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1. Introduction 

Systematic risk is arguably one of the most fundamental quantities in fnance. Various 

decisions ranging from portfolio choice to corporate investment require the expected return or 

the discount rate as an essential input, which is often accompanied by the measurement of the 

risk exposure. This study examines the importance of accounting for parameter uncertainty 

regarding frms’ systematic risk. We propose that this parameter is continuously updated 

from collective observations of frms’ peers, causing an endogenous fuctuation in the frms’ 

discount rate. We provide supportive empirical evidence that the learning-induced shift in 

discount rate has a widespread impact on frms’ real decisions and market valuations. 

Firms’ typical characteristics make a quick identifcation of the systematic-risk exposure 

elusive. The relevant observations that are informative about the parameter tend to contain 

substantial noises. As a rough estimate, a simple regression fnds that only 6.8% of the 

variance of frms’ productivity growth is explained by macroeconomic shocks that constitute 

the systematic risk. Given the dominant noise that hampers identifying the risk exposure, 

collective learning is particularly conducive. Benefting from a larger dataset from industry 

peers, which likely have similar exposure to the systematic risk as Fama and French (1997) 

posit, decision-makers can update the parameter more eÿciently than if they relied solely 

on frms’ individual observations. We document that it is this particular estimate of risk 

exposure through collective learning that empirically drives both frms’ real decisions and 

market valuations. 

To elucidate the connection between the parameter learning and the frm observables, 

we build a collective-learning framework in the context of the investment-based asset pricing 

model. The new feature of the model is that frms’ exposure to systematic risk – covariance 

between frm-level productivity and the macroeconomic shocks that a˙ect the stochastic dis-

count factor – is unknown at the beginning. Instead, decision-makers gradually update their 

beliefs about this parameter as they observe newly realized productivity and macroeconomic 

shocks. Interestingly, this learning process causes the systematic-risk estimate to fuctuate, 
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although the true parameter is constant. The model, in turn, provides a theoretical link from 

the evolution of the parameter beliefs to the discount rate, capital investment, and market 

valuation. As the posterior estimate of systematic risk (i.e., the mean of parameter beliefs) is 

revised upward (downward), both the investment-capital ratio and the market-to-book ratio 

should decrease (increase). Simultaneously, the cost of capital should increase (decrease). 

Intuitively, perceiving a greater exposure to the systematic risk, investors require a higher 

return on frms’ assets and thus evaluate lower the present value of future cash fows from 

new and existing capital. 

Beyond the posterior estimate of systematic risk, the precision of parameter beliefs 

should a˙ect investment and valuation. The model predicts that the uncertainty about 

the systematic-risk parameter creates the additional risk arising from the correlation be-

tween macroeconomic shocks and the revision of the risk exposure. Improvement in the 

precision reduces this risk, thereby decreasing the cost of capital. Likewise, we expect both 

investment-capital ratio and market-to-book ratio to respond positively to the precision. 

The key empirical fnding of this study is that these learning-related variables have a 

concerted impact on frms’ real decisions and market valuation, as the theory predicts. The 

capital investment negatively reacts to the posterior estimate of the systematic risk with a 

t-statistic of -5.20. This association is also economically signifcant. A rise in the systematic-

risk estimate by one standard deviation decreases the investment by 9.5% (e.g., the an-

nual investment-capital ratio changes from 0.217 to 0.196). Simultaneously, the precision 

of parameter beliefs positively predicts the investment with a t-statistic of 5.13, and a one-

standard-deviation increase in the precision raises the investment by 7.2%. We observe these 

strong associations after we control for other determinants of capital investment noted in 

the literature, including frm’s size, age, Tobin’s q, leverage ratio, cash fow, an indicator 

of fnancial constraints, and the amount of competition within an industry. Furthermore, 

these fndings are robust to di˙erent ways of classifying industries. Irrespective of whether 

we defne industry peers based on SIC, four-digit NAICS, or Hoberg and Phillips (2016)’s 
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text-based industry classifcation, most of the associations continue to be signifcant at the 

1% level. 

This parameter learning also infuences the market valuation in practice. The empirical 

data on the market-to-book ratio exhibit the predicted regularities caused by the learning. 

Specifcally, the market evaluates frms lower when a new signal indicates that the systematic 

risk is higher than previously thought. Also, the market value increases as the parameter 

beliefs become more precise. Most of these connections are signifcant at the 5% level in the 

regressions, which are designed to reveal within-frm changes through time. These time-series 

patterns in investment and valuation suggest that decision-makers, in practice, constantly 

update beliefs about systematic risk. 

Furthermore, this learning about systematic risk creates a cross-sectional dispersion in the 

cost of capital. Using the implied measure of the cost of capital from accounting information, 

as suggested by Hou et al. (2012), we fnd that the implied cost is positively related to the 

posterior estimate of risk exposure; an increase in the risk estimate by one standard deviation 

raises the annualized cost of capital by 0.9%. This evidence corroborates the previous fndings 

of Bansal et al. (2005) and Da (2009) that the consumption beta is a determinant of a cross-

section of expected return. Moreover, we fnd that the precision of the parameter belief is also 

priced in the cross section. The market requires a lower return on assets for which systematic 

risk becomes less ambiguous. This fnding supports the model prediction that the learning 

alleviates the risk associated with parameter uncertainty. 

We try further to defne the extent to which the exact form of learning is collective. 

One may consider an alternative form: individual learning in which each frm’s systematic 

risk is identifed from its history only without reference to peers’ observations. This idea is 

worth considering because even peer frms in the same industry might have di˙erent business 

profles and therefore have di˙erent risk exposures. In such a case, focusing on each frm’s 

own history would lead to a better estimate of the risk. In turn, we conduct an alternative 

measurement of the risk exposure based solely on individual history. 
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The empirical analysis, however, shows that this alternative risk estimate from individual 

learning is only insignifcant for predicting the investment, the market valuation, and the 

cost of capital. We conjecture that this insignifcance is due to the scarcity of datasets 

that inherently follows the individual learning, as compared to the collective learning that 

uses rich industry-wide observations. When updating systematic risks, acquiring a large 

dataset is particularly crucial because the sources for learning have a remarkably low signal-

to-noise ratio. Specifcally, the volatility of the idiosyncratic shock (noise) to productivity is 

approximately 30 times as large as the volatility of the systematic component (signal) in the 

calibrated model. This substantial noise impedes the updating of the parameter, especially 

when relying on a few observations that the individual learning o˙ers. As a result, the 

risk estimate from the individual history is incapable of explaining corporate decisions and 

valuations. 

In a robustness test, we explore the possibility that the true exposure to systematic risk is 

dynamic, contrary to our model assumption. In the model, despite the true exposure being 

constant, the risk estimate fuctuates in the course of leaning from growing observations. 

However, one might cast doubt on this assumption and argue that the learning-based risk 

estimate may misleadingly capture dynamics of the true risk characteristics. To address these 

concerns, we employ rolling-window-based estimations, an alternative approach to measuring 

risk exposure, in contrast to expanding-window-based estimations that parameter learning 

inspires. From the design, the rolling-window approach is able to better detect time vari-

ations with respect to true risk, if any exists. However, we fnd that for various choices of 

the estimation window, the risk estimate derived from the rolling-window approach has a 

weaker, often insignifcant association with corporate decisions and valuations than does our 

baseline estimate. This fnding lets us conclude that critical dimensions of frm decisions and 

valuations are empirically more responsive to learning-induced changes in the risk estimate 

than fuctuations in the true risk profle. 
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Literature Review This study builds on a growing body of literature that studies the 

implications of parameter learning with respect to market valuations and corporate decisions. 

Pastor and Veronesi (2009) provides a comprehensive review of these learning models. In the 

context of a corporate setting, prior studies have considered parameter uncertainty regarding 

a long-term mean of productivity (Pastor and Veronesi (2003) and Alti (2003)) or return-

to-scale parameters (Johnson (2007)). Distinctively, our paper studies the implications of 

uncertainty with respect to systematic-risk exposure, which is an equally fundamental pa-

rameter. In this regard, our focus is similar to Ai et al. (2018), who consider ambiguity 

regarding risk exposure and document that this learning can rationalize seemingly puzzling 

facts in the term structure of equity returns. We complement this study by elaborating upon 

the learning mechanism; we let decision-makers learn from the history of realized output 

instead of noisy independent signals in the prior study. This setting generates a path depen-

dence of frms’ decisions and market valuations, which we use to test the empirical presence 

of the learning. Moreover, Ai et al. (2018) refects the learning of frm-specifc exposure, 

while our paper is specifcally about learning about a common exposure to systematic risk, 

which suggests collective learning. This idea of learning from peers is similar to Foucault 

and Fresard (2014),as they document that a frm’s investment responds to its peers’ Tobin’s 

q due to its informativeness about future cash fows. In comparison, we consider learning 

about systematic risk and show that collective learning infuences much broader dimensions 

of frm observables, including investment. 

This study is also related to the literature that examines the role of consumption risk in 

fnancial markets, including Lettau and Ludvigson (2001), Bansal et al. (2005), Da (2009), 

and Boguth and Kuehn (2013). These studies successfully relate a cross-sectional dispersion 

in expected stock returns to the covariance between frms’ cash fows or returns with the 

macroeconomic shocks a˙ecting consumption. We expand the scope of this analysis and 

document that capital investments and valuation ratios also respond to the consumption 

beta. Furthermore, we reveal that the precision of the risk-exposure estimate is priced in 
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the cross-section of returns, highlighting that decision-makers engage in learning about the 

parameter. 

More broadly, our work is also related to dynamic investment models that investigate the 

implications of frms’ optimal decisions on asset returns. Prior studies, including Berk et al. 

(1999), Gomes et al. (2003), Carlson et al. (2004), Zhang (2005), and Kuehn and Schmid 

(2014), show that observed regularities in stock and bond returns can arise as a result of 

corporate investment policy. We complement the literature by documenting new regularities 

in both the investment and return for which the parameter learning accounts. 

The remainder of this paper is organized as follows. In section 2, we describe the theo-

retical model. In section 3, we explain the calibration and put forward testable predictions 

from the model. In section 4, we provide empirical tests and discusses the main fndings. We 

conclude this paper with section 5. 

2. Model 

We consider peer frms that belong to one industry I. These frms are heterogeneous 

ex-post but have a common characteristic: identical exposure to systematic risk. To defne 

systematic risk in a tractable way, we specify a consumption-based stochastic discount factor. 

The representative agent has recursive preferences over exogenous consumption. Given the 

stochastic discount factor, each frm makes optimal investment decisions with reference to all 

up-to-date information. Our model only o˙ers partial equilibrium since we do not connect 

the sum of production outputs in the economy back to aggregate consumption. 

2.1. Stochastic Discount Factor 

Preferences of the representative agent are recursive as in Epstein and Zin (1989). The 

preferences are characterized by the standard parameters, including the rate of time pref-

erence β, the elasticity of intertemporal substitution ψ, and the coeÿcient of relative risk 

aversion γ. 
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We assume that consumption growth conditional on time t is normally distributed as in 

Kuehn and Schmid (2014): 

� � 
Ct+1

ln = g + µc(ωt) + σc(ωt)ηt+1 (1)
Ct 

where ηt+1 is standard normal innovation, and the mean µc(ωt) and the volatility σc(ωt) of 

the growth depend on the state of the economy ωt. The economic state shifts over time 

following a Markov chain with transition matrix P . 

