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Abstract 

This paper shows that generalizing the heterogeneous autoregressive model 
(HAR) with realized (co)variances and semi-(co)variances from the index leads 
to more accurate volatility forecasts. To circumvent the effects of the market mi-
crostructure noise arising from using high sampling frequencies, we adopt noise-
robust estimators for the realized (co)variances and develop novel noise-robust esti-
mators for the semi-(co)variances. To explore the sampling frequency at which the 
forecasting gains are maximized, we adopt a mixed-sampling approach that iterates 
over several sampling frequencies of the stock and the index. Our analysis shows 
that gains are maximized at the combination of a low (high) frequency on the stock 
(index). We illustrate that the observed forecasting gains translates into economic 
gains such that a risk-averse investor is willing to pay up to 57 annual basis points 
by adopting a model specification that utilizes the index information. 
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1 Introduction 

The rapid growth in financial markets and the developments of new and complex 

financial products highlight the importance of developing tools to measure and assess the 

risks associated with these products. Volatility is one of the most important measures 

of risk, and since any evaluation procedure considers the level and riskiness of future 

pay-offs, it is particularly the forecasting of future volatility that is important for many 

investment decisions. 

Over the last two decades, measures based on high-frequency data such as realized 

volatility (RV) were found to dominate traditional ARCH-type models, (see Bollerslev, 

1986; Engle, 1982; Nelson, 1991, among others) and stochastic volatility models (see Ghy-

sels et al., 1996; Taylor, 1986, 1994). Andersen et al. (2003) and Corsi (2009) show that 

RV is a more efficient estimator of return volatility, and that the long-term dependence 

of RV is well captured using a simple heterogeneous autoregressive (HAR) model. 

In this paper, we propose a new class of realized volatility based forecasting models, 

by generalizing the basic HAR model with the (co)variances and semi-(co)variances from 

the market index (SPY-ETF) to form a more general ex-ante forecasting model. The use 

of the index can be motivated by a CAPM type-argument whereby the volatility of the 

stock is known to be driven by stock specific idiosyncratic factors as well as by systematic 

factors pertaining to the market portfolio. 

Inspired by the success of the HAR model (Corsi, 2009) in capturing the long-term 

dependence feature of volatility, several studies have generalized the HAR model using 

endogenous and exogenous variables. For instance, Andersen et al. (2007); Corsi et al. 

(2010) explore the information content of jumps in volatility prediction showing decent 

out-of-sample improvements.1 A bigger strand is formed by the exogenous variables, in 

which the literature have explored the use of implied volatility (see, Busch et al., 2011; 

Giot and Laurent, 2007, among others), macroeconomic variables (see, for instance Chris-

tiansen et al., 2012; Engle et al., 2007; Paye, 2012; Schwert, 1989, and the many references 

1Other studies considering jumps as regressors are (Duong and Swanson, 2015; Hizmeri et al., 2019; 
Nolte and Xu, 2015; Patton and Sheppard, 2015, and the extensive references therein). 
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therein), and cross-sectional market volatility in Hwang and Satchell (2007), among other 

variables. These studies find that the use of exogenous variables provides sufficient infor-

mation to improve model fit but only little or modest out-of-sample forecasting gains. 

Against the unsuccessful use of external variables to aid volatility forecasting, our 

new HAR-X class of models allow more rapid reaction to volatility changes; i.e., HAR-X 

models achieve substantial forecasting gains by incorporating market index information 

in the form of (co)volatility. 

We also extend the HAR-X class of models so that they can better capture the sponta-

neous changes and asymmetries in volatility by incorporating the information of negative 

and positive return (co)variance. We do so by estimating the so-called realized semi-

variances (Barndorff-Nielsen et al., 2010) and semicovariances (Bollerslev et al., 2019). 

Realized semivariances are decomposed using positive and negative returns, whilst the 

realized semicovariances are decomposed by four separate components: two based on 

concordant signed high-frequency returns and two based on discordant high-frequency 

returns. These measures allow for more refined responses to positive and negative return 

shocks than threshold “leverage effect” terms traditionally used in the literature. More-

over, the use of a more “flexible leverage effect” aims to provide superior asymmetric 

models than those found in Glosten et al. (1993) or Corsi and Renò (2012).2 

Our empirical analysis contemplates the use of different sampling frequencies, so in an 

attempt to mitigate the impact of the market microstructure noise (MMSN), we use the 

noise-robust realized variance of Jacod et al. (2009) and Christensen et al. (2014), and the 

noise-robust realized covariance of Christensen et al. (2010). We also develop noise-robust 

measures of the realized semivariances and semicovariances by extending the work of 

Christensen et al. (2010, 2014); Jacod et al. (2009). This adaptation enables us to exploit 

the information content of the realized semi-(co)variances across sampling frequencies.3 

Previous studies (Ghysels and Sinko, 2011; Hizmeri et al., 2019) document significant 

2Patton and Sheppard (2015) use dynamic models based on realized semivariances and shows that 
the information afforded by negative returns variance is superior to its positive counterpart. Bollerslev 
et al. (2019) shows that the elements of the semicovariances are very informative to forecasting portfolio 
variance. 

3Hansen and Lunde (2006) show that standard realized measures tend to be upward biased in the 
presence of MMSN. 
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improvements in forecasting when noise-robust measures are used in the presence of 

MMSN relative to standard volatility measures. 

Moreover, and in an effort to underscore the practical relevance of the forecasts im-

provements afforded by the HAR-X models, we evaluate the gains using a mean-variance 

portfolio allocation. The use of a mean-variance framework to evaluate the performance 

of forecasting models has been widely employed (see, for instance Bernales and Guidolin, 

2014; Christoffersen et al., 2014; Fleming et al., 2001, 2003; Nolte and Xu, 2015) and is 

well-established that poor forecasting performances lead to extreme positions far away 

from the ex-post optimal portfolio weights. 

Our main findings can be summarized as follows. First, using 20 U.S. stocks from 

2000-2016 (4277 days) across various sampling frequencies, we show that the HAR-X class 

of models substantially outperform the basic HAR-RV model, and the HAR-Co-V models 

generally produce more accurate forecasts than the HAR-V models.4 These results hold 

also true using Monte Carlo Simulations. 

Second, models that account for volatility asymmetry render the biggest out-of-sample 

gains. For instance, models based on the negative semi-(co)variances dominate both the 

basic HAR-RV and their unsigned counterpart models. However, the best forecasting per-

formance is achieved when the HAR-Co-V model is formed using the unsigned variances 

along with the positive semicovariances. 

Third, the statistical improvements afforded by the HAR-X class of models also pro-

duce significant economic value. We show that the forecasts of our models react faster 

to changes in volatility, which results in a more accurate allocation of wealth. Thus, 

a risk-averse investor is willing to pay up to 57 (56) annual basis points before (after) 

transaction costs to switch to one of our strategies. 

Finally, we show that after removing the MMSN from non-noise-robust measures, the 

information set across sampling frequencies is of similar magnitude, leading to more stable 

forecasting improvements. However, using a mixed-sampling approach we highlight the 

4As described in Section 3, in the HAR-X class, we denote as HAR-V when the HAR-RV model is 
generalized by the variance of the index, and as the HAR-Co-V when the HAR-RV model is generalized 
by the variance and covariance of the index. 
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benefit of mixing the realized measures estimated at different time intervals. We find 

that when a higher (lower) frequency is used in the index (stock) the HAR-V model 

outperforms the forecasts of the benchmark HAR-RV model and the same-frequency 

HAR-V model. In specific, the best results are obtained using 30 second return for the 

index and 300 second return for the stock. 

The remainder of the paper is organized as follows. Section 2 describes the theoretical 

background and the new noise-robust realized semivariances and semicovariances; Sec-

tion 3 outlines the forecasting models and evaluation; our Monte Carlo study is outlined 

in Section 4; Section 5 describes our data; Section 6 presents the estimates of the HAR-X 

models, along with various statistical out-of-sample forecast comparisons. This section 

ends by illustrating the benefits from using a mixed-sampling approach in the HAR-V 

model; Section 7 reports the economic value of our models; conclusion is provided in 

Section 8. 

2 Theoretical Background 

A univariate log-price process evolving continuously over time is outlined as follows: 

dpτ = µτ dτ + στ dWτ , 0 ≤ τ ≤ T, (1) 

where µτ is a locally bounded and predictable drift process, στ is the spot volatility which 

is both adapted and càdlàg, and Wτ is a standard Brownian motion. 

The integrated variation (IVt) for a subperiod (usually associated with day t) of this 

process is defined as: 

Z t 
σ2IVt = udu. (2) 

t−1 

IVt can be estimated using the so-called realized variance (RV), (see Andersen et al., 

2001a,b; Barndorff-Nielsen and Shephard, 2002; Hansen and Lunde, 2006; Meddahi, 

5 



2002), defined as:5 

M ZX t 

RVt = t,j −
p 

σu 
2du, (3)r 2 → 

t−1j=1 

where M ≡ 1/Δ refers to the total number of intra-daily return observations on day t, and 

the intraday returns are defined as rt,j ≡ pt−1+jΔ − pt−1+(j−1)Δ, for j = 1, . . . ,M . Stock 

prices are influenced by market and industry factors as well as other risks, which cannot 

always be assumed to be contained in the individual stock price information set. This 

suggests that stock price fluctuations are better described using a model that incorporates 

both the stock and the market information as follows: 

dps = µτ dτ + σsdW s + σmdW m , 0 ≤ τ ≤ T (4)τ τ τ τ τ 

where the superscripts “s” and “m” hereafter refer to the stock and the index, respec-

tively. µt is a locally bounded predictable drift process, στ
s and στ

m are the respective 

spot volatility of the stock and the index. Both spot volatilities are adapted and càdlàg. 

Additionally, Wτ
s and Wτ

m are the standard Brownian motion of the stock and the index, 

and are potentially correlated, i.e. hdWτ
s, dWτ

mi = ρτ dτ . 

