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Abstract 

We study the properties of realized high-order moments under a data generating process 

accounting for key stylized features: infrequent discontinuities in unobserved equilibrium prices 

and staleness in observed prices, a phenomenon linked to volume dynamics. Our focus is 

on identification and pricing. In terms of identification, we show how the interplay between 

price discontinuities and prices staleness will, in general, lead to biased and/or noisy high-

order moment estimates. We also show how a combination of thresholding and corrections 

for staleness-induced biases can be deployed to extract reliable information about high-order 

continuous and discontinuous variation. Regarding pricing, the use of thresholding and de-

biasing leads to ample evidence about the negative cross-sectional pricing of idiosyncratic price 

discontinuities at high frequency. We show that accounting for staleness is (1) important for the 

correct identification of high-order moments, (2) revealing about these moments’ cross-sectional 

pricing and (3) informative about the pricing of illiquidity, for which staleness is a rich proxy. 
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1 Introduction 

The identification of volatility has been central to the econometric literature and has provided support 

to empirical work in an array of fields, from finance to macroeconomics. Less emphasis has been 

placed on higher-order moments. Yet, economic modeling is now beginning to be more attentive to 

the full distributional properties of economic time series - to tail properties, in particular. 

In light of this premise, we study the large sample features of empirical higher-order moments 

computed from high-frequency (price) data, i.e., realized high-order moments. As is standard in 

the high-frequency literature, we assume prices evolve continuously in time and work with equally-

spaced data on a sampling grid spanning the trading day. We obtain daily measures by suitably 

aggregating intradaily price changes on the assumed grid. Asymptotics are derived by letting the 

number of intradaily observations grow without bound and, therefore, by making the grid less and 

less coarse as the sample size increases, i.e., infill asymptotics. In addition to other more standard 

assumptions, the proposed data generating process incorporates two first-order features of the price 

data. First, the observed process (on the sampling grid) can be stale, and therefore not move, 

due to lack of (or limited) volume (price staleness), an empirical phenomenon illustrated by Bandi 

et al. (2019). Second, the underlying (unobservable, in the presence of price staleness) price process 

may display infrequent discontinuities associated with unexpected news arrivals (price jumps). The 

impact of jumps on realized moment measures is studied in detail in the econometrics literature (see 

Aı̈t-Sahalia and Jacod, 2015, and the references therein). However, much less is known about the 

effect of staleness and, in particular, about the theoretical interplay between jumps and staleness. 

We show that this interplay - a central theme of the present paper - is key to the analysis of realized 

moments, asymptotically and in any finite sample. 

In large samples, it is important to distinguish between trajectories with and without jumps. In 

the absence of jumps, the properties of realized moments depend on whether they are constructed 

using even functions (the fourth moment case, for instance) or odd functions (as in the third moment 

case). In general, even functions lead to staleness-induced asymptotic biases and limiting zero-

mean mixed normal distributions (the realized variance case being a notable exception for which 

the staleness-induced bias is zero). Odd functions, instead, do not generate a bias but the limiting 

distributions are uncentered mixed normal. We propose a simple methodology to bias-correct realized 

moments, when needed, and show consistency and mixed normality of the resulting bias-corrected 

estimates. On discontinuous trajectories, importantly, the realized moments have to be re-scaled. 

When suitably re-scaled, they are shown to be consistent for sums of (odd or even) functions of 

the jumps with limiting mixed normal variates whose variances are augmented (relative to the case 

without staleness) by the presence of staleness. 

In a finite sample, the interaction between staleness and jumps can be understood as follows. 

Extended periods of price staleness ought to be associated with an ever-changing underlying (unob-

servable) efficient price process. When staleness comes to an end, observed prices revert to prevailing 

efficient prices but the latter may be far from observed prices. This effect may generate spurious 
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jumps even on a purely continuous trajectory. These spurious jumps have the potential to influence 

the finite sample properties of the realized moment estimates, particularly in the continuous case 

and with even functions. The proposed asymptotic bias-correction for the case with discontinuous 

trajectories is shown to alleviate this issue drastically. 

The presence of staleness leads to one key modification in the evaluation of realized moments. 

Because it generates random periods of time over which the price changes are zero, it modifies the 

sampling grid (by making it random and coarser than the original grid) and, as a consequence, the 

sample size (the effective sample size being smaller than the original one). Given that the limiting 

order of the new sample size is the same as that of the old sample size, staleness does not yield 

modifications of the convergence rates. It only leads to upward biases (with even functions, in the 

continuous case) and increased estimation uncertainty. We provide methods to characterize both 

and account for them. 

Realized variance is a well-posed estimator in the presence of both staleness and jumps. It is 

consistent for the overall quadratic variation and mixed normally distributed with an asymptotic 

distribution whose variance is enhanced by staleness. Higher-order moments are more delicate, the 

interaction between staleness and jumps playing a more critical role in this more general case. First, 

differently from realized variance, for the limit of higher-order moments to be meaningful about the 

tail properties of the price series, higher-order moments have to be re-scaled differently on trajectories 

with and without jumps. Second, should we establish that a trajectory is continuous, depending on 

the nature of the moment as defined by the corresponding function (odd or even), the required (to 

alleviate the impact of staleness) bias-correction should be different. In all cases, staleness affects 

limiting precision and should, therefore, be accounted for when evaluating limiting variances and 

performing asymptotic inference. 

Realized high-order moments are often used in the literature as inputs in traditional definitions of 

skewness and kurtosis. We find that, on continuous trajectories, realized kurtosis may considerably 

overstate true kurtosis due to staleness. Similarly, while unbiased, continuous skewness is noisier in 

the presence of staleness. We also show that realized skewness and kurtosis diverge with the sample 

size in the presence of discontinuous trajectories. While realized skewness is a signed measure of 

jumps, more negative (res. positive) values being associated with more negative (res. positive) 

jumps, realized kurtosis increases with the number of intra-daily observations (irrespective of the 

magnitude and number of jumps on the continuous trajectory of the process). Both properties, the 

latter in particular, are undesirable. 

Thresholding, i.e., the use of truncation to identify small and large variation in asset prices, 

provides a natural way to address these issues. We define (truncated) continuous notions of skewness 

and kurtosis and show how bias-correcting kurtosis leads to accurate assessments of variation due 

to uncertainty in price volatility. Similarly, we may define (truncated) discontinuous notions of 

skewness and kurtosis, as well as various moments of the positive and negative jumps, not affected 

by the presence of staleness. 
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We re-evaluate the existing empirical evidence on the cross-sectional pricing of idiosyncratic 

skewness and kurtosis (c.f., Amaya et al., 2015 and Bollerslev et al., 2019). In order to do so, we use 

a large cross-section of US stocks and a large sample of high-frequency price data spanning 20 years. 

Consistent with the economic logic laid out in Amaya et al., 2015 and Bollerslev et al., 2019, we expect 

measures that are positively correlated with positive price discontinuities and negatively correlated 

with negative price discontinuities (like the skewness measure of Amaya et al., 2015 or the relative 

signed jump variation of Bollerslev et al., 2019) to be priced negatively. Negative pricing would, in 

fact, be symptomatic of aversion to negative skewness (or negative jumps) and attraction to positive 

skewness (or positive jumps). We provide evidence in support of this logic but emphasize - both in 

theory and with data - that simple measures based on sums of extracted positive/negative jumps 

using truncation contain cleaner pricing signal than measures like skewness or relative signed jump 

variation. The latter are, in fact, contaminated by continuous variation and, therefore, by staleness. 

Regarding kurtosis, we show that its documented positive pricing (c.f. Amaya et al., 2015) is due 

to the above-mentioned staleness-induced upward bias. When controlling for staleness, either by 

bias-correcting directly or by inserting it as a control, the pricing of idiosyncratic kurtosis becomes 

negative in much the same way in which the price of idiosyncratic volatility is negative. This result 

may be suggestive of a volatility uncertainty pricing puzzle analogous to the more classical volatility 

level puzzle of Ang et al. (2006). Finally, we document that a direct measure of staleness, like 

the percentage of zero returns, commands a positive, and highly statistically-significant, illiquidity 

premium in expected returns. Because staleness also affects the centering of the distribution of 

realized kurtosis and the spread of the distribution of realized skewness, we conclude by stressing 

that accounting for staleness is key to understanding the pricing of higher-order moments in addition 

to the pricing of illiquidity. In sum, the interaction between illiquidity, as represented by staleness, 

and estimated efficient price dynamics, as represented by the time series of the high-order price 

moments, has both econometric and pricing implications. These implications are the focus of our 

analysis. 

The paper proceeds as follows. Section 2 presents the model, the general family of estimators 

and limiting results for realized high-order moments in the continuous case (Subsection 2.2) and 

in the discontinuous case (Subsection 2.3). Section 3 proposes a simple bias-correction for realized 

moment estimates in the presence of staleness and studies its limiting properties. In Section 4 

we study traditional realized skewness and kurtosis estimates and use their limiting features to 

further characterize the interplay between staleness and jumps. Section 5 separates continuous from 

discontinuous variation by thresholding. The section offers a simple strategy to evaluate continuous 

and discontinuous higher-order moments and, in the former case, perform effective bias-correction to 

alleviate the impact of staleness. The pricing relevance of discontinuous and continuous variation, 

as well as that of illiquidity (as proxied by staleness), is re-evaluated in Section 6 using a large 

cross-section of US stocks and a long span of high-frequency price observations. Section 7 concludes. 

Proofs are in the Appendix. 
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2 Limit theory for realized moments 

2.1 Setting and assumptions 

We assume the underlying (sometimes unobserved) efficient price process follows a continuous-time 

semimartingale with stochastic volatility and jumps while the observed price process (recorded on a 

specific sampling grid over the finite interval r0, ts) is contaminated by the presence of staleness. 

Formally, let Xt be the efficient logarithmic price process defined on a filtered probability space 

pΩ, F , pFtq , Pq. The observed logarithmic price process Xr 
t is defined as: 

r rXiΔn “ XiΔn p1 ´ Bi,nq ` Xpi´1qΔn Bi,n, (1) 

where Δn “ 1 , tti,n “ i Δn | i “ 0, . . . , nu is a partition of the interval r0, ts and Bi,n is a triangularn 

array of FiΔn -measurable Bernoulli random variables defined on the same probability space as the 

efficient price Xt. 

When volumes are zero (or limited, with zero price impacts), prices repeat themselves (Bi,n “ 1).1 

When volumes are present (Bi,n “ 0), observed prices coincide with underlying efficient prices. 
HIn the model, the probability of staleness is PpBi,n “ 1q “ pn . When working with dependent 

Bernoulli variates and a frequency-specific probability of staleness, the model specification in Eq. 

(1) coincides with that in Bandi et al. (2017). The case of independent Bernoulli variates with a 

constant probability of staleness PpBi,n “ 1q “ pH “ pH is studied in the work of Phillips and Yu n 

(2009). Rich empirical evidence for the proposed specification is contained in Bandi et al. (2019). 

The realized high-order moment estimators are generalized power variation estimators defined as 

n
ÿ 

rPVpf ; Xrq “ n r{2´1 fpΔiXq, (2) 
i“1 

rwhere either fpxq “ |x|r or fpxq “ x , for some r ą 0. Naturally, their asymptotics depend both on 

the dynamics of the efficient price process and on those of the Bernoulli variates Bi,n, to which we 

now turn. 

Assumption 1. Assume Xt evolves as 

ż t ż t ż t ż ż t ż 
Xt “ X0 ` as ds ̀  σsdWs ` κps, δqpµ ́ νqpds, dδq` κps, δqµpds, dδq, (3) 

0 0 0 |κps,δq|ď1 0 |κps,δq|ą1 

where µ is a Poisson random measure on R ` ˆ E with predictable compensator νpdt, dxq “ dtλpdxq, 

1According to the nomenclature in Bandi et al. (2019), the term “staleness” defines zero returns, whereas the 
term “idleness” defines zero returns with strictly zero volumes. Consistent with this terminology, we employ the term 
“staleness” to include all zeros. This choice can be viewed as being less restrictive than solely focusing on idleness 
and is economically-meaningful - if one views the probability of zeros as an illiquidity proxy - because the volumes 
associated with staleness are either zero (idleness) or limited (c.f., Bandi et al., 2019). 
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λ is a σ-finite measure on the set pE, Eq and the volatility function σ satisfies the equation 

ż t ż t ż t ż ż t ż 
σt “ σ0 ` as 

1 ds ̀  σs 
1 dWs ` κrps, δrqpµr ́  νrqpds, dδrq` κrps, δrqµrpds, dδrq, (4) 

0 0 0 |κrps,δrq|ď1 0 |κrps,δrq|ą1 

where, again, µr is a Poisson random measure with compensator νrpdt, dxq “ dtλrpdxq, Wt and Vt are 

independent Brownian motions, and a, a1 , σ1 and v1 are adapted càdlàg bounded processes. Given a 

sequence of increasing stopping times τu and deterministic, nonnegative functions γu defined on E
ş 

so that γ2pδqλpdδq ă 8, we have that |κpω, t, δq| ^ 1 ď γupδq for all u and all pω, t, δq with t ď τu.u 

Assumption 2. Assume Bi,n is a triangular array of i.i.d. Bernoulli random variates, independent 

of Xt, with E rBi,ns “ pH P r0, 1q. 

Assumption (1) is a standard sufficient condition required for the proof of the types of central 

limit theorems (CLTs) obtained in high-frequency econometrics. It postulates that the efficient price, 

as well as its spot volatility, evolve as Brownian semi-martingales with jumps. While we allow for 

infinite activity (small) jumps, our main interest is in economically-informative large discontinuities. 

The coefficients of the semi-martingales are assumed to be bounded, a condition which can be relaxed 

by standard localization arguments. As discussed above, Assumption (2) is consistent with Phillips 

and Yu (2009). 

In order to distinguish between continuous and discontinuous trajectories, we consider two com-

plementary subsets of Ω defined as: 

Ωc 
“ tω P Ω : Xspωq is continuous on r0, tsu , (5)r0,ts 

Ωj 
“ tω P Ω : Xspωq is discontinuous on r0, tsu . (6)

r0,ts 

stably 
Below, we establish F‹-stable convergence in law (denoted by “ ÝÑ ”) of the power variation 

Ž 
estimates, where F‹ “ Ft 

‹ , and pF‹q is the sub-filtration of pFtqtě0, such that the process Xttě0 t tě0 

is adapted to pF‹qtě0, any F‹-martingale is a Ft-martingale, and F‹ is independent of the σ-algebrast t t 

generated by the Bernoulli variates. 

2.2 Power variation on Ωc 
r0,ts 

We begin by assuming that the trajectory of the efficient price process is continuous on r0, ts, that 

is, ΔXu “ Xu ´ Xu´ “ 0 @u P r0, ts. In this case, the limiting properties of the realized high-order 

moments follow from the general limit theorem for realized power variation which we present next. 

Theorem 2.1. Let Assumptions (1) and (2) hold and ΔXu “ 0 @u P r0, ts. Set ρpfq “ E rfpUqs
“ ‰ 

and ρpf, kq “ E fpUqUk @k ą 0, where U „ N p0, 1q. Then, as n Ñ 8, 

Hq2 ż t
` u.c.p. H

˘ 
PVpf ; Xrq ÝÑ 

p1 ´ p 
Li´ r p ρpfq |σs|

r ds, (7)
H 2p 0 
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ř

8 

where Lis pxq “ 1 xk is the polylogarithm function. Moreover, as n Ñ 8,
ks 

k“1 

ˆ ˙

H ż t ż t ż t ż t? p1 ´ p q2 
` 

H
˘ 

|
r stably 

n PVpf ; Xrq ´ Li´ r p ρpfq |σs ds ÝÑ αsp1q ds` αsp2q dWs ̀  αsp3q dW 1 ,
H 2p s 

0 0 0 0 
(8) 

where W 1 is a Brownian motion defined on an extension of the original probability space and inde-

pendent of W , 

ˆ ˙ 
Hq21 p1 ´ p ` ˘ 

αsp1q “ σs
r´1 asρpf

1
q ` σs 

1 
pρpf 1 , 2q ´ ρpf 1qq 

H 
Li´ r` 

2
1 p H , (9)

2 p 

p1 ´ pHq2 
` ˘ 

σrαsp2q “ ρpf, 1q Li´ r`1 p H 
s , (10)

H 2p 

and 
g

f

˜ ˜ ¸ ˜ ¸2¸

ˆ ˙

f p1 ´ pH q2 
` ˘ p1 ´ pHq4 

` ˘ ` ˘ p1 ´ pHq6 
` ˘ 2 

` ˘ p1 ´ pHq2 
` ˘ 

αsp3q “ e ρpf 2q Li´r pH ´ pρpf qq2 2 Li´ r pH Li´ r pH ´ Li´ r pH Li´2 pH ´ ρpf, 1q Li pH σ2r .´1 ´ r`1 s 
2pH ppH q2 2 2 ppHq3 2 pH 

(11) 

Theorem 2.1 shows that both the probability limit and the asymptotic distribution of realized 

power variation are affected by staleness (i.e., pH). The polylogarithm (or Jonquière’s) function, 

Lis pxq, which appears in Eq. (7) and in Eqs. (9)-(11), is a special function defined by the power 

series 
8
ÿ 1 

Lis pxq “ x k . 
ks 

k“1 

It is available in standard software packages. Using the properties of the polylogarithm function, it 

is straightforward to show that, if pH “ 0, then Theorem 2.1 coincides with the standard stable CLT 

for generalized power variation derived by Kinnebrock and Podolskij (2008). 

In order to reveal the meaning of Theorem 2.1, we specialize the statement to a series of corollaries, 

depending on whether the function f is odd or even. If f is odd (for example, if fpxq “ x3), then 

ρpfq “ 0 and the probability limit of the estimator is unbiased, as we formalize below. 

rCorollary 2.1.1. Assume fpxq “ x , where r is an odd integer. Let Assumptions (1) and (2) hold 

and ΔXu “ 0 @u P r0, ts. Then, as n Ñ 8, 

n 
´ ¯

ÿ r r u.c.p. 
n 2 ́ 1 ΔiXr ÝÑ 0, (12) 

i“1 

and 
n 

´ ¯ ż t ż t ż t 
stably 

n 
r´ 
2
1 ÿ 

Xr 
r 
ÝÑ p1q ds ` p2q dWs ` p3q dW 1 , (13)Δi αs αs αs s 

0 0 0i“1 

where W 1 is a Brownian motion defined on an extension of the original probability space and inde-
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pendent of W , 

ˆ ˙ 
1 H 

` ˘

Hq2p1 ´ p 
H

αsp1q “ σr´1 
s σ1 sasµr´1 ` pµr`1 ´ µr´1q Li´ r`1 (14)p ,

2 2p 

H 
` ˘ 

µr`1Li´ r`1 
2

q2p1 ´ p 
Hp 

Hαsp2q “ σr 
s (15)p , 

and 
d 

p1 ´ pHq2 

αsp3q “ µ2r Li´r ppHq σ2r ´ pαsp2qq 
2 , (16) 

p sH 

with µr “ E r|U |
r 
s and U „ N p0, 1q. 

When f is odd, power variation is asymptotically unbiased for zero. Intuitively, this result reflects 

the fact that increments of Brownian motion have symmetric distributions and staleness does not 

affect symmetry (because of the local martingale features of the driving terms of the underlying 

efficient price process). However, staleness influences convergence in law through the structure of 

the estimator’s limiting variance. 

Note that, if f is odd, power variation converges stably in law to the process Ut defined as the 

sum of three terms: 
ż ż żt t t 

Ut “ αsp1q ds ` αsp2q dWs ` αsp3q dW 1 .s 
0 0 0 

The process Ut is uncentered mixed normal. Its look differs from that of the standard limit of the
şt şt

realized variance estimator because of the presence of the terms 
0 αsp1q ds and 

0 αsp2q dWs, which 

depend on the drift process, i.e., µt, and on the driving shock of the local martingale portion of Xt, 

i.e., the Brownian motion Wt. Importantly, the difference is not driven by staleness, but emerges 

solely due to the fact that f is an odd function (Kinnebrock and Podolskij (2008) provide details 

in other contexts). As said, staleness, however, affects both the location and the scale of Ut via the 

form of the process αtpiq, for i “ 1, 2, 3. 

Consider, now, the case in which f is an even function (for example, fpxq “ |x|r , for a generic r ą 
r r r0, or fpxq “ x , for an even r ą 0). If fpxq “ x with an even r ą 0, then PVpx ; Xrq “ PVp|x|r ; Xrq. 

Corollary 2.1.2. Let Assumptions (1) and (2) hold and ΔXu “ 0 @u P r0, ts. Let µr “ E r|U |
r 
s and 

U „ N p0, 1q. Then, as n Ñ 8, 

n H ż t 
r u.c.p.´1 H n 

ÿ 
 

 

 

ΔiXr 

 

 

r 
ÝÑ 

p1 ´ p q2 

Li´ r 
` 
p 

˘ 
µr |σs|

r ds, (17)
H 

2 
2p 0i“1 

and 
˜ 

   H ż t ż t
 

 
Δi 

 

  
` ˘

n
ÿ

i“1 

¸

? q2p1 ´ p 
H 

r 

0 
|σs|

r ds 
stably
ÝÑ 

0 
αs dWs 

1 , (18) 
r ´1 

rX ´ HLi´ r2n n p µr
2p 

where W 1 is a Brownian motion defined on an extension of the original probability space and inde-
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2

pendent of W and 
d 

ˆ 

“ 
` ˘2 

αs 

„

µ2r 
p1 ´ p 

Hp 

Hq2 
Li´r pp 2Hq ´ pµrq 2 

p1 ´ p 
Hq2 

Hq4 
Li´ r 

2
ppHq Li´ r 

2 ´1 ppHq ´ 
p1 ´ p 

Hq3 

Hq6 
Li´ r ppHq Li´2 ppHq

˙j 

σ2r 
s . 

pp pp 
(19) 

Corollary 2.1.2 shows that power variation measures computed from the absolute values of in-

crements of the observed price process are - in general - asymptotically biased due to staleness. The 

case r “ 2 is an important exception. If r “ 2, the properties of the polylogarithm function imply 
p1´pHq2 ` 

H
˘ 

that, for any pH P r0, 1q, Li´1 p “ 1. This case is considered below separately. If r ą 2,Hp 

the bias term takes the form of a function of two variables, r and pH , which is increasing in both 

arguments. Table 2.2 displays values of the bias of the realized fourth moment, r “ 4, for different 

values of pH . As shown, the percentage bias can be substantial even for moderate values of pH . For 
Hq2 ` ˘ 

any pH P p0, 1q, the percentage bias, p1´p Li´ r pH ´ 1, is larger than 0 if r ą 2 and it is smallerHp 2 

than 0 for r ă 2. In sum, the realized high-order moment are overestimated due to the presence of 

staleness. 

Table 1: We report values of the bias of PV, with r “ 4, for different pHs. 

Hp 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

p1´pHq2 ` 
H

˘ 
p Li´2 p 1.222 1.500 1.857 2.333 3.000 3.999 5.651 8.558H 

Finally, if r “ 2, the power variation PVpxr; Xrq coincides with realized variance, denoted by 

RVpXrq. The asymptotic properties of realized variance under staleness (but without jumps, as in 

this subsection) are investigated by Phillips and Yu (2009), who show that RVpXrq remains (asymp-

totically) unbiased for the quadratic variation of the efficient logarithmic price Xt. However, the 

limiting variance of RVpXrq increases with the frequency of zeros. The results in Phillips and Yu 

“(2009) can be deduced from Theorem 2.1 by specializing it to the case r 2, as shown in the 

Corollary below. 

Corollary 2.1.3. Let Assumptions (1) and (2) hold and ΔXu “ 0 @u P r0, ts. Then, as n Ñ 8, 

n
  

ÿ 2
 

 
Δi 

r

 

 
X 

i“1 

u.c.p.
ÝÑ 

ż t 

0 
|
2

|σs ds, (20) 

and 
˜ 

n
  ? ÿ 2 

r

 

 
n  

 
ΔiX 

i“1 

´ 
ż t 

|
2

|σs
0 

¸

ds
stably
ÝÑ 

ż t 

0 
αs dW 1 ,s (21) 
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2.3 

with 
H 

r0,ts 

4 ´ 2p1 ´ p
α2 

“ s 
p1 ´ pHq 

q
σ4 .s (22) 

jPower variation on Ω 

We now consider the situation in which the trajectories of the efficient price Xt have discontinuities 

on the observation interval r0, ts. The case without staleness, with a focus on volatility, has been 

considered at some length in the literature (see, e.g., Barndorff-Nielsen et al., 2006, and Veraart, 

2010) 

We devote our attention to the limiting behavior of power variation with large powers (r ě 2), 

namely the powers which are used in computing realized high-order moments and are affected by 

the presence of jumps (as is well-known, jumps do not affect the convergence in probability of power 

variation with r ă 2, see -e.g.- Barndorff-Nielsen et al., 2006, and Jacod, 2008). 

