A Generalized Heterogeneous Autoregressive Model
using the Market Index

Rodrigo Hizmeri**, Marwan Izzeldin?, Ingmar Nolte®, and Vasileios
Pappas’

“Lancaster University
bUniversity of Kent

This Version: December 2, 2019

Abstract

This paper shows that generalizing the heterogeneous autoregressive model
(HAR) with realized (co)variances and semi-(co)variances from the index leads
to more accurate volatility forecasts. To circumvent the effects of the market mi-
crostructure noise arising from using high sampling frequencies, we adopt noise-
robust estimators for the realized (co)variances and develop novel noise-robust esti-
mators for the semi-(co)variances. To explore the sampling frequency at which the
forecasting gains are maximized, we adopt a mixed-sampling approach that iterates
over several sampling frequencies of the stock and the index. Our analysis shows
that gains are maximized at the combination of a low (high) frequency on the stock
(index). We illustrate that the observed forecasting gains translates into economic
gains such that a risk-averse investor is willing to pay up to 57 annual basis points
by adopting a model specification that utilizes the index information.
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1 Introduction

The rapid growth in financial markets and the developments of new and complex
financial products highlight the importance of developing tools to measure and assess the
risks associated with these products. Volatility is one of the most important measures
of risk, and since any evaluation procedure considers the level and riskiness of future
pay-offs, it is particularly the forecasting of future volatility that is important for many
investment decisions.

Over the last two decades, measures based on high-frequency data such as realized
volatility (RV) were found to dominate traditional ARCH-type models, (see Bollerslev,
1986; Engle, 1982; Nelson, 1991, among others) and stochastic volatility models (see Ghy-
sels et al., 1996; Taylor, 1986, 1994). Andersen et al. (2003) and Corsi (2009) show that
RV is a more efficient estimator of return volatility, and that the long-term dependence
of RV is well captured using a simple heterogeneous autoregressive (HAR) model.

In this paper, we propose a new class of realized volatility based forecasting models,
by generalizing the basic HAR model with the (co)variances and semi-(co)variances from
the market index (SPY-ETF) to form a more general ex-ante forecasting model. The use
of the index can be motivated by a CAPM type-argument whereby the volatility of the
stock is known to be driven by stock specific idiosyncratic factors as well as by systematic
factors pertaining to the market portfolio.

Inspired by the success of the HAR model (Corsi, 2009) in capturing the long-term
dependence feature of volatility, several studies have generalized the HAR model using
endogenous and exogenous variables. For instance, Andersen et al. (2007); Corsi et al.
(2010) explore the information content of jumps in volatility prediction showing decent
out-of-sample improvements.! A bigger strand is formed by the exogenous variables, in
which the literature have explored the use of implied volatility (see, Busch et al., 2011;
Giot and Laurent, 2007, among others), macroeconomic variables (see, for instance Chris-

tiansen et al.; 2012; Engle et al., 2007; Paye, 2012; Schwert, 1989, and the many references

LOther studies considering jumps as regressors are (Duong and Swanson, 2015; Hizmeri et al., 2019;
Nolte and Xu, 2015; Patton and Sheppard, 2015, and the extensive references therein).



therein), and cross-sectional market volatility in Hwang and Satchell (2007), among other
variables. These studies find that the use of exogenous variables provides sufficient infor-
mation to improve model fit but only little or modest out-of-sample forecasting gains.

Against the unsuccessful use of external variables to aid volatility forecasting, our
new HAR-X class of models allow more rapid reaction to volatility changes; i.e., HAR-X
models achieve substantial forecasting gains by incorporating market index information
in the form of (co)volatility.

We also extend the HAR-X class of models so that they can better capture the sponta-
neous changes and asymmetries in volatility by incorporating the information of negative
and positive return (co)variance. We do so by estimating the so-called realized semi-
variances (Barndorff-Nielsen et al., 2010) and semicovariances (Bollerslev et al., 2019).
Realized semivariances are decomposed using positive and negative returns, whilst the
realized semicovariances are decomposed by four separate components: two based on
concordant signed high-frequency returns and two based on discordant high-frequency
returns. These measures allow for more refined responses to positive and negative return
shocks than threshold “leverage effect” terms traditionally used in the literature. More-
over, the use of a more “flexible leverage effect” aims to provide superior asymmetric
models than those found in Glosten et al. (1993) or Corsi and Rend (2012).”

Our empirical analysis contemplates the use of different sampling frequencies, so in an
attempt to mitigate the impact of the market microstructure noise (MMSN), we use the
noise-robust realized variance of Jacod et al. (2009) and Christensen et al. (2014), and the
noise-robust realized covariance of Christensen et al. (2010). We also develop noise-robust
measures of the realized semivariances and semicovariances by extending the work of
Christensen et al. (2010, 2014); Jacod et al. (2009). This adaptation enables us to exploit
the information content of the realized semi-(co)variances across sampling frequencies.”

Previous studies (Ghysels and Sinko, 2011; Hizmeri et al., 2019) document significant

2Patton and Sheppard (2015) use dynamic models based on realized semivariances and shows that
the information afforded by negative returns variance is superior to its positive counterpart. Bollerslev
et al. (2019) shows that the elements of the semicovariances are very informative to forecasting portfolio
variance.

3Hansen and Lunde (2006) show that standard realized measures tend to be upward biased in the
presence of MMSN.



improvements in forecasting when noise-robust measures are used in the presence of
MMSN relative to standard volatility measures.

Moreover, and in an effort to underscore the practical relevance of the forecasts im-
provements afforded by the HAR-X models, we evaluate the gains using a mean-variance
portfolio allocation. The use of a mean-variance framework to evaluate the performance
of forecasting models has been widely employed (see, for instance Bernales and Guidolin,
2014; Christoffersen et al., 2014; Fleming et al., 2001, 2003; Nolte and Xu, 2015) and is
well-established that poor forecasting performances lead to extreme positions far away
from the ex-post optimal portfolio weights.

Our main findings can be summarized as follows. First, using 20 U.S. stocks from
2000-2016 (4277 days) across various sampling frequencies, we show that the HAR-X class
of models substantially outperform the basic HAR-RV model, and the HAR-Co-V models
generally produce more accurate forecasts than the HAR-V models.” These results hold
also true using Monte Carlo Simulations.

Second, models that account for volatility asymmetry render the biggest out-of-sample
gains. For instance, models based on the negative semi-(co)variances dominate both the
basic HAR-RV and their unsigned counterpart models. However, the best forecasting per-
formance is achieved when the HAR-Co-V model is formed using the unsigned variances
along with the positive semicovariances.

Third, the statistical improvements afforded by the HAR-X class of models also pro-
duce significant economic value. We show that the forecasts of our models react faster
to changes in volatility, which results in a more accurate allocation of wealth. Thus,
a risk-averse investor is willing to pay up to 57 (56) annual basis points before (after)
transaction costs to switch to one of our strategies.

Finally, we show that after removing the MMSN from non-noise-robust measures, the
information set across sampling frequencies is of similar magnitude, leading to more stable

forecasting improvements. However, using a mixed-sampling approach we highlight the

4As described in Section 3, in the HAR-X class, we denote as HAR-V when the HAR-RV model is
generalized by the variance of the index, and as the HAR-Co-V when the HAR-RV model is generalized
by the variance and covariance of the index.



benefit of mixing the realized measures estimated at different time intervals. We find
that when a higher (lower) frequency is used in the index (stock) the HAR-V model
outperforms the forecasts of the benchmark HAR-RV model and the same-frequency
HAR-V model. In specific, the best results are obtained using 30 second return for the
index and 300 second return for the stock.

The remainder of the paper is organized as follows. Section 2 describes the theoretical
background and the new noise-robust realized semivariances and semicovariances; Sec-
tion 3 outlines the forecasting models and evaluation; our Monte Carlo study is outlined
in Section 4; Section 5 describes our data; Section 6 presents the estimates of the HAR-X
models, along with various statistical out-of-sample forecast comparisons. This section
ends by illustrating the benefits from using a mixed-sampling approach in the HAR-V
model; Section 7 reports the economic value of our models; conclusion is provided in

Section 8.

