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Abstract

Technical trading rules are widely used by practitioners to forecast the U.S.
equity premium. I decompose technical indicators into components with frequency-
specific information, showing that all the predictive power comes from periodicities
between 16 to 64 months, without any evidence of predictability outside of this
frequency band. An investor who only forecasts with these medium-frequency com-
ponents generates both statistically and economically sizable gains compared to the
historical mean and the original technical indicators. The out-of-sample R? is signif-
icant for each of the 14 adjusted indicators in the sample. A mean-variance investor
who combines individual forecasts from medium-frequency components generates a
sizable utility gain of more than 350 basis points relative to the historical mean for
the forecasting period from January 1966 to December 2017. This is almost twice as
large as utility gains from the historical mean and more than 200 basis points larger
than for combination forecasts with unadjusted technical indicators. I show that
the substantial gains mainly result from an improved forecasting ability of medium-

frequency components during recessions.
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1 Introduction

Predicting the equity premium has a long tradition in finance and is of interest for both
academics and practitioners. Real-time forecasts are necessary to adequately allocate
resources between risky assets and the risk-free rate to enhance investment performance
(DeMiguel et al.. 2009; Rapach and Zhou, [2013). Better estimates on both the condi-
tional mean and conditional variance of excess stock market returns help understanding
the risk-return trade-off, see, among others, [Ludvigson and Ng (2007). Furthermore,
the equity premium is central for the evaluation of investment performance and in the
characterization of return patterns among different assets, see Ferson| (2010)) and |Goyal
(2012)) for reviews. Another important point is the consistency between stock return

predictability and market efficiency (Balvers et al. [1990; |Cujean and Hasler} 2017).

Even though there is a voluminous literature, the overall evidence for stock return pre-
dictability is mixed. Generally, predictability is tested either over the full available
sample (in-sample) or with a recursively expanding sample that mimics the real-time
situation of an investor (out-of-sample).

In this paper, I contribute to the literature on out-of-sample equity premium prediction
by proposing a novel forecasting method that uses frequency-decomposed predictor vari-
ables. More precisely, I apply filtering methods to split the predictor time series into a
sum of frequency-specific parts. Each part depicts oscillations of different frequencies,
like high, medium, and low frequencies. This allows me to analyze whether short-horizon
predictability only comes from specific frequency-bands of the predictor variables. As
an example, the predictability from business-cycle oscillations of a predictor can easily

be buried under high-frequency noise or low-frequency movements in the trendﬂ

2 According to [Baxter and King| (1999), a business-cycle has cyclical components with periodicities
between 1.5 and 8 years.



I show that short-horizon predictability of technical indicators solely stems from medium-
frequency components. The oscillations between 16 to 64 months have an excellent
forecasting performance during recessions without much evidence of predictability in
expansions. This provides further evidence that stock return predictability concentrates
in bad times. In a next step, I formally test whether this state-dependent predictability
is related to business-cycle expectations. The idea behind is as follows: if predictability
one-month ahead depends on current recession forecasts, then an investor could form
a forecasting strategy that makes use of this dependency. Due to state-dependent pre-
dictability, the sophisticated model only statistically outperforms the historical mean in
recessions. Therefore, the historical mean should be used in expansions, thereby lim-
iting forecasting errors. Indeed, I find strong evidence that predictability by medium-
frequencies of technical indicators is related to recession forecasts from a simple probit
model.

Building on this, I propose a nonlinear forecasting model. Whenever a recession is
expected one-month ahead then the sophisticated forecasting model is applied and, oth-
erwise, when an expansion is expected then the historical mean is used for forecasting.
This automatically takes the empirical fact of state-dependent predictability into ac-
count. Obviously, recessions cannot be forecasted perfectly. Thus, it is an empirical
question whether lower forecast errors in expansions offset the cost of potentially not
identifying a recession in advance. My results show that the combination of frequency-
decomposed predictor and nonlinear forecasting model generates sizable out-of-sample
R? values in the range of 2%. Even further, I examine the economic significance of
frequency-decomposed predictors in an asset allocation exercise. An investor would be
willing to pay more than 200 basis points annually to have access to forecasts from
medium-frequencies of technical indicators rather than to forecasts from the original

predictors.



My work is related to several parts of the literature. Firstly, I contribute to a growing
literature that applies filtering methods to cross-sectional asset pricing and forecasting
exercises, see, among others, |Ortu et al.| (2013); Kang et al.| (2017); Xyngis (2017); Faria
and Verona| (2018b); Bandi et al.| (2019ajb)). The isolated parts from the original series
capture different degrees of persistence and allow a more nuanced view on dependen-
cies between time series. As an example, |[Faria and Verona (2018b|) highlight that the
sum of frequency-decomposed parts improves on the original sum-of-the-parts forecast-
ing method of [Ferreira and Santa-Claral (2011]). Secondly, my findings are related to the
literature on combination forecasts (Timmermann| [2006; Rapach et al., 2010). I show
that combination forecasts from medium-frequency components of both economic vari-
ables and technical indicators improve on combination forecasts from the original time

series.

Thirdly, I show that medium-frequencies of technical indicators have significant fore-
casting power in recessions. [Neely et al,| (2014) find that technical indicators have a
significant out-of-sample predictive power for the U.S. equity premium. I decompose
these predictors into different frequencies, showing that all the predictive power comes
from periodicities between 16 to 64 months. The R2O g is highly significant for each of the
14 medium-frequency components of technical indicators. Hence, the short-to-medium-
end of business-cycle oscillations covers all the predictive information. Surprisingly, the
results for economic variables do not reveal frequency-specific predictability. This high-
lights that the critique of Welch and Goyal (2008)) extends to frequency-decomposed

parts of individual economic variables[]

Fourth, I show that medium-frequency components of technical indicators are econom-

ically valuable for an investor. The gains in both certainty equivalent return (CER)

31 only test short-horizon predictability. So, I cannot comment on whether frequency-specific parts
have forecasting power over long horizons.



and Sharpe ratio (SR) are sizable. This is an important exercise because the correla-
tion between statistical measures of significance and economic measures of significance
is only weak (Cenesizoglu and Timmermann, 2012). Combination forecasts from the 14
unadjusted technical indicators taken together increase the annualized CER by roughly
150 basis points compared to the CER for the historical mean, which is around 400 basis
points. In contrast to that, combination forecasts from the respective medium-frequency
parts of the technical indicators generate an increase in CER by more than 350 basis
points. Hence, an investor would be willing to pay a sizable annual fee of more than 200
basis points to have access to frequency-specific combination forecasts. This is compa-

rable in magnitude to gains from other recently proposed predictors (Rapach et al.|2016)).

Fifth, I test whether one-month ahead predictability depends on business-cycle expecta-
tions (Pesaran and Timmermann, 2009). The results show that expectations in month
t on the state of the economy in period t + 1 are closely related to out-of-sample pre-
dictability in month ¢t+1. So far, most of the articles have sorted forecasting gains on ex
post available NBER recession periods, finding that gains are centered in recessions. In
contrast to that, I document that business-cycle expectations, which are readily avail-
able in real time, are informative for predicting stock returns. Predictability significantly
depends on recession forecasts. Building on this, I propose a nonlinear forecasting model
that selects between the historical mean and sophisticated forecasting models. When
forecasts signal a recession then the advanced model is used, otherwise forecasts are
made according to the historical mean. By including recession forecasts into a model of
return forecasts, I account for state-dependent predictability (Dangl and Halling) 2012;
Rapach and Zhoul, 2013). Generally, there is a trade-off between lower forecast errors in
expansions and potentially missed predictability in a not identified recession. My find-
ings show that the benefits outweigh the costs, and that the increases in out-of-sample

R? statistics are sizable.



The remainder of the paper proceeds as follows. Section 2 describes the data. The
time-frequency decomposition of the original series is explained in Section 3. Section 4
outlines that frequency-decomposed predictors are statistically significant and incorpo-
rate useful forecasting information during recessions. Section 5 shows that the filtering
method is economically significant. I explain in Section 6 that results are robust with
respect to transaction costs, filtering methods, and parameter specifications. Section 7

concludes.

2 Data

My dataset considers the same set of 28 predictors as Neely et al.| (2014]). One part of
the dataset comprises the 14 most commonly used economic variables like the dividend-
price ratio and the term spread (Welch and Goyal, |2008; |Campbell and Thompson, 2008}
Rapach et al., 2010). The other part of the dataset consists of 14 technical indicators
that are based on popular trend-following trading strategies. The sample covers monthly
U.S. data from December 1950 to December 2017 and therefore extends the dataset of
Neely et al.| (2014) by six years. The variable that is to be predicted is the excess
stock return as measured by continuously compounded returns on the S&P 500 index,
including dividends, minus the treasury bill rate. I follow the literature and do not
forecast excess returns directly but instead forecast log transformed excess returns. A

description of the economic variables and technical indicators is given below.

2.1 Economic variables

Welch and Goyal (2008) provide an extensive comparison of the in-sample and out-of-
sample predictability of commonly applied economic variables. Many subsequent studies
have analyzed similar variables, see [Rapach and Zhou| (2013)), [Pettenuzzo et al. (2014]),

and |Baetje and Menkhoff| (2016). The set of 14 economic variables is:



1. Dividend-price ratio (DP): Difference between log of dividends and log of stock

prices (S&P 500 index). Dividends are measured using a one-year moving sum.

2. Dividend yield (DY): Difference between the log of dividends and the log of lagged

stock prices.

3. Earnings-price ratio (EP): Difference between the log of earnings and the log of

stock prices. Earnings are measured using a one-year moving sum.

4. Dividend-payout ratio (DE): Difference between the log of dividends and the log

of earnings.

5. Equity risk premium volatility (RVOL): Based on a one-year moving standard

deviation estimator[]

6. Book-to-market ratio (BM): Ratio of book value to market value for the Dow Jones

Industrial Average.

7. Net equity expansion (NTIS): One-year moving sum of net issues by NYSE listed

stocks divided by the total end-of-year market capitalization of NYSE stocks.
8. Treasury bill rate (TBL): Secondary market rate on three-month treasury bill rates.
9. Long-term yield (LTY): Long-term government bond yield.
10. Long-term return (LTR): Return on long-term government bonds.

11. Term spread (TMS): Difference between the long-term yield on government bonds

and the treasury bill.

12. Default yield spread (DFY): Difference between BAA- and AAA-rated corporate

bond yields.

4RVOL is estimated as RVO\Lt = \/§\/12&t, with 6 = 11—2 ZZIL |r¢4+1—:|,where r; is the excess return
(no log transformation) in month ¢ (Melel 2007).



13. Default return spread (DFR): Difference between long-term corporate bond and

long-term government bond returns.

14. Inflation (INFL): Calculated from the Consumer Price Index (All Urban Con-

sumers) E|

2.2 Technical indicators

The trading strategies have in common that they are all based on decision rules that
either generate a buy signal (S;; = 1) or a sell signal (S;+ = 0). The first trend-following
strategy is a moving-average (MA) rule that compares two moving averages of different
lengths. In case that the short MA is greater than or equal to the long MA then this

generates a buy signal otherwise this generates a sell signal:

1 if MA,; > MAy,,
Sit = (1)

0 if MA&t < MAl,t,

whereby MA is defined as:

i—1
14
MA;; = ;ZPt_z for j = s, 1. (2)
1=0

The level of the stock price index is given by P; and s (1) refers to the short (long) MA
(s < 1). The short notation for a strategy that compares moving-averages of lengths s

and [ is MA(s, ). Six different MA strategies are compared with s = 1,2,3 and [ = 9, 12.

The second strategy is based on a momentum rule that generates a buy signal if the

5T follow convention and lag inflation by one month to account for delayed data availability.



current stock price is higher than or equal to its m periods ago past value:

1 if P> Py,
Sip = (3)

0 if P, < P

I include strategies for m = 9 and m = 12, denoted as MOM(9) and MOM(12).

The third group of strategies is based on trading volume, whereby trade volume is

defined as “on-balance” volume (OBV) (Granville, 1963):

t
OBV, = )~ VOLDj. (4)
k=1

VOLy is the trading volume during month k£ and Dy, is a binary variable that equals 1 for
P, > P,_1 and —1 otherwise. Therefore, trading volume has a positive effect on OBV},
if the stock price has recently increased and vice versa trading volume negatively affects
the sum if the stock price has dropped. Similar to the MA strategy for price levels, one
can form a MA strategy based on OBV. The intuition is straightforward, a “relatively
high recent volume together with recent price increases, say, indicate a strong positive
market trend and generate a buy signal” (Neely et al., 2014, p. 1775). The volume-based
strategy is defined as VOL(s, ) and I analyze trading rules with s = 1,2,3 and [ = 9, 12.

Monthly volume data on the S&P 500 index are obtained from Yahoo! Financel[f]

2.3 Descriptive statistics

Table 1 presents descriptive statistics for the monthly log excess return, the 14 economic
variables, and the 14 technical indicators. The average and standard deviation of the
monthly equity premium are given by 0.53% and 4.15%. The autocorrelation in ex-

cess returns is rather low with a value of 0.06. In contrast to that, the autocorrelation

SFurther details can be found on https://de.finance.yahoo.com/.
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for most economic variables is close to 1, with the only exceptions being LTR, DFR,
and INFL. Some authors argue that the high degree of persistence results from steady

state shifts in the mean, see Lettau and Van Nieuwerburgh| (2008]) and references therein.

The mean for all technical indicators is around 0.70, so the trend-following strategies
generate buy signals for roughly 70% of the sample. Interestingly, the level of persistence
is relatively high as well, with a first-order autocorrelation above 0.50 for each indica-
tor. Baetje and Menkhofll (2016, p. 1196) interpret this as support for “the underlying

assumption of the technical analysis that past price trends persist into the future”.

3 Time-frequency decomposition of predictor variables

In this section I explain the wavelet multiresolution analysis (MRA) that is used to
decompose a predictor into a sum of frequency-specific components. Each part captures
specific frequency bands of the original series, like high, medium, and low frequencies. An
advantage of this approach is that each component can be analyzed separately, thereby

revealing what periodicities actually drive stock return predictability[]

3.1 The advantages of wavelets

A drawback of classical Fourier analysis is that a signal is assumed to be homogeneous
over time (Crowleyl 2007). The sine and cosine functions do not fade away and are
constant over time, which is problematic when “the signal shows a different behaviour
in different time periods or when the signal is localized in time as well as frequency”
(Ruay, 2011, p. 668). As further explained by |Crowley (2007, p. 209), a refinement of
standard Fourier analysis is windowed Fourier analysis that relaxes the assumption of

no variation over time by transforming “short segments of the signal separately”. How-

"It is beyond the scope of this paper to give an in-depth introduction to wavelets. For excellent
introductory textbooks on wavelets I refer to |Percival and Walden| (2000]) and |Gengay et al.| (2001]).



ever, with this adjustment one simply splits different parts into respective sums of sine
and cosine functions. So, the windowed Fourier transform “will not be able to revolve
events when they happen to fall within the width of the window” (Gengay et al., 2001, p.
2). To sum this point up: standard Fourier analysis is able to detect different frequen-
cies that are present in a time series, however, it does not provide information on when

these oscillations change in the time domain, see Housworth et al.| (2019) for an example.

To overcome this shortcoming, a different set of basis functions has to be applied. Rather
than sine and cosine functions one needs to use wavelet functions. Wavelets are a fur-
ther refinement of Fourier analysis, as they have finite energy over a compact set and
provide a better resolution in the time domain. The wavelet transform gives up some
frequency resolution in order to gain insights on events that are local in time (Gengay
et al.l 2001). Wavelets localize a signal both in frequency and time. This is especially
helpful as many financial and economic series are non-stationary and exhibit structural

breaks, instabilities, and volatility clusters (Faria and Verona, 2018b)).

A disadvantage of discrete wavelet transform (DWT) is that it is restricted to a dyadic
sample size of 2/ with j being a number from the set of positive integers. Therefore,
rather than applying DW'T many articles use maximum overlap discrete wavelet trans-
form (MODWT), which is free of sample size restrictions. Recent examples of articles
that apply MODWT are Kang et al|(2017), Faria and Verona| (2018a), Risse| (2019)). I
follow this literature. The MODWT MRA is explained in the next sectionﬁ

8The description mainly follows [Percival and Walden| (2000, Section 5).
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3.2 Multiresolution analysis

A MODWT MRA applies two different types of filters, namely a MODWT wavelet filter

and a MODWT scaling filter. The MODWT wavelet filter must satisfy three properties:

T
)

L—-1 0o
- - 1 -~
h; =0, l§_oj h? = 3 and § hyhy o, = 0. (5)

l=—0c0

N
Il
=)

Hence, the filter must sum to zero, have energy of %, and is orthogonal to even shifts.

Similarly, a MODWT scaling filter must satisfy the properties:

L—-1 L—1 1 00
- 2 _ 1 o B
D=1 Y gi=5  and Y GG =0, (6)

where L is the width of the filter. The last property in (5) and (6) holds for all nonzero
integers n. The MODWT wavelet filter and MODWT scaling filter are defined as
hy = Wy / V2 and § = g / V2. Hereby, h; and g; are the wavelet filter and scaling fil-
ter. As an example, the Haar wavelet filter has a width of L = 2 and is given by
ho = 1/4/2 and hy = —1/+/2. Additionally, the Haar scaling filter is given by go = 1/v/2
and g; = 1/4/2. The relationship between MODWT wavelet and MODWT scaling filter

is §i = (=1)"hp 1.