Focusing on day t, we assume without loss of generality that the drift term in model (4) 

is zero, then by taking expectation to the square of the increments we obtain: 

" # " # 
M M � �2X X σs σm 

t,j t,jE (pt+jΔ − pt+(j−1)Δ)
2 = E √ �t,j

s + √ �t,j
m 

M M
j=1 j=1 

M M MX (σs X (σm X 
t,j )

2 
t,j )

2 

= E[(�s )2] + E[(�m )2] + 
2 

σs σm E[�s �m ]t,j t,j t,j t,j t,j t,jM M M 
j=1 j=1 j=1 

M M MX X X 
= (σs )2Δ+ (σm )2Δ +2 σs σm ρt,j Δ . (5)t,j t,j t,j t,j 

j=1 j=1 j=1| {z } | {z } | {z } 
IV s IV m ICOVtt t 

√ √ 
With �s Δ and �m Δ representing the Brownian increments of the stock and the index, t,j t,j R Pt5In the presence of jumps, RVt →p σ2 du + (pt − pt−)2 . We ignore jumps in our DGP 

t−1 u 0≤s≤t 
for ease of exposition. However, the presence of jumps does not alter the results of our models since we 
do not distinguish between the continuous and discontinuous part of the RV. 
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which are possibly correlated. The result in equation (5) suggests that the integrated 

variance of model (4) is best described by the sum of the integrated variance of the 

stock (IVt
s), the integrated variance of the index (IVt

m), and the integrated covariation 

(ICOVt) between the stock and the index. 

In the presence of microstructure noise, the price is observed with a measurement 

error, which distorts the standard volatility and covariance measures.6 Thus, the ob-

served price is the sum of an unobservable efficient price and a noise component due to 

imperfections of the trading process: 

p ∗ 
τ = pτ + uτ , (6) 

where pτ 
∗ is the contaminated price, pτ is the efficient price and uτ is the observation 

7 2 ω2error, which is independent and identically distributed with E[uτ ] = 0 and E[uτ ] = , 

and pτ ⊥ uτ (⊥ means stochastic independence). The contaminated returns are estimated 

∗ ∗ ∗ as r ≡ p −p As shown by Bandi and Russell (2006); Hansen and Lunde t,j t−1+jΔ t−1+(j−1)Δ. 

(2006); Zhang et al. (2005), realized measures estimated from contaminated returns result 

in noisy measures of volatility since E[RV ] = IV +2Mω2 . In order to mitigate the impact 

of the MMSN, we consider the use of pre-averaging returns of Jacod et al. (2009). The 

pre-averaging returns of a day t are estimated as follows: 

L−1 � �X j
ˆ = g r ∗ (7)rt,i t,i+j ,L 

j=1 

where g = (x ∧ 1 − x). Because of this pre-averaging, r̂t,i is closer to the efficient return 

rt,j . 

Jacod et al. (2009) and Christensen et al. (2014) propose a noise-robust estimator for 

the realized variance, pre-averaging realized variance (PRV), which relies in the use of 

6See Andersen et al. (2001a, 2003); Barndorff-Nielsen and Shephard (2002) for a more detailed 
exposition about estimating realized volatility in a noise-free scheme, Barndorff-Nielsen et al. (2010); 
Patton and Sheppard (2015) for estimating realized semivariances using standard volatility measures, 
and Barndorff-Nielsen and Shephard (2004); Bollerslev et al. (2019) for estimating realized covariance 
and semicovariances using standard realized measures. 

7We suppress the superscripts “s” and “m” to differentiate the price path of the stock and the market 
index for ease of exposition. It will be added when further clarification is required. 
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pre-averaging returns as follows: 

M −L+1XM 1 ψLω2 

P RVt = |r̂t,i|2 − 1 ˆt , (8)
M − L + 2 Lψ2 

L θ2ψ2 
L 

i=0 

√ 
where L = θ M + o(M−1/4), M/(M − L + 2) is a small sample correction, while 

ψ1 
Lω̂t 

2 

is a bias-correction to remove a leftover effect of noise that is not eliminated
θ2ψL 

2 

by the pre-averaging estimator. ω2 is estimated as in Oomen (2006): ω̂2 ≡ ω̂2 = t t AC PM1 ∗ ∗ 8− r
M−1 i=2 t,j rt,j−1. 

The constants associated with g are defined as: 

L � � � � ��2 L−1 � �X Xj j − 1 1 j
ψL ψL 2 
1 = L g − g , 2 = g . (9)

L L L L 
j=1 j=1 

The pre-averaged realized semi-variances are estimated as follows: 

M−L+1X ψLω2M 1 1 1 ˆtP RVt 
+ = |r̂t,i|21{r̂t,i>0} − 

θ2ψL (10)
M − L + 2 Lψ2 

L 2 2i=0 

M−L+1X ψLω2M 1 1 ˆ 
P RVt 

− = |r̂t,i|21{r̂t,i<0} − 1 t , (11)
M − L + 2 Lψ2 

L 2 θ2ψ2 
L 

i=0 

where the indicator function 1{.} is used to obtain the required sign of the pre-averaged 

returns. Since the bias term on the right of the equation provides a bias-correction for 

all the pre-averaged returns, we scale this bias so that it affects equally the positive and 

negative pre-averaged returns. 

We use the modulated realized covariance (MRC) of Christensen et al. (2010), which 

is a noise-robust estimator of the so-called realized covariance proposed by Barndorff-

Nielsen and Shephard (2004), and it is estimated as follows: 

M−XKn+1 
M 1 � 

m 
�0 sMRCt,δ = r̂  r̂  (12)t,i t,i. M − Kn + 2 ψ2Kn i=0 

The authors show that using Kn = θ + o(M−1/4+δ/2) the MRC is consistent without
M1/2+δ 

8Oomen (2006) shows that this estimator equals (RV − RVAC1)/(2M) being very closely related to 
ω2 = RV/(2M) proposed by Bandi and Russell (2006) and Zhang et al. (2005). 
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using a bias-correction, and recommend a δ = 0.1, which results in an M−1/5 rate of 

convergence. They also point out that if a bias-correction is used, the resulting estimator 

is not ensured to be positive semi-definite. 

Following Bollerslev et al. (2019), we propose a decomposition of the MRC to enable 

the construction of noise-robust semicovariances: 

= MRC+ + MRC− + MRC+− + MRC−+ . (13)MRCt,δ t,δ t,δ t,δ t,δ 

Each element of equation (13) is estimated as follows: 

M−XKn+1 � � �M 1 �0 
m sMRC+ = r̂m r̂s 

t,δ t,i1{r̂  >0} t,i1{r̂  >0}t,i t,iM − Kn + 2 ψ2Kn i=0 

M−XKn+1 � �0 � �M 1 m sMRC− = r̂  1{r̂  <0} r̂  1{r̂  <0}t,δ t,i t,i t,i t,iM − Kn + 2 ψ2Kn 
m s 

i=0 
(14)

M−XKn+1 � �0 � �M 1 m s 
m sMRC+− = r̂  r̂t,δ t,i1{r̂  >0} t,i1{r̂  <0}t,i t,iM − Kn + 2 ψ2Kn i=0 

M−XKn+1 � � �M 1 �0 
m s 

m sMRC−+ = r̂  1{r̂  <0} r̂  1{r̂  >0} ,t,δ t,i t,i t,i t,iM − Kn + 2 ψ2Kn i=0 

s mwhere r̂  and r̂t,i represent respectively the pre-averaged returns of the stocks and thet,i 

market index. 

3 Forecasting Models and Evaluation 

3.1 Forecasting Models 

The HAR-RV model proposed by Corsi (2009) is defined as:9 

RVt
s 
+h−1|t = β0 + βdRVt

s 
−1 + βwRVt

s 
−1|t−5 + βmRVt

s 
−1|t−22 + �t, (15) 

1 Phwhere RV s = RVt
s 
−i, with j ≤ h. The popularity of the HAR-RV is ex-t−j|t−h h+1−j i=j 

plained by its easy implementation and ability to mimic long-range dynamic dependencies 

9To simplify notation we will use RVt = P RVt and RCt = MRCt,δ in the forecasting models. 
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observed in realized volatility time series. 

By contrast, our new HAR-X models utilize the information from the stock and the 

market index, aiming to capture shocks due to new market information much quicker 

than previous HAR class of models.10 The HAR-X class is defined as: 

HAR-V 

RVt
s 
+h−1|t = β0+βd

sRVt
s 
−1 + βw

s RVt
s 
−1|t−5 + βm

s RVt
s 
−1|t−22+ 

(16) 
βm 
d RVt

m 
−1 + βw

mRVt
m 
−1|t−5 + βm

mRVt
m 
−1|t−22 + �t, 

HAR-Co-V 

RVt
s 
+h−1|t = β0+βd

sRVt
s 
−1 + βw

s RVt
s 
−1|t−5 + βm

s RVt
s 
−1|t−22+ 

βm 
d RVt

m 
−1 + βw

mRVt
m 
−1|t−5 + βm

mRVt
m 
−1|t−22+ (17) 

βRC RCt−1 + βRC RCt−1|t−5 + βRC 
d w m RCt−1|t−22 + �t. 

Both models are motivated by the non-linear dependence feature observed in asset re-

turns. During calm periods the correlation between a stock and the index declines, often 

to insignificant levels, suggesting that a model ignoring the covariation such as the HAR-

V model might provide better out-of-sample performance than a model incorporating the 

11covariance information as in the HAR-Co-V model and vice versa. 

Previous studies have examined whether semivariances (Patton and Sheppard, 2015) 

and semicovariances (Bollerslev et al., 2019) provide incremental information that could 

aid volatility forecasting and the estimation of portfolio variance. For instance, Patton 

and Sheppard (2015) find that negative returns usually lead to higher level of volatility. 