2 Theoretical Background

A univariate log-price process evolving continuously over time is outlined as follows:
dp; = prdr +o.dW,, 0<7<T, (1)

where 1, is a locally bounded and predictable drift process, o, is the spot volatility which
is both adapted and cadlag, and W, is a standard Brownian motion.
The integrated variation (IV}) for a subperiod (usually associated with day ¢) of this

process is defined as:

1V, = /t<1 o2du. (2)

IV, can be estimated using the so-called realized variance (RV), (see Andersen et al.,

2001a,b; Barndorff-Nielsen and Shephard, 2002; Hansen and Lunde, 2006; Meddahi,



2002), defined as:”

M

t
RV, = Z(fj ﬂ>/ o2du, (3)
t—1

j=1

where M = 1/A refers to the total number of intra-daily return observations on day ¢, and
the intraday returns are defined as 1, ; = p;_14jA — Pr—14(j—1)a, for j = 1,..., M. Stock
prices are influenced by market and industry factors as well as other risks, which cannot
always be assumed to be contained in the individual stock price information set. This
suggests that stock price fluctuations are better described using a model that incorporates

both the stock and the market information as follows:

dp} = pdr +o2dW: + o dW™, 0<7<T (4)

T

(L 2

where the superscripts and “m” hereafter refer to the stock and the index, respec-
tively. p, is a locally bounded predictable drift process, o and ¢ are the respective
spot volatility of the stock and the index. Both spot volatilities are adapted and cadlag.
Additionally, W? and W™ are the standard Brownian motion of the stock and the index,
and are potentially correlated, i.e. (dW?, dW™) = p,dr.

Focusing on day ¢, we assume without loss of generality that the drift term in model (4)

is zero, then by taking expectation to the square of the increments we obtain:
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With € j\/Z and egg\/Z representing the Brownian increments of the stock and the index,

5In the presence of jumps, RV, —P j;t_l oZdu + > o<s<t(Pr — pi—)?. We ignore jumps in our DGP
for ease of exposition. However, the presence of jumps does not alter the results of our models since we
do not distinguish between the continuous and discontinuous part of the RV.



which are possibly correlated. The result in equation (5) suggests that the integrated
variance of model (4) is best described by the sum of the integrated variance of the
stock (IV;?), the integrated variance of the index (/V;™), and the integrated covariation
(ICOV;) between the stock and the index.

In the presence of microstructure noise, the price is observed with a measurement
error, which distorts the standard volatility and covariance measures. Thus, the ob-
served price is the sum of an unobservable efficient price and a noise component due to

imperfections of the trading process:

p;k— =Dpr + us, (6)

where pZ is the contaminated price, p, is the efficient price and w, is the observation
error,” which is independent and identically distributed with E[u,] = 0 and E[u?] = w?,
and p, L u, (L means stochastic independence). The contaminated returns are estimated
as Ty ; = P{_14ja —Pi_14(j_1)a- As shown by Bandi and Russell (2006); Hansen and Lunde
(2006); Zhang et al. (2005), realized measures estimated from contaminated returns result
in noisy measures of volatility since E[RV] = IV +2Mw?. In order to mitigate the impact

of the MMSN, we consider the use of pre-averaging returns of Jacod et al. (2009). The

pre-averaging returns of a day t are estimated as follows:

=y
Tri = ((z) Thitgs (7)
=1

where g = (x A 1 — x). Because of this pre-averaging, 7, is closer to the efficient return
Ttj-
Jacod et al. (2009) and Christensen et al. (2014) propose a noise-robust estimator for

the realized variance, pre-averaging realized variance (PRV), which relies in the use of

6See Andersen et al. (2001a, 2003); Barndorff-Nielsen and Shephard (2002) for a more detailed
exposition about estimating realized volatility in a noise-free scheme, Barndorff-Nielsen et al. (2010);
Patton and Sheppard (2015) for estimating realized semivariances using standard volatility measures,
and Barndorff-Nielsen and Shephard (2004); Bollerslev et al. (2019) for estimating realized covariance
and semicovariances using standard realized measures.

"We suppress the superscripts “s” and “m” to differentiate the price path of the stock and the market
index for ease of exposition. It will be added when further clarification is required.
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pre-averaging returns as follows:

M—-L+1 ~

M 1 L2
PRV, = > il = 8
T M-Ly2Ldf & Pl = e (®)

where L = 0vVM + o(M~Y*), M/(M — L + 2) is a small sample correction, while

Yia?

ol is a bias-correction to remove a leftover effect of noise that is not eliminated
2

by the pre-averaging estimator. w? is estimated as in Oomen (2006): @&? = &%, =
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The constants associated with g are defined as:
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The pre-averaged realized semi-variances are estimated as follows:
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where the indicator function 1y is used to obtain the required sign of the pre-averaged
returns. Since the bias term on the right of the equation provides a bias-correction for
all the pre-averaged returns, we scale this bias so that it affects equally the positive and
negative pre-averaged returns.

We use the modulated realized covariance (MRC) of Christensen et al. (2010), which
is a noise-robust estimator of the so-called realized covariance proposed by Barndorff-

Nielsen and Shephard (2004), and it is estimated as follows:

Y | MKl
MRC, s = AN 12
t,0 M — K, + 21K, ; (fﬂ) Tt (12)

The authors show that using % = 0 4 o(M ~/*7/2) the MRC is consistent without

80omen (2006) shows that this estimator equals (RV — RVac1)/(2M) being very closely related to
w? = RV/(2M) proposed by Bandi and Russell (2006) and Zhang et al. (2005).
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1/5 rate of

using a bias-correction, and recommend a ¢ = 0.1, which results in an M~
convergence. They also point out that if a bias-correction is used, the resulting estimator
is not ensured to be positive semi-definite.

Following Bollerslev et al. (2019), we propose a decomposition of the MRC to enable

the construction of noise-robust semicovariances:
MRCy s = MRC;%—FMRC’;&—FMRC;{ —i—MRC’tT(;F. (13)

Each element of equation (13) is estimated as follows:

M—-Kp+1

M 1 !
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— M 1 Am " s
MEC s = 3 K, T 2K, Zo <Tt’i1m<0}> <Ttvi]l{ff,i<°})
e 7 | 1y
- N A5
MRC = 3K, 120K, 2; (T“ﬂ{f%’? >0}> (Ttﬂ]l{ffﬁ(’})
M—-Kp,+1
_ M 1 "
MRC = S K, Tk, 2 <<m%<0}> (it om).

where 77, and 7{"; represent respectively the pre-averaged returns of the stocks and the

market index.

3 Forecasting Models and Evaluation

3.1 Forecasting Models

The HAR-RV model proposed by Corsi (2009) is defined as:’
tihfl\t = fo + BaRViZ, + ﬁwRVtiutﬂ% + ﬂmRV;tSthfQZ + €, (15)

where RV}’

jli—h = ﬁ Z?:j RV ,, with j < h. The popularity of the HAR-RV is ex-

plained by its easy implementation and ability to mimic long-range dynamic dependencies

9To simplify notation we will use RV; = PRV, and RC;, = M RC 5 in the forecasting models.
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observed in realized volatility time series.
By contrast, our new HAR-X models utilize the information from the stock and the
market index, aiming to capture shocks due to new market information much quicker

than previous HAR class of models.'” The HAR-X class is defined as:

HAR-V
rh—1jt = BotBaRVZy + B RV 15 + B BV 1400t (16)
Ba RV™ + By RV 5 + B RV o0 + €1,
HAR-Co-V
Crntge = BotBaRVE + B RV 15+ B RV a0t
B RV™ + B RV o5 + B RV, o —aa+ (17)

BICRC,_1 + ﬁgcRCt—l\t—5 + ﬁﬁcRct—Ht—QQ + €.

Both models are motivated by the non-linear dependence feature observed in asset re-
turns. During calm periods the correlation between a stock and the index declines, often
to insignificant levels, suggesting that a model ignoring the covariation such as the HAR-
V model might provide better out-of-sample performance than a model incorporating the
covariance information as in the HAR-Co-V model and vice versa.'!

Previous studies have examined whether semivariances (Patton and Sheppard, 2015)
and semicovariances (Bollerslev et al., 2019) provide incremental information that could
aid volatility forecasting and the estimation of portfolio variance. For instance, Patton
and Sheppard (2015) find that negative returns usually lead to higher level of volatility.

Given the decomposition of the RV, and RC, previously outlined, we create extensions

10These models come directly from a vector HAR structure. However, here the interest is only in

S
forecasting the stock volatility rather than the stock and the index volatility. For instance, y; = yfn

i
S S S1 mi S
Ysrh—1t = Po+Pays—1+PuwYs_sjt—1 + PaYi_22t—1+€ = (y7t71> = <¢791> +< ks dsz> ( tn?1>
Yi or d d t—1

S1 mi S S1 mi s s
(¢w O > yt_St_1> + <¢m Om ) <yt_22t_1 + <6fn> ,(Where the first equation gives rise to the

PN

bw® P y;nf/f)\tfl O O y;n;22\t71 €
HAR-V model.

