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Abstract

In this paper, we propose a novel portfolio selection procedure for optimal factor investing
that treats expected returns as a sum of additive gradients meanwhile tackling both
parameter and model uncertainty in large cross sections. This macro-financial dynamic
asset pricing approach embraces strategic and tactical portfolio allocation among multiple
risk premia. We show that, when applied to FX markets, our factor-based strategic
portfolio policy statistically significantly outperforms other 16 allocation rules, including
naive diversification and well-known portfolio optimizers, and generates substantial
economic values. We then extend it to solve a tactical allocation problem — factor
timing conditional on high dimensional macro and financial data, but find little evidence
of improvement in investment performance beyond the strategic allocation framework.
The analyses suggest that (i) model sparsity is crucial, (ii) short-run deviations from
long-run expected returns are difficult to capture, and (iii) focusing on the long-run
expected returns is already mean-variance efficient and not sub-optimal. The results
are robust to choices of a wide range of parameter settings and advanced statistical and
machine learning forecasting methods.
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1 Introduction

Nowadays, factor investing, such as rule-based equity smart-beta products and other
systematic trading strategies based on alternative risk premia, is becoming more and
more popular in industry. The alternative risk premia, e.g., carry, momentum, and
value in global macro space, are less exploited. Ample literature explores additional
anomalies that far exceed the number of principal components (PC) required to explain
the cross section of stock returns (see Cochrane, 2011; Harvey, Liu, and Zhu, 2016,
for example). Kozak, Nagel, and Santosh (2018, 2019) show that PC-sparse model
outperforms characteristic-sparse model. Identifying the characteristics or anomalies
that provide unique (orthogonal) predictive information for stock returns in a cross-
sectional setting is an important question for scholars to answer (see Green, Hand, and
Zhang, 2017; Light, Maslov, and Rytchkov, 2017; Freyberger, Neuhierl, and Weber,
2017; Cattaneo, Crump, Farrell, and Schaumburg, 2019, among others). It is closely
related to how to allocate weights to various anomalies in forming an optimal portfolio
for the factor investing in reality. DeMiguel, Martin-Utrera, Nogales, and Uppal (2018)
emphasize that optimal portfolio allocation to anomalies or characteristics is very different
from examining independent factors that explain the cross-sectional return variations.
Our paper provides a novel strategic and tactical portfolio allocation framework for
factor investing and the analysis focuses on foreign exchange (FX) markets, where carry,

momentum, and value are three best-known risk premia.

Barroso and Santa-Clara (2015) employ a parametric portfolio policy framework
proposed by Brandt, Santa-Clara, and Valkanov (2009) to study the diversification
benefit from incorporating currency characteristics in constructing an optimal currency
portfolio. They find that carry, momentum, and value are attributable to superior
portfolio performance of an optimized currency portfolio in terms of largely increased
Sharpe ratio and reduced downside risk. Similarly, Ackermann, Pohl, and Schmedders

(2016) reveal that return forecasting using interest rates is less subject to estimation errors



and thereby the expected returns predicted by yields renders Markowitz mean-variance
portfolio optimization a better performing portfolio strategy than naive diversification,
in contrast to the empirical findings of Garlappi, Uppal, and Wang (2007), DeMiguel,
Garlappi, and Uppal (2009) that, due to considerably parameter and model uncertainty,

Markowitz portfolio rule performs poorly in applications.

Instead, we argue that the factor structure embedded in currency carry, momentum,
and value risk premia' can be utilized in the portfolio optimization process to overcome
the uncertainty in estimations and beat the naive diversification (equally-weight basket)
in the standard Markowitz mean-variance setting. We show that factor investing in FX
markets that explores the risk factor that explains the cross section of currency anomalies
generates superior performance in portfolio optimization with multiple risk premia. Our
proposed approach is a concept of strategic allocation, as it focuses on the long-run
relations of the currency anomalies with the risk factor. We show that the performance
improvements beyond conventional methods are robust to different measures (with an
out-of-sample Sharpe ratio up to 1.10 after transaction costs). Specifically, we compare
it with 16 existing portfolio rules, such as naive diversification, standard Markowitz
mean-variance, minimum-variance, maximum-diversification, risk-parity, and volatility-
timing/targeting optimizers, and other well-known portfolio policies (see Appendix E).
Particularly, the 1/N rule is shown to be very difficult to beat in the existing literature on
portfolio choice due to the inevitable estimation errors involved in the parametric methods
(Garlappi, Uppal, and Wang, 2007; DeMiguel, Garlappi, and Uppal, 2009). It is evident
that our proposed strategic allocation framework of factor-based portfolio optimization

is mean-variance efficient.

Tt is worth mentioning that our research fundamentally is different from Maurer, To, and Tran (2017).
They suggest an optimal factor strategy for trading currencies by constructing a tangency portfolio
that is perfectly negatively correlated with the Stochastic Discount Factor (SDF) of the country of the
denominated currency. By theory, it should give a maximum attainable Sharpe ratio, although relevant
shrinkage methods should be applied when dealing with the covariance matrix due to the facts of market
friction and estimation error, even all risks are supposed to be priced in currency markets. Their method
is not to optimally combine multiple risk premia with zero-investment long/short strategies, rather, their
portfolio is leveraged.



As far as we know, we are the first to suggest the use of factor structure in multiple
risk premia as a solution for the optimal factor investing problem on a theoretical ground
that the principal-component space should be spanned by characteristic space (see Giglio
and Xiu, 2017, for the rotation-invariant argument). Even though we apply it to three
well-known risk premia in currency markets, it should be stressed that our proposed
approach can be applied to any other asset classes and corresponding anomalies. The well-
established anomalies in FX markets studied in this paper are treated as distinguished risk
premia in the literature. While it is difficult to explain the sizeable excess returns to carry,
momentum, and value trades over the past 40 years — in a pure time-series setting, recent
literature resorts to cross-sectional asset pricing test using portfolio approach and shifts
the focus from a particular anomaly to cross-anomaly investigation. Although there is a
growing number of literature on FX markets, most of the studies concentrate on currency
carry trade. Notwithstanding, the risk factors proposed to explain risk compensations to
carry trade, such as global FX volatility risk (Menkhoff, Sarno, Schmeling, and Schrimpf,
2012a), global skewness (crash) risk (Brunnermeier, Nagel, and Pedersen, 2009; Rafferty,
2012), global illiquidity risk (Banti, Phylaktis, and Sarno, 2012), or global imbalances risk
in terms of net foreign assets (Della Corte, Riddiough, and Sarno, 2016), fail to price the
cross section of currency momentum and value risk premia. Their risk sources also remain
unclear (Menkhoff, Sarno, Schmeling, and Schrimpf, 2012a, 2017). We propose a novel
macro-financial dynamic asset pricing approach for optimal currency factor investing in a
data-rich environment. We take the advantage of reverse engineering by employing factor
models that demonstrate the existence of a common factor priced not only in the cross
section of each of the currency carry, momentum, and value risk premia, respectively, but
also in their joint cross section. Then, we explore the economic value of this risk factor in
the construction of an optimal currency portfolio investing in multiple risk premia. We
also differentiate tactical from strategic portfolio allocation and use a large data set of

macro and financial variables to extract predictive information.

Following the recent literature (Lustig, Roussanov, and Verdelhan, 2011; Burnside,



Eichenbaum, and Rebelo, 2011; Menkhoff, Sarno, Schmeling, and Schrimpf, 2012a,b,
2017), we sort currencies by lagged carry, momentum, and value signals (see Asness,
Moskowitz, and Pedersen, 2013; Kroencke, Schindler, and Schrimpf, 2014) in order to
construct cross-sectional portfolios. We then extract the principal components from the
currency portfolios of carry, momentum, and value trades. These principal components
can help us to recover the factor space (see Giglio and Xiu, 2017, for details) and hence to
optimally select or assign weights to multiple characteristics or anomalies in handling the
factor zoo problem (Cochrane, 2011; Harvey, Liu, and Zhu, 2016). The first two principal
components explain up to about 80% of the cross-sectional variation, the first principal
component is essentially the FX market portfolio, as known as “dollar risk” (DOL). It
is a trading strategy that borrows in (domestic) USD and invests in global (foreign)
currencies. The factor loadings of these portfolios on the first principal component are
almost at same level, while the factor loadings on the second principal component (PCS)
are almost strictly monotonic from negative to positive within each type of currency
portfolios. Therefore, PC'S is identified as a slope factor. As a result, if PCS is priced
in the cross section with a statistically significant premium, we expect the factor price
is positive, and vice versa. Empirical asset pricing test is employed to explore the factor
structure in the cross section currency carry, momentum, and value portfolios. We show
that PC'S can price the cross section of portfolio excess returns of all three types of
currency premia, both individually and jointly with statistically factor price, implying
that PC'S is a common risk source for carry, momentum, and value. We then analyze the
economic value of this factor structure PC'S in modern currency investment management

— factor investing of alternative risk premia.

PCA does not offer an explicit way to construct portfolio strategies but characteristics
such as carry, momentum, and value do. Trading strategies based on characteristic-
based factors provide a not only systematic but also economically meaningful approach
to invest in risk premia. While PC-sparse model dominates characteristic-sparse model

(see Kozak, Nagel, and Santosh, 2018, 2019), which implies that PCA on the cross sections



of characteristic-sorted portfolios across anomalies offers a way on how to optimally
allocate capital among these characteristic-based factors. Using the expected returns
and covariance matrix estimated from the PC-based asset pricing tests in the standard
Markowitz mean-variance portfolio optimizer to combine characteristic-based factors
(strategies trading on risk premia), we are able to turn the statistical significance of

empirical asset pricing into economic values in real-world investment practice.

We further extend our strategic allocation framework, namely factor-based portfolio
optimization, to a macro-financial data-rich environment. We test whether or not the
short-run return deviations of portfolio strategies (characteristic-based factor) from their
long-run means (expected returns) can be captured by adjusting the portfolio weights
away from the long-run strategic weights. The active tactical weights may be driven
by the short-run deviations of state variables from their long-run equilibrium levels.
Hence, we utilize a wide range of advanced statistical and machine learning forecasting
methods (see Appendix F) designed in particular for the characteristics selection problem
in predictive regressions with high-dimensional macroeconomic fundamental and financial
data. It is similar to the concepts of additive models in statistical science and gradient
boosting in machine learning in the sense that the expected returns are modeled by an
empirical asset pricing (linear factor) model (extracting long-run expected returns) plus
residual predictive models with high-dimensional data (capturing short-run deviations
from expected returns — a factor-timing function). We call these two parts “additive
gradients” and do the “model boosting” Notwithstanding, we fail to find supportive
empirical results for the tactical portfolio allocation, which is a conditional factor timing
model based on a large and readily available macro and financial data. It does not
economically or statistically improve the investment performance upon our strategic
portfolio allocation framework. This suggests that (i) short-run deviations from expected
returns are difficult to capture (conditional factor timing seems to be impossible),
and (ii) focusing on the long-run expected returns is already mean-variance efficient

and not sub-optimal. To summarize, we contribute to the literature by proposing



an integrated framework of combining characteristic-based portfolio strategies, factor
sparsity of empirical asset pricing, and robust portfolio optimization, for strategic and

tactical portfolio allocation in factor investing practice.

The structure of the paper is organized as follows: Section 2 gives a brief summary of
related literature. Section 3 presents the data sources, construction of currency portfolios
and strategies, and empirical asset pricing and portfolio choice methodologies we used in
this paper. We provide empirical findings and discussions in Section 4, further robustness
checks in Section 5 and draw a conclusion in Section 6. Some of the econometric

techniques and additional results are included in the complementary appendix.

2 Related Literature of Currency Risk Premia

Carry, momentum and value trades are three well-recognized trading strategies in
FX markets. Currency carry trade has become a heated topic in the recent decade,
while, in comparison, currency momentum and value strategies are not well explored yet.
The deviation from UIP and PPP of currencies has drawn many researchers’ attention
as they struggle to explain the excess returns profits associated with these currency
trading strategies. Recent years has witness a shift of research focus from time-series
investigation to cross-sectional asset pricing tests on these puzzles with an emphasis
on the risk compensation explanation, starting from Bansal and Dahlquist (2000) and
flourishing from Lustig, Roussanov, and Verdelhan (2011) that apply the characteristic-
sorting portfolio approach stemming from the studies on stock market. As highlight
by Cochrane (2005), the prices of individual assets are highly volatile and thereby their
expected returns, covariances, and corresponding betas are always estimated inaccurately,
while the portfolio approach reduces the volatilities in the grouped asset returns by
diversification that, to some extent, eliminates the time-vary idiosyncratic components,

and instead focuses on the common characteristics across assets.

According to Burnside (2011), the conventional, traditional risk factors, such as
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consumption growth (Lustig and Verdelhan, 2007) measured by durable Consumption-
based CAPM (CCAPM) setting of Yogo (2006), Chicago Board Options Exchange’s
(CBOE) VIX index as the measure of volatility risk, T-Bill Eurodollar (TED) Spreads as
the illiquidity risk indicator, Pastor and Stambaugh’s (2003) liquidity measure, and Fama
and French (1993) factors, do not covary enough to explain the excess returns of carry
trade. Menkhoff, Sarno, Schmeling, and Schrimpf (2012a) propose a global volatility
(innovation) risk factor based on Merton’s (1973) Intertemporal CAPM (ICAPM), and
it successfully captures the cross sectional excess returns of currency carry trades with a
high R?. They show that high interest-rate currencies deliver negative returns in the times
of high unexpected volatility while low interest-rate currencies offer a hedge against the
volatility risk by yielding positive returns. Farhi and Gabaix (2016) build a novel tractable
model of exchange rates that representative agents attach a substantial weight, in their
consumption and investment decisions, to the possibility of rare but extreme events,
which are the major sources of currency risk premia. It is also stressed by Jurek (2014),
Brunnermeier, Nagel, and Pedersen (2009), Farhi, Fraiberger, Gabaix, Ranciere, and
Verdelhan (2015), and Chernov, Graveline, and Zviadadze (2018) that currency premia
reflect the compensations to investors for crash risk. Given that the comovements of high
interest-rate currencies with the aggregate market conditional on high volatility regime
is stronger than it is conditional on low volatility regime, and this phenomenon also
exists in other asset classes, Lettau, Maggiori, and Weber (2014) utilize a Downside Risk
CAPM (DR-CAPM) that is able to jointly price the cross section of currencies, equities,

sovereign bonds, and commodities.