Given the decomposition of the RVt and RCt previously outlined, we create extensions 

10These models come directly from a vector HAR structure. However, here the interest is only in� � 
sytforecasting the stock volatility rather than the stock and the index volatility. For instance, yt = .myt� � � � � �� � 

s φs φs1 φm1 sy yt 0 d d t−1yt+h−1|t = Φ0 +Φdyt−1 +Φwyt−5|t−1 +Φdyt−22|t−1 +�t ≡ m = 
φm + 

φm2 φs2 m + 
y yt 0 d d t−1! !� � � � � � s sφs1 φm1 y φs1 φm1 y �s 

w w t−5|t−1 m m t−22|t−1 t 
m + + , where the first equation gives rise to the 

φm2 φs2 φm2 φs2 m �m 
w w yt−5|t−1 m m yt−22|t−1 t 

HAR-V model. 
11We evaluate the non-linear dependence in our dataset and we find that the average correlation across 

all the stocks is 0.45 during the pre-crisis period, while during the crisis period the average correlation 
rises to 0.8. Similarly, Longin and Solnik (2001) find evidence that support an increase in correlation 
during bear markets, but not in bull markets. 
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to our previous models to account for asymmetric dependencies, or “leverage effects”. 

Apart from the SHAR model (Patton and Sheppard, 2015) previous proposed models in 

the literature were extensions of the GJR (Glosten et al., 1993) threshold approach to 

allow the conditional variance to respond differently based on the sign of the daily returns 

(see, for instance Corsi and Renò, 2012). On the contrary, our models use a more flexible 

“continuous leverage effect” based on the semivariances for the HAR-V model and based 

on both semivariances and semicovariances for the HAR-Co-V model, allowing for more 

refine responses to positive and negative return shocks. 

The asymmetric HAR-X models are outlined as follows: 

Asymmetric HAR-V Models: 
HAR-V+ 

+ + + + + + 
RVt

s 
+h−1|t = β0+βd

s RVt
s 
−1 + βw

s RVt
s 
−1|t−5 + βm

s RVt
s 
−1|t−22+ 

+ + + + + + 
βm RV m + βm RV m RV m 
d t−1 w t−1|t−5 + βm

m 
t−1|t−22 + �t. 

HAR-V− 

− − − − − − 
RVt

s 
+h−1|t = β0+βd

s RVt
s 
−1 + βw

s RVt
s 
−1|t−5 + βm

s RVt
s 
−1|t−22+ 

− − − − − − 
βm + βm 
d RVt

m 
−1 w RVt

m 
−1|t−5 + βm

m RVt
m 
−1|t−22 + �t. 

Asymmetric HAR-Co-V Models: 
HAR-Co+-V+ 

+ + + + + + 
RVt

s 
+h−1|t = β0+βd

s RVt
s 
−1 + βw

s RVt
s 
−1|t−5 + βm

s RVt
s 
−1|t−22+ 

+ + + + + + 
βm 
d RVt

m 
−1 + βw

m RVt
m 
−1|t−5 + βm

m RVt
m 
−1|t−22+ 

βRC
+ 

t−1 + βRC
+ 

+ βRC
+ 

RC+ RC+ RC+ + �t.d w t−1|t−5 m t−1|t−22 

HAR-Co−-V− 

− − − − − − 
RVt

s 
+h−1|t = β0+βd

s RVt
s 
−1 + βw

s RVt
s 
−1|t−5 + βm

s RVt
s 
−1|t−22+ 

− − − − − − 
βm + βm 
d RVt

m 
−1 w RVt

m 
−1|t−5 + βm

m RVt
m 
−1|t−22+ 

βRC
− 

t−1 + βRC
− 

+ βRC
− 

RC− RC− RC− 
d w t−1|t−5 m t−1|t−22 + �t. 

HAR-Co+-V 
RVt

s 
+h−1|t = β0+βd

sRVt
s 
−1 + βw

s RVt
s 
−1|t−5 + βm

s RVt
s 
−1|t−22+ 

βm 
d RVt

m 
−1 + βw

mRVt
m 
−1|t−5 + βm

mRVt
m 
−1|t−22+ 

βRC
+ 

t−1 + βRC
+ 

+ βRC
+ 

RC+ RC+ RC+ 
d w t−1|t−5 m t−1|t−22 + �t. 

HAR-Co−-V 
RVt

s 
+h−1|t = β0+βd

sRVt
s 
−1 + βw

s RVt
s 
−1|t−5 + βm

s RVt
s 
−1|t−22+ 

βm 
d RVt

m 
−1 + βw

mRVt
m 
−1|t−5 + βm

mRVt
m 
−1|t−22+ 

βRC
− 

t−1 + βRC
− 

+ βRC
− 

RC− RC− RC− + �td w t−1|t−5 m t−1|t−22 
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3.2 Forecasting Evaluation 

Our main interest is in the real-time out-of-sample forecasting performance of our 

models. We consider horizons h = 1, 5, and 22, which correspond to one day, one week, 

and one month ahead. We use an increasing window to update the coefficients, with an 

initial window (IW ) of size 1000. 

The out-of-sample performance is evaluated using the heteroskedastic mean square 

error (HMSE) and the quasi-likelihood (QLIKE) loss functions: 

N 
!2X dRVns 

HMSE = N−1 1 − (18)
RVn

s 
n=1 ! 
NX RVn

s RVn
s 

QLIKE = N−1 − log − 1 , (19)d dRV s RV s 
n=1 n n 

dwhere RV s and RV s are respectively the forecasted and estimated RV s for then n t+h−1|t 

pseudo out-of-sample period, and N = T − IW refers to the total number of out-of-

sample observations. These loss functions are somewhat robust to outliers since the 

losses are evaluated as a ratio rather than a difference. 

We also consider the use of the Conditional Predictive Accuracy (CPA) test, Giacomini 

and White (2006), to evaluate whether the propose models provide significant out-of-

sample forecast improvements relative to the benchmark HAR-RV model. The CPA test 

is robust to nested models and its null hypothesis is of equal predictive accuracy defined 

as: 

H0 = E[Δdn,i,j ] = 0, (20) 

(i) (j) 

= L(d ) − L(dwhere Δdn,i,j RV 
s 
, RV s RV 

s 
, RV s) is the difference between two loss func-n n n n 

tions and i 6= j. The test statistic is then defined as: 

!0 ! 
N NX X 

N−1 V −1 N−1T = N Δdn,i,j Δdn,i,j ∼ χ21, (21)h 
n=1 n=1 

where Vh 
−1 is a heteroskedasticity and autocorrelation consistent (HAC) estimator of the 
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asymptotic variance. 

Finally, we evaluate whether there is a (sub)set of models that significantly outper-

forms the other competing models. We do this using the Model Confidence Set (MCS) 

of Hansen et al. (2011). We denote by M the set of all models (HAR-RV and HAR-X 

class of models). The MCS is defined as: 

d̄i,j
ti,j = q , ∀i, j ∈ M, (22)dVar(d̄  

i,j ) 

where d̄  
i,j is the average loss difference. The null of the MCS is that all the models 

have the same expected loss. When the null is rejected the worst performing model is 

eliminated, and this process is iterated until no further model can be eliminated. The 

surviving models are retained with a confidence level α = 0.1.12 

4 Monte Carlo Simulation 

In this section we present a Monte Carlo study that demonstrates the expected fore-

casting gains from the proposed HAR-X models. We first simulate log-prices using the 

data generating process outlined in equation (4), and we use a stochastic correlation to 

allow for time-varying co-movements between the stock and the index. The stochas-

tic volatilities and correlation are modelled using mean-reverting factors akin to Heston 

(1993). Equation (23) below outlines this set-up. 

p p
(s) (m)

dps = νsdW + νmdWt t t t t p 
(m)

dpmt = νt
mdWt p 

(s)
dνt

s = κs(θs − νt
s)dt + σs νt

sdZt (23) p
dνm = κm(θm − νm)dt + σm νmdZ

(m) 
t t t t p
dρt = κ(Θ − ρt)dt + α 1 − ρ2 

t dZt 
(ρ) 
, 

12We implement the MCS via a block bootstrap using a block length of 10 days and 5000 bootstrap 
replications. 
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D E 
(s) (m)

where the parameters for the volatility factors are Zt , Zt = ρt. We set κm = 

4.1741, θm = 0.34312 , σm = 0.3897, κs = 7.8907, θs = 0.49852 , σs = 0.4991. The 

parameters of the stochastic correlation are κ = 1.61, Θ = 0.3505, α = 0.608, and 

ρ0 = Θ.13 We simulate log-price increments using a sampling frequency of 300 seconds 

and a sample size of 1000 days. The trading hours are 6.5 hours a day, rendering 78 

intraday returns. We then construct the realized measures and use an increasing window 

to evaluate the pseudo out-of-sample forecasts with an initial window size of 350 days. 

We iterate over this process 3,000 times. 

Figure 1 plots the simulated 1-day ahead relative HMSE and QLIKE distribution. 

The relative loss is estimated as the ratio of the losses of the HAR-X models to the 

loss of the HAR-RV.14 This means that values below (above) 1 indicate that our models 

outperform (underperform) the HAR-RV. Our aim in using a Monte Carlo simulation is 

to highlight the benefits of using the HAR-X class over the basic HAR-RV model. That is 

why we only focus on the general specifications (HAR-V and HAR-Co-V) using standard 

(co)volatility measures. We will then empirically evaluate the sensitivity of our models 

to the sampling frequency and outline the extra benefits of our model specifications when 

accounting for asymmetric effects. 

As shown in Figure 1, the distributions of the losses are usually below 1.0 irrespective 

of the model in consideration. The left-tail distribution of the HAR-Co-V is generally 

fatter compared to the HAR-V, indicating that adding the covariance information delivers 

greater out-of-sample forecasting gains. 

5 Data 

Our sample consists of 20 individual stocks selected by trading volume over the period 

January 3, 2000 to December 31, 2016, a total of 4277 days, together with the S&P 500 

13The parameters were calibrated by solving a constrained non-linear problem. The data used to 
calibrate the model is described in section 6. In order to ensure that the volatilities are always positive, 
we impose the constraint 2κ > σ2 , and for the stochastic correlation the condition κ ≥ 1 

α 
± 

2 

Θ is required 
to remain in the set of real numbers and to ensure positive definiteness in the covariance matrix. 

14Since we do not incorporate the effects of the MMSN here; the simulation exercise relies on standard 
measures to produce the realized measures and out-of-sample forecasts. 
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ETF (SPY) over the same time period. To gauge the sensitivity of our set-up to the 

sampling frequency, we consider various sampling frequencies ranging from 30 to 300 

seconds. 