1We evaluate the non-linear dependence in our dataset and we find that the average correlation across
all the stocks is 0.45 during the pre-crisis period, while during the crisis period the average correlation
rises to 0.8. Similarly, Longin and Solnik (2001) find evidence that support an increase in correlation
during bear markets, but not in bull markets.
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to our previous models to account for asymmetric dependencies, or “leverage effects”.
Apart from the SHAR model (Patton and Sheppard, 2015) previous proposed models in
the literature were extensions of the GJR (Glosten et al., 1993) threshold approach to
allow the conditional variance to respond differently based on the sign of the daily returns
(see, for instance Corsi and Reno, 2012). On the contrary, our models use a more flexible
“continuous leverage effect” based on the semivariances for the HAR-V model and based
on both semivariances and semicovariances for the HAR-Co-V model, allowing for more

refine responses to positive and negative return shocks.

The asymmetric HAR-X models are outlined as follows:

Asymmetric HAR-V Models:
HAR-V™*
S+ S+ 5+ 8
RV - 1|t_60+6 "RV + 83 RV, 1t—5 + B RV} 1)t— 22+
TRV + B0 RV 1\t5+5 t1|t 22 T €t
HAR-V~-
RV, = Bo+Bq RV, + By RViZius + By RV 100t
Bi RV, + By RV 5+ B RV 00 + €t

Asymmetric HAR-Co-V Models:
HAR-Co"-V*
RV = B85 RV + B BV g + 51 RV ot
TRV + Bm+R‘/tm1|t 5+ B RV™ 1\t 22+
§C+RCL +BECTRCS o+ BECTRCS |,y + e
HAR-Co™ -V~
RV 1 = Bo+By RV, + B R‘/;i71|t—5 + B thfl\t—m‘f'
B RV™ + By RVtmﬂt s+ By BV o0t
7¢ RC, + B¢ RC t—1[t—5 + 05" RC 122 T €

HAR-Co"-V
RV = Bo+BaRV,Zy + B RV 15 + B RV, 1400t
Ba RVi™ ) + B RV 5 + B RV oot
FCTRCE, + BECT RO -5 T BRCTRC,E 1jt—22 T €t
HAR-Co™ -V
RV = Bo+BaRVE + BL RV 115 + B RV 1100t
d BVZ + By RVT 5 + B RV get
Bi¢ RC_, + B, RC . 5+ B RC t—1]t—22 T €
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3.2 Forecasting Evaluation

Our main interest is in the real-time out-of-sample forecasting performance of our
models. We consider horizons h = 1, 5, and 22, which correspond to one day, one week,
and one month ahead. We use an increasing window to update the coefficients, with an
initial window (/W) of size 1000.

The out-of-sample performance is evaluated using the heteroskedastic mean square

error (HMSE) and the quasi-likelihood (QLIKE) loss functions:

N —_— 2
RV
HMSE =N"" 1— == 18
> ) "
N RV RV
QLIKE = N™! —= —log —= — 1 (19)
1| BV RV

where }?‘7;’ and RV’ are respectively the forecasted and estimated RV} for the

t+h—1]t
pseudo out-of-sample period, and N = T — IW refers to the total number of out-of-
sample observations. These loss functions are somewhat robust to outliers since the
losses are evaluated as a ratio rather than a difference.

We also consider the use of the Conditional Predictive Accuracy (CPA) test, Giacomini
and White (2006), to evaluate whether the propose models provide significant out-of-
sample forecast improvements relative to the benchmark HAR-RV model. The CPA test

is robust to nested models and its null hypothesis is of equal predictive accuracy defined

as:

Hy = E[Ad,,; ] =0, (20)

s

() e
where Ad,,; j = L(RV,;( ,RV?)—L(RV, ,RV?) is the difference between two loss func-

tions and ¢ # j. The tést statistic is then defined as:

N ! N
T=N N! ZAdn,m‘) volONT Z Gdn7i7j> 6 X2, (21)
n=1 n=1
where V! is a heteroskedasticity and autocorrelation consistent (HAC) estimator of the

12



asymptotic variance.

Finally, we evaluate whether there is a (sub)set of models that significantly outper-
forms the other competing models. We do this using the Model Confidence Set (MCS)
of Hansen et al. (2011). We denote by M the set of all models (HAR-RV and HAR-X
class of models). The MCS is defined as:

d; ;
ti,j = +7 VZ,j € M7 (22)
A/ Ear(dm)
where d;; is the average loss difference. The null of the MCS is that all the models
have the same expected loss. When the null is rejected the worst performing model is
eliminated, and this process is iterated until no further model can be eliminated. The

surviving models are retained with a confidence level a = 0.1.2

4 Monte Carlo Simulation

In this section we present a Monte Carlo study that demonstrates the expected fore-
casting gains from the proposed HAR-X models. We first simulate log-prices using the
data generating process outlined in equation (4), and we use a stochastic correlation to
allow for time-varying co-movements between the stock and the index. The stochas-
tic volatilities and correlation are modelled using mean-reverting factors akin to Heston

(1993). Equation (23) below outlines this set-up.

dp} = /vpdW + \/vrd ™

dp}" = @d%’”’
dvf = k(B — v)dt + oo\ /fedZ) (23)

t
dv]" = k(O — v}")dt + o ;/ vndz™

dpy = 5(© — pp)dt + an/1 — p?dZ”,

12We implement the MCS via a block bootstrap using a block length of 10 days and 5000 bootstrap
replications.
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where the parameters for the volatility factors are <Zt(s),Zt(m)> (— pi. We set K, =
41741, 6,, = 0.34312, 0,, = 0.3897, K, = 7.8907, 0, = 0.4985% o, = 0.4991. The
parameters of the stochastic correlation are k = 1.61, © = 0.3505, a = 0.608, and
po = ©.1% We simulate log-price increments using a sampling frequency of 300 seconds
and a sample size of 1000 days. The trading hours are 6.5 hours a day, rendering 78
intraday returns. We then construct the realized measures and use an increasing window
to evaluate the pseudo out-of-sample forecasts with an initial window size of 350 days.
We iterate over this process 3,000 times.

Figure 1 plots the simulated 1-day ahead relative HMSE and QLIKE distribution.
The relative loss is estimated as the ratio of the losses of the HAR-X models to the
loss of the HAR-RV.!* This means that values below (above) 1 indicate that our models
outperform (underperform) the HAR-RV. Our aim in using a Monte Carlo simulation is
to highlight the benefits of using the HAR-X class over the basic HAR-RV model. That is
why we only focus on the general specifications (HAR-V and HAR-Co-V) using standard
(co)volatility measures. We will then empirically evaluate the sensitivity of our models
to the sampling frequency and outline the extra benefits of our model specifications when
accounting for asymmetric effects.

As shown in Figure 1, the distributions of the losses are usually below 1.0 irrespective
of the model in consideration. The left-tail distribution of the HAR-Co-V is generally
fatter compared to the HAR-V, indicating that adding the covariance information delivers

greater out-of-sample forecasting gains.

5 Data

Our sample consists of 20 individual stocks selected by trading volume over the period

January 3, 2000 to December 31, 2016, a total of 4277 days, together with the S&P 500

13The parameters were calibrated by solving a constrained non-linear problem. The data used to
calibrate the model is described in section 6. In order to ensure that the volatilities are always positive,
we impose the constraint 2x > o2, and for the stochastic correlation the condition x > 11—2@ is required
to remain in the set of real numbers and to ensure positive definiteness in the covariance matrix.

1Since we do not incorporate the effects of the MMSN here; the simulation exercise relies on standard

measures to produce the realized measures and out-of-sample forecasts.
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ETF (SPY) over the same time period. To gauge the sensitivity of our set-up to the
sampling frequency, we consider various sampling frequencies ranging from 30 to 300
seconds.

Table 1 provides the descriptive statistics for all the stocks and the SPY. The SPY is
the least volatile asset in our study, with an annualized volatility close to 15%, whereas
the average level of volatility of the stocks is up to 3 times higher than the SPY volatility.
Amazon displays the highest annualized return and volatility, whilst Arconic (ARNC)
has the minimum annualized return and Procter & Gamble (PG) is the least volatile
stock.

Table 2 reports the average correlations across the stocks for all the realized measures
under analysis. Above the main diagonal the correlations are those using realized mea-
sures estimated from 30-second return. Below the main diagonal the correlations are those
for 300-second return. The superscripts “s” and “m” represent the realized measures of
the stock and the index, respectively. Realized measures estimated at the 30-second fre-
quency display slightly greater relationships compared with their counterpart estimated
at the 300-second frequency. Interestingly, we find that the level of correlation among the
different realized measures and the stock volatility differs greatly. This finding implies
that novel and important information can be utilized to further explain the behavior of
stock volatility, and that using signed measures of volatility and covariances can lead to
more accurate volatility forecasts.