Definitions (5) and (6) refer to scale 1, namely El,l = Iy and g1y = G- The idea
of MODWT is to decompose a series into components that capture different scales.
Therefore, the connection between wavelet and scaling filter and MODWT wavelet
and scaling filter has to be extended to different scales. Generally, for different scales
j we have ;Lj,l = hj7l/2j/2 and g;; = gj7l/2j/2. Each of the filters has a width of

;= (27 —1)(L — 1) + 1, see |Percival and Walden| (2000, p. 169) for further details. As

1
s h272 = =3 and

N[ =

an example, the Haar wavelet filter of scale j = 2 is hog = %, ha1 =

ha 3 = —%. The respective MODW'T Haar wavelet filter is given by ilg}o = %, l~12,1 =

I

IS,
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hao = —i, has = —%. Similarly, the (MODWT) Haar scaling filter of scale j = 2 is

g0=""=g23=7% (Goo=""=do3= 1]

Let me clarify this with an example. Suppose we want to split a series into J = 2
transitory components and one persistent component. Then, for a time series {z;}7_,

we can apply the scale j = 1 and scale j = 2 MODW'T Haar wavelet filters to obtain:

1 Ty — Tg—1 2 Ty + Tp—1 — Tg—2 — T—3
) =22, P = . . (7)

Similarly, we can apply the scale j =2 MODW'T Haar scale filter:

p(2) _ T +Ti—1 + T2 + T3

t ; 3)

tgl) and t§2) are transitory components, whereas p§2) is a persistent component. It is

easily verifiable that x; can be decomposed into a sum of transitory and persistent

components of different scales:

ve=1" + 47 +p?. (9)
This example is similar in spirit to the one provided in Ortu et al.| (2013) and [Bandi
et al.| (2019b)), and can be extended for any J > 2. However, a problem of this simple
approach and discrete wavelet transform in general is that the sample size has to equal

T=2/ observations@

To make this procedure practicable for any sample size I apply MODWT. The so called

9The wavelet filter and scaling filter are as well known as mother wavelet and father wavelet.
10See footnote 6 and Appendix B in |[Ortu et al.| (2013).
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wavelet and scaling coefficients of level j are defined as:

L-1 L-1
Wi = E P11 mod T Vit = E 91Tt~ mod T (10)
=0 1=0

where mod is the modulo operator, see Percival and Walden| (2000} p. 30). The modulo
operator is needed to estimate the wavelet and scaling coefficients at the boundary of
the sample. Two natural boundary conditions are to either assume that observations
are “periodic” or that one should “reflect” the time series (Gengay et al., 2001, Section
4.6.3). The former takes observations from the beginning of the sample to finish com-
putations (z1,x2,...), whereas the latter takes the last observations (...,xp_1,z7). I

follow |[Kang et al.| (2017) and Faria and Verona (2018a) and reflect data at the boundary.

In matrix notation the wavelet and scaling coefficients can be written as:
Wj = ij, VJ = V}'l‘, (11)

where Wj and f/] contain the circularly shifted versions of periodized jth MODWT
wavelet and scaling ﬁltersﬂ Finally, the level j detail and smooth are defined as:
D, =WIW;,  S;=V]IV, (12)

J

A nice property of MODWT MRA is the MODWT additive decomposition:
J
=Y Dj+85y, (13)
j=1

where D1,..., D; are the wavelet details and S is the wavelet smoothE So, the origi-

nal series can be decomposed into parts that all represent different timescales. The sum

1T refer to [Percival and Walden| (2000) for further details on the construction of the matrices.
2As an example, for j = 1 the time series can be decomposed as x = D1 + S1 = Wle + VlT Vi.
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of the respective components adds up to the original time series. The wavelet details

and the wavelet smooth are computed with the pyramid algorithm of |Mallat (1989)@

The different timescales can be related to certain frequency-bands (Percival and Walden,
2000, pp. 96-100). An equivalent filter for the level j detail approximates a band-pass
filter with a pass-band given by [1/2/%1 1/27]. Similarly, the equivalent filter for the
level .J smooth approximates a low-pass filter with a pass-band given by [0,1/27F1].
The inverse of the pass-band frequencies gives the approximate periodicities that are
captured by the respective timescales. Hence, the level j detail reflects all movements
with periodicities between 2/ and 27+, whereas the level .J smooth captures oscillations
greater than 271! periods. As an example, this means for monthly data and J = 6
that D; captures periodicities between 2 and 4 months, that Dg represents oscillations

between 64 and 128 months, and that Sg captures periodicities greater than 128 months.

So far I have only explained the Haar wavelet with a width of 2. However, there are
several other wavelets like Daubechies, Coiflets, Least Asymmetric, or Fejér-Korovkin
wavelets that have different widths and forms. Actually, the choice of wavelet and scal-
ing filter is not that important for MODWT compared to DWT. (Gencay et al.| (2001,
p. 144) write the following: “because of its added correlation between adjacent wavelet
coefficients, the choice of wavelet function is not as vital when using the MODWT to
decompose a given time series”. I show in the Online Appendix that results are ro-
bust with respect to the choice of wavelet. In the main text I always apply the Haar
wavelet and Haar scaling filter. This choice is well in line with the literature, see, Ortu

et al.|(2013); | Xyngis| (2017); |Faria and Verona (2018al)); Risse| (2019); Bandi et al.[ (2019a).

Figure 1 presents a level J = 6 multiresolution analysis for MA(1,9). As explained

131 use the R package waveslim and the function mra to carry out the multiresolution analysis.
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before, the sum of the seven parts Dy, ..., Dg, S¢ equals the original time series. The
MODWT MRA decomposition of the technical indicator reveals dynamics that are not
visible in the aggregated series. While the original series is either 0 or 1, the respective
components show pronounced time-variation in the levels. As an example, Dy approx-
imates periodicities between 32 and 64 months, having its lowest values in 1974:2 and

2008:7 during the oil crisis and global financial crisis.

4 Empirical results: statistical significance of forecasts

The standard linear predictive regression model is:
re = oG+ Bigrii1 + e, (14)

where r; is the log excess return in period ¢, z;;—1 is a lagged predictor, and ¢ is the
error term. To generate out-of-sample forecasts I split the sample into an in-sample part
of M periods and an out-of-sample part of T'— M periods. For the one-month ahead
forecast, 7; p4+1, the investor uses data up to time M to estimate &; s and BZ M- This
is exactly the situation of a professional forecaster who estimates parameters based on
the most recently available information. For the second forecast the investor updates
information and reestimates the regression with data up to M + 1. In this recursively
expanding manner I estimate forecasts for each of the 28 predictors and M + 1,...,T

periods.

Following Rapach et al. (2010), I combine individual forecasts to “combination fore-

casts”. To do so, I weight individual forecasts with 1);; to compute a weighted average:

N
Tettl = Z Vi tFi 441, (15)
i—1
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where the sum of weights equals one. In the simplest case I equally weight the N
individual forecasts. Additionally, I weight predictors by the mean squared prediction
error from previous forecasts. The estimated weights depend on the interval over which
the past performance is evaluated. I focus on a relatively short evaluation period of 12

months to allow for sufficient time-variation in the weightsE The weights are:

¢‘—1 h—1 )
iy = ﬁ Bje =3 O (ri—s — Pjas)?, (16)
J=1"%jt s=0

and h is the holdout period. Similar to |Stock and Watson (2004) I allow more recent
and more distant squared prediction errors to have a different impact on the weights.
For 68 = 1 all squared errors are weighted equally, whereas for # < 1 more distant periods
are discounted. I show results for h = 12 and discount factors of = 1 and 6 = 0.9[19]
Forecasts from the sophisticated models are compared to the historical mean. Among
others, Campbell and Thompson| (2008) and Welch and Goyal (2008) show that this
natural benchmark cannot be consistently outperformed by economic variables. The

one month ahead forecast from this model is 741 = %Z;Zl Tj.

4.1 Forecast evaluation: out-of-sample R?

Campbell and Thompson| (2008) propose an out-of-sample R? statistic that is comparable

with the in-sample R? statistic. The statistic is computed as

T A
> i nagr (1o — 71)?

T _
Zt:Mﬂ(Tt —7¢)?

Rig=1- , (17)

where 7; is the log excess return on the S&P 500 index, #; is the prediction from the

preferred forecasting model, and 7; is the historical mean. A positive RQO g indicates that

'4This is in contrast to[Rapach et al.| (2010) who consider a holdout period of 40 observations. I choose
a shorter evaluation period as scale specific predictability potentially varies stronger over time.

15For weights with a holdout period I generate the first out-of-sample forecast for period M + 1 — h
rather than M + 1. The weights then are estimated based on the forecasting performance in periods
M+1—h,...,M. So, the evaluation period remains M + 1,...,T.
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the predictive regression model has lower average mean squared prediction error than
the naive benchmark.

I present results relative to the historical mean, therefore I apply the |Clark and West
(2007) test for nested models. The null hypothesis is that the data are generated by the
constant-only model. |Clark and West| (2007) suggest adding an adjustment term to the

difference in squared prediction errors to test the null. The adjusted MSFE series is:
dy=ei,— [e3,— (v —7—1)?] t=M+1,...T, (18)

with e; ¢ = r, — 7 and ey = ry — ;1. Clark and West| (2007) propose to regress Jt
fort =M +1,...,T on a constant. The t-statistic of the constant then is the MSFE-
adjusted statistic. I follow Neely et al. (2014) and use the usual least squares standard
errors. The null hypothesis of the MSFE-adjusted statistic is equal forecast accuracy

and the one-sided alternative is that the preferred model outperforms the historical mean.

It is important to mention that one can still reject the null in favor of the one-sided
alternative even if the Rzo g value is negative. Even though this seems counter-intuitive,
it is possible when comparing nested models. Let me explain the logic behind: under
the null of no predictability the historical mean is expected to generate a smaller MSFE
than the more sophisticated model. This simply results from the introduced noise in the
larger model, thereby inflating MSFE. The more parsimonious model “gains efficiency
by setting to zero parameters that are zero in population” (Clark and West, 2007, p.
292). The MSFE-adjusted statistic accounts exactly for the fact that we expect a nega-
tive difference between MSFE of the historical mean and MSFE of a larger model under
the null. Therefore, one can still reject the null that the parsimonious model generates

the data even if the R2O g is negative@

16See footnote 21 in [Neely et al.| (2014)) for further information on this point.
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Table 2 presents results of RQOS statistics for out-of-sample forecasts from 1966:1 to
2017:12. Column (1) depicts the respective predictor and column (2) shows results for
the unadjusted series. In line with Welch and Goyal (2008), I find that most economic
variables have a negative R% g statistic, even though the null of no predictability is re-
jected for RVOL, TBL, LTY, LTR, and TMS. The last three rows in Panel A show results
for combination forecasts. CF-ECONMEAN is the simple average of the 14 individual
economic forecasts and CF —ECONXLEIIG (CF-ECONX‘;%S’ ) is the weighted combination
with # =1 (# = 0.9). Similar to |[Rapach et al.| (2010), I find that combination forecasts
significantly outperform the benchmark and that results are robust with respect to the
choice of combination technique. An R% g of 1.11% appears small but in light of the large
unpredictable component in monthly stock returns an RQOS of 0.50% already amounts

to a large increase in portfolio returns (Campbell and Thompson, [2008).

Columns (3) to (5) present results for the frequency-decomposed components of the
predictors with an MODWT MRA of length J = 6. The number of overall compo-
nents is reduced from seven to three by aggregating multiple timescales, see |Ortu et al.
(2013); Kang et al.| (2017); Faria and Verona (2018b); Bandi et al. (2019a) for similar
approachesm I construct a high-frequency part as Dy = Dy + D2 + D3, a medium-
frequency component as Dy; = D4 + Dy, and a low-frequency series as Dy, = Dg + Sg.
In terms of periodicities, Dy approximately captures cycles between 2 and 16 months,
Dy approximates periodicities between 16 and 64 months, and Dy, captures oscillations
that exceed 64 months. Hence, D), represents fluctuations at the short-to-medium end

of the business-cycle.

The RQOS statistic does not reveal a general underlying pattern in the predictability

" This is analogous to isolating fluctuations in specific frequency bands with band-pass filters. Results
for the individual timescales are shown in Table A.1 of the Online Appendix.
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of economic variables that is specific to certain frequency bands. Even though there is
some evidence of frequency-specific predictability, like for TBL and LTY in timescales
Dy and Djy, the overall evidence is rather poor. However, the combination of frequency-

decomposed forecasts reveals that the predictability only stems from Dj;.

The picture is clearer for technical indicators. Interestingly, all of the predictability
comes from timescales Dj; without any evidence of predictability from the remaining
components. This finding holds true for each of the 14 technical indicators in the sample.
Even though it can be rejected that data are generated from a parsimonious model, the
improvements in terms of reduced MSFE are still rather poor. The picture is the same
for combined forecasts from technical indicators and from all predictors taken together.
The best result is achieved for CF-ALLMEAN " amounting to an RQOS of 1.64% for Dy,
thereby almost doubling compared to forecast combinations from the unadjusted series
(Basic). I conclude from these first results that most of the predictability comes from

cycles with a length of 16 to 64 months.

4.2 Forecast performance and the business-cycle

The forecast performance of a model can heavily fluctuate over time and positive values
for the R} statistic can easily be driven by a few outliers. Following Welch and Goyal
(2008)), I plot the differences in cumulative squared forecast errors (CDSFE) between
two models to gain further insights on the potential determinants of predictability and

the relative performance over time. The CDSFE in period t is estimated as:
t
CDSFE, = »  (rj —75)* = (r; — ;)% (19)

j=M+1

A consistently upward-sloping line would mean that the historical mean is outperformed

in each and every period. However, this is in stark contrast to what is documented in
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empirical studies. |Welch and Goyal (2008)) show that predictability of economic vari-
ables is heavily driven by the 1973-75 oil shock. Even further, performance relative to

the historical mean is extremely unstable and rather poor in the last 40 years.

Figure 2 shows CDSFE plots for selected variables. The plot for TBL nicely depicts
the critique by [Welch and Goyal| (2008). In the 1970s TBL pronouncedly outperforms
the historical mean during NBER-dated recession periods. Since then, TBL has mainly
underperformed the benchmark. This is particularly visible in the last two recessions.
Similarly, the solid black line for CF-ECONMEAN shows that combination forecasts from
medium frequencies of economic variables performed extremely well in the 1970s and
1980s but since then they performed rather poor.

CDSFE plots for the technical indicators as well as for the combination forecasts CF-
TECHMEAN and CF-ALLMEAN depict a different picture. Even though the basic models
for MA(1,9) and VOL(2,9) perform better than their medium frequency counterparts,
one can clearly see that the latter ones perform especially well during the 2008 financial
crisis. Even more, most of these models have performed extremely well during the crises
in the 1970s and 1980s, as well as during the dot-com crash. The only exception is the
early 1990s recession, where no model was able to beat the historical mean. Hence, the
figures motivate a strong relation between predictability and the state of the economy. In
the next section I formally test whether return predictability depends on business-cycle
expectations. If this is the case, then an investor can potentially improve forecasts by

taking this dependence into account.

4.3 Testing dependence between current predictability and

business-cycle expectations

Several studies document that return predictability is centered in NBER-dated recession

periods, with only weak or no evidence of predictability in expansions, see [Henkel et al.
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(2011); |Zhu and Zhu (2013); Rapach and Zhou (2013)); Baetje and Menkhoff] (2016)).
Thus, if it is possible to accurately forecast recessions then these forecasts are also good
candidates for periods with predictability. Forecasting recessions on its own is a difficult
task but some advances have been made in the past, see Estrella and Mishkin (1998);

Kauppi and Saikkonen| (2008); |[Liu and Moench| (2016) and references therein.

I use the parametric probit model of |Liu and Moench| (2016 to predict recessions one-
month ahead. The authors identify a model with the term spread, the term spread
lagged by six months, and the one-year growth rate in the S&P 500 index to perform
best in predicting recessions at the three-month horizon@ Let 3 be a binary variable
that equals 1 for NBER-dated recession periods and 0 otherwise. The probit model is:

SP;_1 — SPt—13>
SP;_13 ’

yr = ® (0o + 61 TMS;—1 + 62TMS;_7 + 03 (20)

where SP is the monthly return on the S&P 500 index and TMS is the term spread. Let
the one-month ahead forecast for the probability of a recession be given by p;. In order
to classify p; into a binary variable with 1 for recession and 0 for expansion one needs
to specify a threshold level 8. For p; > 6 a recession is predicted, g = 1, and for p; < 0

an expansion is predicted, g; = 0.

The threshold level 8 is a critical choice as it determines the amount of predicted reces-
sions. I make use of the Youden index to estimate the optimal cut-point in discriminating
between the binary outcomes. The Youden index is a commonly applied evaluation cri-

terion that is defined as the difference between the true positive ratio (TPR) and false

18Fven though the forecast horizon differs, this model performs well in forecasting one month ahead.
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positive ratio (FPR) (Youden, 1950). TPR and FPR are:

T 1 T

1
TPR(A) = — ) I, FPR() = — > It 21
0= 2 0=t (21)
where ng is the number of recession periods (y; = 1) and ng is the number of expan-

sionary periods (y; = 0) in the sample. I'* and If'¥ are indicator functions that equal

1 for correctly and falsely predicted recessions, respectively:

1 ifyy=1and gy =1, 1 ifyy=0and gy =1,
[ _ TP (22)

0 otherwise, 0 otherwise.

I select the optimal threshold level 6* from an evenly spaced grid of 101 candidate values

G ={0,0.01,...,0.99, 1}:
0 = arg max TPR(#) — FPR(6). (23)
€

For the out-of-sample exercise I estimate the optimal threshold and forecast for each pe-
riod from 1966:1 to 2017:12, covering a total of 624 months.m The resulting one-month
ahead recession forecasts are shown in Figure A.1 of the Online Appendix. During this
period the NBER has classified 90 months as recessions and the probit model has fore-
casted 131 recession periods. From the 90 months of actual recessions the model has

correctly forecasted 76 months.

Next, I formally test the hypothesis that current predictability is related to expecta-
tions on the business-cycle. Rather than using NBER-dated recession periods I utilize
forecasts from the probit model. The reason for this is that recession forecasts are readily

available for an investor in real-time, whereas NBER-dated recession periods are classi-

YNBER business-cycle data become available with an announcement delay. Thus, I only use infor-
mation up to y:—24 to estimate the regression parameters do, d1, d2, and 3
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fied with a delay. More formally, I test whether the difference in squared forecast errors
is related to expectations about the state of the economy@ I follow Wang et al.| (2018])
and apply the test of Pesaran and Timmermann! (2009)). While they test for “momentum
of predictability”, I test whether predictability depends on business-cycle expectations.

Let ¢p; be a binary variable that identifies periods of current predictability:
epe =1[(ry — #)% — (e — 7)) < 0). (24)

I[.] as an indicator function that equals 1 if the squared forecast error of the preferred
model is smaller than the squared forecast error from the historical mean, and 0 other-

wise. The idea now is to test whether ¢p; depends on business-cycle forecasts:
pr = ¢+ VG + uy. (25)

The test of independence is equal to testing v = 0. I apply the dynamically augmented
reduced rank regression approach of Pesaran and Timmermann| (2009) to test the null
of independence. This test allows for serially correlated observations, a point that is

especially present in business-cycles.