The stochastic discount factor is 

� �−γ � �−(1−θ)
Ct+1 St+1 + 1 

= βθMt,t+1 (2)
Ct St 

where St denotes the wealth-consumption ratio and θ = 1−γ . The wealth-consumption 
1−1/ψ 

ratio is determined solely by the state of the economy, so St = S(ωt). This ratio can be 

solved through the Euler equation described in Appendix A. 

2.2. Firm’s Production and Investment 

Consider frm i that employs a production technology with decreasing return-to-scale. Its 

output in time t is 

Ai,tK
α (3)i,t 

for which Ai,t is the productivity shock, Ki,t is the capital stock, and 0 < α < 1 is the capital 

share of the production. The capital stock accumulates according to 

Ki,t+1 = Ii,t + (1 − δ)Ki,t (4) 

where Ii,t is investment and δ is the constant depreciation rate. We assume that capital 

installments are not frictionless as in the literature, so the frm incurs convex adjustment 
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costs in addition to purchasing costs. The adjustment costs are φ (Ii,t/Ki,t)
2 Ki,t where φ is 

a positive constant. 

The frm’s productivity growth is stochastic and correlated with consumption growth. 

Due to the tight connection between the consumption shock and the stochastic discount 

factor, this correlation engenders the frm’s exposure to the systematic risk. Specifcally, the 

productivity growth is 

� � 
Ai,t+1 (bI)2σc(ωt)

2 

ln = g + µc(ωt) − + bIσc(ωt)ηt+1 + ν�i,t+1 (5)
Ai,t 2 

where �i,t+1 is a frm-specifc standard normal innovation, and ν controls the magnitude of 

this idiosyncratic shock. 

Notice that the industry-specifc parameter bI controls the productivity’s exposure to the 

consumption shock ηt+1. An increase in bI would amplify the covariance between productivity 

and consumption, thereby increasing the systematic risk. Meanwhile, the change in bI would 

leave the the mean of future productivity unchanged. This is because the third term in the 

right hand side, (bI)2σc(ωt)2/2, adjusts for the Jensen’s inequality e˙ect; otherwise, without 

this adjustment, a rise in b would result in a higher future productivity, on average. In sum, 

the specifcation of equation (5) means that a rise in b leads to the mean-preserving spread 

of future productivity that the agent penalizes. 

Importantly, we assume that the parameter bI is unobservable for the agent and must 

be estimated from realized productivity. Learning about bI is non-trivial because the pro-

ductivity is also subject to the unobservable idiosyncratic shock, which the agent cannot 

distinguish from the systematic component. Moreover, because of identical risk exposures 

among all frms in the same industry, the realized productivity of its industry peers is as 

informative of the parameter as frm i’s own productivity. In the next section, we describe 

in more detail the learning about bI . 
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2.3. Collective Learning About Systematic Risk 

The industry I’s risk exposure bI is unknown at the beginning. The agent starts with 

prior beliefs about bI that are normally distributed with mean mb, 
I 
0 and standard deviation 

σb, 
I 
0. Since then, the agent updates the beliefs after receiving new information, in particular, 

the realized productivity of every industry constituent and consumption growth. 

To formulate the learning process, we let Yt denote the (1 × n) vector of the time-t 

productivity growth for n constituents. In addition, Xt denotes the (1 × n) vector with all 

elements equal to the time-t consumption growth. Specifcally, 

� �� � � � � � 
Yt = A1,t Ai,t An,tln − g − µc(ωt−1) · · · ln − g − µc(ωt−1) · · · ln − g − µc(ωt−1)A1,t−1 Ai,t−1 An,t−1 � �� � � � � � 

Ct Ct CtXt = ln − g − µc(ωt−1) · · · ln − g − µc(ωt−1) · · · ln − g − µc(ωt−1)Ct−1 Ct−1 Ct−1 

(6) 

where we subtract the conditional mean from productivity and consumption to simplify 

the following analysis. Using all of the information obtained so far, including both the new 

information in time t and the old information from the past, the agent updates the beliefs by 

performing a least-square estimation. In other words, the agent, who is aware of the structure 

given by equation (5), searches for the new estimate mb,t 
I that minimizes the sum of squared 

errors as follows: 

tX 
m I b,t = argmin (Ys − λXs)(Ys − λXs)

T . (7) 
λ s=1 

The resulting mI is a consistent estimator of b. See Appendix B for the proof. b,t 

As new realizations of productivity arrive over time, the agent continuously updates the 
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estimation. This recursive estimation implies the following update of the parameter beliefs: 

� �2 
σI � �I I b,t I mb,t = mb,t−1 + 
ν2 

Xt Yt
T − mb,t−1Xt

T (8) 

1 1 1 � = � + XtX
T ,�2 �2 t 

σI σI ν2 
b,t b,t−1 

where σI denotes the conditional standard error of the estimator. The derivation is provided b,t 

in the Appendix Appendix B. Intuitively, having more observations over time improves the 

precision of beliefs, as measured by 1/σI In addition, observing a higher-than-expected b,t. � � 
covariance between productivity and consumption, Xt Yt

T − mb,t−1Xt
T > 0 , leads the agent 

to revise the estimate upward. This revision is more sensitive to new observations when the 

agent is more uncertain about the parameter, high σI 
b,t. 

We choose to model the parameter learning through this least-square estimation rather 

than the Bayesian update that is often employed in the literature. In our setting, the poste-

rior distribution of bI is diÿcult to obtain in a closed form,2 which is required in the Bayesian 

update. Despite the distinction in formulation, this least-square approach updates the pa-

rameter in a nearly equivalent way to the Bayesian approach under a certain condition: if 

the standard deviation ν of the idiosyncratic shock to productivity is signifcantly larger than 

the standard deviation σc(ωt) of consumption shock. In this case, the posterior distribution 

of bI is close to being normally distributed. Our calibrated model satisfes this parameter 

condition, so we approximate the posterior beliefs as normally distributed with mean mb,t 
I 

and standard deviation σI 
b,t. 

2.4. Valuation 

Suppose that the fnancial markets are frictionless. Firms’ fnancing choices are then 

irrelevant to frm value, so we assume for simplicity’s sake that frms are entirely fnanced 

2Although the prior distribution of b is assumed to be normal, the posterior distribution is not normal. 
This is because the productivity growth contains the non-linear term of bI that adjusts for the Jensen’s e˙ect. 
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with equity. In this setting, frm i chooses investment to maximize its market value: 

( )� �2 � �Ii,t
Vi,t = max Ai,tKi,t

α − Ii,t − φ Ki,t + Et Mt,t+1Vi,t+1 . (9)
Ii,t Ki,t 

The state variables in this frm’s problem are the aggregate state of the economy ωt, the 

productivity shock Ai,t, capital stock Ki,t and the distribution of posterior beliefs about the 

systematic risk: the mean mI and the standard error σI These state variables evolve b,t b,t. 

according to the law of motion described by equations (4), (5) and (8). 

A distinctive feature of this problem is that frm i’s investment and valuation are infu-

enced by the history of the realized productivity of peer frms that shape the beliefs about 

the systematic risk. Instead of keeping track of the entire history, however, it is suÿcient to 

see the industry-wide statistics, mb,t 
I and σI 

b,t, for frm i to make the optimal decisions. 

As in the q-theory literature, one of the major determinants of the investment policy is 

the marginal value of capital. To analyze the capital value, let us defne the “ex-dividend” h i 
∂Vi,t+1value of unit capital as Pi,t ≡ Et Mt,t+1 . The following proposition characterizes the 
∂Ki,t+1 

capital value. 

Proposition 1: The ex-dividend value of frm i’s unit capital satisfes the recursive equation 

" !#� �2
Ii,t+1

Pi,t = Et Mt,t+1 αAi,t+1Ki,t
α− 
+1
1 + φ + (1 − δ)Pi,t+1 . (10)

Ki,t+1 

The proof is provided in Appendix C. Intuitively, the marginal value of capital consists 

of the present value of production output in the next period and the continuation value of 

capital after the production. Using this recursive structure, we numerically solve the capital 

value. 

Once the capital value is obtained, frm i’s realized gross return from time t to t + 1 is 

� �2
Ii,t+1αAi,t+1Ki,t

α− 
+1
1 + φ 

Ki,t+1 
+ (1 − δ)Pi,t+1 

Ri,t+1 = , (11)
Pi,t 
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because stock return on an all-equity-fnanced frm is identical to return on capital investment 

(Cochrane (1991) and Liu et al. (2009)). 

3. Asset Pricing Implications 

This section presents our model predictions that parameter uncertainty and subsequent 

learning about systematic risk cause unique patterns in frms’ investment, valuation, and 

cost of capital. Considering that the predictions may depend on model parameters, we 

frst calibrate the theoretical model so that it matches relevant moments of the empirical 

data. After putting forward these model-implied predictions, we test them empirically in the 

following section. 

3.1. Calibration 

Table 1 presents the calibration results. We frst calibrate parameters characterizing the 

stochastic discount factor, following the procedure described by Kuehn and Schmid (2014). 

The preference parameters are set within the range of common values used in the literature; 

the rate of time preference is 0.996, the elasticity of intertemporal substitution is 2, and the 

coeÿcient of relative risk aversion is 10. Next, in the specifcation of the consumption process, 

we assume that the state space of the Markov chain consists of fve di˙erent states of the 

economy. These fve states have di˙erent conditional means and volatilities of consumption 

growth. We calibrate these consumption parameters and the transition matrix such that the 

Markov chain approximates the continuous-state consumption process of Bansal and Yaron 

(2004). The resulting states are named arbitrarily: state 1 denotes the economic state with 

the lowest mean and the highest volatility, while state 5 denotes the state with the highest 

mean and the lowest volatility. Under these parameter choices, the simulated moments for 

consumption dynamics and risk-free returns align with the empirical counterparts. 

Regarding frm-level parameters, we set the capital share of production to be 0.65, based 

on evidence by Cooper and Ejarque (2003). Also, the capital depreciation rate is 3% per 
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Figure 1: The Learning-Related Variables and Firms’ Investment 

Panel A. mI and Investment Panel B. 1/σI and Investment b,t b,t 
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This fgure presents the investment-capital ratio for di˙erent values of the learning-related variables: the 
Iposterior estimate m of the systematic risk and the precision 1/σI of the estimate. b,t b,t 

quarter as in Cooley and Prescott (1995). We set the productivity’s exposure to the sys-

tematic risk to be 1.98. This number is the average of the risk exposure across industries 

from our estimation.3 Note that this true value of the exposure is not observable by frms in 

our model, but crucial for generating the data that form the parameter learning. Finally, we 

choose the volatility of idiosyncratic shock to productivity to match the standard deviation 

of the investment-capital ratio. 

