW, (98)
=1 0 0
where
_ pd)2 _ pd)4 _ 6
2 _ (1-p) & (1—-p9) AN ( p<) & 2r
o? = [uzr Ll 07) 2B B 07 L 02) + U T (1 07)) L ()| o
(1*10@)2 & (1*10@)2 o (1*17@)2 (%} 2
= | par Li_o (p¥) — 2 Li_o (p¥) + Lio (p?) | 05"
B 02) - 20 ) + BT 09)
= (p2r — 12) (1_10@)2[_' 2 (09) 0% = (ngr — ) (1-p9)*p?(1 +p?) :2(1+p@) 2r
o 2 : TN p? (1-pP)3 Tt T (1-pP) e
_4-2(1-p9)
(1—p9)
(99)
O
Proof of Theorem 5.2. We notice that
n N{
v *
>r(a%) =Y rarx), (100)
i=1 i=1
where A¥X = X;x —X,»  are the increments of the process X; over the new (random) partition ¢t} ,,...,t3n ,
i,n i—1,n ’ to

of the interval [0,¢], constructed from the original partition by removing the points for which B;,, = 1. The
statement of the Theorem holds by Theorem 3.3.1 of Jacod & Protter (2004). O

Proof of Theorem 2.3. Once we write the problem as in Eq. (100), the proof is similar to that of Theorem
5.5.1 in Jacod and Protter (2012). Therefore, we present the general structure of the proof and omit technical
details contained in Jacod and Protter (2012).

For any semimartingale, say Z;, define

Np
Zf (AF2), V(27 =vn | V(20— ). F(AZ) . (101)
sétl’ﬁ,tn’n

For any m > 1, denote by (T'(m, ) : v = 1) the successive jump times of the process N™ = 11 /p,<y<1/(m—1)} * 4

and let S, be the reordering of the double sequence (T'(m,r) : r > 1) into a single sequence. Now, fix m > 1
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and let P, be the set of all p such that S, = T'(m/,r) for some r > 1 and some m’ < m. Then, define

X(m)y=X— Y. AXg, =Xy — (01pmijmy) * i (102)
PEP:Sp<t
Next, denote by €, (t,m) the set of all w such that each interval (¢, ,,tF, | contains at most one jump of

(61(4=1/m)) * p and such that |[A¥X(m)| < 2/m for all i. For each Sp, denote the edges of the interval
(t* t¥ ], which contains Sp, by S_(n,p) = ¢t} and Si(n,p) = tf,. Then, for all t > 0 and m > 1,

i—1n “i,n i—1n
Q,(t,m) — Q almost surely as n — c0. On , (¢, m), we have

Ny Ny
V£ X)E =Y FAFX) = D FAIXm)+ Y. fAY X (M)+AXs)— > f(A*X(m)),
=1

i=1 pePnL:Spgt;k\,in’n pEP’m:Spét;k\lt",n
(103)
and
DOFAX) = D f(AX(m)) + > f(AXg,). (104)
sst]’ﬁ,tnm Sgtz*vt",n pEPmZSPStj;ng
Therefore, on §2,(t, m), we obtain the decomposition
VX =V(EXm)E+ Y G (105)
pEPm:Spgt*Ntnm
with
G = Vi (F(A%, (X (m) + AXs,) = F(AXs,) = F(AE, (X (m)) (106)
Set
R_(n,p) = vVn(Xs,— — Xs_(np), Bi(n,p) = vVn(Xg, (np) — Xs,)- (107)
With this notations, ¢ can be expressed as:
1 1
G =i (1 (8%, + T (R-(up) + o)) = FAXs) ~ f (o (R-() + Ro00))) )
(108)

1

— (AXS,, + R(n,p)> (R-(n,p) + R+ (n,p)) = V/nf <x/ﬁ

(R-(n.) + () ).
where R(n, p) lies between AX s, and ﬁ(R, (n,p) + R+ (n,p)). Exactly the same arguments as in Proposition
4.4.10 of Jacod and Protter (2012) gives that the sequence (R_(n,p)+ R4 (n,p)) is bounded in probability (for
a fixed p),

R_(n,p) — og,_a_(n,p) >0, Ry(n,p)—og,a(n,p) -0, (109)
where
a(n,p) = vVn(Ws,- = Ws_np), a+(n,p) = vVn(Ws, (np) — Ws,), (110)
and
(@ npa () ™ (Ve 0y 550 ) (111)
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Thus,

G — I (AXs,) (R-(n,p) + Ry (n,p)) == 0, (112)
and
(R—(n,p) + Ry (n,p)) ™™ 05, 1/& Uy +a5,0/& U, (113)
which implies that
Y f(AX,) (osp \/5 Uy +os/& U+> (114)

Since on Q,(t,m) the sum ) (, contains finitely many entries, Eq. (114) implies that

per:Spgtj;tn

2 gsﬂy Z ' (AXg) <asp\/§ +0s, U+). (115)

per:Spét;"thm per:Spst”]im n

Then, since for p ¢ Pp, all jumps AXg, are smaller than 1/m in absolute value (and by the boundedness of

ot), we obtain

Z f/(AXSp) <USP\/§UP_+O-SP f;U;)— Z f (AXSP (US \/7U +o0s, nggj_)Ucp 0.

per:Spét]";n n p:Spgt;ﬁ]?m
(116)
Now, by the same arguments as in step 4 of the proof of Theorem 5.5.1 in Jacod and Protter (2012), for any
€ > 0, we obtain
lim limsup P | Q,(t,m) n < sup /n|V(f; X(m))§| >ep | =0, (117)

m—00
n—00 S<th ”

which implies that

VG2t Y (axs) (os e Uy +os 60 (118)

b SPSth n

Since t is not a fixed time of discontinuity of the process V(f; X)7, for any fixed ¢ the above convergence implies
that

V(f;2)p S f (AXs,) <asp_ & U, +os, GU;). (119)

p:Sp<t

Finally, in order to complete the proof, it is enough to show that, for a fixed ¢,

Un=+vn| > fAX,) =) f(AX,)] 0. (120)
sgt*Ntnm s<t

Let ,, be the set on which there are no jumps in X bigger than 1 between the time t}“vglm and t. On Q,,
|f(x)] < K ||?, for a constant K. Hence, on Q,, U, < K+/n Zt*,\,n o<t |AX,|%. Consequently, by conditioning
n
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ont— t}"\,zl ,, and using the law of iterated expectations, we obtain

t
E[Uulo,] <EVAE| Y |AX?| < KynE J J|5(s,z)|2 Adz) ds <K’\/EIE[(t—t}‘V?,n>],
t%,  <s<t tﬁtn,n
n
(121)

where K’ is another constant and t — t}"vtn ,, is a discrete random variable with probability mass function given

by P (t — t}‘vtnm = k:An> = (1—p9) (pg)(k_l) for k€ {1,2,...}. Thus,

a0
E[Unla,] < K'VnA, Y k(1 -p?) (p9)" — 0. (122)
s=1
Since Q,, — Q as n — w0, E[U,1q, | — 0 implies that U, 2, 0, which completes the proof. O

Proof of Theorem 2.4. As in the proof of Theorem 2.3, on €, (t,m), we obtain the decomposition:

VEX)E=V(HEXm)E+ Y (123)
per:Spgt;ﬁ,tnm
where
n, Stabl .
Z n Z f (AXs,) <asp_ & U, +o0s, g,;*UJ). (124)
PGPm!Sp<tTthm pEPm:Spgtjif?,n

Next, we notice that: ...
O

Proof of Theorem 2.5. The proof is analogical to the proof of Theorem 2 in Bibinger and Vetter (2015). Hence,
it is omitted. O

Proof of Lemma 3.1. Consider the decomposition:

Ag)f = A1 + As, (125)
where
Ny
Ay =) G, with G =n?"" (A(n,9)? — E[A(n,4)7]), (126)
=1
and
Ny
Ay =t Y E[A(n,i)9]. (127)
i=1

Due to the independence of the Bernoulli variables, we have:

E[A(n,z’)q]zE[A(i,n)q ftf_lyn]:A% 5 i »?). (128)
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where the second inequality follows from equation (60). Consequently, we have:

E [g ft*_m] —0,

and

o (1-p7 . 1-p9)° 2
[t |7, ) -t (S0 609 - LS b)),
Hence, (; is .7-};::1 n—martingale and
N
E|¢
25|

which implies that Ay is asymptotically negligible.
Then, substituting (128) in Ay we obtain:

Fo, | <oniNy —o,
i—1,n

-9 . 1 -
pé) Li_, (pg) = ——Li4(p Q)n N

NP 1
Ay =nT 1 Y AL
=1

It can be easily seen that:
n

1
n"INP = - D1 =Bin) =5 (1-p9)t.

i=1
Consequently,
1-p9)°
Ay B ( e ) Ll,q(p )t,

which completes the proof.

Proof of Theorem 3.2. By Theorems 3.1 and 3.2 of Hayashi et al. (2011), on Qfo i) AS M — 0,

PVE(f; X) ﬂurf los|” ds,

and

t
Ja (Pvc £ %) f 0" d ) Y (= 42) | ot/a)aw;

where a(q); is a stochastic process, such that for all ¢, as n — oo,

A(q)} =n?” 12|Anzqu”}f

(129)

(130)

(131)

(132)

(133)

(134)

(135)

(136)

(137)

provided that such a process exists. By Lemma 3.1, the process a(q); exists for every ¢ > 0 and takes the

following form:

%) 2
alg): = pg)u-q (v?) t.

Hence, the statement of the present Theorem follows from straightforward algebraic computations.
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Proof of Theorem 3.3. By Theorems 3.1 of Hayashi et al. (2011) and Lemma 3.1,
Np e ¢
0> A, i) |ATX [P R ﬂ%f 0|7 a(2), ds,
0

i=1

where a(q); is a stochastic process defined as in the proof of Theorem 3.2, which completes the proof.
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	The identiﬁcation of volatility has been central to the econometric literature and has provided support to empirical work in an array of ﬁelds, from ﬁnance to macroeconomics. Less emphasis has been placed on higher-order moments. Yet, economic modeling is now beginning to be more attentive to the full distributional properties of economic time series -to tail properties, in particular. 
	In light of this premise, we study the large sample features of empirical higher-order moments computed from high-frequency (price) data, i.e., realized high-order moments. As is standard in the high-frequency literature, we assume prices evolve continuously in time and work with equally-spaced data on a sampling grid spanning the trading day. We obtain daily measures by suitably aggregating intradaily price changes on the assumed grid. Asymptotics are derived by letting the number of intradaily observation
	In large samples, it is important to distinguish between trajectories with and without jumps. In the absence of jumps, the properties of realized moments depend on whether they are constructed using even functions (the fourth moment case, for instance) or odd functions (as in the third moment case). In general, even functions lead to staleness-induced asymptotic biases and limiting zero-mean mixed normal distributions (the realized variance case being a notable exception for which the staleness-induced bias
	In a ﬁnite sample, the interaction between staleness and jumps can be understood as follows. Extended periods of price staleness ought to be associated with an ever-changing underlying (unobservable) eﬃcient price process. When staleness comes to an end, observed prices revert to prevailing eﬃcient prices but the latter may be far from observed prices. This eﬀect may generate spurious 
	In a ﬁnite sample, the interaction between staleness and jumps can be understood as follows. Extended periods of price staleness ought to be associated with an ever-changing underlying (unobservable) eﬃcient price process. When staleness comes to an end, observed prices revert to prevailing eﬃcient prices but the latter may be far from observed prices. This eﬀect may generate spurious 
	-

	jumps even on a purely continuous trajectory. These spurious jumps have the potential to inﬂuence the ﬁnite sample properties of the realized moment estimates, particularly in the continuous case and with even functions. The proposed asymptotic bias-correction for the case with discontinuous trajectories is shown to alleviate this issue drastically. 