Table 1 provides the descriptive statistics for all the stocks and the SPY. The SPY is 

the least volatile asset in our study, with an annualized volatility close to 15%, whereas 

the average level of volatility of the stocks is up to 3 times higher than the SPY volatility. 

Amazon displays the highest annualized return and volatility, whilst Arconic (ARNC) 

has the minimum annualized return and Procter & Gamble (PG) is the least volatile 

stock. 

Table 2 reports the average correlations across the stocks for all the realized measures 

under analysis. Above the main diagonal the correlations are those using realized mea-

sures estimated from 30-second return. Below the main diagonal the correlations are those 

for 300-second return. The superscripts “s” and “m” represent the realized measures of 

the stock and the index, respectively. Realized measures estimated at the 30-second fre-

quency display slightly greater relationships compared with their counterpart estimated 

at the 300-second frequency. Interestingly, we find that the level of correlation among the 

different realized measures and the stock volatility differs greatly. This finding implies 

that novel and important information can be utilized to further explain the behavior of 

stock volatility, and that using signed measures of volatility and covariances can lead to 

more accurate volatility forecasts. 

Figure 2 depicts the average PRV and MRC with their respective components across 

all the stocks. The left-panel shows that negative semivariances tend to produce on av-

erage slightly greater levels of volatility than positive semivariances.15 On the other hand, 

the right-panel plots the elements of the covariation; here, the MRC++MRC−(MRC+−+ 

MRC−+) is positive (negative) by construction. During financial distress, the level of the 

positive sum (concordant elements) of the covariance elements increases more than the 

negative part (discordant elements) declines, confirming that during turbulent periods the 

correlation between stocks and indices increases. It is interesting to note that the level 

15The importance of the negative return variance has been well documented in the literature (see, for 
instance Corsi and Renò, 2012; Glosten et al., 1993; Patton and Sheppard, 2015, and references therein). 
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of the covariation is mainly determined by the elements of the positive sum, insinuating 

that remaining components are of less importance and provide little information. 

Figure 3 plots the autocorrelation function as the average of all the stocks for the 

pre-averaging realized variance, modulated covariance and their components. Compared 

to standard volatility measures, our results display mildly lower levels of persistence. 

However, this observation is expected since MMSN induces first-order autocorrelation, 

(Hansen and Lunde, 2006). 

In line with Patton and Sheppard (2015) we find that the negative semivariance is 

more persistent than its positive counterpart, and that there is little difference between 

the unsigned and negative semivariance. On the contrary, the index is less persistent 

than the stocks. There is empirical evidence supporting the fact that large (finite) jumps 

have no persistence (see Andersen et al., 2007; Duffie et al., 2000; Duong and Swanson, 

2015; Hizmeri et al., 2019, among others), and also Duong and Swanson (2015) and 

Hizmeri et al. (2019) find evidence that aggregation makes jumps more informative, which 

presumably reduces the level of persistence of the P RV m compared to those of the stocks. 

The autocorrelation of the covariance and its elements show that the MRC+ + MRC− 

and MRC are very close and of less persistence than the MRC+− + MRC−+ . As noted 

by Bollerslev et al. (2019), MRC+− + MRC−+ only depends on the continuous part, 

while MRC+ + MRC− can be formed by continuous and co-jump variation, explaining 

why the latter sum is less persistent. 

6 Modeling and forecasting with the HAR-X Class 

6.1 In-Sample Estimates 

The parameter estimates obtained for each of the different models are reported in 

Tables 3, 4, and 5, along with the adjusted R-squares and total F-test rejections. To 

conserve space, we present the average of the parameter estimates and denote with ∗ , ∗∗ , 

and ∗∗∗ when the estimates are significant at the 10%, 5%, and 1% using robust standard 
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16errors. 

Table 3 reports the HAR-RV, HAR-V and HAR-Co-V estimates across 3 forecasting 

horizons, which represent one day (h = 1), one week (h = 5), and one month (h = 22). 

Similar to previous findings in the literature, the HAR-RV model estimates are usually all 

significant, and most of the weight is assigned to the monthly estimate, which increases 

with the horizon. 

When the index volatility is added as regressors in the HAR-V model, we observe an 

improvement in the model fit relative to the benchmark model. This improvement ranges 

from 0.9% to 1.9% points in terms of the adjusted R-squares, and with the exception of 

2 stocks at h = 5, the F-test rejects the null of equal fit for all the stocks across all fore-

casting horizons. Moreover, the HAR-Co-V model, which incorporates the variance and 

covariance information from the index, shows bigger model fit improvements increasing 

the R-squares from 1.4% to 3.4% points relative to the HAR-RV models. The F-test 

corroborates the increase in model fit of the HAR-Co-V model by rejecting its null of 

equal fit for all the stocks irrespective of the forecasting horizon. 

The inclusion of the index information in the form of variance and covariance induces 

a decrease in the explanatory power of the stock’s estimates, which is normally subsumed 

by daily and weekly variables of the index (co)variances. In other words, if adding the 

market index variables renders the stock specific volatility variables insignificant, then 

the stock specific volatility has little or no forecasting power in the presence of the market 

index. 

It is noteworthy that the monthly index volatility in the HAR-V and the covariance 

estimates in the HAR-Co-V models are generally negative across all forecasting horizons. 

In the case of the HAR-V model, a negative index variance estimate reduces the weights 

assigned to monthly information, while increasing the weights allocated to daily and 

weekly information. On the contrary, negative covariance estimates have a two-fold effect 

in the future level of volatility. Since covariances can take either positive or negative 

values, a positive (negative) covariance reduces (increases) the future level of volatility. 

16The in-sample coefficients are estimated by fitting all the models using the full sample size. 
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This dynamic allocation is in line with the empirical findings that negative (positive) 

returns induce higher (lower) levels of volatility. This phenomenon explains why the 

HAR-Co-V model provides a better model fit than the HAR-RV and HAR-V models. 

Tables 4 and 5 report the parameter estimates along with the R-squares and F-test 

rejections for asymmetric HAR-V and HAR-Co-V models, respectively. Turning to the 

results in Table 4, we find that most of the estimates are statistically significant, and the 

monthly negative semivariance estimate of the index is consistently negative across all 

forecasting horizons. In addition to being significant, the negative estimates are of bigger 

magnitude than their unsigned counterparts are. This reaffirms the previous findings of 

Patton and Sheppard (2015) who find that negative semivariances are more important 

to predict future volatility. The increase in model fit is readily observed in terms of 

R-squares, where the HAR-V− model improves between 3.4%–4.3% points relative to 

the HAR-RV model, and 1.5%–3.3.% points relative to the HAR-V model across all 

forecasting horizons. On the contrary, the positive semivariance in the HAR-V+ model 

exhibits no explanatory power resulting in the worst model fit. The F-test only rejects 

the null of equal fit for one stock at h = 5 and h = 22. 

The asymmetric HAR-Co-V models (Table 5), as outlined in Section 3.1, are formed 

by 4 different models which are presented in two panels. Panel A reports the parameter 

estimates for the HAR-Co-V models based on unsigned volatilities and semicovariances. 

The main difference between these models and the unsigned HAR-Co-V model is that we 

have replaced the unsigned covariance by its positive (HAR-Co+-V) and negative (HAR-

Co−-V) elements. While both models improve on the fit of the HAR-RV model across all 

forecasting horizons, the HAR-Co+-V model on average provides a better model fit than 

the HAR-Co−-V model. Thus, the positive semicovariance provides more explanatory 

power than its negative counterpart in predicting future stock volatility. In both models 

the estimates are generally significant, and with the exception of the HAR-Co−-V model 

at h = 22, the HAR-Co+-V and HAR-Co−-V models improve on the fit of the HAR-Co-V 

model across all forecasting horizons. 

Panel B reports the asymmetric HAR-Co-V models formed using the full positive 
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(HAR-Co+-V+) and negative (HAR-Co−-V−) structure. The HAR-Co−-V− model im-

proves on the fit of the benchmark and every single model under analysis across all 

forecasting horizons. Notwithstanding, the fit of the HAR-V− and HAR-Co+-V models 

are very close to the HAR-Co−-V− model at medium and longer horizons. By contrast, 

the HAR-Co+-V+ model performs very poorly; however, this is expected since this model 

is using the positive semivariances of the stock and the index, which have no explanatory 

power. 

These findings confirm that a richer information set can be obtained after dissecting 

the variances and covariances by their sign. This richer information set translates in more 

explanatory power, resulting in a better model fit. By this far, we have shown that the 

HAR-X models are better specified than the HAR-RV model. However, in real time most 

of the attention is given to the out-of-sample forecasting test as it is more relevant for 

examining the genuine predictive ability. In the next two sections we comprehensively 

examine the predictive ability of the HAR-X models. 

6.2 Out-of-Sample Forecasts 

Table 6 reports the out-of-sample relative losses across forecasting horizons and sam-

pling frequencies. The relative loss is reported as the ratio of the losses of the HAR-X 

models to the losses of the benchmark HAR-RV model. Thus, values below (above) 1 

indicate that our proposed models outperform (underperform) the benchmark HAR-RV 

model. Bold numbers highlight the HAR-X models that outperform the benchmark, and 

the numbers in the superscript represent the total number of stocks for which the losses 

of the HAR-X models are significantly lower than those of the HAR-RV model. The sig-

nificance of the models is evaluated using the CPA test of Giacomini and White (2006) 

with α = 0.05. 

Confirming the in-sample results from the previous section, we find that the HAR-

X models generally outperform the forecasts of the basic HAR-RV model, and these 

forecasting gains are found to be significantly better than the benchmark across most of 

the sampling frequency and forecasting horizons. Moreover, the forecasting gains afforded 
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by the HAR-X models tend to increase as the forecasting horizon increases, indicating 

that the HAR-X models better capture the volatility persistence, leading to more accurate 

predictions at longer horizons. 