Gabaix and Maggiori (2015) put forward a theoretical framework which bridges the
valuation channel (Gourinchas and Rey, 2007, 2013) to the international capital flows. In
their framework, currency of a debtor country must offer a risk premium for the financial
intermediary to absorb the exchange rate risk associated with the global imbalances
arising from international capital flows. Currencies are exposed to large depreciation risk

when their risk-bearing capacity declines, e.g., high market risk sentiment and funding



liquidity constraint (Brunnermeier and Pedersen, 2009; Ferreira Filipe and Suominen,
2013). Scholars also relate the currency premia to the equilibrium exchange rate
misalignment (MacDonald, 2005; Clarida, Gali, and Gertler, 2002; Engel, 2011; Jorda
and Taylor, 2012; Huang and MacDonald, 2013b), sovereign credit risk (Huang and
MacDonald, 2013a; Augustin, 2018) and speculative activities in FX markets (Abreu
and Brunnermeier, 2003; Brunnermeier, Nagel, and Pedersen, 2009; Plantin and Shin,
2011). Verdelhan (2010) set forth a consumption habit model in which agents with
preference settings as in Campbell and Cochrane (1999) can generate notable deviation
from UIP. Infrequent currency portfolio decision (rational inattention) is another possible
solution that also accounts for “delayed overshooting” (Bacchetta and Van Wincoop,
2010). Burnside, Eichenbaum, and Rebelo (2009) argue from the perspective of market
microstructure that it is the adverse selection from which the forward premium puzzle
arises. Burnside, Han, Hirshleifer, and Wang (2011), and Ilut (2012) further suggest
behaviorial explanations of investors’ overconfidence, and of slow reaction to news
announcements induced by ambiguity aversion, respectively, for the existence of forward

bias.

Momentum strategies can be simply identified as longing (shorting) assets with
positive (negative) lagged returns, betting the past performance will continue in different
horizons. Burnside, Eichenbaum, and Rebelo (2011) and Menkhoff, Sarno, Schmeling,
and Schrimpf (2012b) study currency momentum portfolios and find that it is hard for
traditional risk factors to explain the cross section of currency momentum excess returns,
which are partially explained by transaction costs as the proxy for the limit-to-arbitrage of
investors. Valuation is perhaps one of the most challenging but important tasks in the field
of asset pricing. Value strategies invest in undervalued assets funded by overvalued assets,
and are found quite profitable across asset classes (Asness, Moskowitz, and Pedersen,
2013). There is ample existing literature in equity and fixed income valuation while less
work is found in currency and commodity valuation. The 5-year changes in real exchange

rate (RER) (Asness, Moskowitz, and Pedersen, 2013) may be a better benchmark as the



valuation signal for currencies than PPP (Taylor, Peel, and Sarno, 2001) from the angle
of implementation as a trading strategy, as the mean reversion is found to be nonlinear
(Taylor, 2002), the signal extraction process involves parameter and model uncertainty
in estimations (Rossi, 2005), and macroeconomic variables are subject to revision bias.
RER level imply by PPP fails to capture currency values as undervalued (overvalued)
currencies are predicted to appreciate (depreciate), while the 5-year changes RER enhance
the prediction power (Asness, Moskowitz, and Pedersen, 2013; Kroencke, Schindler, and
Schrimpf, 2014; Barroso and Santa-Clara, 2015). Menkhoff, Sarno, Schmeling, and
Schrimpf (2017) investigate the relation between RER, spot exchange rate changes, and
risk premia in a multi-currency portfolio setting. They reveal that it is necessary to
adjust the RER for Harrod-Balassa-Samuelson (HBS) effects, net foreign asset (NFA),
output gap, and the quality of a country’s exports to better measure the currency fair
value. Dahlquist and Hasseltoft (2019) propose to instead invest in currencies by the
momentum signals of macroeconomic fundamentals and the trading strategy generates
notable alpha after controlling for currency carry, momentum, and value trades. Their
research suggest that investors’ expectations on macroeconomic fundamentals, including
interest-rate differentials, are positively related to their past trends. Dahlquist and
Penasse (2017) demonstrate that it is the RER, not the interest rate differential, that
acts as the main predictor of currency returns at longer horizons, which is linked to
other puzzling behavior of currencies — (i) the RER contemporaneously appreciates
with the increase in interest rate differential; and (ii) the relationship between currency
risk premia and the interest rate differential reverses from positive to negative over longer
horizons. There is a type of missing risk premium that captures deviations from the PPP

to rationalize these empirical findings.

To summarize, although the existing literature does not identify an economically
meaningful risk factor that offers a unified explanation for the excess returns to currency
carry, momentum, and value trades, we uncover a common risk factor that is able to price

their joint cross sections simply using PCA. Provided that there is no existing economic



theory trying to rationalize these three types of currency risk premia simultaneously, this
paper examines the economic values of this common risk factor instead of its economic
context. One of the potential economic values is the nowadays fashionable factor investing

that performs optimal portfolio allocation among multiple risk premia.

3 Data and Methodologies

In this section, we provide the data sources and processing procedures, introduce
currency portfolio construction and the factor models employed to investigate the common
risk factors of FX trading strategies, and propose a factor-based portfolio optimization
approach for strategic factor allocation and extend it to tactical factor allocation in a

macro and financial data-rich environment.

3.1 Data Sets and Sources

Spot Rates, Forward Rates, and Price Levels: The data set is collected from
WM/Reuters (WMR) and Barclays Bank International (BBI) via Datastream from
January 1976 to March 2016 and contains 56 currencies’ (29 developed economies
and 27 emerging markets) spot and 3-month forward rates against USD? (the developed
countries are highlighted in italics): Germany (DEM), France (FRF), Italy (ITL), Spain
(ESP), Portugal (PTE), Netherlands (NLG), Belgium (BEF), Austria (ATS), Greece
(GRD), Ireland (IEP), Finland (FIM), Euro Area (EUR), United States (USD), United
Kingdom (GBP), Canada (CAD), Australia (AUD), New Zealand (NZD), Switzerland
(CHF), Norway (NOK), Sweden (SEK), Denmark (DKK), Slovenia (SIT), Israel (ILS),
Russia (RUB), Japan (JPY), South Korea (KRW), Singapore (SGD), Taiwan (TWD

)

)

)
)
Hong Kong (HKD), Slovakia (SKK), Lithuania (LTL), Latvia (LVL), Estonia (EEK)
Cyprus (CYP), Malta (MTL), Hungary (HUF), Czech Republic (CZK), Croatia (HRK),

2See Appendix A for data screening. 1-month forward rates are more affected by monetary policy
and market liquidity. As a result, we choose 3-month forward rates.
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Poland (PLN), Romania (RON), Ukraine (UAH), Bulgaria (BGN), Turkey (TRY), India
(INR), Malaysia (MYR), Thailand (THB), Philippines (PHP), Indonesia (IDR), South
Africa (ZAR), Egypt (EGP), Mexico (MXN), Brazil (BRL), Argentina (ARS), Chile
(CLP), Colombia (COP), Peru (PEN). The corresponding price levels from OECD with

cross validations by data from IMF and World Bank.

Macroeconomic and Financial Time Series: The macroeconomic data set, as
known as “FRED MD?”, is readily available from the website of Federal Reserve Bank
of St. Louis (http://research.stlouisfed.org/econ/mccracken/sel/). It contains
135 U.S. macroeconomic time series, which are categorized into 8 groups (1) output and
income, (2) labor market, (3) housing, (4) consumption, orders and inventories, (5) money
and credit, (6) bond and exchange rates, (7) prices, and (8) stock market, as in McCracken
and Ng (2016). The financial data set, containing 39 global financial time series, is
collected from AQR’s data library (https://www.aqr.com/library/data-sets). It
consists of the multi-asset market portfolios, and risk premia — (1) cross-sectional carry,
(2) time-series carry, (3) value, (4) cross-sectional momentum, (5) time-series momentum
(trend-following) in global equity, fixed income, commodity, FX, and credit markets. As
for global equity market, we further download the market capitalization (SM B) factor,
alternative value (HML) factor as in Asness and Frazzini (2013), betting-against-beta
(BAB) factor, and quality (QM J) factor. The credit risk premia after proper adjustment
for term premia (see Asvanunt and Richardson, 2016) are also included. In sum, we have

174 predictors in total.

3.2 Portfolio Construction

Following Lustig, Roussanov, and Verdelhan (2011), Burnside, Eichenbaum, and
Rebelo (2011), Menkhoff, Sarno, Schmeling, and Schrimpf (2012a), Menkhoff, Sarno,
Schmeling, and Schrimpf (2012b), Menkhoff, Sarno, Schmeling, and Schrimpf (2017), at
the end of each period ¢, we obtain 5 portfolios (P, ..., Ps) for each trading strategy by

sorting currencies of developed economies and whole sample (including emerging markets)
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into portfolios according to lagged 1-month forward premia (for carry trade), lagged 3-
month exchange rate returns (for momentum trade), and lagged 5-year changes in real
exchange rate (for value trade), respectively. Currencies are ranked from low to high
by signal values, i.e., P; contains currencies with the lowest 20% signal values, and P;
contains currencies with the highest 20% signal values. xﬁt represents the baseline signal

of currency i at time ¢, where the signal k = {C, M, V'}. The sorting bases for carry trade

C

2,09

M

2%, momentum trade xM, and value trade z), are shown as follows, respectively (see

also Asness, Moskowitz, and Pedersen, 2013; Menkhoff, Sarno, Schmeling, and Schrimpf,
2017; Kroencke, Schindler, and Schrimpf, 2014):

F;
xl,t = 577: — ]_ (1)
2
:Bivt[ = H (1+ r'?,t—T) -1 (2)
=0
\% Qi t—60
x, = —1 3
* Q-3 3)

where 7{, _ represents excess returns of currency ¢ in period ¢ — 7. @);; denotes the real
exchange rate and Q;; = S;+Pi+/ Pft Py and Pj‘t are the domestic, and foreign price level
of consumer goods, respectively. Currencies are equally weighted within each of 3 x 5
portfolios. Moreover, the past 1-month excess returns and past 3-month changes in real
exchange rate are skipped to avoid the correlation between carry and momentum trades,
and that between momentum and value trades. Thus, non-overlapping information is
used to construct currency portfolios (see also Fama and French, 1996). After these

adjustments, the sample period is from February 1981 to March 2016.

The monthly excess return without transaction cost for holding a currency against

USD at time ¢ + 1 is given by:

o Fit— Sit+
e (4)

which is equivalent to the forward premium (F;; —S;+)/S;: subtracted by the change in
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spot rate (S; 41 — Sit)/Si+. The data screening procedure is shown in Appendix A, and

the adjustments of excess returns for transaction costs are reported in Appendix B.

We report results for high-minus-low portfolios denoted by HM L, which is the
difference in payoffs between P; and P;. In addition to the benchmark, we also build
currency portfolios using different weighting schemes as robustness checks. Following
Hassan and Mano (2019), Menkhoff, Sarno, Schmeling, and Schrimpf (2017), the signal-

dispersion weights are computed as:

=1

K41
_ k -1 k
Wiptr1 = ¢ [Ty — Ky Z Lit (5)

where K., denotes the total number of currencies available at time ¢ and ¢ 4+ 1, and
Kl Zfi’”{“ xﬁt represents the cross-sectional mean of the signal. ¢; is a scaling factor
such that the absolute values of the currency weights sum up to one. We assign positive
portfolio weights to currencies with a value above the cross-sectional average, while
negative portfolio weights to currencies with a below-average value. The signal-rank

weighted HM L portfolio are reported as well and are calculated as:

K41

W41 = G mnk(l’f,t) - Kt?t1+1 Z mnk(xf,t) (6)

=1

where the rank of signal xf’t is used instead of the value of xft This weighting approach
is widely practiced in the financial industry when some assets have extreme signals and
the outliers will receive smaller weights, but this procedure has a disadvantage that it
does not permit precise decompositions. The overall results of the portfolio and strategy

performance are similar to existing literature.

3.3 Factor Models for Asset Pricing and Portfolio Choice

The linear factor model implies a beta pricing model where the expected excess return

of portfolio j depend on its risk exposures 3; to common factors and the corresponding

13



factor prices A:

N
E[r;?,tﬂ] = Z Bjn - An (7)
n=1

where the subscripts n denote the corresponding risk factors, N in total. Two different
procedures are employed to estimate the risk exposures § and factor prices A: Generalized
Method of Moments (Hansen, 1982), as known as “GMM”* and Fama-MacBeth (FMB)
two-step OLS approach (Fama and MacBeth, 1973). The estimation methodologies and

procedures are delegated to Appendix C and D.