	The presence of staleness leads to one key modiﬁcation in the evaluation of realized moments. Because it generates random periods of time over which the price changes are zero, it modiﬁes the sampling grid (by making it random and coarser than the original grid) and, as a consequence, the sample size (the eﬀective sample size being smaller than the original one). Given that the limiting order of the new sample size is the same as that of the old sample size, staleness does not yield modiﬁcations of the conv
	Realized variance is a well-posed estimator in the presence of both staleness and jumps. It is consistent for the overall quadratic variation and mixed normally distributed with an asymptotic distribution whose variance is enhanced by staleness. Higher-order moments are more delicate, the interaction between staleness and jumps playing a more critical role in this more general case. First, diﬀerently from realized variance, for the limit of higher-order moments to be meaningful about the tail properties of 
	Realized high-order moments are often used in the literature as inputs in traditional deﬁnitions of skewness and kurtosis. We ﬁnd that, on continuous trajectories, realized kurtosis may considerably overstate true kurtosis due to staleness. Similarly, while unbiased, continuous skewness is noisier in the presence of staleness. We also show that realized skewness and kurtosis diverge with the sample size in the presence of discontinuous trajectories. While realized skewness is a signed measure of jumps, more
	Thresholding, i.e., the use of truncation to identify small and large variation in asset prices, provides a natural way to address these issues. We deﬁne (truncated) continuous notions of skewness and kurtosis and show how bias-correcting kurtosis leads to accurate assessments of variation due to uncertainty in price volatility. Similarly, we may deﬁne (truncated) discontinuous notions of skewness and kurtosis, as well as various moments of the positive and negative jumps, not aﬀected by the presence of sta
	We re-evaluate the existing empirical evidence on the cross-sectional pricing of idiosyncratic skewness and kurtosis (c.f., Amaya et al., 2015 and Bollerslev et al., 2019). In order to do so, we use a large cross-section of US stocks and a large sample of high-frequency price data spanning 20 years. Consistent with the economic logic laid out in Amaya et al., 2015 and Bollerslev et al., 2019, we expect measures that are positively correlated with positive price discontinuities and negatively correlated with
	The paper proceeds as follows. Section 2 presents the model, the general family of estimators and limiting results for realized high-order moments in the continuous case (Subsection 2.2) and in the discontinuous case (Subsection 2.3). Section 3 proposes a simple bias-correction for realized moment estimates in the presence of staleness and studies its limiting properties. In Section 4 we study traditional realized skewness and kurtosis estimates and use their limiting features to further characterize the in
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	2.1 Setting and assumptions 
	We assume the underlying (sometimes unobserved) eﬃcient price process follows a continuous-time semimartingale with stochastic volatility and jumps while the observed price process (recorded on a speciﬁc sampling grid over the ﬁnite interval r0,ts) is contaminated by the presence of staleness. 
	t be the eﬃcient logarithmic price process deﬁned on a ﬁltered probability space pΩ, F, pFtq , Pq. The observed logarithmic price process Xt is deﬁned as: 
	Formally, let X
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	where Δn “ , tti,n “ i Δn | i “ 0,...,nu is a partition of the interval r0,ts and Bi,n is a triangular
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	n array of FiΔ-measurable Bernoulli random variables deﬁned on the same probability space as the eﬃcient price Xt. When volumes are zero (or limited, with zero price impacts), prices repeat themselves (Bi,n “ 1).When volumes are present (Bi,n “ 0), observed prices coincide with underlying eﬃcient prices. 
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	In the model, the probability of staleness is PpBi,n “ 1q“ p. When working with dependent Bernoulli variates and a frequency-speciﬁc probability of staleness, the model speciﬁcation in Eq. 
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	(1) coincides with that in Bandi et al. (2017). The case of independent Bernoulli variates with a constant probability of staleness PpBi,n “ 1q“ p“ pis studied in the work of Phillips and Yu 
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	(2009). Rich empirical evidence for the proposed speciﬁcation is contained in Bandi et al. (2019). The realized high-order moment estimators are generalized power variation estimators deﬁned as 
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	PVpf; Xq“ n fpΔiXq, (2) 
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	where either fpxq“|x|or fpxq“ x , for some r ą 0. Naturally, their asymptotics depend both on the dynamics of the eﬃcient price process and on those of the Bernoulli variates Bi,n, to which we now turn. 
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	t evolves as 
	Assumption 1. Assume X

	ż ż ż żż ż Xt “ X` as ds ` σsdWs ` κps, δqpµ ´νqpds, dδq` κps, δqµpds, dδq, (3) 
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	00 0 |κps,δq|ď10 |κps,δq|ą1 
	where µ is a Poisson random measure on R ˆ E with predictable compensator νpdt, dxq“ dtλpdxq, 
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	According to the nomenclature in Bandi et al. (2019), the term “staleness” deﬁnes zero returns, whereas the term “idleness” deﬁnes zero returns with strictly zero volumes. Consistent with this terminology, we employ the term “staleness” to include all zeros. This choice can be viewed as being less restrictive than solely focusing on idleness and is economically-meaningful -if one views the probability of zeros as an illiquidity proxy -because the volumes associated with staleness are either zero (idleness) 
	1

	λ is a σ-ﬁnite measure on the set pE, Eq and the volatility function σ satisﬁes the equation 
	ż ż ż żż ż σt “ σ` ads ` σdWs ` κrps, δqpµr ´ νrqpds, dδq` κrps, δqµrpds, dδq, (4) 
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	t and Vt are independent Brownian motions, and a, a, σand vare adapted c`adl`ag bounded processes. Given a sequence of increasing stopping times τu and deterministic, nonnegative functions γu deﬁned on E
	where, again, µ
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	is a Poisson random measure with compensator ν
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	ş 
	so that γpδqλpdδqă8, we have that |κpω, t, δq| ^ 1 ď γupδq for all u and all pω, t, δq with t ď τu.
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	u 
	i,n is a triangular array of i.i.d. Bernoulli random variates, independent of Xt, with E rBi,ns“ pPr0, 1q. 
	Assumption 2. Assume 
	B
	H 

	Assumption (1) is a standard suﬃcient condition required for the proof of the types of central limit theorems (CLTs) obtained in high-frequency econometrics. It postulates that the eﬃcient price, as well as its spot volatility, evolve as Brownian semi-martingales with jumps. While we allow for inﬁnite activity (small) jumps, our main interest is in economically-informative large discontinuities. The coeﬃcients of the semi-martingales are assumed to be bounded, a condition which can be relaxed by standard lo
	In order to distinguish between continuous and discontinuous trajectories, we consider two complementary subsets of Ω deﬁned as: 
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	“tω P Ω: Xspωq is continuous on r0,tsu , (5)

	r0,ts 
	Ω“tω P Ω: Xspωq is discontinuous on r0,tsu . (6)
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	Below, we establish F-stable convergence in law (denoted by “ ÝÑ ”) of the power variation 
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	generated by the Bernoulli variates. 

	2.2 Power variation on Ω
	2.2 Power variation on Ω
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	r0,ts 
	We begin by assuming that the trajectory of the eﬃcient price process is continuous on r0,ts, that is, ΔXu “ Xu ´ Xu´ “ 0 @u Pr0,ts. In this case, the limiting properties of the realized high-order moments follow from the general limit theorem for realized power variation which we present next. 
	Theorem 2.1. Let Assumptions (1) and (2) hold and ΔXu “ 0 @u Pr0,ts. Set ρpfq“ E rfpUqs
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	and ρpf, kq“ E fpUqU@k ą 0, where U „ N p0, 1q. Then, as n Ñ8, 
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	r
	p1 ´ p 
	r 

	H 
	2

	p 
	0 
	ř
	8 

	where Lis pxq“ xis the polylogarithm function. Moreover, as n Ñ8,
	1 
	k 

	ks k“1 
	ˆ˙
	H t t t t
	ż 
	ż 
	ż 
	ż 

	?p1 ´ p q` ˘ stably 
	2 
	H
	|
	r 
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	(8) where W is a Brownian motion deﬁned on an extension of the original probability space and independent of W , 
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	Theorem 2.1 shows that both the probability limit and the asymptotic distribution of realized power variation are aﬀected by staleness (i.e., p). The polylogarithm (or Jonqui`ere’s) function, Lis pxq, which appears in Eq. (7) and in Eqs. (9)-(11), is a special function deﬁned by the power series 
	H
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	Lis pxq“ x . 
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	It is available in standard software packages. Using the properties of the polylogarithm function, it is straightforward to show that, if p“ 0, then Theorem 2.1 coincides with the standard stable CLT for generalized power variation derived by Kinnebrock and Podolskij (2008). 
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	In order to reveal the meaning of Theorem 2.1, we specialize the statement to a series of corollaries, depending on whether the function f is odd or even. If f is odd (for example, if fpxq“ x), then ρpfq“ 0 and the probability limit of the estimator is unbiased, as we formalize below. 
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	Corollary 2.1.1. Assume fpxq“ x , where r is an odd integer. Let Assumptions (1) and (2) hold and ΔXu “ 0 @u Pr0,ts. Then, as n Ñ8, 
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	with µr “ E r|U|s and U „ N p0, 1q. 
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	When f is odd, power variation is asymptotically unbiased for zero. Intuitively, this result reﬂects the fact that increments of Brownian motion have symmetric distributions and staleness does not aﬀect symmetry (because of the local martingale features of the driving terms of the underlying eﬃcient price process). However, staleness inﬂuences convergence in law through the structure of the estimator’s limiting variance. 
	Note that, if f is odd, power variation converges stably in law to the process Ut deﬁned as the sum of three terms: 
	żż ż
	tt t Ut “ αsp1q ds ` αsp2q dWs ` αsp3q dW .
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	The process Ut is uncentered mixed normal. Its look diﬀers from that of the standard limit of the
	şt ştrealized variance estimator because of the presence of the terms αsp1q ds and αsp2q dWs, which t, and on the driving shock of the local martingale portion of Xt, i.e., the Brownian motion Wt. Importantly, the diﬀerence is not driven by staleness, but emerges solely due to the fact that f is an odd function (Kinnebrock and Podolskij (2008) provide details in other contexts). As said, staleness, however, aﬀects both the location and the scale of Ut via the form of the process αtpiq, for i “ 1, 2, 3. 
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	depend on the drift process, i.e., µ

	Consider, now, the case in which f is an even function (for example, fpxq“|x|, for a generic r ą 
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	0, or fpxq“ x , for an even r ą 0). If fpxq“ x with an even r ą 0, then PVpx ; Xq“ PVp|x|; Xq. 
	r
	r 
	r

	Corollary 2.1.2. Let Assumptions (1) and (2) hold and ΔXu “ 0 @u Pr0,ts. Let µr “ E r|U|s and U „ N p0, 1q. Then, as n Ñ8, 
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	Corollary 2.1.2 shows that power variation measures computed from the absolute values of increments of the observed price process are -in general -asymptotically biased due to staleness. The case r “ 2 is an important exception. If r “ 2, the properties of the polylogarithm function imply 
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	p1´pqH
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	that, for any pPr0, 1q, Li´1 p “ 1. This case is considered below separately. If r ą 2,
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	the bias term takes the form of a function of two variables, r and p, which is increasing in both arguments. Table 2.2 displays values of the bias of the realized fourth moment, r “ 4, for diﬀerent values of p. As shown, the percentage bias can be substantial even for moderate values of p. For 
	H 
	H 
	H 

	H`˘ 
	q
	2 

	any pPp0, 1q, the percentage bias, Li´ r p´ 1, is larger than 0 if r ą 2 and it is smaller
	H 
	p1´p 
	H 