As is natural in the discontinuous case, we work with re-scaled (or, equivalently, non-normalized) 

power variations defined as 
´ ¯

n
ÿ

i“1 

f Δi 
1´

rX “ n 
r 
2 PVpf ; Xrq. (23) 

r 

The standardization 1{n in Eq. (44) is now not needed because of convergence to a finite sum (that 

of functions of the jumps over the interval r0, ts). The standardization n 2 in Eq. (44) is also not 

needed because one does not have to offset the limiting probability order of the driving Brownian 

increments and we can let them vanish to zero to identify the genuine jump futures. Hence, we 

multiply PV by n1´
r 
2 . 

First, we consider convergence in probability. In contrast to the continuous case, the probability 

limit of power variation on Ωj is robust to staleness.
r0,ts 

rTheorem 2.2. Let Assumptions (1) and (2) hold. Let either fpxq “ |x|r or fpxq “ x , for some 

r ą 2. Then, as n Ñ 8, 
ÿ

n 
´ ¯ 

ÿ

u.c.p.
rf ΔiX ÝÑ fpΔXsq, (24) 

i“1 sďt 

where ΔXs “ Xs ´ Xs´. 

On Ωj , power variation with powers larger than 2 depends asymptotically only on jumps.
r0,ts 

´ ¯ 3 ´ ¯ 3
ř řn 

r n 
rFor example, the quantities ΔiX and ΔiX , which will be employed to computei“1 i“1 

realized skewness and realized kurtosis in Section 4, converge to the sums of the jumps of X on the 

interval r0, ts raised to the third and the fourth power, respectively. The limiting behavior of realized 

variance (i.e., the case r “ 2) is different and is, therefore, considered separately at the end of this 

subsection. 

In the absence of staleness, a general CLT for power variation on Ωj was obtained by Jacod 
r0,ts 

and Protter (2012) for r ą 3 and by Koike and Liu (2019) for r “ 3. In the first case, power variation 
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converges stably in law to a complex mean-zero limiting process, which depends on the jumps of 

X. In the second case, the centering of the limiting distribution depends on the features of the 

continuous variation of the process. Our results are, as expected, contaminated by zeros, thereby 

resulting in different limiting processes, as follows from the two theorems below. 

rTheorem 2.3. Let Assumptions (1) and (2) hold. Let either fpxq “ |x|r or fpxq “ x , for some 

r ą 3. Then, as n Ñ 8, 

? 
˜

ÿ

n 
´ ¯

ÿ

¸

ÿ ´ b b ¯ 
stably 

r f 1 ´ ` n f ΔiX ´ fpΔXsq ÝÑ pΔXSp q σSp ́  ξp 
´ Up ` σSp ξp 

` Up , (25) 
i“1 sďt p:Spďt 

where pSpqpď1 is a sequence of stopping times which exhausts the jumps of X and U ´ , U ` , ξ ´ , ξ ` arep p p p 
´ ¯ 

four sequences of independent random variables defined on an extension Ωr, Fr, Pr of the probability 

space pΩ, F , Pq. The random quantities U ´ and U ` follow standard normal distribution, ξ ´ “ upLpp p p 

and ξ ` “ p1 ´ upq Lp, where the ups have uniform distributions on r0, 1s and the Lps are discretep 
` ˘`´1 

random variables on t1, 2, . . . u with Pr pLp “ `q “ p1 ´ pHq pH for ` P t1, 2, . . . u. 

The limiting process defined in Eq. (25) is a square-integrable F‹-martingale. The existence 

of such process follows from the same argument as in the proof of Proposition 5.1.1 in Jacod and 

Protter (2012). Without staleness, the limiting process takes the form 

ÿ 
f 1pΔXSp q 

` 
σSp ́  

? 
upUp 

´ 
` σSp 

a 
1 ´ upUp 

`
˘ 
. (26) 

p:Spďt 

Hence, staleness increases the asymptotic variance, thereby yielding an information loss when mea-

suring jump moments by virtue of power variation. Finally, we note that the stable convergence in 

Theorem 2.3 holds for a fixed t but it does not hold for the Skorokhod topology (see Remark 5.1.3 

in Jacod and Protter (2012) for details). We now turn to the case r “ 3. 
3Theorem 2.4. Let Assumptions (1) and (2) hold. Let either fpxq “ |x|3 or fpxq “ x . Then, as 

n Ñ 8, 
˜ ¸

n 
´ ¯ H ż t ˆ

b b

˙ 
stably 

f 1
? 
n 

ÿ 
f ΔiXr ´ 

ÿ 
fpΔXsq ÝÑ 

p1 ´ p q2 

Li´ 3 

` 
p H

˘ 
ρpfq |σs|

3 
ds` 

ÿ 
pΔXSp q σSp ́  ξp 

´ Up 
´ ` σSp ξp 

` Up 
` ,

H 2p
i“1 sďt 0 p:Spďt 

(27) 

where ρpfq “ E rfpUqs with U „ N p0, 1q, as above, and the second term on the right-hand side is 

defined as in Theorem 2.3. 

Theorem 2.4 shows that, if r “ 3, the power variation converges stably to an uncentered limit 
Hq2 ` 

H
˘ şt 

|
3distribution. The bias is of the form p1´p Li´ 3 p ρpfq |σs ds, which coincides with the limitHp 02 

in probability of power variation on Ωc . Notice that, in the odd case fpxq “ x3 , the bias disappears, 
r0,ts 

as ρpx3q “ 0. 

Finally, consider realized variance on Ωj . As in the continuous case, RVpXrq is a robust estimator 
r0,ts 

of the quadratic variation (now inclusive of the sum of the squared jumps) of the efficient price 
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process. However, the limit distribution of RVpXrq is contaminated by staleness, as evidenced by the 

theorem below. 

Theorem 2.5. Let Assumption (1) and (2) hold. Then, as n Ñ 8, 

ż t 
ÿ

u.c.p. 2RVpXrq ÝÑ |σs|
2 ds ` pΔXsq (28) 

0 sďt 

and 

? 
˜ 

ÿ

¸

ÿ

ż t ż t ˆ

b b

˙ 
stably 2 ´ ` n RVpXrq ´ |σs|

2 
ds ´ pΔXsq ÝÑ αs dW 1 ` 2 ΔXSp σSp ́  ξp 

´ U ` σSp ξp 
` U , (29)s p p 

0 sďt 0 p:Spďt 

4´2p1´pHqwhere α2 “ σ4 and the second term on the right-hand side is defined as in Theorem 2.3.s p1´pHq s 

3 Correcting for staleness 

Theorem 2.1 implies that, on Ωc , odd power variation is robust to staleness (in the sense of
r0,ts 

convergence in probability) while even power variation is asymptotically biased. 

We note that the presence of zeros has the effect of turning the original deterministic sampling 

grid into a new random (and coarser) grid. Hence, the limiting bias may be corrected by utilizing 

the logic in Hayashi et al. (2011) for dealing with power variation on irregular grids. 

Let t˚ 
1,n, . . . , t

˚ 
Nn

t ,n be the (random) partition of the interval r0, ts constructed from the original 

(deterministic) partition by removing the points for which Bi,n “ 1. Set Δpi, nq “ t˚ ´ t˚ andi,n i´1,n 

the increments of the process Xt over the new partition. Note that˚denote by Δ˚ 
i X “ Xt ´ Xt˚ 

´1,ni,n i 

rΔ˚ 
i X “ Δ˚ 

i X, by construction. 

We define the corrected power variation as: 

´ ¯

n
t

ÿ

PVc
pf, Xrq “ Δpi, nqf pΔpi, nqq ´1{2 Δi 

˚X . (30) 
i“1 

Naturally, the term Δpi, nq ´1{2 in the f function accounts for the new grid (and the new, effective 

number of observations) by replacing the original standardization (i.e., n1{2). Similarly, the previous 

standardization (of the sum) by the number of observations 1{n “ Δn is now replaced by Δpi, nq. 

The limiting properties of Eq. (30) can be derived from the work of Hayashi et al. (2011) provided 
˚ ˚ 

N 

the random partition t generated by the Bernoulli variables satisfies suitable regularity , . . . , t Nn
t ,n1,n 

conditions discussed below. 

First, due to the independence of the triangular array of Bernoulli variates Bi,n of the efficient price 

process, the random durations Δpi, nq are independent of Xt, which guarantees that condition pCq

of Hayashi et al. (2011) holds. Next, the mutual independence of Bi,n implies that Δpn, iqsup 
i“1,...Nn

t `1 
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converges in probability to zero as n Ñ 8. Finally, under Assumption (2), the “power variations” 

of the durations Δpi, nq converge uniformly in probability, as follows from the following lemma. 

Lemma 3.1. Let Assumption (2) hold. Then, for any q ą 0, as n Ñ 8, 

` ˘2Nn
t 1 ´ pH 

` ˘ 
q´1 H

|Δpn, iq|q u.c.p.
ÝÑ n 

“ nApqq Li´q t. (31)pt Hp

ÿ

i“1 

Lemma 3.1 implies that condition pDpqqq of Hayashi et al. (2011) holds (with rn “ n in their 

notations) for every q ą 0. We note that, by imposing economically-motivated structure on data 

sparsity (due to staleness), our proposed approach provides a data generating process which permits 

theoretical verification of the condition pDpqqq in Hayashi et al. (2011). 

We can now establish the limiting properties of the corrected power variation on Ωc .
r0,ts 

Theorem 3.2. Let Assumptions (1) and (2) hold and fpxq “ |x|r with r ą 0. Then, on Ωc , as
r0,ts 

n Ñ 8, 
ż t 

u.c.p.
PVc

pf ; Xrq ÝÑ µr |σs|
r ds. (32) 

0 

Moreover, as n Ñ 8, 

ˆ
ż t ˙

` 
H

˘2 
˘

ż t? stably ` ˘ 1 ´ p ` 
n PVc

pf ; Xrq ´ µr |σs|
r ds ÝÑ µ2r ´ µr 

2 Li´2 p H σs
r dWs 

1 . (33)
Hp0 0 

Theorem 3.2 shows that corrected power variation is robust to staleness: PVc
pf, Xrq converges 

in probability to the same limit as PVc
pf, Xq and PVpf, Xq. The asymptotic variance of PVc

pf, Xrq is, 
` ˘ şp1´pHq 2 

t
however, contaminated by staleness. Specifically, it takes the form pµ2r ´ µ2q Li´2 p

H σ2r dsr pH 0 s 
2 

p1´p 
H

Hq ` ˘ 

şt 

and, since Li´2 p
H ą 1 @pH P p0, 1q, it is larger than the asymptotic variance of PVpf, Xq

p 
2 σ2rwhich takes the simpler form pµ2r ´ µ q ds.r 0 s 

Due to Lemma 3.1, we can establish an interesting convergence result, which can be used to 

estimate the asymptotic variance of PVc
pf ; Xrq: 

Theorem 3.3. Let Assumptions (1) and (2) hold and r ą 0. Then, on Ωc , as n Ñ 8,
r0,ts 

` ˘2 
˘

ż

`

n
tN 

1 ´ pH t 

Δpn, iq2´r 
|Δ‹ 

i X|
2r u.c.p.

ÝÑ µ2r 
H 

|σs|
2r ds. (34)Li´2 pn 

Hp 0

ÿ

i“1 

In light of Theorem 3.3, in spite of the information loss due to staleness, the asymptotic variance 

of PVc
pf ; Xrq can be estimated as: 

´ µ2 N 
µ2r r 

n
t

ÿ

µ2r i“1 

2´r 
|Δ‹X|

2r 
i . (35)n Δpn, iq 
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4 Realized skewness and kurtosis 

This section applies the previous limiting results to skewness (S) and kurtosis (K) measures. Ignoring 

means, write 

´ ¯ 3 ´ ¯ 3 ´ ¯ 4 ´ ¯ 4
ř ? ř ř ř

1 n n 1 n n
r r r rΔiX n ΔiX ΔiX n ΔiX 

n i“1 i“1 n i“1 i“1 
S “ “ and K “ 

ˆ ˙2 “ 
ˆ ˙2 .ˆ ˙

3 
ˆ ˙

3 
´ ´

´ ¯ 2 ´ ¯ 2 
¯ 2 ¯ 22 2

ř ř ř ř 
n n 1 n n 

Xr Xr ΔiX ΔiX1 
i“1 Δi i“1 Δi n i“1 

r 
i“1 

r 
n 

(36) 

In terms of power variation, the quantities in Eq. (36) can also be expressed as 

PVpx3; Xrq PVpx4; Xrq
S “ and K “ 

´ ¯ 2 . (37)
´ ¯

3 

RVpXrq 
2 RVpXrq 

Eq. (36) is classical in the sense that it presents textbook notions of skewness and kurtosis broadly 

applied in the literature. We will show that these typical notions have, in general, atypical limits 

when doing infill asymptotics, as reasonable in the presence of high-frequency data. 

Table 2 provides the summary of the limiting values (in the sense of convergence in probability) 

for both measures, with and without the correction for zeros and with and without jumps. 

Table 2: The table reports the limits in probability of realized skewness and 
kurtosis in the absence (on Ωc) and the presence (on Ωj ) of jumps and in the 

Hpresence (pH ą 0) or absence (p “ 0) of return zeros 

pH ą 0 Hp “ 0 

jon Ωc on Ω
r0,ts r0,ts on Ωc 

r0,ts 
jon Ω
r0,ts 

S 

1? S 
n 

K 

1 K 
n 

Sc 

1? Sc 
n 

Kc 

1 Kc 
n 

0 8
ř 3pΔXs q

sďt0 
˜ ¸ 3 

ş

2 
t ř 

|2 ds` pΔXsq
2

0|σs
sďt

ş

H 2 ` ˘ t 
p1´p q H 3 |4 ds0|σsLi´2 p ş `8 

pH t 2
p |2 dsq0|σs

ř 4pΔXs q
sďt0 ˜ ¸2

ş t ř

|2 ds` pΔXsq
2

0|σs
sďt

0 8
´ ¯ ´ ¯ 

1´p H 
H ř 3 

Li´1 p φpΔXSppH 
p:Spďt 

0 
˜ ¸ 3 

ş

2 
t ř

|2 ds` pΔXsq
2

0|σs
sďt

şt3 |4 ds0|σs
ş `8 t 2
p |2 dsq0|σs

´ ¯ ´ ¯ 
1´p H 

H ř 4 
Li´1 p φpΔXSppH 

p:Spďt 
0 ˜ ¸2

ş t ř

|2 ds` pΔXsq
2

0|σs
sďt

0 

0 

şt3 |4 ds0 |σs
şt 2
p |2 dsq0|σs

0 

0 

0 

şt3 |4 ds0 |σs
ş t 2
p |2 dsq0|σs

0 

8
ř 3pΔXsq

sďt
˜ ¸ 3 

ş

2 
t ř 

|2 ds` pΔXsq
2 

0|σs
sďt

`8 
ř 4pΔXsq

sďt
˜ ¸2

ş t ř

|2 ds` pΔXsq
2 

0|σs
sďt

8 
ř 3pΔXsq

sďt
˜ ¸ 3 

ş

2 
t ř

|2 ds` pΔXsq
2 

0|σs
sďt

`8 

ř 4pΔXsq
sďt

˜ ¸2
ş t ř

|2 ds` pΔXsq
2 

0|σs
sďt

Theorem 2.1 implies that realized skewness is robust to the presence of staleness on continuous 
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trajectories. On discontinuous trajectories, irrespective of staleness, Theorems 5.2 and 2.5 (because 

of the quadratic term in the denominator) require re-scaling (by n ´1{2) to identify jump skewness. 

For a large n, on Ωj , we have 
r0,ts 

$

ř
ř 

? sďt pΔXsq 
3 

&`8, if pΔXsq 
3 
ą 0, 

S « n ÝÑ sďt (38)
¯
3 

ř´

ş 
0 
t 
|σs|

2 ds ` 
ř 

pΔXsq 
2 2 % if pΔXsq 

3 
ă 0. 

sďt 
´8, sďt 

Therefore, in the absence of re-scaling, realized skewness may only be interpreted as a signed measure 

of jumps on the interval r0, ts. Large positive (negative) values of S support the presence of sufficiently 

many and/or sufficiently large (relative to the quadratic variation) positive (or negative) jumps on 

r0, ts. Small values of S are symptomatic of absence of large jumps on r0, ts. 

Realized kurtosis behaves differently. In the absence of jumps, the value of realized kurtosis 

depends on volatility and the number of zeros. The bias associated with zeros takes the form 

p1 ´ pHq2 
` ˘ 

H 
Li´2 p H 

ą 1, (39) 
p 

which increases with pH and may reach large values, as illustrated in Table 1. In the presence of 

jumps, for large n values, we have: 

` ˘ 
řp1´p 

H

Hq2 

Li´2 p
H 3 

şt 
|σs|

4 ds ` n pΔXsq 
4 

p 0 sďt
K « ÝÑ 8, (40)

´

şt 
|
2 ř 2 

¯ 2 
|σs ds ` pΔXsq0 sďt 

indicating that kurtosis ought to be large on Ωj . In essence, kurtosis may result in large values on
r0,ts 

jΩc as well as on Ω
r0,ts r0,ts. 

We now consider corrected (as in Section 4) versions of realized skewness and kurtosis defined as 

PVc
px3; Xrq PVc

px4; Xrq
Sc 

“ 
¯
3 and Kc 

“ 
´ ¯ 2 . (41)

´ 
RVpXrq 

2 RVpXrq 

Note that we do not correct the realized variance in the denominators of Sc and Kc as RVpXrq is 

robust to staleness. 

As expected, correcting realized skewness for the presence of staleness does not lead to any 

asymptotic improvement of the measure. In the case of kurtosis, correcting for staleness eliminates 

bias on Ωc at the cost of re-scaling the jumps on Ωj . On Ωc , for large n, corrected kurtosis
r0,ts r0,ts r0,ts 

takes the usual form: 
şt 

|σs|
4 ds 

Kc 
´

şt 

0« 3 
¯ 2 . (42) 

|σs|
2 ds

0 
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In other words, if volatility is constant over the interval r0, ts, Kc “ 3 as for the Gaussian distribution. 

However, on Ωj , we have 
r0,ts 

ş 
|σs|

4 ds 1´pH ` ˘
ř

` ˘4 
3 

şt 
0 
t 

|
2 2 ` n 

pH Li´1 p
H φpΔXSp

p |σs dsq0 p:Spďt 
Kc 

« 
ˆ ˙2 . (43)

şt ř 2
|σs|

2 ds ` pΔXsq0 
sďt 

Hence, asymptotically, corrected realized kurtosis ought to take on large values on Ωj due to the
r0,ts 

exploding term produced by the jumps. In a finite sample, there is a chance of underestimation 
H ` ˘ 

Hbecause the random variables φp are such that |φp| ă 1 almost surely (even though 1´p Li´1 p
H “ 

p 
1 
H ).1´p 

In sum, whether one accounts for staleness or not, during jump days the limiting properties 

of standard skewness and kurtosis measures depend on the sample size. Arguably, this is not a 

favorable property of these classical measures when applied to high-frequency data. Below, we 

provide a solution. 

5 Disentangling continuous variation from jumps 

In the absence of staleness, the continuous variation of Xt can be separated from jumps using 

truncated power variation, as in Mancini (2009). The truncation techniques remains valid under the 

presence of zeros, provided staleness is properly taken into account, as explained below. 

Realized truncated power variation is defined as 

n
ÿ 

rTPVpf ; Xrq “ n r{2´1 fpΔiXq ¨ I
t|ΔiXr |ăθnu

, (44) 
i“1 

where It.u denotes the indicator function and θn is a (stochastic) sequence such that θn Ñ 0 with 
? θn Ñ 8 a.s. Classical arguments as in Mancini (2009) imply that, irrespective of the 
Δn logpΔnq 

presence of jumps (i.e., on both Ωc and Ωj ), for sufficiently large n, we have: 
r0,ts r0,ts 

TPVpf ; Xrq « TPVpf ; Xr 1
q, (45) 

r rwhere X 1 denotes the continuous portion of X. 

In order to account for the presence of zeros, the corrected version of truncated power variation 

is now defined as: 

Nn
ÿ

t ´ ¯ 
TPVc

pf, Xrq “ Δpi, nqf pΔpi, nqq ´1{2 Δ˚ 
i X ¨ It|Δ˚X|ăαi|Δpi,nq|

ρu, (46) 
i 

i“1 
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where the αis are some positive bounded random variables and ρ P p0, 1{2q. 

Theorem 5.1. Let Assumptions (1) and (2) hold, let fpxq “ |x|r with r ą 0 and let the functions
ş 

γu in Assumption (1) satisfy γβpδqλpdδq ă 8 for some 0 ă β ă 2. If either r ď 2 or r ą 2 andu 

ρ ě r´2 , as n Ñ 8,
2r´2β 

u.c.p.
TPVc

pf, Xrq ´ PVc
pf, Xr 1

q ÝÑ 0. (47) 

In addition, if β P p0, 1s, as n Ñ 8, 

´ ¯? u.c.p.
X 1 n TPVc

pf, Xrq ´ PVc
pf, r q ÝÑ 0. (48) 

Thus, the variation of the jump components can be measured by (non-normalized) jump power 

variation defined as 
n

ÿ

Jpf, Xrq “ f pΔi 
˚Xq ¨ I 

i“1 
t|Δ˚ 

i 
.X|ěαi|Δpi,nq|

ρ
u (49) 

On Ωj , Jpf, Xrq behaves as the non-normalized power variation in Theorem 5.2. However, the use
r0,ts 

of truncation allows us to relax the assumption r ą 2 of the theorem. In other words, we have the 

following theorem. 

Theorem 5.2. Let Assumptions (1) and (2) hold and fpxq “ O p|x|r 
q as x Ñ 0 for some r ą 0. 

Then, as n Ñ 8, 
ÿ

u.c.p.
Jpf, Xrq ÝÑ fpΔXsq. (50) 

sďt 

This result allows us to simply employ the sum of the jumps (Jpx, Xrq) when measuring the 

(unsigned or signed) strength of the jump contribution. 

In order to account for the sign of the jump variation, we consider the sum of the positive and 

negative jumps measured respectively as: 

J ` 
px, Xrq “ 

n
ÿ

i“1 

pΔ˚ 
i Xq ¨ ItΔ˚ 

i Xěαi|Δpi,nq|
ρ
u, and J ´ 

px, Xrq “ 
n

ÿ

i“1 

pΔ˚ 
i Xq ¨ ItΔ˚ 

i Xď´αi|Δpi,nq|
ρ
u. (51) 

In applications, these measures may represent less noisy assessments of the contributions of jumps 

than the more volatile jump skewness and kurtosis measures which could readily be obtained from 

Eq. (49) above. 

6 High-order moments and asset prices 

The cross-sectional pricing of higher-order moments has been the subject of recent literature (e.g., 

Amaya et al., 2015 and Bollerslev et al., 2019) The work of Amaya et al. (2015) points to the neg-

ative pricing of idiosyncratic skewness, as measured by K in Eq. (36), an empirical finding justified 

by market participants’ attention (resp. aversion) to large positive (resp. negative) payoffs. They 
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also report on the positive pricing of idiosyncratic kurtosis, a somewhat less robust result possibly 

explained by aversion to diffusive/jump variation in volatility. Just like idiosyncratic skewness, the 

difference between positive semi-variance and negative semi-variance (“relative signed jumps” or 

RSJ) is a measure of the relative contribution of positive and negative jumps to price variation. It is 

expected to be positive (resp. negative) when positive (resp. negative) jumps dominate. Bollerslev 

et al. (2019) argue that controlling for RSJ reduces drastically the impact of idiosyncratic skew-

ness, thereby implying that RSJ constitutes a superior measure of jump variation than idiosyncratic 

skewness, at least for the purpose of asset pricing. 

We re-evaluate this literature, and expand on its scope, along several dimensions. We have 

previously shown that skewness and kurtosis are dominated by jumps in days in which jumps are 

present (c.f. Section 4). In days without jumps, skewness is a noisy measure of zero, while kurtosis 

captures stochastic volatility, inclusive of jumps in volatility. As discussed, continuous kurtosis suffers 

from severe upward biases in the presence of staleness (c.f. Section 4). We have also shown that, more 

generally (i.e., for every day in the sample), one may use thresholding to define continuous and jump 

analogues of skewness and kurtosis (c.f. Section 5). Continuous (truncated) skewness should, again, 

be a noisy measure of zero (and, therefore, not affect pricing). Continuous (truncated) kurtosis will, 

once more, be upward biased due to staleness. Thus, the positive link between kurtosis and illiquidity, 

something which is emphasized by Amaya et al., 2015, may, at least in part, be a by-product of 

staleness-induced biases. In light of these observations, relying on the theory laid out earlier, we 

study the pricing of continuous and discontinuous variation through truncated (standardized or 

unstandardized) high-order moments. The importance of bias-correcting continuous (truncated) 

kurtosis will be evaluated using a sensible pricing metric. 

We consider a large cross-section of intraday prices for 4809 NYSE-listed stock. The data are 

recorded on a one-minute grid from 9:30 a.m. to 4 p.m., from January 1, 1998, to June 29, 2018, 

thereby amounting to a long sample of intra-daily data ideally suited for a pricing study. In order to 

soften the effect of market microstructure noise, we aggregate returns up to the five-minute frequency 

(Δn, in our previous notation). We remove from consideration days with more than 70% of zero 

intraday returns and for which rounding (as represented by the rounding impact ratios of Bandi 

et al., 2019) is estimated to be relatively larger. These quality cuts give us almost 12 million daily 

observations of the realized quantities of interest. 