Figure 2 depicts the average PRV and MRC with their respective components across
all the stocks. The left-panel shows that negative semivariances tend to produce on av-
erage slightly greater levels of volatility than positive semivariances.'® On the other hand,
the right-panel plots the elements of the covariation; here, the M RCT+MRC~ (M RC*T~+
MRC~) is positive (negative) by construction. During financial distress, the level of the
positive sum (concordant elements) of the covariance elements increases more than the
negative part (discordant elements) declines, confirming that during turbulent periods the

correlation between stocks and indices increases. It is interesting to note that the level

15The importance of the negative return variance has been well documented in the literature (see, for
instance Corsi and Reno, 2012; Glosten et al., 1993; Patton and Sheppard, 2015, and references therein).
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of the covariation is mainly determined by the elements of the positive sum, insinuating
that remaining components are of less importance and provide little information.

Figure 3 plots the autocorrelation function as the average of all the stocks for the
pre-averaging realized variance, modulated covariance and their components. Compared
to standard volatility measures, our results display mildly lower levels of persistence.
However, this observation is expected since MMSN induces first-order autocorrelation,
(Hansen and Lunde, 2006).

In line with Patton and Sheppard (2015) we find that the negative semivariance is
more persistent than its positive counterpart, and that there is little difference between
the unsigned and negative semivariance. On the contrary, the index is less persistent
than the stocks. There is empirical evidence supporting the fact that large (finite) jumps
have no persistence (see Andersen et al., 2007; Duffie et al., 2000; Duong and Swanson,
2015; Hizmeri et al., 2019, among others), and also Duong and Swanson (2015) and
Hizmeri et al. (2019) find evidence that aggregation makes jumps more informative, which
presumably reduces the level of persistence of the PRV™ compared to those of the stocks.
The autocorrelation of the covariance and its elements show that the M RCT + M RC~
and M RC' are very close and of less persistence than the M RCT~ + MRC~". As noted
by Bollerslev et al. (2019), MRC*™ + MRC~" only depends on the continuous part,
while MRC* + MRC~ can be formed by continuous and co-jump variation, explaining

why the latter sum is less persistent.

6 Modeling and forecasting with the HAR-X Class

6.1 In-Sample Estimates

The parameter estimates obtained for each of the different models are reported in
Tables 3, 4, and 5, along with the adjusted R-squares and total F-test rejections. To
conserve space, we present the average of the parameter estimates and denote with *, **,

and *** when the estimates are significant at the 10%, 5%, and 1% using robust standard
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errors. 16

Table 3 reports the HAR-RV, HAR-V and HAR-Co-V estimates across 3 forecasting
horizons, which represent one day (h = 1), one week (h = 5), and one month (h = 22).
Similar to previous findings in the literature, the HAR-RV model estimates are usually all
significant, and most of the weight is assigned to the monthly estimate, which increases
with the horizon.

When the index volatility is added as regressors in the HAR-V model, we observe an
improvement in the model fit relative to the benchmark model. This improvement ranges
from 0.9% to 1.9% points in terms of the adjusted R-squares, and with the exception of
2 stocks at h = 5, the F-test rejects the null of equal fit for all the stocks across all fore-
casting horizons. Moreover, the HAR-Co-V model, which incorporates the variance and
covariance information from the index, shows bigger model fit improvements increasing
the R-squares from 1.4% to 3.4% points relative to the HAR-RV models. The F-test
corroborates the increase in model fit of the HAR-Co-V model by rejecting its null of
equal fit for all the stocks irrespective of the forecasting horizon.

The inclusion of the index information in the form of variance and covariance induces
a decrease in the explanatory power of the stock’s estimates, which is normally subsumed
by daily and weekly variables of the index (co)variances. In other words, if adding the
market index variables renders the stock specific volatility variables insignificant, then
the stock specific volatility has little or no forecasting power in the presence of the market
index.

It is noteworthy that the monthly index volatility in the HAR-V and the covariance
estimates in the HAR-Co-V models are generally negative across all forecasting horizons.
In the case of the HAR-V model, a negative index variance estimate reduces the weights
assigned to monthly information, while increasing the weights allocated to daily and
weekly information. On the contrary, negative covariance estimates have a two-fold effect
in the future level of volatility. Since covariances can take either positive or negative

values, a positive (negative) covariance reduces (increases) the future level of volatility.

16The in-sample coefficients are estimated by fitting all the models using the full sample size.
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This dynamic allocation is in line with the empirical findings that negative (positive)
returns induce higher (lower) levels of volatility. This phenomenon explains why the
HAR-Co-V model provides a better model fit than the HAR-RV and HAR-V models.

Tables 4 and 5 report the parameter estimates along with the R-squares and F-test
rejections for asymmetric HAR-V and HAR-Co-V models, respectively. Turning to the
results in Table 4, we find that most of the estimates are statistically significant, and the
monthly negative semivariance estimate of the index is consistently negative across all
forecasting horizons. In addition to being significant, the negative estimates are of bigger
magnitude than their unsigned counterparts are. This reaffirms the previous findings of
Patton and Sheppard (2015) who find that negative semivariances are more important
to predict future volatility. The increase in model fit is readily observed in terms of
R-squares, where the HAR-V~ model improves between 3.4%-4.3% points relative to
the HAR-RV model, and 1.5%-3.3.% points relative to the HAR-V model across all
forecasting horizons. On the contrary, the positive semivariance in the HAR-V*' model
exhibits no explanatory power resulting in the worst model fit. The F-test only rejects
the null of equal fit for one stock at h = 5 and h = 22.

The asymmetric HAR-Co-V models (Table 5), as outlined in Section 3.1, are formed
by 4 different models which are presented in two panels. Panel A reports the parameter
estimates for the HAR-Co-V models based on unsigned volatilities and semicovariances.
The main difference between these models and the unsigned HAR-Co-V model is that we
have replaced the unsigned covariance by its positive (HAR-Co*-V) and negative (HAR-
Co™-V) elements. While both models improve on the fit of the HAR-RV model across all
forecasting horizons, the HAR-Co™-V model on average provides a better model fit than
the HAR-Co™-V model. Thus, the positive semicovariance provides more explanatory
power than its negative counterpart in predicting future stock volatility. In both models
the estimates are generally significant, and with the exception of the HAR-Co™-V model
at h = 22, the HAR-Co™*-V and HAR-Co™-V models improve on the fit of the HAR-Co-V
model across all forecasting horizons.

Panel B reports the asymmetric HAR-Co-V models formed using the full positive
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(HAR-Co*-VT) and negative (HAR-Co™-V ™) structure. The HAR-Co™-V— model im-
proves on the fit of the benchmark and every single model under analysis across all
forecasting horizons. Notwithstanding, the fit of the HAR-V~ and HAR-Co'-V models
are very close to the HAR-Co™-V~ model at medium and longer horizons. By contrast,
the HAR-Co™-V* model performs very poorly; however, this is expected since this model
is using the positive semivariances of the stock and the index, which have no explanatory
power.

These findings confirm that a richer information set can be obtained after dissecting
the variances and covariances by their sign. This richer information set translates in more
explanatory power, resulting in a better model fit. By this far, we have shown that the
HAR-X models are better specified than the HAR-RV model. However, in real time most
of the attention is given to the out-of-sample forecasting test as it is more relevant for
examining the genuine predictive ability. In the next two sections we comprehensively

examine the predictive ability of the HAR-X models.

6.2 Out-of-Sample Forecasts

Table 6 reports the out-of-sample relative losses across forecasting horizons and sam-
pling frequencies. The relative loss is reported as the ratio of the losses of the HAR-X
models to the losses of the benchmark HAR-RV model. Thus, values below (above) 1
indicate that our proposed models outperform (underperform) the benchmark HAR-RV
model. Bold numbers highlight the HAR-X models that outperform the benchmark, and
the numbers in the superscript represent the total number of stocks for which the losses
of the HAR-X models are significantly lower than those of the HAR-RV model. The sig-
nificance of the models is evaluated using the CPA test of Giacomini and White (2006)
with a = 0.05.

Confirming the in-sample results from the previous section, we find that the HAR-
X models generally outperform the forecasts of the basic HAR-RV model, and these
forecasting gains are found to be significantly better than the benchmark across most of

the sampling frequency and forecasting horizons. Moreover, the forecasting gains afforded
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by the HAR-X models tend to increase as the forecasting horizon increases, indicating
that the HAR-X models better capture the volatility persistence, leading to more accurate
predictions at longer horizons.

While most studies in the literature use 5-min returns in order to reduce the impact of
the microstructure noise, our study relies on noise-robust measures, which enables us to
explore the predictive power of our realized measures across different sampling frequencies
in a less noisier environment. We find that the use of noise-robust measures yields to
more stable improvements across time intervals, however, forecasts based on 300-second
return provide slightly more accurate out-of-sample predictions.'”