Garlappi, Uppal, and Wang (2007), DeMiguel, Garlappi, and Uppal (2009) among
others reveal that parameter and model uncertainty is the key issue for portfolio
optimizers such as Markowitz mean-variance problem, especially, the estimates of
expected returns are severely subject to estimation errors. Here, we propose a macro-
financial dynamic asset pricing approach for strategic and tactical allocations for factor
investing problem. The strategic allocation solution in between risk premia is the factor-
based portfolio optimization approach exploring the factor structure of currency risk
premia. We demonstrate how the empirical asset pricing test can be factor investing in
currency markets by applying the estimated risk exposures and prices to Markowitz mean-
variance problem with multiple risk premia. The optimal portfolio weights of Markowitz

mean-variance portfolio optimizer are given by:
wi ¢ E[pe e ] - Elrgy )] (8)

where wy, is scaled by risk aversion coefficient ~, normally ranging from 2 to 6. The
portfolio weights on the risky assets or risk premia must sum up to one, we obtain the

tangency portfolio:
_ E[Zre,re,t—l-l]il 'E[T;—l]
TNES et L Elrt,]

(9)

Wy

3Following Burnside (2011), we impose additional moment restrictions. Please see Appendix D for
details.
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where the expected returns and covariance matrix in Equation (9) are generally obtained
via calculating the sample mean and covariance of r° up to time ¢t. Alternative, we
propose to estimate them via a factor-based approach. In general, let’s consider a linear

factor model as in the empirical asset pricing tests:

e =a;+ Bife + G (10)

The expected returns and covariance matrix can then be computed as:

E[rf+1] = B\

E[Sre eir1] = BiSpraB + Scen (11)

where ¥ ¢, are the covariance matrix of the pricing errors ¢. The assets in combination
are risk premia, essentially zero-investment strategies of high-minus-low (sorted) port-
folios, where the expected returns to such portfolio strategies E[rf, ] = (Bus — Bre) e
where S (51+) is the risk exposure of the portfolio containing, e.g., the highest (lowest)
yielding, strongest (weakest) trending, or most undervalued (overvalued) currencies,
respectively, in our case. The expected covariance matrix among currency carry,
momentum, and value risk premia can be computed accordingly as well. An important
benefit of using factor-based portfolio optimization from empirical asset pricing tests is
that the parameter estimates are less subject to estimation errors, for a simple reason that
idiosyncratic components of individual assets are largely reduced when put into a basket,
and hence risk premia, or equivalently, the payoffs to long/short strategies are more

predictable (see also Bakshi and Panayotov, 2013, for time-series forecasting exercise).
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3.4 Factor-Based Portfolio Optimization in a Macro-Financial

Data-Rich Environment

The parameters of the factor-based strategic allocation for currency factor investing,
i.e., risk exposures (3; and factor prices ), are estimated using a rolling window up to
time ¢ in order to assess the out-of-sample performance. And the rolling-window length
is not optimally chosen so as to reflect the robustness of our proposed approach under
parameter uncertainty. Rather, we test a wide range of rolling-window lengths. To
reduce the estimation errors and maintain the robustness parameter estimates, capturing
the business cycle risk in the asset pricing estimation for j; and \; is crucial. We
refer to the National Bureau of Economic Research (NBER),! there are 11 business
cycles from 1945 to 2009, with an average length of about 70 months. Thus, a
rolling-window length should span at least 2 business cycles for robust asset pricing
estimates. We show that the empirical results remain qualitatively similar using a wide
range of different rolling-window lengths. Furthermore, we demonstrate the economic
value of exploring our proposed principal component slope factor in combining multiple
currency risk premia, and we compare the performance of the currency portfolios
generated by our factor-based version of mean-variance optimizer with various types
of portfolio optimizers, including a group of portfolio optimizers with different
objectives and optimality assumptions: (1) naive diversification (1/N), (2) standard
Markowitz mean-variance approach, (3) minimum variance, (4) maximum diversification,
(5) maximum decorrelation, (6) risk parity, (7) equal risk contribution (Maillard, Roncalli,
and Teiletche, 2008), and (8) volatility timing/targeting; and another group of
portfolio optimizers where inputs are estimated by various shrinkage methods:
(9) Bayesian-Stein shrinkage method (Jorion, 1986), (10) MacKinlay and Pastor (2000)
tangency portfolio, (11) Bayesian data-and-model method (see Péstor, 2000; Pastor and
Stambaugh, 2000; Jagannathan and Ma, 2003; Wang, 2005), (12) Kan and Zhou (2007)

three-fund rule, (13) Garlappi, Uppal, and Wang (2007) multi-prior max-min approach,

4Please see the link http://www.nber.org/cycles.html.
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(14) DeMiguel, Garlappi, and Uppal (2009) combination of minimum variance with 1/N,
(15) Tu and Zhou (2011) combination of maximum Sharpe ratio (tangency portfolio) with
1/N, and (16) Tu and Zhou (2011) combination of three-fund rule with 1/V, 16 in total for
comparison (see Appendix E for technical details). The 1/N is shown in the literature
to be seemingly unbeatable owing to the inevitable byproduct of estimation errors in
parametric methods (see Garlappi, Uppal, and Wang, 2007; DeMiguel, Garlappi, and
Uppal, 2009, among others). Nevertheless, our proposed factor-based approach utilizing
the second principal component (PC'S) is less subject to estimation errors in the portfolio

optimization process, in particular, on the expected returns estimates.

Beside the strategic allocation of risk premia in currency factor investing discussed
above, we further extend our factor-based portfolio optimization approach to tactical
allocation, or equivalently, conditional factor timing based on high dimensional macro
and financial data. It essentially tests whether or not short-run deviations of portfolio
strategies’ payoffs from expected returns, or equivalently, short-run deviations of pricing
factors (risk premia) from their long-run means (risk prices), are driven by short-run
deviations of state variables from their long-run equilibria, for which we use proxies from
a large set of macro and financial data described before. In this case, the expected returns
are modeled by an empirical asset pricing (linear factor) model (extracting long-run
expected returns) plus residual predictive models with high-dimensional data (capturing
short-run deviations from expected returns — a factor-timing function). This approach
shares similarities to the concepts of additive models in statistical science and gradient
boosting in machine learning. So, we call these two parts “additive gradients” and do the

“model boosting” as follows:

T — Ky [T?+1] = (BHt - BL,t)(ftJrl - 5\t) +erp1 = ByYe + Bz + Vi (12)

where 1;, and z; denote macroeconomic fundamental movements and financial asset

fluctuations, respectively; the corresponding coefficients 5, and ., can be estimated
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by various regularization and other statistical methods; and note that we do not
need a constant on the RHS of Equation (12), as E[r{, ;] = B\ plays the role of a
constant. Estimating Equation (12) works as a conditional factor-timing overlay. Due
to the high dimensionality of the macro and financial data, we employ a wide range of
advanced statistical and machine learning forecasting methods, including regularization
methods with various penalty settings: (1) elastic net (EFN) proposed by Zou
and Hastie (2005), (2) adaptive LASSO (LASSO,) introduced by Zou (2006), and
(3) group LASSO (LASSOg) (see Bach, 2008; Jacob, Obozinski, and Vert, 2009;
Simon, Friedman, Hastie, and Tibshirani, 2013, for examples);> model selection and
averaging methods: (4) Bayesian model averaging (BMA) proposed by Raftery,
Madigan, and Hoeting (1997) and (5) complete subset regression (C'SR) introduced
by Elliott, Gargano, and Timmermann (2013); and latent variable approaches: (6)
partial least squares (PLS) which is adopted by Light, Maslov, and Rytchkov (2017) to
explain the cross section of stock returns via aggregating information from characteristics,
and (7) three-pass regression filter (T'PF') proposed by Kelly and Pruitt (2015) where
PLS is shown to be a special case of TPF, to tackle the curse of high dimensionality in
the predictive regression for tactical allocation among multiple risk premia of currency

factor investing (see Appendix F for technical details).

We assign a prior weight w, € [0,1) to the assumption of zero long-run deviations
from expected returns given the empirical implications of the asset pricing model while
a prior weight of 1 — w¢ to the predicted short-run deviations by aforementioned large
set of macro and financial variables in order to form the short-run return forecasts in the

tactical allocation framework as follows:

Eu[rfa] = (Bre — Bra) e + (1 —we) (Byys + Baz) (13)

Although predictive regressions could possibly add the economic value of factor timing,

SFreyberger, Neuhierl, and Weber (2017) apply adaptive group LASSO to select a sparse set of
characteristic-based factors from competing empirical asset pricing models.
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they may also introduce noise into the expected returns and contaminate the strategic
allocation framework. We can test the economic value added via the tactical allocation

to the strategic allocation by varying the prior belief w¢.

4 Empirical Results

In this section, we provide the preliminary analysis on the cross section of currency
portfolios of three types of risk premia in FX markets and the corresponding trading
strategies. We then explore the factor structure of these FX anomalies and perform asset
pricing tests to solve the portfolio choice problem of optimal currency factor investing, for
which we propose a novel integrated strategic and tactical allocation framework, namely

factor-based portfolio optimization in a macro-financial data-rich environment.

4.1 Preliminary Analysis of Portfolio Strategies

Table 1-3 show the descriptive statistics of the equally weighted currency carry,
momentum, and value portfolios sorted by lagged 1-month forward premia, lagged 3-
month exchange rate excess returns, and lagged 5-year changes in real exchange rate
respectively. The High-Minus-Low (HML) portfolios that long portfolio 5 and short
portfolio 1 are also reported in Table 1-3 with different weighting schemes, i.e., equally-
weighted (F), dispersion-weighted (D), and rank-weighted (R). The all countries (upper
panel) and developed economies (lower panel) are exhibited separately in the tables. As
shown in Table 1-3, the average excess returns and Sharpe ratios of carry, momentum,
and value trades increase monotonically from negative to positive for both developed
economies and whole sample including emerging markets. The Sharpe ratios of currency
carry, momentum, and value trading strategy can reach up to about 0.65, 0.60, and 0.40,
respectively, over a 40-year history. This indicates that incorporating FX investment

styles into portfolio and risk management process is very important.

19



Table 1 about here
Table 2 about here
Table 3 about here

Let’s start from currency carry trade portfolios. The exchange rate components (FX)
exhibit a decreasing pattern but not strictly monotonic, there is still a large spread in
the excess returns (after taking the yield component (IR) into account) between low-
yield and high-yield currency portfolios, indicating that the interest rate differentials
are biased predictors of future exchange rate movements — the violation of the UIP.
Consistent with the empirical findings of Brunnermeier, Nagel, and Pedersen (2009),
Rafferty (2012), Menkhoff, Sarno, Schmeling, and Schrimpf (2012a), there are also an
increasing trend in volatility and a decreasing trend in skewness across the currency
carry trade portfolios, while those of the currency momentum and value portfolios do not
exhibit similar patterns. This may also help to explain why the global volatility risk factor
of Menkhoff, Sarno, Schmeling, and Schrimpf (2012a) and the global skewness (crash) risk
factor of Rafferty (2012) fail to price the cross section of currency momentum and value
premia. It is also worth to point out that the turnover ratio of momentum trade is very
high, implying the transaction costs may consume a substantial part of the returns. The
carry and value trade both have similar low level of turn over ratios. All above statements

hold for both developed economies and whole sample including emerging markets.

4.2 Factor Structure of FX Anomalies

Given the strong factor structure but seemingly distinctive risk profile of each of
the three types of currency premia, some questions naturally arise: Does the common
slope risk factor for the carry, momentum, and value really exist? If yes, is it latent
or observable? And if it is unobservable, can macroeconomic fundamentals and financial
variables capture its fluctuations? And can they provide additional predictive information

about expected returns beyond the common latent factor? To answer these questions,
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we first employ Principal Component Analysis (PCA) to explore the factor structure
across all three types of currency premia, and we find that the first two principal
components surprisingly explain 60% - 80% of the cross-sectional variations of these
currency portfolios. The first principal component is essentially the dollar risk factor
(DOL) of Lustig, Roussanov, and Verdelhan (2011), which can be regarded as a proxy
for the FX market portfolio. The second principal component (PCS) is the focus of this
paper. If PCS is a potential common risk factor, it is expected to be a slope factor
that the risk exposures of the currency portfolios of carry, momentum, and value should
be increasing from negative to positive if the factor price is statistically significant and
positive, and vice versa for negative factor price. We then perform asset pricing tests
of PCS on all three types of currency risk premia, both individually and jointly. The

details of estimation methodologies are described in Appendix D.
Table 4 about here

Table 4 presents cross-sectional asset pricing results of five currency carry portfolios
with two risk factors DOL and PC'S. DOL works as an intercept factor because the risk
exposures to DOL are almost at the same level so that it does not contribute the cross-
sectional variations in expected returns. While the exposures to PC'S are monotonically
increasing from low-yield currency portfolio to high-yield currency portfolio. Thus, PC'S
works as the slope factor and is the parameters of interests. The coefficients of risk
exposure Bpcg, factor loading bpeg, and factor price Apcg are all statistically significant.
The estimated factor price is 11.87% p.a. for the whole sample including emerging markets
and 7.82% p.a. for the developed economies sample. The factor model generates high
cross-sectional R? of about 90% for both sample coverages. The Mean Absolute Pricing
Errors (M APE) are relatively low, about 0.40 - 0.50. We also accept that the model
is not mis-specified as it passes both zero-pricing error x? test and zero H.J-distance
test of Hansen and Jagannathan (1997). These results confirm that the slope principal

component (PC'S) has explanatory power for the excess returns of currency carry trade.
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Table 5 about here
Table 6 about here

We implement the same empirical tests on currency momentum and value portfolios
using DOL and PC'S as risk factors, and the results are reported in Table 5 and Table
6, respectively. The findings are very close to what we obtain using currency carry trade
portfolios. The risk exposures to PC'S are monotonic and increasing from negative to
positive, i.e., the loser or low-value currencies provide a hedge for the winner or high-
value currencies against some certain risk sources, and it is common to all three types
of currency premia. Again, bpcs and Apcg are statistically significant. The factor price
of PC'S to momentum trade is 3.91% p.a. for all countries sample and 3.22% p.a. for
developed economies sample, while, to value trade, it is priced at 3.58% p.a. for whole
sample including emerging markets and 4.34% p.a. for developed economies sample. The
cross-sectional R? for momentum trade is as high as 0.98 of all countries and 0.81 for
developed economies while about 0.75 for value trade on both samples. We also cannot
reject the null hypothesis of zero pricing error of x? test and zero H.J-distance of Hansen
and Jagannathan (1997) test. M APE are very low. These results confirm that PCS
works well on individual currency risk premia. The next step is to test it on their joint

cross section.
Table 7 about here

Given that the risk exposures of currency portfolios to DOL and PCS remain the
same, we only report factor loadings bpcs and factor prices Apcs. As shown in Table
7, both of them are statistically significant. A\pcg is priced at 4.89% p.a. for the whole
sample with emerging markets and 4.64% p.a. for the sample of developed economies.
The cross-sectional R? are approximately 0.70 for both samples. The p — value of x? test
and of H.J-distance test both confirm that the model is correctly specified. The empirical
findings are robust to adding additional tested assets that may have a different factor

structure (see Lewellen, Nagel, and Shanken, 2010, for details), and thereby, the joint
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cross-section asset pricing tests verify that PC'S performs well in explaining the cross-
sectional variations in excess returns of currency carry, momentum, and value portfolios.
PC'S can price excess returns of the cross-sectional portfolios of all three types of currency
risk premia, both individually and jointly. We further investigate how to utilize the factor

structure PC'S for currency investment.
[Insert Figure 1 about here]

Figure 1 above visualizes the cross-sectional goodness of fit of the pricing model with
the common risk factor PC'S for three well-recognized currency risk premia. We can see
that PC'S well captures the cross-sectional variations of currency carry, momentum, and

value portfolios.