Panel A in Table 3 shows p-values for the null hypothesis that current predictability
of a forecast model is independent of business-cycle expectations from the probit model.
The null can be rejected for six of the 14 basic economic variables. Even further, the null
is rejected at the 10% level for eight low-frequency components of economic variables.
Contrarily, neither the unadjusted nor the frequency-decomposed technical indicators

show any evidence of dependence between predictability and expectations.

20Tn Figure A.2 of the Online Appendix I show boxplots of (r; — #)? — (ry — 7¢)? for the 14 medium-
frequency components of the technical indicators (Das). The difference in squared forecast errors is
centered around zero with outliers both to the left (Das performs better) and the right (historical mean
performs better). I test whether points on the left side of the distribution depend on business-cycle
expectations.
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A potential explanation for the weak evidence of dependence is the definition of cp;.
The variable takes a value of 1 no matter whether the predictor marginally or substan-
tially outperforms the benchmark. To account for this shortcoming, I redefine current

predictability as:

cp?IGH =1I[(r, — ?215)2 — (ry —7)% < —IQR x 1.5], (26)

where IQR is the interquartile range. So, I assign a value of 1 only to points that are
outliers. According to this new definition, I test whether periods with a pronounced
forecasting improvement depend on business-cycle expectations. This rules out that the
dependence is hidden under marginal forecasting improvements unrelated to the state
of the economy.

Panel B in Table 3 presents results for the alternative definition. The null of inde-
pendence now is rejected for 12 medium-frequencies of technical indicators; 9 of the
indicators even reject the null at the 1% level. Interestingly, especially the performance
of moving average strategies and volume strategies depends on expectations. Combina-
tion forecasts for the technical indicators strongly reject the null, whereas combination
forecasts from the economic variables and all predictors taken together only weakly reject

the null.

4.4 Nonlinear forecasting model

I have shown that forecasting gains for technical indicators are especially pronounced
when a recession is expected. In a next step, I run a pseudo out-of-sample exercise that
incorporates this dependence. More precisely, I propose a nonlinear model that selects

between the historical mean and the sophisticated model depending on the expected
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state of the economy one-month ahead. The nonlinear model is:

Per1 if g1 =1
7"5]+L1 = (27)
Teyr i g1 =0,

and nests both the linear regression model (g;4+1 = 1 for all ¢) and the historical mean
(Jt+1 = 0 for all t). An investor that applies this model estimates in each period the
probability of a recession one-month ahead and decides whether a recession is expected
or not. If the investor expects a recession, then the sophisticated model is used, other-
wise the historical mean is selected. This mimics the real-time situation of an investor
that incorporates the empirical finding of state-dependent predictability in a forecasting
model.

Table 4 shows how the R% 4 statistics are affected when switching to the nonlinear fore-
casting model. Columns (2), (4), (6), and (8) repeat estimates from Table 2, whereas
columns (3), (5), (7), and (9) state results for the nonlinear approach. As an example,
the R% ¢ for the medium-frequency component of MA(1,9) changes from -2.16% for the
linear model to 2.71% for the nonlinear model. The nonlinear models that select be-
tween medium-frequencies of technical indicators and the historical mean perform well.
For each of the 14 indicators the RQO g is significant at the 5% or 1% level, with sizable
gains compared to Basic and Dj;. For the combined forecasts the RZO g increases from
0.45% (Basic) to 1.98% (DYF). The improvements do not translate to economic vari-
ables (Panel A) or to combination forecasts from all predictors taken together (Panel

C); this is in line with Table 3.
Figure 3 presents CDSFE plots for MA(1,9) and CF-TECHMFAN | The patterns of the

CDSFE plots for D]III/IL show high similarity among the different indicators. Throughout

the 1970s and 1980s the plot behaves almost like a step function, with jumps in expected
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recessions and horizontal movement otherwise. From the mid-1980s to the end of the
1990s no gains were realized. More recently, the models outperformed the historical
mean in the dot-com crisis and especially in the global financial crisis, resulting in the

largest jump in the last 50 years.

5 Empirical results: economic significance of forecasts

So far I have only presented statistical measures of predictability. This does not nec-
essarily imply that an investor would have benefited economically from a forecasting
model. In this section I explain two economic measures of forecast evaluation, namely
the gain in certainty equivalent representation (AC'ER) and the gain in Sharpe ratio
(ASR). The former computes the increase in average realized utility and the latter states
the ratio between reward-to-variability. |(Cenesizoglu and Timmermann| (2012) show that
R2OS, ACFER, and ASR are only weakly correlated.

I follow Ferreira and Santa-Clara (2011) and Rapach et al.| (2016) and perform an asset
allocation exercise to estimate the economic significance of a forecasting strategy@ 1
consider a mean-variance investor that allocates wealth between the S&P 500 index and
the risk-free rate based on forecasts from a predictive regression model. The maximiza-

tion problem at the end of period t is:

HZJ%XU(TM—H) = Ei[rpt+1] — %Vart(rp,tﬂ) (28)

St Tpip1 = WiTig1 + 7{+1’ (29)

where U (-) is utility and 7,11 is the portfolio return. The investor decides on the share

of wealth, wy, that is allocated to the risky asset. Solving the maximization problem,

2In this section I use excess returns rather than log excess returns.
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the optimal weight assigned to the risky asset at the end of period ¢ is:

«_ 1 Ey(ra)

= , 30
K ’YVal"t(TtH) ( )

where Fy(ri+1) and Vary(ry41) are the conditional expectation and the conditional vari-
ance of excess stock returns. + is the coefficient of relative risk aversion and r{ 41 1s the
risk-free rate between period t and ¢ 4+ 1. The conditional expectation is estimated by
the respective forecasting model, F¢(ri+1) = 7t+1. Following |Campbell and Thompson
(2008)), T estimate the conditional variance, Var;(r;4+1), as a rolling five-year window.
Portfolio weights on stocks are constrained to lie between 0% and 150% to prevent
shorting stocks and leveraging more than 50%. ~ is set to 5, and the optimal portfolio
return is given by rp ;11 = wirep1 + 7“{ +1- The average realized utility level (or certainty
equivalent return (CER)) is o = i — 362, where fi and 62 are the mean and variance of
7p1+1- The CER can be interpreted as “the fee the investor would be willing to pay to
use the information in each forecast model” (Ferreira and Santa-Clara, 2011, p. 527). It
can also be interpreted as the risk-free rate that an investor is willing to accept in order

not to adopt the risky portfolio (DeMiguel et al., [2009)).

Suppose that the investor wants to compare two different forecasting models ¢ and j
with excess return forecasts f% 41 and 'Ff +1- Then the optimal portfolio weights are

w*,i

and w*7 and the respective average realized utility level is o' = ¢ — %&Q*i and
0= p - %&Q’j. Then the difference in CER is ACER = ¢’ — %/, which is the fee an
investor would be willing to pay to use model ¢ rather than model j. I multiply ACER

by 1,200 so that it can be interpreted as “the annual percentage portfolio management

fee” that an investor would be willing to pay (Neely et al., 2014} p. 1788).

I as well estimate the Sharpe ratio (SR). SR is the mean portfolio return in excess
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of the risk-free rate divided by the standard deviation of the excess portfolio return.

SR =

Qs

, where i and ¢ are the mean and standard deviation of the excess portfolio
return over the out-of-sample period. The annualized gain in SR of model i relative to
model j then is ASR = v12(SR; — SR;).

To measure the statistical significance of ACER and ASR I separately estimate p-values
for the null hypotheses CER; — CER; < 0 and SR; — SR; < 0. I calculate p-values
according to the bootstrap approach described in |DeMiguel et al.| (2013)). For two port-
folios i and j, I obtain B=5,000 pairs of (excess) portfolio returns for CER (SR) by
resampling with replacement from the observed portfolio returns. Each of the B pairs
is of size T'— M. To account for cross-correlation I resample pairs of (r;; H,r;’z 1)
Additionally, I resample blocks of observations to control for potential autocorrelation.
The length of each block has a geometric distribution with an average block length of

five observations, see Politis and Romano (1994)@

For the b =1,...,5,000 bootstrap samples I estimate ACER, and ASRy:

1

N Y WV 9 /j
ACER, = (ji,— 267") — (B — 2677),  ASR, =1t b (31)

whereby ,&Z, ﬂg, &2, &Z (ﬂé, ﬂg, 6};, &g) are the means and volatilities of the resampled

(excess) portfolio returns. Then, the respective p-value is:

B B
1 1
z = = E < PSR = — E I[A <0]. 2
PCER B £ I[ACER(, S 0], PSR B £ [ SRb S 0] (3 )

The alternative is accepted for sufficiently small values of pogpr and psg.

22For example, |Goetzmann and Jorion| (1993) and [Maio and Santa-Claral (2012) have a fix block length
of 1, whereas [v. Binsbergen et al.| (2012) show results for an average block length of 1,5, and 15 months.
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5.1 Results for ACER and ASR

Table 5 presents the annualized difference in CER relative to the historical mean. Similar
to results from the previous section the unadjusted economic variables generally perform
poor. Exceptions are TBL, LTY, and TMS with utility gains of 180, 165, and 179 basis
points. However, only TBL is significant at the 10% level. Combination forecasts of
the unadjusted series generate significant gains, amounting to increases in the range of
170 to 190 basis points. Interestingly, each of the 14 technical indicators has a positive
utility gain, with a maximum of 267 basis points for MA(2,12). An investor would be
willing to pay a sizable annual fee to have access to this model. Nonetheless, the gains
are well below those of the medium-frequency components.

Column (6) shows utility gains for forecasts from medium-frequency components. A
comparison between columns (2) and (6) highlights that medium-frequency components
generate sizable utility gains. For nine technical indicators the utility gains are larger
than 300 basis points, with the largest gains amounting to 446 basis points for VOL(1,12).
Contrarily, only three unadjusted indicators generate gains above 200 basis points, with

none exceeding 300 basis points. Results for each of the 14 technical indicators improve.

Moreover, utility gains for combination forecasts increase when switching from base-
line predictors to medium-frequencies. Panels B and C show that ACER more than
doubles for technical indicators and for all predictors taken together. Taking the av-
erage of the 28 individual forecasts provides a gain of 431 basis points. The CER for
the historical mean is 434 basis points; thus the utility gain is almost twice as large. A
buy-and-hold investor that passively holds the market portfolio realizes a ACER of 83

basis points, well below gains from the more sophisticated models.

I have shown in Section 4 that the nonlinear models improve RQOS statistics for the
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medium-frequency parts of technical indicators. This is not the case for ACER. A com-
parison between columns (6) and (7) reveals that the nonlinear model does not generally
boost utility gains. Hence, the additional estimation of business-cycle expectations is
not necessary for improving economic measures of predictability. The only step that has
to be carried out is to isolate medium-frequency parts of technical indicators; thereby

capturing the short-to-medium end of business-cycle oscillations.

Table 6 reports results for the annualized gains in Sharpe ratio. The picture is qualita-
tively the same as for ACER. Results for combination forecasts generally improve when
using frequency-decomposed predictors, resulting in more than twice as large Sharpe
ratios for technical indicators when comparing columns (2) and (6). The SR for the
historical mean is 0.28 and the ASR of a buy-and-hold investor is 0.12. The largest

ASR is 0.35 for the medium-frequency component of VOL(1,12).

5.2 Portfolio weights over time

To understand what exactly drives the gains in ACER and ASR, I present the optimal
shares of risky assets over time. The difference in w; among forecasting models results
from varying conditional expectations of one-month ahead excess stock returns. Figure
4 shows forecasts from the historical mean (solid gray line), the combination of unad-
justed technical indicators (solid black line), and the combination of medium-frequencies
of technical indicators (dashed black line). While the historical mean is a slow moving

object with mild time-variation, the combination forecasts show pronounced movements.

A clear pattern can be detected for Djys. A negative equity premium is predicted at
the beginning of a recession and a large positive premium is predicted towards the end
and directly after a recession. This finding is in line with [Dangl and Halling| (2012]);

they as well document that the predicted risk premium peaks towards the end of the
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recession as investors become more risk-averse. They interpret their results as follows:
“Thus, we conclude that predictability reflects business cycle risk rather than market
inefficiency. Therefore, it is also not surprising that predictability is not driven away
over time” (Dangl and Halling, 2012, p. 169). As an example, in the beginning of the
1973-75 oil crisis and the 2008-09 global financial crisis the model predicts negative ex-

cess returns, followed by large positive excess returns directly after the recession.

Figure 5 presents the optimal weights of risky assets over time. The equity exposure of
the historical mean portfolio rapidly shrinks during the crises of the 1970s and during
the more recent financial crisis. However, the equity weights always remain above 40%
and are rather persistent with long lasting episodes of increases and decreases. Contrar-
ily, the weights from combination forecasts of medium-frequencies of technical indicators
show substantial fluctuations. The weights often change from 0% to 150% within a few
years and vice versa. This pattern is most salient around recessions. At the beginning
of a recession the equity weights either run down rapidly or are already close to zero.
A few months later the exposure then again is build up at the end of or shortly after a
recession. The large time-variation in equity weights together with the sizable gains in

ACFER and ASR reveals an excellent market timing.

6 Robustness

In this section I show that the gains in CER and SR are robust with respect to transaction
costs. Additionally, I outline that results remain qualitatively unchanged for several
alternative specifications, like different wavelet and scaling filters.

6.1 Performance after transaction costs

So far, I have not taken transaction costs into account. Unfortunately, this holds true

for many studies on the economic significance of forecasting models, see, among others
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Rapach et al. (2010), Ferreira and Santa-Clara (2011)), Dangl and Halling| (2012), Rapach
et al| (2016). This is problematic as both economic variables and technical indicators
generate higher monthly turnovers (Neely et al.,2014). Hence, ignoring transaction costs
results in positively biased values for ACER and ASR. Here, I focus on CF-TECHMEAN

and only show adjusted results for this specific strategyﬁ

Suppose that an investor has an initial wealth of $1 at the beginning of period ¢, then
the wealth at the end of period t+1is Wiy =1 +r{+1 +wjrey1, and the wealth in risky
assets is Wi, = w;j(1+ r{H + 7¢+1). At the end of period ¢ + 1 the investor estimates
the optimal share of risky assets for the next period and the new target level of wealth;
given by Wt:il = wy 1 Wiy1. So, the investor has to make adjustments in risky assets of
WL, — W&, |. The percentage of wealth traded at the end of period ¢ + 1 (denoted as
turnover) then is:

Wiy — Wil |

33
Wi (33)

Turnoveryy; =

whereby the numerator equals the adjustment in risky assets and the denominator equals
the amount of total wealth at the end of period ¢+ 1. Following DeMiguel et al. (2009)), I
assume that the investor has to pay a proportional transaction cost of ¢ on the turnover

in each period. Therefore, the return net of transaction costs is:

rgtcﬂ = (14+wjris1 + r{+1)(1 — ¢ x Turnovery11) — 1, (34)
in which ¢ x Turnovery;; is the transaction cost per unit of total wealth. I follow the
literature and fix the parameter ¢ to 0.005, which equals 50 basis points per transaction
(Balduzzi and Lynch, [1999). The cumulative wealth after accounting for transaction

costs then is WL = W% (1 + nggl).

238ee Section G of the Online Appendix for additional results.
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Figure 6 plots the log cumulative wealth for an investor that begins with $1 and reinvests
all proceeds. Results are shown for four different forecasting models. The historical mean
is depicted by the solid gray line. Clearly, this model performs especially poor during the
global financial crisis in 2008-09. The other three models show the log cumulative wealth
for CF-TECHMPAN | whereby wj is estimated according to the basic linear approach
(dashed gray line), the nonlinear approach with medium frequencies (dashed black line),
and the linear approach with medium frequencies (solid black line), respectively. Even
though all three models outperform the historical mean the frequency-decomposed fore-
casts perform best. Dj,; outperforms DJ\]\/[[L, implying that the combination of medium

frequencies not only adds economic value during recessions but during expansions as well.

The average turnover of Basic, DY, and Dy, relative to the average turnover of the his-
torical mean is 3.20, 2.75, and 4.11. This is in line with Neely et al. (2014) and highlights
that more sophisticated models often generate higher rates of portfolio rebalancing. The
differences in annualized CER relative to the historical mean, with respective p-values
(in %) in brackets, are 1.29 (14.00), 2.82 (0.88), and 3.30 (2.00). The annualized differ-
ences in SR for Basic, DY/*, and Dy are 0.08 (16.00), 0.21 (0.92), and 0.26 (1.60). Even
though the average turnover for Djs is higher than for Basic, both ACER and ASR

remain more than twice as large when accounting for transaction costs.

6.2 Further robustness checks

I present several additional robustness checks in the Online Appendix. Firstly, I show
in Section C that the results of the asset allocation exercise are robust with respect
to the choice of parameters. I repeat the analysis with the specification of [Rapach et
al. (2016), finding that the annualized utility gains improve even further in magnitude.

Secondly, I provide in Section D separate results for the out-of-sample forecasting horizon
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from 1990:1 to 2017:12. Thirdly, I repeat the analysis in Section E for frequency-specific
principal components. The main results translate from combination forecasts to principal
component analysis. Fourth, I show in Section F that alternative wavelet and scaling
filters leave results almost unchanged. Section G presents results after adjusting for

transaction costs.

7 Concluding remarks

This paper examines short-horizon predictability with frequency-decomposed predictor
variables. The set of predictors consists of commonly used economic variables and tech-
nical indicators (Rapach et al., |2010; |[Neely et al. 2014)). In contrast to previous work,
I do not analyze the original series but rather apply filtering methods to decompose
the predictor into components with specific periodicity. This approach allows for a more
nuanced view on equity premium predictability as the predictive power of some variables

potentially is hidden behind high-frequency noise or low frequency trends.

I document that fluctuations at the short-to-medium end of the business-cycle incorpo-
rate the relevant information for predicting excess stock returns. The predictive power
of technical indicators solely stems from periodicities of 16 to 64 months, without any
evidence of predictability from other periodicities. Furthermore, I present evidence that
the historical mean is mainly outperformed during recessions. This is in line with other
articles and further emphasizes the role of the business-cycle (Henkel et al., |2011; Ra-
pach and Zhou, 2013). The novel finding is that this state-dependent predictability is
better captured by medium-frequency oscillations in technical indicators rather than in

the original series.