	H
	p 
	2 

	than 0 for r ă 2. In sum, the realized high-order moment are overestimated due to the presence of staleness. 
	Table 1: We report values of the bias of PV, with r “ 4, for diﬀerent ps. 
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	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
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	1.222 1.500 1.857 2.333 3.000 3.999 5.651 8.558
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	Finally, if r “ 2, the power variation PVpx; Xq coincides with realized variance, denoted by RVpXq. The asymptotic properties of realized variance under staleness (but without jumps, as in this subsection) are investigated by Phillips and Yu (2009), who show that RVpXq remains (asympt. However, the limiting variance of RVpXq increases with the frequency of zeros. The results in Phillips and Yu 
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	We now consider the situation in which the trajectories of the eﬃcient price Xt have discontinuities on the observation interval r0,ts. The case without staleness, with a focus on volatility, has been considered at some length in the literature (see, e.g., Barndorﬀ-Nielsen et al., 2006, and Veraart, 2010) 
	We devote our attention to the limiting behavior of power variation with large powers (r ě 2), namely the powers which are used in computing realized high-order moments and are aﬀected by the presence of jumps (as is well-known, jumps do not aﬀect the convergence in probability of power variation with r ă 2, see -e.g.-Barndorﬀ-Nielsen et al., 2006, and Jacod, 2008). 
	As is natural in the discontinuous case, we work with re-scaled (or, equivalently, non-normalized) power variations deﬁned as 
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	The standardization 1{n in Eq. (44) is now not needed because of convergence to a ﬁnite sum (that of functions of the jumps over the interval r0,ts). The standardization n
	2
	in Eq. (44) is also not 
	needed because one does not have to oﬀset the limiting probability order of the driving Brownian increments and we can let them vanish to zero to identify the genuine jump futures. Hence, we 
	multiply PV by n
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	First, we consider convergence in probability. In contrast to the continuous case, the probability limit of power variation on Ωis robust to staleness.
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	Theorem 2.2. Let Assumptions (1) and (2) hold. Let either fpxq“|x|or fpxq“ x , for some r ą 2. Then, as n Ñ8, 
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	On Ω, power variation with powers larger than 2 depends asymptotically only on jumps.
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	For example, the quantities ΔiX and ΔiX , which will be employed to compute
	i“1 i“1 
	realized skewness and realized kurtosis in Section 4, converge to the sums of the jumps of X on the interval r0,ts raised to the third and the fourth power, respectively. The limiting behavior of realized variance (i.e., the case r “ 2) is diﬀerent and is, therefore, considered separately at the end of this subsection. 
	In the absence of staleness, a general CLT for power variation on Ωwas obtained by Jacod 
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	and Protter (2012) for r ą 3 and by Koike and Liu (2019) for r “ 3. In the ﬁrst case, power variation 
	and Protter (2012) for r ą 3 and by Koike and Liu (2019) for r “ 3. In the ﬁrst case, power variation 
	converges stably in law to a complex mean-zero limiting process, which depends on the jumps of 

	X. In the second case, the centering of the limiting distribution depends on the features of the continuous variation of the process. Our results are, as expected, contaminated by zeros, thereby 
	resulting in diﬀerent limiting processes, as follows from the two theorems below. 
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	Theorem 2.3. Let Assumptions (1) and (2) hold. Let either fpxq“|x|or fpxq“ x , for some 
	r 

	r ą 3. Then, as n Ñ8, 
	ÿn ´¯ÿÿ ´b b¯ 
	? 
	˜
	¸

	stably 
	´` 
	r 
	f
	1 

	nf ΔiX ´ fpΔXsqÝÑ pΔXSq σS´ U` σSU, (25) i“1 sďtp:Spďt 
	p 
	p 
	ξ
	p 
	´ 
	p 
	p 
	ξ
	p 
	` 
	p 

	where pSpqpď1 is a sequence of stopping times which exhausts the jumps of X and U , U , ξ , ξ are
	´ 
	` 
	´ 
	` 

	p ppp 
	´¯ four sequences of independent random variables deﬁned on an extension Ω, F, Pof the probability 
	r
	r
	r 

	space pΩ, F, Pq. The random quantities U and U follow standard normal distribution, ξ “ upLp
	´ 
	` 
	´ 

	pp p 
	and ξ “p1 ´ upq Lp, where the ups have uniform distributions on r0, 1s and the Lps are discrete
	` 

	`˘
	p 
	`´1 

	random variables on t1, 2,... u with PpLp “ `q“p1 ´ pq pfor ` Pt1, 2,... u. 
	r 
	H
	H 

	The limiting process deﬁned in Eq. (25) is a square-integrable F-martingale. The existence of such process follows from the same argument as in the proof of Proposition 5.1.1 in Jacod and 
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	Hence, staleness increases the asymptotic variance, thereby yielding an information loss when measuring jump moments by virtue of power variation. Finally, we note that the stable convergence in Theorem 2.3 holds for a ﬁxed t but it does not hold for the Skorokhod topology (see Remark 5.1.3 
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	where ρpfq“ E rfpUqs with U „ N p0, 1q, as above, and the second term on the right-hand side is deﬁned as in Theorem 2.3. 
	Theorem 2.4 shows that, if r “ 3, the power variation converges stably to an uncentered limit 
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	Finally, consider realized variance on Ω. As in the continuous case, RVpXq is a robust estimator 
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	of the quadratic variation (now inclusive of the sum of the squared jumps) of the eﬃcient price 
	of the quadratic variation (now inclusive of the sum of the squared jumps) of the eﬃcient price 
	process. However, the limit distribution of RVpXq is contaminated by staleness, as evidenced by the theorem below. 
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	ż t 
	ż t 
	ÿ

	u.c.p. 2
	RVpXqÝÑ |σs|ds `pΔXsq (28) 
	r
	2 

	0 
	sďt 
	and 
	˜ ¸
	˜ ¸
	? 
	ÿ
	ÿ

	ż t ż t ˆb b˙ 

	stably 
	2 ´` 
	n RVpXq´ |σs|ds ´pΔXsq ÝÑ αs dW ` 2ΔXSσS´ U ` σSU, (29)
	r
	2 
	1 
	p 
	p 
	ξp 
	´ 
	p 
	ξp 
	` 

	s pp 0 sďt 0 
	p:S
	p
	ďt 

	4´2p1´p
	4´2p1´p
	H
	q

	where α“ σand the second term on the right-hand side is deﬁned as in Theorem 2.3.
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	3 Correcting for staleness 
	3 Correcting for staleness 
	Theorem 2.1 implies that, on Ω, odd power variation is robust to staleness (in the sense of
	c 

	r0,ts 
	convergence in probability) while even power variation is asymptotically biased. 
	We note that the presence of zeros has the eﬀect of turning the original deterministic sampling grid into a new random (and coarser) grid. Hence, the limiting bias may be corrected by utilizing the logic in Hayashi et al. (2011) for dealing with power variation on irregular grids. 
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	ΔX “ ΔX, by construction. We deﬁne the corrected power variation as: 
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	PVpf, Xq“ Δpi, nqf pΔpi, nqq ΔX. (30) 
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	Naturally, the term Δpi, nq in the f function accounts for the new grid (and the new, eﬀective number of observations) by replacing the original standardization (i.e., n). Similarly, the previous standardization (of the sum) by the number of observations 1{n “ Δn is now replaced by Δpi, nq. 
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	The limiting properties of Eq. (30) can be derived from the work of Hayashi et al. (2011) provided 
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	N 
	the random partition t 
	generated by the Bernoulli variables satisﬁes suitable regularity 
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	conditions discussed below. 
	i,n of the eﬃcient price process, the random durations Δpi, nq are independent of Xt, which guarantees that condition pCqof Hayashi et al. (2011) holds. Next, the mutual independence of Bi,n implies that Δpn, iq
	First, due to the independence of the triangular array of Bernoulli variates 
	B

	sup 
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	converges in probability to zero as n Ñ8. Finally, under Assumption (2), the “power variations” of the durations Δpi, nq converge uniformly in probability, as follows from the following lemma. 
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	` 
	˘
	2

	N
	nt
	1 ´ p
	H 

	`˘ 
	q´1 
	H
	q u.c.p.
	|Δpn, iq|

	ÝÑ 
	“ n
	n 

	Apqq 
	Li´q 
	t. (31)
	p
	t 
	H
	p
	ÿ
	i“1 
	Lemma 3.1 implies that condition pDpqqq of Hayashi et al. (2011) holds (with rn “ n in their notations) for every q ą 0. We note that, by imposing economically-motivated structure on data sparsity (due to staleness), our proposed approach provides a data generating process which permits theoretical veriﬁcation of the condition pDpqqq in Hayashi et al. (2011). 
	We can now establish the limiting properties of the corrected power variation on Ω.
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	Theorem 3.2. Let Assumptions (1) and (2) hold and fpxq“|x|with r ą 0. Then, on Ω, as
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	Theorem 3.2 shows that corrected power variation is robust to staleness: PVpf, Xq converges in probability to the same limit as PVpf, Xq and PVpf, Xq. The asymptotic variance of PVpf, Xq is, 
	c
	r
	c
	c
	r

	` ˘ş
	1´pq t
	p
	H
	2 

	however, contaminated by staleness. Speciﬁcally, it takes the form pµr ´ µq Li´2 pσds
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	which takes the simpler form pµr ´ µ q ds.
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	Due to Lemma 3.1, we can establish an interesting convergence result, which can be used to estimate the asymptotic variance of PVpf; Xq: 
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	Theorem 3.3. Let Assumptions (1) and (2) hold and r ą 0. Then, on Ω, as n Ñ8,
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	In light of Theorem 3.3, in spite of the information loss due to staleness, the asymptotic variance of PVpf; Xq can be estimated as: 
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	4 Realized skewness and kurtosis 
	4 Realized skewness and kurtosis 
	This section applies the previous limiting results to skewness (S) and kurtosis (K) measures. Ignoring means, write 
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	In terms of power variation, the quantities in Eq. (36) can also be expressed as 
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	Eq. (36) is classical in the sense that it presents textbook notions of skewness and kurtosis broadly applied in the literature. We will show that these typical notions have, in general, atypical limits 
	when doing inﬁll asymptotics, as reasonable in the presence of high-frequency data. Table 2 provides the summary of the limiting values (in the sense of convergence in probability) 
	for both measures, with and without the correction for zeros and with and without jumps. 
	Table 2: The table reports the limits in probability of realized skewness and kurtosis in the absence (on Ω) and the presence (on Ω) of jumps and in the 
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	trajectories. On discontinuous trajectories, irrespective of staleness, Theorems 5.2 and 2.5 (because of the quadratic term in the denominator) require re-scaling (by n ) to identify jump skewness. For a large n, on Ω, we have 
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	Therefore, in the absence of re-scaling, realized skewness may only be interpreted as a signed measure of jumps on the interval r0,ts. Large positive (negative) values of S support the presence of suﬃciently many and/or suﬃciently large (relative to the quadratic variation) positive (or negative) jumps on r0,ts. Small values of S are symptomatic of absence of large jumps on r0,ts. 
	Realized kurtosis behaves diﬀerently. In the absence of jumps, the value of realized kurtosis depends on volatility and the number of zeros. The bias associated with zeros takes the form 
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	which increases with pand may reach large values, as illustrated in Table 1. In the presence of jumps, for large n values, we have: 
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	indicating that kurtosis ought to be large on Ω. In essence, kurtosis may result in large values on
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	We now consider corrected (as in Section 4) versions of realized skewness and kurtosis deﬁned as 
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	Note that we do not correct the realized variance in the denominators of Sand Kas RVpXq is robust to staleness. 
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	As expected, correcting realized skewness for the presence of staleness does not lead to any asymptotic improvement of the measure. In the case of kurtosis, correcting for staleness eliminates bias on Ωat the cost of re-scaling the jumps on Ω. OnΩ, for large n, corrected kurtosis
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	In other words, if volatility is constant over the interval r0,ts, K“ 3 as for the Gaussian distribution. However, on Ω, we have 
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	Hence, asymptotically, corrected realized kurtosis ought to take on large values on Ωdue to the
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	exploding term produced by the jumps. In a ﬁnite sample, there is a chance of underestimation 
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	In sum, whether one accounts for staleness or not, during jump days the limiting properties of standard skewness and kurtosis measures depend on the sample size. Arguably, this is not a favorable property of these classical measures when applied to high-frequency data. Below, we provide a solution. 

	5 Disentangling continuous variation from jumps 
	5 Disentangling continuous variation from jumps 
	In the absence of staleness, the continuous variation of Xt can be separated from jumps using truncated power variation, as in Mancini (2009). The truncation techniques remains valid under the presence of zeros, provided staleness is properly taken into account, as explained below. 
	Realized truncated power variation is deﬁned as 
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	where It.u denotes the indicator function and θn is a (stochastic) sequence such that θn Ñ 0 with ? Ñ8 a.s. Classical arguments as in Mancini (2009) imply that, irrespective of the 
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	where Xdenotes the continuous portion of X. 
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	In order to account for the presence of zeros, the corrected version of truncated power variation is now deﬁned as: 
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	where the αis are some positive bounded random variables and ρ Pp0, 1{2q. Theorem 5.1. Let Assumptions (1) and (2) hold, let fpxq“|x|with r ą 0 and let the functions
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	Thus, the variation of the jump components can be measured by (non-normalized) jump power variation deﬁned as 
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	On Ω, Jpf, Xq behaves as the non-normalized power variation in Theorem 5.2. However, the use
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	of truncation allows us to relax the assumption r ą 2 of the theorem. In other words, we have the following theorem. 
	Theorem 5.2. Let Assumptions (1) and (2) hold and fpxq“ O p|x|q as x Ñ 0 for some r ą 0. Then, as n Ñ8, 
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	This result allows us to simply employ the sum of the jumps (Jpx, Xq) when measuring the (unsigned or signed) strength of the jump contribution. 
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	(51) 
	In applications, these measures may represent less noisy assessments of the contributions of jumps than the more volatile jump skewness and kurtosis measures which could readily be obtained from Eq. (49) above. 