3.2. Testable Model Predictions 

Having calibrated the model, we now put forward testable predictions. The frst two 

corollaries describe the regularities in frms’ investment that the learning causes. 

Corollary 1: A frm’s investment-capital ratio decreases with mb,t 
I , the posterior estimate of 

the systematic risk for the industry to which the frm belongs. 

3We approximate the most up-to-date estimate as the true risk exposure for each industry. This is based 
on the theoretical property that the posterior estimate converges to the true parameter as the number of 
observations becomes infnitely large. 
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Corollary 2: A frm’s investment-capital ratio increases with 1/σI 
b,t, the precision of beliefs 

about the systematic risk for the industry to which the frm belongs. 

These model predictions are depicted in Figure 1. The intuition behind our results is as 

follows. The estimate mb,t 
I captures the average of posterior beliefs about the systematic risk. 

Thus, a higher value of mb,t 
I means that future production outputs from new capital have, on 

average, a larger exposure to systematic risk, such that the marginal value of capital falls. 

Firms, therefore, invest less in equilibrium, as shown in Corollary 1 and Panel A of the fgure. 

Corollary 2 describes how the precision of the beliefs infuences the investment. As illus-

trated in Panel B of the fgure, a greater uncertainty σI 
b,t, or lower precision of the parameter 

beliefs, discourages the investment. Interestingly, this negative association is the product of 

the updating mechanism. Equation (8) shows that in cases of greater uncertainty about the 

systematic risk (high σI ), the new estimate is more sensitive to new observations of shocks b,t 

to productivity and consumption. Accordingly, the risk estimate in the next period, mI 
b,t+1, 

is more dispersed ex ante. This greater dispersion then lowers the average value of capital, 

due to the concave dependence of the capital value on the risk estimate as shown in Panel 

A.4 

This learning mechanism also generates a unique pattern in investment-cash fow asso-

ciation. Conventionally, cash fows have been expected to infuence the investment because 

a lack of cash fows tends to constrain frms fnancially (Fazzari et al. (1988) Hoshi et al. 

(1991)). On the contrary, in our framework, even unconstrained frms should respond to 

cash fows, or productivity in our setting, because they are informative about frms’ system-

atic risk. In particular, our model predicts that the investment should respond negatively to 

a part of cash fow growth for which the systematic component accounts. 

To elaborate upon this prediction, we revisit equation (8), which formulates the updating 

of the systematic risk. Recall that Yt is growth in productivity, which is equivalent to cash 

4In the model, the investment-capital ratio is a linear function of the ex-dividend price of capital. Thus, 
we can readily infer the relationship between the capital value and mI from Panel A of Figure 1.b,t 
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Figure 2: The Learning-Related Variables and Firms’ Valuation 

Panel A. mI and Market-to-Book Ratio Panel B. σI and Market-to-Book Ratio b,t b,t 
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This fgure presents the market-to-book ratio for di˙erent values of the learning-related variables: the 
Iposterior estimate m of the systematic risk and the precision 1/σI of the estimate. b,t b,t 

fows scaled by capital stock, and Xt is the systematic component in this growth. This 

equation can be rewritten as: 

� �2 � �2 
σI X � � σI X 

I I b,t I b,t 
mb,t − mb,t−1 = Yt,i 

2 fi,t
s − mb,t−1(fi,t

s )2 ≈ Yt,i 
2 · fi,ts (12)

ν2 ν2 
i∈I i∈I 

where Yt,i is time-t growth in frm i’s cash fow, and fi,ts is the ratio of the systematic compo-

nent to Yt,i. This last approximation is based on the fact that usual values of fi,ts are much 

smaller than one because the idiosyncratic component in cash-fow growth far outweighs the 

systematic component in the absolute size.5 According to equation (12), a larger fraction of 

systematic component in the latest growth in cash fows leads frms to revise their respective 

risk estimates upward. This will, in turn, cause frms to reduce investment, resulting in the 

following corollary. 

Corollary 3: A frm’s investment-capital ratio decreases with the fraction of cash-fow growth 

for which the systematic component accounts. 

5In the data, 10th percentile of fs is -0.133 and 90th percentile is 0.130. i,t 
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Figure 3: The Learning-Related Variables and Stock Return 

Panel A. mI and Expected Return Panel B. 1/σI and Expected Return b,t b,t 
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This fgure presents the expected return on stock in excess of the risk-free rate for di˙erent values of the 
Ilearning-related variables: the posterior estimate m of the systematic risk and the precision 1/σI of the b,t b,t 

estimate. 

Notice that this prediction is particularly distinct from the conventional understanding 

that cash fows help investment due to alleviating fnancial constraints. In this conventional 

logic, cash-fow growth should be positively linked to the investment, whether the growth is 

systematic or idiosyncratic. 

Next, we turn to the implications for valuation. The rationale we employ in Corollaries 

1 and 2 can also be applied to the existing capital stock in the frm beyond the new capital. 

This leads to the following two hypotheses regarding the market-to-book ratio. 

Corollary 4: A frm’s market-to-book ratio decreases with mI 
b,t. 

Corollary 5: A frm’s market-to-book ratio increases with 1/σI 
b,t. 

Figure 2 illustrates these predictions. Notably, the positive relationship in Corollary 5 

between the market-to-book ratio and the precision of the beliefs is distinct from Pastor 

and Veronesi (2003)’s prediction that the valuation ratio increases with uncertainty with 

respect to a model parameter: mean proftability. This di˙erence arises because the impact 

of parameter uncertainty di˙ers depending on the form of the association between the model 
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parameter and the frm value (i.e., whether the association is convex or concave). In the prior 

study, the frm value is a convex function of the mean proftability, so a rise in the uncertainty 

increases the average frm value due to Jensen’s inequality e˙ect. As to the parameter of 

systematic risk, however, our calibrated model predicts a concave dependence of the frm 

value on the parameter as shown in Panel A of fgure 2. Thus, a mean-preserving spread of 

parameter beliefs lowers the average value. 

The last dimension that we consider as evidence of the learning impact is the expected 

return, or cost of capital. Because the risk-exposure estimate is updated through the realized 

productivity that is unique for each industry, we conjecture that the risk estimate varies 

substantially across industries; we later confrm this observation empirically in Figure 5. The 

heterogeneity will naturally lead to a cross-sectional di˙erence in the expected returns. 

Corollary 6: The expected return on stock in excess of the risk-free rate increases with mI 
b,t. 

Corollary 7: The expected return on stock in excess of the risk-free rate decreases with 1/σI 
b,t. 

In Figure 3, we describe these model predictions. In Corollary 6, the return dependence 

on mb,t 
I is intuitive. When perceiving a greater average of systematic-risk exposure, market 

participants require a higher return on frms’ assets. 

With respect to Corollary 7, why is the expected return positively associated with un-

certainty about the systematic risk? We fnd that this parameter uncertainty creates the 

additional risks that the market penalizes. Specifcally, the updating mechanism in equation 

(8) uncovers that revisions in the risk estimate correlate to consumption shock as described 

in the following lemma. 

Lemma 1: The time-t covariance between the change in the risk estimate, mI −mI 
b,t+1 b,t, and 

n(σI )2σc(ωt)4 � � 
consumption shock, σc(ωt)ηt+1, is − b,t 

2ν2 Et (b
I)2 . 

The proof is provided in Appendix D. This negative covariance between an increase in the 

risk estimate and consumption shock eventually enlarges the systematic risk of the capital 
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return. Recall that the capital price decreases with the risk estimate. Hence, a decrease in 

the risk estimate, mI − mI 
b,t < 0, which is likely to happen when σc(ωt)ηt+1 > 0, resultsb,t+1 

in a positive return on capital, all else being equal. According to Lemma 1, this positive 

covariance between the return and the consumption is amplifed by the standard error of 

the systematic risk σI Therefore, a larger uncertainty about the parameter causes market b,t. 

participants to require a higher return. 

4. Empirical Analysis 

4.1. Data 

Our data consist of annual observations for non-fnancial and non-utilities frms on Com-

pustat and CRSP for years 1952-2017. We choose the annual frequency to minimize a sea-

sonality impact on corporate investment in our analysis. Among our frm-year observations, 

we exclude data points with negative or missing sales revenue or total assets lower than $10 

millions, which results in a total of 121,279 observations. 

Firm-level variables are measured in standard ways in the literature. Firm size is defned 

as the natural log of total assets (AT). The investment-capital ratio is capital expenditures 

(CAPX) divided by the beginning-of-period capital stock (PPENT). We measure productivity 

as the calibrated model implies; the productivity is operating profts (OIBDP) divided by the 

capital stock raised to the power of 0.65. The book leverage ratio is the sum of debt in current 

liabilities (DLC) and long-term debt (DLTT) divided by AT. Cash fow is operating profts 

(OIBDP) divided by the beginning-of-period AT. For Tobin’s q and the market-to-book ratio, 

we follow the measurement of Erickson et al. (2014). The numerator of Tobin’s q is DLTT 

plus DLC plus market equity minus current assets (ACT), in which the market equity is the 

product of common shares outstanding (CSHO) and stock price (PRCC). The denominator 

of Tobin’s q is gross capital stock (PPEGT). The numerator of the market-to-book ratio is AT 

plus the market equity minus book common equity (CEQ) minus deferred taxes (TXCB). 

The denominator of the market-to-book ratio is AT. For return on equity, we follow the 

18 



measurement of Pastor and Veronesi (2003). Earnings are income before extraordinary items 

available to shareholders (IBCOM), plus deferred taxes from income statements (TXDI), plus 

investment tax credits (ITCI). Book equity value is stockholders’ equity (SEQ), plus deferred 

taxes and investment tax credit from balance sheets (TXDITC), minus the book value of the 

preferred stock (PSTKRV). A frm’s age is measured by the log of the number of years since 

the frm’s stock price frst appeared on CRSP. 

We measure frms’ fnancial constraints as in Whited and Wu (2006). Each frm’s cash 

fows, dividend, leverage ratio, total assets, and sales growth are aggregated to generate the 

composite index (hereafter, referred to as the WW-index). 

Our analysis requires an industry classifcation. Following the standard in the literature, 

we identify industries using either four-digit SIC or four-digit NAICS codes. In addition, 

we employ the text-based classifcation recently developed by Hoberg and Phillips (2010). 

This classifcation is based on product similarity among frms that is measured through a 

text-based analysis of 10-K flings. This text-based network industry classifcation system 

(hereafter, referred to as TNIC) is obtained from the Hoberg-Phillips Data Library. 

Once industries are defned, we calculate the Herfndahl index to measure the level of 

competition among industry constituents. To obtain the index, we frst calculate the market 

share of each constituent using sales revenue (SALE) and sum the squared shares across the 

constituents. The fnal index is the reciprocal of the sum, so a higher value indicates a higher 

level of competition. 

We estimate the time-t belief about industry I’s systematic risk through the regression 

analysis, as formulated in equation (7). The dependent variable of the regression is the 

collection of the up-to-date realized productivity for every industry constituent. Regressing 

the dependent variable onto the corresponding consumption shocks, we obtain the regression 

coeÿcient mb,t 
I , which is approximately equal to the posterior mean of beliefs about the 

systematic risk. The precision of the parameter beliefs 1/σI is computed recursively as theb,t 

equation suggests. The parameter uncertainty before the frst observation, σb, I 
0, is arbitrarily 
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set at 20. 