We begin by illustrating the impact of staleness on skewness and kurtosis measures in our data. 

Figure 1 shows percentiles (the 10th , the 50th and the 90th) of the difference between traditional 

realized skewness and kurtosis and the same measures corrected for the presence of zeros. The figure 

fully supports our theoretical predictions. Regarding skewness, the presence of zeros does not induce 

biases but makes the measure noisier (an implication of Corollary 2.1.1), as shown by the increase 

in the width of the distribution of the difference as the percentage of zeros increases. Regarding 

kurtosis, the presence of zeros yields a large positive bias which increases with the percentage of 

zeros (an implication of Corollary 2.1.2). In essence, Figure 1 is a visual representation of the 
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Figure 1: Panel A: median difference between daily raw skewness and daily 
corrected (for staleness) skewness across the stocks in our sample (a total of 
11,892,327 daily observations). We report it along with the 10th and the 90th 

percentile, as a function of the percentage of zeros during the day. Panel B: 
median difference between daily raw kurtosis and daily corrected (for staleness) 
kurtosis across the same stocks, again as a function of the percentage of zeros 
during the day. 

need for bias-correcting realized kurtosis, a measure whose documented correlation with illiquidity 

proxies is, at least in part, a by-product of its correlation with zeros. It also provides a justification 

for obtaining more precise skewness estimates by bias-correcting realized skewness. 

6.1 Cross-sectional regressions 

Next, we turn to asset pricing implications. We assess the relation between future excess returns 

and past realized skewness and kurtosis by carrying out (over time) cross-sectional regressions, as in 

Fama and MacBeth (1973). For each time t, we estimate the following model: 

ri,t`1 “ αi ` β1 Xi,t ` �i,t`1, (52)t 

where ri,t`1 denotes the weekly excess return of the i-th stock over week t, t ` 1 and Xi,t is a 

vector of weekly characteristics for the i-th stock over week t ́  1, t. The vector includes the weekly 

(averaged, over five consecutive trading days) measures of realized skewness and kurtosis (S and 

K), the weekly measures of truncated skewness and kurtosis (TS and TK), weekly bias-corrected 

truncated skewness and kurtosis (TSc and TKc), past weekly returns (R), the square-root of weekly 
? 

truncated realized variance ( TRV), the weekly average of jumps (J), the weekly average of positive 

jumps (J ` ), the weekly average of negative jumps (J ´ ), the weekly average percentage of zeros (RZ), 

the weakly illiquidity ratio of Amihud (2002) (Ami) and the standardized (by realized variance) 
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difference between positive semi-variance and negative semi-variance (RSJ). Table 3 reports the 

time series averages of the estimated slopes βpts as well as the associated t-statistics. 

Model (1) is the same as the main model in Amaya et al. (2015) and confirms that, when 

employing S, realized skewness is negatively priced. This finding is usually interpreted as being 

symptomatic of market’s preference over positively skewed stocks and, symmetrically, aversion to 

negative skew. Because positively skewed stocks usually display higher idiosyncratic volatility, the 

negative price of skewness is sometimes invoked as a justification for the idiosyncratic volatility puzzle 

of Ang et al. (2006), i.e., the negative dependence between average cross-sectional stock returns 

and idiosyncratic volatility.2 Realized kurtosis is, instead, priced with a positive sign representing 

aversion to volatility uncertainty. The corresponding coefficient is, however, insignificant. In light 

of the positive correlation between illiquidity and realized kurtosis, the positive pricing of realized 

kurtosis may be induced by the positive association between illiquidity and expected returns, as 

justifiable by compensation for illiquidity risk. We will show that at least a portion of this risk 

compensation is induced by contaminations (i.e., biases) in estimated kurtosis. 

Model (2) considers truncated (and, hence, continuous) versions of realized skewness and kurtosis. 

While statistical significance decreases, thereby pointing to a critical, separate role for jumps in cross-

sectional pricing, results are qualitatively similar to what was found in model (1). Because continuous 

skewness is, in principle, a noisy measure of zero, its pricing ability is surprising. We return to it, 

and explain it, in model (5). 

As emphasized, realized kurtosis is biased in the presence of staleness. It is, therefore, interesting 

to add the weekly percentage of zeros to truncated skewness and kurtosis. We do so in model 

(3). Consistent with theory, truncated skewness is hardly impacted. Truncated kurtosis, however, 

now has a statistically-significant and negative partial effect on expected returns. In other words, 

the positive partial effect of truncated kurtosis on expected returns has been entirely absorbed by 

its previous source of bias once that source of bias, i.e., the extent of staleness, is accounted for 

explicitly. In essence, since staleness provides information about volume dynamics (c.f., see Bandi 

et al., 2019), the statistical significance of zeros reflects illiquidity pricing in expected returns. The 

positive impact of uncorrected kurtosis on expected returns may therefore also be the consequence of 

illiquidity pricing. When controlling for zeros explicitly, kurtosis impacts expected returns negatively. 

This is reminiscent of the idiosyncratic volatility puzzle of Ang et al. (2006). Not only does higher 

idiosyncratic volatility lead to lower expected returns, an unexpected result with several recent 

justifications, but higher volatility of idiosyncratic volatility also seems to lead to lower expected 

returns. 

In order to provide direct evidence about the impact of staleness on realized measures, we now 

bias-correct the truncated measures. In agreement with theory and the logic of model (3), in model 

(4) we show that bias-corrected truncated kurtosis has, indeed, a statistically-significant, negative 

2The association between low prices, high idiosyncratic volatility and positive skewness is, for instance, a feature 
of lottery stocks, see Kumar, 2009. 
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partial effect on cross-sectional returns. Bias-corrected truncated skewness also continues to have a 

statistically-significant negative impact on expected returns, a result which was deemed earlier to be 

surprising in light of the fact that truncated skewness should be a noisy measure of zero carrying no 

pricing information. We address this issue next. 

It is arguably the case that the previous specifications omit natural controls. The first is a 

measure of the efficient price variance. The second is a measure of trend, something which may have 

(and will be shown to have) a strong impact on continuous skewness in small sample. The third is 

a measure of discontinuous variation, such variation being ruled out by truncation.
? 

In model (5), we add R (the total return over the previous week) and TRV. The loading on 

TSc becomes insignificant, thereby supporting the idea that continuous skewness was - in previous 

specifications - likely proxying for a trend. The trend variable has a strongly significant negative 

coefficient, representing reversals. Truncated realized variance has a statistically-significant negative 

coefficient in line with the negative pricing of idiosyncratic volatility first put forward by Ang et al. 

(2006). 

In model (6), we add jumps. The measure J is defined as the weekly sum of intra-daily returns 

greater (in absolute value) than the truncation level. Jumps are strongly significant and with an 

economically-sound negative sign. The economic interpretation of this negative sign is analogous to 

that on the negative sign of skewness: market participants are naturally conjectured to fear large 

negative returns and like large positive returns. These predispositions appear to be reflected in 

equilibrium expected returns. By the same argument, because the justification for the pricing ability 

of skewness (as reported, e.g., in Amaya et al., 2015) purely comes from jumps, it appears reasonable 

to capture discontinuities directly (i.e., using J) rather than indirectly by way of measures (like K) 

which, as shown, are more likely to be contaminated by continuous variation and staleness. In model 

(7), and other specifications, we distinguish between positive and negative jumps. Both are generally 

statistically-significant and consistently with a negative sign. 

Our measure of illiquidity (RZ) is added in model (8) (with jumps) and model (9) (with both 

positive and negative jumps) along with Amihud’s measure (Amihud, 2002), Ami. As emphasized, 

the former has been found in Bandi et al., 2019 to capture intra-daily volume dynamics (volume 

levels and volume clusters) and is internally consistent given the assumed data generating process, 

the latter is a key benchmark in the literature defined as price impact per unit volume. We find -

once more - that the impact of realized zeros is strongly positive and significant, which is revealing 

of an illiquidity premium. The Amihud measure is, instead, insignificant. When illiquidity is added, 

the impact of continuous kurtosis disappear. Thus, staleness-corrected continuous kurtosis continues 

to be correlated with illiquidity. 

Finally, we evaluate robustness to the use of realized semi-variance. We employ the RSJ measure 

of Bollerslev et al. (2019). In model (10), we confirm their main result, namely RSJ is a better proxy 

for jumps than raw skewness. In model (11), where we add the trend measure, we notice that the 

significance of RSJ is strongly attenuated. In model (12), which uses our measure of jumps based 
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on truncation, separated into its positive and negative components, the coefficient on RSJ becomes 

insignificant. While we support the logic in Amaya et al. (2015) and Bollerslev et al. (2019) regarding 

the importance of jumps in cross-sectional pricing, their same logic justifies using measures that are 

less contaminated by continuous variation (and by staleness, as a result). A simple jump measure 

constructed using (staleness-adjusted) truncation appears to achieve this goal better than both raw 

skewness and RSJ. 

Our final specification (13) summarizes our main conclusions. Continuous (corrected) skewness 

and kurtosis are insignificant. So is the RSJ measure of Bollerslev et al. (2019), when controlling for 

jumps directly, and Amihud’s illiquidity measure, when controlling for staleness. Instead, we find 

significant pricing impacts associated with idiosyncratic volatility, the trend variable and jumps, all 

with a negative sign, and realized zeros, with a positive sign. 

6.2 Single-sorted portfolios 

We complement, and support, the previous results by constructing long-short (high-low) portfolios 

and examining their payoffs. After sorting stocks into deciles based on the level of each characteristic, 

we go long stocks in the highest characteristic decile and short stocks in the lowest characteristic 

decile. We report both average returns and average returns in excess of the Fama-French 5-factor 

model (alphas) over the next 5 days (c.f. Table 4) and over the next 22 days (c.f. Table 5). 

Over the shorter 5 day horizon, the only unexpected findings (solely due to lack of conditioning 

on other driving characteristics) have to do with the statistically-significant, negative average returns 

associated with portfolios constructed on the basis of negative jumps and Amihud’s measure. Both 

the former characteristic (a more direct measure of adverse price moves than skewness) and the latter 

characteristic (a measure of illiquidity) should be associated with positive - rather than negative, 

as in the data - long-short returns. Positive jumps and realized zeros, on the other hand, display 

statistically-significant, negative and positive (respectively) average returns (and alphas), a result 

which is consistent with economic logic. Over the longer 22 day horizons, zeros continue to be 

associated with positive average returns and alphas. All other variables generally lose their pricing 

ability (with the exception of idiosyncratic volatility which leads - as in much of the recent literature 

following Ang et al. (2006) - to negative average returns). 

In order to account for the impact of alternative characteristics, we now turn to double sorts. We 

focus exclusively on key variables resulting from the previous theoretical and empirical treatment: 

jumps and zeros. 

6.3 Double-sorted portfolios 

We double-sort into 25 quantile portfolios. We focus on realized zeros and aggregate jumps, realized 

zeros and positive jumps and realized zeros and negative jumps and double sort in both directions, 

first based on one characteristic and then the other (c.f., Table 6 and Table 7). 
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In agreement with previous findings, the average returns on portfolios long high zero/low jump 

stocks (irrespective of whether the jumps are positive, negative or aggregate) and short low zero/high 

jump stocks are positive. So are their 5-factor Fama-French alphas. Similarly, the average returns 

and alphas on portfolios long low zero/high jump stocks and short high zero/low jump stocks are 

negative. 

We conclude that the interplay between granular features of the efficient price distribution (i.e., 

price discontinuities) and features of the trading process affecting the way in which efficient prices 

are revealed (i.e., zeros) has important pricing implications at high frequencies. 

7 Conclusions 

This paper evaluates the properties of high-frequency high-order moments under a data generating 

process accounting for two key stylized features, namely infrequent discontinuities in unobserved 

equilibrium prices and staleness in observed prices. The latter is a phenomenon known to be linked 

to trading volumes’ first and second moments and, therefore, to the level and variability of liquidity 

(c.f., Bandi et al., 2019). 

We study identification and pricing. In terms of identification, we discuss how the interaction 

between price discontinuities and prices staleness will, in general, lead to biased and/or noisy high-

order moment estimates. A combination of thresholding and corrections for staleness-induced biases 

is, however, shown to be effective in yielding information about high-order variation, both in its 

continuous and in its discontinuous notion. 

In terms of pricing, we document an interesting interaction between genuine features of the 

equilibrium price process (jumps) and features of the trading mechanism (staleness). Because, in 

our framework, jumps and staleness are aspects of the same data generating process for observed 

prices, not only is our measure of liquidity (zeros) natural, it is model-driven. We, therefore, view 

the proposed approach as a first step in the analysis of the high-frequency pricing of both granular 

price features and trading frictions in the context of an econometric model which, cohesively, allows 

for (and permits identification of) both. 
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Table 3: Reports Fama-MacBeth cross-sectional regressions of weekly stock 
returns on stock characteristics. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 
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S 

K 

TS 

TK 

TSc 

TKc 

R 

? 
TRV 

J 

J ` 

J ´ 

RZ 

AMI 

RSJ 

´0.098˚˚˚ 

(´6.415) 

0.004 
(1.143) 

´0.098˚˚˚ ´0.096˚˚˚ 

(´5.043) (´4.933) 

0.004 ´0.017˚˚ 

(0.668) (´2.131) 

´0.127˚˚˚ 0.017 0.029˚ 

(´5.344) (1.019) (1.679) 

´0.014 ´0.007 ´0.007 
(´1.570) (´0.931) (´0.960) 

´2.102˚˚˚ ´2.009˚˚˚ 

(´7.277) (´6.836) 

´0.073˚˚˚ ´0.073˚˚˚ 

(´3.763) (´3.730) 

´0.026˚˚ 

(´2.575) 

0.384˚˚˚ 

(2.978) 

0.031˚ 

(1.836) 

´0.012 
(´1.575) 

´1.997˚˚˚ 

(´6.830) 

´0.083˚˚˚ 

(´3.975) 

´0.016 
(´1.434) 

´0.052˚˚˚ 

(´4.240) 

0.028˚ 

(1.696) 

´0.007 
(´1.033) 

´1.904˚˚˚ 

(´6.700) 

´0.075˚˚˚ 

(´3.432) 

´0.037˚˚˚ 

(´3.682) 

0.386˚˚˚ 

(3.738) 

´0.291 
(´1.045) 

´0.010 0.009 
(´0.710) (0.639) 

0.002 0.003 
(0.356) (0.409) 

0.027˚ 0.033˚˚ 

(1.660) (1.991) 

´0.007 ´0.008 
(´1.067) (´1.168) 

´1.905˚˚˚ ´1.110˚˚˚ ´1.392˚˚˚ ´1.833˚˚˚ 

(´6.718) (´3.052) (´3.909) (´5.991) 

´0.075˚˚˚ ´0.076˚˚˚ 

(´3.456) (´3.482) 

´0.040˚˚˚ ´0.036˚˚˚ ´0.039˚˚˚ 

(´3.556) (´2.866) (´3.347) 

´0.032˚˚˚ ´0.028˚˚ ´0.031˚˚˚ 

(´2.770) (´2.290) (´2.629) 

0.412˚˚˚ 0.409˚˚˚ 

(3.715) (3.695) 

´0.267 ´0.265 
(´0.859) (´0.856) 

´0.745˚˚˚ ´0.333˚˚˚ ´0.116 ´0.059 
(´6.695) (´3.367) (´1.240) (´0.700) 
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Table 4: Average returns on long-short (high-low) portfolios over 5 trading 
days 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) high ´ low high ´ low α 

S 0.206˚˚ 0.178˚ 0.132 0.071 0.066 0.044 0.012 0.005 ´0.016 ´0.035 ´0.241˚˚˚ ´0.245˚˚˚ 

(2.007) (1.704) (1.262) (0.705) (0.646) (0.439) (0.125) (0.056) (´0.162) (´0.369) (´6.019) (´6.205) 

K 0.055 0.026 0.083 0.064 0.060 0.073 0.060 0.095 0.070 0.079 0.024 ´0.002 
(0.537) (0.257) (0.843) (0.641) (0.599) (0.722) (0.593) (0.942) (0.702) (0.816) (0.496) (´0.044) 

TS 0.200˚ 0.133 0.129 0.086 0.069 0.050 0.015 0.026 ´0.022 ´0.023 ´0.224˚˚˚ ´0.226˚˚˚ 

(1.929) (1.260) (1.247) (0.847) (0.681) (0.503) (0.154) (0.272) (´0.228) (´0.250) (´5.681) (´5.884) 

TK 0.054 0.032 0.070 0.092 0.068 0.057 0.060 0.086 0.082 0.063 0.009 0.001 
(0.532) (0.313) (0.712) (0.935) (0.684) (0.572) (0.589) (0.854) (0.806) (0.647) (0.189) (0.027) 

TSc 0.187˚ 0.158 0.123 0.095 0.051 0.054 0.015 0.007 0.003 ´0.029 ´0.216˚˚˚ ´0.223˚˚˚ 

(1.785) (1.499) (1.189) (0.935) (0.507) (0.548) (0.156) (0.072) (0.034) (´0.313) (´5.202) (´5.654) 

TKc 0.121 0.054 0.078 0.056 0.062 0.090 0.047 0.066 0.048 0.043 ´0.077˚ ´0.073˚ 

(1.209) (0.552) (0.792) (0.567) (0.621) (0.900) (0.464) (0.652) (0.470) (0.430) (´1.816) (´1.808) 

R ´0.054 0.101 0.154 0.144 0.112 0.088 0.093 0.048 0.013 ´0.034 0.020 ´0.006 

? 
TRV 

(´0.388) 

0.128˚˚ 
(0.908) 

0.114˚ 
(1.553) 

0.130˚ 
(1.579) 

0.135 
(1.281) 

0.101 
(1.020) 

0.106 
(1.066) 

0.085 
(0.521) 

´0.013 
(0.134) 

´0.015 
(´0.282) 

´0.107 
(0.284) 

´0.235 
(´0.090) 

´0.241˚˚˚ 

(2.220) (1.655) (1.697) (1.609) (1.116) (1.058) (0.767) (´0.100) (´0.103) (´0.625) (´1.640) (´3.155) 

J 0.159 0.072 0.083 0.107 0.072 0.070 0.072 0.025 0.027 ´0.057 ´0.216˚˚˚ ´0.224˚˚˚ 

(1.278) (0.643) (0.834) (1.170) (0.810) (0.782) (0.822) (0.263) (0.246) (´0.477) (´4.849) (´5.097) 

J ` 0.068 0.091 0.099 0.076 0.066 0.069 0.036 0.047 0.040 ´0.046 ´0.113˚˚ ´0.096˚˚ 

(0.719) (1.072) (1.066) (0.774) (0.649) (0.642) (0.330) (0.418) (0.347) (´0.375) (´1.983) (´2.113) 

J ´ 0.089 0.064 0.057 0.079 0.037 0.067 0.080 0.097 0.116 0.037 ´0.051 ´0.071 
(0.713) (0.538) (0.511) (0.713) (0.341) (0.643) (0.814) (1.050) (1.355) (0.397) (´0.836) (´1.411) 

RZ ´0.045 0.002 0.068 0.062 0.098 0.074 0.084 0.095 0.155 0.147˚ 0.192˚˚ 0.144˚˚˚ 

(´0.377) (0.022) (0.705) (0.618) (0.953) (0.679) (0.782) (0.926) (1.575) (1.661) (2.439) (2.586) 

AMI 0.161˚ 0.107 0.099 0.090 0.029 0.057 0.043 0.033 0.107 ´0.061 ´0.222˚˚˚ ´0.222˚˚˚ 

(1.905) (1.180) (1.041) (0.925) (0.284) (0.554) (0.404) (0.309) (0.969) (´0.532) (´3.526) (´5.518) 

RSJ 0.252˚˚ 0.206˚ 0.113 0.089 0.060 0.034 0.035 ´0.023 ´0.048 ´0.057 ´0.309˚˚˚ ´0.311˚˚˚ 

(2.322) (1.941) (1.083) (0.867) (0.600) (0.351) (0.356) (´0.234) (´0.513) (´0.611) (´5.911) (´6.216) 
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Table 5: Average returns on long-short (high-low) portfolios over 22 trading 
days 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) high ´ low high ´ low α 

S 0.431 0.174 0.220 0.220 0.264 0.221 0.290 0.202 0.288 0.399 ´0.032 0.123 
(0.906) (0.357) (0.476) (0.475) (0.592) (0.501) (0.674) (0.474) (0.673) (0.958) (´0.208) (0.842) 

K 0.168 0.089 0.186 0.236 0.157 0.334 0.305 0.332 0.282 0.617 0.450˚˚ 0.372˚˚ 

(0.397) (0.210) (0.431) (0.522) (0.348) (0.713) (0.642) (0.714) (0.610) (1.388) (2.071) (2.311) 

TS 0.310 0.138 0.179 0.281 0.258 0.319 0.238 0.308 0.296 0.380 0.070 0.217 
(0.631) (0.280) (0.376) (0.624) (0.587) (0.734) (0.550) (0.732) (0.702) (0.926) (0.428) (1.354) 

TK 0.119 0.114 0.225 0.161 0.235 0.334 0.307 0.288 0.406 0.518 0.400˚ 0.357˚˚ 

(0.288) (0.268) (0.520) (0.362) (0.527) (0.724) (0.654) (0.595) (0.849) (1.162) (1.746) (2.126) 

TSc 0.237 0.116 0.278 0.365 0.335 0.236 0.157 0.331 0.247 0.406 0.169 0.303˚ 

(0.476) (0.237) (0.598) (0.808) (0.757) (0.536) (0.358) (0.784) (0.599) (0.991) (0.939) (1.756) 

TKc 0.424 0.312 0.282 0.191 0.185 0.291 0.361 0.247 0.226 0.189 ´0.235 ´0.270 
(1.002) (0.745) (0.661) (0.433) (0.414) (0.627) (0.794) (0.528) (0.470) (0.398) (´1.057) (´1.465) 

R ´0.515 0.363 0.373 0.486 0.304 0.457 0.394 0.340 0.217 0.289 0.803˚˚ 0.754˚˚ 

? 
TRV 

(´0.740) 

0.633˚˚ 
(0.712) 

0.551˚ 
(0.851) 

0.566˚ 
(1.198) 

0.530 
(0.782) 

0.509 
(1.179) 

0.519 
(1.030) 

0.260 
(0.858) 

0.013 
(0.507) 

´0.347 
(0.529) 

´0.525 
(2.068) 

´1.157˚ 
(2.050) 

´1.355˚˚˚ 

(2.418) (1.796) (1.645) (1.424) (1.284) (1.201) (0.521) (0.022) (´0.510) (´0.651) (´1.703) (´3.851) 

J 0.228 0.285 0.307 0.370 0.353 0.340 0.430 0.228 0.018 0.131 ´0.097 ´0.049 
(0.406) (0.580) (0.702) (0.940) (0.930) (0.898) (1.081) (0.517) (0.036) (0.246) (´0.725) (´0.362) 

J ` 0.391 0.299 0.430 0.248 0.201 0.116 0.149 0.111 0.226 0.411 0.020 0.122 
(1.039) (0.795) (1.113) (0.608) (0.460) (0.247) (0.294) (0.209) (0.427) (0.723) (0.062) (0.596) 

J ´ 0.442 0.294 0.205 0.140 0.088 0.244 0.359 0.284 0.269 0.331 ´0.112 ´0.170 
(0.766) (0.541) (0.402) (0.276) (0.189) (0.564) (0.879) (0.712) (0.716) (0.888) (´0.356) (´0.850) 

RZ ´0.184 ´0.087 0.164 0.206 0.219 0.355 0.536 0.256 0.456 0.811˚ 0.995˚˚˚ 0.723˚˚˚ 

(´0.335) (´0.206) (0.393) (0.482) (0.508) (0.794) (1.122) (0.509) (0.959) (1.832) (2.627) (3.164) 

AMI 0.625˚ 0.491 0.395 0.289 0.274 0.135 0.246 0.175 0.313 ´0.236 ´0.860˚˚˚ ´0.849˚˚˚ 

(1.719) (1.248) (0.956) (0.680) (0.611) (0.289) (0.518) (0.352) (0.622) (´0.439) (´2.827) (´4.887) 

RSJ 0.213 0.180 0.161 0.239 0.342 0.191 0.478 0.351 0.246 0.307 0.093 0.337˚ 

(0.413) (0.364) (0.331) (0.514) (0.767) (0.440) (1.123) (0.839) (0.605) (0.781) (0.438) (1.749) 
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Table 6: Table reports the average 1-week ahead returns sorted on double-
sorted portfolios. For each panel, entitled as A Ñ B, all stocks in the sample 
are first sorted into 5 quintiles on the basis of the first variable A (columns). 
Within each quintile, the stocks are then sorted into 5 quintiles according to 
the second variable B (rows). 

p1q 

p2q 

p3q 

p4q 

p5q 

high ´ low 

high ´ low α 

´0.015 
(´0.112) 

0.062 
(0.612) 

´0.011 
(´0.109) 

´0.005 
(´0.049) 

´0.216 
(´1.627) 

´0.201˚˚˚ 

(´3.548) 

´0.190˚˚˚ 

(´3.376) 

0.042 
(0.343) 

0.128 
(1.361) 