	6 High-order moments and asset prices 
	6 High-order moments and asset prices 
	The cross-sectional pricing of higher-order moments has been the subject of recent literature (e.g., Amaya et al., 2015 and Bollerslev et al., 2019) The work of Amaya et al. (2015) points to the negative pricing of idiosyncratic skewness, as measured by K in Eq. (36), an empirical ﬁnding justiﬁed by market participants’ attention (resp. aversion) to large positive (resp. negative) payoﬀs. They 
	The cross-sectional pricing of higher-order moments has been the subject of recent literature (e.g., Amaya et al., 2015 and Bollerslev et al., 2019) The work of Amaya et al. (2015) points to the negative pricing of idiosyncratic skewness, as measured by K in Eq. (36), an empirical ﬁnding justiﬁed by market participants’ attention (resp. aversion) to large positive (resp. negative) payoﬀs. They 
	-

	also report on the positive pricing of idiosyncratic kurtosis, a somewhat less robust result possibly explained by aversion to diﬀusive/jump variation in volatility. Just like idiosyncratic skewness, the diﬀerence between positive semi-variance and negative semi-variance (“relative signed jumps” or RSJ) is a measure of the relative contribution of positive and negative jumps to price variation. It is expected to be positive (resp. negative) when positive (resp. negative) jumps dominate. Bollerslev et al. (2
	-


	We re-evaluate this literature, and expand on its scope, along several dimensions. We have previously shown that skewness and kurtosis are dominated by jumps in days in which jumps are present (c.f. Section 4). In days without jumps, skewness is a noisy measure of zero, while kurtosis captures stochastic volatility, inclusive of jumps in volatility. As discussed, continuous kurtosis suﬀers from severe upward biases in the presence of staleness (c.f. Section 4). We have also shown that, more generally (i.e.,
	We consider a large cross-section of intraday prices for 4809 NYSE-listed stock. The data are recorded on a one-minute grid from 9:30 a.m. to 4 p.m., from January 1, 1998, to June 29, 2018, thereby amounting to a long sample of intra-daily data ideally suited for a pricing study. In order to soften the eﬀect of market microstructure noise, we aggregate returns up to the ﬁve-minute frequency n, in our previous notation). We remove from consideration days with more than 70% of zero intraday returns and for wh
	(Δ

	We begin by illustrating the impact of staleness on skewness and kurtosis measures in our data. Figure 1 shows percentiles (the 10, the 50and the 90) of the diﬀerence between traditional realized skewness and kurtosis and the same measures corrected for the presence of zeros. The ﬁgure fully supports our theoretical predictions. Regarding skewness, the presence of zeros does not induce biases but makes the measure noisier (an implication of Corollary 2.1.1), as shown by the increase in the width of the dist
	th 
	th 
	th

	Figure
	Panel A: Skewness Panel B: Kurtosis 
	Panel A: Skewness Panel B: Kurtosis 


	Figure 1: Panel A: median diﬀerence between daily raw skewness and daily corrected (for staleness) skewness across the stocks in our sample (a total of 11,892,327 daily observations). We report it along with the 10and the 90percentile, as a function of the percentage of zeros during the day. Panel B: median diﬀerence between daily raw kurtosis and daily corrected (for staleness) kurtosis across the same stocks, again as a function of the percentage of zeros during the day. 
	th 
	th 

	need for bias-correcting realized kurtosis, a measure whose documented correlation with illiquidity proxies is, at least in part, a by-product of its correlation with zeros. It also provides a justiﬁcation 
	for obtaining more precise skewness estimates by bias-correcting realized skewness. 
	6.1 Cross-sectional regressions 
	6.1 Cross-sectional regressions 
	Next, we turn to asset pricing implications. We assess the relation between future excess returns and past realized skewness and kurtosis by carrying out (over time) cross-sectional regressions, as in 
	Fama and MacBeth (1973). For each time t, we estimate the following model: 
	ri,t`1 “ αi ` βXi,t ` .i,t`1, (52)
	1 

	t 
	where ri,t`1 denotes the weekly excess return of the i-th stock over week t, t ` 1 and Xi,t is a vector of weekly characteristics for the i-th stock over week t ´ 1,t. The vector includes the weekly (averaged, over ﬁve consecutive trading days) measures of realized skewness and kurtosis (S and K), the weekly measures of truncated skewness and kurtosis (TS and TK), weekly bias-corrected truncated skewness and kurtosis (TSand TK), past weekly returns (R), the square-root of weekly 
	c 
	c

	? 
	truncated realized variance ( ), the weekly average of jumps (J), the weekly average of positive 
	TRV

	jumps (J ), the weekly average of negative jumps (J ), the weekly average percentage of zeros (RZ), 
	` 
	´ 

	the weakly illiquidity ratio of Amihud (2002) (Ami) and the standardized (by realized variance) 
	the weakly illiquidity ratio of Amihud (2002) (Ami) and the standardized (by realized variance) 
	diﬀerence between positive semi-variance and negative semi-variance (RSJ). Table 3 reports the time series averages of the estimated slopes βts as well as the associated t-statistics. 
	p


	Model (1) is the same as the main model in Amaya et al. (2015) and conﬁrms that, when employing S, realized skewness is negatively priced. This ﬁnding is usually interpreted as being symptomatic of market’s preference over positively skewed stocks and, symmetrically, aversion to negative skew. Because positively skewed stocks usually display higher idiosyncratic volatility, the negative price of skewness is sometimes invoked as a justiﬁcation for the idiosyncratic volatility puzzle of Ang et al. (2006), i.e
	2 

	Model (2) considers truncated (and, hence, continuous) versions of realized skewness and kurtosis. While statistical signiﬁcance decreases, thereby pointing to a critical, separate role for jumps in cross-sectional pricing, results are qualitatively similar to what was found in model (1). Because continuous skewness is, in principle, a noisy measure of zero, its pricing ability is surprising. We return to it, and explain it, in model (5). 
	As emphasized, realized kurtosis is biased in the presence of staleness. It is, therefore, interesting to add the weekly percentage of zeros to truncated skewness and kurtosis. We do so in model (3). Consistent with theory, truncated skewness is hardly impacted. Truncated kurtosis, however, now has a statistically-signiﬁcant and negative partial eﬀect on expected returns. In other words, the positive partial eﬀect of truncated kurtosis on expected returns has been entirely absorbed by its previous source of
	In order to provide direct evidence about the impact of staleness on realized measures, we now bias-correct the truncated measures. In agreement with theory and the logic of model (3), in model 
	(4) we show that bias-corrected truncated kurtosis has, indeed, a statistically-signiﬁcant, negative 
	The association between low prices, high idiosyncratic volatility and positive skewness is, for instance, a feature of lottery stocks, see Kumar, 2009. 
	2

	partial eﬀect on cross-sectional returns. Bias-corrected truncated skewness also continues to have a statistically-signiﬁcant negative impact on expected returns, a result which was deemed earlier to be surprising in light of the fact that truncated skewness should be a noisy measure of zero carrying no pricing information. We address this issue next. 
	It is arguably the case that the previous speciﬁcations omit natural controls. The ﬁrst is a measure of the eﬃcient price variance. The second is a measure of trend, something which may have (and will be shown to have) a strong impact on continuous skewness in small sample. The third is a measure of discontinuous variation, such variation being ruled out by truncation.
	? 
	In model (5), we add R (the total return over the previous week) and . The loading on TSbecomes insigniﬁcant, thereby supporting the idea that continuous skewness was -in previous speciﬁcations -likely proxying for a trend. The trend variable has a strongly signiﬁcant negative coeﬃcient, representing reversals. Truncated realized variance has a statistically-signiﬁcant negative coeﬃcient in line with the negative pricing of idiosyncratic volatility ﬁrst put forward by Ang et al. (2006). 
	TRV
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	In model (6), we add jumps. The measure J is deﬁned as the weekly sum of intra-daily returns greater (in absolute value) than the truncation level. Jumps are strongly signiﬁcant and with an economically-sound negative sign. The economic interpretation of this negative sign is analogous to that on the negative sign of skewness: market participants are naturally conjectured to fear large negative returns and like large positive returns. These predispositions appear to be reﬂected in equilibrium expected retur
	Our measure of illiquidity (RZ) is added in model (8) (with jumps) and model (9) (with both positive and negative jumps) along with Amihud’s measure (Amihud, 2002), Ami. As emphasized, the former has been found in Bandi et al., 2019 to capture intra-daily volume dynamics (volume levels and volume clusters) and is internally consistent given the assumed data generating process, the latter is a key benchmark in the literature deﬁned as price impact per unit volume. We ﬁnd once more -that the impact of realize
	-

	Finally, we evaluate robustness to the use of realized semi-variance. We employ the RSJ measure of Bollerslev et al. (2019). In model (10), we conﬁrm their main result, namely RSJ is a better proxy for jumps than raw skewness. In model (11), where we add the trend measure, we notice that the signiﬁcance of RSJ is strongly attenuated. In model (12), which uses our measure of jumps based 
	Finally, we evaluate robustness to the use of realized semi-variance. We employ the RSJ measure of Bollerslev et al. (2019). In model (10), we conﬁrm their main result, namely RSJ is a better proxy for jumps than raw skewness. In model (11), where we add the trend measure, we notice that the signiﬁcance of RSJ is strongly attenuated. In model (12), which uses our measure of jumps based 
	on truncation, separated into its positive and negative components, the coeﬃcient on RSJ becomes insigniﬁcant. While we support the logic in Amaya et al. (2015) and Bollerslev et al. (2019) regarding the importance of jumps in cross-sectional pricing, their same logic justiﬁes using measures that are less contaminated by continuous variation (and by staleness, as a result). A simple jump measure constructed using (staleness-adjusted) truncation appears to achieve this goal better than both raw skewness and 

	Our ﬁnal speciﬁcation (13) summarizes our main conclusions. Continuous (corrected) skewness and kurtosis are insigniﬁcant. So is the RSJ measure of Bollerslev et al. (2019), when controlling for jumps directly, and Amihud’s illiquidity measure, when controlling for staleness. Instead, we ﬁnd signiﬁcant pricing impacts associated with idiosyncratic volatility, the trend variable and jumps, all with a negative sign, and realized zeros, with a positive sign. 

	6.2 Single-sorted portfolios 
	6.2 Single-sorted portfolios 
	We complement, and support, the previous results by constructing long-short (high-low) portfolios and examining their payoﬀs. After sorting stocks into deciles based on the level of each characteristic, we go long stocks in the highest characteristic decile and short stocks in the lowest characteristic decile. We report both average returns and average returns in excess of the Fama-French 5-factor model (alphas) over the next 5 days (c.f. Table 4) and over the next 22 days (c.f. Table 5). 
	Over the shorter 5 day horizon, the only unexpected ﬁndings (solely due to lack of conditioning on other driving characteristics) have to do with the statistically-signiﬁcant, negative average returns associated with portfolios constructed on the basis of negative jumps and Amihud’s measure. Both the former characteristic (a more direct measure of adverse price moves than skewness) and the latter characteristic (a measure of illiquidity) should be associated with positive -rather than negative, as in the da
	In order to account for the impact of alternative characteristics, we now turn to double sorts. We focus exclusively on key variables resulting from the previous theoretical and empirical treatment: jumps and zeros. 

	6.3 Double-sorted portfolios 
	6.3 Double-sorted portfolios 
	We double-sort into 25 quantile portfolios. We focus on realized zeros and aggregate jumps, realized zeros and positive jumps and realized zeros and negative jumps and double sort in both directions, ﬁrst based on one characteristic and then the other (c.f., Table 6 and Table 7). 
	In agreement with previous ﬁndings, the average returns on portfolios long high zero/low jump stocks (irrespective of whether the jumps are positive, negative or aggregate) and short low zero/high jump stocks are positive. So are their 5-factor Fama-French alphas. Similarly, the average returns and alphas on portfolios long low zero/high jump stocks and short high zero/low jump stocks are negative. 
	We conclude that the interplay between granular features of the eﬃcient price distribution (i.e., price discontinuities) and features of the trading process aﬀecting the way in which eﬃcient prices are revealed (i.e., zeros) has important pricing implications at high frequencies. 