We also consider an alternative estimation of frms’ systematic risk that uses each frm’s 

own history only for reasons we discuss in section 4.3.4. To determine the risk estimate mb,t
i 

and its precision 1/σi implied by this individual learning, we regress a frm’s up-to-dateb,t 

productivity to consumption shock, similarly to the collective learning. The only di˙erence 

from the collective learning is that the individual learning does not use peers’ observation to 

update the parameter. 

These regressions require the time-series of the consumption shock. As the aggregate state 

of the economy shifts according to the Markov chain, we frst need to identify the economic 

state for each time. For the identifcation, we use the quarterly time-series of consumption 

on non-durables and services from the Federal Research Economic Data. We then apply 

the Bayesian fltering technique as in Cappe et al. (2011) to these observations, so we may 

obtain the probability distribution of consumption shock for each quarter. By aggregating 

into annual frequency and computing the average, we are fnally able to estimate the annual 

time series of consumption shock. 

In addition, we measure frms’ exposures to risk factors identifed by Fama and French 

(2015). To determine each frm’s time-t risk exposures, we regress all of a frm’s monthly 

returns up to time t onto the time-series of the risk factors from Kenneth French’s website. 

Using an expanding-window estimation allows us to make the measurement compatible to 

that of mI 
b,t. 

4.2. A Look at Posterior Estimates of Systematic Risk 

Prior to the empirical tests, we frst present the properties of the systematic-risk estimates. 

In Figure 4, we plot the time-series of the posterior estimate of the risk for these selected 

industries: Aircraft Engines and Engine Parts (SIC 3724) and Air Transportation (SIC 4522). 

We choose these two industries as examples because their risk exposures are almost the same, 

according to the most recent estimate in 2017: 1.96 for Aircraft Engines and 2.02 for Air 

Transportation. Despite the similarity in these recent values, their historical paths of the 
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Figure 4: Examples of the Estimated Systematic Risk 

Panel A. Aircraft Engines (SIC 3724) Panel B. Air Transportation (SIC 4522) 

This fgure presents the time-series of the estimated systematic risk for selected industries (in this case, 
Aircraft Engines and Engine Parts (SIC 3724) and Air Transportation (SIC 4522)). The shaded areas 
indicate the 95% confdence interval of the estimates from the standard error of the posterior estimates as 
described in equation (8). 

parameter updates are strikingly di˙erent, especially in the early years of the industries. For 

example, the frst estimate of risk exposure is 0.05 for Aircraft Engines, whereas it is -13.5 

for Air Transportation. This distinction, however, is not surprising because the parameter is 

updated through the realized productivity that is unique to each industry. As a result, the 

learning process is remarkably idiosyncratic, although the two industries may have similar 

true exposures as the recent estimates suggest. 

Focusing on each industry, we fnd that the estimates display substantial time-variations. 

The systematic-risk estimate for Aircraft Engines changes from -3.05 to 5.60. Quantitatively, 

the time series have a standard deviation of 1.90, which is similar to its mean of 1.91. In 

the entire sample, each industry has, on average, a standard deviation of 4.33, confrming 

variations in the risk estimate through time. Furthermore, as the confdence interval in the 

plot indicates, the precision of the estimate improves gradually due to the growing dataset 

that serves as reference for the learning. 

Moreover, we fnd that the risk estimates vary signifcantly in a cross-section. Figure 5 

shows the distribution of the estimates across industries. For the purpose of highlighting the 
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learning impact on the cross-sectional dispersion, we plot two histograms: One shows the 

distribution of the risk estimates from fve-years worth of data for each industry, and the 

other shows the distribution of the estimates from ffty-years’ worth of data. 

The fgure reveals that the early estimate with respect to the fve-years’ worth of data 

varies signifcantly across industries. In this case, the parameter learning is based on just a few 

observations, so the resulting estimator has a large standard error; we therefore observe rather 

extreme values such as 40 or -40. On the other hand, once a large number of observations 

are obtained, the parameter estimator becomes more precise. This makes the distribution of 

the risk estimate more concentrated, as documented by the histogram of the estimates from 

the ffty-years’ worth of data. Nonetheless, the risk exposure from the long data still has 

non-trivial dispersion. In the cross-section, the standard deviation is 3.86, comparable to the 

mean of 2.35. This fnding underscores the necessity of learning about the parameter at the 

industry level. 

In summary, we fnd that each industry has uniquely updated its respective risk exposure. 

Considering the uniqueness of the learning path, a fnding of frm observables responding to 

this industry-specifc history o˙ers strong evidence that the learning takes place in practice. 

We empirically test our model predictions in the following section. 

4.3. Empirical Tests of Model Implications 

4.3.1. Implications for Investment 

We now test whether capital investment exhibits the regularities caused by learning. If 

frms, in practice, learn about their exposure to systematic risk, we expect their respective 

investments to respond to the learning-related variables as in Corollaries 1 and 2. To test 

this hypothesis, we conduct the following predictive regression: 

� � 
INVESTi,t = αi + β1 × mb,t 

I 
−1 + β2 × 1/σI + γ × Controls + �i,t (13)b,t−1 
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Figure 5: Industry Age and the Distribution of Estimated Systematic Risk 
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This fgure presents the cross-sectional distribution of the systematic-risk estimates across industries. Plotted 
are two histograms: one shows the distribution of the estimates from fve-years’ worth of data since the 
inception of each industry, and the other shows the distribution of the estimates from ffty-years’ worth of 
data. 

for which INVESTi,t denotes the frm i’s investment-capital ratio. Other controls include 

variables that have been found in the literature to a˙ect the investment: namely, frms’ 

size, age, Tobin’s q, cash fow, leverage ratio, and the indicator of fnancial constraints and 

industries’ Herfndahl index. 

In Table 3, we report our regression results. In specifcation (1), we use four-digit SIC 

codes to identify industries and calculate the learning-related variables accordingly. Our 

main fnding is that capital investment responds negatively to shifts in mb,t 
I , with a strong 

signifcance documented by the t-statistic of -5.20. 

Furthermore, this association is economically signifcant, as the coeÿcient estimate sug-

gests that a rise in the systematic-risk estimate by one standard deviation decreases in-

vestment by 9.5% (i.e., the annual investment-capital ratio changes from 0.217 to 0.196). 

Considering that the frm fxed e˙ect is taken into account in this regression, this negative 

coeÿcient reveals the time-series response of frms to changes in mb,t 
I . We therefore interpret 
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this as evidence that frms reduce (raise) capital investment when they update their beliefs 

about the systematic risk upward (downward). 

Moreover, this negative association persists under alternative industry classifcations. In 

specifcations (2) and (3), we refer to NAICS or TNIC, instead of SIC, to identify industry 

peers and estimate industries’ risk exposure accordingly. When we do so, we fnd that mb,t 
I 

continues to be a negative predictor of the investment at a 1% level of signifcance; the t-

statistic of NAICS (TNIC) measure is -4.63 (-2.91). All of these fndings strongly support 

Corollary 1. 

Beyond the point estimate, the precision of the parameter beliefs also predicts the in-

vestment, confrming Corollary 2. In all of the specifcation (1) through (3), we fnd that 

the coeÿcient on 1/σI is positive and statistically signifcant with t-statistics that rangeb,t 

from 1.69 to 5.13. In the economic magnitude, an improvement in precision of the beliefs by 

one standard deviation raises investment by 7.2% (e.g., the annual investment-capital ratio 

increases from 0.217 to 0.233). Consistent with the model prediction, frms indeed invest 

more in practice as their beliefs about the risk exposure become more precise. 

One might suspect that the response to the parameter precision is due to e˙ects distinct 

from the learning. According to equation (8), the precision increases monotonically with 

the number of constituent frms in an industry. This number of frms may then refect the 

amount of competition within the industry, which potentially infuences capital investment as 

found by Ghosal and Loungani (1996). To address this alternative explanation, we include 

the Herfndahl index in the regression. The coeÿcient on the Herfndahl index is found 

positive, suggesting that frms increase investment when facing heightened competition. More 

importantly, after controlling for this competition mechanism, the precision is signifcant for 

predicting investment. This fnding corroborates the model prediction, apart from the force 

of competition, that frms factor in the parameter precision in making investment decisions. 

Next, we examine another regularity that is dictated by the mechanism of updating 

systematic risk. As described in Corollary 3, this learning mechanism causes a peculiar 
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pattern in investment-cash fow association; frms reduce investment when the systematic 

component accounts for a larger part in cash-fow growth. Interestingly, this prediction 

counters the conventional understanding that cash fow-growth, whether it is systematic or 

idiosyncratic, alleviates fnancial constraints so thus helps investment. 

To test this model prediction, we slightly modify the regression equation (13). We include 

both the two-year lagged estimate of cash fow and its growth rate from t − 2 to t − 1. This 

setting is equivalent to controlling for the one-year lagged estimate of cash fow. 

Table 4 reports the regression results. First, specifcation (1) confrms that the investment 

is positively associated with the overall growth in cash fow, consistent with the literature. 

Next, specifcations (2) through (4) uncover the distinctive impact of the systematic compo-

nent in the cash-fow growth. The fraction of systematic component negatively predicts the 

investment with 1% level of signifcance for all of the specifcations. Notice that this empiri-

cal pattern is uniquely predicted by the learning mechanism and cannot be explained by the 

other cash-fow e˙ects noted in the literature. This novel regularity further strengthens our 

proposition that decision-makers engage in learning about the systematic risk. 

4.3.2. Implications for Valuation 

We now shift our focus to frms’ valuation as another dimension that is likely to manifest 

the learning process. Specifcally, we test Corollaries 4 and 5 using the regression specifcation, 

I � � 
MBi,t = αi + β1 × m 1/σI + γ × Controls + �i,t (14)b,t−1 + β2 × b,t−1 

where MBi,t is the frm i’s market-to-book ratio. Controls variables are frms’ size, age, return 

on equity, and leverage ratio and industries’ Herfndahl index, which the literatures has noted 

to infuence the valuation ratio. 

Table 5 reports the regression results. We fnd that the market-to-book ratio also responds 

to the learning-related variables as hypothesized. The posterior estimate mI of systematic b,t−1 

risk negatively predicts MBi,t at 1% level for all of the industry classifcations. At the same 
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time, the precision of the parameter beliefs, 1/σI , is a positive predictor of the valuation ratio b,t 

at the 5% signifcance level in most specifcations except for specifcation (1). These fndings 

indicate that an upward or downward revision of the systematic-risk estimate through the 

learning leads to the opposite fuctuation in the frm value. In addition, the market evaluates 

frms higher as the learning alleviates the uncertainty about the systematic risk. This evidence 

corroborates Corollaries 4 and 5. 

In summary, we establish that empirical data for both investment and valuation display 

the time-series regularities caused by the collective learning about the systematic risk. Our 

evidence strongly suggests that decision-makers, both inside and outside frms, constantly 

update their beliefs about the frms’ risk exposure. 