4.3 Strategic Factor Allocation: Factor-Based Portfolio Opti-

mization

The empirical analysis above suggests the existence of a common factor of currency
carry, momentum, and value risk premia. In this section, we further test the performance
of the currency portfolios generated by exploiting the factor structure of currency risk
premia. If the factor structure is real, we expect the improvement in currency investment
performance that combines multiple risk premia. Specifically, we apply the second
principal component (PC'S) to standard Markowitz mean-variance portfolio optimization
where the expected returns are formed by the product of the risk exposures and risk price
and the covariance matrix is computed accordingly. We compare it with other 16 types

of well-known portfolio optimizers listed in Section 3.°
[Insert Figure 2 about here]

Figure 2 shows the investment performance of currency factor-investing portfolios
in terms of cumulative excess returns after transaction costs. We compare our factor-

based Markowitz portfolios with other 16 types of portfolio optimizers where the risk-

6Technical details are reported in Appendix E.
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aversion coefficient ~y is set to 6.7 The average (from 140-month to 210-month rolling
window lengths) transaction-cost adjusted cumulative excess returns generated by our
PCS factor-based version of Markowitz mean-variance optimizer is both economically
and statistically greater than those produced by 16 alternative portfolio optimizers while
the differences in investment performance among other 16 competing portfolio optimizers
are relatively small. We further report its outperformance via not only various statistical
measures but also economic values of switching from 16 competing portfolio optimizers

to our proposed factor-based approach.
[Insert Table 8 about here]
[Insert Table 9 about here]
[Insert Table 10 about here]
[Insert Table 11 about here]

Table 8 to 11 report the performance metrics of our factor-based currency portfolio
optimization with multiple risk premia that exploits the cross-anomaly factor structure
by applying its principal component slope factor to standard Markowitz mean-variance
framework. It is reported in comparison with other well-recognized asset allocation rules
with a risk-aversion coefficient of 6. The performance of our factor-based Markowitz
mean-variance portfolio optimizer that explores the principal component slope factor
steadily ranks the first among all other popular portfolio optimizers, across Sharpe ratio
(ranging from 0.89 to 1.10, and much higher than those of other competing portfolio
optimizers by over 0.1 and up to 0.3), Sortino ratio that penalizes the downside risk (from
1.26 to 1.56, and again much greater than those of other competing portfolio optimizers
by about 0.2 and up to 0.5), certainty equivalent returns (CEQ) that assumes investors
are averse to uncertainty (from 3.61 to 4.58, which is up to 1.5% higher than those of
other alternative portfolio optimizers), and Calmar ratio that calculates the mean divided

by the (absolute value of) maximum drawdown of the return series (up to 69% of the

"The degree of relative risk aversion ~ follows a standard setting from 2 to 6.
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maximum drawdown is covered by annual return, which is approximately 50% and up
to almost 100% more than those of other alternative portfolio optimizers), suggesting
our factor-based approach that utilize the cross-anomaly factor structure outperforms
other alternative portfolio optimizers by yielding better risk-adjusted returns with less

drawdowns.

It is worth noticing that the expected returns formed by the factor-based approach are
designed to reflect the long-run returns based on risk exposures, where the rolling window
lengths are chosen to be compatible with the business-cycle durations. Therefore, they
should be robust to a variety of market scenarios instead of being sensitive to short-term
volatility risks. In the other words, it may not perform as well as, e.g., the volatility-
timing portfolio, in a distressed market. Nevertheless, the factor-based approach still
ranks the first in terms of Sortino ratio and Calmar ratio, suggesting its overall accuracy
in estimating the expected returns across different market conditions, in particular, in the
upside of the investment performance. Even though it does not rank the first in Omega
ratio,® being the best in several risk-adjusted return measures implies that the revenues

produced in the upside are quite persistent, or in the other words, less volatile.

F, and P are performance fees proposed by Fleming, Kirby, and Ostdiek (2001, 2003),
and Goetzmann, Ingersoll, Spiegel, and Welch (2007), respectively (see in Appendix G
for details). We use these approaches to evaluate how much that risk-averse investors
are willing to pay for switching from the competing portfolio optimizers to our factor-
based Markowitz mean-variance approach. Notwithstanding that they are meant to be
manipulation-proof, these approaches do not take the portfolio volatility into account
— they only work for comparing portfolio strategies with similar levels of volatilities.
We need to re-scale the portfolio strategies to the same risk profile in terms of volatility
in order to employ their approaches. The performance fees are ranging from 0.50% to

1.44%, which are considerably high fees for investment management industry nowadays.

80 = f0+°°[1 - F(re)]dre/ fi)oo F(r°)dre, which considers the entire return distribution, especially for

non-normal investments.
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Moreover, the Sharpe ratios generated by the PC'S factor-based approach are statistically
higher than other alternative methods according to the robust Sharpe ratio difference test

suggested by Ledoit and Wolf (2008).

We attribute the outperformance of our factor-based approach to the fact that it is
less subject to estimation errors, especially in forming the expected returns for portfolio
construction, on the theoretical ground that the principal-component space should be
spanned by characteristic space and hence the principal components can help us to recover
the factor space (see Giglio and Xiu, 2017, for the rotation-invariant argument). This
further validates the pricing power of the asset pricing tests using PC'S, as pointed out by
Kozak, Nagel, and Santosh (2018, 2019) that the PC-sparse model should outperform the
characteristic-sparse model. However, PCA does not offer an explicit way to construct
portfolio strategies but characteristics do. Trading strategies based on characteristic-
based factors provide a systematic and economically meaningful way for investment in
risk premia, while PCA on the cross sections of characteristic-sorted portfolios sheds light
on how to optimally allocate capital among these trading strategies for factor investing.
In this way, we turn the statistical significance of empirical asset pricing into economic
values in real-world investment practice. It is worth mentioning that inputs estimated by
various shrinkage methods do not have statistically significant impacts on the investment
performance across different groups of portfolio optimizers with different objectives and

optimality assumptions.

Given that our proposed strategic allocation framework of factor-based portfolio
optimization beats standard Markowitz mean-variance method (mean-variance efficiency
property), several questions naturally raise: (i) can it be sub-optimal? and (ii) can we
improve its performance by conditioning the portfolio weights on other investment-related
information given the availability of huge macro and financial data? The next step is to
investigate whether or not high-dimensional macro-financial data can help to forecast the
short-run deviations from expected returns in a tactical allocation framework, which adds

an active-weight overlay upon the strategic allocation benchmark.
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4.4 Tactical Factor Allocation: Extension to a Macro-Financial

Data-Rich Environment

The predicted short-run deviations from expected returns can be considerably large
and unstable compared to the expected returns per se, which are turned into extreme
and volatile weights constructed via the standard Markowitz mean-variance framework.
The final portfolio weights can be driven predominantly by the tactical weights rather
than the strategic weights. Therefore, it is reasonable to impose a restriction to
constrain the forecasts short-run return deviations by attaching a prior weight w, to
the hypothesis that long-run deviations from expected returns are zero. By doing so, we
not only generate more stable weights to avoid both the noise introduced via forecasts
of short-run return deviations and unnecessary transaction costs, but also provide a
framework that nests both pure strategic allocation and the mixture of strategic and
tactical allocation via varying the prior weight. Moreover, we expect that regularized
regression methods designed to tackle parameter uncertainty produce portfolio weights
(tactical /active weights) more close to the strategic weights (zeros) than other predictive
methods, such as the estimators aiming to deal with model uncertainty or relying on latent
factors. Since we have a strong prior belief in the hypothesis, we discuss the empirical
results of we = 0.95 in this section below and also report those of w, = 0.50 in next
section of further robustness check, where we reveal that attaching more prior weights to
the short-run return deviation forecasts produces overall worse investment performance
than strategic allocation, suggesting the short-run return deviation forecasts are actually

very noisy across a wide range of estimators.
[Insert Figure 3 about here]

As shown in Figure 3 above and as expected, regularized regression methods, elastic
net and adaptive LASSO, which penalize model overfitting via the trade-off between

bias and variance of forecasting errors, are not sensitive to the prior weight.” Hence

9Please refer to the comparison in next section of further robustness check.
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the corresponding investment performance in terms of cumulative excess return after
transaction costs closely tracks that of strategic allocation via factor-based portfolio
optimization. The overlay of short-run deviations from expected returns predicted
by other forecasting methods adopted in this paper, such as those dealing with
model uncertainty and latent variable approaches, notably deteriorate the investment
performance of strategic allocation framework. Group LASSO that encourages sparsity
at group level has comparable investment performance to Bayesian model averaging and
complete subset regression that are proposed to handle model uncertainty or variable
selection, while there is no statistically significant difference between the investment
performance of the partial least squares (PLS) and that of three-pass regression filter
(TPF). PLS is actually a special case of TPF (see Kelly and Pruitt, 2015), and both

belong to the category of latent factor approaches.
[Insert Table 12 about here]
[Insert Table 13 about here]

Table 12 and Table 13 report a comprehensive evaluation of the investment perfor-
mance of the tactical overlay where active weights (over strategic allocation weights)
are produced by predictive regressions. Again, we adopt a rolling window spanning 2-
3 business cycles according to the NBER average business cycle length. Overall, the
penalized regression methods such as EN and LASSO,4 generate the best investment
performance in multiple performance measures across Sharpe ratio, Sortino ratio, CEQ),
Omega ratio, Calmar ratio, and performance fees. Nevertheless, the results are mixed and
the outperformance is not statistically significant judged by the criterion of Ledoit and
Wolf (2008) robust Sharpe ratio difference test. It is worth noticing that model averaging
and combination methods such as BMA and C'SR, in particular the latter, in some
cases yields the best investment performance as indicated by several performance metrics.
LASSO¢g and latent factor approaches such as PLS and T PF that push the portfolio

weights to deviate largely from strategic weights via the tactical overlay of active weights
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overall give the worst investment performance. All these empirical findings suggest that
the strategic allocation is not sub-optimal and already mean-variance efficient as it beats
standard Markowitz mean-variance method. Variety of advanced forecasting methods
fail to capture short-run deviations from expected returns conditioning on a large set
of macro and financial data, and as a result, the active weight adjustments via tactical
overlay only introduce noise in the expected return formulation process, which points to
a conclusion that factor timing via a large and readily available macro and financial data

seems to be impossible.

5 Further Robustness Checks

Besides (i) comparing our proposed approach with various portfolio optimizers, (ii)
estimating the model with a wide span of rolling-window length, (iii) adopting a broad
range of forecasting methods, and (iv) judging investment performance with different
measures, we implement further robustness checks on three aspects: (v) degree of relative
risk aversion, (vi) prior weight attached to the zero long-run deviations from the expected
returns implied by the empirical asset pricing models, and (vii) differentiating investment

leg from funding leg in the forecasting exercises.

5.1 Degree of Relative Risk Aversion

A standard setting for the degree of relative risk aversion v ranges from 2 to 6.
We further test our framework with v = 2. The empirical results remain qualitatively
the same across different rolling-window lengths (2-3 business-cycle durations). We
also report investment performance comparison among portfolio optimizers with a risk-
aversion coefficient of 2 (see Figure H.1. and Table H.1. to H.4. in Appendix H), showing
that our empirical findings are robust to changes of risk coefficient. It is worth mentioning
that being less risk averse encourages taking more risky positions and thus produces worse

investment performance for several risk-aversion dependent portfolio optimizers.
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5.2 Prior Weight on Zero Long-Run Deviations from Expected

Returns

As discussed before, the predicted short-run deviations from expected returns can
be considerably large and unstable relative to the expected returns per se, which may
be turned into extreme and volatile weights constructed by the standard Markowitz
mean-variance optimal rule. Attaching a prior weight to the hypothesis of zero long-run
deviations from expected returns is a solution to alleviate this problem. We vary the prior
weights from 0.95 to 0.50 in order to understand how it affects the forecasting accuracy of
short-run deviations. Thereby, we expect that regularized regression methods designed to
handle parameter uncertainty produce more stable weights than other predictive methods,
such as the estimators aiming to deal with model uncertainty and relying on latent factors.
The Figure H.2. and Table H.5. to H.6. in Appendix H provide supportive evidence that
the signal-to-noise ratios in the point predictions of short-run deviations from expected

returns are low across a broad range of forecasting methods.

5.3 Differentiating Investment Leg from Funding Leg

Inspired by Lu and Jacobsen (2016) where they reveal directional cross-asset return
predictability that equity returns predict the funding leg of carry trade (low interest-rate
currencies) while commodity returns forecasts the investment leg (high yield currencies),
we perform separate forecasting exercises on the investment leg and funding leg of
currency trading strategies and then aggregate the predictions from both long and short
legs. This implementation relaxes the restrictions on the parameters that assume both
long and short legs share the same degree of sensitivity to the predictors, and therefore,
may improve the forecasting performance. As shown in Figure H.3. and Table H.7.
to H.8. in Appendix H, we find little evidence that differentiating investment leg from
funding leg helps much in forecasting the short-run deviations from expected returns for

tactical currency allocation in a high-dimensional environment.
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6 Conclusion

In a pure time-series setting, scholars find it hard to explain the well-established
anomalies in FX markets — a long history of sizeable excess returns to carry, momentum,
and value trades. In some more recent literature, scholars resort to cross-sectional asset
pricing test using portfolio approach and also shift the focus from a particular anomaly
to cross-anomaly investigation. Still, the existing literature finds that risk factors which
are helpful in explaining currency carry trades can hardly rationalize the momentum and
value premia simultaneously. In this paper, we find the existence of a principal-component
based common factor that is priced in the cross section of currency carry, momentum,

and value risk premia, both individually and jointly.

The question is: how can we turn the statistical significance of empirical asset
pricing test into economic values in real-world investment practice? Inspired by the
studies of Giglio and Xiu (2017), Kozak, Nagel, and Santosh (2018), Kozak, Nagel, and
Santosh (2019), we suggest to utilize the rotation-invariant feature of the factor space to
optimally combine characteristic-based factors to solve the risk premia investing problem.
Characteristic-based factors provide an explicit way to construct portfolio strategies to
harvest risk premia, but PCA does not. However, given the factor structure revealed
by PCA in the joint cross section of currency carry, momentum, value portfolios, we
propose a factor-based approach to construct the optimal factor investing portfolio of
multiple currency risk premia. It is achieved by the combination of standard Markowitz
mean-variance portfolio optimization with asset pricing tests. The factor-based version
of Markowitz mean-variance portfolio offers superior and robust investment performance
beyond 16 well-known competing portfolio optimizers widely used or practiced in
academia and industry, implying that our proposed strategic allocation framework is
already mean-variance efficient. We attribute the outperformance of our factor-based
approach to the fact that it is less subject to estimation errors, especially in forming the

expected returns for portfolio construction, as the principal-component space should be
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spanned by characteristic space. This further validates the pricing power of the asset

pricing tests using the second (slope) principal component (PC'S).