0.091 
(1.001) 

0.072 
(0.788) 

´0.067 
(´0.547) 

´0.108˚˚ 

(´2.236) 

´0.118˚˚ 

(´2.466) 

RZÑJ 
0.178 0.199 
(1.377) (1.572) 

0.110 0.123 
(1.093) (1.197) 

0.074 0.065 
(0.775) (0.663) 

0.107 0.094 
(1.092) (0.958) 

´0.052 0.011 
(´0.419) (0.092) 

´0.230˚˚˚ ´0.188˚˚˚ 

(´4.384) (´3.014) 

´0.226˚˚˚ ´0.179˚˚˚ 

(´4.213) (´2.905) 

0.213˚˚ 

(1.998) 

0.203˚˚ 

(2.197) 

0.115 
(1.294) 

0.143 
(1.517) 

0.081 
(0.757) 

´0.133˚˚ 

(´2.313) 

´0.141˚˚ 

(´2.446) 

0.123 
(1.049) 

0.125 
(1.339) 

0.067 
(0.740) 

0.082 
(0.901) 

´0.048 
(´0.425) 

´0.172˚˚˚ 

(´5.392) 

´0.171˚˚˚ 

(´5.418) 

´0.038 
(´0.268) 

0.131 
(0.981) 

0.152 
(1.204) 

0.170 
(1.517) 

0.201˚˚ 

(2.089) 

0.239˚˚˚ 

(2.796) 

0.219˚˚˚ 

(3.404) 

0.054 
(0.494) 

0.102 
(1.070) 

0.094 
(0.956) 

0.093 
(0.886) 

0.141 
(1.506) 

0.086 
(1.234) 

0.039 
(0.739) 

JÑRZ 
´0.019 ´0.041 
(´0.167) (´0.390) 

0.063 0.005 
(0.698) (0.054) 

0.074 0.097 
(0.820) (1.020) 

0.109 0.088 
(1.168) (0.883) 

0.078 0.094 
(0.824) (1.029) 

0.096 0.135˚˚ 

(1.401) (1.973) 

0.038 0.082 
(0.750) (1.514) 

´0.183 
(´1.321) 

´0.056 
(´0.446) 

0.005 
(0.043) 

0.075 
(0.657) 

0.098 
(1.016) 

0.281˚˚˚ 

(3.099) 

0.248˚˚˚ 

(3.578) 

´0.045 
(´0.386) 

0.049 
(0.471) 

0.084 
(0.827) 

0.107 
(1.064) 

0.123 
(1.352) 

0.168˚˚˚ 

(2.597) 

0.125˚˚˚ 

(2.931) 

p1q 

p2q 

p3q 

p4q 

p5q 

high ´ low 

high ´ low α 

0.015 
(0.146) 

0.019 
(0.190) 

´0.023 
(´0.208) 

´0.067 
(´0.532) 

´0.256˚ 

(´1.697) 

´0.272˚˚˚ 

(´3.695) 

´0.237˚˚˚ 

(´4.067) 

0.098 
(1.064) 

0.140 
(1.584) 

0.085 
(0.835) 

0.010 
(0.091) 

´0.123 
(´0.853) 

´0.221˚˚˚ 

(´2.662) 

´0.186˚˚˚ 

(´3.454) 

RZÑJ ` 

0.115 0.121 
(1.192) (1.211) 

0.140 0.120 
(1.415) (1.228) 

0.123 0.108 
(1.164) (1.033) 

0.099 0.123 
(0.832) (1.108) 

´0.104 0.026 
(´0.724) (0.191) 

´0.219˚˚˚ ´0.095 
(´2.657) (´1.253) 

´0.200˚˚˚ ´0.077 
(´3.537) (´1.295) 

0.199˚˚ 

(2.255) 

0.167˚ 

(1.926) 

0.182˚ 

(1.891) 

0.175˚ 

(1.668) 

´0.003 
(´0.024) 

´0.202˚˚˚ 

(´2.987) 

´0.192˚˚˚ 

(´3.095) 

0.110 
(1.197) 

0.117 
(1.317) 

0.095 
(0.973) 

0.068 
(0.633) 

´0.092 
(´0.707) 

´0.202˚˚˚ 

(´3.378) 

´0.178˚˚˚ 

(´5.251) 

´0.016 
(´0.142) 

0.064 
(0.693) 

0.098 
(1.093) 

0.077 
(0.814) 

0.142 
(1.436) 

0.158˚˚ 

(2.326) 

0.094˚ 

(1.911) 

´0.022 
(´0.193) 

0.045 
(0.453) 

0.150 
(1.543) 

0.143 
(1.428) 

0.108 
(1.161) 

0.130˚ 

(1.687) 

0.057 
(0.970) 

J `ÑRZ 
´0.063 ´0.115 
(´0.486) (´0.805) 

0.037 ´0.028 
(0.331) (´0.215) 

0.100 0.104 
(0.930) (0.911) 

0.131 0.126 
(1.242) (1.205) 

0.142 0.158˚ 

(1.523) (1.792) 

0.205˚˚ 0.273˚˚˚ 

(2.325) (2.897) 

0.146˚˚ 0.237˚˚˚ 

(2.327) (3.493) 

´0.350˚˚ 

(´2.132) 

´0.013 
(´0.093) 

0.154 
(1.280) 

0.107 
(1.027) 

0.102 
(1.022) 

0.452˚˚˚ 

(4.292) 

0.463˚˚˚ 

(5.778) 

´0.113 
(´0.898) 

0.021 
(0.192) 

0.121 
(1.202) 

0.117 
(1.203) 

0.130 
(1.444) 

0.244˚˚˚ 

(3.424) 

0.199˚˚˚ 

(4.462) 

p1q 

p2q 

p3q 

p4q 

p5q 

high ´ low 

high ´ low α 

´0.089 
(´0.585) 

´0.026 
(´0.199) 

´0.004 
(´0.032) 

0.034 
(0.343) 

´0.027 
(´0.265) 

0.062 
(0.822) 

0.048 
(0.793) 

´0.037 
(´0.258) 

0.069 
(0.603) 

0.058 
(0.577) 

0.099 
(1.080) 

0.076 
(0.828) 

0.114 
(1.329) 

0.078 
(1.341) 

RZÑJ ´ 

0.045 0.190 
(0.303) (1.367) 

0.118 0.067 
(1.007) (0.595) 

0.054 0.054 
(0.488) (0.515) 

0.112 0.059 
(1.147) (0.594) 

0.082 0.106 
(0.869) (1.090) 

0.037 ´0.084 
(0.434) (´1.088) 

0.015 ´0.095 
(0.248) (´1.550) 

0.150 
(1.251) 

0.100 
(0.963) 

0.127 
(1.326) 

0.205˚˚ 

(2.297) 

0.159˚ 

(1.816) 

0.009 
(0.132) 

´0.009 
(´0.146) 

0.052 
(0.390) 

0.065 
(0.599) 

0.058 
(0.590) 

0.102 
(1.133) 

0.079 
(0.875) 

0.028 
(0.434) 

0.007 
(0.190) 

´0.065 
(´0.388) 

0.097 
(0.699) 

0.162 
(1.314) 

0.119 
(1.133) 

0.143 
(1.427) 

0.207˚ 

(1.955) 

0.225˚˚˚ 

(2.731) 

´0.006 
(´0.043) 

0.065 
(0.505) 

0.041 
(0.360) 

0.058 
(0.556) 

0.178˚˚ 

(2.062) 

0.184˚ 

(1.892) 

0.165˚˚ 

(2.408) 

J ´ÑRZ 
´0.052 ´0.020 
(´0.395) (´0.169) 

0.074 0.130 
(0.647) (1.318) 

0.064 0.089 
(0.569) (0.897) 

0.088 0.092 
(0.852) (0.940) 

0.088 0.140 
(0.911) (1.507) 

0.140 0.160˚˚ 

(1.628) (2.025) 

0.080 0.081 
(1.283) (1.442) 

´0.039 
(´0.346) 

0.024 
(0.263) 

0.074 
(0.821) 

0.085 
(0.908) 

0.113 
(1.162) 

0.152˚˚ 

(2.157) 

0.086˚ 

(1.709) 

´0.036 
(´0.282) 

0.078 
(0.718) 

0.086 
(0.838) 

0.088 
(0.917) 

0.132 
(1.473) 

0.169˚˚ 

(2.363) 

0.127˚˚˚ 

(2.937) 



Table 7: Performance of high ´ low double-sorted portfolios. 
p1q p2q p3q p4q p5q p6q

mean 0.429˚˚˚ ´0.384˚˚˚ 0.456˚˚˚ ´0.492˚˚˚ 0.177˚˚ ´0.182˚˚ 

α 
(4.796) 

0.383˚˚˚ 
(´4.364) 

´0.358˚˚˚ 
(4.078) 

0.402˚˚˚ 
(´4.801) 

´0.465˚˚˚ 
(2.304) 

0.175˚˚ 
(´2.341) 

´0.163˚˚ 

(5.018) (´5.258) (4.990) (´6.352) (2.452) (´2.486) 

conditional mean 0.101˚˚ 0.006 ´0.050 
(2.425) (0.096) (´0.941) 

Note. p1q – long high RZ and low J stocks and short low RZ and high J stocks. p2q – long low RZ and high J stocks and short high RZ 
and low J stocks. p3q – long high RZ and low J ` stocks and short low RZ and high J ` stocks. p4q – long low RZ and high J ` stocks and 
short high RZ and low J ` stocks. p5q – long high RZ and low J ´ stocks and short low RZ and high J ´ stocks. p6q – long low RZ and high 
J ´ stocks and short high RZ and low J ´ stocks. The last row reports the constant after regressing the returns on portfolios p1q, p3q and 
p5q on each other. 
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A Appendix: Preliminary Proofs 

Proof of Theorem 2.1. In order to shorten the proofs, and to simplify notation, we present the proofs under 

the additional assumption that there are no jumps in volatility. That is, we assume the volatility process σt 
satisfies the equation 

ż t ż t ż t 
1 σ1 1σt “ σ0 ` a ds ` dWs ` v dVs, (53)s s s 

0 0 0 

1 1where Wt and Vt are independent Brownian motions while a , σ1 and v are adapted càdlàg bounded processes. 

Let t˚ , . . . , t˚ be the partition of the interval r0, ts, constructed from the original partition by removing 1,n Nn,nt 

the points for which Bi,n “ 1. Thus, the power variation can be expressed as 

N n 
t

ÿ

PVpf, Xrq “ n r{2´1 fpΔ˚ 
i Xq, (54) 

i“1 

where Δ˚ 
i X “ Xt˚ ´Xt˚ are the increments of the process Xt over the new partition. Let βn “ σt˚ Δ˚ 

i Wii,n i´1,n i´1,n 
˚ ˚be an approximation of the increments Δ˚ 

i X and set Δpi, nq “ t ´ t .i,n i´1,n 

We start with preliminary computations of the conditional moments of fpβi
nq, Δpi, nq and related quantities, 

which are used in the subsequent proofs. First, notice that, for k “ 1, 2, . . . , 

! ) 
H H k´1P Δ˚ “ W ˚ ´ W ˚ “ p1 ´ p qpp q . (55)i W t `k Δn ti´1,n i´1,n 

By the law of iterated expectations, this implies, that 

”  ı 8
ÿ

E fpΔi 
˚W q  

  Ft˚ “ Δr{2ρpfq kr{2p1 ´ p Hqp k´1 . (56)
i´1,n 

k“1 

Hence, we have 

”  ı ”  ı 8
   

Δr{2 kr{2 H HE fpβi
nq 

  Ft˚ “ σr 
˚ E fpΔ˚ 

i W q 
  Ft˚ “ σr 

˚ n ρpfq 
ÿ 

p1 ´ p q 
` 
p 

˘k´1 
t t 

k“1 (57) 
i´1,n i´1,n i´1,n i´1,n 

H 

“ Δr{2σr 
˚ ρpfq 

1 ´ p 
Li´ r 

` 
p H

˘ 
.n t H 2i´1,n p 

Similarly, we obtain 
”  

 

ı H1 ´ p ` ˘2 HE pfpβi
nqq 

  F ˚ “ Δr σ2 
˚ 
r ρpf2q Li´r p , (58)ti´1,n n ti´1,n pH 

”  ı H1 ´ p ` ˘

HE Δpi, nq  
  Ft˚ 

i´1,n 
“ Δn H Li´1 p , (59) 

p 

and more generally, for r ą 0, 

”  ı H1 ´ p ` ˘ r HE pΔpi, nqq  

  Ft˚ “ Δr Li´r p . (60)
i´1,n n Hp 
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Now, notice that, for any pH P r0, 1q, 

` ˘2
”  

 

ı 1 ´ pH 
` ˘ 

p1 ´ p HqE Δpi, nq 
  F ˚ “ Δn Li´1 p H “ Δn. (61)ti´1,n Hp 

Finally, observe that 
d

Δpi, nqfpβi
nq “ Δpi, nq1`r{2σr 

˚ fpUq, (62)ti´1,n 

d
where U „ N p0, 1q and “ denotes equality in law. Therefore, we have 

”  ı H
  

“ Δ1`r{2σr 1 ´ p ` 
H

˘ 
E Δpi, nqfpβi

nq 
  Ft˚ n ˚ ρpfq Li´r{2´1 p . (63)ti´1,n i´1,n pH 

Next, consider the four quantities defined as 

ÿ

t ´ ”  ı¯? Nn

r r 
A1 “ n n 2 ́ 1fpβi

nq ´ n 2 ́ 1E fpΔ˚ 
i Xq  

  Ft˚ , 
i´1,n 

i“1 

Nt
n 

´´ ” ı¯ ´ ” ı¯¯? ÿ r 
 

  
 

 ´1A2 “ n n 2 fpΔi 
˚Xq ´ E fpΔi 

˚Xq 
  F ˚ ´ fpβi

nq ´ E fpβi
nq 

  F ˚ ,t ti´1,n i´1,n 
i“1 

Nn (64)
ÿ

t ´ ”  ı¯? r ´1A3 “ n n 2 E fpΔ˚ 
i Xq ´ fpβi

nq  
  Ft˚ , 

i´1,n 
i“1 

Nn 
ˆ ˙

? ÿ

t
r 

”  

 

ı 
p1 ´ pHq2 

` ˘ ż t 
HA4 “ n n 2 ́ 1E fpΔ˚ 

i Xq 
  F ˚ ´ Li´ r p ρpfq |σs|

r ds .ti´1,n pH 2 
0i“1 

The proof of the main result follows from three statements: 

Nn 
ˆ ˙

? ÿ

t
r p1 ´ pHq2 

` ˘ ż t 
stably 

ż t ż t 
H n n 2 ́ 1fpβi

nq ´ Li´ r p ρpfq |σs|
r ds ÝÑ αsp2q dWs ` αsp3q dWs 

1 , (65)
H 2p 0 0 0i“1 

Nn
ÿ

t ´´ ” ı¯ ´ ” ı¯¯? r 
 

  
 

  P´1 n n 2 fpΔ˚ 
i Xq ´ E fpΔ˚ 

i Xq 
  F ˚ ´ fpβi

nq ´ E fpβi
nq 

  F ˚ ÝÑ 0, (66)t ti´1,n i´1,n 
i“1 

Nn
ÿ

t ´ ”  ı¯

ż t? r u.c.p.´1 n n 2 E fpΔi 
˚Xq ´ fpβi

nq  
  Ft˚ ÝÑ αsp1q ds, (67)

i´1,n 
0i“1 

which are proven in three sequential steps. 

Step 1. We start by proving the stable convergence of Eq. (65). Express the right-hand side of Eq. (65) as 

follows: 
Nt

n 
ˆ 

H ż t ˙

? ÿ r 
2 ́ 1fpβn p1 ´ p q2 

` ˘ 
|
rH n n i q ´ Li´ r p ρpfq |σs ds “ A1 ` A2, (68) 

pH 2 
0i“1 

where 
Nt

n 
ˆ 

H ˙

? ÿ r 
2 ́ 1fpβn p1 ´ p q2 

` ˘ 
ρpfqσrHA1 “ n n i q ´ Li´ r p ˚ Δpi, nq , (69)

H t 
i“1 

p 2 i´1,n 
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¨ ˛ 
Nn 

t ż t H? 
˝

ÿ 
σr |

r 
‚

p1 ´ p q2 
` ˘

HA2 “ n ˚ Δpi, nq ´ |σs ds Li´ r p ρpfq. (70)t Hi´1,n p 2 
0i“1 

u.c.p.
By the same arguments as in Barndorff-Nielsen et al. (2006), A2 ÝÑ 0. Therefore, it is sufficient to prove 

that 
ż żt t 

stably 
A1 ÝÑ αsp2q dWs ` αsp3q dW 1 . (71)s 

0 0 

Express A1 as the sum of F ˚ -measurable random variables: ti,n 

Nn 
t

ÿ

A1 “ ζi
n , (72) 

i“1 

where 
ˆ 

H ˙

? r p1 ´ p q2 
` ˘

Hζn “ n n 2 ́ 1fpβi
nq ´ Li´ r p ρpfqσr 

˚ Δpi, nq . (73)i tHp 2 i´1,n 

As pointed out in Hayashi et al. (2011), since we are proving only F‹-stable convergence, it is sufficient to
´ ¯ 

verify the conditions of Theorem IX.7.28 of Jacod and Shiryaev (2003) with respect to the filtration F ˚ .ti,n 

Using Eq. (57) and Eq. (59) we obtain: 

ˆ ˙

”  

  
ı ? 1 ´ pH 

` ˘ p1 ´ pHq2 
` ˘ 1 ´ pH 

` ˘

H H HE ζn 
  F ˚ “ n Δn Li´r{2 p ρpfqσr 

˚ ´ Li´ r p ρpfqσr 
˚ Δn Li´1 pi t H t H t Hi´1,n p i´1,n p 2 i´1,n p

ˆ

? 1 ´ pH 
` ˘ p1 ´ pHq2 

` ˘

˙ 
H H“ nΔn Li´r{2 p ρpfqσr 

˚ 1 ´ Li´1 p “ 0,
H t Hp i´1,n p 

(74) 

where the last equality follows from Eq. (61). Next, using Eq. (58), Eq. (60) and Eq. (63), we obtain 

” ı H 

  1 ´ p ` ˘2 HE pζi
nq 

  F ˚ “ ρpf2q Li´r p σ2 
˚ 
r Δnti´1,n pH ti´1,n 

ˆ 
H ˙2 Hp1 ´ p q2 

` ˘ 1 ´ p ` ˘ 
` Li´r{2 p H ρpfq Li´2 p H σ2 

˚ 
r Δn (75)

H H t 

H H 

p p i´1,n 

p1 ´ p q2 
` ˘ 1 ´ p ` ˘

H H´ 2 Li´r{2 p ρpfq Li´r{2´1 p ρpfqσ2 
˚ 
r Δn.H H tp p i´1,n 

Hence, 
Nn Nn
ÿ

t ”  

  
ı

ÿ

t 
2E pζi

nq 
  F ˚ “  r σ2 

˚ 
r Δn, (76)t ti´1,n i´1,n 

i“1 i“1 

where  r is a constant of the form 

ˆ 
1 ´ pH 

` ˘ p1 ´ pHq3 
` ˘ ` ˘ p1 ´ pHq5 

` ` ˘˘2 ` ˘

˙ 
H 2 H H H H r “ ρpf2q 

pH Li´r p ´pρpfqq 2 
ppHq2 Li´r{2 p Li´r{2´1 p ´

ppHq3 Li´r{2 p Li´2 p . 

(77) 
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N
ř

t
n 

σ2rNow, consider the sum ˚ Δn. We have ti´1,ni“1 

Nn 
n ż

ÿ

t 
ÿ t 

P
σ2r “ σ2r ÝÑ p1 ´ p Hq σ2r ds, (78)t˚ Δn ti,n ́ kpn,iqΔn 

p1 ´ Bi,nq Δn s 
i´1,n 0i“1 i“1 

where kpn, iq is the number of consecutive events tBi´k,n “ 1u prior to the instant ti,n and the convergence 

follows from the fact that 

ż

ÿ

n 
”  ı

ÿ

n t 

σ2r   
σ2r H H σ2rE ti,n ́ kpn,iqΔn 

p1 ´ Bi,nq Δn   Fti´1,n “ ti,n ́ kpn,iqΔn 
p1 ´ p qΔn ÝÑ p1 ´ p q s ds. (79) 

0i“1 i“1 

Consequently, 
Nn 

ż

ÿ

t ”   ı t 
2   P 

σ2rE pζi
nq 

  Ft˚ ÝÑ   s ds, (80)
i´1,n 

0i“1 

where   is a constant of the form 

H ˆ 
H H 

˘

˙ 
p1 ´ p q2 

` ˘ p1 ´ p q4 
` ˘ ` ˘ p1 ´ p q6 

` ` ˘˘2 ` 
H 2 H H H H  “ ρpf2q Li´r p ´pρpfqq 2 Li´r{2 p Li´r{2´1 p ´ Li´r{2 p Li´2 p .

Hp ppHq2 ppHq3 

(81)
”  ı 

Next, since E Δpn, iq Δi 
˚W  

  Ft˚ “ 0, using Eq. (55) we obtain 
i´1,n 

”  ı ”  ı H 
r´1 1 ´ p ` ˘

HE ζn Δ˚ 
i W  

  Ft˚ “ E n 2 fpβi
nqΔi 

˚W  

  Ft˚ “ Li
´ r`1 p ρpf, 1q σr 

˚ Δn, (82)i i´1,n i´1,n H 2 ti´1,np 

which implies (analogously to the proof of Eq. (80)) that 

Nn 
t ”  ı H 

˘

ż t
ÿ 

P p1 ´ p q2 
` 

HE ζn Δ˚  

  Ft˚ ÝÑ ρpf, 1q Li
´ r`1 p σr ds. (83)i i W 

i´1,n pH 2 
s 

0i“1 

Finally, for any bounded martingale N , which is orthogonal to W and defined on the same probability space, 

we immediately deduce that: 
”  

 

ı 
E ζn Δ˚ 

i N 
  F ˚ “ 0. (84)i ti´1,n 

Now, the assertion of Step 1 follows from Eqs. (74), (80), (83), (84) and Theorem IX.7.28 in Jacod and Shiryaev 

(2003). 

Step 2. The proof of the convergence in Eq. (66) is the same as that in Barndorff-Nielsen et al. (2006), hence 

it is omitted. 

Step 3. Now, we prove the statement in Eq. (67). Write 

N n Nn 
t ´ ”  ı¯ t 

´1? 
n 

ÿ 
n 

r 
2 E fpΔ˚ 

i Xq ´ fpβi
nq  

  Ft˚ “ 
ÿ 

ξi
n , (85)

i´1,n 
i“1 i“1 

where 
r´1 

”  

 

ı 
ξn “ n 2 E fpΔ˚ 

i Xq ´ fpβi
nq 

  F ˚ . (86)i ti´1,n 
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Notice that Δ˚ 
i X ´ βn “ ζi

np1q ` ζi
np2q, wherei 

ff 
ż t˚ 

´ ¯

ż t˚ 
«

ż u ż u ´ ¯

ż u ´ ¯ 
i,n i,n 

1 1 1ζi
np1q “ au ´ at˚ du ` as ds ` σs 

1 ´ σ1 ˚ dWs ` vs ´ v ˚ dVs dWu,t t
˚ i´1,n ˚ ˚ ˚ i´1,n ˚ i´1,nt t t t ti´1,n i´1,n i´1,n i´1,n i´1,n 

(87) 
˚ ˚ ˚ż t ż t ´ ¯ ż t ´ ¯ 
i,n i,n i,n

1ζn 
i p2q “ at˚ du ` σ1 ˚ Wu ´ Wt˚ dWu ` v ˚ Vu ´ Vt˚ dWu. (88)

˚ i´1,n ti´1,n ˚ i´1,n ti´1,n ˚ i´1,n
t t ti´1,n i´1,n i´1,n 

Consequently, ξn can be decomposed asi 

ξn “ ξi
np1q ` ξi

np2q ` ξi
np3q, (89)i 

with 
” 

r´1 
 

  
ı 

ξi
np1q “ E n 2 f 1pβi

nqζi
np2q 

  F ˚ , (90)ti´1,n 

” 
r´1 

 

  
ı 

ξi
np2q “ E n 2 f 1pβi

nqζi
np1q 

  F ˚ , (91)ti´1,n 

” 
r´1 ` ˘  

 

ı 
ξi
np3q “ E n 2 f 1pγi

nq ´ f 1pβi
nq pζi

np1q ` ζi
np2qq 

  F ˚ . (92)ti´1,n 

where γn is a random variable satisfying |γn ´ βn| ď |Δ˚X ´ βn|. The same arguments as in Barndorff-Nielsen i i i i i 

et al. (2006) imply that 
Nn 

t
ÿ 

P 
pξi

np2q ` ξi
np3qq ÝÑ 0. 

i“1 

N n
ř 

ξn
P şt

Hence, we are left to prove that 
t 

i p1q ÝÑ αsp1q ds. Conditionally on the event Ak “ tΔpi, nq “ k Δnu,0 
i“1 

for some k “ 1, 2, . . . , we have 

”  

  
ı

ˆ 
1 ` ˘

˙ 
r`1 

E f 1pβi
nqζi

np2q 
  F ˚ X Ak “ a ˚ σr 

˚ 
´1 ρpf 1q ` σ1 ˚ σr 

˚ 
´1 ρpf 1 , 2q ´ ρpf 1q pΔn kq 2 . (93)t t ti´1,n i´1,n t i´1,n ti´1,n 2 i´1,n 

Therefore, using Eq. (60) and the law of iterated expectations, we obtain 

”  ı

ˆ 
˘

˙

”  ı 
r´1 

σr´1 1 
σr´1 ` r`1 

E n 2 f 1pβi
nqζi

np2q  
  Ft˚ “ Δn at˚ ˚ ρpf 1q ` σ1 ˚ ˚ ρpf 1 , 2q ´ ρpf 1q E pΔpi, nqq 2 

 

  Ft˚ 
i´1,n i´1,n t t t i´1,ni´1,n 2 i´1,n i´1,n

ˆ ˙ 
1 ` ˘ 1 ´ pH 

` ˘ 
“ Δn at˚ σr 

˚ 
´1 ρpf 1q ` σ1 ˚ σr 

˚ 
´1 ρpf 1 , 2q ´ ρpf 1q Li

´ r`1 p H . 
i´1,n ti´1,n 2 ti´1,n ti´1,n pH 2 

(94) 

Analogously to the proof of Eq. (80), the expression in Eq. (94) implies that 

Nn 
ż

ÿ

t t 

ξn
P 

i p1q ÝÑ αsp1q ds, (95) 
0i“1 

where 
ˆ ˙ 

H1 ` ˘ p1 ´ p q2 
` ˘

Hαsp1q “ σr´1 asρpf
1q ` σ1 ρpf 1 , 2q ´ ρpf 1q Li

´ r`1 p . (96)s s2 pH 2 
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2 

Proof of Corollary 2.1.1. The proof is straightforward. 