The asymmetric HAR-X models provide the best out-of-sample performance in our
analysis. When the HAR-V models account for the so-called leverage effects using a
full negative structure, we find the biggest out-of-sample improvements relative to the
benchmark and the general HAR-V models. In many cases the HAR-V™ model produces
forecasting gains which are significantly better than those of the HAR-RV models. For
instance, using the CPA test and the QLIKE loss, we find that the HAR-V™ model
significantly outperforms the benchmark in 14 stocks at h = 1, and 10 stocks at h = 22
using 300 seconds sampling frequency. By contrast, the full positive structure, HAR-V*
model, results in the worst out-of-sample performance. This finding is not surprising as
it was shown in Section 6.1 that the positive semivariances contain no predictive power.

The asymmetric HAR-Co-V models consists of four specifications: the first two are
the full positive (HAR-Cot-VT) and negative (HAR-Co™-V™) structures, whereas the
remaining two specifications are formed using the unsigned variances plus the positive
(HAR-Co™-V) and negative (HAR-Co™-V) covariances. The full negative structure out-
performs both the HAR-RV and the general HAR-Co-V models. Yet, when the nega-
tive covariance is used with the unsigned variances we still observe out-of-sample gains,
however, the level of these gains are somewhat smaller compared to the full negative
structure. The decrease in performance directly affects the number of significant stocks

found in the HAR-Co™-V~ model; for instance, the number of significant stocks drops

1"This implies evidence that after removing the effects of the microstructure noise the information
contained in the realized (co)variances and their components is on average of similar importance.
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by 4 at h = 1 and by 2 at h = 5, when the negative semivariances are replaced by the
unsigned variances, i.e. from the HAR-Co™-V~ to the HAR-Co-V~ model. This confirms
that allowing for an asymmetric reaction results in greater out-of-sample performances,
and that models based on only negative return (co)variance perform better than their
counterparts.

As expected, a full positive structure in the HAR-Co-V model does not provide any
out-of-sample forecasts improvements. However, the HAR-Co™-V model provides one
of the best out-of-sample performances across all the models, horizons and sampling
frequencies. The improved forecast accuracy afforded by the HAR-Co™-V model is found
to be significantly different than the HAR-RV model ranging from 9 to 19 stocks using
the QLIKE, and from 15 to 20 stocks based on the HMSE.

6.3 Model Selection: MCS

Hitherto we have shown that the HAR-X class of models improves on both the in-
and out-of-sample performances of the HAR-RV models. This holds true across both
sampling frequencies and forecasting horizons. However, all the comparisons have been
made against the benchmark HAR-RV model, and we do not know whether there is a
model whose losses are significantly lower relative to those of the remaining models. In
order to answer this question, we use the Model Confidence Set (MCS) of Hansen et al.
(2011), which evaluates the performance of all the models without targeting a benchmark.
That is, it evaluates whether there is a (sub)set of models that significantly outperform
all the models under analysis.

Table 7 reports MCS ranking for each individual stock and across forecasting hori-
zons using the realized measures estimated at the 300-second sampling frequency. The

numbered entries are for the retained models, while the dash-line indicates that the mod-

els have been excluded from the MCS. The MCS results are based on the QLIKE loss

function.'®

The HAR-RV along with the HAR-V™ and HAR-Co"-V* models are the most ex-

18Results based on the HMSE provides similar conclusions and are available upon request.
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cluded models across forecasting horizons. This finding is not surprising since our previous
sections show that the positive semivariance has no predictive power, and hence models
containing this variable result in poor out-of-sample forecast accuracy. The HAR-RV
model is only retained 3 times on average across forecasting horizons. This means that
our new class of models produce significantly more accurate forecasts than the basic
HAR-RV model. On the other hand, the HAR-V~, HAR-Co~-V~, and HAR-Co™*-V are
the least excluded models and all of them are based on realized semi-(co)variances vari-
ables, which highlights the benefits of allowing for the asymmetric dependence feature
that characterizes equity return data.

Table 8 reports the ranking of the MCS for h = 1 across sampling frequencies using
the QLIKE as loss function. The results are reported in three panels, which contain
results based on 30-, 60-, and 150-second return frequency. Similar to the findings in
Table 7, we find that the HAR-RV model is generally excluded by the MCS irrespective
of the sampling frequency, while the HAR-V~, HAR-Co™-V~, and HAR-Co*-V models
are the least excluded. The little variation in the ranking and performance of our models
is due to the use of noise-robust realized measures, and it confirms that after accounting
for microstructure noise the choice of the sampling frequency becomes insignificant, since

the information set across time intervals is of similar magnitude.

6.4 Mixed Sampling Approach

While previous results indicate that our models generally outperform the HAR-RV
model, their forecasting gains are of similar magnitude across sampling frequency. This
finding suggests that there is no preferences nor an optimal sampling frequency when us-
ing noise-robust measures, but it is silent about whether a mixed-sampling approach can
better capture the different information, if any, embedded in these sampling frequencies.
Thus, motivated by this fact and by the results on Table 2 that shows slightly differ-
ent levels of correlations across sampling frequencies, this section examines the impact
of varying the sampling frequency on both the stock and the index on the forecasting

performance of the HAR-X models.
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We use the HAR-V model to construct the mixed sampling approach for two reasons.
First, the HAR-V model is well-structured, thus, it facilitates the inclusion of different
sampling frequencies on the variance of the stock and the variance of the index. By
contrast, the HAR-Co-V model incorporates the covariation that has to be estimated at
the same sampling frequency between the stock and the index. Second, the aim of this
exercise is not to produce a horse-race and show which model provides the best out-of-
sample performance, but rather it aims to illustrate that more accurate performances can
be attained by mixing the sampling frequency when using the HAR-X class of models.

The mixed-sampling HAR-V model is then constructed by holding constant the fre-
quency of the stock volatility while varying the frequency at which the index volatility
is estimated and vice versa. In total we use 6 sampling frequencies ranging from 30- to
300-seconds. The results are then compared relative to the HAR-RV and the HAR-V
models, which are based on the same sampling frequency.

Figure 4 plots the average loss ratio across all the stocks in a 3D plane. The x- and
y-axis display respectively the sampling frequency of the index and the stock, while the
z-axis displays the loss ratio for the QLIKE (left-panel) and HMSE (right-panel). The
darker part of the figure highlights the best performance, while by contrast the lighter
part indicates the worst performance.

Interesting observations can be drawn from Figure 4. First, all the sampling combi-
nations outperform the HAR-RV model, which corroborates our previous findings that
incorporating the market index information substantially improves on the forecasts of the
benchmark model. Second, we observe that the surface is relatively flatter when the stock
frequency is held constant.'” However, when the index frequency is held constant, we
observe significant improvements. This observation suggests that the information set of
the stock varies more than the one from the index, and that the use of a mixed-sampling
approach better captures these small variations in the information set of the stock and

the index. Third, the mixed-sampling approach always outperforms the forecasts of the

19Standard measures which do not remove the variance of the MMS noise might benefit more from
a mixed-sampling approach, and it would be interesting to evaluate whether the variance of the noise
plays any role in a mixed-sampling approach.
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same-frequency HAR-V model when the sampling frequency of the index is higher than
the stock’s frequency. For instance, if the stock volatility is estimated at the 300-second
return, using frequencies finer than 300-seconds (i.e. 150-, ..., 30-seconds) in the index
will result in out-of-sample gains relative to both the benchmark HAR-RV model and
the same-frequency HAR-V model. Specifically, the best performance is achieved at a
sampling frequency of 30 seconds for the stock and 300 seconds sampling frequency for

the index.

7 Economic Value

In this section we conduct economic evaluations by constructing volatility timing
based portfolio allocation strategies. We consider a risk-averse investor with mean-
variance preferences, who allocates her wealth into one risky asset and one risk-free asset.
In order to emphasize the advantages of our models, we initially focus on the daily in-
vestment horizon.?’ The underlying economic intuition for this strategy is as follows: for
a certain expected return, when the volatility is high, the investor allocates more wealth
into the risk-free asset. On the contrary, when the volatility level is low, the investor
allocates more wealth into the risky asset.

This strategy enables us to directly evaluate whether statistical improvements in
volatility forecasting can be translated into economic value. If adding the market in-
formation leads to more accurate prediction of future volatility, then we should expect
the investor to improve her portfolio performance by actively rebalancing the portfolio
based on the signal of the predicted volatility.