	7 Conclusions 
	7 Conclusions 
	This paper evaluates the properties of high-frequency high-order moments under a data generating process accounting for two key stylized features, namely infrequent discontinuities in unobserved equilibrium prices and staleness in observed prices. The latter is a phenomenon known to be linked to trading volumes’ ﬁrst and second moments and, therefore, to the level and variability of liquidity (c.f., Bandi et al., 2019). 
	We study identiﬁcation and pricing. In terms of identiﬁcation, we discuss how the interaction between price discontinuities and prices staleness will, in general, lead to biased and/or noisy high-order moment estimates. A combination of thresholding and corrections for staleness-induced biases is, however, shown to be eﬀective in yielding information about high-order variation, both in its continuous and in its discontinuous notion. 
	In terms of pricing, we document an interesting interaction between genuine features of the equilibrium price process (jumps) and features of the trading mechanism (staleness). Because, in our framework, jumps and staleness are aspects of the same data generating process for observed prices, not only is our measure of liquidity (zeros) natural, it is model-driven. We, therefore, view the proposed approach as a ﬁrst step in the analysis of the high-frequency pricing of both granular price features and tradin
	Table 3: Reports Fama-MacBeth cross-sectional regressions of weekly stock returns on stock characteristics. 
	(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 
	24 
	S K TS TK TSTKR 
	c 
	c 

	? 
	TRV 
	TRV 

	J 
	J ` 
	J ´ 
	RZ AMI RSJ 
	´0.098˚˚˚ 
	(´6.415) 
	0.004 
	(1.143) 
	´0.098˚˚˚ ´0.096˚˚˚ 
	(´5.043) (´4.933) 
	0.004 ´0.017
	0.004 ´0.017
	˚˚ 

	(0.668) (´2.131) 
	´0.1270.017 0.029
	˚˚˚ 
	˚ 

	(´5.344) (1.019) (1.679) 
	´0.014 ´0.007 ´0.007 
	(´1.570) (´0.931) (´0.960) 
	´2.102˚˚˚ ´2.009˚˚˚ 
	(´7.277) (´6.836) 
	´0.073˚˚˚ ´0.073˚˚˚ 
	(´3.763) (´3.730) 
	´0.026
	˚˚ 

	(´2.575) 
	0.384˚˚˚ 
	(2.978) 
	0.031
	˚ 

	(1.836) 
	´0.012 
	(´1.575) 
	´1.997˚˚˚ 
	(´6.830) 
	´0.083˚˚˚ 
	(´3.975) 
	´0.016 
	(´1.434) 
	´0.052˚˚˚ 
	(´4.240) 
	0.028
	˚ 

	(1.696) 
	´0.007 
	(´1.033) 
	´1.904˚˚˚ 
	(´6.700) 
	´0.075˚˚˚ 
	(´3.432) 
	´0.037˚˚˚ 
	(´3.682) 
	0.386˚˚˚ 
	(3.738) 
	´0.291 
	(´1.045) 
	´0.010 0.009 
	(´0.710) (0.639) 
	0.002 0.003 
	(0.356) (0.409) 
	0.0270.033
	˚ 
	˚˚ 

	(1.660) (1.991) 
	´0.007 ´0.008 
	(´1.067) (´1.168) 
	´1.905˚˚˚ ´1.110˚˚˚ ´1.392˚˚˚ ´1.833˚˚˚ 
	(´6.718) (´3.052) (´3.909) (´5.991) 
	´0.075˚˚˚ ´0.076˚˚˚ 
	(´3.456) (´3.482) 
	´0.040˚˚˚ ´0.036˚˚˚ ´0.039˚˚˚ 
	(´3.556) (´2.866) (´3.347) 
	´0.032´0.028´0.031
	˚˚˚ 
	˚˚ 
	˚˚˚ 

	(´2.770) (´2.290) (´2.629) 
	0.412˚˚˚ 0.409˚˚˚ 
	(3.715) (3.695) 
	´0.267 ´0.265 
	(´0.859) (´0.856) 
	´0.745´0.333´0.116 ´0.059 
	˚˚˚ 
	˚˚˚ 

	(´6.695) (´3.367) (´1.240) (´0.700) 
	25 
	Table 4: Average returns on long-short (high-low) portfolios over 5 trading days 
	(1) 
	(1) 
	(1) 
	(2) 
	(3) 
	(4) 
	(5) 
	(6) 
	(7) 
	(8) 
	(9) 
	(10) 
	high ´ low 
	high ´ low α 

	S 
	S 
	0.206˚˚ 
	0.178˚ 
	0.132 
	0.071 
	0.066 
	0.044 
	0.012 
	0.005 
	´0.016 
	´0.035 
	´0.241˚˚˚ 
	´0.245˚˚˚ 

	TR
	(2.007) 
	(1.704) 
	(1.262) 
	(0.705) 
	(0.646) 
	(0.439) 
	(0.125) 
	(0.056) 
	(´0.162) 
	(´0.369) 
	(´6.019) 
	(´6.205) 

	K 
	K 
	0.055 
	0.026 
	0.083 
	0.064 
	0.060 
	0.073 
	0.060 
	0.095 
	0.070 
	0.079 
	0.024 
	´0.002 

	TR
	(0.537) 
	(0.257) 
	(0.843) 
	(0.641) 
	(0.599) 
	(0.722) 
	(0.593) 
	(0.942) 
	(0.702) 
	(0.816) 
	(0.496) 
	(´0.044) 

	TS 
	TS 
	0.200˚ 
	0.133 
	0.129 
	0.086 
	0.069 
	0.050 
	0.015 
	0.026 
	´0.022 
	´0.023 
	´0.224˚˚˚ 
	´0.226˚˚˚ 

	TR
	(1.929) 
	(1.260) 
	(1.247) 
	(0.847) 
	(0.681) 
	(0.503) 
	(0.154) 
	(0.272) 
	(´0.228) 
	(´0.250) 
	(´5.681) 
	(´5.884) 

	TK 
	TK 
	0.054 
	0.032 
	0.070 
	0.092 
	0.068 
	0.057 
	0.060 
	0.086 
	0.082 
	0.063 
	0.009 
	0.001 

	TR
	(0.532) 
	(0.313) 
	(0.712) 
	(0.935) 
	(0.684) 
	(0.572) 
	(0.589) 
	(0.854) 
	(0.806) 
	(0.647) 
	(0.189) 
	(0.027) 

	TSc 
	TSc 
	0.187˚ 
	0.158 
	0.123 
	0.095 
	0.051 
	0.054 
	0.015 
	0.007 
	0.003 
	´0.029 
	´0.216˚˚˚ 
	´0.223˚˚˚ 

	TR
	(1.785) 
	(1.499) 
	(1.189) 
	(0.935) 
	(0.507) 
	(0.548) 
	(0.156) 
	(0.072) 
	(0.034) 
	(´0.313) 
	(´5.202) 
	(´5.654) 

	TKc 
	TKc 
	0.121 
	0.054 
	0.078 
	0.056 
	0.062 
	0.090 
	0.047 
	0.066 
	0.048 
	0.043 
	´0.077˚ 
	´0.073˚ 

	TR
	(1.209) 
	(0.552) 
	(0.792) 
	(0.567) 
	(0.621) 
	(0.900) 
	(0.464) 
	(0.652) 
	(0.470) 
	(0.430) 
	(´1.816) 
	(´1.808) 

	R 
	R 
	´0.054 
	0.101 
	0.154 
	0.144 
	0.112 
	0.088 
	0.093 
	0.048 
	0.013 
	´0.034 
	0.020 
	´0.006 

	? TRV 
	? TRV 
	(´0.388) 0.128˚˚ 
	(0.908) 0.114˚ 
	(1.553) 0.130˚ 
	(1.579) 0.135 
	(1.281) 0.101 
	(1.020) 0.106 
	(1.066) 0.085 
	(0.521) ´0.013 
	(0.134) ´0.015 
	(´0.282) ´0.107 
	(0.284) ´0.235 
	(´0.090) ´0.241˚˚˚ 

	TR
	(2.220) 
	(1.655) 
	(1.697) 
	(1.609) 
	(1.116) 
	(1.058) 
	(0.767) 
	(´0.100) 
	(´0.103) 
	(´0.625) 
	(´1.640) 
	(´3.155) 

	J 
	J 
	0.159 
	0.072 
	0.083 
	0.107 
	0.072 
	0.070 
	0.072 
	0.025 
	0.027 
	´0.057 
	´0.216˚˚˚ 
	´0.224˚˚˚ 

	TR
	(1.278) 
	(0.643) 
	(0.834) 
	(1.170) 
	(0.810) 
	(0.782) 
	(0.822) 
	(0.263) 
	(0.246) 
	(´0.477) 
	(´4.849) 
	(´5.097) 

	J ` 
	J ` 
	0.068 
	0.091 
	0.099 
	0.076 
	0.066 
	0.069 
	0.036 
	0.047 
	0.040 
	´0.046 
	´0.113˚˚ 
	´0.096˚˚ 

	TR
	(0.719) 
	(1.072) 
	(1.066) 
	(0.774) 
	(0.649) 
	(0.642) 
	(0.330) 
	(0.418) 
	(0.347) 
	(´0.375) 
	(´1.983) 
	(´2.113) 

	J ´ 
	J ´ 
	0.089 
	0.064 
	0.057 
	0.079 
	0.037 
	0.067 
	0.080 
	0.097 
	0.116 
	0.037 
	´0.051 
	´0.071 

	TR
	(0.713) 
	(0.538) 
	(0.511) 
	(0.713) 
	(0.341) 
	(0.643) 
	(0.814) 
	(1.050) 
	(1.355) 
	(0.397) 
	(´0.836) 
	(´1.411) 

	RZ 
	RZ 
	´0.045 
	0.002 
	0.068 
	0.062 
	0.098 
	0.074 
	0.084 
	0.095 
	0.155 
	0.147˚ 
	0.192˚˚ 
	0.144˚˚˚ 

	TR
	(´0.377) 
	(0.022) 
	(0.705) 
	(0.618) 
	(0.953) 
	(0.679) 
	(0.782) 
	(0.926) 
	(1.575) 
	(1.661) 
	(2.439) 
	(2.586) 

	AMI 
	AMI 
	0.161˚ 
	0.107 
	0.099 
	0.090 
	0.029 
	0.057 
	0.043 
	0.033 
	0.107 
	´0.061 
	´0.222˚˚˚ 
	´0.222˚˚˚ 

	TR
	(1.905) 
	(1.180) 
	(1.041) 
	(0.925) 
	(0.284) 
	(0.554) 
	(0.404) 
	(0.309) 
	(0.969) 
	(´0.532) 
	(´3.526) 
	(´5.518) 

	RSJ 
	RSJ 
	0.252˚˚ 
	0.206˚ 
	0.113 
	0.089 
	0.060 
	0.034 
	0.035 
	´0.023 
	´0.048 
	´0.057 
	´0.309˚˚˚ 
	´0.311˚˚˚ 

	TR
	(2.322) 
	(1.941) 
	(1.083) 
	(0.867) 
	(0.600) 
	(0.351) 
	(0.356) 
	(´0.234) 
	(´0.513) 
	(´0.611) 
	(´5.911) 
	(´6.216) 


	26 
	Table 5: Average returns on long-short (high-low) portfolios over 22 trading days 
	(1) 
	(1) 
	(1) 
	(2) 
	(3) 
	(4) 
	(5) 
	(6) 
	(7) 
	(8) 
	(9) 
	(10) 
	high ´ low 
	high ´ low α 

	S 
	S 
	0.431 
	0.174 
	0.220 
	0.220 
	0.264 
	0.221 
	0.290 
	0.202 
	0.288 
	0.399 
	´0.032 
	0.123 

	TR
	(0.906) 
	(0.357) 
	(0.476) 
	(0.475) 
	(0.592) 
	(0.501) 
	(0.674) 
	(0.474) 
	(0.673) 
	(0.958) 
	(´0.208) 
	(0.842) 