Proof of Corollary 2.1.2. The proof is straightforward. 

Proof of Corollary 2.1.3. Corollary 2.1.3 is a particular case of the Corollary 2.1.2 with r “ 2. Indeed, if r “ 2,
ř

 

 

 

  ` ˘ ` ˘
ř

n  

  
 

 

2 
p1´pHq2 

 
ΔiXr  , µr “ 1, µ2r “ 3 and Hp 

r 
pH “ p1´p 

Hp 

Hq2 
Li´1 p 

r 
n ´1 n 

i“1  Δi rX  H H“ “ 1, @pLi´ . Hence,r 
2 

i“1 
Corollary 2.1.2 implies that 

n ż t
ÿ  

  
 

 

2 P
 
ΔiXr  ÝÑ |σs|

2 ds, (97) 
0i“1 

and 
˜ ¸

n 
   

ż t ż t? ÿ 
 

 
Δi r

 

  
2 

|
2 stably 

n X ´ |σs ds ÝÑ αs dW 1 , (98)s 
0 0i“1 

where 

H H H
„ 

p1 ´ p q2 
` ˘ p1 ´ p q4 

` ˘ ` ˘ p1 ´ p q6 
` ` ˘˘2 ` ˘

j

H H H H Hαs 
2 “ µ2r H Li´2 p ´ 2 Li´1 p Li´2 p ` Li´1 p Li´2 p σs 

2r 

p ppHq2 ppHq3 

H H H
„ 

p1 ´ p q2 
` ˘ p1 ´ p q2 

` ˘ p1 ´ p q2 
` ˘

j

H H H σ2r“ Li´2 p ´ 2 Li´2 p ` Li´2 pµ2r H H H s p p p 
H H H H H

` ˘ p1 ´ p q2 
` ˘ ` ˘ p1 ´ p q2 p p1 ` p q p1 ` p q

“ µ2r ´ µ 2 
r H Li´2 p H σs 

2r “ µ2r ´ µ 2 
r H σs 

2r “ 2 σs 
2r 

p p p1 ´ pHq3 p1 ´ pHq

H4 ´ 2p1 ´ p q
“ . 

p1 ´ pHq 

(99) 

Proof of Theorem 5.2. We notice that 

n
t

ÿ

n 
´ ¯ N

ÿ

f ΔiXr “ 
i“1 

fpΔ˚ 
i Xq, (100) 

i“1 

˚ ˚where Δ˚X “ X ˚ ´X ˚ are the increments of the process Xt over the new (random) partition t , . . . , t i Nn
t ,n1,nt t 

´1,ni,n i 

of the interval r0, ts, constructed from the original partition by removing the points for which Bi,n “ 1. The 

statement of the Theorem holds by Theorem 3.3.1 of Jacod & Protter (2004). 

Proof of Theorem 2.3. Once we write the problem as in Eq. (100), the proof is similar to that of Theorem 

5.5.1 in Jacod and Protter (2012). Therefore, we present the general structure of the proof and omit technical 

details contained in Jacod and Protter (2012). 

For any semimartingale, say Zt, define 

¨ ˛ 
n
tN 

ÿ

n
tN 

? 
˚ ‹

fpΔ˚ 
i Zq, Vpf ; Zqn “ n ̋ Vpf ; Zqn ´ fpΔZsqt t 

˚ sďt 

Vpf ; Zqn 
t “ (101)

‚

.
ÿ

i“1 
,n 

For any m ě 1, denote by pT pm, rq : r ě 1q the successive jump times of the process Nm “ 1t1{măγď1{pm´1qu ‹µ 

and let Sp be the reordering of the double sequence pT pm, rq : r ě 1q into a single sequence. Now, fix m ě 1 
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1and let Pm be the set of all p such that Sp “ T pm , rq for some r ě 1 and some m1 ď m. Then, define 

ÿ 
` ˘ 

Xpmqt “ Xt ´ ΔXSp “ Xt ´ δ1tγą1{mu ‹ µ. (102) 
pPPm:Spďt 

˚ ˚Next, denote by Ωnpt, mq the set of all ω such that each interval pt , ti,ns contains at most one jump ofi´1,n
` ˘ 
δ1tγą1{mu ‹ µ and such that |Δi 

˚Xpmq| ď 2{m for all i. For each Sp, denote the edges of the interval 
˚ ˚ ˚ ˚pt , ti,ns, which contains Sp, by S´pn, pq “ t and S`pn, pq “ t Then, for all t ą 0 and m ě 1,i´1,n i´1,n i,n. 

Ωnpt, mq Ñ Ω almost surely as n Ñ 8. On Ωnpt, mq, we have 

Nn Nn 
t t

ÿ ÿ ÿ ÿ

Vpf ; Xqt
n “ fpΔi 

˚Xq “ fpΔi 
˚Xpmqq` fpΔS 

˚ 
`pn,pq

Xpmq`ΔXSp q´ fpΔ˚Xpmqq, 
˚ ˚i“1 i“1 pPPm:Spďt pPPm:Spďt
Nn,n Nn,nt t 

(103) 

and 
ÿ ÿ ÿ

fpΔXsq “ fpΔXpmqsq ` fpΔXSp q. (104) 
˚ ˚ ˚ sďt sďt pPPm:Spďt
Nn,n Nn,n Nn,nt t t 

Therefore, on Ωnpt, mq, we obtain the decomposition 

ÿ

n n ζnVpf ; Xq “ Vpf ; Xpmqq ` , (105)t t p 

pPPm:Spďt˚ 
N n,nt 

with 
´ ¯? 

ζp
n “ n fpΔS 

˚ 
`pn,pq

Xpmq ` ΔXSp q ´ fpΔXSp q ´ fpΔS 
˚ 
`pn,pq

Xpmqq . (106) 

Set 
? ? 

R´pn, pq “ npXSp ́  ´ XS´pn,pqq, R`pn, pq “ npXS`pn,pq ´ XSp q. (107) 

With this notations, ζp
n can be expressed as: 

ˆ ˆ ˙ ˆ ˙˙

? 1 1 
ζp
n “ n f ΔXSp ` ? pR´pn, pq ` R`pn, pqq ´ fpΔXSp q ´ f ? pR´pn, pq ` R`pn, pqq

n n
ˆ ˙ (108)

´ ¯ ? 1˜“ f 1 ΔXSp ` Rpn, pq pR´pn, pq ` R`pn, pqq ´ nf ? pR´pn, pq ` R`pn, pqq , 
n 

1where R̃pn, pq lies between ΔXSp and ? pR´pn, pq` R`pn, pqq. Exactly the same arguments as in Proposition 
n 

4.4.10 of Jacod and Protter (2012) gives that the sequence pR´pn, pq` R`pn, pqq is bounded in probability (for 

a fixed p), 
p p

R´pn, pq ´ σSp´ α´pn, pq ÝÑ 0, R`pn, pq ´ σSp α`pn, pq ÝÑ 0, (109) 

where 
? ? 

α´pn, pq “ npWSp ́  ´ WS´pn,pqq, α`pn, pq “ npWS`pn,pq ´ WSp q, (110) 

and 
ˆ

b b

˙ 
stably ´ ` pα´pn, pq, α`pn, pqq ÝÑ ξp 

´ U , ξp 
` U . (111)p p 
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Thus, 
` ˘ p

ζn ´ f 1 ΔXSp pR´pn, pq ` R`pn, pqq ÝÑ 0, (112)p 

and 
b b 

stably ´ ` pR´pn, pq ` R`pn, pqq ÝÑ σSp´ ξp 
´ U ` σSp ξp 

` U , (113)p p 

which implies that 
˘

ˆ

b b

˙

` stably ´ ` ζp
n ÝÑ f 1 ΔXSp σSp´ ξp 

´ Up ` σSp ξp 
` Up . (114) 

ř 
ζn 
pSince on Ωnpt, mq the sum , contains finitely many entries, Eq. (114) implies that˚ pPPm:Spďt

N n,nt 

˘

ˆ

b b

˙ 
´ `

ÿ

pPPm:Spďt 

ÿ

pPPm:Spďt 

` stably
ÝÑ f 1 ξ ´ 

p U ξ ` 
p Uζn 

p p ` σSp ΔXSp σSp´ . (115)p 
˚ ˚ 
Nn 
t Nn 

t,n ,n 

Then, since for p R Pm all jumps ΔXSp are smaller than 1{m in absolute value (and by the boundedness of 

σt), we obtain 

ˆ

b b

˙ ˆ

b b

˙

` `

ÿ

pPPm:Spďt ˚

ÿ

` f 1´ 
˘ ˘

´ ξ ´ ξ ` 
p U ` σSp p U ´ ξ ´ ξ ` 

p U ` σSp p Uf 1 
u.c.p.` ÝÑ 0.ΔXSp σSp´ ΔXSp σSp´p p p p 

˚ p:Spďt
Nn Nn,n ,nt t 

(116) 

Now, by the same arguments as in step 4 of the proof of Theorem 5.5.1 in Jacod and Protter (2012), for any 

� ą 0, we obtain 
¨ $ ,˛ 

& .?    
nlim lim sup P n  Vpf ; Xpmqq   ą � 

mÑ8 nÑ8 
˝Ωnpt, mq X ‚“ 0, (117)sup

% s 
-˚ sďt

Nn,nt 

which implies that 

˘

ˆ

b b

˙

` 
´ ` 

˚

ÿstably
ÝÑ f 1 ξ ´ 

p U ξ ` 
p UVpf ; Zqn 

t p ` σSp ΔXSp σSp´ . (118)p 

p:Spďt
Nn,nt 

˚ 

Since t is not a fixed time of discontinuity of the process Vpf ; Xqnt , for any fixed t the above convergence implies 

that 
ˆ

b b

˙ 
stably ´ ` Vpf ; Zqn ÝÑ 

ÿ 
f 1 

` 
ΔXSp 

˘ 
σSp´ ξp 

´ U ` σSp ξp 
` U . (119)t p p 

p:Spďt 

Finally, in order to complete the proof, it is enough to show that, for a fixed t, 

  

 

  
 

 ? ÿ ÿ p
 

  
 

  ÝÑ 0. 
sďt 

“ fpΔXsq ´Un fpΔXsq (120)n 
 

  
 

 sďt
N n,nt 

Let Ωn be the set on which there are no jumps in X bigger than 1 between the time tN 
˚ 

n and t. On Ωn,,nt? ř 
|fpxq| ď K |x|2 , for a constant K. Hence, on Ωn, Un ăsďt |ΔXs|

2 . Consequently, by conditioning ď K n ˚t
Nn,nt 
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on t ´ tN 
˚ 

n and using the law of iterated expectations, we obtain 
t ,n 

» fi 
» fi 

ż t ż 
”´ ¯ı? ? ?ÿ

ăsďt 
,n 

ffi

fl ď K — 
fl ď K 1 ˚|

2 
|δps, zq|2 nE –E rUn1Ωn s ď K nE 

– n E t ´ t|ΔXs λpdzq ds ,Nn,nt˚t˚ Nn 
tt ,n

Nn 
t 

(121) 
˚where K 1 is another constant and t ́  tNn is a discrete random variable with probability mass function given ,n

´ ¯ t
` ˘pk´1q˚ H Hby P t ´ tNn “ kΔn “ p1 ´ p q p for k P t1, 2, . . . u. Thus, ,nt 

8 
H HE rUn1Ωn s ď K 1

? 
n Δn 

ÿ 
ksp1 ´ p q 

` 
p 

˘s 
ÝÑ 0. (122) 

s“1 

p
Since Ωn Ñ Ω as n Ñ 8, E rUn1Ωn s Ñ 0 implies that Un ÝÑ 0, which completes the proof. 

Proof of Theorem 2.4. As in the proof of Theorem 2.3, on Ωnpt, mq, we obtain the decomposition: 

Vpf ; Xq 
ÿ

n n“ Vpf ; Xpmqq ` t t 

pPPm:Spďt˚ 
N n,nt 

ζn 
p , (123) 

where 
ˆ

b b

˙

`

ÿ

pPPm:Spďt 

ÿ

pPPm:Spďt 

˘stably
ÝÑ ´ ξ ´ ξ ` 

p U ` σSp p Uf 1 ` ζn 
p ΔXSp σSp´ . (124)p p 

˚ ˚ 
Nn Nn,n ,nt t 

Next, we notice that: ... 

Proof of Theorem 2.5. The proof is analogical to the proof of Theorem 2 in Bibinger and Vetter (2015). Hence, 

it is omitted. 

Proof of Lemma 3.1. Consider the decomposition: 

Apqqn “ A1 ` A2, (125)t 

where 
Nn 

t
ÿ 

q´1 qA1 “ ζi, with ζi “ n pΔpn, iqq ´ E rΔpn, iq sq , (126) 
i“1 

and 
Nn 

t
ÿ

q´1 qA2 “ n E rΔpn, iq s . (127) 
i“1 

Due to the independence of the Bernoulli variables, we have: 

”  

 

ı H1 ´ p ` ˘

HE rΔpn, iqqs “ E Δpi, nqq 
  F “ Δq Li´q (128)˚

H p ,ti´1,n n p 
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where the second inequality follows from equation (60). Consequently, we have: 

”  

  
ı 

E ζi   F ˚ “ 0, (129)ti´1,n 

and 
˜ 

` ˘2 ¸

”  

  
ı 1 ´ pH 

` ˘ 1 ´ pH 
` ` ˘˘2 

ζ2 ´2 H HE 
  F ˚ “ n Li´2q p ´ Li´q p . (130)i ti´1,n H Hp p 

Hence, ζi is F ˚ -martingale andti´1,n 

N
ÿ

t
n 

”   ı 
E ζ2  

  Ft˚ ď C n ´2Nn ÝÑ 0, (131)i ti´1,n 
i“1 

which implies that A1 is asymptotically negligible. 

Then, substituting (128) in A2 we obtain: 

N n 
t H H

ÿ 1 ´ p ` ˘ 1 ´ p ` ˘ 
q´1 Δq H H ´1NnA2 “ n n H Li´q p “ 

H Li´q p n t . (132) 
p p

i“1 

It can be easily seen that: 
n

ÿ 
` ˘

´1Nn 1 u.c.p. H n t “ p1 ´ Bi,nq ÝÑ 1 ´ p t. (133) 
n 

i“1 

Consequently, 
` 

H
˘2 

u.c.p. 1 ´ p ` ˘

HA2 ÝÑ Li´q p t, (134)
Hp 

which completes the proof. 

Proof of Theorem 3.2. By Theorems 3.1 and 3.2 of Hayashi et al. (2011), on Ωc , as n Ñ 8,
r0,ts 

ż t 
u.c.p.

PVcpf ; Xrq ÝÑ µr |σs|
r ds, (135) 

0 

and 
ˆ

ż t ˙ 
˘

ż t? stably a

` 
2 n PVcpf ; Xrq ´ µr |σs|

r ds ÝÑ µ2r ´ µ σr ap2qs dW 1 , (136)r s s 
0 0 

where apqqt is a stochastic process, such that for all t, as n Ñ 8, 

Nn 
t ż t

ÿ 
|Δpn, iq|q u.c.p.q´1Apqqn “ n ÝÑ apqqs ds, (137)t 

0i“1 

provided that such a process exists. By Lemma 3.1, the process apqqt exists for every q ą 0 and takes the 

following form: 
` 

H
˘2

1 ´ p ` ˘

H apqqt “ Li´q p t. (138)
Hp 

Hence, the statement of the present Theorem follows from straightforward algebraic computations. 
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Proof of Theorem 3.3. By Theorems 3.1 of Hayashi et al. (2011) and Lemma 3.1, 

N n 
t ż t

ÿ u.c.p. 
n Δpn, iq2´r |Δ‹ 

i X|
2r 

ÝÑ µ2r |σs|
2r ap2qs ds, (139) 

0i“1 

where apqqt is a stochastic process defined as in the proof of Theorem 3.2, which completes the proof. 
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	1 Introduction 
	1 Introduction 
	The identiﬁcation of volatility has been central to the econometric literature and has provided support to empirical work in an array of ﬁelds, from ﬁnance to macroeconomics. Less emphasis has been placed on higher-order moments. Yet, economic modeling is now beginning to be more attentive to the full distributional properties of economic time series -to tail properties, in particular. 
	In light of this premise, we study the large sample features of empirical higher-order moments computed from high-frequency (price) data, i.e., realized high-order moments. As is standard in the high-frequency literature, we assume prices evolve continuously in time and work with equally-spaced data on a sampling grid spanning the trading day. We obtain daily measures by suitably aggregating intradaily price changes on the assumed grid. Asymptotics are derived by letting the number of intradaily observation
	In large samples, it is important to distinguish between trajectories with and without jumps. In the absence of jumps, the properties of realized moments depend on whether they are constructed using even functions (the fourth moment case, for instance) or odd functions (as in the third moment case). In general, even functions lead to staleness-induced asymptotic biases and limiting zero-mean mixed normal distributions (the realized variance case being a notable exception for which the staleness-induced bias
	In a ﬁnite sample, the interaction between staleness and jumps can be understood as follows. Extended periods of price staleness ought to be associated with an ever-changing underlying (unobservable) eﬃcient price process. When staleness comes to an end, observed prices revert to prevailing eﬃcient prices but the latter may be far from observed prices. This eﬀect may generate spurious 
	In a ﬁnite sample, the interaction between staleness and jumps can be understood as follows. Extended periods of price staleness ought to be associated with an ever-changing underlying (unobservable) eﬃcient price process. When staleness comes to an end, observed prices revert to prevailing eﬃcient prices but the latter may be far from observed prices. This eﬀect may generate spurious 
	-

	jumps even on a purely continuous trajectory. These spurious jumps have the potential to inﬂuence the ﬁnite sample properties of the realized moment estimates, particularly in the continuous case and with even functions. The proposed asymptotic bias-correction for the case with discontinuous trajectories is shown to alleviate this issue drastically. 

	The presence of staleness leads to one key modiﬁcation in the evaluation of realized moments. Because it generates random periods of time over which the price changes are zero, it modiﬁes the sampling grid (by making it random and coarser than the original grid) and, as a consequence, the sample size (the eﬀective sample size being smaller than the original one). Given that the limiting order of the new sample size is the same as that of the old sample size, staleness does not yield modiﬁcations of the conv
	Realized variance is a well-posed estimator in the presence of both staleness and jumps. It is consistent for the overall quadratic variation and mixed normally distributed with an asymptotic distribution whose variance is enhanced by staleness. Higher-order moments are more delicate, the interaction between staleness and jumps playing a more critical role in this more general case. First, diﬀerently from realized variance, for the limit of higher-order moments to be meaningful about the tail properties of 
	Realized high-order moments are often used in the literature as inputs in traditional deﬁnitions of skewness and kurtosis. We ﬁnd that, on continuous trajectories, realized kurtosis may considerably overstate true kurtosis due to staleness. Similarly, while unbiased, continuous skewness is noisier in the presence of staleness. We also show that realized skewness and kurtosis diverge with the sample size in the presence of discontinuous trajectories. While realized skewness is a signed measure of jumps, more
	Thresholding, i.e., the use of truncation to identify small and large variation in asset prices, provides a natural way to address these issues. We deﬁne (truncated) continuous notions of skewness and kurtosis and show how bias-correcting kurtosis leads to accurate assessments of variation due to uncertainty in price volatility. Similarly, we may deﬁne (truncated) discontinuous notions of skewness and kurtosis, as well as various moments of the positive and negative jumps, not aﬀected by the presence of sta
	We re-evaluate the existing empirical evidence on the cross-sectional pricing of idiosyncratic skewness and kurtosis (c.f., Amaya et al., 2015 and Bollerslev et al., 2019). In order to do so, we use a large cross-section of US stocks and a large sample of high-frequency price data spanning 20 years. Consistent with the economic logic laid out in Amaya et al., 2015 and Bollerslev et al., 2019, we expect measures that are positively correlated with positive price discontinuities and negatively correlated with
	The paper proceeds as follows. Section 2 presents the model, the general family of estimators and limiting results for realized high-order moments in the continuous case (Subsection 2.2) and in the discontinuous case (Subsection 2.3). Section 3 proposes a simple bias-correction for realized moment estimates in the presence of staleness and studies its limiting properties. In Section 4 we study traditional realized skewness and kurtosis estimates and use their limiting features to further characterize the in

	2 Limit theory for realized moments 
	2 Limit theory for realized moments 
	2.1 Setting and assumptions 
	2.1 Setting and assumptions 
	We assume the underlying (sometimes unobserved) eﬃcient price process follows a continuous-time semimartingale with stochastic volatility and jumps while the observed price process (recorded on a speciﬁc sampling grid over the ﬁnite interval r0,ts) is contaminated by the presence of staleness. 
	t be the eﬃcient logarithmic price process deﬁned on a ﬁltered probability space pΩ, F, pFtq , Pq. The observed logarithmic price process Xt is deﬁned as: 
	Formally, let X
	r 

	rr
	XiΔ“ XiΔp1 ´ Bi,nq` Xpi´1qΔBi,n, (1) 
	n 
	n 
	n 

	where Δn “ , tti,n “ i Δn | i “ 0,...,nu is a partition of the interval r0,ts and Bi,n is a triangular
	1 

	n array of FiΔ-measurable Bernoulli random variables deﬁned on the same probability space as the eﬃcient price Xt. When volumes are zero (or limited, with zero price impacts), prices repeat themselves (Bi,n “ 1).When volumes are present (Bi,n “ 0), observed prices coincide with underlying eﬃcient prices. 
	n 
	1 

	H
	In the model, the probability of staleness is PpBi,n “ 1q“ p. When working with dependent Bernoulli variates and a frequency-speciﬁc probability of staleness, the model speciﬁcation in Eq. 
	n 

	(1) coincides with that in Bandi et al. (2017). The case of independent Bernoulli variates with a constant probability of staleness PpBi,n “ 1q“ p“ pis studied in the work of Phillips and Yu 
	H 
	H 

	n 
	(2009). Rich empirical evidence for the proposed speciﬁcation is contained in Bandi et al. (2019). The realized high-order moment estimators are generalized power variation estimators deﬁned as 
	n
	ÿ 
	ÿ 
	r

	PVpf; Xq“ n fpΔiXq, (2) 
	r
	r{2´1 

	i“1 
	r
	where either fpxq“|x|or fpxq“ x , for some r ą 0. Naturally, their asymptotics depend both on the dynamics of the eﬃcient price process and on those of the Bernoulli variates Bi,n, to which we now turn. 
	r 

	t evolves as 
	Assumption 1. Assume X

	ż ż ż żż ż Xt “ X` as ds ` σsdWs ` κps, δqpµ ´νqpds, dδq` κps, δqµpds, dδq, (3) 
	t 
	t 
	t 
	t 
	0 

	00 0 |κps,δq|ď10 |κps,δq|ą1 
	where µ is a Poisson random measure on R ˆ E with predictable compensator νpdt, dxq“ dtλpdxq, 
	` 

	According to the nomenclature in Bandi et al. (2019), the term “staleness” deﬁnes zero returns, whereas the term “idleness” deﬁnes zero returns with strictly zero volumes. Consistent with this terminology, we employ the term “staleness” to include all zeros. This choice can be viewed as being less restrictive than solely focusing on idleness and is economically-meaningful -if one views the probability of zeros as an illiquidity proxy -because the volumes associated with staleness are either zero (idleness) 
	1

	λ is a σ-ﬁnite measure on the set pE, Eq and the volatility function σ satisﬁes the equation 
	ż ż ż żż ż σt “ σ` ads ` σdWs ` κrps, δqpµr ´ νrqpds, dδq` κrps, δqµrpds, dδq, (4) 
	t 
	t 
	t 
	t 
	0 
	s 
	1 
	s 
	1 
	r
	r
	r
	r

	00 0 |κrps,δrq|ď10 |κrps,δrq|ą1 
	t and Vt are independent Brownian motions, and a, a, σand vare adapted c`adl`ag bounded processes. Given a sequence of increasing stopping times τu and deterministic, nonnegative functions γu deﬁned on E
	where, again, µ
	r 
	is a Poisson random measure with compensator ν
	r
	p
	dt, dx
	q“ 
	dtλ
	r
	p
	dx
	q
	, W
	1 
	1 
	1 

	ş 
	so that γpδqλpdδqă8, we have that |κpω, t, δq| ^ 1 ď γupδq for all u and all pω, t, δq with t ď τu.
	2

	u 
	i,n is a triangular array of i.i.d. Bernoulli random variates, independent of Xt, with E rBi,ns“ pPr0, 1q. 
	Assumption 2. Assume 
	B
	H 

	Assumption (1) is a standard suﬃcient condition required for the proof of the types of central limit theorems (CLTs) obtained in high-frequency econometrics. It postulates that the eﬃcient price, as well as its spot volatility, evolve as Brownian semi-martingales with jumps. While we allow for inﬁnite activity (small) jumps, our main interest is in economically-informative large discontinuities. The coeﬃcients of the semi-martingales are assumed to be bounded, a condition which can be relaxed by standard lo
	In order to distinguish between continuous and discontinuous trajectories, we consider two complementary subsets of Ω deﬁned as: 
	-

	Ω
	Ω
	Ω
	c 

	“tω P Ω: Xspωq is continuous on r0,tsu , (5)

	r0,ts 
	Ω“tω P Ω: Xspωq is discontinuous on r0,tsu . (6)
	j 

	r0,ts 
	stably 
	Below, we establish F-stable convergence in law (denoted by “ ÝÑ ”) of the power variation 
	‹

	Ž 
	estimates, where F“ F, and pFq is the sub-ﬁltration of pFtq, such that the process Xt
	‹ 
	t 
	‹ 
	‹
	tě0

	tě0 ttě0 is adapted to pFq, any F-martingale is a Ft-martingale, and Fis independent of the σ-algebras
	‹
	tě0
	‹
	‹ 

	tt t 
	generated by the Bernoulli variates. 