While most studies in the literature use 5-min returns in order to reduce the impact of 

the microstructure noise, our study relies on noise-robust measures, which enables us to 

explore the predictive power of our realized measures across different sampling frequencies 

in a less noisier environment. We find that the use of noise-robust measures yields to 

more stable improvements across time intervals, however, forecasts based on 300-second 

return provide slightly more accurate out-of-sample predictions.17 

The asymmetric HAR-X models provide the best out-of-sample performance in our 

analysis. When the HAR-V models account for the so-called leverage effects using a 

full negative structure, we find the biggest out-of-sample improvements relative to the 

benchmark and the general HAR-V models. In many cases the HAR-V− model produces 

forecasting gains which are significantly better than those of the HAR-RV models. For 

instance, using the CPA test and the QLIKE loss, we find that the HAR-V− model 

significantly outperforms the benchmark in 14 stocks at h = 1, and 10 stocks at h = 22 

using 300 seconds sampling frequency. By contrast, the full positive structure, HAR-V+ 

model, results in the worst out-of-sample performance. This finding is not surprising as 

it was shown in Section 6.1 that the positive semivariances contain no predictive power. 

The asymmetric HAR-Co-V models consists of four specifications: the first two are 

the full positive (HAR-Co+-V+) and negative (HAR-Co−-V−) structures, whereas the 

remaining two specifications are formed using the unsigned variances plus the positive 

(HAR-Co+-V) and negative (HAR-Co−-V) covariances. The full negative structure out-

performs both the HAR-RV and the general HAR-Co-V models. Yet, when the nega-

tive covariance is used with the unsigned variances we still observe out-of-sample gains, 

however, the level of these gains are somewhat smaller compared to the full negative 

structure. The decrease in performance directly affects the number of significant stocks 

found in the HAR-Co−-V− model; for instance, the number of significant stocks drops 

17This implies evidence that after removing the effects of the microstructure noise the information 
contained in the realized (co)variances and their components is on average of similar importance. 
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by 4 at h = 1 and by 2 at h = 5, when the negative semivariances are replaced by the 

unsigned variances, i.e. from the HAR-Co−-V− to the HAR-Co-V− model. This confirms 

that allowing for an asymmetric reaction results in greater out-of-sample performances, 

and that models based on only negative return (co)variance perform better than their 

counterparts. 

As expected, a full positive structure in the HAR-Co-V model does not provide any 

out-of-sample forecasts improvements. However, the HAR-Co+-V model provides one 

of the best out-of-sample performances across all the models, horizons and sampling 

frequencies. The improved forecast accuracy afforded by the HAR-Co+-V model is found 

to be significantly different than the HAR-RV model ranging from 9 to 19 stocks using 

the QLIKE, and from 15 to 20 stocks based on the HMSE. 

6.3 Model Selection: MCS 

Hitherto we have shown that the HAR-X class of models improves on both the in-

and out-of-sample performances of the HAR-RV models. This holds true across both 

sampling frequencies and forecasting horizons. However, all the comparisons have been 

made against the benchmark HAR-RV model, and we do not know whether there is a 

model whose losses are significantly lower relative to those of the remaining models. In 

order to answer this question, we use the Model Confidence Set (MCS) of Hansen et al. 

(2011), which evaluates the performance of all the models without targeting a benchmark. 

That is, it evaluates whether there is a (sub)set of models that significantly outperform 

all the models under analysis. 

Table 7 reports MCS ranking for each individual stock and across forecasting hori-

zons using the realized measures estimated at the 300-second sampling frequency. The 

numbered entries are for the retained models, while the dash-line indicates that the mod-

els have been excluded from the MCS. The MCS results are based on the QLIKE loss 

function.18 

The HAR-RV along with the HAR-V+ and HAR-Co+-V+ models are the most ex-

18Results based on the HMSE provides similar conclusions and are available upon request. 
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cluded models across forecasting horizons. This finding is not surprising since our previous 

sections show that the positive semivariance has no predictive power, and hence models 

containing this variable result in poor out-of-sample forecast accuracy. The HAR-RV 

model is only retained 3 times on average across forecasting horizons. This means that 

our new class of models produce significantly more accurate forecasts than the basic 

HAR-RV model. On the other hand, the HAR-V− , HAR-Co−-V− , and HAR-Co+-V are 

the least excluded models and all of them are based on realized semi-(co)variances vari-

ables, which highlights the benefits of allowing for the asymmetric dependence feature 

that characterizes equity return data. 

Table 8 reports the ranking of the MCS for h = 1 across sampling frequencies using 

the QLIKE as loss function. The results are reported in three panels, which contain 

results based on 30-, 60-, and 150-second return frequency. Similar to the findings in 

Table 7, we find that the HAR-RV model is generally excluded by the MCS irrespective 

of the sampling frequency, while the HAR-V− , HAR-Co−-V− , and HAR-Co+-V models 

are the least excluded. The little variation in the ranking and performance of our models 

is due to the use of noise-robust realized measures, and it confirms that after accounting 

for microstructure noise the choice of the sampling frequency becomes insignificant, since 

the information set across time intervals is of similar magnitude. 

6.4 Mixed Sampling Approach 

While previous results indicate that our models generally outperform the HAR-RV 

model, their forecasting gains are of similar magnitude across sampling frequency. This 

finding suggests that there is no preferences nor an optimal sampling frequency when us-

ing noise-robust measures, but it is silent about whether a mixed-sampling approach can 

better capture the different information, if any, embedded in these sampling frequencies. 

Thus, motivated by this fact and by the results on Table 2 that shows slightly differ-

ent levels of correlations across sampling frequencies, this section examines the impact 

of varying the sampling frequency on both the stock and the index on the forecasting 

performance of the HAR-X models. 
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We use the HAR-V model to construct the mixed sampling approach for two reasons. 

First, the HAR-V model is well-structured, thus, it facilitates the inclusion of different 

sampling frequencies on the variance of the stock and the variance of the index. By 

contrast, the HAR-Co-V model incorporates the covariation that has to be estimated at 

the same sampling frequency between the stock and the index. Second, the aim of this 

exercise is not to produce a horse-race and show which model provides the best out-of-

sample performance, but rather it aims to illustrate that more accurate performances can 

be attained by mixing the sampling frequency when using the HAR-X class of models. 

The mixed-sampling HAR-V model is then constructed by holding constant the fre-

quency of the stock volatility while varying the frequency at which the index volatility 

is estimated and vice versa. In total we use 6 sampling frequencies ranging from 30- to 

300-seconds. The results are then compared relative to the HAR-RV and the HAR-V 

models, which are based on the same sampling frequency. 

Figure 4 plots the average loss ratio across all the stocks in a 3D plane. The x- and 

y-axis display respectively the sampling frequency of the index and the stock, while the 

z-axis displays the loss ratio for the QLIKE (left-panel) and HMSE (right-panel). The 

darker part of the figure highlights the best performance, while by contrast the lighter 

part indicates the worst performance. 

Interesting observations can be drawn from Figure 4. First, all the sampling combi-

nations outperform the HAR-RV model, which corroborates our previous findings that 

incorporating the market index information substantially improves on the forecasts of the 

benchmark model. Second, we observe that the surface is relatively flatter when the stock 

frequency is held constant.19 However, when the index frequency is held constant, we 

observe significant improvements. This observation suggests that the information set of 

the stock varies more than the one from the index, and that the use of a mixed-sampling 

approach better captures these small variations in the information set of the stock and 

the index. Third, the mixed-sampling approach always outperforms the forecasts of the 

19Standard measures which do not remove the variance of the MMS noise might benefit more from 
a mixed-sampling approach, and it would be interesting to evaluate whether the variance of the noise 
plays any role in a mixed-sampling approach. 
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same-frequency HAR-V model when the sampling frequency of the index is higher than 

the stock’s frequency. For instance, if the stock volatility is estimated at the 300-second 

return, using frequencies finer than 300-seconds (i.e. 150-, . . . , 30-seconds) in the index 

will result in out-of-sample gains relative to both the benchmark HAR-RV model and 

the same-frequency HAR-V model. Specifically, the best performance is achieved at a 

sampling frequency of 30 seconds for the stock and 300 seconds sampling frequency for 

the index. 

7 Economic Value 

In this section we conduct economic evaluations by constructing volatility timing 

based portfolio allocation strategies. We consider a risk-averse investor with mean-

variance preferences, who allocates her wealth into one risky asset and one risk-free asset. 

In order to emphasize the advantages of our models, we initially focus on the daily in-

vestment horizon.20 The underlying economic intuition for this strategy is as follows: for 

a certain expected return, when the volatility is high, the investor allocates more wealth 

into the risk-free asset. On the contrary, when the volatility level is low, the investor 

allocates more wealth into the risky asset. 

This strategy enables us to directly evaluate whether statistical improvements in 

volatility forecasting can be translated into economic value. If adding the market in-

formation leads to more accurate prediction of future volatility, then we should expect 

the investor to improve her portfolio performance by actively rebalancing the portfolio 

based on the signal of the predicted volatility. 

We follow Fleming et al. (2003); Marquering and Verbeek (2004) and use a mean-

variance utility. Thus, the investor solves the following optimization problem: 

max U [Et (rp,t+h) , Vart (rp,t+h)] , 
wt+h 

20Previous studies have also considered daily re-balancing schemes, (see, for instance Fleming et al., 
2001, 2003; Marquering and Verbeek, 2004, among others). 
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⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪

where h indicates the periods ahead, Et(rp,t+h) is the conditional expected portfolio re-

2 dturn and Vart(rp,t+h) = wt+hRV t+h is the conditional variance of the portfolio return. 

The portfolio return is Et(rp,t+h) = (1 − wt+h)rf,t+h + wt+hEt(rm,t+h), where wt+h is the 

portfolio weight of the risky asset, Et(rm,t+h) is the conditional expected return of the 

risky asset and rf,t+h is the return for the risk free asset, which we know ex-ante.21 The 

mean-variance utility function is given by: 

γ 
U [Et (rp,t+h) , Vart (rp,t+h)] = Et (rp,t+h) − Vart (rp,t+h) , (24)

2 

with γ the risk-aversion parameter. Hence, the optimal weight is given by:22 

Et (rm,t+h) − rf,t+h 
wt+h = . (25)

γVart (rm,t+h) 

The conditional variance for the risky asset is estimated using the predicted realized 

variance, i.e. from the HAR-RV and the proposed HAR-X class of models. We constraint 

our portfolio, so short-selling and borrowing are not allowed. Then, the optimal portfolio 

weights become: 

⎧ 
0 if wt+1 ≤ 0,⎪⎨ 

∗ wt+1 = wt+1 if 0 < wt+1 ≤ 0 

⎪⎩1 if wt+1 > 1. 