	K 
	K 
	0.168 
	0.089 
	0.186 
	0.236 
	0.157 
	0.334 
	0.305 
	0.332 
	0.282 
	0.617 
	0.450˚˚ 
	0.372˚˚ 

	TR
	(0.397) 
	(0.210) 
	(0.431) 
	(0.522) 
	(0.348) 
	(0.713) 
	(0.642) 
	(0.714) 
	(0.610) 
	(1.388) 
	(2.071) 
	(2.311) 

	TS 
	TS 
	0.310 
	0.138 
	0.179 
	0.281 
	0.258 
	0.319 
	0.238 
	0.308 
	0.296 
	0.380 
	0.070 
	0.217 

	TR
	(0.631) 
	(0.280) 
	(0.376) 
	(0.624) 
	(0.587) 
	(0.734) 
	(0.550) 
	(0.732) 
	(0.702) 
	(0.926) 
	(0.428) 
	(1.354) 

	TK 
	TK 
	0.119 
	0.114 
	0.225 
	0.161 
	0.235 
	0.334 
	0.307 
	0.288 
	0.406 
	0.518 
	0.400˚ 
	0.357˚˚ 

	TR
	(0.288) 
	(0.268) 
	(0.520) 
	(0.362) 
	(0.527) 
	(0.724) 
	(0.654) 
	(0.595) 
	(0.849) 
	(1.162) 
	(1.746) 
	(2.126) 

	TSc 
	TSc 
	0.237 
	0.116 
	0.278 
	0.365 
	0.335 
	0.236 
	0.157 
	0.331 
	0.247 
	0.406 
	0.169 
	0.303˚ 

	TR
	(0.476) 
	(0.237) 
	(0.598) 
	(0.808) 
	(0.757) 
	(0.536) 
	(0.358) 
	(0.784) 
	(0.599) 
	(0.991) 
	(0.939) 
	(1.756) 

	TKc 
	TKc 
	0.424 
	0.312 
	0.282 
	0.191 
	0.185 
	0.291 
	0.361 
	0.247 
	0.226 
	0.189 
	´0.235 
	´0.270 

	TR
	(1.002) 
	(0.745) 
	(0.661) 
	(0.433) 
	(0.414) 
	(0.627) 
	(0.794) 
	(0.528) 
	(0.470) 
	(0.398) 
	(´1.057) 
	(´1.465) 

	R 
	R 
	´0.515 
	0.363 
	0.373 
	0.486 
	0.304 
	0.457 
	0.394 
	0.340 
	0.217 
	0.289 
	0.803˚˚ 
	0.754˚˚ 

	? TRV 
	? TRV 
	(´0.740) 0.633˚˚ 
	(0.712) 0.551˚ 
	(0.851) 0.566˚ 
	(1.198) 0.530 
	(0.782) 0.509 
	(1.179) 0.519 
	(1.030) 0.260 
	(0.858) 0.013 
	(0.507) ´0.347 
	(0.529) ´0.525 
	(2.068) ´1.157˚ 
	(2.050) ´1.355˚˚˚ 

	TR
	(2.418) 
	(1.796) 
	(1.645) 
	(1.424) 
	(1.284) 
	(1.201) 
	(0.521) 
	(0.022) 
	(´0.510) 
	(´0.651) 
	(´1.703) 
	(´3.851) 

	J 
	J 
	0.228 
	0.285 
	0.307 
	0.370 
	0.353 
	0.340 
	0.430 
	0.228 
	0.018 
	0.131 
	´0.097 
	´0.049 

	TR
	(0.406) 
	(0.580) 
	(0.702) 
	(0.940) 
	(0.930) 
	(0.898) 
	(1.081) 
	(0.517) 
	(0.036) 
	(0.246) 
	(´0.725) 
	(´0.362) 

	J ` 
	J ` 
	0.391 
	0.299 
	0.430 
	0.248 
	0.201 
	0.116 
	0.149 
	0.111 
	0.226 
	0.411 
	0.020 
	0.122 

	TR
	(1.039) 
	(0.795) 
	(1.113) 
	(0.608) 
	(0.460) 
	(0.247) 
	(0.294) 
	(0.209) 
	(0.427) 
	(0.723) 
	(0.062) 
	(0.596) 

	J ´ 
	J ´ 
	0.442 
	0.294 
	0.205 
	0.140 
	0.088 
	0.244 
	0.359 
	0.284 
	0.269 
	0.331 
	´0.112 
	´0.170 

	TR
	(0.766) 
	(0.541) 
	(0.402) 
	(0.276) 
	(0.189) 
	(0.564) 
	(0.879) 
	(0.712) 
	(0.716) 
	(0.888) 
	(´0.356) 
	(´0.850) 

	RZ 
	RZ 
	´0.184 
	´0.087 
	0.164 
	0.206 
	0.219 
	0.355 
	0.536 
	0.256 
	0.456 
	0.811˚ 
	0.995˚˚˚ 
	0.723˚˚˚ 

	TR
	(´0.335) 
	(´0.206) 
	(0.393) 
	(0.482) 
	(0.508) 
	(0.794) 
	(1.122) 
	(0.509) 
	(0.959) 
	(1.832) 
	(2.627) 
	(3.164) 

	AMI 
	AMI 
	0.625˚ 
	0.491 
	0.395 
	0.289 
	0.274 
	0.135 
	0.246 
	0.175 
	0.313 
	´0.236 
	´0.860˚˚˚ 
	´0.849˚˚˚ 

	TR
	(1.719) 
	(1.248) 
	(0.956) 
	(0.680) 
	(0.611) 
	(0.289) 
	(0.518) 
	(0.352) 
	(0.622) 
	(´0.439) 
	(´2.827) 
	(´4.887) 

	RSJ 
	RSJ 
	0.213 
	0.180 
	0.161 
	0.239 
	0.342 
	0.191 
	0.478 
	0.351 
	0.246 
	0.307 
	0.093 
	0.337˚ 

	TR
	(0.413) 
	(0.364) 
	(0.331) 
	(0.514) 
	(0.767) 
	(0.440) 
	(1.123) 
	(0.839) 
	(0.605) 
	(0.781) 
	(0.438) 
	(1.749) 
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	Table 6: Table reports the average 1-week ahead returns sorted on double-sorted portfolios. For each panel, entitled as A Ñ B, all stocks in the sample are ﬁrst sorted into 5 quintiles on the basis of the ﬁrst variable A (columns). Within each quintile, the stocks are then sorted into 5 quintiles according to the second variable B (rows). 
	p1q p2q p3q p4q p5q high ´ low high ´ low α 
	p1q p2q p3q p4q p5q high ´ low high ´ low α 
	p1q p2q p3q p4q p5q high ´ low high ´ low α 
	´0.015 (´0.112) 0.062 (0.612) ´0.011 (´0.109) ´0.005 (´0.049) ´0.216 (´1.627) ´0.201˚˚˚ (´3.548) ´0.190˚˚˚ (´3.376) 
	0.042 (0.343) 0.128 (1.361) 0.091 (1.001) 0.072 (0.788) ´0.067 (´0.547) ´0.108˚˚ (´2.236) ´0.118˚˚ (´2.466) 
	RZÑJ 0.178 0.199 (1.377) (1.572) 0.110 0.123 (1.093) (1.197) 0.074 0.065 (0.775) (0.663) 0.107 0.094 (1.092) (0.958) ´0.052 0.011 (´0.419) (0.092) ´0.230˚˚˚ ´0.188˚˚˚ (´4.384) (´3.014) ´0.226˚˚˚ ´0.179˚˚˚ (´4.213) (´2.905) 
	0.213˚˚ (1.998) 0.203˚˚ (2.197) 0.115 (1.294) 0.143 (1.517) 0.081 (0.757) ´0.133˚˚ (´2.313) ´0.141˚˚ (´2.446) 
	0.123 (1.049) 0.125 (1.339) 0.067 (0.740) 0.082 (0.901) ´0.048 (´0.425) ´0.172˚˚˚ (´5.392) ´0.171˚˚˚ (´5.418) 
	´0.038 (´0.268) 0.131 (0.981) 0.152 (1.204) 0.170 (1.517) 0.201˚˚ (2.089) 0.239˚˚˚ (2.796) 0.219˚˚˚ (3.404) 
	0.054 (0.494) 0.102 (1.070) 0.094 (0.956) 0.093 (0.886) 0.141 (1.506) 0.086 (1.234) 0.039 (0.739) 
	JÑRZ ´0.019 ´0.041 (´0.167) (´0.390) 0.063 0.005 (0.698) (0.054) 0.074 0.097 (0.820) (1.020) 0.109 0.088 (1.168) (0.883) 0.078 0.094 (0.824) (1.029) 0.096 0.135˚˚ (1.401) (1.973) 0.038 0.082 (0.750) (1.514) 
	´0.183 (´1.321) ´0.056 (´0.446) 0.005 (0.043) 0.075 (0.657) 0.098 (1.016) 0.281˚˚˚ (3.099) 0.248˚˚˚ (3.578) 
	´0.045 (´0.386) 0.049 (0.471) 0.084 (0.827) 0.107 (1.064) 0.123 (1.352) 0.168˚˚˚ (2.597) 0.125˚˚˚ (2.931) 

	p1q p2q p3q p4q p5q high ´ low high ´ low α 
	p1q p2q p3q p4q p5q high ´ low high ´ low α 
	0.015 (0.146) 0.019 (0.190) ´0.023 (´0.208) ´0.067 (´0.532) ´0.256˚ (´1.697) ´0.272˚˚˚ (´3.695) ´0.237˚˚˚ (´4.067) 
	0.098 (1.064) 0.140 (1.584) 0.085 (0.835) 0.010 (0.091) ´0.123 (´0.853) ´0.221˚˚˚ (´2.662) ´0.186˚˚˚ (´3.454) 
	RZÑJ ` 0.115 0.121 (1.192) (1.211) 0.140 0.120 (1.415) (1.228) 0.123 0.108 (1.164) (1.033) 0.099 0.123 (0.832) (1.108) ´0.104 0.026 (´0.724) (0.191) ´0.219˚˚˚ ´0.095 (´2.657) (´1.253) ´0.200˚˚˚ ´0.077 (´3.537) (´1.295) 
	0.199˚˚ (2.255) 0.167˚ (1.926) 0.182˚ (1.891) 0.175˚ (1.668) ´0.003 (´0.024) ´0.202˚˚˚ (´2.987) ´0.192˚˚˚ (´3.095) 
	0.110 (1.197) 0.117 (1.317) 0.095 (0.973) 0.068 (0.633) ´0.092 (´0.707) ´0.202˚˚˚ (´3.378) ´0.178˚˚˚ (´5.251) 
	´0.016 (´0.142) 0.064 (0.693) 0.098 (1.093) 0.077 (0.814) 0.142 (1.436) 0.158˚˚ (2.326) 0.094˚ (1.911) 
	´0.022 (´0.193) 0.045 (0.453) 0.150 (1.543) 0.143 (1.428) 0.108 (1.161) 0.130˚ (1.687) 0.057 (0.970) 
	J `ÑRZ ´0.063 ´0.115 (´0.486) (´0.805) 0.037 ´0.028 (0.331) (´0.215) 0.100 0.104 (0.930) (0.911) 0.131 0.126 (1.242) (1.205) 0.142 0.158˚ (1.523) (1.792) 0.205˚˚ 0.273˚˚˚ (2.325) (2.897) 0.146˚˚ 0.237˚˚˚ (2.327) (3.493) 
	´0.350˚˚ (´2.132) ´0.013 (´0.093) 0.154 (1.280) 0.107 (1.027) 0.102 (1.022) 0.452˚˚˚ (4.292) 0.463˚˚˚ (5.778) 
	´0.113 (´0.898) 0.021 (0.192) 0.121 (1.202) 0.117 (1.203) 0.130 (1.444) 0.244˚˚˚ (3.424) 0.199˚˚˚ (4.462) 

	p1q p2q p3q p4q p5q high ´ low high ´ low α 
	p1q p2q p3q p4q p5q high ´ low high ´ low α 
	´0.089 (´0.585) ´0.026 (´0.199) ´0.004 (´0.032) 0.034 (0.343) ´0.027 (´0.265) 0.062 (0.822) 0.048 (0.793) 
	´0.037 (´0.258) 0.069 (0.603) 0.058 (0.577) 0.099 (1.080) 0.076 (0.828) 0.114 (1.329) 0.078 (1.341) 
	RZÑJ ´ 0.045 0.190 (0.303) (1.367) 0.118 0.067 (1.007) (0.595) 0.054 0.054 (0.488) (0.515) 0.112 0.059 (1.147) (0.594) 0.082 0.106 (0.869) (1.090) 0.037 ´0.084 (0.434) (´1.088) 0.015 ´0.095 (0.248) (´1.550) 
	0.150 (1.251) 0.100 (0.963) 0.127 (1.326) 0.205˚˚ (2.297) 0.159˚ (1.816) 0.009 (0.132) ´0.009 (´0.146) 
	0.052 (0.390) 0.065 (0.599) 0.058 (0.590) 0.102 (1.133) 0.079 (0.875) 0.028 (0.434) 0.007 (0.190) 
	´0.065 (´0.388) 0.097 (0.699) 0.162 (1.314) 0.119 (1.133) 0.143 (1.427) 0.207˚ (1.955) 0.225˚˚˚ (2.731) 
	´0.006 (´0.043) 0.065 (0.505) 0.041 (0.360) 0.058 (0.556) 0.178˚˚ (2.062) 0.184˚ (1.892) 0.165˚˚ (2.408) 
	J ´ÑRZ ´0.052 ´0.020 (´0.395) (´0.169) 0.074 0.130 (0.647) (1.318) 0.064 0.089 (0.569) (0.897) 0.088 0.092 (0.852) (0.940) 0.088 0.140 (0.911) (1.507) 0.140 0.160˚˚ (1.628) (2.025) 0.080 0.081 (1.283) (1.442) 
	´0.039 (´0.346) 0.024 (0.263) 0.074 (0.821) 0.085 (0.908) 0.113 (1.162) 0.152˚˚ (2.157) 0.086˚ (1.709) 
	´0.036 (´0.282) 0.078 (0.718) 0.086 (0.838) 0.088 (0.917) 0.132 (1.473) 0.169˚˚ (2.363) 0.127˚˚˚ (2.937) 