We follow Fleming et al. (2003); Marquering and Verbeek (2004) and use a mean-

variance utility. Thus, the investor solves the following optimization problem:

maf U [Et (Tp7t+h) ,Vart (rp,tJrh)] )
Wi

20Previous studies have also considered daily re-balancing schemes, (see, for instance Fleming et al.,
2001, 2003; Marquering and Verbeek, 2004, among others).
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where h indicates the periods ahead, Ei(7,:45) is the conditional expected portfolio re-
turn and Vary(rpin) = wt2+h§‘\/t+h is the conditional variance of the portfolio return.
The portfolio return is Ey(rpn) = (1 — wiin)7f.i0n + Wirn By (T 40 ), where wyyy, is the
portfolio weight of the risky asset, Fi(rp,+45) is the conditional expected return of the
risky asset and 744 is the return for the risk free asset, which we know ex-ante.’! The

mean-variance utility function is given by:

U [Et (Tp,t+h) , Var, (Tp,t-‘rh)] = E, (Tp,t+h) - %Vart (Tp,t+h) ) (24)

with v the risk-aversion parameter. Hence, the optimal weight is given by:??

E, (Tm,t+h) — Tfit+h
YVary (Fmern)

Wi+h = (25)

The conditional variance for the risky asset is estimated using the predicted realized
variance, i.e. from the HAR-RV and the proposed HAR-X class of models. We constraint
our portfolio, so short-selling and borrowing are not allowed. Then, the optimal portfolio

weights become:

Zf W41 S 0,
Wi1 = Y eps if 0 <wy <0
1 Zf W1 > 1.

We consider different risk aversion levels v = {2,6,10}, and following Fleming et al.
(2003); Marquering and Verbeek (2004); Nolte and Xu (2015), we estimate the sample

averaged realized utility as follows:

Y
U(R,) = T [rp,Hh - EVart(rth)] . (26)

21The risk-free rate is based on 3-month maturity Treasury Yield Curve obtained from the US-Treasury

website. Ey (Fm,e4+n) is estimated using a rolling window of 1000 days.

22To solve for the weight function we use the FOC w.r.t. w;4p. 83Zh =0. 4 —rpn+E(rmin) —

’)’wt+tht+h = O
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https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yieldYear&year=2003

The average realized utility enables us to compare the alternative investment strategies
by calculating the associated average utility levels. A given utility level can be interpreted
as the certain return that provides the same utility to the investor as the risky investment
strategy. This way, we can determine the economic value of market timing by calculating
the maximum fee, in annual basis points, that an investor is willing to pay to switch
from the benchmark strategy to our strategy. This maximum fee for holding portfolio a

instead of the benchmark portfolio b, A, can be found by solving:

[( - %wz,t+hﬁvz<+h] ( (27)

where a and b refer to our strategies (HAR-X class of models) and the benchmark portfolio
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(HAR-RV), respectively. The maximum fee, A,, can be easily estimated by taking the
difference between two alternative average utilities.

Table 9 reports the economic gains of switching from the benchmark (HAR-RV) strat-
egy to the HAR-X class of models for A = 1.%* The performance fee represents the amount
that an investor is willing to pay to using our new class of forecasting models. The per-
formance is expressed in annual basis points, bold numbers highlight the models that
outperform the benchmark strategy, and the starred values indicate significant gains at
the 5% significance level.?*

We show that all the strategies based on the HAR-X class of models generate positive
performance fee as an average across all the stocks, but the HAR-V+ and HAR-Co™-V*.%
The best performance for the HAR-V and HAR-Co-V type of strategies are respectively
achieved by the HAR-V~, and the HAR-Co™-V and HAR-Co -V~ strategies. These
strategies significantly outperform the benchmark strategy in at least 50% of the stocks

under consideration when v = 2. For higher levels of risk aversion (7 = 6,10) we find

that performance fee is always positive, while the number of significant stocks falls just

23Results for longer horizons are qualitatively similar to the A = 1, and are available upon request.

24To evaluate the performance of our strategies we create a null hypothesis that examines whether
the performance fee is equal to zero. In other words, Hy : A, = 0 and H; : A, > 0. We follow Bandi
et al. (2008); Engle and Colacito (2006); Nolte and Xu (2015), among others, and apply a one-sided
t-test with a robust variance-covariance estimator.

25The negative performance fee from these two models is expected as the positive semivariance is
found to be uninformative producing very weak out-of-sample performances.
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below 50%.

In terms of performance fee, we find that an investor is willing to pay ranging from
57 (v = 2) to 11 (y = 10) basis points to switch from the benchmark strategy to the
HAR-Co*-V strategy. Similarly and without considering the performance of the HAR-
V* nor the HAR-Co™-V*, we find that at v = 2 the HAR-V type of strategies produce
an average performance fee across all the stocks of 5.627 basis points, while the HAR-
Co-V type of strategies achieve an average performance fee of 9.357 basis points. These
results highlight the economic benefits of incorporating the covariance information, and
that strategies accounting for the asymmetric dependencies of the data far exceed the
performance of the general and benchmark strategies.

Figure 6 plots the weights of 4 different models across time using Procter & Gamble
(PG) results.”® We use the benchmark strategy, the HAR-Co™-V and HAR-V ™, which are
the best performing strategies from the HAR-V and HAR-Co-V family, and the HAR-V ™
strategy. They grey lines in the background of each subplot represent the weights of all
remaining models. It is noteworthy that during more volatile periods all models allocate
similar weights to the risky asset. However, when the level of volatility is low, we find
that the HAR-Co™-V and the HAR-V~ models usually allocate more weight to the risky
asset, while the HAR-RV and HAR-V™ strategies fail to do so and allocate weights that
are of similar magnitude during turmoil periods. Thus, our more responsive forecasts are
able to estimate the weights more dynamically and adjust faster to the different economic
conditions, implying that their weights are closer to the fundamental weights.

Figure 5 shows the behavior of the HAR-Co™*-V strategy across the sampling frequency
and forecasting horizon as an average of all the stocks. The 300-second frequency produce
the biggest average realized utility irrespective of the forecasting horizon. This result is
in line with our previous findings, which indicate that the 300-second frequency produces
slightly better forecasting performance. However, as the risk-aversion level increases the
difference in performance fee shrinks drastically, indicating that the choice of the sampling

frequency is only relevant when the level of risk-aversion is low.

26We use PG as its expected return using the rolling scheme is always positive and greater than the
risk-free rate. This ensures a nice dynamics of the weight distribution.
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Finally, we evaluate the performance of our volatility-timing portfolio strategies in
the presence of transaction costs. Following standard arguments (see, DeMiguel et al.,

2014) we define the transaction cost adjusted portfolio return as:

1+ Tpt+1

, 28
1 + WiTp t+1 ( )

Tpi+1 = Tpt41 — T Wiy — Wy

(&

-
Turnover

where 7,41 is the transaction cost adjusted portfolio return, and 7 is the transaction
cost parameter. We follow Nolte and Xu (2015) and set 7 to 0.0025, corresponding to a
2.5 cent half spread on a 10 dollar stock. Results reported in Table 10 correspond to the
average across all the stocks for 1-day ahead forecasts. The average performance fees of
our strategies are slightly smaller compared to the results in Table 9. This indicates that
transaction costs only have a marginal effect on our strategies, which is expected since our
comparison is based on two dynamic strategies both using high-frequency information.
We find that a higher performance fee is directly associated with a bigger turnover.
The higher turnover observed in our strategies comes from the fact they react faster
to new information, while the HAR-RV strategy is smoother. This adjustment to new
information implies more dynamic changes in weights, producing a significantly bigger

performance fee at the minimal cost of a slightly bigger trading turnover.

8 Conclusions

This paper extends the popular structure of the heterogeneous autoregressive (HAR)
model of Corsi (2009) introducing the HAR-X class of models, which incorporates the
information from the market index in the form of (co)variances. We show that whereas
the HAR-RV model assigns more weight to monthly volatility, the HAR-X models rely on
more recent information to predict future volatility. This new distribution of information
renders more responsive forecasts improving significantly the forecast accuracy compared
to the benchmark model. These forecasting gains hold true both in simulation and in-

and out-of-sample comparisons on the volatility of 20 individual stocks.
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The HAR-X class of models also account for the observed asymmetry in volatility
utilizing the novel noise-robust semi-(co)variances extensions that were developed in this
paper following the work of Christensen et al. (2010, 2014); Jacod et al. (2009). We show
that the use of negative semivariances in the HAR-V model far exceeds the performance of
its unsigned counterpart and the benchmark model. Moreover, a full negative structure in
the HAR-Co-V (HAR-Co™-V ™) also outperforms the benchmark model and its unsigned
counterpart, however, the HAR-Co™-V model achieves the best performance across all
the HAR-X model classifications.

The previous statistical improvements afforded by the HAR-X class of models directly
translates in significant economic gains. We find by using a volatility timing strategy
that a risk-averse investor can substantially increase her portfolio performance by using
the information from the market index, and that she is willing to pay up to 57 (56)
annual basis points prior (after) transaction costs for switching to our HAR-Co™*-V model
strategy.