The predictive power for technical indicators is both statistically and economically sig-

nificant. I show that the gains in ACER and ASR more than double for combination
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forecasts from medium-frequencies of technical indicators compared to combination fore-
casts from the original series. Surprisingly, results for economic variables do not improve
strongly. This extends the critique by Welch and Goyal| (2008) to frequency-specific parts
of economic variables. In this article I have only focused on short-horizon predictability,

leaving the field of frequency-decomposed long-horizon forecasts for future research.

References

Baetje, F. and L. Menkhoff, “Equity premium prediction: Are economic and techni-
cal indicators unstable?,” International Journal of Forecasting, 2016, 32, 1193-1207.

Baker, S. G. and B. S. Kramer, “Peirce, Youden, and the Receiver Operating
Characteristic Curves,” The American Statistician, 2007, 61 (4), 343-346.

Balduzzi, P. and A. W. Lynch, “Transaction costs and predictability: some utility
cost calculations,” Journal of Financial Economics, 1999, 52, 47-78.

Balvers, R. J., T. F. Cosimano, and B. McDonald, “Predicting Stock Returns in
an Efficient Market,” Journal of Finance, 1990, 45 (4), 1109-1128.

Bandi, F. M., B. Perron, A. Tamoni, and C. Tebaldi, “The scale of predictability,”
Journal of Econometrics, 2019b, 208, 120-140.

_, S. E. Chaudhuri, A. W. Lo, and A. Tamoni, “Spectral factor models,” Johns
Hopkins Carey Business School Research Paper No. 18-17. 2019a.

Baxter, M. and R. G. King, “Measuring Business Cycles: Approximate Band-Pass
Filters for Economic Time Series,” Review of Economics and Statistics, 1999, 81 (4),
575-593.

Berge, T. J. and 0. Jorda, “Evaluating the Classification of Economic Activity into
Recessions and Expansions,” American Economic Journal: Macroeconomics, 2011, 8
(2), 246-277.

Campbell, J. Y. and S. Thompson, “Predicting the equity premium out of sample:
Can anything beat the historical average?,” Review of Financial Studies, 2008, 21,
1509-1531.

Cenesizoglu, T. and A. Timmermann, “Do return prediction models add economic
value?,” Journal of Banking & Finance, 2012, 36, 2974—2987.

Clark, T. E. and K. D. West, “Approximately normal tests for equal predictive
accuracy in nested models,” Journal of Econometrics, 2007, 138, 291-311.

35



Crowley, P. M., “A guide to wavelets for economists,” Journal of Economic Surveys,
2007, 21 (2), 207-267.

Cujean, J. and M. Hasler, “Why does return predictability concentrate in bad
times?,” Journal of Finance, 2017, 72 (6), 2717-2758.

Dangl, T. and M. Halling, “Predictive regressions with time-varying coefficients,”
Journal of Financial Economics, 2012, 106, 157-181.

DeMiguel, V., L. Garlappi, and R. Uppal, “Optimal Versus Naive Diversification:
How Inefficient is the 1/N Portfolio Strategy?,” Review of Financial Studies, 2009, 22
(5), 1916-1953.

_, Y. Plyakha, R. Uppal, and G. Vilkov, “Improving Portfolio Selection Us-
ing Option-Implied Volatility and Skewness,” Journal of Financial and Quantitative
Analysis, 2013, 48 (6), 1813-1845.

Estrella, A. and F. S. Mishkin, “Predicting U.S. recessions: financial variables as
leading indicators,” Review of Economics and Statistics, 1998, 80 (1), 45-61.

Faria, G. and F. Verona, “Forecasting stock market returns by summing the
frequency-decomposed parts,” Journal of Empirical Finance, 2018a, 45, 228-242.

_ and _ , “The equity risk premium and the low frequency of the term spread,” Bank
of Finland Research Discussion Papers 2018b.

Ferreira, M. A. and P. Santa-Clara, “Forecasting stock market returns: The sum
of the parts is more than the whole,” Journal of Financial Economics, 2011, 100,
514-537.

Ferson, W. E., “Investment Performance Evaluation,” Annual Review of Financial
FEconomics, 2010, 2, 207-234.

Gengay, R., F. Selguk, and B. Whitcher, An Introduction to Wavelets and Other
Filtering Methods in Finance and Economics, Academic Press San Diego, 2001.

Goetzmann, W. N. and P. Jorion, “Testing the Predictive Power of Dividend
Yields,” Journal of Finance, 1993, 48 (2), 663—679.

Goyal, A., “Empirical cross-sectional asset pricing: a survey,” Financial Markets and
Portfolio Management, 2012, 26 (1), 3-38.

Granville, J. E., New key to stock market profits, New York: Prentice-Hall, 1963.

Henkel, S. J., J. S. Martin, and F. Nardari, “Time-varying short-horizon pre-
dictability,” Journal of Financial Economics, 2011, 99, 560-580.

Housworth, E. A., T. B. Walker, and C. Xu, “Structural asset pricing theory with
wavelets,” Quantitative Finance, 2019, 19 (10), 1659-1672.

36



Kang, B. U., F. In, and T. S. Kim, “Timescale betas and the cross section of equity
returns: Framework, application, and implications for interpreting the Fama-French
factors,” Journal of Empirical Finance, 2017, 42, 15-39.

Kauppi, H. and P. Saikkonen, “Predicting U.S. recessions with dynamic binary
response models,” Review of Economics and Statistics, 2008, 90 (4), 777-791.

Lettau, M. and S. Van Nieuwerburgh, “Reconciling the Return Predictability Ev-
idence,” Review of Financial Studies, 2008, 21 (4), 1607-1652.

Liu, W. and E. Moench, “What predicts US recessions?,” International Journal of
Forecasting, 2016, 32, 1138—-1150.

Ludvigson, S. C. and S. Ng, “The empirical risk-return relation: A factor analysis
approach,” Journal of Financial Economics, 2007, 83, 171-222.

Maio, P. and P. Santa-Clara, “Multifactor models and their consistency with the
ICAPM,” Journal of Financial Economics, 2012, 106, 586—613.

Mallat, S. G., “A Theory for Multiresolution Signal Decomposition: The Wavelet Rep-
resentation,” IEEE Transactions on Pattern Analysis and Machine Learning, 1989,
11 (7), 674-693.

Mele, A., “Asymmetric stock market volatility and the cyclical bevahior of expected
returns,” Journal of Financial Economics, 2007, 86, 446—478.

Neely, C. J., D. E. Rapach, J. Tu, and G. Zhou, “Forecasting the Equity Risk
Premium: The Role of Technical Indicators,” Management Science, 2014, 60 (7),
1772-1791.

Ortu, F., A. Tamoni, and C. Tebaldi, “Long-Run Risk and the Persistence of
Consumption Shocks,” Review of Financial Studies, 2013, 26 (11), 2876-2915.

Percival, D. B. and A. T. Walden, Wavelet Methods for Time Series Analysis,
Cambridge University Press, 2000.

Pesaran, M. H. and A. Timmermann, “Testing Dependence Among Serially Corre-
lated Multicategory Variables,” Journal of the American Statistical Association, 2009,
104 (485), 325-337.

Pettenuzzo, D., A. Timmermann, and R. Valkanov, “Forecasting stock returns
under economic constraints,” Journal of Financial Economics, 2014, 114, 517-553.

Politis, D. N. and J. P. Romano, “The Stationary Bootstrap,” Journal of the Amer-
ican Statistical Association, 1994, 89 (428), 1303-1313.

Rapach, D. E. and G. Zhou, “Forecasting Stock Returns,” in G. Elliott and A. Tim-
mermann, eds., Handbook of Economic Forecasting, Vol. 2A, Elsevier, Amsterdam,
2013, pp. 329-383.

37



_ ,J. K. Strauss, and G. Zhou, “Out-of-Sample Equity Premium Prediction: Com-
bination Forecasts and Links to the Real Economy,” Review of Financial Studies,
2010, 23 (2), 821-862.

_ , M. C. Ringgenberg, and G. Zhou, “Short interest and aggregate stock returns,”
Journal of Financial Economics, 2016, 121, 46—65.

Risse, M., “Combining wavelet decomposition with machine learning to forecast gold
returns,” International Journal of Forecasting, 2019, 35, 601-615.

Rua, A., “A Wavelet Approach for Factor-Augmented Forecasting,” Journal of Fore-
casting, 2011, 30, 666-678.

Stock, J. H. and M. W. Watson, “Combination Forecasts of Output Growth in a
Seven-Country Data Set,” Journal of Forecasting, 2004, 23, 405—430.

Timmermann, A., “Forecast Combinations,” in G. Elliott, C. W.J. Granger, and
A. Timmermann, eds., Handbook of Economic Forecasting, Vol. 1, Elsevier B.V., 2006,
chapter 4.

v. Binsbergen, J., M. Brandt, and R. Koijen, “On the Timing and Pricing of
Dividends,” American Economic Review, 2012, 102 (4), 1596-1618.

Wang, Y., L. Liu, F. Ma, and X. Diao, “Momentum of return predictability,”
Journal of Empirical Finance, 2018, 45, 141-156.

Welch, I. and A. Goyal, “A Comprehensive Look at The Empirical Performance of
Equity Premium Prediction,” Review of Financial Studies, 2008, 21, 1455-1508.

Xyngis, G., “Business-cycle variation in macroeconomic uncertainty and the cross-
section of expected returns: Evidence for scale-dependent risks,” Journal of Empirical
Finance, 2017, 44, 43-65.

Youden, W. J., “Index for Rating Diagnostic Tests,” Cancer, 1950, 3, 32—35.

Zhu, X. and J. Zhu, “Predicting stock returns: A regime-switching combination
approach and economic links,” Journal of Banking € Finance, 2013, 37, 4120-4133.

38



MA(1,9) D,

© | _
o —
_ o
< |
o ? _
o ] X :
o 4 T | —— T — T N T T T T T T T
1950 1970 1990 2010 1950 1970 1990 2010
Dl D5
< _
- o~
o o T
o o |
o o
< ] _
S 7 o
T T T T T T T T @ T T T T T T T
1950 1970 1990 2010 1950 1970 1990 2010
< D, De
o N
o
o o |
S o
N N
< ‘ID 7
@ T T T T T T T T T T T T T T T
1950 1970 1990 2010 1950 1970 1990 2010
D3 o 86
_ 2 4
o~
o _
o | ~
o I}
-
o L |
o T T T T T T T © N T T T T T T T
1950 1970 1990 2010 1950 1970 1990 2010
Figure 1

Multiresolution analysis of MA(1,9)

This figure presents the different timescale components for MA(1,9). The time series is decomposed with a MODWT MRA
of level J = 6 using the Haar filter and data at the boundary are reflected. D; refers to the level j wavelet detail and Ss is
the wavelet smooth. The sample is 1950:12 to 2017:12.
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Out-of-sample performance for selected predictors

This figure plots the out-of-sample performance of different forecasting models relative to the historical mean. The dashed black
line shows performance of the model with unadjusted predictors, whereas the solid black line presents results for the medium-
frequency components. The out-of-sample period runs from 1966:1 to 2017:12 and NBER recession periods are colorized in red
for the medium-frequency models.
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Out-of-sample performance of the nonlinear model

This figure plots the out-of-sample performance of different forecasting models relative to the historical mean. The solid
black line shows performance of the nonlinear forecasting model with medium-frequency components, the solid gray line
shows performance of the nonlinear forecasting model with unadjusted series, and the dashed black line shows performance
of the linear forecasting model with unadjusted series. The relative performance is shown for MA(1,9) and CF-TECHMEAN,
The out-of-sample period runs from 1966:1 to 2017:12.
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Excess return forecasts from CF-TECHMEAN and from the historical mean
This figure presents out-of-sample forecasts of excess stock returns from the historical mean (solid gray
line), from the combination of forecasts from unadjusted technical indicators (solid black line), and from
the combination of forecasts from medium-frequency components of technical indicators (dashed back
line). The out-of-sample period runs from 1966:1 to 2017:12.
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Optimal share in risky assets over time

This figure presents the optimal portfolio weights in risky assets (w;) for different forecasting models over time. Results
are shown for the historical mean (top graph), as well as for the combination of medium-frequency components from
technical indicators (bottom graph). The optimal weight of risky assets is restricted to lie between 0 and 1.5. The
out-of-sample periods runs from 1966:1 to 2017:12. NBER recession periods are colorized in red.
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Log cumulative wealth for CF-TECHMEAN jfter taking transaction costs into

account

This figure presents the log cumulative wealth of four different forecasting models after accounting for
transaction costs of 50 basis points per transaction. The sample covers the period from 1966:1 to
2017:12. The solid gray line shows results for the historical mean forecasting model. The dashed gray
line (Basic) depicts the log wealth development for CF-TECHMEAN with a simple average of forecasts
from 14 technical indicators. The dashed black line (D}*) shows results for the nonlinear forecasting
model that combines both combination forecasts from medium range frequencies and the historical mean.
Dy depicts combination forecasts from the medium range frequencies of the 14 technical indicators.
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Table 1
Summary statistics

This table reports summary statistics of the monthly log equity premium, the 14 economic variables,
and the 14 technical indicators. The statistics include the mean (Mean), standard deviation (Std. dev.),
skewness (Skew.), kurtosis (Kurt.), minimum (Min.), maximum (Max.), and the first-order autocorrela-
tion (p1). The sample period is 1950:12 to 2017:12.

(1) (2) ®3) (4) @) (6) (M) (8)

1950:12 to 2017:12

Variable Mean Std. dev. Skew. Kurt. Min. Max. p1
Log excess return

Tt 0.53 4.15 -0.67 5.47 -24.84 14.87 0.06
Economic variables

DP -3.53 0.41 -0.21 2.37 -4.52 -2.60 0.99
DY -3.52 0.42 -0.21 2.40 -4.53 -2.59 0.99
EP -2.80 0.42 -0.74 5.88 -4.84 -1.90 0.99
DE -0.73 0.29 2.60 18.78 -1.24 1.38 0.99
RVOL 0.14 0.05 0.83 3.89 0.05 0.32 0.96
BM 0.52 0.25 0.59 2.64 0.12 1.21 0.99
NTIS 0.01 0.02 -0.92 3.72 -0.06 0.05 0.98
TBL 4.28 3.09 0.88 4.08 0.01 16.30 0.99
LTY 5.99 2.76 0.82 3.19 1.75 14.82 0.99
LTR 0.53 2.75 0.51 6.26 -11.24 15.23 0.05
TMS 1.71 1.39 -0.14 2.89 -3.65 4.55 0.96
DFY 0.96 0.44 1.82 7.65 0.32 3.38 0.97
DFR 0.03 1.39 -0.39 9.91 -9.75 7.37 -0.08
INFL 0.29 0.36 0.14 5.71 -1.92 1.81 0.55
Technical indicators

MA(1,9) 0.70 0.46 -0.86 1.74 0.00 1.00 0.69
MA(1,12) 0.72 0.45 -0.99 1.99 0.00 1.00 0.78
MA(2,9) 0.70 0.46 -0.88 1.77 0.00 1.00 0.76
MA(2,12) 0.72 0.45 -0.98 1.96 0.00 1.00 0.82
MA(3,9) 0.71 0.46 -0.90 1.81 0.00 1.00 0.79
MA(3,12) 0.72 0.45 -0.99 1.97 0.00 1.00 0.82
MOM(9) 0.72 0.45 -0.96 1.92 0.00 1.00 0.76
MOM(12) 0.73 0.44 -1.06 2.12 0.00 1.00 0.80
VOL(1,9) 0.69 0.46 -0.80 1.64 0.00 1.00 0.56
VOL(1,12) 0.71 0.45 -0.94 1.88 0.00 1.00 0.66
VOL(2,9) 0.68 0.47 -0.77 1.59 0.00 1.00 0.73
VOL(2,12) 0.70 0.46 -0.89 1.80 0.00 1.00 0.79
VOL(3,9) 0.69 0.46 -0.84 1.71 0.00 1.00 0.75
VOL(3,12) 0.70 0.46 -0.89 1.80 0.00 1.00 0.82
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Table 2

Out-of-sample R? statistics (in %) for aggregated timescales

This table presents statistics on the out-of-sample predictability of one month ahead log excess returns on the S&P
500 index. Panel A (Panel B) shows results for economic variables (technical indicators). In addition to the individual
forecasts, I display results for three different combination forecasting methods. Panel C shows results when combining
both sets of predictors. For each model the out-of-sample R? (in %) is displayed (Campbell and Thompson| [2008). *,
** and *** indicate significance at the 10%, 5%, and 1% levels, respectively according to the |Clark and West| (2007)
MSFE-adjusted statistic. The null hypothesis is equal MSFE and the alternative is that the more sophisticated model
has smaller MSFE than the historical mean benchmark. Column (1) shows the respective predictor and column (2)
shows results for the unadjusted predictors. Columns (3) to (5) present results for the frequency-decomposed predictors.
Dy refers to components with periodicities between 2 to 16 months, Dy, refers to components with periodicities between
16 to 64 months, and Dy, captures oscillations above 64 months.