We consider different risk aversion levels γ = {2, 6, 10}, and following Fleming et al. 

(2003); Marquering and Verbeek (2004); Nolte and Xu (2015), we estimate the sample 

averaged realized utility as follows: 

T −1 h iX1 γ
Ū(Rp) = rp,t+h − Vart(rp,t+h) . (26)

T 2 
t=0 

21The risk-free rate is based on 3-month maturity Treasury Yield Curve obtained from the US-Treasury 
website. Et (rm,t+h) is estimated using a rolling window of 1000 days. 

∂U22To solve for the weight function we use the FOC w.r.t. wt+h. = 0. ↔ −rf,t+h + Et(rm,t+h) −∂wt+h dγwt+hRV t+h = 0. 

25 

https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yieldYear&year=2003
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yieldYear&year=2003


The average realized utility enables us to compare the alternative investment strategies 

by calculating the associated average utility levels. A given utility level can be interpreted 

as the certain return that provides the same utility to the investor as the risky investment 

strategy. This way, we can determine the economic value of market timing by calculating 

the maximum fee, in annual basis points, that an investor is willing to pay to switch 

from the benchmark strategy to our strategy. This maximum fee for holding portfolio a 

instead of the benchmark portfolio b, Δγ , can be found by solving: 

T −1 T −1Xh γ i Xh γ i 
∗ ∗ T −1 w d = T −1 w d , (27)(ra,t+h − Δγ ) − a,t+hRV a,t+h rb,t+h − b,t+hRV b,t+h

2 2 
t=0 t=0 

where a and b refer to our strategies (HAR-X class of models) and the benchmark portfolio 

(HAR-RV), respectively. The maximum fee, Δγ , can be easily estimated by taking the 

difference between two alternative average utilities. 

Table 9 reports the economic gains of switching from the benchmark (HAR-RV) strat-

egy to the HAR-X class of models for h = 1.23 The performance fee represents the amount 

that an investor is willing to pay to using our new class of forecasting models. The per-

formance is expressed in annual basis points, bold numbers highlight the models that 

outperform the benchmark strategy, and the starred values indicate significant gains at 

the 5% significance level.24 

We show that all the strategies based on the HAR-X class of models generate positive 

performance fee as an average across all the stocks, but the HAR-V+ and HAR-Co+-V+ . 25 

The best performance for the HAR-V and HAR-Co-V type of strategies are respectively 

achieved by the HAR-V− , and the HAR-Co+-V and HAR-Co−-V− strategies. These 

strategies significantly outperform the benchmark strategy in at least 50% of the stocks 

under consideration when γ = 2. For higher levels of risk aversion (γ = 6, 10) we find 

that performance fee is always positive, while the number of significant stocks falls just 

23Results for longer horizons are qualitatively similar to the h = 1, and are available upon request. 
24To evaluate the performance of our strategies we create a null hypothesis that examines whether 

the performance fee is equal to zero. In other words, H0 : Δγ = 0 and H1 : Δγ > 0. We follow Bandi 
et al. (2008); Engle and Colacito (2006); Nolte and Xu (2015), among others, and apply a one-sided 
t-test with a robust variance-covariance estimator. 

25The negative performance fee from these two models is expected as the positive semivariance is 
found to be uninformative producing very weak out-of-sample performances. 
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below 50%. 

In terms of performance fee, we find that an investor is willing to pay ranging from 

57 (γ = 2) to 11 (γ = 10) basis points to switch from the benchmark strategy to the 

HAR-Co+-V strategy. Similarly and without considering the performance of the HAR-

V+ nor the HAR-Co+-V+ , we find that at γ = 2 the HAR-V type of strategies produce 

an average performance fee across all the stocks of 5.627 basis points, while the HAR-

Co-V type of strategies achieve an average performance fee of 9.357 basis points. These 

results highlight the economic benefits of incorporating the covariance information, and 

that strategies accounting for the asymmetric dependencies of the data far exceed the 

performance of the general and benchmark strategies. 

Figure 6 plots the weights of 4 different models across time using Procter & Gamble 

(PG) results.26 We use the benchmark strategy, the HAR-Co+-V and HAR-V− , which are 

the best performing strategies from the HAR-V and HAR-Co-V family, and the HAR-V+ 

strategy. They grey lines in the background of each subplot represent the weights of all 

remaining models. It is noteworthy that during more volatile periods all models allocate 

similar weights to the risky asset. However, when the level of volatility is low, we find 

that the HAR-Co+-V and the HAR-V− models usually allocate more weight to the risky 

asset, while the HAR-RV and HAR-V+ strategies fail to do so and allocate weights that 

are of similar magnitude during turmoil periods. Thus, our more responsive forecasts are 

able to estimate the weights more dynamically and adjust faster to the different economic 

conditions, implying that their weights are closer to the fundamental weights. 

Figure 5 shows the behavior of the HAR-Co+-V strategy across the sampling frequency 

and forecasting horizon as an average of all the stocks. The 300-second frequency produce 

the biggest average realized utility irrespective of the forecasting horizon. This result is 

in line with our previous findings, which indicate that the 300-second frequency produces 

slightly better forecasting performance. However, as the risk-aversion level increases the 

difference in performance fee shrinks drastically, indicating that the choice of the sampling 

frequency is only relevant when the level of risk-aversion is low. 

26We use PG as its expected return using the rolling scheme is always positive and greater than the 
risk-free rate. This ensures a nice dynamics of the weight distribution. 
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Finally, we evaluate the performance of our volatility-timing portfolio strategies in 

the presence of transaction costs. Following standard arguments (see, DeMiguel et al., 

2014) we define the transaction cost adjusted portfolio return as: 

1 + rp,t+1 
r̄  p,t+1 = rp,t+1 − π wt+1 − wt , (28)

1 + wtrp,t+1| {z } 
Turnover 

where r̄  p,t+1 is the transaction cost adjusted portfolio return, and π is the transaction 

cost parameter. We follow Nolte and Xu (2015) and set π to 0.0025, corresponding to a 

2.5 cent half spread on a 10 dollar stock. Results reported in Table 10 correspond to the 

average across all the stocks for 1-day ahead forecasts. The average performance fees of 

our strategies are slightly smaller compared to the results in Table 9. This indicates that 

transaction costs only have a marginal effect on our strategies, which is expected since our 

comparison is based on two dynamic strategies both using high-frequency information. 

We find that a higher performance fee is directly associated with a bigger turnover. 

The higher turnover observed in our strategies comes from the fact they react faster 

to new information, while the HAR-RV strategy is smoother. This adjustment to new 

information implies more dynamic changes in weights, producing a significantly bigger 

performance fee at the minimal cost of a slightly bigger trading turnover. 

8 Conclusions 

This paper extends the popular structure of the heterogeneous autoregressive (HAR) 

model of Corsi (2009) introducing the HAR-X class of models, which incorporates the 

information from the market index in the form of (co)variances. We show that whereas 

the HAR-RV model assigns more weight to monthly volatility, the HAR-X models rely on 

more recent information to predict future volatility. This new distribution of information 

renders more responsive forecasts improving significantly the forecast accuracy compared 

to the benchmark model. These forecasting gains hold true both in simulation and in-

and out-of-sample comparisons on the volatility of 20 individual stocks. 
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The HAR-X class of models also account for the observed asymmetry in volatility 

utilizing the novel noise-robust semi-(co)variances extensions that were developed in this 

paper following the work of Christensen et al. (2010, 2014); Jacod et al. (2009). We show 

that the use of negative semivariances in the HAR-V model far exceeds the performance of 

its unsigned counterpart and the benchmark model. Moreover, a full negative structure in 

the HAR-Co-V (HAR-Co−-V−) also outperforms the benchmark model and its unsigned 

counterpart, however, the HAR-Co+-V model achieves the best performance across all 

the HAR-X model classifications. 

The previous statistical improvements afforded by the HAR-X class of models directly 

translates in significant economic gains. We find by using a volatility timing strategy 

that a risk-averse investor can substantially increase her portfolio performance by using 

the information from the market index, and that she is willing to pay up to 57 (56) 

annual basis points prior (after) transaction costs for switching to our HAR-Co+-V model 

strategy. 

Finally, while forecasting gains are found to be more stable across sampling frequen-

cies after accounting for the presence of microstructure noise, a mixed sampling frequen-

cies approach indicates that bigger out-of-sample improvements are attained using a low 

(high) frequency for the stock (index). This finding suggests that mixing the sampling 

frequencies better captures the index information signal. 
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A Tables and Figures 

Table 1: Summary statistics 

Annualized Annualized 
Stock/Index Ticker T Returns (%) Volatility (%) 

Amazon.com, Inc. AMZN 4277 21.708 41.356 
Arconic Inc. ARNC 4277 -35.512 32.069 
Boeing Co. BA 4277 6.458 23.621 
Bank of America Corporation BAC 4277 -22.745 32.518 
Caterpillar Inc CAT 4277 -0.022 26.106 
China Mobile Ltd. CHL 4277 -0.485 19.626 
Costco Wholesale Corporation COST 4277 16.141 24.721 
Cisco Systems, Inc. CSCO 4277 -5.333 29.355 
The Walt Disney Company DIS 4277 13.642 23.794 
DowDuPont Inc. DOW 4277 -2.152 28.021 
Exelon Corporation EXC 4277 2.232 22.909 
Freeport-McMoRan Inc. FCX 4277 -24.247 39.345 
Halliburton Company HAL 4277 -16.572 35.905 
Honeywell International Inc. HON 4277 -4.752 25.453 
International Business Machines Corporation IBM 4277 15.874 20.014 
The Coca-Cola Co. KO 4277 12.537 17.227 
The Procter & Gamble Company PG 4277 14.640 16.486 
Southern Co. SO 4277 4.054 17.326 
Wells Fargo & Company WFC 4277 -0.646 28.594 
Xerox Corporation XRX 4277 7.218 33.763 