	Table 7: Performance of high ´ low double-sorted portfolios. 
	Table
	TR
	p1q 
	p2q 
	p3q 
	p4q 
	p5q 
	p6q

	mean 
	mean 
	0.429˚˚˚ 
	´0.384˚˚˚ 
	0.456˚˚˚ 
	´0.492˚˚˚ 
	0.177˚˚ 
	´0.182˚˚ 

	α 
	α 
	(4.796) 0.383˚˚˚ 
	(´4.364) ´0.358˚˚˚ 
	(4.078) 0.402˚˚˚ 
	(´4.801) ´0.465˚˚˚ 
	(2.304) 0.175˚˚ 
	(´2.341) ´0.163˚˚ 

	TR
	(5.018) 
	(´5.258) 
	(4.990) 
	(´6.352) 
	(2.452) 
	(´2.486) 

	conditional mean 
	conditional mean 
	0.101˚˚ 
	0.006 
	´0.050 

	TR
	(2.425) 
	(0.096) 
	(´0.941) 


	Note. p1q – long high RZ and low J stocks and short low RZ and high J stocks. p2q – long low RZ and high J stocks and short high RZ and low J stocks. p3q – long high RZ and low J stocks and short low RZ and high J stocks. p4q – long low RZ and high J stocks and short high RZ and low J stocks. p5q – long high RZ and low J stocks and short low RZ and high J stocks. p6q – long low RZ and high J stocks and short high RZ and low J stocks. The last row reports the constant after regressing the returns on portfoli
	` 
	` 
	` 
	` 
	´ 
	´ 
	´ 
	´ 
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	A Appendix: Preliminary Proofs 
	A Appendix: Preliminary Proofs 
	Proof of Theorem 2.1. In order to shorten the proofs, and to simplify notation, we present the proofs under the additional assumption that there are no jumps in volatility. That is, we assume the volatility process σt satisﬁes the equation 
	ż t ż t ż t 
	1 1
	σ
	1

	σt “ σ` a ds ` dWs ` v dVs, (53)
	0 

	ss s 
	00 0 
	11
	where Wt and Vt are independent Brownian motions while a , σand v are adapted c`adl`ag bounded processes. Let t,...,tbe the partition of the interval r0,ts, constructed from the original partition by removing 
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	the points for which Bi,n “ 1. Thus, the power variation can be expressed as 
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	i,n i´1,n i´1,n 
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	be an approximation of the increments ΔX and set Δpi, nq“ t ´ t .
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	i,n i´1,n 
	We start with preliminary computations of the conditional moments of fpβq,Δpi, nq and related quantities, which are used in the subsequent proofs. First, notice that, for k “ 1, 2,... , 
	i
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	HH k´1
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	The proof of the main result follows from three statements: 
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	which are proven in three sequential steps. 
	Step 1. We start by proving the stable convergence of Eq. (65). Express the right-hand side of Eq. (65) as 
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	i“1 i“1 
	Consequently, 
	Nż
	n 

	t ”ˇ ı t 
	ÿ

	2 ˇ P r
	σ
	2

	E pζq ˇ F˚ ÝÑ   ds, (80)
	i
	n
	t
	s 

	i´1,n 
	0
	i“1 
	where   is a constant of the form 
	ˆ ˙ 
	H 
	HH 
	˘

	p1 ´ p q`˘ p1 ´ p q`˘ `˘ p1 ´ p q` `˘˘` 
	2 
	4 
	6 
	2 

	H 2 HH HH
	  “ ρpfq Li´r p ´pρpfqq 2 Lip Lip ´ Lip Li´2 p.
	2
	´r{2 
	´r{2´1 
	´r{2 

	H
	p ppqppq
	H
	2 
	H
	3 

	(81)
	” ˇı 
	Next, since E Δpn, iq ΔW ˇ F˚ “ 0, using Eq. (55) we obtain 
	i 
	˚
	ˇ
	t

	i´1,n 
	” ˇı” ˇı H 
	r´1 1 ´ p `˘
	H
	E ζΔW ˇ F˚ “ E n 2 fpβqΔW ˇ F˚ “ Lir`1 pρpf, 1q σ˚ Δn, (82)
	n 
	˚ 
	i 
	ˇ
	t
	i
	n
	i 
	˚
	ˇ
	t
	´ 
	r 

	i 
	i´1,n i´1,n H ti´1,n
	2 

	p 
	which implies (analogously to the proof of Eq. (80)) that 
	Nn 
	t ” ˇı H t
	˘
	ż 

	P p1 ´ p q` 
	ÿ 
	2 

	H
	E ζΔˇ F˚ ÝÑ ρpf, 1q Lir`1 pσds. (83)
	n 
	˚ 
	ˇ
	t
	´ 
	r 

	ii s 
	W 
	i´1,n 
	p
	H 
	2 

	0
	i“1 
	Finally, for any bounded martingale N, which is orthogonal to W and deﬁned on the same probability space, we immediately deduce that: 
	” ˇı 
	ˇ

	E ζΔN ˇ F ˚ “ 0. (84)
	n 
	˚ 
	i 

	it
	i´1,n 
	Now, the assertion of Step 1 follows from Eqs. (74), (80), (83), (84) and Theorem IX.7.28 in Jacod and Shiryaev (2003). Step 2. The proof of the convergence in Eq. (66) is the same as that in Barndorﬀ-Nielsen et al. (2006), hence it is omitted. Step 3. Now, we prove the statement in Eq. (67). Write 
	N n Nn 
	t ´” ˇı¯ t 
	´1
	n n 2 E fpΔXq´ fpβq ˇ F˚ “ ξ, (85)
	? 
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	˚ 
	i 
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	n
	ˇ
	t
	ÿ 
	i
	n 

	i´1,n 
	i“1 i“1 
	where 
	r´1 
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	ˇ
	ˇ
	ı 

	ξ“ n 2 E fpΔXq´ fpβq ˇ F ˚ . (86)
	n 
	˚ 
	i 
	i
	n

	it
	i´1,n 
	Notice that ΔX ´ β“ ζp1q` ζp2q, where
	˚ 
	i 
	n 
	i
	n
	i
	n

	i 
	ﬀ 
	t´ ¯tu u ´ ¯u ´¯ 
	ż 
	˚ 
	ż 
	˚ 
	«
	ż 
	ż 
	ż 

	i,n i,n 
	1 11
	ζp1q“ au ´ a˚ du ` ads ` σ´ σ˚ dWs ` v´ v ˚ dVs dWu,
	i
	n
	t
	s 
	s 
	1 
	1 
	s 

	tt
	˚ i´1,n ˚˚ ˚ i´1,n ˚ i´1,n
	t ttt t
	i´1,n i´1,n i´1,n i´1,n i´1,n 
	(87) 
	˚˚ ˚
	t t ´¯ t ´¯ 
	ż 
	ż 
	ż 

	i,n i,n i,n
	1
	ζ
	ζ
	n 

	p2q“ a˚ du ` σ˚ Wu ´ W˚ dWu ` v ˚ Vu ´ V˚ dWu. (88)
	i 
	t
	1 
	t
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	˚ i´1,n ti´1,n ˚ i´1,n ti´1,n ˚ i´1,n
	tt t
	i´1,n i´1,n i´1,n 
	Consequently, ξcan be decomposed as
	n 

	i 
	ξ
	ξ
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	“ ξp1q` ξp2q` ξp3q, (89)
	i
	n
	i
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	i
	n

	i 
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	ˇ 

	ξp1q“ E n 2 fpβqζp2q ˇ F ˚ , (90)
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	i
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	ˇ 

	ξp2q“ E n 2 fpβqζp1q ˇ F ˚ , (91)
	i
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	t
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	r´1 
	` ˘ 
	ˇ

	ξp3q“ E n 2 fpγq´ fpβqpζp1q` ζp2qq ˇ F ˚ . (92)
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	i
	n
	1
	i
	n
	i
	n
	i
	n

	t
	i´1,n 
	where γis a random variable satisfying |γ´ β|ď|ΔX ´ β|. The same arguments as in Barndorﬀ-Nielsen 
	n 
	n 
	n
	˚
	n

	i ii ii 
	et al. (2006) imply that 
	Nn 
	t
	ÿ 
	P 
	pξp2q` ξp3qq ÝÑ 0. i“1 
	i
	n
	i
	n

	N n
	ř P ş
	ξ
	n
	t

	Hence, we are left to prove that p1q ÝÑ αsp1q ds. Conditionally on the event Ak “tΔpi, nq“ k Δnu,
	t 
	i 

	0 
	i“1 
	for some k “ 1, 2,... , we have 
	” ˇı
	ˇ 
	ˆ 
	1 
	` ˘
	˙ 
	r`1 

	E fpβqζp2q ˇ F ˚ X Ak “ a ˚ σ˚ ρpfq` σ˚ σ˚ ρpf, 2q´ ρpfqpΔn kq 2 . (93)
	1
	i
	n
	i
	n
	r 
	´1 
	1
	1 
	r 
	´1 
	1 
	1

	tt t
	i´1,n i´1,n t i´1,n t
	i´1,n 2 i´1,n 
	Therefore, using Eq. (60) and the law of iterated expectations, we obtain 
	” ˇı” ˇı 
	ˆ 
	˘
	˙

	r´1 1 ` r`1 E n 2 fpβqζp2q ˇ F˚ “ Δn a˚˚ ρpfq` σ˚˚ ρpf, 2q´ ρpfq E pΔpi, nqq 2 ˇ F˚ 
	σ
	r´1 
	σ
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	1
	i
	n
	i
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	t
	t
	1
	1 
	1 
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	i´1,n i´1,n t tt i´1,n
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	1 `˘ 1 ´ p`˘ 
	H 

	“ Δn a˚ σ˚ ρpfq` σ˚ σ˚ ρpf, 2q´ ρpfq Lir`1 p . 
	t
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	´1 
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	1 
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	t
	H 
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	(94) 
	Analogously to the proof of Eq. (80), the expression in Eq. (94) implies that 
	Nż
	n 

	t t 
	ÿ

	nP 
	ξ

	p1q ÝÑ αsp1q ds, (95) 
	i 

	0
	i“1 
	where 
	ˆ˙ 
	H

	1 `˘ p1 ´ p q`˘
	2 

	H
	αsp1q“ σasρpfq` σρpf, 2q´ ρpfq Lir`1 p. (96)
	r´1 
	1
	1 
	1 
	1
	´ 

	ss
	2 p
	H 
	2 

	Proof of Corollary 2.1.1. The proof is straightforward. Proof of Corollary 2.1.2. The proof is straightforward. Proof of Corollary 2.1.3. Corollary 2.1.3 is a particular case of the Corollary 2.1.2 with r “ 2. Indeed, if r “ 2,
	ř`˘ `˘
	ˇ
	ˇ
	ˇ
	ˇ 