	2.2 Power variation on Ω
	2.2 Power variation on Ω
	c 

	r0,ts 
	We begin by assuming that the trajectory of the eﬃcient price process is continuous on r0,ts, that is, ΔXu “ Xu ´ Xu´ “ 0 @u Pr0,ts. In this case, the limiting properties of the realized high-order moments follow from the general limit theorem for realized power variation which we present next. 
	Theorem 2.1. Let Assumptions (1) and (2) hold and ΔXu “ 0 @u Pr0,ts. Set ρpfq“ E rfpUqs
	“‰ 
	and ρpf, kq“ E fpUqU@k ą 0, where U „ N p0, 1q. Then, as n Ñ8, 
	k 

	Ht
	q
	2 
	ż 

	` 
	u.c.p. 
	H
	˘ 

	PVpf; XqÝÑ Li´ r pρpfq|σs|ds, (7)
	r
	p1 ´ p 
	r 

	H 
	2

	p 
	0 
	ř
	8 

	where Lis pxq“ xis the polylogarithm function. Moreover, as n Ñ8,
	1 
	k 

	ks k“1 
	ˆ˙
	H t t t t
	ż 
	ż 
	ż 
	ż 

	?p1 ´ p q` ˘ stably 
	2 
	H
	|
	r 

	n PVpf; Xq´ Li´ r pρpfq|σs ds ÝÑ αsp1q ds` αsp2q dWs ` αsp3q dW ,
	r
	1 

	H 
	2

	p 
	s 

	0 000 
	(8) where W is a Brownian motion deﬁned on an extension of the original probability space and independent of W , 
	1 
	-

	ˆ˙ 
	H
	q
	2

	1 p1 ´ p `˘ 
	αsp1q“ σasρpfq` σpρpf, 2q´ ρpfqq Lir` 1 p , (9)
	s
	r´1 
	1
	s 
	1 
	1 
	1
	H 
	´ 
	2
	H 

	2 p 
	p1 ´ pq`˘ 
	H
	2 

	σ
	σ
	r

	αsp2q“ ρpf, 1q Lir`1 p , (10)
	´ 
	H 
	s 

	H 
	2

	p 
	and 
	g
	g
	f˜˜ ¸˜¸¸
	2

	ˆ˙

	f `˘ `˘ `˘ `˘ 2 `˘ `˘ αsp3q“ ρpf 2q Li´r pH ´pρpf qq2 2 Li´ pH Li´ pH ´ Li´ pH Li´2 pH ´ ρpf, 1q Li pH σ2r .
	p1 ´ pH q2 
	p1 ´ pHq4 
	p1 ´ pHq6 
	p1 ´ pHq2 
	e 
	r 
	r 
	r 

	´1 ´ r`1 s 2
	pH ppH q2ppHq3pH 
	2 2 
	2 

	(11) 
	Theorem 2.1 shows that both the probability limit and the asymptotic distribution of realized power variation are aﬀected by staleness (i.e., p). The polylogarithm (or Jonqui`ere’s) function, Lis pxq, which appears in Eq. (7) and in Eqs. (9)-(11), is a special function deﬁned by the power series 
	H

	8
	ÿ 
	1 
	Lis pxq“ x . 
	k 

	ks 
	k“1 
	It is available in standard software packages. Using the properties of the polylogarithm function, it is straightforward to show that, if p“ 0, then Theorem 2.1 coincides with the standard stable CLT for generalized power variation derived by Kinnebrock and Podolskij (2008). 
	H 

	In order to reveal the meaning of Theorem 2.1, we specialize the statement to a series of corollaries, depending on whether the function f is odd or even. If f is odd (for example, if fpxq“ x), then ρpfq“ 0 and the probability limit of the estimator is unbiased, as we formalize below. 
	3

	r
	Corollary 2.1.1. Assume fpxq“ x , where r is an odd integer. Let Assumptions (1) and (2) hold and ΔXu “ 0 @u Pr0,ts. Then, as n Ñ8, 
	n ´¯
	r 
	ÿ 

	u.c.p. 
	r 

	nΔiXÝÑ 0, (12) 
	2 
	´1 
	r 

	i“1 
	and stably 
	n 
	´¯ 
	ż 
	t 
	ż 
	t 
	ż 
	t 

	n 2XÝÑ p1q ds `p2q dWs `p3q dW , (13)
	r´ 
	1 
	ÿ 
	r 
	r 
	1 

	i s s ss 
	Δ
	α
	α
	α

	00 0
	i“1 
	where W is a Brownian motion deﬁned on an extension of the original probability space and inde
	where W is a Brownian motion deﬁned on an extension of the original probability space and inde
	1 
	-

	pendent of W , 

	ˆ˙ 
	1 `˘
	H 

	H
	q
	q
	q
	2

	p1 ´ p 

	H
	αs
	p1q“ σ
	r´1 

	s 
	σ
	σ
	1 

	s
	asµr´1 ` 
	µr`1 ´ µr´1q 
	p

	Lir`1 
	´ 

	(14)
	p,
	2
	2
	p 
	`˘ 
	H 

	µr`1Lir`1 
	´ 

	2
	q
	q
	q
	2

	p1 ´ p 

	H
	p 
	H
	αs
	p2q“ 
	σ
	σ
	r 

	s 
	(15)
	p 
	, 
	and p1 ´ pq
	d 
	H
	2 

	αsp3q“ µr Li´r ppq σ´pαsp2qq , (16) 
	2
	H
	2
	r 
	2 

	s
	p 

	H 
	with µr “ E r|U|s and U „ N p0, 1q. 
	r 

	When f is odd, power variation is asymptotically unbiased for zero. Intuitively, this result reﬂects the fact that increments of Brownian motion have symmetric distributions and staleness does not aﬀect symmetry (because of the local martingale features of the driving terms of the underlying eﬃcient price process). However, staleness inﬂuences convergence in law through the structure of the estimator’s limiting variance. 
	Note that, if f is odd, power variation converges stably in law to the process Ut deﬁned as the sum of three terms: 
	żż ż
	tt t Ut “ αsp1q ds ` αsp2q dWs ` αsp3q dW .
	1 

	s 
	00 0 
	The process Ut is uncentered mixed normal. Its look diﬀers from that of the standard limit of the
	şt ştrealized variance estimator because of the presence of the terms αsp1q ds and αsp2q dWs, which t, and on the driving shock of the local martingale portion of Xt, i.e., the Brownian motion Wt. Importantly, the diﬀerence is not driven by staleness, but emerges solely due to the fact that f is an odd function (Kinnebrock and Podolskij (2008) provide details in other contexts). As said, staleness, however, aﬀects both the location and the scale of Ut via the form of the process αtpiq, for i “ 1, 2, 3. 
	0 
	0 
	depend on the drift process, i.e., µ

	Consider, now, the case in which f is an even function (for example, fpxq“|x|, for a generic r ą 
	r 

	r rr
	0, or fpxq“ x , for an even r ą 0). If fpxq“ x with an even r ą 0, then PVpx ; Xq“ PVp|x|; Xq. 
	r
	r 
	r

	Corollary 2.1.2. Let Assumptions (1) and (2) hold and ΔXu “ 0 @u Pr0,ts. Let µr “ E r|U|s and U „ N p0, 1q. Then, as n Ñ8, 
	r 

	n H ż t u.c.p.
	r 

	´1 H 
	n ˇΔiXˇÝÑ Li´ r p µr |σs|ds, (17)
	ÿ 
	ˇ
	ˇ
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	ˇ
	ˇ
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	˘ 
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	i“1 
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	s
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	ds 
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	ÝÑ 
	0 
	αs 
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	dW
	s 
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	, 
	(18) 
	r 
	´1 
	r
	X 
	´ 
	H
	Li´ r
	2
	nn 
	pµr
	2
	p 
	pendent of W and 
	d 
	ˆ 
	“ 
	`˘
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	(19) 
	Corollary 2.1.2 shows that power variation measures computed from the absolute values of increments of the observed price process are -in general -asymptotically biased due to staleness. The case r “ 2 is an important exception. If r “ 2, the properties of the polylogarithm function imply 
	-

	p1´pqH
	H
	2 
	` 
	˘ 

	that, for any pPr0, 1q, Li´1 p “ 1. This case is considered below separately. If r ą 2,
	H 

	H
	p 
	the bias term takes the form of a function of two variables, r and p, which is increasing in both arguments. Table 2.2 displays values of the bias of the realized fourth moment, r “ 4, for diﬀerent values of p. As shown, the percentage bias can be substantial even for moderate values of p. For 
	H 
	H 
	H 

	H`˘ 
	q
	2 

	any pPp0, 1q, the percentage bias, Li´ r p´ 1, is larger than 0 if r ą 2 and it is smaller
	H 
	p1´p 
	H 

	H
	p 
	2 

	than 0 for r ă 2. In sum, the realized high-order moment are overestimated due to the presence of staleness. 
	Table 1: We report values of the bias of PV, with r “ 4, for diﬀerent ps. 
	H

	H
	p 
	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
	p1´pqH
	H
	2 
	` 
	˘ 

	Li´2 p 
	p 

	1.222 1.500 1.857 2.333 3.000 3.999 5.651 8.558
	H 
	Finally, if r “ 2, the power variation PVpx; Xq coincides with realized variance, denoted by RVpXq. The asymptotic properties of realized variance under staleness (but without jumps, as in this subsection) are investigated by Phillips and Yu (2009), who show that RVpXq remains (asympt. However, the limiting variance of RVpXq increases with the frequency of zeros. The results in Phillips and Yu 
	r
	r
	r
	r
	-
	totically) unbiased for the quadratic variation of the eﬃcient logarithmic price X
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	(2009) 
	(2009) 
	(2009) 
	can 
	be deduced from Theorem 2.1 by specializing it to the 
	case r 
	2, 
	as shown in the 

	Corollary below. 
	Corollary below. 

	Corollary 2.1.3. Let Assumptions (1) and (2) hold and ΔXu 
	Corollary 2.1.3. Let Assumptions (1) and (2) hold and ΔXu 
	“ 0 @u P r0, ts. 
	Then, as n Ñ 8, 
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	nˇˇÿ2ˇˇΔi rˇˇX i“1 
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	ds, 
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	and 
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	˜ nˇˇ? ÿ2 rˇˇn ˇˇΔiX i“1 
	´ 
	ż t |2|σs0 
	¸ds
	stablyÝÑ 
	ż t 0 
	αs dW 1 ,s
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	H 
	r0,ts 
	Table
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	4 ´ 2p1 ´ pα2 “ s p1 ´ pHq 
	qσ4 .s 
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	jPower variation on Ω 
	jPower variation on Ω 


	We now consider the situation in which the trajectories of the eﬃcient price Xt have discontinuities on the observation interval r0,ts. The case without staleness, with a focus on volatility, has been considered at some length in the literature (see, e.g., Barndorﬀ-Nielsen et al., 2006, and Veraart, 2010) 
	We devote our attention to the limiting behavior of power variation with large powers (r ě 2), namely the powers which are used in computing realized high-order moments and are aﬀected by the presence of jumps (as is well-known, jumps do not aﬀect the convergence in probability of power variation with r ă 2, see -e.g.-Barndorﬀ-Nielsen et al., 2006, and Jacod, 2008). 
	As is natural in the discontinuous case, we work with re-scaled (or, equivalently, non-normalized) power variations deﬁned as 
	´¯
	n
	ÿ
	i“1 
	f Δi 
	1´
	r
	X “ n 
	r 
	2
	PVpf; Xq. 
	r

	(23) 
	r 
	The standardization 1{n in Eq. (44) is now not needed because of convergence to a ﬁnite sum (that of functions of the jumps over the interval r0,ts). The standardization n
	2
	in Eq. (44) is also not 
	needed because one does not have to oﬀset the limiting probability order of the driving Brownian increments and we can let them vanish to zero to identify the genuine jump futures. Hence, we 
	multiply PV by n
	1
	´

	r 
	2
	. 
	First, we consider convergence in probability. In contrast to the continuous case, the probability limit of power variation on Ωis robust to staleness.
	j 

	r0,ts 
	r
	Theorem 2.2. Let Assumptions (1) and (2) hold. Let either fpxq“|x|or fpxq“ x , for some r ą 2. Then, as n Ñ8, 
	r 

	n ´¯ ÿ
	ÿ

	u.c.p.
	r
	f ΔiX ÝÑ fpΔXsq, (24) 
	i“1 sďt 
	where ΔXs “ Xs ´ Xs´. 
	On Ω, power variation with powers larger than 2 depends asymptotically only on jumps.
	j 

	r0,ts 
	´¯ ´¯ 
	3 
	3

	řř
	n n 
	r 
	r

	For example, the quantities ΔiX and ΔiX , which will be employed to compute
	i“1 i“1 
	realized skewness and realized kurtosis in Section 4, converge to the sums of the jumps of X on the interval r0,ts raised to the third and the fourth power, respectively. The limiting behavior of realized variance (i.e., the case r “ 2) is diﬀerent and is, therefore, considered separately at the end of this subsection. 
	In the absence of staleness, a general CLT for power variation on Ωwas obtained by Jacod 
	j 

	r0,ts 
	and Protter (2012) for r ą 3 and by Koike and Liu (2019) for r “ 3. In the ﬁrst case, power variation 
	and Protter (2012) for r ą 3 and by Koike and Liu (2019) for r “ 3. In the ﬁrst case, power variation 
	converges stably in law to a complex mean-zero limiting process, which depends on the jumps of 

	X. In the second case, the centering of the limiting distribution depends on the features of the continuous variation of the process. Our results are, as expected, contaminated by zeros, thereby 
	resulting in diﬀerent limiting processes, as follows from the two theorems below. 
	r
	Theorem 2.3. Let Assumptions (1) and (2) hold. Let either fpxq“|x|or fpxq“ x , for some 
	r 

	r ą 3. Then, as n Ñ8, 
	ÿn ´¯ÿÿ ´b b¯ 
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	nf ΔiX ´ fpΔXsqÝÑ pΔXSq σS´ U` σSU, (25) i“1 sďtp:Spďt 
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	p 
	ξ
	p 
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	p 
	p 
	ξ
	p 
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	where pSpqpď1 is a sequence of stopping times which exhausts the jumps of X and U , U , ξ , ξ are
	´ 
	` 
	´ 
	` 

	p ppp 
	´¯ four sequences of independent random variables deﬁned on an extension Ω, F, Pof the probability 
	r
	r
	r 

	space pΩ, F, Pq. The random quantities U and U follow standard normal distribution, ξ “ upLp
	´ 
	` 
	´ 

	pp p 
	and ξ “p1 ´ upq Lp, where the ups have uniform distributions on r0, 1s and the Lps are discrete
	` 

	`˘
	p 
	`´1 

	random variables on t1, 2,... u with PpLp “ `q“p1 ´ pq pfor ` Pt1, 2,... u. 
	r 
	H
	H 

	The limiting process deﬁned in Eq. (25) is a square-integrable F-martingale. The existence of such process follows from the same argument as in the proof of Proposition 5.1.1 in Jacod and 
	‹

	Protter (2012). Without staleness, the limiting process takes the form 
	fpΔXSq σS´ upU` σS1 ´ upU. (26) p:Spďt 
	ÿ 
	1
	p 
	` 
	p 
	? 
	p 
	´ 
	p 
	a 
	p 
	`
	˘ 

	Hence, staleness increases the asymptotic variance, thereby yielding an information loss when measuring jump moments by virtue of power variation. Finally, we note that the stable convergence in Theorem 2.3 holds for a ﬁxed t but it does not hold for the Skorokhod topology (see Remark 5.1.3 
	-

	in Jacod and Protter (2012) for details). We now turn to the case r “ 3. 
	3
	Theorem 2.4. Let Assumptions (1) and (2) hold. Let either fpxq“|x|or fpxq“ x . Then, as n Ñ8, 
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	n f ΔiX´ fpΔXsq ÝÑ Lip ρpfq|σs|ds` pΔXSq σS´ ξp U` σSξp U,
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	i“1 sďt p:Spďt 
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	(27) 
	where ρpfq“ E rfpUqs with U „ N p0, 1q, as above, and the second term on the right-hand side is deﬁned as in Theorem 2.3. 
	Theorem 2.4 shows that, if r “ 3, the power variation converges stably to an uncentered limit 
	H` ˘ş
	q
	2 
	H
	t 
	|
	3

	distribution. The bias is of the form Lipρpfq|σs ds, which coincides with the limit
	p1´p 
	´ 
	3 

	H
	p 0
	2 
	2 

	in probability of power variation on Ω. Notice that, in the odd case fpxq“ x, the bias disappears, 
	c 
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	r0,ts 
	as ρpxq“ 0. 
	3

	Finally, consider realized variance on Ω. As in the continuous case, RVpXq is a robust estimator 
	j 
	r

	r0,ts 
	of the quadratic variation (now inclusive of the sum of the squared jumps) of the eﬃcient price 
	of the quadratic variation (now inclusive of the sum of the squared jumps) of the eﬃcient price 
	process. However, the limit distribution of RVpXq is contaminated by staleness, as evidenced by the theorem below. 
	r


	Theorem 2.5. Let Assumption (1) and (2) hold. Then, as n Ñ8, 
	ż t 
	ż t 
	ÿ

	u.c.p. 2
	RVpXqÝÑ |σs|ds `pΔXsq (28) 
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	where α“ σand the second term on the right-hand side is deﬁned as in Theorem 2.3.
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	3 Correcting for staleness 
	3 Correcting for staleness 
	Theorem 2.1 implies that, on Ω, odd power variation is robust to staleness (in the sense of
	c 

	r0,ts 
	convergence in probability) while even power variation is asymptotically biased. 
	We note that the presence of zeros has the eﬀect of turning the original deterministic sampling grid into a new random (and coarser) grid. Hence, the limiting bias may be corrected by utilizing the logic in Hayashi et al. (2011) for dealing with power variation on irregular grids. 
	Let t,...,t
	˚ 
	1,n
	˚ 
	N

	nt
	,n 
	be the (random) partition of the interval r0,ts constructed from the original 
	(deterministic) partition by removing the points for which i,n “ 1. SetΔpi, nq“ t´ tand
	B
	˚ 
	˚ 

	i,n i´1,n 
	the increments of the process Xt over the new partition. Note that
	˚
	denote by ΔX “ X´ X
	˚ 
	i 
	t 
	t

	˚ 
	´1,n
	´1,n
	i,n

	i 
	r
	ΔX “ ΔX, by construction. We deﬁne the corrected power variation as: 
	˚ 
	i 
	˚ 
	i 

	´¯
	nt
	ÿ
	PVpf, Xq“ Δpi, nqf pΔpi, nqq ΔX. (30) 
	c
	r
	´1{2 
	i 
	˚

	i“1 
	Naturally, the term Δpi, nq in the f function accounts for the new grid (and the new, eﬀective number of observations) by replacing the original standardization (i.e., n). Similarly, the previous standardization (of the sum) by the number of observations 1{n “ Δn is now replaced by Δpi, nq. 
	´1{2 
	1
	{2

	The limiting properties of Eq. (30) can be derived from the work of Hayashi et al. (2011) provided 
	˚˚ 
	N 
	the random partition t 
	generated by the Bernoulli variables satisﬁes suitable regularity 
	,...,t 
	N
	nt
	,n
	,n
	1,n 

	conditions discussed below. 
	i,n of the eﬃcient price process, the random durations Δpi, nq are independent of Xt, which guarantees that condition pCqof Hayashi et al. (2011) holds. Next, the mutual independence of Bi,n implies that Δpn, iq
	First, due to the independence of the triangular array of Bernoulli variates 
	B

	sup 
	i“1,...N
	nt 
	`1 
	converges in probability to zero as n Ñ8. Finally, under Assumption (2), the “power variations” of the durations Δpi, nq converge uniformly in probability, as follows from the following lemma. 
	Lemma 3.1. Let Assumption (2) hold. Then, for any q ą 0, as n Ñ8, 
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	t. (31)
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	Lemma 3.1 implies that condition pDpqqq of Hayashi et al. (2011) holds (with rn “ n in their notations) for every q ą 0. We note that, by imposing economically-motivated structure on data sparsity (due to staleness), our proposed approach provides a data generating process which permits theoretical veriﬁcation of the condition pDpqqq in Hayashi et al. (2011). 
	We can now establish the limiting properties of the corrected power variation on Ω.
	c 

	r0,ts 
	Theorem 3.2. Let Assumptions (1) and (2) hold and fpxq“|x|with r ą 0. Then, on Ω, as
	r 
	c 

	r0,ts 
	n Ñ8, 
	ż t u.c.p.
	PVpf; Xq ÝÑ µr |σs|ds. (32) 
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	0 
	Moreover, as n Ñ8, 
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	n PVpf; Xq´ µr |σs|ds ÝÑ µr ´ µLi´2 p σdW. (33)
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	Theorem 3.2 shows that corrected power variation is robust to staleness: PVpf, Xq converges in probability to the same limit as PVpf, Xq and PVpf, Xq. The asymptotic variance of PVpf, Xq is, 
	c
	r
	c
	c
	r

	` ˘ş
	1´pq t
	p
	H
	2 

	however, contaminated by staleness. Speciﬁcally, it takes the form pµr ´ µq Li´2 pσds
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	rpH 0 s 
	2 
	1´p H`˘ and, since Li´2 pą 1 @pPp0, 1q, it is larger than the asymptotic variance of PVpf, Xq
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	which takes the simpler form pµr ´ µ q ds.
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	r 0 s 
	Due to Lemma 3.1, we can establish an interesting convergence result, which can be used to estimate the asymptotic variance of PVpf; Xq: 
	c
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	Theorem 3.3. Let Assumptions (1) and (2) hold and r ą 0. Then, on Ω, as n Ñ8,
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	In light of Theorem 3.3, in spite of the information loss due to staleness, the asymptotic variance of PVpf; Xq can be estimated as: 
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	4 Realized skewness and kurtosis 
	4 Realized skewness and kurtosis 
	This section applies the previous limiting results to skewness (S) and kurtosis (K) measures. Ignoring means, write 
	´¯ ´¯ ´¯ ´¯ 
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	rr rr
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	n 
	(36) 
	In terms of power variation, the quantities in Eq. (36) can also be expressed as 
	PVpx; Xq PVpx; Xq
	3
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	S “ and K “ . (37)
	´¯ 
	2 

	RVpXq RVpXq 
	´¯3 
	r
	2 
	r

	Eq. (36) is classical in the sense that it presents textbook notions of skewness and kurtosis broadly applied in the literature. We will show that these typical notions have, in general, atypical limits 
	when doing inﬁll asymptotics, as reasonable in the presence of high-frequency data. Table 2 provides the summary of the limiting values (in the sense of convergence in probability) 
	for both measures, with and without the correction for zeros and with and without jumps. 
	Table 2: The table reports the limits in probability of realized skewness and kurtosis in the absence (on Ω) and the presence (on Ω) of jumps and in the 
	c
	j 