4.3.3. Implications for Implied Cost of Capital 

The beliefs about systematic risk infuence investment and valuation in a concerted way 

due to its impact on the discount rate. To see this connection more directly, we here examine 

the empirical link from the parameter beliefs to the cost of capital. In the spirit of the 

empirical asset pricing literature, we focus on whether the learning-related variables can 

explain the cross-section of the expected returns, testing Corollaries 6 and 7. 

In this test, we measure the cost of capital utilizing accounting data as suggested by Hou 

et al. (2012). The rationale for choosing the implied cost of capital over realized returns is 

two fold. First, realized returns are a noisy proxy for the discount rate, as pointed out by 

Blume and Friend (1973) and Elton (1999). Second, it is more sensible to link the time-t 

parameter beliefs to the implied cost of capital that we can also measure in a snapshot at 

time t. On the contrary, the realized returns from time t to t + 1 are from the valuation of 

frms at two di˙erent points in time, which refect di˙erent beliefs. This fact complicates the 

empirical test. 

Let ICCi,t denote the annualized implied cost of capital for frm i. We cross-sectionally 
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regress the time-t estimate of the implied cost of capital onto the learning-related variables: 

I � � 
ICCi,t = λ0,t + λ1,t × m 1/σI + �i,t. (15)b,t + λ2,t × b,t 

This cross-sectional regression is repeated every year and we calculate time-series average of 

coeÿcient estimates as in Fama and MacBeth (1973). 

Table 6 presents the regression results. In specifcations (1) through (3), the cost of 

capital is regressed only on the posterior estimate of risk exposure and its precision from the 

collective learning. We frst fnd that the parameter precision 1/σI is strongly negatively b,t 

linked to the cost of capital at 1% or 5% signifcance level. Consistent with Corollary 7, 

market participants require a lower return on a frm’s assets, when they are more certain 

about the frm’s systematic risk. Economically, an increase in the parameter precision by one 

standard deviation reduces the annualized cost of capital by 0.4%. 

Furthermore, we fnd that the systematic-risk estimate is positively associated with the 

cost of capital. For all of the industry classifcations, this positive connection is statistically 

signifcant at 1% or 5% level, lending strong support for Corollary 6. This association is also 

economically signifcant; an increase in the risk estimate by one standard deviation raises the 

annualized cost of capital by 0.9%. This fnding reveals that market participants respond to 

a cross-sectional variation in the systematic-risk estimate and they indeed require a higher 

return on frms with a larger risk estimate. 

In specifcations (5) through (7), we additionally control for other risk factors noted by 

Fama and French (2015). It appears that the predictive power of the learning-related variables 

is robust to the inclusion of additional factors in most specifcations except for the precision 

impact in specifcation (5). This robustness implies that the learning variables convey return-

relevant information that are not captured by the risk factors that the literature has noted 

so far. 

Although the above result may seem obvious, prior studies have reported mixed empirical 

results on whether the consumption beta can explain cross-sectional di˙erences in stock 
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returns. The association is found positive in Bansal et al. (2005) and Da (2009), whereas it is 

insignifcant in Lettau and Ludvigson (2001) and Boguth and Kuehn (2013). We conjecture 

that this inconsistency arises due to diÿculty in the reliable identifcation of the consumption 

beta. Firms’ cash fows, or productivity in our setting, are exposed to idiosyncratic shock 

that tends to outweigh the systematic component in magnitude. Considering this substantial 

noise that hampers the parameter identifcation, we can reliably estimate the risk exposure 

only when we use a suÿcient number of observations, such as analyzing at portfolio level 

(Bansal et al. (2005)) or using a very long frm-level data including future earnings (Da 

(2009)). 

Our fnding supports this interpretation. Note that the risk estimates, which predict 

returns in specifcations (1) through (3) and (5) through (7), are obtained from the collec-

tive learning where frms make use of their peers’ observations so thus learn from larger 

dataset than otherwise. To contrast, we let frms learn from their own history only and test 

whether this alternative risk-estimate from the individual learning can explain the cost of 

capital. Specifcations (4) and (8) report that the risk estimate through individual learning 

is incapable of predicting the cost of capital in the cross section. The discrepancy in the pre-

dictability highlights that utilizing collective observations is critical to determination of the 

systematic risk. Further comparison between collective and individual learning is provided 

in the following section. 

4.3.4. Is the Learning Collective or Individual? 

We have documented, theoretically and empirically, that the parameter beliefs about 

frms’ systematic risk have a widespread impact on frms’ decisions and valuations. In ob-

taining these fndings, we make an assumption as to which data is relevant for the learning 

about a frm’s risk exposure. Specifcally, we assume that a target frm’s peer observations 

are also informative about its risk profle, as constituents in one industry tend to have similar, 

if not identical, exposure to the systematic risk. Accordingly, this learning takes place at the 

collective level. 
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Meanwhile, one may conjecture another form of learning: that of individual learning, 

in which each frm’s own history only is used without reference to peers. This alternative 

form is worth considering because the employed systems of industry classifcations might be 

only loosely defned. In other words, even frms in the same industry might have di˙erential 

business profles upon a closer look, so peers’ observations might not accurately refect each 

other’s systematic risk. If this is indeed the case, focusing instead on individual history would 

result in a more precise estimate. Considering this possibility, we test whether the parameter 

beliefs mi and 1/σi from individual learning predict the investment and the valuation. b,t b,t 

In Tables 3 and 5, we use specifcation (4) to report our regression results. Surprisingly, 

it turns out that mb,t
i is insignifcant for predicting both the investment-capital ratio and the 

market-to-book ratio with t-statistics of 0.69 and -0.31, respectively. This is in stark contrast 

to the 1% level of signifcance of mI that is associated with collective learning. b,t 

Why do frms not respond to the risk exposure that is estimated from their own history? 

Certainly, the insignifcance is not because of the theoretical design of the estimator; both in-

dividual and collective learning update the parameter through the least-squared estimation. 

Instead, the main di˙erence between the two forms is the number of observations that enter 

the learning process. When we include peers’ observations as the information source, this 

collective learning o˙ers decision-makers much richer data from which to learn than does the 

individual learning. This seemingly mechanical di˙erence plays a crucial role in this context 

of identifying the systematic risk, as the primary source of information, the realized growth 

in productivity, contains a substantial noise; in the calibrated model, the volatility of idiosyn-

cratic shock (noise) to productivity is approximately 30 times as large as the volatility of the 

systematic component (signal). Due to the remarkably low signal-to-noise ratio, the reliable 

identifcation of the parameter requires a fairly large number of observations. Failing to do 

so, individual learning leads to an inaccurate risk-estimate that is incapable of explaining 

frms’ decisions. 

In summary, we confrm that updating beliefs about systematic risk is a collective process. 
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It is the particular estimate of risk exposure through collective learning, rather than the 

estimate that would otherwise emerge from individual history, that drives various empirical 

dimensions with respect to frm investment and market valuation. 

5. Robustness Tests 

5.1. Time-Variation in the True Value of Systematic Risk 

One of the stylized assumptions in our model is that each industry’s true exposure to the 

systematic risk is constant. What causes the risk estimate to fuctuate is not changes in the 

true risk profle but the parameter learning from growing observations. We conjecture that, if 

the true risk exposure itself fuctuates contrary to our assumption, then it is possible that the 

learning-based risk estimate may misleadingly capture a variation in the true exposure. To 

address this concern, we conduct alternative estimations that are designed to better detect 

dynamics, if they exist, in the true exposure. Provided this true risk exposure is time-varying, 

this new estimate based on dynamic risk would outperform our baseline estimate in predicting 

investment and valuation. 

Recall that the baseline estimation of the systematic risk refers to the entire history of 

productivity since industry inception (expanding window); if true risk exposure is constant, 

all observations are equally informative. In contrast, if the true risk exposure varies, then 

recent observations would be more informative about the current level of risk than would 

old observations. As an approach focusing on this recent information, a rolling-window 

estimation would measure the risk more e˙ectively. Accordingly, we try the rolling-window 

approach with alternative choices of the estimation window: three, fve, and seven years. 
3-yr rolling 5-yr rolling 7-yr rolling m , mb,t , and m are the resulting estimates of the systematic risk. b,t b,t 

In addition, we also consider a rather extreme form of rolling-window estimation, an 

approach that uses the latest observations only; for example, this estimation only uses year-t 

productivity to measure the systematic risk in year t. This measurement is possible because 

each industry usually has a cross-section of realized productivity from multiple constituents. 
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Specifcally, if there are suÿciently many constituents in an industry, taking a cross-sectional 

average of frm-level productivities will diversify away idiosyncratic components. What then 

remains in the cross-sectional average is the systematic component multiplied by the risk 

exposure. Dividing the average by the consumption shock, we obtain another risk exposure 
cross-section in year t m .b,t 

In Table 7, we report our regression results. In the panel regressions reported in spec-

ifcations (1) through (10), we fnd that the rolling-window-based risk estimates perform 

conspicuously poorly compared to the expanding-window-based risk estimates. The associ-

ations between investment and the rolling-window-based estimates are statistically weaker 

– t-statistics range from -1.97 to 0.78 – than the expanding-window-based estimate that is 

signifcant with the t-statistic of -4.24. We fnd a similar underperformance when we use 

the rolling-window-based estimates to explain the market-to-book ratio. Consistently, the 
cross-section in year talternative risk estimate from the cross-section, mb,t , is only a weak predictor 

for investment and the market-to-book ratio, with t-statistics of -0.34 and -0.71, respectively. 

Specifcations (11) through (15) report the Fama-MacBeth regressions of the implied cost 

of capital on the alternative risk measures. We fnd that the cost of capital is only insignif-

icantly connected to these measures that are designed to capture dynamic risk exposures; 

t-statistics range from 0.12 to 1.05. This fnding further substantiates the outperformance of 

the expanding-window-based estimate. 

Nevertheless, we do not interpret this evidence as a reason to rule out the possibility that 

the true risk exposure is dynamic. Specifcally, we do not formally formulate any dynamics 

of the true risk exposure and indirectly infer about the risk profle from observed moments. 

Rather, we argue that this fnding highlights that critical dimensions of frm observables, 

including capital investment, market-to-book ratio, and the cost of capital, are empirically 

more responsive to learning-induced changes in the risk estimate than changes in the true 

risk profle. 
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5.2. Does Industry Classifcation Matter? 

In our main analysis, the identifcation of each frm’s peers depends on the particular sys-

tems of industry classifcations. In turn, we question the extent to which these classifcation 

systems help identify the best sources of information with respect to systematic risk. To 

be critical on the role of these industry classifcations is reasonable for a couple of reasons. 

First, the industry defnition derived from either the SIC or NAICS system might not be as 

robust as possible because their classifcation criteria are chosen in a rather arbitrary way 

[see Bhojraj et al. (2003) and Weiner (2005)]. Second, if the risk exposure is similar for 

all frms in the economy irrespective of industry,6 any group of frms would be informative 

about the parameter. If this is indeed the case, the industry codes would contribute nothing 

in identifying the best information source. 