Finally, while forecasting gains are found to be more stable across sampling frequen-
cies after accounting for the presence of microstructure noise, a mixed sampling frequen-
cies approach indicates that bigger out-of-sample improvements are attained using a low
(high) frequency for the stock (index). This finding suggests that mixing the sampling

frequencies better captures the index information signal.
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A Tables and Figures

Table 1: Summary statistics

Annualized  Annualized Min  Mean Median  Max

Stock/Index Ticker T  Returns (%) Volatility (%) PRV PRV PRV~ PRV
Amazon.com, Inc. AMZN 4277 21708 41.356 0073 6.787 2465 268.493
Arconic Inc. ARNC 4277 -35.512 32,069 0117 4.081  2.220 133436
Boeing Co. BA 4217 6488 23.621 0031 2214 1147 61611
Bank of America Corporation BAC 4217 -22.745 32518 0.011 4196  1.255 442475
Caterpillar Inc CAT 42m  -0.022 26106 0.046 2704 1466 77.442
China Mobile Ltd. CHL 4217 -048 19626 0.034 1529  0.664 69.936
Costco Wholesale Corporation COST 4277 16.141 24.721 0.040 2425  1.008 206.367
(isco Systems, Inc. CSCO 4217 -5.333 29.355 0.038 3420 1386 210.661
The Walt Disney Company DIS 4277 13.642 23.794 0.048 2247 0996 198.043
DowDuPont Inc. DOW 4277 -2.152 28.021 0.038 3.116 1533 179.970
Exelon Corporation EXC 4277 2.232 22.909 0049 2083  1.017 194428
Freeport-McMoRan Inc. FCX 4277 -24.247 39.345 0.137 6143  3.313 181.682
Halliburton Company HAL 4277 -16.572 35.905 0.142 5116  2.667 612.552
Honeywell International Inc. HON 4277 4752 25453 0.017 2571 1202 130.178
International Business Machines Corporation  IBM 4277 15.874 20.014 0032 1390  0.711 56.868
The Coca-Cola Co. KO 4217 12537 17227 0015 1178 0.565  52.832
The Procter & Gamble Company PG 4217 14.640 16.486  0.019 1078 0514  94.868
Southern Co. SO 4217 4.0%4 17326 0.034 1191 0587 67.818
Wells Fargo & Company WFC 4277 -0.646 28.594 0025 3244 0937 254.379
Xerox Corporation XRX 4277 7218 33.763 0076 4524 1903 439.853
SPDR S&P 500 ETF SPY 4217 -0.056 14863 0.010 0877 0410 61.442

Note: The table reports the descriptive statistics for all the stocks and the SPY. The realized measures presented are estimated at the 300
second frequency. The annualized volatility is estimated as o7/252, where o7 is the average daily pre-averaged realized volatility, and the
annualized return is 1 x 252, where 1 is the average daily return. PRV is the pre-averaged realized volatility defined as in equation (8). The
bold numbers represent the highest and lower annualized volatility, while the blue and red font highlight the highest and lowest annualized
return.
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Table 2: Average correlations across sampling frequency and realized measures

PRV*
PRV™
MRC
MRC*
MRC~
PRV*"
PRVS~
PRV™"
PRV™™

PRV: PRV™ MRC MRCt MRC~- PRVS" PRV® PRV™ PRV™

- 0.688 0.769 0.730 0.736  0.931  0.919  0.647  0.650
0.611 —0.924 0.878 0.822 0.689 0.58  0.959  0.918
0.721 0.897 - 0.933 0.874 0.766 0.659  0.886  0.848
0.665 0.820 0.897 - 0.659 0.805 0.539  0.924  0.691
0.632 0.733  0.789  0.456 - 0.620 0.755  0.674  0.914
0.854 0.586 0.702 0.788  0.404 - 0.714  0.694  0.586
0.832 0.460 0.530 0.333  0.701  0.439 - 0.500  0.625
0.553  0.926 0.836 0.897  0.492  0.615  0.322 - 0.767
0.528 0.833 0.741 0.481 0.887  0.383  0.537  0.563 -

Note: The table reports the correlation among all the realized measures under analysis. The
entries report the average correlation for the 20 stocks. Entries above the main diagonal are
estimated using 30-second returns, while below the main diagonal the entries are estimated using
300-second returns.

Table 3: HAR-X prediction regression results

HAR-RV HAR-V HAR-Co-V HAR-RV HAR-V HAR-Co-V HAR-RV HAR-V HAR-Co-V
h=1 h=5 h=22

Bo 0368 0355 0286™ 0502 0488 0412 0785 0752 0674
B 0191 0158 0162 0117 0.085" 0103 0065 0046 0057
B 033 0237 0259 0201 0212 096 0200% 0137 0.199
B 03497 0.406™* 04307 04217 04617 0524 0464 0501 0490
pr 0139 0.5l 0.146°  0.242" 000  0.145
g 0406 0.395" 0342 0.045 0.180* 0404
g ~0311 039 —0257 0773 ~0.081  0.648"
BC ~0.030 ~0.128" ~0.077
AC —~0.067" 0.259 —~0.353
pEe ~0.729 ~1.105 ~0.718"
Ry, 0389 0398 0403 0551 0566 0575 0564  0.583  0.598
F-test - 20 20 - 18 20 - 20 20

Note: The table reports the coefficients for the average across all the stocks at the 300 seconds.

*

, ™, and *** represent

the significant of the coefficients at the 10%, 5%, and 1% level using the Newey-West HAC correction allowing for serial
correlation up to order 5 (h = 1), 10 (h = 5), and 44 (h = 22). Bold numbers highlight the HAR-X models that outperform
the benchmark HAR-RV. The bottom panel reports average values across all the stocks for the dej, and the number of
rejections of the F-test. The F-test has a null hypothesis of equal fit, and hence its rejection indicates that HAR-X models
are a better model fit than HAR-RV models.
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Table 4: Asymmetric HAR-V prediction regression results

HAR-Vt HAR-V- HAR-Vt HAR-V- HAR-V® HAR-V-
h=1 h=5 h =22

Bo 0.551%*  0.326***  0.650**  0.480"*  0.886™*  0.757***
s 0.149 0.083 0.041
Ber 0.408 0.328 0.200
Bt 0.888*** 0.963** 1.004**
mt o 0.035 0.052 0.041
gt 0.780 0.663 0.414
gt —0.276 —0.232 —0.026
5 0.209*** 0.112* 0.061
s 0.429* 0.371* 0.263*
B 0.884*** 0.963*** 0.980***
o 0.995** 0.627* 0.357*
mo 0.857* 0.887* 0.407
- —0.897* —0.652 —0.072
R?, 0.335 0.431 0.497 0.594 0.526 0.598
F-test 0 19 1 20 1 20
HAR-RV
R? 0.389 0.551 0.564

adj

Note: See notes to Table 3. The bottom panel of the Table reports the 1-day
(h =1), 5-day (h =5), and 22-day (h = 22) ahead HAR-RV’s adjusted R-squares

for the average across all the stocks.
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Table 5: Asymmetric HAR-Co-V prediction regression results

Panel A: The table reports the prediction regression results for HAR-Co-V

based on unsigned volatilities and semicovariances.

HAR-Co"™-V HAR-Co -V HAR-Co™V HAR-Co -V HAR-Co™V HAR-Co -V
h=1 h=5 h =22
Bo 0.160 0.311%* 0.332** 0.445 0.614** 0.745"*
y 0.216** 0.102 0.120"* 0.051 0.063*** 0.027
s 0.326** 0.121 0.281** 0.114 0.194% 0.109
s 0.417*** 0.481"* 0.489"* 0.540" 0.551%** 0.502***
i 0.537** —0.149 0.377* —0.041 0.197* —0.007
m 0.859* —0.278 0.692 —0.267 0.472 —0.059
Bm 0.149 —0.081 0.295 0.145 0.643 —0.005
RO 0727 —0.447* —0.232*
gRCT 1159 —0.882* —0.751
BRCT _0.908 —1.103 —1.436*
e 0.896** 0.532** 0.309*
RO 1.789* 1.617* 0.585
pre™ —0.719 —1.099 —0.237
R, 0.426 0.427 0.593 0.591 0.607 0.594
F-test 20 20 20 20 20 20
Panel B: The table reports the prediction regression results for HAR-Co-V
using semi-(co)variances.
HAR-CoT-V+ HAR-Co~ -V~
h=1 h=5 h = 22 h=1 h=5 h = 22
Bo 0.472**  0.583***  0.832"** f, 0.265**  0.400***  0.698***
Bs" 0.238 0.155 0.085 B 0.192***  0.123**  0.071
B’ 0.570 0.435 0.316 B3 0.393***  0.293 0.394
Bt 0.874**  0.995**  1.027** B3~ L.O67***  1.237**  1.056%**
gt 0.273 0.337 0.202 s 0.816 0.587* 0.367*
pgmt 1.478 1.007 0.831 B —0.005  —0.238 0.827
gmt 0.684 0.938 1.085 g 0.749* 1.755* 1.200
BRCT —0.424 —0.377  —0.219 e 0.122 0.004 —0.023
pRCT —0.968  —0.541 —0.618 BEC™ 0.772 1.026  —0.645
BERCT —0.920  —1.200  —1.144 pRC™ —1.711*  —2.616* —1.412*
R2,; 0.346 0.513 0.544 Eidj 0.436 0.603 0.609
F-test 0 3 4 F-test 19 20 20
HAR-RV
R2,; 0.389 0.551 0.564