We further extend our strategic asset allocation framework to incorporate tactical
asset allocation, or equivalently, factor timing feature in a macro-financial data-rich
environment. We test whether or not the short-run return deviations of characteristic-
based factors from expected returns can be captured by adjusting the portfolio weights
away from the long-run strategic weights. The active tactical weights may be driven
by the short-run deviations of state variables from their long-run equilibrium levels.
Similar to the concepts of additive models in statistical science and gradient boosting
in machine learning, the expected returns of portfolio strategies are modeled by an
empirical asset pricing (linear factor) model (extracting long-run expected returns) plus
residual predictive models with high-dimensional data (capturing short-run deviations
from expected returns — a factor-timing function). We call these two parts “additive
gradients’. Thus, to do the “model boosting”, we employ a wide range of advanced
statistical and machine learning forecasting methods designed in particular for the
characteristics selection problem in predictive regressions with high-dimensional data. We
cannot find supportive empirical results for our tactical portfolio allocation model in the
sense that it does not economically or statistically improve the investment performance
upon our strategic portfolio allocation framework. This suggests that short-run deviations
from expected returns are difficult to capture, or equivalently, the conditional factor
timing based on a large and readily available macro and financial data seems to be
impossible, and that focusing on the long-run expected returns is already mean-variance
efficient and not sub-optimal. In summary, we contribute to the literature by proposing
an integrated framework that combines characteristic-based portfolio strategies, factor
sparsity of empirical asset pricing, and robust portfolio optimization for strategic and

tactical portfolio allocation in factor investing practice.
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Table 1: Descriptive Statistics of Currency Carry Portfolio (1981.2-2016.3)

All Countries with Transaction Costs

Portfolios o Cy Cs Cy Cs Avg. HML® HMLP HML®
Mean (%) 2383 -0.76  -0.37 073 126 -0.59  5.09 6.59 3.49
FX (%) -1.06  -0.26  -1.61 -2.58 -7.03 -2.51  -5.97 -7.42 -5.13
IR (%) 277 -050 124 331 829 191  11.06 14.01 8.61
Std.Dev. (%) 885 892 874 9.08 9.83 826 8.10 10.15 6.25
Skewness -0.01  -0.09 -0.14 -0.21 -0.19 -0.12  -0.17 0.76 -0.20
Kurtosis 030 031 037 046 043  0.33 0.37 2.03 0.37
Sharpe Ratio  -0.43  -0.09 -0.04 0.08 0.13 -0.07  0.63 0.65 0.56
MDD (%) -21.87 -18.14 -20.39 -23.60 -25.03 -20.04 -14.83  -15.36  -13.51
AC(1) 005 007 008 010 016 0.1 0.06 0.37 0.11
TOR 017 028 029 026 017

Developed Countries with Transaction Costs

Portfolios C1 Cy Cs Cy Cs Avg. HMLY HMLP HMLE
Mean (%) 2340  -1.83 025 042  1.63 -0.59  5.03 3.98 3.56
FX (%) -0.70  -1.02 -0.48 -1.90 -4.09 -1.64  -3.39 -4.27 -2.98
IR (%) 2270 -0.81 072 232 572 105 8.42 8.25 6.54
Std.Dev. (%) 9.03 855 865 862 10.74 8.18 8.68 7.52 6.50
Skewness 0.02 -0.08 -0.10 -0.10 -0.22 -0.09 -0.21 -0.26 -0.21
Kurtosis 032 033 036 030 050 0.31 0.41 0.42 0.36
Sharpe Ratio  -0.38 -0.21  0.03 0.05 0.5 -0.07  0.58 0.53 0.55
MDD (%) -21.87 -24.15 -17.14 -21.55 -30.90 -19.42 -22.95 -15.70  -14.78
AC(1) 002 011 0.07 0.07 012  0.09 0.05 0.02 0.05
TOR 018 029 029 025 0.14

This table reports statistics of the annualized monthly excess returns in USD of currency carry portfolios
sorted by lagged 1-month forward premia. All excess returns are adjusted for transaction costs (bid-ask
spreads). The portfolios are rebalanced according to the new arrival signals at the end of each month.
Mean, exchange rate returns (FX), interest rate differentials (IR) and standard deviation are annualized
and reported in percentage. Skewness, kurtosis and Sharpe ratio are also reported in annualization.
‘MDD’ and ‘AC(1)’ denote the maximum drawdown and the first order autocorrelation coefficient,
respectively. ‘TOR’ represents the turnover ratio of a portfolio. ‘Avg’ is the average excess returns
of all portfolios in long positions. ‘HM L’ is the excess return to a strategy investing in Portfolio C5 and
funded by Portfolio Cy. And the superscripts E, D, and R of ‘HM L’ represent the different weighting
schemes: equally-weighted (within a range of extreme signals), signal-dispersion weighted, and signal-
rank weighted, respectively. The latter two weighting schemes use a complete set of signals. The sample
period is from February 1981 to March 2016.
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Table 2: Descriptive Statistics of Currency Momentum Portfolio (1981.2-2016.3)

All Countries with Transaction Costs

Portfolios M, M, M3 My Ms  Avg. HMLF HMLP HML%
Mean (%) -3.15 -1.88 -1.21 011 178 -0.87  4.93 4.43 3.28
FX (%) 518 -4.14  -2.24  -1.37  -0.61 -2.71  4.57 3.41 3.04
IR (%) 203 225 103 148 239 1.84 0.36 1.01 0.24
Std.Dev. (%) 9.67 928 9.04 9.03 873 821 8.60 9.07 6.48
Skewness -0.10 -0.18 -0.05 -0.08 -0.15 -0.12  0.01 0.12 -0.02
Kurtosis 035 037 030 034 044  0.33 0.34 0.56 0.31
Sharpe Ratio -0.33 -0.20 -0.13 0.01 020 -0.11  0.57 0.49 0.51
MDD (%) -26.05 -27.31 -18.63 -19.44 -16.72 -20.11 -15.08 -16.81  -9.90
AC(1) 008 0.06 004 010 009 011  -0.13 -0.07 -0.10
TOR 043 059 067 0.61 044

Developed Countries with Transaction Costs

Portfolios M, M, Ms My Ms  Avg. HML® HMLP HML®
Mean (%) 255  -1.53  -0.74 -0.27 079 -0.86  3.34 2.75 2.04
FX (%) 271 -1.83 -142 -155 -1.48 -1.80  1.23 0.80 0.28
IR (%) 016 030 068 1.28 228  0.94 2.11 1.94 1.76
Std.Dev. (%) 9.45 921 917 916 888  8.13 8.79 8.00 6.55
Skewness -0.06 -0.17 -0.06 -0.06 -0.13 -0.09  0.04 0.05 0.07
Kurtosis 040 043 031 032 042  0.31 0.44 0.43 0.44
Sharpe Ratio  -0.27 -0.17 -0.08 -0.03 0.09 -0.11  0.38 0.34 0.31
MDD (%) -22.52 -25.83 -21.77 -17.43 -16.72 -19.46 -15.08  -15.35  -12.74
AC(1) 005 011 003 0.08 009 0.09  -0.09 -0.07 -0.06
TOR 043 058 068  0.60  0.46

This table reports statistics of the annualized monthly excess returns in USD of currency momentum
portfolios sorted by lagged 3-month exchange rate returns. All excess returns are adjusted for transaction
costs (bid-ask spreads). The portfolios are rebalanced according to the new arrival signals at the end of
each month. Mean, exchange rate returns (FX), interest rate differentials (IR) and standard deviation
are annualized and reported in percentage. Skewness, kurtosis and Sharpe ratio are also reported in
annualization. ‘MDD’ and ‘AC(1)’ denote the maximum drawdown and the first order autocorrelation
coefficient, respectively. ‘TOR’ represents the turnover ratio of a portfolio. ‘Avg. is the average excess
returns of all portfolios in long positions. ‘HM L’ is the excess return to a strategy investing in Portfolio
My and funded by Portfolio M;. And the superscripts E, D, and R of ‘HM L’ represent the different
weighting schemes: equally-weighted (within a range of extreme signals), signal-dispersion weighted, and
signal-rank weighted, respectively. The latter two weighting schemes use a complete set of signals. The
sample period is from February 1981 to March 2016.
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Table 3: Descriptive Statistics of Currency Value Portfolios (1981.2-2016.3)

All Countries with Transaction Costs

Portfolios 1% Va V3 Vi Vs Avg. HML® HMLP HML®
Mean (%) 2152 -1.22 -0.65 0.64 0.66 -0.42  2.19 2.03 1.29
FX (%) -3.66  -3.09 -2.01 -1.29 -1.35 -2.28  2.30 1.79 1.36
IR (%) 213 187 136 193 201 1.8  -0.12 0.24 -0.07
Std.Dev. (%) 9.24 921 950 9.01 834 821 8.20 7.47 6.15
Skewness -0.15  -0.15 -0.12 -0.08 -0.07 -0.12  -0.09 -0.16 -0.09
Kurtosis 038 036 038 030 035 0.34 0.40 0.53 0.40
Sharpe Ratio  -0.16 -0.13  -0.07  0.07  0.08 -0.05  0.27 0.27 0.21
MDD (%) -25.92  -20.42 -22.11 -17.88 -15.28 -20.01 -14.75  -15.10  -12.98
AC(1) 014 011  0.09 0.04 0.07 0.10 0.07 0.03 0.10
TOR 012 025 030 025 0.14

Developed Countries with Transaction Costs

Portfolios Vi Va V3 Vi Vs Avg. HML¥ HMLP HML®
Mean (%) 209 -1.57 023 039 111  -048  3.20 2.98 2.21
FX (%) 2350 -2.61  -1.03 -047 019 -1.48  3.69 3.22 2.58
IR (%) 141  1.04 080 086 0.92 1.00  -0.49 -0.24 -0.37
Std.Dev. (%) 9.60 9.60 9.25 953 921  7.93 8.12 8.76 7.45
Skewness -0.19 -0.19 -0.16 -0.07 -0.07 0.03  -0.09 0.15 0.12
Kurtosis 0.47 047 040  0.37  0.30  0.34 0.31 0.60 0.67
Sharpe Ratio -0.22 -0.17 -0.02 0.04 012 -0.06  0.39 0.34 0.30
MDD (%) -27.87 -27.87 -25.06 -20.05 -24.56 -21.04 -19.39  -14.63  -15.10
AC(1) 0.10 0.10 0.09 0.05 008  0.07 0.09 0.09 0.10
TOR 013 026 032 028 0.16

This table reports statistics of the annualized monthly excess returns in USD of currency value portfolios
sorted by lagged 5-year changes in real exchange rate. All excess returns are adjusted for transaction
costs (bid-ask spreads). The portfolios are rebalanced according to the new arrival signals at the end of
each month. Mean, exchange rate returns (FX), interest rate differentials (IR) and standard deviation
are annualized and reported in percentage. Skewness, kurtosis and Sharpe ratio are also reported in
annualization. ‘MDD’ and ‘AC(1)’ denote the maximum drawdown and the first order autocorrelation
coefficient, respectively. ‘TOR’ represents the turnover ratio of a portfolio. ‘Avg. is the average excess
returns of all portfolios in long positions. ‘HM L’ is the excess return to a strategy investing in Portfolio
Vs and funded by Portfolio Vj. And the superscripts E, D, and R of ‘HM L’ represent the different
weighting schemes: equally-weighted (within a range of extreme signals), signal-dispersion weighted, and
signal-rank weighted, respectively. The latter two weighting schemes use a complete set of signals. The
sample period is from February 1981 to March 2016.
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Table 4: Asset Pricing of Currency Carry Portfolios: DOL + PCS

Factor Exposures Factor Prices

All Countries with Transaction Costs

Bpor  Brcs bpor brcs Apor Apcs R p—walue MAPE
C, 095  -0.23 2
(0.04) (0.04) | FMB 057 11.87 0.91 0.40
Oy 1.03  -0.10 (1.45)  (3.80) (0.28)
(0.03) (0.03) [1.39]  [3.43] 0.19]
Cs 1.02 0.05
(0.02) (0.03) HJ — dist
Cy 1.01 0.16 | GMM; -0.08 2.44 -0.57  11.87 091 0.55 0.40
(0.04) (0.03) (0.21) (0.84) (1.40) (3.61)
Cs 0.10 0.15 | GMM, -0.05 2.16  -0.31 10.52 0.88 0.50
(0.04)  (0.06) (0.21) (0.76) (1.39) (3.37)
Developed Countries with Transaction Costs
Bpor  Brcs bpor brpcs Apor Apcs R?*  p—wvalue MAPE
Ci 094 -0.28 2
(0.05) (0.05) | FMB 0.61  7.82 0.89 0.49
Cy 095 -0.18 (1.37)  (2.30) (0.25)
(0.03) (0.03) [1.38] [2.16] 0.23]
Cs 099 -0.03
(0.02) (0.03) HJ — dist
Cy 096 0.19 | GMM; -0.08 1.36 -0.61 7.82  0.89 0.30 0.49
(0.03)  (0.04) (0.19) (0.44) (1.38) (2.31)
Cs 1.16 0.32 | GMMs -0.04 1.27 -0.30 7.25 0.85 0.62
(0.05)  (0.07) (0.19) (0.42) (1.36) (2.25)

This table reports asset pricing results for a linear factor model (LFM) based on dollar risk (DOL) as the
intercept (global) factor (Lustig, Roussanov, and Verdelhan, 2011) and the second principal component
(PCS) as the slope (country-specific) factor. The test assets are the transaction-cost adjusted excess
returns of 5 currency carry portfolios based on currencies from all countries or developed countries.
3 denotes time-series factor exposures. The coefficient estimates of Stochastic Discount Factor (SDF)
parameters (b) (cross-sectional factor loadings) and factor price (A) are obtained by Fama-MacBeth
(FMB) excluding a constant in the second-stage procedure, and by first-stage (GM M;) and iterated
(GM Ms) Generalized Method of Moments procedures. Newey-West VARHAC standard errors (Newey
and West, 1987) with optimal lag selection (Andrews, 1991) and corresponding p-value of x? statistic
(for testing the null hypothesis that the cross-sectional pricing errors are jointly equal to zero) are in the
parentheses. The Shanken-adjusted standard errors (Shanken, 1992) and corresponding p-value of 2
statistic are in the brackets. The cross-sectional R?, the simulation-based p-value of Hansen-Jagannathan
distance (Hansen and Jagannathan, 1997) for testing whether it is equal to zero (HJ — dist), and Mean
Absolute Pricing Error (M APE) are also reported. The sample period is from February 1981 to March
2016.
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Table 5: Asset Pricing of Currency Momentum Portfolios: DOL + PCS