Motivated by these possibilities, we examine whether the reference to industry classif-

cation is critical for the learning. Essentially, we compare the actual systems of industry 

classifcation (i.e., SIC, NAICS, TNIC) to random grouping of frms. We design the test as 

follows. First, we create 392 hypothetical industries, so we may match the total number of 

industries according to the four-digit SIC code. Second, each frm in Compustat is randomly 

classifed into an industry, and each of these counter-factual industries has 38 constituents 

(i.e., the average number of frms for SIC industries). Once assigned, the industry code 

is fxed for each frm across time. Next, we let frms learn from past observations of their 

counter-factual peers and update the systematic risk accordingly. Importantly, frms here use 

the actual productivity data from Compustat, and we only simulate the grouping of frms is 

simulated. Lastly, we conduct regressions as in equations (13) and (14) to see whether the 

investment and valuation respond to this risk estimate from counter-factual peers. These 

steps constitute one simulated case, and we simulate 100 cases to obtain 100 regression coef-

fcients for both investment and valuation. Our conjecture is that the risk estimate from the 

6It may seem wild guess. However, we cannot rule this out because we do not observe the true values of 
systematic risk. 
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Figure 6: The Risk Estimates from Counter-Factual Peers and Firms’ Investment and Valuation 

Panel A. Investment-capital ratio Panel B. Market-to-book ratio 
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This fgure shows histograms of 100 estimates of the t-statistics of alternative measures of the systematic 
risk in investment and valuation regressions. The systematic risk is estimated from the observations of the 
counter-factual peers that are randomly grouped. The regression specifcations are equations (13) and (14). 
The dots on the x-axis indicate t-statistics found in the regressions when we use actual industry classifcations 
(i.e., SIC, NAICS, TNIC). 

simulated pairs would also predict the frm observables with a similar signifcance our the 

baseline estimates, if the actual systems of industry classifcations are of no use. 

In Figure 5.2, we present the histograms of these 100 estimates of t-statistics for the risk 

estimate in our regressions. We fnd that the predictive power of the risk estimate from 

the counter-factual peers is noticeably lower than the baseline estimates. In the investment 

regression, in which the risk exposure is supposed to predict negatively, the t-statistics for 

the SIC-based and NAICS-based estimates are lower than all of the counter-factual estimates 

(which are larger in the absolute magnitude). Similarly, the t-statistic for the TNIC-based 

estimates are lower than 89 out of the 100 counter-factual estimates. 

The signifcance of the actual industry classifcations is even more pronounced in pre-

dicting the market-to-book ratio. The estimate from every actual classifcation outperforms 

all counter-factual estimates. In contrast, if frms learn from hypothetical industries, the 

resulting estimates only lead to an insignifcant relation between the risk exposure and the 

market value; the median of the t-statistics of the counter-factual estimates is 1.11, which is 
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inconsistent with the model prediction. These comparisons confrm that the actual systems 

of industry classifcation help determine which observations are informative about the sys-

tematic risk. As documented in Figure 5, industries are indeed heterogeneous with respect 

to the risk exposure. Therefore, without reference to the classifcation, frms are destined to 

use observations that are actually irrelevant to the parameter of their interest, thus rendering 

them incapable of updating the parameter properly. 

These results emphasize that our main fndings are coincidental. Despite some drawbacks 

that industry classifcation codes might have as noted in the literature, the classifcation 

helps frms identify their peers with similar risk exposure. With guidance, decision-makers 

can learn about frms’ exposure to systematic risk much more eÿciently than they could 

otherwise. 

6. Conclusion 

Parameter uncertainty is present for virtually any decision in fnancial markets. Among 

many parameters, frms’ exposure to systematic risk is particularly hard to identify quickly. 

The realized productivity, which is informative of the parameter in the production economy, 

is primarily driven by idiosyncratic innovation that acts as noise hampering the parameter 

identifcation. Accordingly, a precise understanding of risk exposure requires a substantial 

number of observations. In this context, we propose a collective-learning framework in which 

decision-makers learn about a target frm’s risk from its peers. 

We present time-series and cross-sectional regularities caused by this learning. The em-

pirical data strongly supports our model predictions. First, investment-capital ratio and the 

market-to-book ratio respond negatively to upward or downward revision in the systematic-

risk estimate. Simultaneously, these two ratios increase with the precision of parameter 

beliefs. Second, the learning mechanism induces capital investment to respond negatively to 

a part of cash-fow growth for which the systematic component accounts. Lastly, the learning 

mechanism creates a cross-sectional dispersion in the cost of capital; the market commands 
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a higher return on frms with a larger estimate of risk exposure or a lower precision of pa-

rameter beliefs. We further show that that it is this particular risk-estimate derived from the 

collective learning, rather than individual learning, that predicts the crucial dimensions of 

frm observables. Furthermore, we fnd that frms’ real decisions and market valuations ap-

pear to be more responsive to learning-induced changes in the risk estimate than fuctuations 

in the true risk profle. 

Nevertheless, our study does not provide a complete picture of how learning interacts with 

frms’ decisions. A possible extension of our study is to incorporate frms’ endogenous entry 

or exit. The decision on entry or exit, which will change the dataset for the learning, is likely 

to correlate with the aggregate state of the economy. This correlation, in turn, could amplify 

or mitigate the risk associated with the parameter uncertainty. We leave the exploration of 

this question to a future study. 
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Table 1: Calibration Results 

This table presents the calibrated model parameters and the resulting moments on the simulated frm panel. 
The parameters in Panel A are used to simulate the quarterly time-series of the aggregate state of the 
economy and the frm-level variables. All moments in panel B are annualized. 

Panel A. Parameters 
Description Parameter Value 

Rate of time preference β 0.996 

Relative risk aversion γ 10 

Elasticity of intertemporal substitution ψ 2 

Unconditional mean of consumption growth g 0.005 

Capital share of production α 0.65 

Depreciation rate δ 0.03 

Exposure to systematic risk b 1.98 

Volatility of idiosyncratic shock to productivity ν 0.285 

Coeÿcient for investment-adjustment costs φ 6.5 

Panel B. Moments 
Moment Data Model 

Average consumption growth 0.019 0.020 

Volatility of consumption growth 0.022 0.025 

Average risk-free rate 0.009 0.019 

Volatility of risk-free rate 0.010 0.003 

Average investment-capital ratio 0.211 0.204 

Volatility of investment-capital ratio 0.261 0.354 

Average stock return 0.072 0.054 

Volatility of stock return 0.429 0.360 
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Table 2: Summary Statistics 

This table presents the descriptive statistics of the annualized variables. mI is the time-t estimate ofb,t 
iindustry I’s systematic risk, and 1/σI is the precision of the risk estimate. m and 1/σi are theb,t b,t b,t 

learning-related variables from individual learning. ICCi,t is frm i’s implied cost of capital at time t. HHII,t 
is industry I’s Herfndahl index. βi , βi , βi and βi are frm i’s exposures to the Fama andSMB,t HML,t RMW,t CMA,t 

French (2015)’s risk factors. 

Variable Mean Std.Dev. 25% 50% 75% 

Im (SIC)b,t 1.694 5.958 -0.911 1.551 4.355 
Im (NAICS)b,t 1.773 4.987 -0.355 1.571 3.979 
Im (TNIC)b,t 2.307 5.968 -0.915 1.807 5.266 
imb,t 2.186 16.45 -4.829 0.851 8.027 

1/σI (SIC)b,t 1.305 0.805 0.743 1.146 1.641 

1/σI (NAICS)b,t 1.702 0.960 0.953 1.611 2.290 

1/σI (TNIC)b,t 0.676 0.557 0.265 0.517 0.921 

1/σi b,t 0.235 0.132 0.116 0.220 0.328 

Investment-capital ratioi,t 0.217 0.242 0.130 0.211 0.368 
Market-to-book ratioi,t 1.569 1.375 0.951 1.207 1.736 
ICCi,t 0.121 0.385 0.033 0.065 0.126 
Sizei,t 5.599 1.192 4.202 5.405 6.852 
Cashfowi,t 0.116 0.065 0.069 0.105 0.152 
Leveragei,t 0.247 0.198 0.091 0.231 0.364 
Qi,t 2.618 4.619 0.341 0.867 2.457 
Agei,t 2.404 1.042 1.792 2.485 3.178 
ROEi,t 0.033 0.860 -0.021 0.100 0.188 
WW indexi,t -0.084 1.464 -0.226 -0.142 -0.046 
HHII,t (SIC) 6.985 7.254 2.948 4.806 8.400 
HHII,t (NAICS) 17.387 33.079 3.971 7.071 12.494 
βi SMB,t 0.733 0.894 0.157 0.641 1.200 

βi HML,t 0.103 1.152 -0.388 0.153 0.651 

βi RMW,t -0.144 1.416 -0.666 −3-9.49e 0.503 

βi CMA,t -0.031 0.625 0.557 0.914 1.224 
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Table 3: Capital Investment and Learning-Related Variables 

This table presents panel regressions of capital investment on its determinant. The regression specifcation 
is: 

IINVESTi,t = αi + β1 × m 
� 
1/σI � 

+ γ × Controls + �i,tb,t−1 + β2 × b,t−1 

for which INVESTi,t is frm i’s investment-capital ratio. Industry I’s systematic risk mI and the precision b,t 

of the parameter beliefs 1/σI in specifcations (1) through (3) are calculated based on four-digit SICb,t 

codes, four-digit NAICS codes, or the text-based classifcation system (TNIC). In specifcation (4), the 
isystematic risk m and its precision 1/σi are alternatively estimated through individual learning. Theb,t b,t 

additional controls include frms’ age, Tobin’s q, size, leverage, cash fow, and the WW-index and industries’ 
Herfndahl index. The standard errors are clustered by frms. The t-statistics are presented in parenthe-
ses below the parameter estimates. *, **, *** denote signifcance at the 10%, 5%, and 1% levels, respectively. 