	H
	presence (pą 0) or absence (p “ 0) of return zeros 
	H 

	Table
	TR
	pH ą 0 
	Hp“ 0 

	TR
	jon Ωc on Ωr0,ts r0,ts 
	on Ωc r0,ts 
	jon Ωr0,ts 

	S 1? S n K 1 K n Sc 1? Sc n Kc 1 Kc n 
	S 1? S n K 1 K n Sc 1? Sc n Kc 1 Kc n 
	0 8ř 3pΔXs qsďt0 ˜ ¸ 3 ş2 t ř |2 ds` pΔXsq20|σssďtşH 2 ` ˘ t p1´p qH3 |4 ds0|σsLi´2 pş`8 pH t 2p |2 dsq0|σsř 4pΔXs qsďt0 ˜ ¸2ş t ř|2 ds` pΔXsq20|σssďt0 8´ ¯ ´ ¯ 1´p H H ř 3 Li´1 p φpΔXSppH p:Spďt 0 ˜ ¸ 3 ş2 t ř|2 ds` pΔXsq20|σssďtşt3 |4 ds0|σsş `8 t 2p |2 dsq0|σs´ ¯ ´ ¯ 1´p H H ř 4 Li´1 p φpΔXSppH p:Spďt 0 ˜ ¸2ş t ř|2 ds` pΔXsq20|σssďt
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	8ř 3pΔXsqsďt˜ ¸ 3 ş2 t ř |2 ds` pΔXsq2 0|σssďt`8 ř 4pΔXsqsďt˜ ¸2ş t ř|2 ds` pΔXsq2 0|σssďt8 ř 3pΔXsqsďt˜ ¸ 3 ş2 t ř|2 ds` pΔXsq2 0|σssďt`8 ř 4pΔXsqsďt˜ ¸2ş t ř|2 ds` pΔXsq2 0|σssďt


	trajectories. On discontinuous trajectories, irrespective of staleness, Theorems 5.2 and 2.5 (because of the quadratic term in the denominator) require re-scaling (by n ) to identify jump skewness. For a large n, on Ω, we have 
	´1{2
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	Therefore, in the absence of re-scaling, realized skewness may only be interpreted as a signed measure of jumps on the interval r0,ts. Large positive (negative) values of S support the presence of suﬃciently many and/or suﬃciently large (relative to the quadratic variation) positive (or negative) jumps on r0,ts. Small values of S are symptomatic of absence of large jumps on r0,ts. 
	Realized kurtosis behaves diﬀerently. In the absence of jumps, the value of realized kurtosis depends on volatility and the number of zeros. The bias associated with zeros takes the form 
	p1 ´ pq`˘ 
	H
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	Li´2 p ą 1, (39) 
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	which increases with pand may reach large values, as illustrated in Table 1. In the presence of jumps, for large n values, we have: 
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	indicating that kurtosis ought to be large on Ω. In essence, kurtosis may result in large values on
	j 

	r0,ts j
	Ω
	Ω
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	as well as on Ω
	r0,tsr0,ts
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	We now consider corrected (as in Section 4) versions of realized skewness and kurtosis deﬁned as 
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	Note that we do not correct the realized variance in the denominators of Sand Kas RVpXq is robust to staleness. 
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	As expected, correcting realized skewness for the presence of staleness does not lead to any asymptotic improvement of the measure. In the case of kurtosis, correcting for staleness eliminates bias on Ωat the cost of re-scaling the jumps on Ω. OnΩ, for large n, corrected kurtosis
	c 
	j 
	c 

	r0,tsr0,tsr0,ts 
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	In other words, if volatility is constant over the interval r0,ts, K“ 3 as for the Gaussian distribution. However, on Ω, we have 
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	Hence, asymptotically, corrected realized kurtosis ought to take on large values on Ωdue to the
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	r0,ts 
	exploding term produced by the jumps. In a ﬁnite sample, there is a chance of underestimation 
	H `˘ H
	because the random variables φp are such that |φp|ă 1 almost surely (even though Li´1 p“ 
	1
	´p 
	H 

	p 
	H ).
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	1´p 
	In sum, whether one accounts for staleness or not, during jump days the limiting properties of standard skewness and kurtosis measures depend on the sample size. Arguably, this is not a favorable property of these classical measures when applied to high-frequency data. Below, we provide a solution. 

	5 Disentangling continuous variation from jumps 
	5 Disentangling continuous variation from jumps 
	In the absence of staleness, the continuous variation of Xt can be separated from jumps using truncated power variation, as in Mancini (2009). The truncation techniques remains valid under the presence of zeros, provided staleness is properly taken into account, as explained below. 
	Realized truncated power variation is deﬁned as 
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	TPVpf; Xq“ n fpΔiXq¨ I, (44) 
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	where It.u denotes the indicator function and θn is a (stochastic) sequence such that θn Ñ 0 with ? Ñ8 a.s. Classical arguments as in Mancini (2009) imply that, irrespective of the 
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	presence of jumps (i.e., on both Ωand Ω), for suﬃciently large n, we have: 
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	where Xdenotes the continuous portion of X. 
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	In order to account for the presence of zeros, the corrected version of truncated power variation is now deﬁned as: 
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	where the αis are some positive bounded random variables and ρ Pp0, 1{2q. Theorem 5.1. Let Assumptions (1) and (2) hold, let fpxq“|x|with r ą 0 and let the functions
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	γu in Assumption (1) satisfy γpδqλpdδqă8 for some 0 ă β ă 2. If either r ď 2 or r ą 2 and
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	n TPVpf, Xq´ PVpf, q ÝÑ 0. (48) 
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	Thus, the variation of the jump components can be measured by (non-normalized) jump power variation deﬁned as 
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	On Ω, Jpf, Xq behaves as the non-normalized power variation in Theorem 5.2. However, the use
	j 
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	r0,ts 
	of truncation allows us to relax the assumption r ą 2 of the theorem. In other words, we have the following theorem. 
	Theorem 5.2. Let Assumptions (1) and (2) hold and fpxq“ O p|x|q as x Ñ 0 for some r ą 0. Then, as n Ñ8, 
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	u.c.p.
	Jpf, Xq ÝÑ fpΔXsq. (50) 
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	sďt 
	This result allows us to simply employ the sum of the jumps (Jpx, Xq) when measuring the (unsigned or signed) strength of the jump contribution. 
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	In order to account for the sign of the jump variation, we consider the sum of the positive and negative jumps measured respectively as: 
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	(51) 
	In applications, these measures may represent less noisy assessments of the contributions of jumps than the more volatile jump skewness and kurtosis measures which could readily be obtained from Eq. (49) above. 

	6 High-order moments and asset prices 
	6 High-order moments and asset prices 
	The cross-sectional pricing of higher-order moments has been the subject of recent literature (e.g., Amaya et al., 2015 and Bollerslev et al., 2019) The work of Amaya et al. (2015) points to the negative pricing of idiosyncratic skewness, as measured by K in Eq. (36), an empirical ﬁnding justiﬁed by market participants’ attention (resp. aversion) to large positive (resp. negative) payoﬀs. They 
	The cross-sectional pricing of higher-order moments has been the subject of recent literature (e.g., Amaya et al., 2015 and Bollerslev et al., 2019) The work of Amaya et al. (2015) points to the negative pricing of idiosyncratic skewness, as measured by K in Eq. (36), an empirical ﬁnding justiﬁed by market participants’ attention (resp. aversion) to large positive (resp. negative) payoﬀs. They 
	-

	also report on the positive pricing of idiosyncratic kurtosis, a somewhat less robust result possibly explained by aversion to diﬀusive/jump variation in volatility. Just like idiosyncratic skewness, the diﬀerence between positive semi-variance and negative semi-variance (“relative signed jumps” or RSJ) is a measure of the relative contribution of positive and negative jumps to price variation. It is expected to be positive (resp. negative) when positive (resp. negative) jumps dominate. Bollerslev et al. (2
	-


	We re-evaluate this literature, and expand on its scope, along several dimensions. We have previously shown that skewness and kurtosis are dominated by jumps in days in which jumps are present (c.f. Section 4). In days without jumps, skewness is a noisy measure of zero, while kurtosis captures stochastic volatility, inclusive of jumps in volatility. As discussed, continuous kurtosis suﬀers from severe upward biases in the presence of staleness (c.f. Section 4). We have also shown that, more generally (i.e.,
	We consider a large cross-section of intraday prices for 4809 NYSE-listed stock. The data are recorded on a one-minute grid from 9:30 a.m. to 4 p.m., from January 1, 1998, to June 29, 2018, thereby amounting to a long sample of intra-daily data ideally suited for a pricing study. In order to soften the eﬀect of market microstructure noise, we aggregate returns up to the ﬁve-minute frequency n, in our previous notation). We remove from consideration days with more than 70% of zero intraday returns and for wh
	(Δ

	We begin by illustrating the impact of staleness on skewness and kurtosis measures in our data. Figure 1 shows percentiles (the 10, the 50and the 90) of the diﬀerence between traditional realized skewness and kurtosis and the same measures corrected for the presence of zeros. The ﬁgure fully supports our theoretical predictions. Regarding skewness, the presence of zeros does not induce biases but makes the measure noisier (an implication of Corollary 2.1.1), as shown by the increase in the width of the dist
	th 
	th 
	th

	Figure
	Panel A: Skewness Panel B: Kurtosis 
	Panel A: Skewness Panel B: Kurtosis 


	Figure 1: Panel A: median diﬀerence between daily raw skewness and daily corrected (for staleness) skewness across the stocks in our sample (a total of 11,892,327 daily observations). We report it along with the 10and the 90percentile, as a function of the percentage of zeros during the day. Panel B: median diﬀerence between daily raw kurtosis and daily corrected (for staleness) kurtosis across the same stocks, again as a function of the percentage of zeros during the day. 
	th 
	th 

	need for bias-correcting realized kurtosis, a measure whose documented correlation with illiquidity proxies is, at least in part, a by-product of its correlation with zeros. It also provides a justiﬁcation 
	for obtaining more precise skewness estimates by bias-correcting realized skewness. 
	6.1 Cross-sectional regressions 
	6.1 Cross-sectional regressions 
	Next, we turn to asset pricing implications. We assess the relation between future excess returns and past realized skewness and kurtosis by carrying out (over time) cross-sectional regressions, as in 
	Fama and MacBeth (1973). For each time t, we estimate the following model: 
	ri,t`1 “ αi ` βXi,t ` .i,t`1, (52)
	1 

	t 
	where ri,t`1 denotes the weekly excess return of the i-th stock over week t, t ` 1 and Xi,t is a vector of weekly characteristics for the i-th stock over week t ´ 1,t. The vector includes the weekly (averaged, over ﬁve consecutive trading days) measures of realized skewness and kurtosis (S and K), the weekly measures of truncated skewness and kurtosis (TS and TK), weekly bias-corrected truncated skewness and kurtosis (TSand TK), past weekly returns (R), the square-root of weekly 
	c 
	c

	? 
	truncated realized variance ( ), the weekly average of jumps (J), the weekly average of positive 
	TRV

	jumps (J ), the weekly average of negative jumps (J ), the weekly average percentage of zeros (RZ), 
	` 
	´ 

	the weakly illiquidity ratio of Amihud (2002) (Ami) and the standardized (by realized variance) 
	the weakly illiquidity ratio of Amihud (2002) (Ami) and the standardized (by realized variance) 
	diﬀerence between positive semi-variance and negative semi-variance (RSJ). Table 3 reports the time series averages of the estimated slopes βts as well as the associated t-statistics. 
	p


	Model (1) is the same as the main model in Amaya et al. (2015) and conﬁrms that, when employing S, realized skewness is negatively priced. This ﬁnding is usually interpreted as being symptomatic of market’s preference over positively skewed stocks and, symmetrically, aversion to negative skew. Because positively skewed stocks usually display higher idiosyncratic volatility, the negative price of skewness is sometimes invoked as a justiﬁcation for the idiosyncratic volatility puzzle of Ang et al. (2006), i.e
	2 

	Model (2) considers truncated (and, hence, continuous) versions of realized skewness and kurtosis. While statistical signiﬁcance decreases, thereby pointing to a critical, separate role for jumps in cross-sectional pricing, results are qualitatively similar to what was found in model (1). Because continuous skewness is, in principle, a noisy measure of zero, its pricing ability is surprising. We return to it, and explain it, in model (5). 
	As emphasized, realized kurtosis is biased in the presence of staleness. It is, therefore, interesting to add the weekly percentage of zeros to truncated skewness and kurtosis. We do so in model (3). Consistent with theory, truncated skewness is hardly impacted. Truncated kurtosis, however, now has a statistically-signiﬁcant and negative partial eﬀect on expected returns. In other words, the positive partial eﬀect of truncated kurtosis on expected returns has been entirely absorbed by its previous source of
	In order to provide direct evidence about the impact of staleness on realized measures, we now bias-correct the truncated measures. In agreement with theory and the logic of model (3), in model 
	(4) we show that bias-corrected truncated kurtosis has, indeed, a statistically-signiﬁcant, negative 
	The association between low prices, high idiosyncratic volatility and positive skewness is, for instance, a feature of lottery stocks, see Kumar, 2009. 
	2

	partial eﬀect on cross-sectional returns. Bias-corrected truncated skewness also continues to have a statistically-signiﬁcant negative impact on expected returns, a result which was deemed earlier to be surprising in light of the fact that truncated skewness should be a noisy measure of zero carrying no pricing information. We address this issue next. 
	It is arguably the case that the previous speciﬁcations omit natural controls. The ﬁrst is a measure of the eﬃcient price variance. The second is a measure of trend, something which may have (and will be shown to have) a strong impact on continuous skewness in small sample. The third is a measure of discontinuous variation, such variation being ruled out by truncation.
	? 
	In model (5), we add R (the total return over the previous week) and . The loading on TSbecomes insigniﬁcant, thereby supporting the idea that continuous skewness was -in previous speciﬁcations -likely proxying for a trend. The trend variable has a strongly signiﬁcant negative coeﬃcient, representing reversals. Truncated realized variance has a statistically-signiﬁcant negative coeﬃcient in line with the negative pricing of idiosyncratic volatility ﬁrst put forward by Ang et al. (2006). 
	TRV
	c 

	In model (6), we add jumps. The measure J is deﬁned as the weekly sum of intra-daily returns greater (in absolute value) than the truncation level. Jumps are strongly signiﬁcant and with an economically-sound negative sign. The economic interpretation of this negative sign is analogous to that on the negative sign of skewness: market participants are naturally conjectured to fear large negative returns and like large positive returns. These predispositions appear to be reﬂected in equilibrium expected retur
	Our measure of illiquidity (RZ) is added in model (8) (with jumps) and model (9) (with both positive and negative jumps) along with Amihud’s measure (Amihud, 2002), Ami. As emphasized, the former has been found in Bandi et al., 2019 to capture intra-daily volume dynamics (volume levels and volume clusters) and is internally consistent given the assumed data generating process, the latter is a key benchmark in the literature deﬁned as price impact per unit volume. We ﬁnd once more -that the impact of realize
	-

	Finally, we evaluate robustness to the use of realized semi-variance. We employ the RSJ measure of Bollerslev et al. (2019). In model (10), we conﬁrm their main result, namely RSJ is a better proxy for jumps than raw skewness. In model (11), where we add the trend measure, we notice that the signiﬁcance of RSJ is strongly attenuated. In model (12), which uses our measure of jumps based 
	Finally, we evaluate robustness to the use of realized semi-variance. We employ the RSJ measure of Bollerslev et al. (2019). In model (10), we conﬁrm their main result, namely RSJ is a better proxy for jumps than raw skewness. In model (11), where we add the trend measure, we notice that the signiﬁcance of RSJ is strongly attenuated. In model (12), which uses our measure of jumps based 
	on truncation, separated into its positive and negative components, the coeﬃcient on RSJ becomes insigniﬁcant. While we support the logic in Amaya et al. (2015) and Bollerslev et al. (2019) regarding the importance of jumps in cross-sectional pricing, their same logic justiﬁes using measures that are less contaminated by continuous variation (and by staleness, as a result). A simple jump measure constructed using (staleness-adjusted) truncation appears to achieve this goal better than both raw skewness and 

	Our ﬁnal speciﬁcation (13) summarizes our main conclusions. Continuous (corrected) skewness and kurtosis are insigniﬁcant. So is the RSJ measure of Bollerslev et al. (2019), when controlling for jumps directly, and Amihud’s illiquidity measure, when controlling for staleness. Instead, we ﬁnd signiﬁcant pricing impacts associated with idiosyncratic volatility, the trend variable and jumps, all with a negative sign, and realized zeros, with a positive sign. 

	6.2 Single-sorted portfolios 
	6.2 Single-sorted portfolios 
	We complement, and support, the previous results by constructing long-short (high-low) portfolios and examining their payoﬀs. After sorting stocks into deciles based on the level of each characteristic, we go long stocks in the highest characteristic decile and short stocks in the lowest characteristic decile. We report both average returns and average returns in excess of the Fama-French 5-factor model (alphas) over the next 5 days (c.f. Table 4) and over the next 22 days (c.f. Table 5). 
	Over the shorter 5 day horizon, the only unexpected ﬁndings (solely due to lack of conditioning on other driving characteristics) have to do with the statistically-signiﬁcant, negative average returns associated with portfolios constructed on the basis of negative jumps and Amihud’s measure. Both the former characteristic (a more direct measure of adverse price moves than skewness) and the latter characteristic (a measure of illiquidity) should be associated with positive -rather than negative, as in the da
	In order to account for the impact of alternative characteristics, we now turn to double sorts. We focus exclusively on key variables resulting from the previous theoretical and empirical treatment: jumps and zeros. 

	6.3 Double-sorted portfolios 
	6.3 Double-sorted portfolios 
	We double-sort into 25 quantile portfolios. We focus on realized zeros and aggregate jumps, realized zeros and positive jumps and realized zeros and negative jumps and double sort in both directions, ﬁrst based on one characteristic and then the other (c.f., Table 6 and Table 7). 
	In agreement with previous ﬁndings, the average returns on portfolios long high zero/low jump stocks (irrespective of whether the jumps are positive, negative or aggregate) and short low zero/high jump stocks are positive. So are their 5-factor Fama-French alphas. Similarly, the average returns and alphas on portfolios long low zero/high jump stocks and short high zero/low jump stocks are negative. 
	We conclude that the interplay between granular features of the eﬃcient price distribution (i.e., price discontinuities) and features of the trading process aﬀecting the way in which eﬃcient prices are revealed (i.e., zeros) has important pricing implications at high frequencies. 


	7 Conclusions 
	7 Conclusions 
	This paper evaluates the properties of high-frequency high-order moments under a data generating process accounting for two key stylized features, namely infrequent discontinuities in unobserved equilibrium prices and staleness in observed prices. The latter is a phenomenon known to be linked to trading volumes’ ﬁrst and second moments and, therefore, to the level and variability of liquidity (c.f., Bandi et al., 2019). 
	We study identiﬁcation and pricing. In terms of identiﬁcation, we discuss how the interaction between price discontinuities and prices staleness will, in general, lead to biased and/or noisy high-order moment estimates. A combination of thresholding and corrections for staleness-induced biases is, however, shown to be eﬀective in yielding information about high-order variation, both in its continuous and in its discontinuous notion. 
	In terms of pricing, we document an interesting interaction between genuine features of the equilibrium price process (jumps) and features of the trading mechanism (staleness). Because, in our framework, jumps and staleness are aspects of the same data generating process for observed prices, not only is our measure of liquidity (zeros) natural, it is model-driven. We, therefore, view the proposed approach as a ﬁrst step in the analysis of the high-frequency pricing of both granular price features and tradin
	Table 3: Reports Fama-MacBeth cross-sectional regressions of weekly stock returns on stock characteristics. 
	(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 
	24 
	S K TS TK TSTKR 
	c 
	c 

	? 
	TRV 
	TRV 

	J 
	J ` 
	J ´ 
	RZ AMI RSJ 
	´0.098˚˚˚ 
	(´6.415) 
	0.004 
	(1.143) 
	´0.098˚˚˚ ´0.096˚˚˚ 
	(´5.043) (´4.933) 
	0.004 ´0.017
	0.004 ´0.017
	˚˚ 

	(0.668) (´2.131) 
	´0.1270.017 0.029
	˚˚˚ 
	˚ 

	(´5.344) (1.019) (1.679) 
	´0.014 ´0.007 ´0.007 
	(´1.570) (´0.931) (´0.960) 
	´2.102˚˚˚ ´2.009˚˚˚ 
	(´7.277) (´6.836) 
	´0.073˚˚˚ ´0.073˚˚˚ 
	(´3.763) (´3.730) 
	´0.026
	˚˚ 

	(´2.575) 
	0.384˚˚˚ 
	(2.978) 
	0.031
	˚ 

	(1.836) 
	´0.012 
	(´1.575) 
	´1.997˚˚˚ 
	(´6.830) 
	´0.083˚˚˚ 
	(´3.975) 
	´0.016 
	(´1.434) 
	´0.052˚˚˚ 
	(´4.240) 
	0.028
	˚ 

	(1.696) 
	´0.007 
	(´1.033) 
	´1.904˚˚˚ 
	(´6.700) 
	´0.075˚˚˚ 
	(´3.432) 
	´0.037˚˚˚ 
	(´3.682) 
	0.386˚˚˚ 
	(3.738) 
	´0.291 
	(´1.045) 
	´0.010 0.009 
	(´0.710) (0.639) 
	0.002 0.003 
	(0.356) (0.409) 
	0.0270.033
	˚ 
	˚˚ 

	(1.660) (1.991) 
	´0.007 ´0.008 
	(´1.067) (´1.168) 
	´1.905˚˚˚ ´1.110˚˚˚ ´1.392˚˚˚ ´1.833˚˚˚ 
	(´6.718) (´3.052) (´3.909) (´5.991) 
	´0.075˚˚˚ ´0.076˚˚˚ 
	(´3.456) (´3.482) 
	´0.040˚˚˚ ´0.036˚˚˚ ´0.039˚˚˚ 
	(´3.556) (´2.866) (´3.347) 
	´0.032´0.028´0.031
	˚˚˚ 
	˚˚ 
	˚˚˚ 

	(´2.770) (´2.290) (´2.629) 
	0.412˚˚˚ 0.409˚˚˚ 
	(3.715) (3.695) 
	´0.267 ´0.265 
	(´0.859) (´0.856) 
	´0.745´0.333´0.116 ´0.059 
	˚˚˚ 
	˚˚˚ 

	(´6.695) (´3.367) (´1.240) (´0.700) 
	25 
	Table 4: Average returns on long-short (high-low) portfolios over 5 trading days 
	(1) 
	(1) 
	(1) 
	(2) 
	(3) 
	(4) 
	(5) 
	(6) 
	(7) 
	(8) 
	(9) 
	(10) 
	high ´ low 
	high ´ low α 

	S 
	S 
	0.206˚˚ 
	0.178˚ 
	0.132 
	0.071 
	0.066 
	0.044 
	0.012 
	0.005 
	´0.016 
	´0.035 
	´0.241˚˚˚ 
	´0.245˚˚˚ 

	TR
	(2.007) 
	(1.704) 
	(1.262) 
	(0.705) 
	(0.646) 
	(0.439) 
	(0.125) 
	(0.056) 
	(´0.162) 
	(´0.369) 
	(´6.019) 
	(´6.205) 

	K 
	K 
	0.055 
	0.026 
	0.083 
	0.064 
	0.060 
	0.073 
	0.060 
	0.095 
	0.070 
	0.079 
	0.024 
	´0.002 

	TR
	(0.537) 
	(0.257) 
	(0.843) 
	(0.641) 
	(0.599) 
	(0.722) 
	(0.593) 
	(0.942) 
	(0.702) 
	(0.816) 
	(0.496) 
	(´0.044) 

	TS 
	TS 
	0.200˚ 
	0.133 
	0.129 
	0.086 
	0.069 
	0.050 
	0.015 
	0.026 
	´0.022 
	´0.023 
	´0.224˚˚˚ 
	´0.226˚˚˚ 

	TR
	(1.929) 
	(1.260) 
	(1.247) 
	(0.847) 
	(0.681) 
	(0.503) 
	(0.154) 
	(0.272) 
	(´0.228) 
	(´0.250) 
	(´5.681) 
	(´5.884) 

	TK 
	TK 
	0.054 
	0.032 
	0.070 
	0.092 
	0.068 
	0.057 
	0.060 
	0.086 
	0.082 
	0.063 
	0.009 
	0.001 

	TR
	(0.532) 
	(0.313) 
	(0.712) 
	(0.935) 
	(0.684) 
	(0.572) 
	(0.589) 
	(0.854) 
	(0.806) 
	(0.647) 
	(0.189) 
	(0.027) 

	TSc 
	TSc 
	0.187˚ 
	0.158 
	0.123 
	0.095 
	0.051 
	0.054 
	0.015 
	0.007 
	0.003 
	´0.029 
	´0.216˚˚˚ 
	´0.223˚˚˚ 

	TR
	(1.785) 
	(1.499) 
	(1.189) 
	(0.935) 
	(0.507) 
	(0.548) 
	(0.156) 
	(0.072) 
	(0.034) 
	(´0.313) 
	(´5.202) 
	(´5.654) 