(1)

(2)

®3)

1966:1 to 2017:12

(4)

()

Predictor Basic Dy Dy Dy,
Panel A: Economic variables
DP -0.28 -40.91 -0.24 0.32*
DY -0.24 -25.39 -0.83 0.32%*
EP -0.60 -42.64 -0.69 -0.30
DE -0.86 -10.49 -2.13 -0.86
RVOL -0.07* -2.89 -1.76 -0.47
BM -1.25 -27.11 -0.10 -0.71
NTIS -0.88 0.28* -3.09 -0.72
TBL -0.81%* 0.63** -4.75%* -0.64
LTY -0.71%* 1.50%** -2.16%** -0.69
LTR 0.32** -0.41 -0.77F* 0.09
TMS -0.86** -0.82 -6.64 -0.54
DFY -0.63 -8.72 -3.71* -1.33
DFR -0.48 -0.68 -3.83%* -2.04
INFL -0.36 0.28 -0.70%* -0.22
CF-ECONMEAN 1.11%%* -2.06 1.35%** 0.11
CF-ECONWEIG 1.11%%* -1.00 1.31%%* 0.12
CF-ECON /21 1.13%%* -0.92 1.25%** 0.12
Panel B: Technical indicators
MA(1,9) 0.27 -3.47 -2.16%* -7.41
MA(1,12) 0.63* -2.86 -0.06** -8.07
MA(2,9) 0.29 -3.35 -0.97*%* -6.46
MA(2,12) 0.69** -2.27 0.45%** -7.44
MA(3,9) 0.39%* -1.78 -0.57%* -5.92
MA(3,12) 0.02 -2.07 0.49** =717
MOM(9) 0.10 -2.71 0.66** -6.67
MOM(12) 0.12 -2.11 0.82%* -6.16
VOL(1,9) 0.15 -1.53 -2.46%* -2.82
VOL(1,12) 0.46* -2.10 -0.20%** -3.19
VOL(2,9) 0.19 -2.31 -1.07** -4.18
VOL(2,12) 0.24 -3.63 -0.04%** -2.52
VOL(3,9) 0.00 -2.24 -0.99** -2.71
VOL(3,12) 0.64** -1.98 0.26** -3.30
CF-TECHMEAN 0.45%* -1.65 0.35%** -4.71
CF-TECHVEICG 0.45* -1.64 0.33** -4.66
CF-TECHEIS 0.46* -1.65 0.31%* -4.66
Panel C: All predictors taken together
CF-ALLMEAN 0.89*** -1.53 1.64%** -1.37
CF-ALLYEIG 0.89%* -1.09 1.59%** -1.38
CF-ALLS’V:%Ig 0.90** -1.05 1.55%** -1.32
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Table 3
Testing dependence between current predictability and business-cycle expectations

This table reports p-values for the null hypothesis that current predictability is independent of business-cycle
expectations. Current predictability in Panel A is defined as cp; = I[(ry — ) — (1 — 7)? < 0], whereas current
predictability in Panel B is defined as epi S = I[(ry — 74)? — (r: — 7)*> < —IQR x 1.5]. IQR is the interquartile
range. Business-cycle expectations are estimated from the |Liu and Moench| (2016) probit model with an optimal
threshold according to the maximum Youden index. The p-values are estimated with the dynamically augmented
reduced rank regression approach of [Pesaran and Timmermann| (2009). The out-of-sample period is 1966:1 to
2017:12.

1) 2) ®3) (4) @) (6) (7) (8) ) (10)

Predictor Basic DH DA{ DL Predictor Basic DH D]\/[ DL

Panel A: cpt = I[(ry — 7)% — (1t — 7)% < 0]

DP 6.53%  1.85%* 96.71  9.09*%  MA(1,9) 33.97  30.75 82.38  26.39
DY 4.95%*%  40.10 53.12  8.73%  MA(1,12) 84.36  77.49 38.78  41.38
EP 6.51%  2.87** 84.75 4117  MA(2,9) 33.84  33.29 17.40  19.31
DE 57.72  T79.79 93.20  14.94 MA(2,12) 41.59  42.87 35.40  16.02
RVOL 47.68  61.64 74.08 7272 MA(3,9) 28.62  41.57 21.83  19.29
BM 0.22%%* 21.72 26.28  9.78%  MA(3,12) 52.02  44.16 16.94  46.43
NTIS 35.01  25.54 62.29  63.71 MOM(9) 72.66  97.59 7717 8.24%
TBL 10.66  78.63 95.18  5.15%  MOM(12) 3343  87.19  4.95%* 2851
LTY 4.18** 50.07 9.22%  5.27%  VOL(1,9) 73.40  36.37 32.04  92.54
LTR 33.99  61.88 44.40  8.93* VOL(1,12) 14.16  21.25 18.95  89.39
TMS 49.55  39.47 95.84  81.42 VOL(2,9) 52.38  25.19 2243 97.22
DFY 1271 79.98 45.75  9.22%  VOL(2,12) 33.48  28.69 64.24 9717
DFR 72.86  98.22 36.88 8245 VOL(3,9) 1251 16.70 26.81  92.53
INFL 0.86***  8.94% 83.84  6.04* VOL(3,12) 7.93% 67.74 23.20  94.06
CF-ECONMEAN 22.83 31.52 50.93 19.63 CF-TECHMEAN 13.93 10.05 31.36  75.01
CF-ECONWVEIG 48.25 2745 55.21  20.95 CF-TECHJEIG 14.04  10.05 31.74  74.85
CF-ECONVEIG 7129 26.11 62.71 2113 CF-TECH}EIG 13.81  9.79* 50.36  74.85
CF-ALLMEAN 53.58 12.39 28.03 32.09

CF-ALLVEIG 39.16  23.36 14.60  69.76

CF-ALLy %IS 39.86  27.29 1534 74.10

Panel B: cpIGH = I[(ry — #)2 — (ry — 7¢)? < —IQR x 1.5]

DP 40.31 97.53 58.01 24.87 MA(1,9) 4.34%* 61.50  0.00%**  33.78
DY 91.84 40.01 80.97 20.72  MA(1,12) 20.00 26.82 1.31%*  35.06
EP 19.28 85.52 18.01 3729  MA(2,9) 5.53% 12,97  0.02*¥**  32.64
DE 82.65 65.81 82.87 42.69 MA(2,12) 30.40  3.40** 7.08%  50.90
RVOL 2.09%* 10.86 18.58 55.48 MA(3,9) 9.06* 20.61  0.25%**  45.92
BM 0.11%** 83.68 39.90 32,39  MA(3,12) 98.50 42.02 4.55%* 5212
NTIS 20.54 52.18 97.22 59.02  MOM(9) 5.38* 68.23 37.13  69.60
TBL 16.98 14.03  2.20** 93.56  MOM(12) 63.64 87.97 33.80 23.07
LTY 12.21 7.52* 28.53 12.09 VOL(1,9) 67.52 83.95 0.03***  73.28
LTR 15.22  6.52% 73.41 10.87  VOL(1,12) 11.16 10.42  0.00%**  66.30
T™MS 11.08 54.58 1.38%*  1.79**  VOL(2,9) 90.78 31.93  0.19%**  48.63
DFY 1.87** 62.70  0.50%** 10.42  VOL(2,12) 53.13 86.92  0.02%**  66.18
DFR 7.56%  2.07** 21.51 85.55  VOL(3,9) 0.05%** 14.46  0.01%**  66.50
INFL 1.25%* 69.95 83.07 65.84 VOL(3,12) 9.15* 42.46  0.05%**  32.16
CF-ECONMEAN 31.09 38.11 6.95* 98.08 CF-TECHMEAN 13.25 7478 0.01%**  86.80
CF-ECONWEIG 28.61 54.40 5.46% 88.07 CF-TECHYEIG 13.15 72.26  0.00%**  89.74
CF-ECON/BIG 47.24 51.38  4.53** 62.66 CF-TECHEIG 13.15 72.26  0.00%**  89.74
CF-ALLMEAN 22.04 61.19 6.46* 88.34

CF-ALLVEIG 31.65 51.16 10.01 72.55

CF-ALLBIS 2434 51.16 9.96*  73.95
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Table 4
Out-of-sample R? statistics (in %) for the nonlinear model

This table presents statistics on the out-of-sample predictability of one month ahead log excess returns on the
S&P 500 index. Panel A (Panel B) shows results for economic variables (technical indicators). In addition to the
individual forecasts, I display results for three different combination forecasting methods. Panel C shows results
when combining both sets of predictors. For each model the out-of-sample R? (in %) is displayed (Campbell and
Thompson, [2008)). *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively according to the
Clark and West| (2007) MSFE-adjusted statistic. The null hypothesis is equal MSFE and the alternative is that
the more sophisticated model has smaller MSFE than the historical mean benchmark. Column (1) shows the
respective predictor and column (2) shows results for the unadjusted series. Columns (3) to (9) present results
for the frequency-decomposed predictors. Dpg refers to components with periodicities between 2 to 16 months,
Dy refers to components with periodicities between 16 to 64 months, and Dy captures oscillations above 64
months. The superscript NL indicates that the nonlinear forecasting model is applied in columns (3), (5), (7),

and (9).

1 @) 3) 4) (%) (6) (7 (8) )
1966:1 to 2017:12
Predictor Basic BasicL Du DRL Dy DYE Dp DNL
Panel A: Economic variables
DP -0.28 0.56* -40.91 -24.64 -0.24 -0.17 0.32* 0.49%**
DY -0.24 0.80** -25.39 -13.39 -0.83 -0.30 0.32* 0.53%**
EP -0.60 -0.41 -42.64 -22.67 -0.69 -0.06 -0.30 -0.07
DE -0.86 -0.42 -10.49 -6.05 -2.13 -0.08 -0.86 -0.42
RVOL -0.07* 0.40%* -2.89 -1.38 -1.76 -0.43 -0.47 -0.19
BM -1.25 -0.46 -27.11 -15.53 -0.10 -0.03 -0.71 -0.54
NTIS -0.88 -1.27 0.28* 0.04 -3.09 -2.76 -0.72 -0.12
TBL -0.81%* -1.62 0.63** -0.61 -4.75%* -1.57 -0.64 -1.27
LTY -0.71%* -1.56 1.50 0.29* -2.16%** -1.91 -0.69 -1.10
LTR 0.32%* 1.00%* -0.41 0.75%* -0.77F* -0.38 0.09 0.22
TMS -0.86%* 0.19** -0.82 -0.76 -6.64 -1.66 -0.54 -0.09
DFY -0.63 0.07 -8.72 -6.53 -3.71* -0.74% -1.33 -0.95
DFR -0.48 -0.14 -0.68 -0.16 -3.83%* 0.72% -2.04 -1.16
INFL -0.36 -1.11 0.28 0.65%* -0.70* -0.87 -0.22 -1.22
CF-ECONMEAN 1.11%%* 0.37* -2.06 -2.19 1.35%** 0.46 0.11 -0.13
CF-ECONWEIG L1H** 0.43* -1.00 -1.35 1.31%** 0.60* 0.12 -0.13
CF-ECON /&G 1.13%** 0.48* -0.92 -1.33 1.25%** 0.62* 0.12 -0.11
Panel B: Technical indicators
MA(1,9) 0.27 0.81%* -3.47 -1.89 -2.16%* 2.71%** -7.41 -3.23
MA(1,12) 0.63* 0.86** -2.86 -1.50 -0.06** 1.93%** -8.07 -3.46
MA(2,9) 0.29 0.95%* -3.35 -2.05 -0.97** 2.45%** -6.46 -2.68
MA(2,12) 0.69** 0.97** -2.27 -1.31 0.45%** 1.84%** -7.44 -3.08
MA(3,9) 0.39% 1.03** -1.78 -1.21 -0.57%* 2.17F** -5.92 -2.85
MA(3,12) 0.02 0.44%* -2.07 -1.71 0.49%* 1.47F** 717 -3.20
MOM(9) 0.10 0.30 -2.71 -1.65 0.66** 1.44%%* -6.67 -3.02
MOM(12) 0.12 0.20 -2.11 -0.85 0.82%* 1.01%* -6.16 -2.59
VOL(1,9) 0.15 0.63** -1.53 -0.96 -2.46** 1.70%** -2.82 -1.12
VOL(1,12) 0.46* 0.78%* -2.10 -1.35 -0.20%** 1.79%** -3.19 -1.54
VOL(2,9) 0.19 0.46* -2.31 -1.33 -1.O7F* 1.75%** -4.18 -2.12
VOL(2,12) 0.24 0.28 -3.63 -2.15 -0.04%** 1.56%** -2.52 -1.21
VOL(3,9) 0.00 0.48* -2.24 -1.53 -0.99%* 1.75%** -2.71 -1.20
VOL(3,12) 0.64** 0.85** -1.98 -1.39 0.26** 1.44%** -3.30 -1.62
CF-TECHMEAN 0.45% 0.69** -1.65 -1.32 0.35%** 1.98%** -4.71 -2.24
CF-TECHVEIG 0.45* 0.69** -1.64 -1.32 0.33%* 1.97H** -4.66 -2.23
CF-TECH'EIS 0.46* 0.69%* -1.65 -1.32 0.31%* 1.97H** -4.66 -2.22
Panel C: All predictors taken together
CF-ALLMEAN 0.89%** 0.56** -1.53 -1.61 1.64%%* 1.52%%* -1.37 -0.82
CF-ALLVEIG 0.89%* 0.60%* -1.09 -1.24 1.59%** 1.59%** -1.38 -0.84
CF-ALLy/®IS 0.90** 0.63** -1.05 -1.23 1.55%** 1.61%** -1.32 -0.77
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Table 5

Annualized gains in CER

This table reports the annualized gain in certainty equity return (CER) relative to the CER from the historical
mean (in percent). ACER is estimated for a mean-variance investor with a relative risk aversion of five who
allocates each month between the S&P 500 index and the risk-free rate. The optimal weight is estimated according
to forecasts of one-month ahead excess returns from predictive regression models. The optimal weight in risky
assets is constrained to lie between 0 and 1.5 to prevent shorting stocks and leveraging more than 50%. The
out-of-sample period runs from 1966:1 to 2017:12.

6 ©) ®) @ ©) ©) € ® ©)
1966:1 to 2017:12
Predictor Basic BasicNL Dy D?IL Dy D]I\JIL Dy, DEL
Panel A: Economic variables
DP -0.67 0.53 -3.05 -3.18 0.19 0.13 0.65 0.94**
DY -0.24 1.08 -3.93 -2.50 -1.34 -0.56 0.70 1.06%*
EP 0.25 0.44 -0.83 -0.49 0.28 0.83* -0.24 0.08
DE -0.32 0.18 -0.12 -0.52 -1.01 0.18 0.25 0.56
RVOL -1.04 0.00 -0.45 -0.64 -1.45 -0.58 -0.24 0.02
BM -1.25 -0.13 -3.46 -3.06 0.15 0.15 -0.60 -0.26
NTIS 0.14 -0.89 0.76 0.12 0.00 -1.55 -0.51 0.58
TBL 1.80* -0.01 1.16* -0.33 1.11 0.70 1.52 -0.00
LTY 1.65 -0.01 3.13%** 1.05* 2.39* 0.04 1.15 -0.11
LTR 0.87 0.83* 0.20 0.63 1.48 0.80 0.52 0.37
TMS 1.79 0.93 -1.24 -0.92 -0.61 0.66 1.10 0.58
DFY -0.78 -0.21 -0.31 -0.44 -1.03 0.35 0.18 0.01
DFR 0.16 0.17 -0.65 -0.38 1.03 1.23 0.81 1.21
INFL 0.27 -0.53 0.74 1.19 1.79 0.90 1.67 0.08
CF-ECONMEAN 1.72%** 0.67* -1.47 -2.01 2.32%* 0.69 0.99 0.59
CF-ECONVEIG 1.82%** 0.83* -0.88 -1.46 2.39%* 0.90* 1.03 0.63
_ %\7 1G * %ok * _ _ * % *
CF-ECONVEIC 1.83 0.89 0.86 1.48 2.39 0.94 1.05 0.66
Panel B: Technical indicators
MA(1,9) 1.55* 1.96*** -1.92 -1.00 2.92% 3.53%** -0.05 1.17
MA(1,12) 2.62%* 2.57H** -1.64 -0.89 3.56%* 2.97¥** -0.18 1.11
MA(2,9) 1.75* 2.41%%* -1.76 -1.13 2.99** 3.36%** 0.36 1.28
MA(2,12) 2.67%* 2.71%%* -1.45 -0.85 3.58%** 2.89%** -0.07 1.11
MA(3,9) 2.18* 2.58%** -1.45 -0.88 2.77F* 2.94%** 0.05 0.95
MA(3,12) 1.15 1.50%* -0.55 -0.78 2.85%* 2.31%* -0.25 0.98
MOM(9) 1.23 1.31% -0.86 -0.80 3.14%* 2.32%* -0.32 0.96
MOM(12) 1.14 1.22% -0.79 -0.46 2.00* 2.03** -0.25 1.20
VOL(1,9) 1.18 1.65%* -0.62 -0.60 3.32%* 3.15%** 0.96 1.68*
VOL(1,12) 1.79* 2.27%** -0.98 -0.70 4.46%** 3.16%** 0.81 1.65*
VOL(2,9) 0.88 1.44%* -1.21 -0.77 3.66** 2.86%** 0.31 1.34
VOL(2,12) 0.89 1.17* -1.39 -0.92 3.74%** 2.67** 0.74 1.57*
VOL(3,9) 0.61 1.27%* -1.07 -0.73 3.26%* 2.87*** 0.61 1.46
VOL(3,12) 1.88* 2.27%** -0.94 -0.77 3.34%* 2.49%* 0.51 1.36
CF-TECHMEAN 1.59* 1.85%* -1.02 -0.89 3.7IX** 3.05%** 0.39 1.21
CF-TECHVEIG 1.60* 1.86%* -1.00 -0.89 3.71HH* 3.06%** 0.41 1.23
CF-TECHVELS 1.60* 1.86** -1.01 -0.89 3.T1R** 3.06%** 0.41 1.23
Panel C: All predictors taken together
CF-ALLMEAN 1.71%** 1.24%* -1.90 -2.12 4.31%%* 2.92%** 0.71 1.19
CF-ALL%Z:EIG 1.80%** 1.35%* -1.39 -1.60 4.17F** 2.95%** 0.74 1.23
CF-ALL %I 1.82%%* 1.40%* -1.37 -1.57 4.15%%* 2.96%** 0.76 1.27
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Table 6
Annualized gains in SR

This table reports the annualized gain in the Sharpe ratio (SR) relative to the SR from the historical mean. ASR
is estimated for a mean-variance investor with a relative risk aversion of five who allocates each month between the
S&P 500 index and the risk-free rate. The optimal weight is estimated according to forecasts of one-month ahead
excess returns from predictive regression models. The optimal weight in risky assets is constrained to lie between
0 and 1.5 to prevent shorting stocks and leveraging more than 50%. The out-of-sample period runs from 1966:1 to
2017:12.