(1) (2) (3) (4) 

Imb,t−1(SIC) -0.00345∗∗∗ 

(-5.20) 

1/σI 
b,t−1(SIC) 0.0195∗∗∗ 

(5.13) 

Im (NAICS)b,t−1 -0.00351∗∗∗ 

(-4.63) 

1/σI (NAICS)b,t−1 0.00538∗ 

(1.69) 

Imb,t−1(TNIC) -0.000801∗∗∗ 

(-2.91) 

1/σI 
b,t−1(TNIC) 

imb,t−1 

0.00878∗∗ 

(2.37) 
0.0000253 
(0.62) 

1/σi b,t−1 

Agei,t−1 -0.0156∗∗∗ 

(-9.38) 
-0.00715∗∗∗ 

(-3.63) 
-0.0114∗∗∗ 

(-4.58) 

0.0740∗∗∗ 

(3.94) 
-0.0104∗∗∗ 

(-4.58) 

Qi,t−1 0.0157∗∗∗ 

(38.08) 
0.0149∗∗∗ 

(31.04) 
0.0167∗∗∗ 

(33.56) 
0.0149∗∗∗ 

(31.03) 

Sizei,t−1 -0.0474∗∗∗ 

(-27.17) 
-0.0433∗∗∗ 

(-22.73) 
-0.0469∗∗∗ 

(-20.84) 
-0.0443∗∗∗ 

(-23.31) 

Leveragei,t−1 -0.143∗∗∗ 

(-17.07) 
-0.116∗∗∗ 

(-12.98) 
-0.121∗∗∗ 

(-11.33) 
-0.115∗∗∗ 

(-12.89) 

Cashfowi,t−1 0.647∗∗∗ 

(37.47) 
0.629∗∗∗ 

(32.84) 
0.543∗∗∗ 

(24.79) 
0.636∗∗∗ 

(33.22) 

WW indexi,t−1 -0.000940∗ 

(-1.71) 
-0.000100 
(-0.11) 

-0.000217 
(-0.22) 

-0.0000509 
(-0.05) 

HHII,t−1 0.00158∗∗∗ 

(3.64) 
0.00177∗∗∗ 

(3.87) 
0.00163∗∗ 

(2.95) 
0.00183∗∗∗ 

(4.02) 

N 
adj. R2 

121,055 
0.172 

96,995 
0.142 

66,787 
0.169 

96,995 
0.142 
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Table 4: Capital Investment and Systematic Components in Cash-Flow Growth 

This table presents panel regressions of frms’ investment. The regression specifcation is: � �cash fow cash fow INVESTi,t = αi + β1 × gi,t−1 + β2 × Systematic component in gi,t−1 + γ × Controls + �i,t 

cash fow for which INVESTi,t is frm i’s investment-capital ratio. g is the growth rate from t − 1 to t of frm i,t−1 
cash fow i’s cash fow. Systematic component in gi,t−1 is the fraction of the systematic component in the growth. 

The controls include frms’ age, Tobin’s q, size, leverage, cash fow, and the WW-index and industries’ 
Isystematic risk mb,t, the precision of the parameter beliefs 1/σI 

b,t, and the Herfndahl index. The standard 
errors are clustered by frms. The t-statistics are presented in parentheses below the parameter estimates. 
*, **, *** denote signifcance at the 10%, 5%, and 1% levels, respectively. 

(1) (2) (3) (4) 

cash fow gi,t−1 0.0634∗∗∗ 0.0634∗∗∗ 0.0621∗∗∗ 0.0551∗∗∗ 

(39.43) (39.37) (36.98) (27.74) 

cash fow Systematic component in gi,t−1 -0.0000285∗∗∗ -0.0000310∗∗∗ -0.0000290∗∗∗ 

(-3.36) (-3.06) (-3.72) 

Cashfowi,t−2 0.511∗∗∗ 0.511∗∗∗ 0.500∗∗∗ 0.452∗∗∗ 

(26.90) (26.76) (25.45) (19.09) 

Imb,t−2 (SIC) -0.000879 ∗∗∗ 

(-3.00) 

1/σI 
b,t−2 (SIC) 0.0155∗∗∗ 

(3.98) 

Imb,t−2 (NAICS) -0.00117∗∗∗ 

(-3.84) 

1/σI 
b,t−2 (NAICS) 0.0129∗∗∗ 

(3.97) 

Imb,t−2 (TNIC) -0.000702∗∗ 

(-2.50) 

1/σI 
b,t−2 (TNIC) 0.00328 

(0.85) 

Agei,t−1 -0.00750∗∗∗ -0.0113∗∗∗ -0.0123∗∗∗ -0.00811∗∗∗ 

(-4.83) (-6.25) (-6.31) (-2.91) 

Qi,t−1 0.0158∗∗∗ 0.0158∗∗∗ 0.0159∗∗∗ 0.0165∗∗∗ 

(35.23) (35.15) (35.19) (31.10) 

Sizei,t−1 -0.0466∗∗∗ -0.0483∗∗∗ -0.0474∗∗∗ -0.0456∗∗∗ 

(-25.86) (-26.20) (-25.00) (-19.35) 

Leveragei,t−1 -0.143∗∗∗ -0.144∗∗∗ -0.134∗∗∗ -0.121∗∗∗ 

(-17.88) (-18.00) (-16.36) (-10.76) 

WW indexi,t−1 -0.000830 -0.000819 -0.000811 -0.000144 
(-0.86) (-0.84) (-0.84) (-0.15) 

Herfndahnli,t−1 0.00232∗∗∗ 0.00192∗∗∗ 0.00198∗∗∗ 0.00190∗∗∗ 

(5.20) (4.28) (4.27) (3.37) 

N 108,383 108,163 98,114 61,710 
adj. R2 0.154 0.154 0.158 0.155 
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Table 5: Market-to-Book Ratio and Learning-Related Variables 

This table presents panel regressions of the market-to-book ratio on its determinant. The regression specif-
cation is: 

IMBi,t = αi + β1 × m 
� 
1/σI � 

+ γ × Controls + �i,tb,t−1 + β2 × b,t−1 

for which MBi,t is frm i’s market-to-book ratio. Industry I’s systematic risk mI and the precisionb,t 

of the parameter beliefs 1/σI in specifcations (1) through (3) are calculated based on four-digit SICb,t 

codes, four-digit NAICS codes, or the text-based classifcation system (TNIC). In specifcation (4), the 
isystematic risk m and its precision 1/σi are alternatively estimated through the individual learning.b,t b,t 

The additional controls include frms’ age, size, leverage ratio, and return on equity and industries’ 
Herfndahl index. The standard errors are clustered by frms. The t-statistics are presented in parenthe-
ses below the parameter estimates. *, **, *** denote signifcance at the 10%, 5%, and 1% levels, respectively. 

(1) (2) (3) (4) 

Im (SIC)b,t−1 -0.0137∗∗∗ 

(-3.08) 

1/σI (SIC)b,t−1 0.0399 
(1.44) 

Im (NAICS)b,t−1 -0.00688∗∗∗ 

(-3.88) 

1/σI (NAICS)b,t−1 0.0571∗∗ 

(2.35) 

Im (TNIC)b,t−1 -0.00950∗∗∗ 

(-5.70) 

1/σI (TNIC)b,t−1 0.0586∗∗ 

(2.63) 

imb,t−1 -0.0000614 
(-0.31) 

1/σi b,t−1 0.177 
(1.29) 

Sizei,t−1 -0.190∗∗∗ 

(-16.38) 
-0.172∗∗∗ 

(-13.93) 
-0.203∗∗∗ 

(-14.18) 
-0.169∗∗∗ 

(-13.85) 

Agei,t−1 -0.0145 
(-1.49) 

0.0372∗∗∗ 

(2.96) 
0.0142 
(0.89) 

0.0387∗∗∗ 

(2.69) 

ROEi,t−1 0.105∗∗∗ 

(12.26) 
0.125∗∗∗ 

(11.34) 
0.0962∗∗∗ 

(8.82) 
0.126∗∗∗ 

(11.44) 

Leveragei,t−1 -0.353∗∗∗ 

(-6.73) 
-0.377∗∗∗ 

(-6.22) 
-0.358∗∗∗ 

(-5.05) 
-0.378∗∗∗ 

(-6.25) 

HHII,t−1 -0.00387 
(-1.25) 

-0.00445 
(-1.40) 

0.00161 
(0.44) 

-0.00408 
(-1.30) 

N 
adj. R2 

118458 
0.040 

94643 
0.030 

65770 
0.037 

95339 
0.029 
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Table 6: Cross-Section of the Implied Cost of Capital and Learning-Related Variables 

This table presents the Fama-MacBeth regressions of frms’ implied cost of capital. In the cross-section, we 
regress annualized cost of capital in year t (ICCt,i) on the estimate of systematic risk mI and the precision b,t 

Iof parameter beliefs 1/σI Industry I’s systematic risk m and the precision of the parameter beliefs b,t. b,t 

1/σI 
b,t are calculated based on four-digit SIC codes, four-digit NAICS codes, or the text-based classifcation 

system (TNIC). In specifcations (5) through (8), we additionally control for the exposures to the risk 
factors identifed by Fama and French (2015). They are the exposure to the size factor <βI >, theSMB,t 

exposure to the value factor <βHML,t>, the exposure to the proftability factor <βRMW,t> and the exposure 
to the investment factor <βCMA,t>. *, **, *** denote signifcance at the 10%, 5% and 1% levels, respectively. 

(1) 
ICCi,t 

(2) 
ICCi,t 

(3) 
ICCi,t 

(4) 
ICCi,t 

(5) 
ICCi,t 

(6) 
ICCi,t 

(7) 
ICCi,t 

(8) 
ICCi,t 

Im (SIC)b,t−1 0.0015∗∗∗ 

(2.95) 
0.0010∗∗ 

(2.22) 

1/σI (SIC)t−1 -0.0044∗∗∗ 

(-2.67) 
-0.0015 
(-1.37) 

Im (NAICS)b,t−1 0.0014∗∗∗ 

(3.15) 
0.0008∗∗ 

(2.12) 

1/σI (NAICS)t−1 -0.0071∗∗∗ 

(-5.22) 
-0.0057∗∗∗ 

(-5.42) 

Im (TNIC)b,t−1 0.0010∗∗ 

(2.55) 
0.0008∗∗ 

(2.58) 

1/σI (TNIC)t−1 -0.0033∗∗ 

(-2.04) 
-0.0038∗∗∗ 

(-2.85) 

imb,t−1 0.0004 
(1.55) 

0.0003 
(1.14) 

1/σi t−1 -0.0528∗∗ 

(-2.39) 
-0.0316∗∗ 

(-2.46) 

βSMB,t−1 0.0071∗∗∗ 

(2.85) 
0.0074∗∗∗ 

(2.85) 
0.0059∗∗ 

(2.35) 
0.0085∗∗∗ 

(3.50) 

βHML,t−1 0.0169∗∗∗ 

(9.81) 
0.0183∗∗∗ 

(11.20) 
0.0193∗∗∗ 

(9.26) 
0.0250∗∗∗ 

(11.51) 

βRMW,t−1 -0.0051∗∗∗ 

(-3.97) 
-0.0063∗∗∗ 

(-4.95) 
-0.0073∗∗∗ 

(-4.45) 
-0.0071∗∗∗ 

(-4.93) 

βCMA,t−1 0.0084∗∗∗ 

(6.73) 
0.0096∗∗∗ 

(8.32) 
0.0097∗∗∗ 

(7.59) 
0.0107∗∗∗ 

(8.18) 

N 
adj. R2 

71,544 
0.004 

77,481 
0.006 

55,664 
-0.002 

67,396 
-0.021 

71,544 
0.023 

77,481 
0.023 

55,664 
0.015 

67,396 
0.013 
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Table 7: Comparison of Expanding-Window with Rolling-Window Estimations 

In the table, specifcations (1) through (10) present panel regressions of frms’ investment and valuation. The regression specifcation is: 

Dependent Variablei,t = αi + β × mb,t−1 + γ × Controls + �i,t 

for which the dependent variable is either frm i’s investment-capital ratio or market-to-book ratio. The posterior estimate of systematic risk mb,t is 
I,expandingmeasured by di˙erent approaches. m is obtained from the expanding-window estimation, which uses the entire history since the industry inception. b,t 

I,3-yr rolling I,5-yr rolling I,7-yr rolling m is obtained from the rolling-window estimation, which uses the industry history from year t − 2 to t. Similarly, m and mb,t b,t b,t 
I,cross-section in year tare obtained from the history over the last fve and seven years, respectively. m is the cross-sectional mean of industry constituents’ b,t 

productivity in year t divided by the consumption shock. For each of investment and valuation regression, controls in equation (13) and (14) are included; 
they are frms’ age, size, Tobin’s q, leverage ratio, cash fow, the WW-index, and return on equity, and industries’ Herfndahl index. The standard errors 
are clustered by frms. Specifcations (11) through (15) present Fama-MacBeth regression of frms’ implied cost of capital. For each year t, a cross-sectional 
regressions is conducted with the specifcation: 

IICCi,t = λ0,t + λ1,t × mb,t + γ × Controls + �i,t. 