Factor Exposures Factor Prices

All Countries with Transaction Costs

Boor  Brcs bpor becs Apor Apcs R p—walue MAPE
M, 097 -0.61 x>
(0.03) (0.04) | FMB 0.89 391 098 0.18
My 1.06 -0.27 (1.39) (1.13) (0.82)
(0.02) (0.03) [1.39] [1.14] [0.80]
My 1.04 0.04
(0.02) (0.03) HJ — dist
My 1.03 022 | GMM; -0.11 0.80 -0.89 391 0.98 0.24 0.18
(0.02) (0.03) (0.18) (0.25) (1.39) (1.13)
Ms 088 0.63 | GMM, -0.11 0.81 -0.88 393 0.98 0.18
(0.02) (0.03) (0.18) (0.25) (1.39) (1.13)
Developed Countries with Transaction Costs
Bpor  Brcs bpor brpcs Apor Apcs R*  p—wvalue MAPE
M, 096 -0.26 22
(0.04) (0.06) | FMB 088 322 081 0.44
M, 104 -0.28 (1.38) (1.52) (0.67)
(0.02) (0.03) [1.38] [L.52] [0.67]
Ms  1.05 -0.07
(0.03) (0.03) HJ — dist
My 1.05 0.09 | GMM; -0.11 0.56 -0.88 3.22 081 0.32 0.44
(0.02) (0.03) (0.17) (0.27) (1.38) (1.53)
Ms 0.88 0.57 | GMMs -0.10 0.52 -0.77 297 0.80 0.38
(0.03)  (0.03) (0.17) (0.27) (1.37) (1.50)

This table reports asset pricing results for a linear factor model (LFM) based on dollar risk (DOL) as the
intercept (global) factor (Lustig, Roussanov, and Verdelhan, 2011) and the second principal component
(PCS) as the slope (country-specific) factor. The test assets are the transaction-cost adjusted excess
returns of 5 currency momentum portfolios based on currencies from all countries or developed countries.
3 denotes time-series factor exposures. The coefficient estimates of Stochastic Discount Factor (SDF)
parameters (b) (cross-sectional factor loadings) and factor price (A) are obtained by Fama-MacBeth
(FMB) excluding a constant in the second-stage procedure, and by first-stage (GM M;) and iterated
(GM Ms) Generalized Method of Moments procedures. Newey-West VARHAC standard errors (Newey
and West, 1987) with optimal lag selection (Andrews, 1991) and corresponding p-value of x? statistic
(for testing the null hypothesis that the cross-sectional pricing errors are jointly equal to zero) are in the
parentheses. The Shanken-adjusted standard errors (Shanken, 1992) and corresponding p-value of 2
statistic are in the brackets. The cross-sectional R?, the simulation-based p-value of Hansen-Jagannathan
distance (Hansen and Jagannathan, 1997) for testing whether it is equal to zero (HJ — dist), and Mean
Absolute Pricing Error (M APE) are also reported. The sample period is from February 1981 to March
2016.
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Table 6: Asset Pricing of Currency Value Portfolios: DOL + PCS

Factor Exposures Factor Prices

All Countries with Transaction Costs

Boor  Brcs bpor brcs Apor Apcs R p—walue MAPE
Vi 099 -0.27 22
(0.04) (0.04) | FMB 039 358 0.75 0.39
Vo 104  -0.12 (1.43)  (1.56) (0.28)
(0.03)  (0.04) [1.40] [1.89] [0.34]
Vs 112 -0.10
(0.02) (0.03) HJ — dist
Ve 1.03 0.03 | GMM; -0.06 0.82 -0.39 3.58 0.7 0.20 0.39
(0.03) (0.03) (0.26) (0.37) (1.40) (1.35)
Vs 0.80 0.36 | GMM> -0.04 0.66 -0.25 3.54 0.71 0.41
(0.04)  (0.06) (0.26) (0.34) (1.37) (1.76)
Developed Countries with Transaction Costs
Bpor  Brcs bpor brpcs Apor Apcs R?  p—walue MAPE
Vi 1.02  -0.25 x>
(0.04) (0.04) | FMB 046 434 077 0.57
Vo 104 -0.13 (1.37)  (1.98) (0.36)
(0.03)  (0.04) [1.38]  [1.99] [0.36]
Vs 1.11 -0.09
(0.03) (0.03) HJ — dist
Ve 1.05 0.05 | GMM; -0.06 0.76 -0.46 4.34 0.77 0.27 0.57
(0.03) (0.03) (0.17) (0.36) (1.37) (2.00)
Vs  0.76 0.43 | GMMs -0.04 0.65 -0.30 3.73  0.73 0.58
(0.04) (0.04) (0.17) (0.35) (1.37) (1.95)

This table reports asset pricing results for a linear factor model (LFM) based on dollar risk (DOL) as the
intercept (global) factor (Lustig, Roussanov, and Verdelhan, 2011) and the second principal component
(PCS) as the slope (country-specific) factor. The test assets are the transaction-cost adjusted excess
returns of 5 currency value portfolios based on currencies from all countries or developed countries.
3 denotes time-series factor exposures. The coefficient estimates of Stochastic Discount Factor (SDF)
parameters (b) (cross-sectional factor loadings) and factor price (A) are obtained by Fama-MacBeth
(FMB) excluding a constant in the second-stage procedure, and by first-stage (GM M;) and iterated
(GM Ms) Generalized Method of Moments procedures. Newey-West VARHAC standard errors (Newey
and West, 1987) with optimal lag selection (Andrews, 1991) and corresponding p-value of x? statistic
(for testing the null hypothesis that the cross-sectional pricing errors are jointly equal to zero) are in the
parentheses. The Shanken-adjusted standard errors (Shanken, 1992) and corresponding p-value of 2
statistic are in the brackets. The cross-sectional R?, the simulation-based p-value of Hansen-Jagannathan
distance (Hansen and Jagannathan, 1997) for testing whether it is equal to zero (HJ — dist), and Mean
Absolute Pricing Error (M APE) are also reported. The sample period is from February 1981 to March
2016.
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Table 7: Joint Asset Pricing of 3 FX Investment Styles across 15 Currency Portfolios:
DOL + PCS

All Countries

bpor. bpcs Apor Apcs R?  p—value MAPE
2
FMB -0.63  4.89 0.70 0.66
(1.42)  (1.08) (0.41)
[1.39] [1.07] [0.40]
HJ — dist
GMM, -0.08 1.01 -0.63 4.89 0.70 0.25 0.66
(0.18) (0.25) (1.39) (1.08)
GMM, -009 139 -069 6.77 0.60 0.82

(0.18) (0.24) (1.41) (1.08)

Developed Countries

bpor, bpcs Apor  Apcs R?>  p—walue MAPE
%
FMB -0.63  4.64 0.71 0.63
(1.37) (1.17) (0.58)
[1.38] [1.17] [0.58]
HJ —dist
GMM,; -0.08 081 -0.63 4.64 0.71 0.24 0.63
(0.18) (0.23) (1.37) (1.18)
GMM,  0.00 0.98  0.02 5.64 0.47 0.79

(0.17) (0.22) (1.38) (1.10)

This table reports the results of joint asset pricing of 3 FX investment styles for a linear factor model
(LFM) based on dollar risk (DOL) as the intercept (global) factor (Lustig, Roussanov, and Verdelhan,
2011) and the second principal component (PCS) as the slope (country-specific) factor. The test assets
are the transaction-cost adjusted excess returns of 15 currency portfolios based on currencies from all
countries and developed countries. [ denotes time-series factor exposures. The coefficient estimates
of Stochastic Discount Factor (SDF) parameters (b) (cross-sectional factor loadings) and factor price
(M) are obtained by Fama-MacBeth (FMB) excluding a constant in the second-stage procedure, and
by first-stage (GM M) and iterated (GM M) Generalized Method of Moments procedures. Newey-
West VARHAC standard errors (Newey and West, 1987) with optimal lag selection (Andrews, 1991) and
corresponding p-value of x? statistic (for testing the null hypothesis that the cross-sectional pricing errors
are jointly equal to zero) are in the parentheses. The Shanken-adjusted standard errors (Shanken, 1992)
and corresponding p-value of x? statistic are in the brackets. The cross-sectional R?, the simulation-
based p-value of Hansen-Jagannathan distance (Hansen and Jagannathan, 1997) for testing whether it
is equal to zero (HJ — dist), and Mean Absolute Pricing Error (M APFE) are also reported. The sample
period is from 1981 to March 2016.
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Figure 1: The Pricing Power of Common Risk Factor PC'S
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This figure shows the expected excess returns of 15 currency portfolios of carry, momentum, and value
trades priced by common risk factor PC'S versus the realized excess returns of these currency portfolios.
The sample involves 56 global currencies (29 of developed economies and 27 of emerging markets) from
February 1981 to March 2016.
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Figure 2: Strategic Asset Allocation: Out-of-Sample Performance of Portfolio Optimizers
with Multiple Risk Premia (v = 6)
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This figure shows the cumulative average performance (excess returns after transaction costs) of factor-
based currency factor-investing portfolio strategies across different rolling-window lengths spanning
2-3 business cycles (according to NBER), and using various optimizers, including naive diversification
(ND), standard Markowitz mean-variance approach (MKW), minimum variance (MV'), volatility
timing (V'T'), maximum de-correlation (M DC'), Jorion (1986) Bayes-Stein shrinkage estimator (JBS),
MacKinlay and Péstor (2000) tangency portfolio (M PS), Bayesian data-and-model method (W JM)
(see Péstor, 2000; Péstor and Stambaugh, 2000; Jagannathan and Ma, 2003; Wang, 2005, for details),
Kan and Zhou (2007) three-fund rule (KZ), DeMiguel, Garlappi, and Uppal (2009) combination of
minimum variance with 1/N (DGU), Tu and Zhou (2011) combination of maximum Sharpe ratio
(tangency portfolio) with 1/N (T'Z), Tu and Zhou (2011) combination of three-fund rule with 1/N
(KTZ), maximum diversification (M D), risk parity (RP), Maillard, Roncalli, and Teiletche (2008)
equal risk contribution (FRC), and Garlappi, Uppal, and Wang (2007) multi-prior max-min approach
(GUW). The out-of-sample period is from August 1998 to March 2016. All series are adjusted to the
same risk profile as the factor-based portfolio strategy, in terms of portfolio volatility, for comparison.
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Figure 3: Tactical Asset Allocation: Out-of-Sample Performance of Portfolio Optimizers
with Multiple Risk Premia (7 = 6 and w, = 0.95)

Average Cumulative Performance of Rolling Windows 140-210 Months
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This figure shows the cumulative average performance (excess returns after transaction costs) of currency
factor-investing portfolio strategies across different rolling-window lengths spanning 2-3 business cycles
(according to NBER), and using various forecasting methods on the residuals from the asset pricing
tests, including Zou and Hastie (2005) elastic net (EN), Zou (2006) adaptive LASSO (A — LASSO),
group LASSO (G — LASSO) (see Bach, 2008; Jacob, Obozinski, and Vert, 2009; Simon, Friedman,
Hastie, and Tibshirani, 2013, for examples), Raftery, Madigan, and Hoeting (1997) Bayesian model
averaging (BMA), Elliott, Gargano, and Timmermann (2013) complete subset regression (CSR),
partial least squares (PLS) (see Light, Maslov, and Rytchkov, 2017, for the application on stock
markets), Kelly and Pruitt (2015) three-pass regression filter (TPF'). The out-of-sample period is from
August 1998 to March 2016. All series are adjusted to the same risk profile as the factor-based portfolio
strategy, in terms of portfolio volatility, for comparison.
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Appendix
to

“Currency Portfolio Selection with Factors:
Additive Gradients and Model Sparsity
in a Data-Rich Environment”

A Data Screening

Following Lustig, Roussanov, and Verdelhan (2011), Burnside, Eichenbaum, and
Rebelo (2011), Menkhoff, Sarno, Schmeling, and Schrimpf (2012a), Menkhoff, Sarno,
Schmeling, and Schrimpf (2012b), Menkhoff, Sarno, Schmeling, and Schrimpf (2017), we
compute the excess returns of holding a currency in USD on the last trading day of
a month, i.e., the end-of-month data, not averaged over a month. Some countries are
removed from our data sample as the reason of exchange rate regime, such as China
(CNY), whose exchange rate is actively intervened as it has massive foreign reserves. We
also exclude the currencies from the sample that largely deviate from CIP and/or have
tradeability issues for the following periods: AED from July 2006 to November 2006;
ARS from September 2008 to April 2009, and from May 2012 to June 2014; EGP from
November 2011 to August 2013; IDR from August 1997 to May 2007; MYR from May
1998 to June 2005; RUB from December 2008 to January 2009; TRY from November
2000 to February 2004; and ZAR for August 1985, and from the January 2002 to May
2005. Since 1 January 1999, the Euro became the common currency of 11 member states
(Austria, Belgium, France, Finland, Germany, Italy, Ireland, Luxembourg, Netherlands,
Portugal, and Spain) of the European Union, and other EU states follow their steps to
join the eurozone: Greece on 1 January 2001, Slovenia on 1 January 2007, Cyprus and

Malta on 1 January 2008, Slovakia on 1 January 2009, Estonia on 1 January 2011, Latvia
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on 1 January 2014, and Lithuania on 1 January 2015.

We download the BBI USD quotes from December 1983 to November 1996, and
WMR USD quotes are adopted as soon as they are available from December 1996.
Following Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011), we convert the WMR
GBP quotes from January 1976 to November 1983 into USD quotes using the WMR
USD/GBP exchange rates. Forward rate and bid-ask spread quotes for AUD and NZD
from January 1976 to November 1983, and for JPY from January 1976 to June 1978
are not available. We calculate synthetic forward rates implied by the interest rate
differentials using Covered Interest Rate Parity (CIP) (Campbell, Serfaty-de Medeiros,
and Viceira, 2010) and also the bid-ask spreads using the largest spreads in the remaining
G10 currencies (see Kroencke, Schindler, and Schrimpf, 2014). After that, we obtain a

complete sample of G10 currencies.