(1) 2) ®3) (4) (5) (6) (7) (8) 9)

1966:1 to 2017:12

Predictor Basic Basic'k Du DN Dy DYE Dyp DL

Panel A: Economic variables

DP -0.11 0.06 -0.08 -0.13 -0.01 0.01 0.03 0.06%*
DY -0.08 0.09* -0.17 -0.09 -0.10 0.00 0.03 0.07**
EP -0.01 0.03 0.03 -0.01 0.03 0.05 -0.03 -0.00
DE -0.06 0.01 0.04 0.01 0.00 0.04 -0.02 0.02
RVOL 0.01 0.05 0.02 0.01 -0.01 0.02 -0.03 -0.01
BM -0.08 0.00 -0.14 -0.15 0.01 0.02 -0.02 -0.03
NTIS 0.06 -0.06 0.06 0.01 0.05 -0.07 -0.04 0.02
TBL 0.12 -0.02 0.10%* -0.00 0.14 0.08 0.09 -0.03
LTY 0.10 -0.03 0.25%** 0.09* 0.19** -0.01 0.04 -0.04
LTR 0.11%* 0.08** 0.04 0.06* 0.15%* 0.08* 0.05 0.02
TMS 0.19** 0.08* -0.09 -0.06 0.02 0.08 0.10 0.02
DFY -0.02 0.01 0.04 0.01 0.01 0.08* -0.03 -0.03
DFR 0.01 0.01 -0.04 -0.02 0.11 0.10 0.05 0.07
INFL 0.01 -0.05 0.05 0.09** 0.14* 0.07 0.13* -0.02
CF-ECONMEAN 0.11%* 0.04 -0.05 -0.08 0.19%** 0.07* 0.05 0.01
CF-ECONVEIG 0.12** 0.05* -0.03 -0.06 0.19%** 0.08* 0.05 0.02
CF-ECONVBIG 0.12%* 0.06* -0.03 -0.06 0.19%** 0.08** 0.05 0.02
Panel B: Technical indicators
MA(1,9) 0.10* 0.13%** -0.10 -0.08 0.24** 0.27%** 0.03 0.06
MA(1,12) 0.19** 0.18** -0.09 -0.07 0.28** 0.22%** 0.04 0.06
MA(2,9) 0.12* 0.17%%* -0.10 -0.09 0.24** 0.26%** 0.07 0.07
MA(2,12) 0.20** 0.20%** -0.09 -0.06 0.28*** 0.21*** 0.04 0.06
MA(3,9) 0.16* 0.19%** -0.09 -0.07 0.22%* 0.22%** 0.05 0.05
MA(3,12) 0.07 0.09* -0.02 -0.06 0.22%* 0.16** 0.03 0.05
MOM(9) 0.07 0.08 -0.04 -0.06 0.24** 0.16%* 0.03 0.05
MOM(12) 0.07 0.07 -0.04 -0.03 0.14%* 0.14%* 0.04 0.07
VOL(1,9) 0.07 0.11%** -0.01 -0.05 0.26** 0.24%** 0.09 0.11
VOL(1,12) 0.13* 0.16%** -0.05 -0.06 0.35%** 0.24%*** 0.08 0.11
VOL(2,9) 0.06 0.09** -0.06 -0.06 0.29%** 0.21%** 0.05 0.08
VOL(2,12) 0.06 0.07 -0.08 -0.07 0.30%** 0.20%* 0.08 0.10
VOL(3,9) 0.04 0.08** -0.05 -0.05 0.26** 0.21%** 0.07 0.09
VOL(3,12) 0.14* 0.16%** -0.06 -0.06 0.26*** 0.18** 0.06 0.08
CF-TECHMEAN 0.11* 0.12** -0.05 -0.07 0.29%** 0.23%** 0.07 0.07
CF-TECHVEIG 0.11%* 0.12%* -0.05 -0.07 0.29%** 0.23%** 0.07 0.07
CF-TECH'ELS 0.11%* 0.13%* -0.05 -0.07 0.29%** 0.23%** 0.07 0.07
Panel C: All predictors taken together
CF-ALLMEAN 0.11%%* 0.08** -0.09 -0.11 0.34%** 0.22%** 0.06 0.06
CF-ALLYEIG 0.12%** 0.08** -0.07 -0.09 0.33%** 0.22%** 0.07 0.07
CF-ALL,/%IS 0.12%** 0.09** -0.07 -0.09 0.33*** 0.22%** 0.07 0.07
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A RZg for individual timescales

In the main article I have only provided results for the aggregated timescales Dy, Dy,
and Djy,. Table A.1 shows the R%S statistics for the individual timescales Dq to Dg, and
Se. Panel B highlights that predictability by technical indicators solely stems from Dy

and Dy, which approximates periodicities between 16 to 32 months and 32 to 64 months.

B Recession forecasts and differences in squared forecasting errors

The so called receiver operating characteristic (ROC) curve plots the entire set of possi-
ble combinations of TPR() and FPR(¢) (Berge and Jordaj 2011)). Figure A.1 presents
the ROC curve for the grid of candidate values for the full sample from 1950:12 to
2017:12. Firstly, I generate in-sample predictions for the probability of a recession one-
month ahead. Secondly, I estimate the respective values of TPR(#) and FPR(0) for the
101 candidate values. Then, the value is selected that maximizes the difference between
both ratios. Graphically, the optimal point is the point with the largest distance to the
diagonal line (Baker and Kramer} 2007). The dashed diagonal line is the equivalent of a
random guess and a model with optimal accuracy “would have a ROC curve that hugged
the top left corner” (Liu and Moench, 2016, p. 1141). The ROC curve shows that the
probit model has an excellent classification ability for the full sample. For the in-sample
exercise the optimal threshold level equals 8* = 0.19. The one-month ahead recession

forecasts from the probit model are shown in the right panel of Figure A.1.

Figure A.2 shows boxplots of (r; — #¢)% — (r; — 7;)? for the 14 medium-frequency com-
ponents of the technical indicators (Djs). The difference in squared forecast errors is
centered around zero with outliers both to the left (D performs better) and the right
(historical mean performs better). A predictor that consistently outperforms the naive

benchmark would only have observations to the left of zero. I show in the main article



that points on the left side of the distribution depend on business-cycle expectations.

C Asset allocation exercise with alternative choice of parameters

In this section I set the parameters of the asset allocation exercise identical to [Rapach
et al.| (2016). I restrict the share of risky assets to lie between —0.5 and 1.5, allowing for
a short position in risky assets of 50%. The coefficient of relative risk aversion is set to
three and the volatility forecast is estimated according to a ten-year moving window of
past excess returns. The results for ACER and ASR under this specification are shown

in Table A.2 and Table A.3.

D Subsample analysis: 1990:1 to 2017:12

Tables A.4 to A.6 present results for the out-of-sample period from 1990:1 to 2017:12.
Results remain qualitatively the same. For the more recent sample the combination
forecasts of economic variables perform rather poor. Contrarily, combination forecasts
of medium frequencies from technical indicators provide a sizable utility gain of 357 basis
points relative to the historical mean, and a gain of 143 basis points relative to combi-
nation forecasts from the unadjusted indicators. The R%s for the nonlinear forecasting
model with combination forecasts from medium frequencies of technical indicators is

2.25%. This is more than three times larger than for the simple combination forecasts.

E Principal component analysis

Similar to Neely et al.| (2014), I analyze the forecasting performance of principal compo-
nents. Firstly, I split each predictor into frequency-specific components and then group
the respective components for all predictors. Thus, the frequency-specific information
of all predictors is saved in respective matrices. Secondly, I normalize the predictors

to have a mean of zero and a standard deviation of one. Thirdly, I estimate the first,



second, and third principal components of the frequency-specific matrices. Table A.7
shows the R%)S values, whereas Table A.8 and Table A.9 present results for ACER and
ASR.

F Alternative choice of wavelet filter

In the main text I have only applied the Haar wavelet filter to decompose time series.
The choice of the Haar filter is often justified by the fact that “the wavelet coefficients
are simply differences of moving averages” (Faria and Veronaj, 2018a)). |Ortu et al.| (2013)
show that the Haar filter is a simple method to decompose time series along the per-
sistence dimension. Bandi et al. (2019a, p. 17) write that “alternative nonparametric
filters, like the Daubechies filter, could have been used instead without affecting the em-
pirical results”. Likewise, Kang et al| (2017, p. 24) use the “least asymmetric” wavelet
filter, writing that their findings “are not specific to the particular wavelet filter used”.
In line with this, |Rua) (2011, p. 671) states that results do not change much when us-
ing Daubechies and Coiflets rather than a symmlet 4 wavelet. Similarly, Risse| (2019)
explains that Daubechies wavelets do not lead to superior performance compared to the
Haar wavelet. So, the choice of wavelet seems to be a “technical note” rather than a
crucial choice (Kang et al. 2017, p. 24). Percival and Walden (2000, p. 197) write the

following:

“To summarize, as compared to DWT-based MRAs, a MODWT-based MRA
is less dependent upon our choice of wavelet filter, but not so much so that
we can recommend always using a particular filter. A careful study of the
differences between MR As based on different wavelet filters is still needed to

see which filter is best matched to a particular application.”

Hence, there is no clear guidance on the choice of wavelet. Therefore, I simply repeat

the analysis from the previous sections with four different wavelets. Table A.10 presents



results for RQOS, ACFER, and ASR, when using combination forecasts and alternative
wavelets to isolate the medium-frequency components of predictors. It can be seen that
results are qualitatively the same, with different wavelets only having a minor effect.
The wavelets with a lower width (D(4) and FK(4)) seem to perform slightly better in
terms of R% g compared to wavelets with a width of 8 or 16 observationsﬂ However, the
overall role of wavelet choice is subordinate. Thus, my findings are in line with other

articles documenting that the choice of filter is of minor importance.

G Performance after transaction costs

Table A.11 presents the average turnover of portfolios resulting from advanced fore-
casting models relative to the average turnover of the portfolio based on forecasts from
the historical mean. The average turnover of a portfolio based on the historical mean
forecast is 2.13%. None of the portfolios from more advanced forecasting models has
a relative average turnover below one. Each of these portfolios has higher transaction
costs, therefore it is important to analyze whether the gains in ACER and ASR remain
significant after accounting for these costs. Table A.13 and Table A.14 show results after
accounting for a proportional transaction cost of 50 basis points per transaction. As an
example, the combination forecasts from medium frequencies of all predictors generate
a utility gain of 396 basis points relative to the historical mean, and a utility gain of
250 basis points relative to the unadjusted predictors. The results remain sizable after

accounting for transaction costs.

!The Haar wavelet has a width of 2 and as well belongs to discrete Daubechies wavelets. Therefore,
the Haar wavelet is also called D(2) wavelet.
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ROC curve and business-cycle forecasts

This figure plots the ROC curve for the in-sample period from 1950:12 to 2017:12 (left panel) and the
out-of-sample recession forecasts for the period from 1966:1 to 2017:12 (right panel). The recession
periods are classified according to the maximum Youden index and the probability forecasts are based
on the probit model.
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Figure A.2

Boxplots for differences in squared forecasting errors

This figure presents boxplots for differences in squared forecasting errors. The squared errors from forecasts with
medium-frequency components of technical indicators are subtracted from squared forecasting errors of the historical
mean, (r; —¢)? — (r¢ — 7). The out-of-sample forecasting period is 1966:1 to 2017:12. The ends of the box are the
upper and lower quartiles, so the box spans the interquartile range (IQR). The whiskers are the dashed lines that
extend from both sides of the box up to the highest or lowest value within +1.5 x IQR. The dots represent points
that are outside of this range.



Table A.1
Out-of-sample R? statistics (in %)

This table presents statistics on the out-of-sample predictability of one month ahead log excess returns on the S&P
500 index. Panel A (Panel B) shows results for economic variables (technical indicators). In addition to the individual
forecasts, I display results for three different combination forecasting methods. Panel C shows results when combining
both sets of predictors. For each model the out-of-sample R? (in %) is displayed (Campbell and Thompson| [2008). *,
** and *** indicate significance at the 10%, 5%, and 1% levels, respectively according to the |Clark and West| (2007)
MSFE-adjusted statistic. The null hypothesis is equal MSFE and the alternative is that the more sophisticated model
has smaller MSFE than the historical mean benchmark. Column (1) shows the respective predictor and column (2)
shows results for the unadjusted series. Columns (3) to (9) present results for the frequency-decomposed predictors. D;
refers to the component with the highest frequency and Sg refers to the component with the lowest frequency.

(1) (2) ®3) (4) (4) (6) (7) (8) 9)

1966:1 to 2017:12

Predictor Basic D1 Do D3 Dy Ds Dg Se

Panel A: Economic variables

DP -0.28 -29.86 -26.21 -4.30 -0.49 -0.20 -0.80 0.18
DY -0.24 -0.13 -53.15 -20.07 -2.62 -0.19 -0.56 0.16
EP -0.60 -38.56 -28.80 -0.71 -0.30 -1.09 -1.63 -0.11
DE -0.86 -6.23 -18.18 -5.27 -2.34 -2.19 -1.24 -0.17
RVOL -0.07* -0.47 -4.34 -7.66 -5.23 -0.65 -0.49 -0.31
BM -1.25 -17.58 -17.07 -3.05 -0.71 0.05 -1.11 -0.55
NTIS -0.88 -0.44 0.25 -1.66 -3.50 -2.20 -0.62 -0.51
TBL -0.81%** -1.96 -0.27 -0.94%* -7.82%* S2.77H* -2.10 -0.20
LTY -0.71%* -0.47 0.76%* -2.23%** -2.37F** -1.56* -1.09 -0.41
LTR 0.32%* 0.38* -2.22% -3.45 -1.40%* 0.02** 0.04 -1.31
TMS -0.86** -1.39 -1.18 -1.34 -8.75 -3.92% -1.83 -0.18
DFY -0.63 -1.20 -5.02 -17.45 -8.42% -1.55 -0.93 -1.13
DFR -0.48 -0.49 -0.71 -3.54 -3.79* -2.55 -1.35 -1.41
INFL -0.36 0.16 0.32* -1.06 -2.26 0.51%* -0.10 -0.09
CF-ECONMEAN 1.11%%* -1.82 -1.91 -0.59 1.05%** 0.95%* -0.38 0.08
CF-ECONV‘;EIG 1.11%** -1.70 -1.19 -0.49 0.91%* 0.99** -0.35 0.09
CF-ECONBIG 1.13%** -1.70 -1.11 -0.47 0.85** 0.98** -0.33 0.09
Panel B: Technical indicators
MA(1,9) 0.27 -2.88 -2.55 -0.15 -2.42% -1.87%* -9.30 -3.66
MA(1,12) 0.63* -2.82 -2.64 0.09 -0.15%* -0.54** -8.39 -4.06
MA(2,9) 0.29 -1.85 -6.89 0.08 -1.10* -1.08%* -7.80 -3.16
MA(2,12) 0.69** -0.90 -5.41 -0.25 0.32%* -0.17%* -6.96 -4.34
MA(3,9) 0.39* -0.43 -4.80 -0.18 -0.60* -0.89%* -6.57 -2.91
MA(3,12) 0.02 -0.26 -4.61 -1.14 0.42%* -0.30%* -6.77 -3.89
MOM(9) 0.10 -1.21 -1.58 -0.75 0.58** -0.27%* -6.57 -3.65
MOM(12) 0.12 -0.78 -1.89 -1.43 0.31* 0.36** -5.05 -3.74
VOL(1,9) 0.15 -1.15 -1.26 -0.56 -2.81% -1.53%* -3.40 -1.20
VOL(1,12) 0.46* -0.65 -2.44 0.10 -0.39%* -0.32%%* -3.51 -1.36
VOL(2,9) 0.19 -0.52 -5.02 -0.09 -0.92%* -1.16%** -4.82 -1.51
VOL(2,12) 0.24 -1.06 -6.23 -0.60 0.20** -0.87*%* -4.10 -0.93
VOL(3,9) 0.00 -0.60 -3.71 -0.39 -0.74* -1.12%%* -3.51 -1.10
VOL(3,12) 0.64** -0.20 -4.05 -1.05 0.35*%* -0.61%* -3.35 -1.41
CF-TECHMEAN 0.45* -0.52 -2.24 -0.10 0.13%* -0.07** -4.97 -2.38
CF-TECH%’V‘;EIG 0.45* -0.53 -2.28 -0.12 0.12%* -0.10%* -4.83 -2.35
CF-TECHEIS 0.46* -0.53 -2.29 -0.11 0.12%* -0.11%* -4.82 -2.34
Panel C: All predictors taken together
CF-ALLMEAN 0.89%** -0.99 -1.72 -0.10 1.17%%* 1.33%%* -1.59 -0.76
CF-ALLVEIG 0.89** -0.97 -1.45 -0.09 1.O7*** 1.36%** -1.49 -0.73
CF-ALLJVEIG 0.90%* -0.97 -1.41 -0.08 1.03%** 1.34%%* -1.44 -0.73




Table A.2
Annualized gains in CER

This table reports the annualized gain in certainty equity return (CER) relative to the CER from the historical
mean (in percent). ACER is estimated for a mean-variance investor with a relative risk aversion of three who
allocates each month between the S&P 500 index and the risk-free rate. The optimal weight is estimated according
to forecasts of one-month ahead excess returns from predictive regression models. The optimal weight in risky
assets is constrained to lie between -0.5 and 1.5. The out-of-sample period runs from 1966:1 to 2017:12.