Min 
PRV 

0.073 
0.117 
0.031 
0.011 
0.046 
0.034 
0.040 
0.038 
0.048 
0.038 
0.049 
0.137 
0.142 
0.017 
0.032 
0.015 
0.019 
0.034 
0.025 
0.076 

Mean 
PRV 

6.787 
4.081 
2.214 
4.196 
2.704 
1.529 
2.425 
3.420 
2.247 
3.116 
2.083 
6.143 
5.116 
2.571 
1.590 
1.178 
1.078 
1.191 
3.244 
4.524 

Median 
PRV 

2.465 
2.220 
1.147 
1.255 
1.466 
0.664 
1.008 
1.386 
0.996 
1.533 
1.017 
3.313 
2.667 
1.202 
0.711 
0.565 
0.514 
0.587 
0.937 
1.903 

Max 
PRV 

268.493 
133.436 
61.611 
442.475 
77.442 
69.936 
206.367 
210.661 
198.043 
179.970 
194.428 
181.682 
612.552 
130.178 
56.868 
52.832 
94.868 
67.818 
254.379 
439.853 

SPDR S&P 500 ETF SPY 4277 -0.056 14.863 0.010 0.877 0.410 61.442 

Note: The table reports the descriptive statistics for all the stocks and the SPY. The realized measures presented are estimated at the 300 √ 
second frequency. The annualized volatility is estimated as σT 252, where σT is the average daily pre-averaged realized volatility, and the 
annualized return is µ × 252, where µ is the average daily return. PRV is the pre-averaged realized volatility defined as in equation (8). The 
bold numbers represent the highest and lower annualized volatility, while the blue and red font highlight the highest and lowest annualized 
return. 
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Table 2: Average correlations across sampling frequency and realized measures 

+ − + − 
PRVs PRVm MRC MRC+ MRC− PRVs PRVs PRVm PRVm 

PRVs – 0.688 0.769 0.730 0.736 0.931 0.919 0.647 0.650 
PRVm 0.611 – 0.924 0.878 0.822 0.689 0.586 0.959 0.918 
MRC 0.721 0.897 – 0.933 0.874 0.766 0.659 0.886 0.848 
MRC+ 0.665 0.820 0.897 – 0.659 0.805 0.539 0.924 0.691 
MRC− 0.632 0.733 0.789 0.456 – 0.620 0.755 0.674 0.914 
PRVs

+ 
0.854 0.586 0.702 0.788 0.404 – 0.714 0.694 0.586 

PRVs
− 

0.832 0.460 0.530 0.333 0.701 0.439 – 0.500 0.625 
PRVm

+ 
0.553 0.926 0.836 0.897 0.492 0.615 0.322 – 0.767 

PRVm
− 

0.528 0.833 0.741 0.481 0.887 0.383 0.537 0.563 – 

Note: The table reports the correlation among all the realized measures under analysis. The 
entries report the average correlation for the 20 stocks. Entries above the main diagonal are 
estimated using 30-second returns, while below the main diagonal the entries are estimated using 
300-second returns. 

Table 3: HAR-X prediction regression results 

HAR-RV HAR-V HAR-Co-V HAR-RV HAR-V HAR-Co-V HAR-RV HAR-V HAR-Co-V 
h = 1 h = 5 h = 22 

β0 

βs 
d 

βs 
w 

βs 
m 

βm 
d 

βm 
w 

βm 
m 

βRC 
d 

βRC 
w 

βRC 
m 

0.368∗∗∗ 

0.191∗∗∗ 

0.335∗∗∗ 

0.349∗∗∗ 

0.355∗∗∗ 

0.158∗∗∗ 

0.237∗ 

0.406∗∗∗ 

0.139 
0.406∗∗ 

−0.311 

0.286∗∗∗ 

0.162∗∗∗ 

0.259 
0.439∗∗∗ 

0.151 
0.395∗ 

0.396 
−0.030 
−0.067∗ 

−0.729 

0.502∗∗∗ 

0.117∗∗∗ 

0.291∗∗∗ 

0.421∗∗∗ 

0.488∗∗∗ 

0.085∗∗ 

0.212∗∗∗ 

0.461∗∗∗ 

0.146∗ 

0.342∗ 

−0.257 

0.412∗∗∗ 

0.103 
0.196 
0.524∗∗∗ 

0.242∗ 

0.045 
0.773∗ 

−0.128∗ 

0.259 
−1.105 

0.785∗∗∗ 

0.065 
0.200∗∗ 

0.464∗∗∗ 

0.752∗∗∗ 

0.046 
0.137 
0.501∗∗∗ 

0.090 
0.180∗ 

−0.081 

0.674∗∗∗ 

0.057 
0.199 
0.490∗∗∗ 

0.145 
0.404 
0.648∗ 

−0.077 
−0.353 
−0.718∗ 

R2 
adj 

F-test 
0.389 
– 

0.398 
20 

0.403 
20 

0.551 
– 

0.566 
18 

0.575 
20 

0.564 
– 

0.583 
20 

0.598 
20 

∗ ∗∗Note: The table reports the coefficients for the average across all the stocks at the 300 seconds. , , and ∗∗∗ represent 
the significant of the coefficients at the 10%, 5%, and 1% level using the Newey-West HAC correction allowing for serial 
correlation up to order 5 (h = 1), 10 (h = 5), and 44 (h = 22). Bold numbers highlight the HAR-X models that outperform 
the benchmark HAR-RV. The bottom panel reports average values across all the stocks for the R2 

adj , and the number of 
rejections of the F-test. The F-test has a null hypothesis of equal fit, and hence its rejection indicates that HAR-X models 
are a better model fit than HAR-RV models. 
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Table 4: Asymmetric HAR-V prediction regression results 

HAR-V+ HAR-V− HAR-V+ HAR-V− HAR-V+ HAR-V− 

h = 1 h = 5 h = 22 

β0 0.551∗∗∗ 0.326∗∗∗ 0.650∗∗∗ 0.480∗∗∗ 0.886∗∗∗ 0.757∗∗∗ 

+ 
βsd 0.149 0.083 0.041 

+ 
βsw 0.408 0.328 0.200 

+ 
βsm 0.888∗∗∗ 0.963∗∗∗ 1.004∗∗∗ 

+ 
βmd −0.035 0.052 0.041 

+ 
βmw 0.780 0.663 0.414 

+ 
βmm −0.276 −0.232 −0.026 

− 
βsd 0.209∗∗∗ 0.112∗ 0.061 

− 
βsw 0.429∗ 0.371∗ 0.263∗ 

− 
βsm 0.884∗∗∗ 0.963∗∗∗ 0.980∗∗∗ 

− 
βmd 0.995∗∗ 0.627∗∗ 0.357∗ 

− 
βmw 0.857∗ 0.887∗ 0.407 

− 
βmm −0.897∗ −0.652 −0.072 

R2 0.335 0.431 0.497 0.594 0.526 0.598adj 

F-test 0 19 1 20 1 20 

HAR-RV 

R2 0.389 0.551 0.564adj 

Note: See notes to Table 3. The bottom panel of the Table reports the 1-day 
(h = 1), 5-day (h = 5), and 22-day (h = 22) ahead HAR-RV’s adjusted R-squares 
for the average across all the stocks. 
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Table 5: Asymmetric HAR-Co-V prediction regression results 

Panel A: The table reports the prediction regression results for HAR-Co-V 
based on unsigned volatilities and semicovariances. 

HAR-Co+-V HAR-Co−-V HAR-Co+-V HAR-Co−-V HAR-Co+-V HAR-Co−-V 
h = 1 h = 5 h = 22 

β0 

βs 
d 

βs 
w 

βs 
m 

βm 
d 

βm 
w 

0.160 
0.216∗∗ 

0.326∗∗ 

0.417∗∗∗ 

0.537∗∗ 

0.859∗ 

0.311∗∗∗ 

0.102 
0.121 
0.481∗∗∗ 

−0.149 
−0.278 

0.332∗∗ 

0.120∗∗∗ 

0.281∗∗ 

0.489∗∗∗ 

0.377∗∗ 

0.692 

0.445∗∗∗ 

0.051 
0.114 
0.540∗∗∗ 

−0.041 
−0.267 

0.614∗∗∗ 

0.063∗∗∗ 

0.194∗∗∗ 

0.551∗∗∗ 

0.197∗ 

0.472 

0.745∗∗∗ 

0.027 
0.109 
0.502∗∗∗ 

−0.007 
−0.059 

βm 
m 

βRC
+ 

d 

βRC
+ 

w 

βRC
+ 

m 

βRC
− 

d 

βRC
− 

w 

βRC
− 

m 

0.149 
−0.727∗∗ 

−1.159∗ 

−0.908 

−0.081 

0.896∗∗ 

1.789∗ 

−0.719 

0.295 
−0.447∗∗ 

−0.882∗ 

−1.103 

0.145 

0.532∗∗ 

1.617∗ 

−1.099 

0.643 
−0.232∗ 

−0.751 
−1.436∗ 

−0.005 

0.309∗ 

0.585 
−0.237 

R2 
adj 

F-test 
0.426 
20 

0.427 
20 

0.593 
20 

0.591 
20 

0.607 
20 

0.594 
20 

Panel B: The table reports the prediction regression results for HAR-Co-V 
using semi-(co)variances. 