	ˇ ˇp1´pq
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	r
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	p 
	r 
	p
	H 
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	Hq
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	p 
	r 
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	´1 
	n i“1 i 
	ˇ
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	r
	X
	ˇ 
	HH
	“ 
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	Li´ 
	. 
	Hence,
	r 
	2 
	i“1 
	Corollary 2.1.2 implies that 
	n ż 
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	t
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	ˇ 
	ˇ
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	P
	ˇΔiXˇ ÝÑ |σs|ds, (97) 
	r
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	i“1 
	and ˜¸
	n ˇ ˇt t
	ż 
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	? ˇˇstably 
	ÿ 
	ˇ
	Δ
	i 
	r
	ˇ 
	2 
	|
	2 

	nX ´|σs ds ÝÑ αs dW , (98)
	1 

	s 
	00
	i“1 
	where 
	HH H
	p1 ´ p q`˘ p1 ´ p q`˘ `˘ p1 ´ p q` `˘˘` ˘
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	2 
	4 
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	2 
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	H HH HH
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	p ppqppqH HH
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	2 
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	H HH r
	σ
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	“ Li´2 p ´ 2 Li´2 p ` Li´2 p
	s 
	µ
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	r 
	H HH 

	p pp 
	H HHH H
	`˘ p1 ´ p q`˘` ˘ p1 ´ p qp p1 ` p qp1 ` p q
	2 
	2 

	“ µr ´ µ Li´2 p σ“ µr ´ µ σ“ 2 σ
	2
	2 
	r 
	H 
	H 
	s 
	2r 
	2
	2 
	r 
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	s 
	2r 
	s 
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	pp p1 ´ pqp1 ´ pqH
	H
	3 
	H

	4 ´ 2p1 ´ p q
	“ . 
	p1 ´ pq 
	H

	(99) 
	Proof of Theorem 5.2. We notice that 
	nt
	ÿn ´¯ ÿf ΔiX“ i“1 
	N
	r 

	fpΔXq, 
	˚ 
	i 

	(100) 
	i“1 
	˚˚
	where ΔX “ X ˚ ´X ˚ are the increments of the process Xt over the new (random) partition t ,...,t 
	˚

	iN
	nt
	,n
	,n
	1,n
	t 
	t 

	´1,n
	´1,n
	i,n

	i 
	of the interval r0,ts, constructed from the original partition by removing the points for which Bi,n “ 1. The statement of the Theorem holds by Theorem 3.3.1 of Jacod & Protter (2004). 
	Proof of Theorem 2.3. Once we write the problem as in Eq. (100), the proof is similar to that of Theorem 
	5.5.1 in Jacod and Protter (2012). Therefore, we present the general structure of the proof and omit technical 
	5.5.1 in Jacod and Protter (2012). Therefore, we present the general structure of the proof and omit technical 
	details contained in Jacod and Protter (2012). For any semimartingale, say Zt, deﬁne 
	¨˛ 
	nt
	N 
	ÿ
	ÿ
	n
	t

	N 
	? 
	˚‹
	fpΔZq, pf; Zq“ n ˝Vpf; Zq´ fpΔZsq
	˚ 
	i 
	V
	n 
	n 

	tt 
	˚ 
	sďt 
	Vpf; Zq
	n 

	t 
	“ 
	(101)
	‚.
	ÿ
	i“1 
	,n 
	For any m ě 1, denote by pT pm, rq : r ě 1q the successive jump times of the process N“ 1‹µ and let Sp be the reordering of the double sequence pT pm, rq : r ě 1q into a single sequence. Now, ﬁx m ě 1 
	m 
	t1{măγď1{pm´1qu 

	36 
	1
	and let Pm be the set of all p such that Sp “ T pm ,rq for some r ě 1 and some mď m. Then, deﬁne 
	1 

	ÿ `˘ 
	Xpmqt “ Xt ´ ΔXS“ Xt ´ δ1‹ µ. (102) pPPm:Spďt 
	p 
	tγą1{mu 

	˚˚
	Next, denote by Ωnpt, mq the set of all ω such that each interval pt ,ts contains at most one jump of
	i,n

	i´1,n
	`˘ 
	δ1‹ µ and such that |ΔXpmq| ď 2{m for all i. For each Sp, denote the edges of the interval 
	tγą1{mu 
	i 
	˚

	˚˚ ˚˚
	pt ,ts, which contains Sp, by S´pn, pq“ t and S`pn, pq“ t Then, for all t ą 0 and m ě 1,
	i,n

	i´1,n i´1,n i,n
	. 

	Ωnpt, mqÑ Ω almost surely as n Ñ8. OnΩnpt, mq, we have 
	Nn Nn 
	tt
	ÿÿÿ ÿ
	Vpf; Xq“ fpΔXq“ fpΔXpmqq` fpΔXpmq`ΔXSq´ fpΔXpmqq, 
	t
	n 
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	˚
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	˚
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	˚ 
	`
	pn,pq
	p 
	˚

	˚˚
	i“1 i“1 pPPm:SpďtpPPm:Spďt
	Nn,n Nn,n
	tt 
	(103) and 
	ÿÿ ÿ
	fpΔXsq“ fpΔXpmqsq` fpΔXSq. (104) 
	p 

	˚˚ ˚ 
	sďtsďtpPPm:Spďt
	N,n N,n N,n
	n
	n
	n

	tt t 
	Therefore, on Ωnpt, mq, we obtain the decomposition 
	ÿ
	nn 
	ζ
	ζ
	n

	pf; Xq“ pf; Xpmqq ` , (105)
	V
	V

	tt p pPPm:Spďt
	˚ 

	N n,n
	t 
	with 
	´¯
	? 
	ζ“ nfpΔXpmq` ΔXSq´ fpΔXSq´ fpΔXpmqq . (106) 
	p
	n 
	S 
	˚ 
	`
	pn,pq
	p 
	p 
	S 
	˚ 
	`
	pn,pq

	Set 
	?? 
	R´pn, pq“ pXS´ ´ Xq,R`pn, pq“ pX´ XSq. (107) With this notations, ζcan be expressed as: 
	n
	p 
	S
	´
	pn,pq
	n
	S
	`
	pn,pq 
	p 
	p
	n 

	ˆˆ ˙ˆ˙˙
	? 11 
	ζ“ nf ΔXS`pR´pn, pq` R`pn, pqq ´ fpΔXSq´ f pR´pn, pq` R`pn, pqq
	p
	n 
	p 
	? 
	p 
	?

	nn
	ˆ˙ (108)
	´¯ 
	? 1
	˜
	“ fΔXS` Rpn, pqpR´pn, pq` R`pn, pqq ´ f pR´pn, pq` R`pn, pqq , 
	1 
	p 
	n
	?

	n 
	n 
	4.4.10 of Jacod and Protter (2012) gives that the sequence pR´pn, pq` R`pn, pqq is bounded in probability (for a ﬁxed p), 
	pp
	R´pn, pq´ σSα´pn, pq ÝÑ 0,R`pn, pq´ σSα`pn, pq ÝÑ 0, (109) where 
	p´ 
	p 

	?? 
	α´pn, pq“ pWS´ ´ Wq,α`pn, pq“ pW´ WSq, (110) 
	n
	p 
	S
	´
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	n
	S
	`
	pn,pq 
	p 

	and ˆ˙ 
	b b

	stably 
	´` 
	pα´pn, pq,α`pn, pqq ÝÑ U, U. (111)
	ξp 
	´ 
	ξp 
	` 

	pp 
	Thus, 
	`˘ p
	ζ´ fΔXSpR´pn, pq` R`pn, pqq ÝÑ 0, (112)
	n 
	1 
	p 

	p 
	and 
	bb 
	stably 
	´` 
	pR´pn, pq` R`pn, pqq ÝÑ σSξp U ` σSU, (113)
	p´ 
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	p 
	ξp 
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	pp 
	which implies that 
	ˆb b˙
	˘

	` 
	stably 
	´` 
	ζÝÑ fΔXSσSU` σSU. (114) 
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	n 
	1 
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	ξp 
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	p 
	p 
	ξp 
	` 
	p 
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	ζn 
	p
	Since on Ωnpt, mq the sum 
	, contains ﬁnitely many entries, Eq. (114) implies that
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	ÿ
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	ξ 
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	ζ
	ζ
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	p 
	p 
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	ΔXSp σSp´ 
	. (115)
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	˚
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	Nn 
	t 
	t 
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	t
	t
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	Then, since for p R Pm all jumps ΔXSare smaller than 1{m in absolute value (and by the boundedness of σt), we obtain 
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	ξ 
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	u.c.p.
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	p 
	p 
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	p:Spďt
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	Nn
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	,n
	t 
	t 
	(116) Now, by the same arguments as in step 4 of the proof of Theorem 5.5.1 in Jacod and Protter (2012), for any . ą 0, we obtain 
	¨$ ,˛ &.
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	n
	lim lim sup P n pf; Xpmqq ą . 
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	ÿ
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	t 
	t 
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	` σSp 
	ΔXSp σSp´ 
	. (118)
	p 
	p:Spďt
	Nn,n
	t 
	˚ 
	Since t is not a ﬁxed time of discontinuity of the process Vpf; Xq, for any ﬁxed t the above convergence implies that ˆ˙ 
	n
	t 
	b b

	stably 
	´` 
	Vpf; ZqÝÑ fΔXSσSξp U ` σSξp U. (119)
	n 
	ÿ 
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	` 
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	˘ 
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	´ 
	p 
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	t pp p:Spďt 
	Finally, in order to complete the proof, it is enough to show that, for a ﬁxed t, 
	ˇˇ? ÿÿ ˇ ˇ ÝÑ 0. 
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	N n,n
	t 
	Let Ωn be the set on which there are no jumps in X bigger than 1 between the time tn and t. OnΩn,
	N 
	˚ 

	,n
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	? ř 
	|fpxq| ď K |x|
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	Consequently, by conditioning 
	ď K 
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	on t ´ tn and using the law of iterated expectations, we obtain 
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	˚
	where Kis another constant and t ´ tn is a discrete random variable with probability mass function given 
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	˚ HH

	by P t ´ tn “ kΔn “p1 ´ p q p for k Pt1, 2,... u. Thus, 
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	t 
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	HH
	E rUn1Ωsď Kn Δn kp1 ´ p q p ÝÑ 0. (122) 
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	s“1 p
	Since Ωn Ñ Ω as n Ñ8, E rUn1ΩsÑ 0 implies that Un ÝÑ 0, which completes the proof. Proof of Theorem 2.4. As in the proof of Theorem 2.3, on Ωnpt, mq, we obtain the decomposition: 
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	b b

	`
	ÿ
	pPPm:Spďt 
	ÿ
	pPPm:Spďt 
	˘
	stably
	ÝÑ 
	´ 
	ξ 
	ξ 
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	. (124)
	p 
	p 
	p 

	˚
	˚
	˚ 

	Nn 
	Nn 
	Nn
	,n 
	,n
	t 
	t 

	Next, we notice that: ... 
	Proof of Theorem 2.5. The proof is analogical to the proof of Theorem 2 in Bibinger and Vetter (2015). Hence, it is omitted. Proof of Lemma 3.1. Consider the decomposition: Apqq“ A` A, (125)
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	A“ ζi, with ζi “ n pΔpn, iq´ E rΔpn, iq sq , (126) 
	1 
	q 

	i“1 
	and 
	Nn 
	t
	ÿ
	q´1 q
	A“ n E rΔpn, iqs . (127) 
	2 

	i“1 
	Due to the independence of the Bernoulli variables, we have: 
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	where the second inequality follows from equation (60). Consequently, we have: 
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	Hence, ζi is F ˚ -martingale and
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	which implies that Ais asymptotically negligible. Then, substituting (128) in Awe obtain: 
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	which completes the proof. 
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	where apqqt is a stochastic process, such that for all t, as n Ñ8, 
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	provided that such a process exists. By Lemma 3.1, the process apqqt exists for every q ą 0 and takes the following form: 
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	Hence, the statement of the present Theorem follows from straightforward algebraic computations. 
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	where apqqt is a stochastic process deﬁned as in the proof of Theorem 3.2, which completes the proof. 
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