@) 2) ®3) (4) (4) (6) (7) (8) ©)

1966:1 to 2017:12

Predictor Basic Basic'k Dy DRL Dy DYE Dg DL

Panel A: Economic variables

DP 117 0.95 -3.58 -3.06 -0.13 0.05 0.63 1.12%*
DY -1.10 1.17* -5.19 -2.56 -1.20 -0.31 0.73 1.25%*
EP 0.26 0.72 -0.46 -0.52 0.38 1.01 -0.80 -0.07
DE -0.75 0.08 0.77 0.30 -0.78 0.59 -0.01 0.74
RVOL -0.55 0.59* 0.23 0.01 -1.28 0.07 -0.39 -0.13
BM -0.66 0.35 -3.55 -3.66 0.06 0.28 -0.99 -0.83
NTIS 0.51 -0.54 1.51* 0.80** 0.93 -0.81 -1.12 -0.02
TBL 1.99 -0.51 1.06 -0.68 2.65 1.39 0.81 -0.78
LTY 1.21 -0.84 4.09%** 1.58 2.43 -0.47 0.40 -0.89
LTR 2.06* 1.47* 0.26 0.75 1.82 1.36 0.58 0.51
T™MS 3.66%* 1.28 -1.55 -0.89 0.54 1.15 1.87 0.60
DFY -1.03 -0.51 -0.98 -0.63 0.11 0.82 -1.75 -1.06
DFR 0.54 0.04 -0.44 -0.40 0.19 1.06 1.11 0.91
INFL 0.49 -0.59 0.51 1.19%** 2.60* 0.70 2.09 -0.28
CF-ECONMEAN 1.73%* 0.86 -1.23 -1.66 2.62%* 0.98 0.64 0.47
CF-ECONWEIG 1.93%* 1.11* -0.54 -1.03 2.62%* 1.21 0.72 0.51
CF-ECONS’\;%IS 1.98*%* 1.22% -0.46 -1.00 2.51%* 1.21 0.74 0.55
Panel B: Technical indicators
MA(1,9) 1.55 1.92%* -3.26 -1.65 3.24 4.26%* -0.28 0.39
MA(1,12) 2.78% 2.29% -2.69 -1.30 4.51%* 3.64%* 0.24 0.43
MA(2,9) 1.74 2.17%* -2.62 -1.64 3.32 4.09%* 0.15 0.46
MA(2,12) 2.91% 2.45% -2.11 -1.21 4.55%* 3.57F* -0.04 0.54
MA(3,9) 2.29 2.44%* -2.10 -1.17 3.22% 3.62%* 0.15 0.32
MA(3,12) 0.96 1.28* -1.97 -1.25 3.44% 2.94%* -0.04 0.43
MOM(9) 1.16 1.06 -1.66 -1.04 4.12%* 2.93%* -0.08 0.45
MOM(12) 1.09 0.93 -1.54 -0.27 2.80%* 2.55%* -0.09 0.81
VOL(1,9) 1.21 1.77%* -1.01 -0.44 3.59% 3.41%* 1.71 1.57
VOL(1,12) 1.89 2.06%* -1.27 -0.87 5.21%* 3.60%* 1.47 1.45
VOL(2,9) 1.32 1.41%* -1.90 -1.01 4.42%* 3.49** 0.71 0.67
VOL(2,12) 1.52% 1.13* -2.15 -1.23 4.72%* 3.19%* 1.47 1.48
VOL(3,9) 0.72 1.33%* -1.84 -0.99 4.28%* 3.58%* 1.39 1.39
VOL(3,12) 2.22* 2.18** -1.81 -1.30 4.39%* 3.04** 0.99 1.18
CF-TECHMEAN 1.77* 1.78** -2.22 -1.40 4.94%* 4.00** 0.76 0.83
CF-TECHYVEIG 1.78* 1.79** -2.19 -1.39 4.94** 3.99%* 0.79 0.84
CF-TECHSV:%% 1.78* 1.79** -2.19 -1.40 4.96** 4.01%* 0.78 0.85
Panel C: All predictors taken together
CF-ALLMEAN 1.72%* 1.40%* -2.07 -1.76 5.00%** 3.48%** 0.75 0.58
CF-ALLVEIG 1.80%* 1.50%* -1.74 -1.48 5.09%** 3.65%** 0.85 0.62
CF-ALLy %I 1.83%* 1.56™* -1.74 -1.47 5.07*** 3.65%** 0.88 0.67




Table A.3
Annualized gains in SR

This table reports the annualized gain in the Sharpe ratio (SR) relative to the SR from the historical mean. ASR
is estimated for a mean-variance investor with a relative risk aversion of three who allocates each month between
the S&P 500 index and the risk-free rate. The optimal weight is estimated according to forecasts of one-month
ahead excess returns from predictive regression models. The optimal weight in risky assets is constrained to lie
between -0.5 and 1.5. The out-of-sample period runs from 1966:1 to 2017:12.

@) 2) ®3) (4) (4) (6) (7) (8) ©)

1966:1 to 2017:12

Predictor Basic Basic'k Dy DRL Dy DYE Dg DL

Panel A: Economic variables

DP -0.11 0.06* -0.19 -0.15 -0.02 0.00 0.03 0.06**
DY -0.11 0.07* -0.29 -0.12 -0.08 -0.00 0.03 0.07**
EP 0.00 0.04 -0.03 -0.03 0.02 0.05 -0.05 -0.00
DE -0.07 -0.00 0.05 0.03 -0.04 0.04 -0.02 0.03
RVOL -0.01 0.05%* 0.02 0.01 -0.05 0.02 -0.03 -0.01
BM -0.05 0.02 -0.21 -0.19 -0.00 0.02 -0.05 -0.06
NTIS 0.05 -0.02 0.08 0.05* 0.05 -0.04 -0.06 -0.01
TBL 0.11 -0.04 0.06 -0.03 0.16 0.08 0.03 -0.06
LTY 0.05 -0.07 0.24%** 0.09 0.14 -0.04 -0.01 -0.07
LTR 0.12* 0.09* 0.02 0.04 0.11 0.08 0.03 0.02
T™MS 0.22%* 0.08 -0.09 -0.05 0.04 0.07 0.11 0.02
DFY -0.03 -0.02 -0.05 -0.02 0.01 0.06 -0.16 -0.08
DFR 0.03 0.00 -0.03 -0.03 0.01 0.06 0.05 0.04
INFL 0.02 -0.05 0.03 0.07%** 0.15* 0.04 0.12 -0.03
CF-ECONMEAN 0.09%* 0.04 -0.07 -0.08 0.15%* 0.06 0.02 0.01
CF-ECONWEIG 0.11%* 0.06 -0.03 -0.05 0.15%* 0.07 0.02 0.01
CF—ECONS’\;%IS 0.11%* 0.07* -0.03 -0.05 0.15%* 0.07 0.03 0.02
Panel B: Technical indicators
MA(1,9) 0.08 0.11%* -0.19 -0.10 0.19 0.26** -0.03 0.00
MA(1,12) 0.16* 0.13* -0.15 -0.08 0.27** 0.22%* 0.01 0.01
MA(2,9) 0.10 0.12%* -0.16 -0.10 0.20 0.25%* 0.00 0.01
MA(2,12) 0.17* 0.14* -0.12 -0.07 0.28** 0.22%* -0.01 0.02
MA(3,9) 0.13 0.14** -0.12 -0.07 0.19* 0.22%* 0.00 0.00
MA(3,12) 0.05 0.06 -0.12 -0.07 0.20* 0.17%* -0.01 0.01
MOM(9) 0.06 0.05 -0.09 -0.06 0.25%* 0.17%* -0.01 0.01
MOM(12) 0.06 0.04 -0.09 -0.01 0.16%* 0.15%* -0.00 0.04
VOL(1,9) 0.06 0.10%* -0.06 -0.03 0.21* 0.20** 0.10 0.08
VOL(1,12) 0.11 0.12%* -0.07 -0.05 0.32%** 0.22%* 0.08 0.07
VOL(2,9) 0.07 0.07* -0.11 -0.06 0.27%* 0.21%* 0.03 0.02
VOL(2,12) 0.08* 0.06* -0.12 -0.07 0.29%* 0.19%* 0.08 0.08
VOL(3,9) 0.04 0.07** -0.11 -0.06 0.26%* 0.22%* 0.08 0.07
VOL(3,12) 0.13* 0.12%* -0.11 -0.08 0.26%* 0.18** 0.05 0.06
CF-TECHMEAN 0.10* 0.10%* -0.12 -0.08 0.30** 0.24** 0.04 0.03
CF-TECHVEIG 0.10* 0.10%* -0.12 -0.08 0.30** 0.24** 0.04 0.03
CP-TECH{TEIG 0.10* 0.10%* -0.12 -0.08 0.30%* 0.25%* 0.04 0.04
6=0.9 : : : : : : : :
Panel C: All predictors taken together
CF-ALLMEAN 0.09%* 0.07** -0.11 -0.09 0.31%** 0.21%** 0.03 0.02
CF-ALLVEIG 0.10%* 0.08** -0.09 -0.07 0.32%** 0.22%%* 0.04 0.02
CF-ALLy %I 0.10** 0.08** -0.09 -0.07 0.31%** 0.22%** 0.04 0.02




Table A.4
Out-of-sample R? statistics (in %) - 1990:1 to 2017:12

This table presents statistics on the out-of-sample predictability of one month ahead log excess returns on the
S&P 500 index. Panel A (Panel B) shows results for economic variables (technical indicators). In addition to the
individual forecasts, I display results for three different combination forecasting methods. Panel C shows results
when combining both sets of predictors. For each model the out-of-sample R? (in %) is displayed (Campbell and
Thompson, [2008)). *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively according to the
Clark and West| (2007) MSFE-adjusted statistic. The null hypothesis is equal MSFE and the alternative is that
the more sophisticated model has smaller MSFE than the historical mean benchmark. Column (1) shows the
respective predictor and column (2) shows results for the unadjusted series. Columns (3) to (9) present results
for the frequency-decomposed predictors. Dpg refers to components with periodicities between 2 to 16 months,
Dy refers to components with periodicities between 16 to 64 months, and Dy captures oscillations above 64
months. The superscript NL indicates that the nonlinear forecasting model is applied in columns (3), (5), (7),

and (9).

(1 (2) ®3) (4) (%) (6) (7) (8) )

1990:1 to 2017:12

Predictor Basic BasicNL Dy DRL Dy DYE Dy, DNL

Panel A: Economic variables

DP -1.71 0.79%* -44.16 -25.71 -0.49 -0.18 -0.48 0.24
DY -1.87 1.04%* -27.84 -10.93 -2.01 -0.53 -0.49 0.29
EP -0.58 -0.27 -39.36* -21.91 -0.66 0.15 -0.85 -0.29
DE -2.04 -0.25 -24.28 -13.21 -4.03 -0.63 -0.57 0.25
RVOL -0.52 0.08 -3.27 -1.76 -1.26 -0.58 -0.92 -0.55
BM -0.41 0.17 -16.75 -8.07 0.01 0.16* -0.59 -0.44
NTIS -1.86 -1.36 0.10 -0.06 -4.89 -3.59 -0.81 0.05
TBL -0.57 -0.86 -1.14 -1.16 -6.83 -3.17 0.21 -0.16
LTY 0.11 -0.34 -0.37 -0.58 -0.71 -0.47 0.06 -0.18
LTR -0.52 0.21 -0.32 0.36 -2.14 -0.63 0.15 0.01
TMS -1.46 -0.51 -1.03 -0.67 -7.04 -2.62 0.26* 0.21%*
DFY -0.85 -0.52 -13.21 -11.02 -6.05 -2.72 -1.04 -0.47
DFR -0.49 -0.53 -0.83 -0.81 -7.84 0.69 -0.10 -0.01
INFL -1.17 -1.40 0.85%* 1.30%** -1.03 -0.60 0.55* -0.02
CF-ECONMEAN -0.31 -0.13 -2.19 -2.02 -1.07 -0.50 -0.06 0.01
CF-ECONWEIG -0.27 -0.11 -1.32 -1.18 -0.95 -0.36 -0.06 0.00
CF-ECONVBIG -0.28 -0.11 -1.28 -1.23 -0.99 -0.36 -0.06 0.01
Panel B: Technical indicators
MA(1,9) 0.69% 0.71% -4.66 -1.56 -1.36* 3.27%* -6.71 -1.87
MA(1,12) 0.77 0.96* -2.75 -1.15 0.49% 2.57** -7.22 -2.27
MA(2,9) 0.24 0.87% -3.31 -1.62 -1.29 2.65%* -5.73 -1.76
MA(2,12) 0.81 1.04* -2.09 -0.89 0.91** 2.48%** -6.61 -2.10
MA(3,9) -0.16 0.62 -1.45 -0.86 -0.39 2.47%* -5.25 -1.97
MA(3,12) 0.01 0.38 -1.40 -0.79 0.90* 2.09** -6.22 -2.32
MOM(9) 0.37 0.53 -2.10 -1.14 1.46%* 2.15%* -5.69 -2.07
MOM(12) 0.43 0.48 -2.25 -1.12 1.12* 1.50%* -5.24 -1.87
VOL(1,9) 0.29 0.54 -1.30 -0.76 -2.38* 1.71% -0.72 -0.17
VOL(1,12) 0.59 0.67 -1.23 -0.77 0.15%* 1.90* -1.11 -0.52
VOL(2,9) 0.25 0.37 -1.01 -0.35 -1.08* 1.56* -1.04 -0.63
VOL(2,12) 0.90* 0.54 -2.62 -0.93 0.63** 1.59% -0.44 -0.52
VOL(3,9) 0.14 0.34 -2.09 -0.77 -0.96 1.77* -0.93 -0.41
VOL(3,12) 1.11% 0.86* -1.71 -1.05 0.71%* 1.61% -0.74 -0.56
CF-TECHMEAN 0.59 0.66 -1.15 -0.83 0.69* 2.25%* -3.20 -1.25
CF-TECHVEIG 0.60 0.66 -1.12 -0.82 0.65* 2.25%* -3.12 -1.25
CF-TECHEIS 0.60 0.66 -1.12 -0.83 0.65* 2.25%* -3.10 -1.23

Panel C: All predictors taken together

CF-ALLMEAN 0.24 0.30 -1.41 -1.35 0.70* 1.24%* -0.56 -0.34
CF-ALLVEIG 0.26 0.31 -1.02 -0.95 0.78* 1.37%* -0.52 -0.39
CF-ALLy/®IS 0.26 0.32 -0.99 -0.97 0.75* 1.38** -0.49 -0.35
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Table A.5
Annualized gains in CER - 1990:1 to 2017:12

This table reports the annualized gain in certainty equity return (CER) relative to the CER from the historical
mean (in percent). ACER is estimated for a mean-variance investor with a relative risk aversion of five who
allocates each month between the S&P 500 index and the risk-free rate. The optimal weight is estimated according
to forecasts of one-month ahead excess returns from predictive regression models. The optimal weight in risky
assets is constrained to lie between 0 and 1.5. The out-of-sample period runs from 1990:1 to 2017:12.

@) 2) ®3) (4) @) (6) (7) (®) @)

1990:1 to 2017:12

Predictor Basic Basic'k Du DR Dy DYE Dy DL

Panel A: Economic variables

DP -1.86 1.73%* -3.46 -1.48 -0.32 -0.15 -0.40 0.84
DY -1.58 2.18%* -3.85 -0.52 -2.31 -0.45 -0.38 1.00
EP 1.77 2.25* 3.15 2.56* 0.53 0.97* -0.72 0.12
DE -2.05 -0.19 -3.32 -1.68 -2.07 0.38 -0.19 0.58
RVOL -2.42 -0.60 -0.86 -0.69 -1.38 -0.44 -0.66 -0.46
BM -0.53 0.70 -4.39 -1.51 -0.24 -0.04 -0.47 -0.37
NTIS -0.62 -0.59 0.55 0.06 -3.02 -2.01 0.47 1.33
TBL -0.00 -0.84 -1.39 -1.28 -3.18 -0.88 0.27 -0.34
LTY -0.04 -0.47 -0.33 -0.34 -0.84 -0.84 -0.12 -0.29
LTR -0.70 0.28 -0.47 0.21 0.02 0.34 0.15 -0.02
TMS -0.44 -0.53 -1.26 -0.70 -3.81 -0.77 0.79** 0.13
DFY -1.16 -0.72 -1.59 -1.13 -3.69 -0.54 0.02 0.57
DFR 0.42 0.47 -1.12 -1.05 -0.76 1.28 1.83 1.90
INFL -1.07 -1.13 1.83 2.21%** 1.30 1.54 0.80 0.16
CF-ECONMEAN -0.59 -0.29 -1.17 -0.81 -1.17 -0.71 0.47 0.55
CF-ECONWEIG -0.51 -0.24 -0.34 -0.21 -0.92 -0.49 0.46 0.55
CF—ECONS’\;%IS -0.53 -0.24 -0.33 -0.26 -0.89 -0.47 0.47 0.56
Panel B: Technical indicators
MA(1,9) 2.06* 2.04* -2.47 -0.37 3.11 3.7TF* 1.97 2.47
MA(1,12) 3.20% 3.19% -1.14 -0.35 3.34* 3.44* 1.75 2.19
MA(2,9) 1.94 2.67* -1.75 -0.46 1.97 3.46** 1.97 2.21
MA(2,12) 3.20% 3.28* -0.89 -0.24 3.41* 3.39%* 1.83 2.17
MA(3,9) 1.69 2.42% -0.94 -0.29 2.12 2.98* 1.56 1.94
MA(3,12) 1.52 1.82 -0.12 -0.20 2.72 2.91* 1.54 1.97
MOM(9) 2.07 2.08 -0.33 -0.47 3.34* 2.97* 1.34 2.05
MOM(12) 1.93 1.96 -0.95 -0.59 2.41 2.91%* 1.76 2.02
VOL(1,9) 1.55 1.94* -0.45 -0.21 3.38 3.25% 2.89* 2.51
VOL(1,12) 2.39 2.63* -0.61 -0.13 4.76%** 3.40%* 2.52 2.44
VOL(2,9) 1.39 1.83 -0.64 -0.11 3.21 2.66 2.23 2.20
VOL(2,12) 2.11 2.06* -1.09 -0.43 4.08** 2.75% 2.76* 2.18
VOL(3,9) 1.02 1.34 -0.94 -0.13 2.84 2.86 2.22% 2.25
VOL(3,12) 2.80* 2.75% -0.70 -0.42 3.90*%* 2.83* 2.71%* 2.24
CF-TECHMEAN 2.14 2.25% -0.37 -0.21 3.57* 3.26%* 2.23 2.21
CF-TECHYVEIG 2.15 2.26* -0.33 -0.20 3.55% 3.27%* 2.25 2.23
CF-TECHSV:%% 2.15 2.26* -0.33 -0.20 3.56* 3.27%% 2.25 2.23
Panel C: All predictors taken together
CF-ALLMEAN 0.96 0.99 -1.02 -1.01 2.98* 2.96%* 2.18 1.89
CF-ALLYEIG 1.04 1.05 -0.79 -0.75 2.95% 3.01%* 2.17 1.87
CF-ALLy &I 1.04 1.06 -0.83 -0.80 2.95% 3.01%* 2.19 1.89
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Table A.6

Annualized gains in SR - 1990:1 to 2017:12

This table reports the annualized gain in the Sharpe ratio (SR) relative to the SR from the historical mean. ASR
is estimated for a mean-variance investor with a relative risk aversion of five who allocates each month between the
S&P 500 index and the risk-free rate. The optimal weight is estimated according to forecasts of one-month ahead
excess returns from predictive regression models. The optimal weight in risky assets is constrained to lie between
0 and 1.5. The out-of-sample period runs from 1990:1 to 2017:12.