	TKc 
	TKc 
	0.121 
	0.054 
	0.078 
	0.056 
	0.062 
	0.090 
	0.047 
	0.066 
	0.048 
	0.043 
	´0.077˚ 
	´0.073˚ 

	TR
	(1.209) 
	(0.552) 
	(0.792) 
	(0.567) 
	(0.621) 
	(0.900) 
	(0.464) 
	(0.652) 
	(0.470) 
	(0.430) 
	(´1.816) 
	(´1.808) 

	R 
	R 
	´0.054 
	0.101 
	0.154 
	0.144 
	0.112 
	0.088 
	0.093 
	0.048 
	0.013 
	´0.034 
	0.020 
	´0.006 

	? TRV 
	? TRV 
	(´0.388) 0.128˚˚ 
	(0.908) 0.114˚ 
	(1.553) 0.130˚ 
	(1.579) 0.135 
	(1.281) 0.101 
	(1.020) 0.106 
	(1.066) 0.085 
	(0.521) ´0.013 
	(0.134) ´0.015 
	(´0.282) ´0.107 
	(0.284) ´0.235 
	(´0.090) ´0.241˚˚˚ 

	TR
	(2.220) 
	(1.655) 
	(1.697) 
	(1.609) 
	(1.116) 
	(1.058) 
	(0.767) 
	(´0.100) 
	(´0.103) 
	(´0.625) 
	(´1.640) 
	(´3.155) 

	J 
	J 
	0.159 
	0.072 
	0.083 
	0.107 
	0.072 
	0.070 
	0.072 
	0.025 
	0.027 
	´0.057 
	´0.216˚˚˚ 
	´0.224˚˚˚ 

	TR
	(1.278) 
	(0.643) 
	(0.834) 
	(1.170) 
	(0.810) 
	(0.782) 
	(0.822) 
	(0.263) 
	(0.246) 
	(´0.477) 
	(´4.849) 
	(´5.097) 

	J ` 
	J ` 
	0.068 
	0.091 
	0.099 
	0.076 
	0.066 
	0.069 
	0.036 
	0.047 
	0.040 
	´0.046 
	´0.113˚˚ 
	´0.096˚˚ 

	TR
	(0.719) 
	(1.072) 
	(1.066) 
	(0.774) 
	(0.649) 
	(0.642) 
	(0.330) 
	(0.418) 
	(0.347) 
	(´0.375) 
	(´1.983) 
	(´2.113) 

	J ´ 
	J ´ 
	0.089 
	0.064 
	0.057 
	0.079 
	0.037 
	0.067 
	0.080 
	0.097 
	0.116 
	0.037 
	´0.051 
	´0.071 

	TR
	(0.713) 
	(0.538) 
	(0.511) 
	(0.713) 
	(0.341) 
	(0.643) 
	(0.814) 
	(1.050) 
	(1.355) 
	(0.397) 
	(´0.836) 
	(´1.411) 

	RZ 
	RZ 
	´0.045 
	0.002 
	0.068 
	0.062 
	0.098 
	0.074 
	0.084 
	0.095 
	0.155 
	0.147˚ 
	0.192˚˚ 
	0.144˚˚˚ 

	TR
	(´0.377) 
	(0.022) 
	(0.705) 
	(0.618) 
	(0.953) 
	(0.679) 
	(0.782) 
	(0.926) 
	(1.575) 
	(1.661) 
	(2.439) 
	(2.586) 

	AMI 
	AMI 
	0.161˚ 
	0.107 
	0.099 
	0.090 
	0.029 
	0.057 
	0.043 
	0.033 
	0.107 
	´0.061 
	´0.222˚˚˚ 
	´0.222˚˚˚ 

	TR
	(1.905) 
	(1.180) 
	(1.041) 
	(0.925) 
	(0.284) 
	(0.554) 
	(0.404) 
	(0.309) 
	(0.969) 
	(´0.532) 
	(´3.526) 
	(´5.518) 

	RSJ 
	RSJ 
	0.252˚˚ 
	0.206˚ 
	0.113 
	0.089 
	0.060 
	0.034 
	0.035 
	´0.023 
	´0.048 
	´0.057 
	´0.309˚˚˚ 
	´0.311˚˚˚ 

	TR
	(2.322) 
	(1.941) 
	(1.083) 
	(0.867) 
	(0.600) 
	(0.351) 
	(0.356) 
	(´0.234) 
	(´0.513) 
	(´0.611) 
	(´5.911) 
	(´6.216) 
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	Table 5: Average returns on long-short (high-low) portfolios over 22 trading days 
	(1) 
	(1) 
	(1) 
	(2) 
	(3) 
	(4) 
	(5) 
	(6) 
	(7) 
	(8) 
	(9) 
	(10) 
	high ´ low 
	high ´ low α 

	S 
	S 
	0.431 
	0.174 
	0.220 
	0.220 
	0.264 
	0.221 
	0.290 
	0.202 
	0.288 
	0.399 
	´0.032 
	0.123 

	TR
	(0.906) 
	(0.357) 
	(0.476) 
	(0.475) 
	(0.592) 
	(0.501) 
	(0.674) 
	(0.474) 
	(0.673) 
	(0.958) 
	(´0.208) 
	(0.842) 

	K 
	K 
	0.168 
	0.089 
	0.186 
	0.236 
	0.157 
	0.334 
	0.305 
	0.332 
	0.282 
	0.617 
	0.450˚˚ 
	0.372˚˚ 

	TR
	(0.397) 
	(0.210) 
	(0.431) 
	(0.522) 
	(0.348) 
	(0.713) 
	(0.642) 
	(0.714) 
	(0.610) 
	(1.388) 
	(2.071) 
	(2.311) 

	TS 
	TS 
	0.310 
	0.138 
	0.179 
	0.281 
	0.258 
	0.319 
	0.238 
	0.308 
	0.296 
	0.380 
	0.070 
	0.217 

	TR
	(0.631) 
	(0.280) 
	(0.376) 
	(0.624) 
	(0.587) 
	(0.734) 
	(0.550) 
	(0.732) 
	(0.702) 
	(0.926) 
	(0.428) 
	(1.354) 

	TK 
	TK 
	0.119 
	0.114 
	0.225 
	0.161 
	0.235 
	0.334 
	0.307 
	0.288 
	0.406 
	0.518 
	0.400˚ 
	0.357˚˚ 

	TR
	(0.288) 
	(0.268) 
	(0.520) 
	(0.362) 
	(0.527) 
	(0.724) 
	(0.654) 
	(0.595) 
	(0.849) 
	(1.162) 
	(1.746) 
	(2.126) 

	TSc 
	TSc 
	0.237 
	0.116 
	0.278 
	0.365 
	0.335 
	0.236 
	0.157 
	0.331 
	0.247 
	0.406 
	0.169 
	0.303˚ 

	TR
	(0.476) 
	(0.237) 
	(0.598) 
	(0.808) 
	(0.757) 
	(0.536) 
	(0.358) 
	(0.784) 
	(0.599) 
	(0.991) 
	(0.939) 
	(1.756) 

	TKc 
	TKc 
	0.424 
	0.312 
	0.282 
	0.191 
	0.185 
	0.291 
	0.361 
	0.247 
	0.226 
	0.189 
	´0.235 
	´0.270 

	TR
	(1.002) 
	(0.745) 
	(0.661) 
	(0.433) 
	(0.414) 
	(0.627) 
	(0.794) 
	(0.528) 
	(0.470) 
	(0.398) 
	(´1.057) 
	(´1.465) 

	R 
	R 
	´0.515 
	0.363 
	0.373 
	0.486 
	0.304 
	0.457 
	0.394 
	0.340 
	0.217 
	0.289 
	0.803˚˚ 
	0.754˚˚ 

	? TRV 
	? TRV 
	(´0.740) 0.633˚˚ 
	(0.712) 0.551˚ 
	(0.851) 0.566˚ 
	(1.198) 0.530 
	(0.782) 0.509 
	(1.179) 0.519 
	(1.030) 0.260 
	(0.858) 0.013 
	(0.507) ´0.347 
	(0.529) ´0.525 
	(2.068) ´1.157˚ 
	(2.050) ´1.355˚˚˚ 

	TR
	(2.418) 
	(1.796) 
	(1.645) 
	(1.424) 
	(1.284) 
	(1.201) 
	(0.521) 
	(0.022) 
	(´0.510) 
	(´0.651) 
	(´1.703) 
	(´3.851) 

	J 
	J 
	0.228 
	0.285 
	0.307 
	0.370 
	0.353 
	0.340 
	0.430 
	0.228 
	0.018 
	0.131 
	´0.097 
	´0.049 

	TR
	(0.406) 
	(0.580) 
	(0.702) 
	(0.940) 
	(0.930) 
	(0.898) 
	(1.081) 
	(0.517) 
	(0.036) 
	(0.246) 
	(´0.725) 
	(´0.362) 

	J ` 
	J ` 
	0.391 
	0.299 
	0.430 
	0.248 
	0.201 
	0.116 
	0.149 
	0.111 
	0.226 
	0.411 
	0.020 
	0.122 

	TR
	(1.039) 
	(0.795) 
	(1.113) 
	(0.608) 
	(0.460) 
	(0.247) 
	(0.294) 
	(0.209) 
	(0.427) 
	(0.723) 
	(0.062) 
	(0.596) 

	J ´ 
	J ´ 
	0.442 
	0.294 
	0.205 
	0.140 
	0.088 
	0.244 
	0.359 
	0.284 
	0.269 
	0.331 
	´0.112 
	´0.170 

	TR
	(0.766) 
	(0.541) 
	(0.402) 
	(0.276) 
	(0.189) 
	(0.564) 
	(0.879) 
	(0.712) 
	(0.716) 
	(0.888) 
	(´0.356) 
	(´0.850) 

	RZ 
	RZ 
	´0.184 
	´0.087 
	0.164 
	0.206 
	0.219 
	0.355 
	0.536 
	0.256 
	0.456 
	0.811˚ 
	0.995˚˚˚ 
	0.723˚˚˚ 

	TR
	(´0.335) 
	(´0.206) 
	(0.393) 
	(0.482) 
	(0.508) 
	(0.794) 
	(1.122) 
	(0.509) 
	(0.959) 
	(1.832) 
	(2.627) 
	(3.164) 

	AMI 
	AMI 
	0.625˚ 
	0.491 
	0.395 
	0.289 
	0.274 
	0.135 
	0.246 
	0.175 
	0.313 
	´0.236 
	´0.860˚˚˚ 
	´0.849˚˚˚ 

	TR
	(1.719) 
	(1.248) 
	(0.956) 
	(0.680) 
	(0.611) 
	(0.289) 
	(0.518) 
	(0.352) 
	(0.622) 
	(´0.439) 
	(´2.827) 
	(´4.887) 

	RSJ 
	RSJ 
	0.213 
	0.180 
	0.161 
	0.239 
	0.342 
	0.191 
	0.478 
	0.351 
	0.246 
	0.307 
	0.093 
	0.337˚ 

	TR
	(0.413) 
	(0.364) 
	(0.331) 
	(0.514) 
	(0.767) 
	(0.440) 
	(1.123) 
	(0.839) 
	(0.605) 
	(0.781) 
	(0.438) 
	(1.749) 


	27 
	Table 6: Table reports the average 1-week ahead returns sorted on double-sorted portfolios. For each panel, entitled as A Ñ B, all stocks in the sample are ﬁrst sorted into 5 quintiles on the basis of the ﬁrst variable A (columns). Within each quintile, the stocks are then sorted into 5 quintiles according to the second variable B (rows). 
	p1q p2q p3q p4q p5q high ´ low high ´ low α 
	p1q p2q p3q p4q p5q high ´ low high ´ low α 
	p1q p2q p3q p4q p5q high ´ low high ´ low α 
	´0.015 (´0.112) 0.062 (0.612) ´0.011 (´0.109) ´0.005 (´0.049) ´0.216 (´1.627) ´0.201˚˚˚ (´3.548) ´0.190˚˚˚ (´3.376) 
	0.042 (0.343) 0.128 (1.361) 0.091 (1.001) 0.072 (0.788) ´0.067 (´0.547) ´0.108˚˚ (´2.236) ´0.118˚˚ (´2.466) 
	RZÑJ 0.178 0.199 (1.377) (1.572) 0.110 0.123 (1.093) (1.197) 0.074 0.065 (0.775) (0.663) 0.107 0.094 (1.092) (0.958) ´0.052 0.011 (´0.419) (0.092) ´0.230˚˚˚ ´0.188˚˚˚ (´4.384) (´3.014) ´0.226˚˚˚ ´0.179˚˚˚ (´4.213) (´2.905) 
	0.213˚˚ (1.998) 0.203˚˚ (2.197) 0.115 (1.294) 0.143 (1.517) 0.081 (0.757) ´0.133˚˚ (´2.313) ´0.141˚˚ (´2.446) 
	0.123 (1.049) 0.125 (1.339) 0.067 (0.740) 0.082 (0.901) ´0.048 (´0.425) ´0.172˚˚˚ (´5.392) ´0.171˚˚˚ (´5.418) 
	´0.038 (´0.268) 0.131 (0.981) 0.152 (1.204) 0.170 (1.517) 0.201˚˚ (2.089) 0.239˚˚˚ (2.796) 0.219˚˚˚ (3.404) 
	0.054 (0.494) 0.102 (1.070) 0.094 (0.956) 0.093 (0.886) 0.141 (1.506) 0.086 (1.234) 0.039 (0.739) 
	JÑRZ ´0.019 ´0.041 (´0.167) (´0.390) 0.063 0.005 (0.698) (0.054) 0.074 0.097 (0.820) (1.020) 0.109 0.088 (1.168) (0.883) 0.078 0.094 (0.824) (1.029) 0.096 0.135˚˚ (1.401) (1.973) 0.038 0.082 (0.750) (1.514) 
	´0.183 (´1.321) ´0.056 (´0.446) 0.005 (0.043) 0.075 (0.657) 0.098 (1.016) 0.281˚˚˚ (3.099) 0.248˚˚˚ (3.578) 
	´0.045 (´0.386) 0.049 (0.471) 0.084 (0.827) 0.107 (1.064) 0.123 (1.352) 0.168˚˚˚ (2.597) 0.125˚˚˚ (2.931) 

	p1q p2q p3q p4q p5q high ´ low high ´ low α 
	p1q p2q p3q p4q p5q high ´ low high ´ low α 
	0.015 (0.146) 0.019 (0.190) ´0.023 (´0.208) ´0.067 (´0.532) ´0.256˚ (´1.697) ´0.272˚˚˚ (´3.695) ´0.237˚˚˚ (´4.067) 
	0.098 (1.064) 0.140 (1.584) 0.085 (0.835) 0.010 (0.091) ´0.123 (´0.853) ´0.221˚˚˚ (´2.662) ´0.186˚˚˚ (´3.454) 
	RZÑJ ` 0.115 0.121 (1.192) (1.211) 0.140 0.120 (1.415) (1.228) 0.123 0.108 (1.164) (1.033) 0.099 0.123 (0.832) (1.108) ´0.104 0.026 (´0.724) (0.191) ´0.219˚˚˚ ´0.095 (´2.657) (´1.253) ´0.200˚˚˚ ´0.077 (´3.537) (´1.295) 
	0.199˚˚ (2.255) 0.167˚ (1.926) 0.182˚ (1.891) 0.175˚ (1.668) ´0.003 (´0.024) ´0.202˚˚˚ (´2.987) ´0.192˚˚˚ (´3.095) 
	0.110 (1.197) 0.117 (1.317) 0.095 (0.973) 0.068 (0.633) ´0.092 (´0.707) ´0.202˚˚˚ (´3.378) ´0.178˚˚˚ (´5.251) 
	´0.016 (´0.142) 0.064 (0.693) 0.098 (1.093) 0.077 (0.814) 0.142 (1.436) 0.158˚˚ (2.326) 0.094˚ (1.911) 
	´0.022 (´0.193) 0.045 (0.453) 0.150 (1.543) 0.143 (1.428) 0.108 (1.161) 0.130˚ (1.687) 0.057 (0.970) 
	J `ÑRZ ´0.063 ´0.115 (´0.486) (´0.805) 0.037 ´0.028 (0.331) (´0.215) 0.100 0.104 (0.930) (0.911) 0.131 0.126 (1.242) (1.205) 0.142 0.158˚ (1.523) (1.792) 0.205˚˚ 0.273˚˚˚ (2.325) (2.897) 0.146˚˚ 0.237˚˚˚ (2.327) (3.493) 
	´0.350˚˚ (´2.132) ´0.013 (´0.093) 0.154 (1.280) 0.107 (1.027) 0.102 (1.022) 0.452˚˚˚ (4.292) 0.463˚˚˚ (5.778) 
	´0.113 (´0.898) 0.021 (0.192) 0.121 (1.202) 0.117 (1.203) 0.130 (1.444) 0.244˚˚˚ (3.424) 0.199˚˚˚ (4.462) 

	p1q p2q p3q p4q p5q high ´ low high ´ low α 
	p1q p2q p3q p4q p5q high ´ low high ´ low α 
	´0.089 (´0.585) ´0.026 (´0.199) ´0.004 (´0.032) 0.034 (0.343) ´0.027 (´0.265) 0.062 (0.822) 0.048 (0.793) 
	´0.037 (´0.258) 0.069 (0.603) 0.058 (0.577) 0.099 (1.080) 0.076 (0.828) 0.114 (1.329) 0.078 (1.341) 
	RZÑJ ´ 0.045 0.190 (0.303) (1.367) 0.118 0.067 (1.007) (0.595) 0.054 0.054 (0.488) (0.515) 0.112 0.059 (1.147) (0.594) 0.082 0.106 (0.869) (1.090) 0.037 ´0.084 (0.434) (´1.088) 0.015 ´0.095 (0.248) (´1.550) 
	0.150 (1.251) 0.100 (0.963) 0.127 (1.326) 0.205˚˚ (2.297) 0.159˚ (1.816) 0.009 (0.132) ´0.009 (´0.146) 
	0.052 (0.390) 0.065 (0.599) 0.058 (0.590) 0.102 (1.133) 0.079 (0.875) 0.028 (0.434) 0.007 (0.190) 
	´0.065 (´0.388) 0.097 (0.699) 0.162 (1.314) 0.119 (1.133) 0.143 (1.427) 0.207˚ (1.955) 0.225˚˚˚ (2.731) 
	´0.006 (´0.043) 0.065 (0.505) 0.041 (0.360) 0.058 (0.556) 0.178˚˚ (2.062) 0.184˚ (1.892) 0.165˚˚ (2.408) 
	J ´ÑRZ ´0.052 ´0.020 (´0.395) (´0.169) 0.074 0.130 (0.647) (1.318) 0.064 0.089 (0.569) (0.897) 0.088 0.092 (0.852) (0.940) 0.088 0.140 (0.911) (1.507) 0.140 0.160˚˚ (1.628) (2.025) 0.080 0.081 (1.283) (1.442) 
	´0.039 (´0.346) 0.024 (0.263) 0.074 (0.821) 0.085 (0.908) 0.113 (1.162) 0.152˚˚ (2.157) 0.086˚ (1.709) 
	´0.036 (´0.282) 0.078 (0.718) 0.086 (0.838) 0.088 (0.917) 0.132 (1.473) 0.169˚˚ (2.363) 0.127˚˚˚ (2.937) 


	Table 7: Performance of high ´ low double-sorted portfolios. 
	Table
	TR
	p1q 
	p2q 
	p3q 
	p4q 
	p5q 
	p6q

	mean 
	mean 
	0.429˚˚˚ 
	´0.384˚˚˚ 
	0.456˚˚˚ 
	´0.492˚˚˚ 
	0.177˚˚ 
	´0.182˚˚ 

	α 
	α 
	(4.796) 0.383˚˚˚ 
	(´4.364) ´0.358˚˚˚ 
	(4.078) 0.402˚˚˚ 
	(´4.801) ´0.465˚˚˚ 
	(2.304) 0.175˚˚ 
	(´2.341) ´0.163˚˚ 

	TR
	(5.018) 
	(´5.258) 
	(4.990) 
	(´6.352) 
	(2.452) 
	(´2.486) 

	conditional mean 
	conditional mean 
	0.101˚˚ 
	0.006 
	´0.050 

	TR
	(2.425) 
	(0.096) 
	(´0.941) 


	Note. p1q – long high RZ and low J stocks and short low RZ and high J stocks. p2q – long low RZ and high J stocks and short high RZ and low J stocks. p3q – long high RZ and low J stocks and short low RZ and high J stocks. p4q – long low RZ and high J stocks and short high RZ and low J stocks. p5q – long high RZ and low J stocks and short low RZ and high J stocks. p6q – long low RZ and high J stocks and short high RZ and low J stocks. The last row reports the constant after regressing the returns on portfoli
	` 
	` 
	` 
	` 
	´ 
	´ 
	´ 
	´ 
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	A Appendix: Preliminary Proofs 
	A Appendix: Preliminary Proofs 
	Proof of Theorem 2.1. In order to shorten the proofs, and to simplify notation, we present the proofs under the additional assumption that there are no jumps in volatility. That is, we assume the volatility process σt satisﬁes the equation 
	ż t ż t ż t 
	1 1
	σ
	1

	σt “ σ` a ds ` dWs ` v dVs, (53)
	0 

	ss s 
	00 0 
	11
	where Wt and Vt are independent Brownian motions while a , σand v are adapted c`adl`ag bounded processes. Let t,...,tbe the partition of the interval r0,ts, constructed from the original partition by removing 
	1 
	˚ 
	˚ 

	1,n N,n
	n

	t 
	the points for which Bi,n “ 1. Thus, the power variation can be expressed as 
	N n 
	t
	ÿ
	PVpf, Xq“ n fpΔXq, (54) 
	r
	r{2´1 
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	i 

	i“1 
	where ΔX “ X˚ ´X˚ are the increments of the process Xt over the new partition. Let β“ σ˚ ΔW
	˚ 
	i 
	t
	t
	n 
	t
	˚ 
	i 

	i
	i,n i´1,n i´1,n 
	˚˚
	be an approximation of the increments ΔX and set Δpi, nq“ t ´ t .
	˚ 
	i 

	i,n i´1,n 
	We start with preliminary computations of the conditional moments of fpβq,Δpi, nq and related quantities, which are used in the subsequent proofs. First, notice that, for k “ 1, 2,... , 
	i
	n

	!) 
	HH k´1
	P Δ“ W ˚ ´ W ˚ “p1 ´ p qpp q . (55)
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	i t `k Δn t
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	i´1,n i´1,n 
	By the law of iterated expectations, this implies, that 
	” ˇı 8
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	E fpΔW q ˇ F˚ “ Δρpfq kp1 ´ p qp . (56)
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	k“1 
	Hence, we have 
	”ˇı ”ˇı 8
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	Similarly, we obtain 
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	1 ´ p `˘
	2 H
	E pfpβqq ˇ F ˚ “ Δσ˚ ρpfq Li´r p, (58)
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	r H
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	Now, notice that, for any pPr0, 1q, 
	H 

	`˘
	2

	1 ´ p`˘ 
	” 
	ˇ
	ˇ
	ı 
	H 
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	Finally, observe that 
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	Δpi, nqfpβq“ Δpi, nqσ˚ fpUq, (62)
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	i´1,n 
	d
	where U „ N p0, 1q and “ denotes equality in law. Therefore, we have 
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	Next, consider the four quantities deﬁned as 
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	The proof of the main result follows from three statements: 
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	which are proven in three sequential steps. 
	Step 1. We start by proving the stable convergence of Eq. (65). Express the right-hand side of Eq. (65) as 
	follows: 
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	By the same arguments as in Barndorﬀ-Nielsen et al. (2006), AÝÑ 0. Therefore, it is suﬃcient to prove that 
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	where Kis another constant and t ´ tn is a discrete random variable with probability mass function given 
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	Since Ωn Ñ Ω as n Ñ8, E rUn1ΩsÑ 0 implies that Un ÝÑ 0, which completes the proof. Proof of Theorem 2.4. As in the proof of Theorem 2.3, on Ωnpt, mq, we obtain the decomposition: 
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	Next, we notice that: ... 
	Proof of Theorem 2.5. The proof is analogical to the proof of Theorem 2 in Bibinger and Vetter (2015). Hence, it is omitted. Proof of Lemma 3.1. Consider the decomposition: Apqq“ A` A, (125)
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	Due to the independence of the Bernoulli variables, we have: 
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	It can be easily seen that: 
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	which completes the proof. 
	Proof of Theorem 3.2. By Theorems 3.1 and 3.2 of Hayashi et al. (2011), on Ω, as n Ñ8,
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	where apqqt is a stochastic process, such that for all t, as n Ñ8, 
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	provided that such a process exists. By Lemma 3.1, the process apqqt exists for every q ą 0 and takes the following form: 
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	Hence, the statement of the present Theorem follows from straightforward algebraic computations. 
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	where apqqt is a stochastic process deﬁned as in the proof of Theorem 3.2, which completes the proof. 
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	where Rpn, pq lies between ΔXSand pR´pn, pq` R`pn, pqq. Exactly the same arguments as in Proposition 
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