Note: See notes to Table 3 for details. The bottom panel of the Table reports the 1-day (h = 1),
5-day (h = 5), and 22-day (h = 22) ahead HAR-RV’s adjusted R-squares for the average across all

the stocks.
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Table 6: Out-of-sample ranking performance

QUIKE Rank  QLIKE Rank  QLIKE Rank  Avg HMSE  Rank  HMSE Rank  HMSE Rank  Avg
h=1 h=5 h=22 h=1 h=5 h=22

30-second return 30-second return
HAR-RV 1.000 6 1.000 7 1.000 7 1.000 1.000 7 1.000 7 1.000 7 1.000
HAR-V 0.9801* 4 0963° 6 0.976° 6 0973 0958 6 0.955° 6 0.985° 6 0.966
HAR-V* L170° 9 L1340 9 1.086° 9 1137 1.363° 9 1.281° 9 11600 9 1.268
HAR-V- 0.9394 1 08957 1 0937 3 0924 0841° 3 08687 3 0.940° 5 0.883
HAR-Co-V 0982 5 0.958° 5 09562 5 0965 092215 5 0.9028 5 091212 3 0.912
HAR-Cot-V*  1.149} 8 11322 38 1.059* 8 1.113 12719 8 1.206° 8 1.096° 8 1.194
HAR-Co—V— 0970 3 0.9003 2 0.923° 2 0.931 0.835 2 0.831% 2 0.88512 2 0.850
HAR-Co™-V  0.965° 2 09057 3 0.909'! 1 0926  0.791° 1 0.802"° 1 0.848% 1 0.813
HAR-Co™-V 10013 7 0.928° 4 0951 4 0960 0887 4 0.896'' 4 0.936° 4 0.906

60-second return 60-second return
HAR-RV 1.000 6 1.000 7 1.000 7 1.000 1.000 7 1.000 7 1.000 7 1.000
HAR-V 0.9761 4 0957 6 09726 6 0.968 0942 6 0939 6 0977% 6 0.953
HAR-V* 1176 9 1.168° 9 1.008° 9 1.147 130 9 13028 9 LI 9 1.286
HAR-V- 0.9454 1 0895 1 0.935° 3 0.925 0.840" 3 08667 3 0.942° 5 0.883
HAR-Co-V 09735 3 0.9490 5 0.952° 5 0.958 0.89916 5 0.8815 5 0.9022 3 0.894
HAR-Cot-V*  1.147 8 L1338 1.061° 8 1.114 1263 8 L2014 8 1.095° 8 1.186
HAR-Co™V~ 0964 2 0.901 3 09217 2 0.929 0.820Y 2 0.82219 2 0.881'2 2 0.841
HAR-Co™-V  0.984° 5 08977 2 0.902% 1 0927 0763 1 0.779% 1 083315 1 0.792
HAR-Co—V  L0M4" 7 0.92410 4 0.944% 4 0964 086915 4 0.876'% 4 09210 4 0.889

300-second return 300-second return
HAR-RV 1.000 7 1.000 7 1.000 7 1.000 1.000 7 1.000 7 1.000 7 1.000
HAR-V 0.966"¢ 3 0.943'% 6 0963 6 0.957 09025 6 0.909* 6 0.961° 6 0.924
HAR-V* L1 9 1198 9 L1388 9 1.170 1408° 9 1382 9 1.260° 9 1.350
HAR-V- 0.9634 2 0901 2 0.930° 3 0931 08187 3 0855 4 09392 5 0.871
HAR-Co-V 0.959'6 1 0.9236 4 09368 4 0.940 08235 4 08177 3 08574 3 0.833
HAR-Cot-V*  L135* 8 L1428 8 1085 8 1121 12494 8 1200 8 1.138 8 1.202
HAR-Co—V~ 09832 4 0911 3 0.909'2 2 0.934 0.76517 2 0.781% 2 0.84215 2 0.796
HAR-Co*-V 09852 5 0.8819 1 0.8854 1 0917 06931 1 0.720%0 1 0.806'6 1 0.743
HAR-Co™V 0995 6 0.931'2 5 0944 5 0.957 0.868° 5 0.880'4 5 09312 4 0.893

Note: The table reports the average relative loss for QLIKE and HMSE across all the stocks. The relative losses are estimated as the ratio of the losses of the HAR-X models
to the losses of the benchmark HAR-RV. Entries in bold indicate that our proposed models outperform the HAR-RV. Avg. column reports for each model the average
relative loss across all forecasting horizons. The number in the superscript represents the number of stocks for which the losses of the HAR-X models are significantly
lower than the losses of the henchmark model. We use the CPA test of Giacomini and White (2006) at the 5% significance level.
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Table 10: Volatility-timing portfolio performance fee with transaction costs

AQ TO Aﬁ TO AlO TO
HAR-RV 0.0041 0.0014 0.0008
HAR-V 3.135 0.0047 1.045 0.0016 0.627 0.0009
HAR-V* —4.595 0.0031 —1.532 0.0010 —0.919 0.0006
HAR-V~ 7.985 0.0083 2.663 0.0028  1.598 0.0017
HAR-Co-V 6.300 0.0056 2.101 0.0019 1.260 0.0011
HAR-Co™-V* —1.661 0.0038 —0.554 0.0013 —0.332 0.0008
HAR-Co™-V~ 10.691 0.0095 3.571 0.0032 2143 0.0019
HAR-Co™-V  11.805 0.0095 3.953 0.0032 2373 0.0019
HAR-Co™-V 8.178 0.0083 2.755 0.0028 1.653 0.0017

Note: The table reports average performance fee across all the stocks using 1-
day ahead forecasts based on 300-second frequency. A, represents the average
performance, while TO is the turnover estimated as in equation (10). Bold face
numbers indicate that the average performance fee is positive and that the turnover

of the strategy is greater than the benchmark’s turnover.

Figure 1: Distribution of the standardized out-of-sample losses

QLIKE Loss-proportion — HAR-V

0.92

140 -

105 -

70

35

I I i
0.95 0.97 1.00

HMSE Loss-proportion — HAR-V

|
1.06

0.92

L I
0.95 0.97 1.00

|
1.06

100 -

75

50

25

QLIKE Loss-proportion — HAR-Co-V

0.92

100 -

75

50 -

25

I
0.95

I
0.97

i
1.00

HMSE Loss-proportion — HAR-Co-V

|
1.06

0.92

1
0.95

I
0.97

1.00

|
1.06

Note: The plot depicts the distribution of the 1-day ahead standardized losses. We forecast 1,000 simulated
days, and repeat this process 3,000 times. The losses are standardized by the HAR-RV loss function. The top
panel plots the distribution of the QLIKE for the HAR-V (top-left) and HAR-Co-V (top-right), whilst the

bottom panel shows the HMSE distribution for the HAR-V (bottom-left) and HAR-Co-V (bottom-right).
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Figure 2: Realized variance/covariance and their elements
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Note: The graph plots the variance and covariance decomposition based on the average of the 20 stocks. The
realized measures are estimated at the 300 seconds.

Figure 3: Autocorrelation function
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Note: The figure graphs the autocorrelation function for the different realized variances and covariances
elements. The results presented are for the average across the stocks.
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Avg. Loss Ratio (QLIKE)

Figure 4: Mixed sampling HAR-V model
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Note: The figure depicts the out-of-sample average relative loss for a mixed sampling HAR-V model. The
model is estimated by varying the sampling frequency used to estimate the stock and index volatility.
The left-panel plots the QLIKE loss ratio surface, and the right-panel plots the HMSE loss ratio surface.
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Figure 5: Average realized utility across sampling frequency
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Note: The figure plots the average realized utility function across the sampling frequency and
level of risk aversion for all the stocks under analysis using the HAR-Co*-V at h = 1 (left panel)
and h = 22 (right panel).
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Figure 6: Weight time series for different models
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Note: The figure illustrates the weights behavior of Procter & Gamble (PG) for 4 different models across
the out-of-sample period under analysis. The grey lines are for all the remaining models, while the
blue/red lines are for the models specified in the title of each subplot. The risk aversion parameter is set
to vy =2.
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