We then report the time-series average of these coeÿcients. The t-statistics are presented in parentheses below the parameter estimates. *, **, *** denote 
signifcance at the 10%, 5%, and 1% levels, respectively. 

(1) 
INVESTi,t 

(2) 
INVESTi,t 

(3) 
INVESTi,t 

(4) 
INVESTi,t 

(5) 
INVESTi,t 

(6) 
MBi,t 

(7) 
MBi,t 

(8) 
MBi,t 

(9) 
MBi,t 

(10) 
MBi,t 

(11) 
ICCi,t−1 

(12) 
ICCi,t−1 

(13) 
ICCi,t−1 

(14) 
ICCi,t−1 

(15) 
ICCi,t−1 

expandingmb,t−1 -0.00206∗∗∗ 

(-4.24) 
-0.00725∗∗ 

(-2.47) 
0.0010∗∗∗ 

(2.50) 

3-yr rolling mb,t−1 -0.000197∗∗ 

(-1.97) 
-0.0000710 
(-0.15) 

0.0001 
(0.57) 

5-yr rolling mb,t−1 0.0000777 
(0.62) 

-0.000917∗ 

(-1.69) 

−40.204e
(0.12) 

7-yr rolling mb,t−1 0.000155 
(0.78) 

0.00182 
(1.59) 

0.0001 
(0.44) 

cross-section in year t−1 mb,t−1 -0.00000315 
(-0.34) 

-0.0000309 
(-0.71) 

0.0002 
(1.05) 

Controls 
N 
adj. R2 

Yes 
63,238 
0.183 

Yes 
63,238 
0.182 

Yes 
63,238 
0.182 

Yes 
63,238 
0.182 

Yes 
63,238 
0.182 

Yes 
63,102 
0.035 

Yes 
63,102 
0.035 

Yes 
63,102 
0.035 

Yes 
63,102 
0.035 

Yes 
63,102 
0.035 

Yes 
54,180 
0.037 

Yes 
54,180 
0.036 

Yes 
54,180 
0.036 

Yes 
54,180 
0.036 

Yes 
54,180 
0.037 



 

 

Appendix A. Wealth-Consumption Ratio 

Let Wt denote the time-t wealth of the representative agent. The wealth satisfes the 
Euler equation, 

" � �−γ � �−(1−θ) # 
Ct+1 St+1 + 1 

Wt = Et βθ (Ct+1 + Wt+1) . (A.1)
Ct St 

Dividing equation A.2 by time-t consumption and letting St denote Wt/Ct, we obtain the 
equation for the wealth-consumption ratio, 

" #� �1−γ
Ct+1 θSt

θ = Et βθ 

Ct 
(St+1 + 1) . (A.2) 

Appendix B. Least Square Estimator of b 

The solution in the least-square estimation, equation (7), is 

" #−1 " # 
t tX X 

s=1 s=1 

to b as follows: 

p � � ��−1 � � 
mb,t E XtXt

T E XtYt
T (B.2) 

T T (B.1)X X X Ym = .b,t s ss s 

As the number of observations becomes infnitely large, the estimates converges in probability 

→ " !# 
n� ��−1 X (bI)2σc(ωs−1)

2 

XtXt
T E bIXtXt

T + σc(ωs−1)ηs ν�i,s −E (B.3)
2 

→ 

i=1 

p 
bI (B.4) 

where equations (1), (5) and (6) are used to expand Xt and Yt. Hence mb,t is a consistent 
estimator of bI . 

Next, we derive the recursive updating equation (8). The time-t estimate can be expanded 
as 

" " !# 
t 

#−1 t t nX X X X (bI)2σc(ωs−1)
2 

mb,t = XsXs
T bI XsXs

T + σc(ωs−1)ηs ν�i,s − . (B.5)
2 

s=1 s=1 s=1 i=1 
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�p→ 



 

  

The expectation of the estimate conditional on time t is 

" #−1 ! 
t t n 

(bI)2σc(ωs−1)
2X X X 

Et [mb,t] = bI + XsXs
T σc(ωs−1)ηs − , (B.6)

2 
s=1 s=1 i=1 

where we use the fact the past consumption innovations ηs are observable, whereas the 
idiosyncratic shocks to productivity �i,s are not. The conditional variance is 

� 2� σ2 = Et (mb,t − Et[mb,t]) (B.7)b,t ⎡ ⎤" #−2 !!2t t nX X X 
XT ⎣ ⎦= Xs s Et σc(ωs−1)ηs ν�i,s 

s=1 s=1 i=1 " #−2 " # 
t tX X 

XT XT ν2 = Xs s Xs s 
s=1 s=1" #−1tX 

XT ν2 = Xs s . 
s=1 

The variance can be expressed recursively 

1 1 XtX
T 

= + t . (B.8)
σ2 σ2 ν2 
b,t b,t−1 

P P 
To derive the updating equation for mb,t, let Φt denote 

t XtX
T and Ψt denote 

t XtY T . s=1 t s=1 t 

It then follows that Φt = Φt−1 + XtXt
T and that Ψt = Ψt−1 + XtYt

T . In addition, denoting 
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the inverse of Φt by Pt, we can rewrite time-t estimate as 

mb,t = PtΨt (B.9) � � 
= Pt Ψt−1 + XtY T 

t � � 
= Pt mb,t−1Φt−1 + XtYt

T 

� � 
= Pt mb,t−1(Φt − XtX

T ) + XtY T 
t t 

= mb,t−1 − PtXtXt
T mb,t−1 + PtXtYt

T 

� � 
Y T = mb,t−1 + PtXt t − mb,t−1Xt

T 

σ2 � �b,t 
Y T = mb,t−1 + 

ν2 
Xt t − mb,t−1Xt

T 

−1 ν2where we use the fact that σb,t 2 = [Φt] . 

Appendix C. The Ex-Dividend Price of Unit Capital 

The frst-order condition of the frm’s problem given by equation (9) is 

� � � � 
It ∂Vt+1−1 − 2φ + Et Mt,t+1 = 0 (C.1)
Kt ∂Kt+1| {z } 

≡Pi,t 

In addition, from the Envelope theorem, 

� �2 � � 
∂Vt It ∂Vt+1 

= αAtKt
α−1 + φ + (1 − δ) Et Mt,t+1 . (C.2)

∂Kt Kt ∂Kt+1| {z } 
≡Pi,t 

Using equation (C.2), we can obtain the ex-dividend value of unit capital 

� � 
∂Vt+1

Pi,t = Et Mt,t+1 (C.3)
∂Kt+1" !#� �2

It+1 
= Et Mt,t+1 t+1 + φ + (1 − δ)Pi,t+1αAt+1K

α−1 

Kt+1 � � � � �� 
P 2 
i,t+1 

= Et Mt,t+1 αAt+1Kt
α 
+1 
−1 + + 1 − δ − 

1 
Pi,t +

1 
,

4φ 2φ 4φ 
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where the last equality is obtained from substituting the investment-capital ratio from equa-
tion (C.1) for the marginal value of capital. 

Appendix D. Covariance Between a Revision in the Risk Estimate and Con-

sumption Shock 

Rewriting the equation (8) to update time-t + 1 estimate leads to 

� �2 
σI � �I I b,t+1 IY T mb,t+1 = mb,t + 
ν2 

Xt+1 t+1 − mb,tXt
T 
+1 . 

To see how the updating equation relates to consumption shock, let’s write more explicitly 
as follows: 

� 
σI X (bI)2σ2 

�2 n � � 
I I b,t+1 c I mb,t+1 − mb,t = (σcηt+1) bIσcηt+1 − + ν�t+1 − mb,tσcηt+1

ν2 2 
i=1� �2 n � � 

σI X (bI)2σ2 
b,t+1 I c = (σcηt+1) (bI − mb,t)σcηt+1 − + ν�i,t+1
ν2 2 � i=1 !�2 nσI (bI)2σ3 X 
b,t+1 I c ηt+1 

= n(bI − mb,t)(σcηt+1)
2 − n + (σcηt+1)ν �i,t+1 . 

ν2 2 
i=1 

Next, let’s calculate the covariance between mI 
b,t+1 − mI 

b,t and consumption shock σcηt+1. 

� � � � � �I I I I I I covt m − mb,t, σcηt+1 = Et (m − m ηt+1 − Et m − m Et [σcηt+1]b,t+1 b,t+1 b,t)σc b,t+1 b,t | {z } "� �2 
=0 !# 

nσI (bI)2σ4η2 X 
b,t+1 I c t+1 = Et n(bI − mb,t)(σcηt+1)

3 − n + (σcηt+1)
2ν �i,t+1

ν2 2 "� �2 � �# i=1 

σI (bI)2σ4η2 
b,t+1 I c t+1 = Et 
ν2 

n(bI − m )(σcηt+1)
3 − nb,t 2 "� �2 # 

nσI X 
b,t+1 

+ Et 
ν2 

(σcηt+1)
2ν �i,t+1 | {z i=1 } 

=0 
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P 
where we utilize the fact �i,t+1 is independent of ηt+1 and Et [ 

n
i=1 �i,t+1] = 0 in the last line. 

From the equation of updating precision, 

σ2 ν2 

σ2 b,t 
= b,t+1 ν2 + nσ2 σ2η2 

b,t c t+1 

Plugging this into the above covariance, 

" � �# � � σ2 b2σ4η2 
I I b,t I c t+1 covt mb,t+1 − mb,t, σcηt+1 = Et 

η2 n(bI − mb,t)(σcηt+1)
3 − n 

ν2 + nσ2 σ2 2b,t c t+1" # " # 
σ2 (bI)2σ2 σ4η2 

I b,t(σcηt+1)
3 n b,t c t+1 

n(bI − m= Et b,t) − Et
ν2 + nσ2 σ2η2 2 ν2 + nσ2 σ2η2 

b,t c t+1 b,t c t+1" #� � 
σ2 (bI)2σ2 σ4η2 

n(bI − m I b,t(σcηt+1)
3 n b,t c t+1≈ Et b,t) −Et

ν2 2 ν2 | {z } 
=0 

nσ2 σ4 � � 
= − 

2 
b,t 

ν2 
c 
Et (b

I)2 

where the approximation in the second last line is based on the fact that the size of idiosyn-
cratic shock ν far outweighs the size of systematic shock σc. 
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