B Transaction Costs

Transaction costs vary across time and currency pairs, and those of new position are
much bigger than thoes of a rolled over position in currency markets. Therefore, we
distinguish opening a new position from rolling an existing position over in calculating
the excess returns. Following the procedure of Darvas (2009), we adjust the position
excess returns for transaction costs that the investors pay an entire spot market spread
and a half swap point spread for opening and closing a position, while a half swap point
spread for the rollover of a position. Then the position excess returns vary across the

following four scenarios:
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where superscripts B, M, and A denote bid price, middle price, and ask price, respectively.

Any change in portfolio weight of a currency is taken into account for transaction costs.
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C Linear Factor Model

Under no-arbitrage condition, currency excess (risk-adjusted) returns must have a

zero price and satisfy the benchmark asset pricing Euler equation (Cochrane, 2005):
Be[Miy1 - 1i4] =0 (14)

where M, is a linear stochastic discount factor (SDF). ry,, denotes excess returns of
portfolios at time ¢t + 1. And E;[-| is the mathematical expectations operator with the
information available at time ¢. Applying the law of iterated expectations to Equation

(14), we obtain the corresponding version with the unconditional moment restriction:
E[M,;-r{] =0 (15)
The linear SDF takes a form of:
My=¢- 1= (fi—p)"b] (16)

where £ is a scalar, f; is a N x 1 vector of risk factors, u = E[f;], and bis a N x 1 vector
of factor loadings. Because ¢ is not identified by Equation (16), we set £ = 1, implying

E[m;] = 1. Given this assumption, we rearrange Equation (15) with Equation (16):

Elrf] = cov[rf - f;'] b (17)
or equivalently
Elrs] = cov[rf, £ 1575 Sprb (18)
A
B

where ¥y p = E[(f; — ) (fi — 1) T]. Equation (18) is the beta representation of the asset
pricing model in Equation (17). f; is the coefficient that regress r§ on f and it measures

the exposures of payoff to IV risk factors. A is a N x 1 vector of factor prices associated
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with the tested risk factors, and A is not portfolio-specific.

D Estimations of Factor Model

We reply on two procedures for the parameter estimates of the linear factor model:
Generalized Method of Moments (Hansen, 1982), as known as “GMM”, and Fama-

MacBeth (FMB) two-step OLS approach (Fama and MacBeth, 1973).

D.1 Generalized Method of Moments

The parameters of the SDF — b and p are estimated by GMM. We rearrange Equation
(15) with Equation (16):

E{r-[1—(fi—m) 0]} =0 (19)

The GMM estimator of p is essentially a vector of the sample mean of risk factors f.

While factor loading matrix b is calculated as:
~ A T A —1 -~ T _—
b= (Sf, WrSpe) S, Wi (20)

where Z7T is the sample mean of excess returns, )y fre is the sample covariance matrix
between 7y and f;, Wy is a weighting matrix. The vector of factor prices A is given by
A = 3 b, where 355 = E[(f, — p)(fi — p)T] is the factor covariance matrix. We also
include an additional set of corresponding moment restrictions on the factor mean vector

and factor covariance matrix as in Burnside (2011):

i (1= (fe—p)"b]

9(01.0) = - =0 (21)

(fe—m)(fe—n)" — sy
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where the vector 6 contains the parameters (b, i1, X r), ¢ denotes the data of (1§, f;). The
estimation uncertainty'® is thus incorporated in the standard errors of A via exploiting
the moment restrictions of E[g(¢,0)] = 0 as in Equation (21), and this point-estimation
method is identical to that of Fama-MacBeth two-pass OLS approach (see Burnside, 2011,
for details). Based on the VARHAC procedure as in Newey and West (1987) and the
data-driven approach of optimal lag selection with a Bartlett kernel of Andrews (1991),
we compute the standard errors. The weighting matrix is set to be identical matrix,
i.e., Wp = I, in the first stage of GMM estimator, while Wy is chosen optimally in the
next stage. We only report the empirical results from the first stage and the iterate-to-

convergence GMM estimators.

D.2 Fama-MacBeth Approach

we further report the empirical results from the FMB two-step estimator. The first
step is a time-series one, regressing the excess returns of each portfolios on proposed risk

factors to acquire corresponding risk exposures:

N
o=+ Y Bin: fent e (22)

n=1
where £, is i.i.d. N(0, O'j2-) for j =1,---,J portfolios. The second step is a cross-sectional

one, regressing the average excess returns across all portfolios on the estimated betas from

the first step to obtain the risk prices:
— N A A
7’? = Z 6j,n . )\n (23)
n=1

As pointed out by Burnside (2011), Lustig, Roussanov, and Verdelhan (2011), DOL
should serve as a constant in order to allow for a common mispricing term. Thereby, we
do not need to include a constant in the second step of the FMB. The estimates of the

risk prices from FMB should be numerically identical to those estimated by the GMM.

10Tt is because the factor mean vector and covariance matrix have to be estimated.
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Besides the HAC standard errors of Newey and West (1987) with automatic lag length
selection using the procedure of Andrews (1991), we also report the standard errors that

are adjusted for measurement errors as in Shanken (1992).

The predicted expected excess returns by the model is therefore given by )y e 137
and accordingly, the pricing errors (or model residuals) & = 7° — )y fre b. T&T Vi€ as
a statistic for over-identifying restrictions can then be computed so as to test the null
hypothesis of jointly zero pricing errors across all portfolios, where T" is the sample size,
Vi is a consistent estimate of asymptotic covariance matrix of v/T' & with its generalized
inverse form. The test statistic follows an asymptotic distribution of y? with n—k degrees
of freedom. The corresponding p — values based on both Shanken (1992) adjustment and
Newey and West (1987) approach for the FMB procedure are reported, and we adopt
simulation-based p—values for the Hansen-Jagannathan (Hansen and Jagannathan, 1997)
distance (HJ — dist) test!! for the GMM procedure. The cross-sectional R? and Mean
Absolute Pricing Errors (MAPE) are presented as well. To be cautious as stressed by
Cochrane (2005), we should look at the null hypothesis test b = 0 rather than A = 0
to determine whether or not to include the factor given other factors, in case that the
factors in use could be highly correlated. A factor is said to be useful to price the tested
assets if factor loading b is statistically different from zero, while statistical significance
of factor price A only tells whether the corresponding factor is priced or not, and whether

its factor-mimicking portfolio carries a positive or negative risk premium.

"Hansen-Jagannathan (Hansen and Jagannathan, 1997) distance provides a least-square distance
between the tested pricing kernel and the closest pricing kernel among a set of possible pricing kernels
that price the tested assets without model mis-specification. It is calculated by a weighted sum of random
variables that follow a x? distribution. See Jagannathan and Wang (1996), Parker and Julliard (2005)
for more details.
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E Portfolio Optimizers

E.1 Naive Diversification (1/N)

Naive diversification is to equally allocate capital among assets w,q = Iy /N, which
is a portfolio strategy without parameter estimates or portfolio optimizations, and hence

it is free of estimation errors. 1y is a N X 1 vector of ones.

E.2 Standard Markowitz Mean-Variance

Markowitz mean-variance optimization maximizes a quadratic utility function:

max U(@miey) = B, flr — %@Iﬂmzrw st Ty = 1 (24)
Wmkw

where v denotes the risk-aversion coefficient, p, is the expected returns, 32, is the expected
covariance matrix of asset returns. The closed-form solution of an optimal portfolio to
T . 2:1/17“

the above problem can be easily computed as Wy, = ==*. The normalized optimal

portfolio weights are:

(25)

E.3 Minimum Variance

A minimum-variance portfolio is characterized by a set of portfolio weights that find

the ex-ante global minimum variance on the efficient frontier.

min @) Y One St 1 NOmy = 1 (26)

Wmyv

The normalized portfolio weights of the closed-form solution to the above problem

Oy o 27Ty are then given by:



E.4 Volatility Timing/Targeting

A volatility-timing/targeting portfolio ignores the correlations among asset returns
and thereby the portfolio weights are given by (see Dachraoui, 2018; Harvey, Hoyle,
Korgaonkar, Rattray, Sargaison, and Van Hemert, 2018, for discussions):

A1

- TR6;

where o, is the volatility vector of asset returns.

E.5 Maximum Decorrelation

A maximum-decorrelated portfolio is equivalent to the global minimum-variance

portfolio under the assumptions of equal expected returns and volatilities across all assets:

17

A_
Qr
~

N
T Ty )

Wmde =

where €2, is the correlation matrix of asset returns.

E.6 Maximum Diversification

A maximum-diversified portfolio maximizes (see Choueifaty and Coignard, 2008;

Clarke, De Silva, and Thorley, 2013, for details):

.
WO

max — 24" st 1 jwme = 1 (30)

“md Wmdgrwmd

E.7 Risk Parity

A risk-parity portfolio equates the product of the portfolio weight and corresponding
marginal risk contribution of each asset:
W'y,

w, ©
T wTEw

for i=1,2,--- N (31)
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which can be transform into the optimization problem below:

N
_ T
max glog(|wi7rp|) st \J(whXrwp) <0p, Tywp=1and 0<w, <1 (32)

where o, is the target portfolio volatility. Solving the Lagrangian of this portfolio

optimisation problem achieves the aforementioned risk-parity objective.

E.8 Equal Risk Contribution

An equal risk-contribution portfolio equates the marginal risk contribution (ERC)
which does not offer a closed-form solution. Maillard, Roncalli, and Teiletche (2008)

provide a numerical solution to the ERC problem as follows:

N N
min Wi erc ererc i — Wjerc Erwerc 1 s.t. TTwerc =1 and 0 S Werc S 1
b ]7 j N

Werc

i=1j=1

(33)

It basically minimizes the variance of re-scaled marginal risk contributions.

E.9 Bayes-Stein Shrinkage Method

This Bayes-Stein shrinkage method estimates the expected returns and covariance

matrix as follows (see Jorion, 1986):

b = (1= 0) fur + op™ Ty (34)

. . 7 Tyl
st:(1+ A>2T+ _ -~ N 35
" T+7 T(TH+14+7)1L0 1y (35)

where
Té

A — T 36
[y (36)

N+2
N+2+ T(ﬂr o :aquV>TE;1(ﬂT - ﬂ;pv)

S
I
—~
w
\]
S~—
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It shrinks sample mean /i, towards the return to the global minimum-variance portfolio

A=, b and f]}’s are then plugged into the Equation (25) to compute portfolio weights:

(E)

RN w

Whs

E.10 Tangency Portfolio

MacKinlay and Pastor (2000) assume an exact but unobservable factor structure'? in
the asset returns, which implies a restriction in between mispicing and residual covariance

matrix that is exploitable in order to improve portfolio selection problem:

e =a+ (39)

-
SR2,

Y, =axa + o2y (40)

where « captures the mispricing, v, denotes unobservable factor(s), and SR,, is the
Sharpe ratio of the market portfolio (e.g., a strong belief in CAPM). Then the portfolio

weights of the tangency portfolio are derived analytically:

A~

fir
Wtp — ~ (41)
78

E.11 Bayesian Data-and-Model Method

Péastor (2000), Pastor and Stambaugh (2000) suggest a Bayesian data-and-model
method that allows investors to combine information from sample data with their beliefs
in asset pricing models, from which the asset returns are generated, such as CAPM. Wang

(2005) demonstrates that the Bayesian estimator of expected returns and covariance

12They also show that the benefits of relaxing this strict assumption are small due to the fact that
model misspecification may still exist.
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matrix can be written as follows:

A8 = 5B + (1 - 8) (42)
min = BT s [ (1-8) 3] R (1-8)8] @y
where

5 — ! (44)

1+ [Tr/ (1 + STzfnﬂ
B=0p+(1-0)8 (45)
 TT-2)+1 SR, 16
PTITT =3 g (1 + §7\zfn> "
=y o

(BEJ and (B, ie) represent the maximum likelihood estimates of (3, %) without and
with a constant, respectively; 7 measures the degrees of beliefs in terms of a total weight
attached to alternative models other than CAPM. It shrinks sample mean /i, towards
Blim. adm and f]f}m are then plugged into Equation (25) to compute portfolio weights:
|
(Sm) pge

T () "

E.12 Multi-Prior Max-Min Approach

By introducing additional constraints in standard Markowitz mean-variance optimiza-
tion, Garlappi, Uppal, and Wang (2007) propose a multi-prior max-min approach that
explicitly accounts for estimation errors in expected returns p,, assuming that investors

are averse to ambiguity and that uncertainty in the measurement of covariance matrix
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Y., is negligible:

max II!lLITIl UQmm) = @, e — %@;mzrwmm st. 1NGmm =1 and f(pir, fir, 5y) < €
(49)
where € in the second constraint may be understood as the product of common ambiguity
aversion across assets and asset-specific ambiguity. When normalizing the degree of
ambiguity aversion to 1, we can interpret € as the confidence interval if we restrict the
priors to be Gaussian. Instead of specifying the confidence intervals individually, we

choose to handle them jointly. Then the max-min problem in Equation (49) is equivalent

to the following maximization problem:

max U(Gmm) = @, flr — %@;mf}r@mm — Vel XrOmm st. 1yGmm =1 (50)

(T—1)N
T(T-N)*

where € = € Garlappi, Uppal, and Wang (2007) derive the analytical solution for

optimal portfolio weights as below:

Y A 1 0p \ -
(Dmm = “r 2_1 [ﬂr - (B - M) 1N] (51)

Ve+6, "

where &, is the volatility of the optimal portfolio, which can be obtained by solving the

following polynomial equation:
Av’on 4 2Av\/eo, + (Ae — AC + B* — 7*)o — 2y\/eo, — e =0 (52)

where A = I\3 Ty, B = [LIEA],T 1y, and C' = ﬂji;lﬂr. The normalized portfolio

weights are then:

Wanm = (53)
1 5 @Omm
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E.13 Three-Fund Rule

Kan and Zhou (2007) propose to a “three-fund rule” that combines the global
minimum-variance portfolio with tangency portfolio in order to reduce estimation errors
if estimation errors are not perfectly correlated. It essentially allocates capital in the
sample global minimum-variance portfolio, sample tangency portfolio, and the risk-free

asset. Its portfolio weights are given by:

(T —N—1)(T — N —4)

Ore = G A5 e+ (1= )5 T (54)
where R
h- ¢fN/T (55)
gro T=N-D@E—(N-1) 23O 0R( + )00/ (56)
T TBya 1.0 (N —1)/2,(T = N +1)/2)
O = (o = )2 (e — ) (57)

where B,(a,b) = [§y* }(1 — y)*"'dy is the incomplete beta function. The fraction
of wealth allocated to global minimum-variance portfolio increases with N/T, as the
parameters of tangency portfolio become more difficult to estimate. The normalized

portfolio weights can then be calculated as:

a)tfr

(58)

Wiy = -
NWifr

E.14 Combination of Minimum Variance with 1/N

DeMiguel, Garlappi, and Uppal (2009) consider a portfolio strategy that combines

naive diversification with minimum-variance portfolio as follows:

A

Wermy = 0wnd + (1 = 8)wpny st 1N Demy = 1 (59)
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where ¢ is chosen to maximize the expected utility of a mean-variance investor.'?