HAR-Co+-V+ HAR-Co−-V− 

h = 1 h = 5 h = 22 h = 1 h = 5 h = 22 

β0 
+ 

βsd 
+ 

βsw 
+ 

βsm 
+ 

βmd 
+ 

βmw 
+ 

βmm 

βRC
+ 

d 

βRC
+ 

w 

βRC
+ 

m 

0.472∗∗∗ 

0.238 
0.570 
0.874∗∗ 

0.273 
1.478 
0.684 

−0.424 
−0.968 
−0.920 

0.583∗∗∗ 

0.155 
0.435 
0.995∗∗ 

0.337 
1.007 
0.938 

−0.377 
−0.541 
−1.200 

0.832∗∗∗ 

0.085 
0.316 
1.027∗∗ 

0.202 
0.831 
1.085 

−0.219 
−0.618 
−1.144 

β0 
− 

βsd 
− 

βsw 
− 

βsm 
− 

βmd 
− 

βmw 
− 

βmm 

βRC
− 

d 

βRC
− 

w 

βRC
− 

m 

0.265∗∗ 

0.192∗∗∗ 

0.393∗∗∗ 

1.067∗∗∗ 

0.816 
−0.005 
0.749∗ 

0.122 
0.772 

−1.711∗ 

0.400∗∗∗ 

0.123∗∗∗ 

0.293 
1.237∗∗∗ 

0.587∗ 

−0.238 
1.755∗ 

0.004 
1.026 

−2.616∗ 

0.698∗∗∗ 

0.071 
0.394 
1.056∗∗∗ 

0.367∗ 

0.827 
1.200 

−0.023 
−0.645 
−1.412∗ 

R2 
adj 
F-test 

0.346 
0 

0.513 
3 

0.544 
4 

2 
Radj 

F-test 
0.436 
19 

0.603 
20 

0.609 
20 

HAR-RV 

R2 0.389 0.551 0.564adj 

Note: See notes to Table 3 for details. The bottom panel of the Table reports the 1-day (h = 1), 
5-day (h = 5), and 22-day (h = 22) ahead HAR-RV’s adjusted R-squares for the average across all 
the stocks. 
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Table 6: Out-of-sample ranking performance 

QLIKE Rank 
h = 1 

QLIKE Rank 
h = 5 

QLIKE Rank 
h = 22 

Avg. HMSE Rank 
h = 1 

HMSE Rank 
h = 5 

HMSE Rank 
h = 22 

Avg. 

30-second return 30-second return 

HAR-RV 
HAR-V 
HAR-V+ 

HAR-V− 

HAR-Co-V 
HAR-Co+-V+ 

HAR-Co−-V− 

HAR-Co+-V 
HAR-Co−-V 

1.000 
0.98011 

1.1700 

0.93914 

0.98211 

1.1491 

0.97010 

0.96510 

1.0018 

6 
4 
9 
1 
5 
8 
3 
2 
7 

1.000 
0.9639 

1.1540 

0.89517 

0.9589 

1.1322 

0.90013 

0.90517 

0.9289 

7 
6 
9 
1 
5 
8 
2 
3 
4 

1.000 
0.9763 

1.0860 

0.9376 

0.9568 

1.0594 

0.9239 

0.90911 

0.9516 

7 
6 
9 
3 
5 
8 
2 
1 
4 

1.000 
0.973 
1.137 
0.924 
0.965 
1.113 
0.931 
0.926 
0.960 

1.000 
0.95813 

1.3630 

0.84119 

0.92215 

1.2793 

0.83519 

0.79119 

0.88715 

7 
6 
9 
3 
5 
8 
2 
1 
4 

1.000 
0.9559 

1.2810 

0.86817 

0.90213 

1.2065 

0.83118 

0.80219 

0.89611 

7 
6 
9 
3 
5 
8 
2 
1 
4 

1.000 
0.9856 

1.1601 

0.9409 

0.91212 

1.0966 

0.88512 

0.84815 

0.9369 

7 
6 
9 
5 
3 
8 
2 
1 
4 

1.000 
0.966 
1.268 
0.883 
0.912 
1.194 
0.850 
0.813 
0.906 

60-second return 60-second return 

HAR-RV 
HAR-V 
HAR-V+ 

HAR-V− 

HAR-Co-V 
HAR-Co+-V+ 

HAR-Co−-V− 

HAR-Co+-V 
HAR-Co−-V 

1.000 
0.97613 

1.1760 

0.94514 

0.97315 

1.1471 

0.96413 

0.9849 

1.0247 

6 
4 
9 
1 
3 
8 
2 
5 
7 

1.000 
0.95710 

1.1680 

0.89516 

0.94910 

1.1334 

0.90113 

0.89717 

0.92410 

7 
6 
9 
1 
5 
8 
3 
2 
4 

1.000 
0.9726 

1.0980 

0.9356 

0.9529 

1.0613 

0.9217 

0.90212 

0.9448 

7 
6 
9 
3 
5 
8 
2 
1 
4 

1.000 
0.968 
1.147 
0.925 
0.958 
1.114 
0.929 
0.927 
0.964 

1.000 
0.94215 

1.3770 

0.84017 

0.89916 

1.2633 

0.82019 

0.76320 

0.86915 

7 
6 
9 
3 
5 
8 
2 
1 
4 

1.000 
0.93913 

1.3021 

0.86617 

0.88115 

1.2014 

0.82219 

0.77920 

0.87613 

7 
6 
9 
3 
5 
8 
2 
1 
4 

1.000 
0.9778 

1.1790 

0.9429 

0.90212 

1.0953 

0.88112 

0.83315 

0.92110 

7 
6 
9 
5 
3 
8 
2 
1 
4 

1.000 
0.953 
1.286 
0.883 
0.894 
1.186 
0.841 
0.792 
0.889 

300-second return 300-second return 

HAR-RV 
HAR-V 
HAR-V+ 

HAR-V− 

HAR-Co-V 
HAR-Co+-V+ 

HAR-Co−-V− 

HAR-Co+-V 
HAR-Co−-V 

1.000 
0.96616 

1.1740 

0.96314 

0.95916 

1.1352 

0.98312 

0.98512 

0.9958 

7 
3 
9 
2 
1 
8 
4 
5 
6 

1.000 
0.94316 

1.1982 

0.90115 

0.92316 

1.1424 

0.91114 

0.88119 

0.93112 

7 
6 
9 
2 
4 
8 
3 
1 
5 

1.000 
0.9638 

1.1381 

0.93010 

0.9368 

1.0854 

0.90912 

0.88514 

0.9448 

7 
6 
9 
3 
4 
8 
2 
1 
5 

1.000 
0.957 
1.170 
0.931 
0.940 
1.121 
0.934 
0.917 
0.957 

1.000 
0.90215 

1.4080 

0.81817 

0.82315 

1.2494 

0.76517 

0.69319 

0.86815 

7 
6 
9 
3 
4 
8 
2 
1 
5 

1.000 
0.90914 

1.3842 

0.85515 

0.81717 

1.2204 

0.78118 

0.72920 

0.88014 

7 
6 
9 
4 
3 
8 
2 
1 
5 

1.000 
0.96110 

1.2601 

0.93912 

0.85714 

1.1383 

0.84215 

0.80616 

0.93112 

7 
6 
9 
5 
3 
8 
2 
1 
4 

1.000 
0.924 
1.350 
0.871 
0.833 
1.202 
0.796 
0.743 
0.893 

Note: The table reports the average relative loss for QLIKE and HMSE across all the stocks. The relative losses are estimated as the ratio of the losses of the HAR-X models 
to the losses of the benchmark HAR-RV. Entries in bold indicate that our proposed models outperform the HAR-RV. Avg. column reports for each model the average 
relative loss across all forecasting horizons. The number in the superscript represents the number of stocks for which the losses of the HAR-X models are significantly 
lower than the losses of the benchmark model. We use the CPA test of Giacomini and White (2006) at the 5% significance level. 
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Table 10: Volatility-timing portfolio performance fee with transaction costs 

Δ̄2 TO Δ̄6 TO Δ̄10 TO 

HAR-RV 0.0041 0.0014 0.0008 
HAR-V 3.135 0.0047 1.045 0.0016 0.627 0.0009 
HAR-V+ −4.595 0.0031 −1.532 0.0010 −0.919 0.0006 
HAR-V− 7.985 0.0083 2.663 0.0028 1.598 0.0017 
HAR-Co-V 6.300 0.0056 2.101 0.0019 1.260 0.0011 
HAR-Co+-V+ −1.661 0.0038 −0.554 0.0013 −0.332 0.0008 
HAR-Co−-V− 10.691 0.0095 3.571 0.0032 2.143 0.0019 
HAR-Co+-V 11.805 0.0095 3.953 0.0032 2.373 0.0019 
HAR-Co−-V 8.178 0.0083 2.755 0.0028 1.653 0.0017 

Note: The table reports average performance fee across all the stocks using 1-
¯day ahead forecasts based on 300-second frequency. Δγ represents the average 

performance, while TO is the turnover estimated as in equation (10). Bold face 
numbers indicate that the average performance fee is positive and that the turnover 
of the strategy is greater than the benchmark’s turnover. 

Figure 1: Distribution of the standardized out-of-sample losses 

Note: The plot depicts the distribution of the 1-day ahead standardized losses. We forecast 1,000 simulated 
days, and repeat this process 3,000 times. The losses are standardized by the HAR-RV loss function. The top 
panel plots the distribution of the QLIKE for the HAR-V (top-left) and HAR-Co-V (top-right), whilst the 
bottom panel shows the HMSE distribution for the HAR-V (bottom-left) and HAR-Co-V (bottom-right). 
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Figure 2: Realized variance/covariance and their elements 
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Note: The graph plots the variance and covariance decomposition based on the average of the 20 stocks. The 
realized measures are estimated at the 300 seconds. 

Figure 3: Autocorrelation function 
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Note: The figure graphs the autocorrelation function for the different realized variances and covariances 
elements. The results presented are for the average across the stocks. 
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Figure 4: Mixed sampling HAR-V model 

Note: The figure depicts the out-of-sample average relative loss for a mixed sampling HAR-V model. The 
model is estimated by varying the sampling frequency used to estimate the stock and index volatility. 
The left-panel plots the QLIKE loss ratio surface, and the right-panel plots the HMSE loss ratio surface. 
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Figure 5: Average realized utility across sampling frequency 

Note: The figure plots the average realized utility function across the sampling frequency and 
level of risk aversion for all the stocks under analysis using the HAR-Co+-V at h = 1 (left panel) 
and h = 22 (right panel). 
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Figure 6: Weight time series for different models 

Note: The figure illustrates the weights behavior of Procter & Gamble (PG) for 4 different models across 
the out-of-sample period under analysis. The grey lines are for all the remaining models, while the 
blue/red lines are for the models specified in the title of each subplot. The risk aversion parameter is set 
to γ = 2. 
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