E.15 Combination of Maximum Sharpe Ratio with 1/N

Tu and Zhou (2011) further suggest the combination of naive diversification with
tangency (or equivalently, maximum Sharpe-ratio) portfolio to reduce estimation risk.

The resulting portfolio weights can be written as:

T T
Wetp = % —Wnd + % ~ Wmsr (60)
1 +7T2 T +7T2

where
A 2 7,2

1 = Wy Xrtnd — §ngﬂr + fg (61)
. _ [ (T-2)(T-N-2 (T —2)(T — N - 2)N .
REplo-N-va-N-n | Tea-N-ng-v-o7 P

vy (T—=N-=2)*—N 2(P2)N/2(1 4 2)~(T-2)/2
B + 63
' T T Bjza142)(N/2, (T = N)/2) (63)
0= 0 (64)

E.16 Combination of Three-Fund Rule with 1/N

Tu and Zhou (2011) also show how to combine the 1/N rule with three-fund rule

proposed by Kan and Zhou (2007). The portfolio weights are given by:

Wetf = |1 — ———7—F | Wnd + Wi 65
o ( 7T1—27T2+7T3) d T — 279 + 73 o ()

where

. ¢ (T-N-1)(T-N-4) <A2_ﬁN>
T2 2T -2(T-N-2)

13Note that the utility function can be other types, such as power utility.
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. 9?1 1. (T-N-1)(T-N-4)
T vwndMTJr YT —2)(T - N —2)

1roe RO
g (i) S e+ (1= ) ) Sy (67)

[ﬁerdﬂT +(1 - ﬁ)ﬂ;nvwldTN}

F Predictive Regression Methods

In this paper, we consider various penalized regression methods and other regression

methods designed to tackle the curse of high dimensionality.

F.1 Elastic Net

Zou and Hastie (2005) propose a regularized regression method that linearly combines
¢1-norm penalty (LASSO)' and fy-norm (ridge) penalties. The LASSO tends to select
one variable from a group of correlated variables and ignore others in the group. To some
extent, it is indifferent to the choice among a set of strong but correlated variables (sparse
solution), while the ridge regression overcomes this limitation by shrinking the coefficients
of correlated variables toward each other (averaged solution). The compromised beta is

estimated by:

§ = argmin (lly = XBI3 +w(1 = o[BI + el BII3) (68)

where ¥ denotes the penalizing parameter, and p is the mixing parameter between ridge

and LASSO. The model is fitted with coordinate descent algorithm.

F.2 Adaptive LASSO

Zou (2006) further suggest a weighted penalty form of LASSO, called adaptive LASSO:

= argmin (lly = X515 + Vwows| Al (69)

141t is as knowned as least absolute shrinkage and selection operator.
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where wors = 1/|5]” represents the weight attached to coefficients; 3 is the OLS estimates

and ¥ > 0. The model can be fitted via least-angle regression (LARS) algorithm.

F.3 Group LASSO

In some circumstances, variables belong to pre-defined categories and it may be
desirable to shrink and select certain members of variables from a group, which can
be achieved by group LASSO that minimizes a convex criterion (see Bach, 2008; Jacob,
Obozinski, and Vert, 2009, for details)

BEargglin(lly—XﬁH%+‘1’\/¢Hﬁllz) (70)

where /¢ accounts for changes in group size, and || - [|2 is the Euclidean norm (not
squared). As a result, this procedure encourages sparsity at group level. We fit the
standard group LASSO using coordinate descent algorithm and simple soft-thresholding

while assuming an orthonormal (not just orthogonal) design matrix for each group.'®

F.4 Bayesian Model Averaging

While the aforementioned forecasting methods are particularly useful in handling
parameter uncertainty, Bayesian model averaging is known for its capacity to deal with
model uncertainty via model probability and obtain probability-weighted forecasts via
model combination (see Raftery, Madigan, and Hoeting, 1997, for details). The posterior
distribution of dependent variable y given the information set ® and N,, models or

combinations of predictive variables can be written as:

N,
Pr(yt+1|@t) = Z Pr(yt+1|./\/lk, (I)t) Pr(Mk|‘I)t) (71)
k=1

15Please refer to Simon, Friedman, Hastie, and Tibshirani (2013) for general design matrices.
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which is an average of posterior distributions of each model considered. The posterior

probability for model k& (denoted by M, where y, 1 = kak,t + ug) is given by:

_ Pr(® M) Pr(My)
Pr(My|®:) = >N Pr(®,|M,) Pr(M,) (72)

where

Pr(®,|M,,) = / Pr(®,]Oy, My) Pr(6:/M,) dOy (73)

is the integrated likelihood of My, ©, represents the vector of parameters of My,
Pr(©4|My) is the prior density of O under My, [ Pr(®;|0O, M) denotes the likelihood,
and Pr(My) is the prior probability that My is the true model, given that one of the

models considered is true. The posterior mean (point forecast) of y is then computed as:

N,
Elyi1|®:] = Z Jrt+1 Pr(My| ;) (74)

k=0

We follow the procedure of Raftery, Madigan, and Hoeting (1997) to specify the prior

distribution for Bayesian estimations.

F.5 Complete Subset Regression

Elliott, Gargano, and Timmermann (2013) explore the trade-off of bias and variance of
forecasting errors via the choice of model complexity measured by the number of regressors
specified in the model. They propose an estimation method that uses equally-weighted

combinations of forecasts based on all possible models with a subset of predictors:

1 Ne Ns |
Yt+1 = NN Z Z Bij%ije + Vit (75)

i=1j=1

where z; j; denotes a subset ¢ of predictive variables with a given number of j selected

from all available predictors N, and up to Ny are selected; ¢;,; is the equally-weighted
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average forecast of all possible combinations C]J\\,TSC of predictive models. They prove that:

A 1Y A
BN = <N > Zk:) PoLs (76)

5 k=1

where z represents a N, x N, matrix with all elements of zeros, and BOLS is the
OLS estimator. Elliott, Gargano, and Timmermann (2013) also show that complete
subset regression can produce forecasts with comparable accuracy to those generated via

bagging, ridge, and BMA.

F.6 Partial Least Squares

The partial least squares (PLS) is designed to solve the problem of highly correlated
variables in regressions while a small subset of variables are associated with the dependent
variable. Accurate predictions would not be available if the selected subsets are not
enough. Similarly to PCA, PLS adopts a latent variable approach to model the covariance

structures in the spaces of both predictive and dependent variables:
X =AB"; Y = PQ" (77)

where A and P are the projections (scores) of X and Y, respectively, while B and @) are

the orthogonal loading matrices; and P = Aw. Then we have:
Y = PQ" = AwQ" = XBwQ” (78)

We fit the model using nonlinear iterative partial least squares (NIPALS) algorithm.
Light, Maslov, and Rytchkov (2017) employ the PLS method to aggregate the information

from a large set of characteristics for explaining the cross section of stock returns.
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F.7 Three-Pass Regression Filter

Kelly and Pruitt (2015) propose a three-pass regression filter to deal with the problem
of forecasting (target y) with many predictors. It can be calculated in closed form and

easily represented as a set of OLS regressions.

The first (error-in-variable) pass is to run N separate time-series regressions for each
of the predictive variables where predictors X are dependent variables and proxies Z are
regressors. This procedure estimates the sensitivity of each predictors to the factors
represented by the proxies, and it requires that common components of the proxies
span the space of the target-relevant factors. The second (factor rotation) pass uses
the coefficients estimated in the first pass to run 7" separate cross-sectional regressions at
each point of time where predictors are again dependent variables while the coefficients
estimated in the first pass are regressors. The fluctuations in the latent factors compress
the cross section of predictors. These two stages of parameter estimates accomplish a
two-way variable mapping. The third and final pass is to deliver a consistent forecast of

the target with the predictive factors G produced via the first two stages.

Jer1 = or¥e + Gif (79)
Gl = HzziWx g Hxz0) ' (WxzaXe)" (80)
B = HZZ,tWXZ,tHXZ,t(W)—l(—zytHXX,tWXZ,t)_1W)—(I—Z’tth,t (81)

where §; = 17y /T, Wz = Ln X, LrZy, Hzzy = X, Jr Xy, Hxze = X, JrZ;, hxys =
X, Jrys, Ly = Iy — ity /N, and Ly = Ip — tpig /T, with T as an identity matrix and ¢

as a vector of ones. They also show that PLS is a special case of TPF'.
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G Performance Fees

The performance fee is a measure of economic values to investors introduced by
Fleming, Kirby, and Ostdiek (2001, 2003) in evaluating portfolio management. The
maximum performance fee is determined by a state when a representative agent with a
quadratic utility of wealth is indifferent between using factor-based mean-variance model
(FB) and the competing models denoted by C'M in general. A performance fee lower
than this threshold induces investors to switch from a C'M to the alternative F'B model.
The maximum performance fee F is estimated by satisfying the out-of-sample condition

of average utility with relative risk aversion (RRA) 7 as below:

1003 l FB Y FB 2
(U 8 = F) = s (L s = 57
t:TZIs:-i-l Pt 2(1+7) .
T§s [ cM 8 CM \2
S [ Y1 . e >] (52)

Goetzmann, Ingersoll, Spiegel, and Welch (2007) further define a manipulation-proof

performance measure P robust to return distributions as follows:

1 1 Toos 1+N]I;E~_1 I—y
P=g=hnlz X |\
v t=Trs+1 Tt
1—
IREN PO (MS%) ' (83)
1 - fy T t=Trs+1 1 + Tt

It does not require to specify a utility function but shares the same economic intuition
as the maximum performance fee. We can interpret it as certainty equivalent portfolio

excess returns. Both F and P are reported in percentage and annualized.
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H Further Robustness Checks

Figure H.1.: Strategic Asset Allocation: Out-of-Sample Performance of Portfolio
Optimizers with Multiple Risk Premia (y = 2)

19 Average Cumulative Performance of Rolling Windows 140-210 Months
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This figure shows the cumulative average performance (excess returns after transaction costs) of currency
factor-investing portfolio strategies across different rolling-window lengths spanning 2-3 business cycles
(according to NBER), and using various optimizers, including naive diversification (ND), standard
Markowitz mean-variance approach (MKW), minimum variance (MV'), volatility timing (VT),
maximum de-correlation (M DC'), Jorion (1986) Bayes-Stein shrinkage estimator (JBS), MacKinlay
and Péstor (2000) tangency portfolio (M PS), Bayesian data-and-model method (WJM) (see Péstor,
2000; Péstor and Stambaugh, 2000; Jagannathan and Ma, 2003; Wang, 2005, for details), Kan and
Zhou (2007) three-fund rule (KZ), DeMiguel, Garlappi, and Uppal (2009) combination of minimum
variance with 1/N (DGU), Tu and Zhou (2011) combination of maximum Sharpe ratio (tangency
portfolio) with 1/N (TZ), Tu and Zhou (2011) combination of three-fund rule with 1/N (KTZ),
maximum diversification (M D), risk parity (RP), Maillard, Roncalli, and Teiletche (2008) equal risk
contribution (ERC), and Garlappi, Uppal, and Wang (2007) multi-prior max-min approach (GUW).
The out-of-sample period is from August 1998 to March 2016. All series are adjusted to the same risk
profile as the factor-based portfolio strategy, in terms of portfolio volatility, for comparison.
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Figure H.2.: Tactical Asset Allocation: Out-of-Sample Performance of Portfolio Optimiz-
ers with Multiple Risk Premia (y = 6 and w; = 0.50)
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This figure shows the cumulative average performance (excess returns after transaction costs) of currency
factor-investing portfolio strategies across different rolling-window lengths spanning 2-3 business cycles
(according to NBER), and using various forecasting methods on the residuals from the asset pricing
tests, including Zou and Hastie (2005) elastic net (EN), Zou (2006) adaptive LASSO (A — LASSO),
group LASSO (G — LASSO) (see Bach, 2008; Jacob, Obozinski, and Vert, 2009; Simon, Friedman,
Hastie, and Tibshirani, 2013, for examples), Raftery, Madigan, and Hoeting (1997) Bayesian model
averaging (BMA), Elliott, Gargano, and Timmermann (2013) complete subset regression (CSR),
partial least squares (PLS) (see Light, Maslov, and Rytchkov, 2017, for the application on stock
markets), Kelly and Pruitt (2015) three-pass regression filter (TPF'). The out-of-sample period is from
August 1998 to March 2016. All series are adjusted to the same risk profile as the factor-based portfolio

strategy, in terms of portfolio volatility, for comparison.
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Figure H.3.: Tactical Asset Allocation: Out-of-Sample Performance of Portfolio Optimiz-
ers with Multiple Risk Premia (v = 6, w, = 0.95, Differentiating L /S Legs)
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This figure shows the cumulative average performance (excess returns after transaction costs) of currency
factor-investing portfolio strategies across different rolling-window lengths spanning 2-3 business cycles
(according to NBER), and using various forecasting methods on the residuals from the asset pricing
tests, including Zou and Hastie (2005) elastic net (EN), Zou (2006) adaptive LASSO (A — LASSO),
group LASSO (G — LASSO) (see Bach, 2008; Jacob, Obozinski, and Vert, 2009; Simon, Friedman,
Hastie, and Tibshirani, 2013, for examples), Raftery, Madigan, and Hoeting (1997) Bayesian model
averaging (BMA), Elliott, Gargano, and Timmermann (2013) complete subset regression (CSR),
partial least squares (PLS) (see Light, Maslov, and Rytchkov, 2017, for the application on stock
markets), Kelly and Pruitt (2015) three-pass regression filter (TPF'). The out-of-sample period is from
August 1998 to March 2016. All series are adjusted to the same risk profile as the factor-based portfolio
strategy, in terms of portfolio volatility, for comparison.
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