1) (2 (3) (4) (5) (6) (M) (8) 9)
1990:1 to 2017:12
Predictor Basic Basic'k Du DRL Dy DYE Dr DL
Panel A: Economic variables
DP -0.32 0.14%* -0.17 -0.07 -0.04 -0.01 -0.05 0.06
DY -0.28 0.18** -0.22 -0.01 -0.20 -0.01 -0.05 0.07
EP 0.19* 0.19* 0.24 0.21* 0.04 0.07* -0.06 0.00
DE -0.20 -0.01 -0.19 -0.09 -0.13 0.03 -0.04 0.04
RVOL -0.15 -0.02 -0.05 -0.03 -0.08 -0.01 -0.05 -0.03
BM -0.07 0.05 -0.26 -0.10 -0.02 0.00 -0.00 -0.03
NTIS -0.04 -0.04 0.04 0.01 -0.22 -0.13 0.03 0.10
TBL 0.04 -0.05 -0.09 -0.08 -0.15 -0.03 0.04* -0.02
LTY 0.02 -0.03 -0.01 -0.02 -0.02 -0.04 -0.00 -0.02
LTR -0.04 0.03 -0.03 0.02 0.02 0.03 0.02 0.00
TMS 0.00 -0.03 -0.10 -0.05 -0.23 -0.03 0.07** 0.01
DFY -0.10 -0.05 -0.09 -0.07 -0.22 -0.02 -0.00 0.04
DFR 0.03 0.03 -0.08 -0.07 -0.07 0.10 0.14 0.15
INFL -0.06 -0.08 0.14 0.17%** 0.10 0.12 0.08* 0.01
CF-ECONMEAN -0.06 -0.02 -0.07 -0.04 -0.07 -0.03 0.04 0.04
CF-ECONWEIG -0.05 -0.02 -0.03 -0.01 -0.06 -0.02 0.03 0.04
CF—ECONS";%IS -0.05 -0.02 -0.03 -0.01 -0.06 -0.02 0.04 0.04
Panel B: Technical indicators
MA(1,9) 0.17* 0.17%* -0.15 -0.03 0.25 0.33** 0.16 0.21
MA(1,12) 0.27* 0.28** -0.06 -0.02 0.27 0.31%* 0.14 0.18
MA(2,9) 0.16 0.23** -0.11 -0.03 0.16 0.31 0.16** 0.18
MA(2,12) 0.27* 0.29%* -0.05 -0.02 0.29* 0.30** 0.15 0.18
MA(3,9) 0.13 0.20* -0.05 -0.02 0.17 0.26* 0.13 0.15
MA(3,12) 0.12 0.15 0.01 -0.01 0.22 0.25% 0.13 0.16
MOM(9) 0.17 0.17* -0.01 -0.03 0.28* 0.26* 0.12 0.17
MOM(12) 0.16 0.16* -0.06 -0.04 0.20 0.25* 0.15 0.16
VOL(1,9) 0.12 0.16* -0.01 -0.01 0.27 0.28* 0.23 0.21
VOL(1,12) 0.20 0.22* -0.03 -0.01 0.40%* 0.30%* 0.20 0.20
VOL(2,9) 0.11 0.15 -0.03 -0.00 0.26 0.22 0.18 0.18
VOL(2,12) 0.17 0.17* -0.06 -0.03 0.33%* 0.23* 0.22 0.18
VOL(3,9) 0.08 0.10* -0.05 -0.01 0.23 0.24* 0.18 0.18
VOL(3,12) 0.23* 0.23%* -0.05 -0.03 0.32%* 0.24* 0.21 0.18
CF-TECHMEAN 0.17 0.19% -0.01 -0.01 0.30* 0.28** 0.18 0.18
CF-TECHYVEIG 0.18 0.19* -0.01 -0.01 0.30* 0.29%* 0.18 0.18
CF-TECHS";%IS 0.18 0.19* -0.01 -0.01 0.30* 0.29%* 0.18 0.18
Panel C: All predictors taken together
CF-ALLMEAN 0.07 0.07* -0.06 -0.06 0.25* 0.25%* 0.17 0.15
CF-ALLYEIG 0.08 0.08* -0.05 -0.05 0.25* 0.26** 0.17 0.15
CF-ALLy &I 0.08 0.08* -0.05 -0.05 0.25* 0.26** 0.17 0.15
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Table A.7
Out-of-sample R? statistics (in %) - principal component analysis

This table presents statistics on the out-of-sample predictability of one month ahead log excess returns on the S&P
500 index. Panel A (Panel B) shows results for economic variables (technical indicators). Panel C shows results for all
predictors taken together. I display results for the first, second, and third principal component. For each model the
out-of-sample R? (in %) is displayed (Campbell and Thompson| 2008). *, **, and *** indicate significance at the 10%,
5%, and 1% levels, respectively according to the [Clark and West| (2007) MSFE-adjusted statistic. The null hypothesis
is equal MSFE and the alternative is that the more sophisticated model has smaller MSFE than the historical mean
benchmark. Column (1) shows the respective predictor and column (2) shows results for the unadjusted series. Columns
(3) to (9) present results for the frequency-decomposed predictors. Dy refers to components with periodicities between 2
to 16 months, Dy refers to components with periodicities between 16 to 64 months, and Dy, captures oscillations above
64 months. The superscript NL indicates that the nonlinear forecasting model is applied in columns (3), (5), (7), and
(9).

(1) (2) ®3) (4) () (6) (7) (8) 9)

1966:1 to 2017:12

Predictor Basic BasicNL Dy DR Dy DYE Dyp DNL

Panel A: Economic variables

PC-ECON; 1.24%** 0.75%* -29.85 -15.51 0.16%* 0.62* -0.48 -0.81
PC-ECON2 -6.80 -1.98 -33.10 -12.46 -12.49 -4.12 -1.59 -0.83
PC-ECON3 -15.37 -5.25 -9.75 -3.58 -3.69 -1.92 -3.32 0.35
Panel B: Technical indicators
PC-TECH; 0.52* 0.88** -5.56 -3.41 -0.04%** 2.04%** -6.86 -3.34
PC-TECH> 0.24 0.39 -0.17 0.65*** -2.96%* 1.41%%* -0.00* -0.95
PC-TECH3 -5.64 -3.56 -0.45 -0.21 -188.19 -74.03 -64.72 -28.94
Panel C: All predictors taken together
PC-ALL; 0.35 0.52 -11.77 -6.28 -0.22%* 1.57%* -5.76 -3.06
PC-ALLo -3.16 -1.25 -3.13 -0.70 -18.43 -8.67 -3.01 -0.96
PC-ALL3 -2.75 -1.43 -10.20 -1.62* -3.27 -0.37 -1.63 -0.48
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Table A.8
Annualized gains in CER - principal component analysis

This table reports the annualized gain in certainty equity return (CER) relative to the CER from the historical
mean (in percent). ACER is estimated for a mean-variance investor with a relative risk aversion of five who
allocates each month between the S&P 500 index and the risk-free rate. The optimal weight is estimated according
to forecasts of one-month ahead excess returns from predictive regression models. The optimal weight in risky
assets is constrained to lie between 0 and 1.5 to prevent shorting stocks and leveraging more than 50%. The
out-of-sample period runs from 1966:1 to 2017:12.

1) (2) ©) (4) () (6) (7) (8) @)

1966:1 to 2017:12

Predictor Basic BasicNL Dy DgL Dy D]I\»I{L Dy, DEL

Panel A: Economic variables

PC-ECON; 2.09%* 1.23%* -2.24 -0.75 1.04 0.64 1.18 0.11
PC-ECON, -0.65 0.40 -2.34 -0.60 -0.52 -0.22 0.54 -0.12
PC-ECON3 -2.53 -1.23 -1.00 -0.22 -0.48 0.37 -0.22 2.27%*
Panel B: Technical indicators
PC-TECH; 2.07* 2.35%** -1.49 -1.03 3.75%** 3.00%** 0.33 1.22
PC-TECH» 1.57* 1.32%* 0.40 0.76%** 3.56** 2.99%** 1.43 0.31
PC-TECH3; -2.37 -2.28 -0.26 -0.02 -3.09 -1.13 1.97 1.72
Panel C: All predictors taken together
PC-ALL, 1.94% 2.03** -2.35 -2.02 3.26%* 2.68** 0.36 1.10
PC-ALL; 0.00 1.15 -0.74 -0.06 -1.00 -1.24 -1.94 0.15
PC-ALL3 1.36 1.15* -0.36 0.47 -0.58 -0.06 -0.03 -0.28
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Table A.9
Annualized gains in SR - principal component analysis

This table reports the annualized gain in the Sharpe ratio (SR) relative to the SR from the historical mean. ASR
is estimated for a mean-variance investor with a relative risk aversion of five who allocates each month between the
S&P 500 index and the risk-free rate. The optimal weight is estimated according to forecasts of one-month ahead
excess returns from predictive regression models. The optimal weight in risky assets is constrained to lie between
0 and 1.5 to prevent shorting stocks and leveraging more than 50%. The out-of-sample period runs from 1966:1 to
2017:12.

1) 2) 3) (4) (5) (6) (7 (8) (9)

1966:1 to 2017:12

Predictor Basic Basic'k Dy DR Dy DYE Dy, DL

Panel A: Economic variables

PC-ECON; 0.14** 0.09* -0.05 -0.02 0.11%* 0.07* 0.06 -0.02
PC-ECON» -0.00 0.04 -0.07 -0.02 -0.02 -0.00 0.04 -0.01
PC-ECON3 -0.14 -0.06 -0.01 0.02 -0.04 0.03 -0.09 0.17**
Panel B: Technical indicators
PC-TECH; 0.15* 0.17** -0.06 -0.08 0.29%** 0.23%** 0.07 0.07
PC-TECH» 0.10 0.08* 0.02 0.06%** 0.28%*** 0.23%** 0.11 0.01
PC-TECH3; -0.15 -0.10 -0.01 0.00 -0.10 -0.02 0.16 0.13
Panel C: All predictors taken together
PC-ALL, 0.14* 0.14** -0.09 -0.11 0.26** 0.20** 0.06 0.06
PC-ALLs -0.03 0.07 -0.02 -0.00 -0.04 -0.07 -0.13 0.01
PC-ALL3 0.12 0.09* 0.02 0.05 -0.00 0.01 0.07 0.02
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Table A.10
Results for different wavelet filters from combined forecasts of medium-
frequency components

This table presents results on the out-of-sample performance of combination forecasts from economic
variables and technical indicators for different wavelets. Panel A presents results for R5g, whereas Panel
B (Panel C) shows the annualized ACER (monthly ASR). The respective wavelets are the Daubechies
wavelet with width 4 and 8 (D(4) and D(8)), the Fejér-Korovkin wavelet with width 4 (FK(4)), and the
least asymmetric wavelet with width 16 (LA(16)).The out-of-sample period runs from 1966:1 to 2017:12.

(1) (2) ®3) (4) (®) (6) () (8) (9)

Panel A: RZOS

D DYE
Predictor D(4) D(8) FK(4) LA(16) D(4) D(8) FK(4) LA(16)
CF-ECONMEAN —q ggksck  go¥k* 1 gg*** (. gp¥** 0.39 0.34 0.43 0.32
CF-TECHMEAN g og¥** (g qg¥k*  3gk*k  g7i** 1 g3%kk ] ggpksk ] gpeks  gghoes
CF-ALLMEAN 1.53%** 1.43%** 1.60%*** 1.32%** 1.46%** 1.38%** 1.49%** 1.31%**

Panel B: ACER

Predictor D(4) D(8) FK(4) LA(16)

CF-ECONMEAN 2.07%* 1.93%* 2.23%* 1.91%*
CF-TECHMEAN g ggksok g ggikx g ggksk g ks

CF-ALLMEAN 4.31%F% 4 07FFF 4.34%FF 3. @pkF*
Panel C: ASR

Dy
Predictor D(4) D(8) FK(4) LA(16)

CF-ECONMEAN 0.05%* 0.05%*  0.05%** 0.05%*
CF-TECHMEAN g pg***  (09***  0.09%**  (0.08%**
CF-ALLMEAN 0.10%**  0.09%**  0.10%¥**  0.09%**
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Table A.11
Relative average turnover
This table reports the average turnover of a portfolio based on a sophisticated forecasting model relative to the

average turnover of a portfolio based on the historical mean forecast. Turnover is defined as the percentage of
wealth traded at the end of each period. The out-of-sample period runs from 1966:1 to 2017:12.

@) 2) ®3) (4) @) (6) (M) (8) )

1966:1 to 2017:12

Predictor Basic BasicNL Dy DR Dy DY Dy, DL

Panel A: Economic variables

DP 2.03 2.45 16.87 4.54 1.77 1.62 1.56 1.77
DY 2.79 2.90 16.92 4.39 2.66 2.26 1.62 1.83
EP 1.63 2.08 13.21 4.55 2.44 2.01 1.46 1.62
DE 2.02 2.21 3.86 2.34 2.93 3.13 1.65 1.87
RVOL 4.07 2.44 11.44 3.51 3.08 2.06 1.87 1.57
BM 2.32 2.40 15.37 4.61 1.87 1.77 1.68 1.82
NTIS 3.09 2.22 6.58 1.94 3.30 3.03 2.16 1.59
TBL 1.44 2.52 6.16 3.37 2.93 3.51 1.13 2.46
LTY 1.03 2.53 10.46 4.21 3.14 2.75 1.10 2.41
LTR 22.89 6.12 20.18 5.92 10.83 4.20 3.34 2.14
TMS 4.15 3.79 5.90 2.44 4.03 3.45 2.21 2.45
DFY 2.52 2.13 11.84 4.34 3.22 3.01 1.33 2.12
DFR 10.04 4.30 8.25 4.12 12.45 5.08 5.67 2.76
INFL 7.59 3.52 5.39 1.74 8.01 3.40 1.59 2.41
CF-ECONMEAN 3.94 2.47 9.05 3.51 3.56 2.96 1.94 1.99
CF-ECON&:EIG 4.21 2.59 8.54 3.41 3.95 3.03 2.04 2.02
CF-ECONYBIG 4.32 2.63 8.42 3.35 4.21 3.08 2.11 2.03
Panel B: Technical indicators
MA(1,9) 4.30 2.34 8.44 2.82 5.75 3.17 3.51 2.92
MA(1,12) 4.00 2.54 5.95 2.60 4.12 2.97 3.24 2.97
MA(2,9) 4.39 2.30 7.37 2.65 5.01 2.98 3.06 2.91
MA(2,12) 3.74 2.47 4.94 2.31 3.83 2.74 3.03 2.97
MA(3,9) 4.54 2.62 5.98 2.49 4.91 2.99 3.14 3.01
MA(3,12) 2.73 2.10 5.56 2.61 3.68 2.62 3.11 2.96
MOM(9) 2.62 1.82 6.53 2.76 3.48 2.50 3.09 2.97
MOM(12) 2.38 1.72 5.56 2.20 2.78 1.99 2.72 2.75
VOL(1,9) 5.67 2.33 11.36 3.25 5.71 3.65 3.05 2.76
VOL(1,12) 5.37 2.23 8.57 2.47 4.02 3.01 2.81 2.78
VOL(2,9) 3.70 1.94 7.67 2.66 4.93 3.22 3.21 2.88
VOL(2,12) 2.74 1.76 5.83 2.52 4.04 2.97 2.60 2.60
VOL(3,9) 2.91 1.83 6.91 2.76 4.60 3.25 2.88 2.73
VOL(3,12) 3.24 2.14 4.94 2.34 3.75 2.74 2.77 2.79
CF-TECHMEAN 3.20 2.01 6.36 2.60 4.11 2.75 2.70 2.67
CF-TECHVEIG 3.21 2.02 6.45 2.61 4.09 2.74 2.73 2.69
CF-TECHVEIS 3.22 2.02 6.47 2.61 4.11 2.74 2.75 2.69
Panel C: All predictors taken together
CF-ALLMEAN 2.95 2.03 7.61 3.07 3.63 2.79 2.40 2.46
CF-ALLVEIG 3.14 2.13 7.13 2.89 3.79 2.82 2.51 2.47
CF-ALLgYEIS 3.24 2.17 7.09 2.88 3.94 2.87 2.57 2.46
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Table A.12
Annualized gains in CER after transaction costs

This table reports the annualized gain in certainty equity return (CER) relative to the CER from the historical
mean (in percent). Results are net of a proportional transaction cost of 50 basis points per transaction. ACER is
estimated for a mean-variance investor with a relative risk aversion of five who allocates each month between the
S&P 500 index and the risk-free rate. The optimal weight is estimated according to forecasts of one-month ahead
excess returns from predictive regression models. The optimal weight in risky assets is constrained to lie between
0 and 1.5 to prevent shorting stocks and leveraging more than 50%. The out-of-sample period runs from 1966:1 to
2017:12.

1) (2) (3) 4) (5) (6) (7 (8 9)
1966:1 to 2017:12
Predictor Basic BasicNE Dy DII\;L Dy DRI/IL Dy, DEL

Panel A: Economic variables

DP -0.78 0.35 -4.85 -3.58 0.09 0.05 0.57 0.84**
DY -0.46 0.83 -5.97 -2.93 -1.54 -0.71 0.62 0.95%*
EP 0.17 0.31 -2.22 -0.91 0.09 0.70 -0.31 -0.00
DE -0.46 0.02 -0.47 -0.68 -1.26 -0.10 0.17 0.44
RVOL -1.42 -0.17 177 -0.96 -1.71 -0.70 -0.36 -0.06
BM -1.41 -0.32 -5.10 -3.47 0.04 0.05 -0.69 -0.37
NTIS -0.13 -1.06 0.05 0.00 -0.29 -1.81 -0.67 0.50
TBL 1.74 -0.21 0.49 -0.64 0.87 0.37 1.51 -0.20
LTY 1.65 -0.22 1.90%* 0.63 2.12% -0.20 1.14 -0.30
LTR -1.98 0.16 -2.29 -0.02 0.21 0.39 0.22 0.21
T™MS 1.39 0.56 -1.87 -1.11 -0.99 0.35 0.94 0.38
DFY -0.97 -0.35 -1.70 -0.86 -1.30 0.09 0.13 -0.13
DFR -1.02 -0.25 -1.58 -0.78 -0.47 0.69 0.20 0.97
INFL -0.58 -0.86 0.17 1.09%* 0.89 0.59 1.60* -0.11
CF-ECONMEAN 1.34%* 0.47 -2.44 -2.30 1.99%* 0.44 0.87 0.45
CF-ECONVEIG 1.41%* 0.62 -1.82 -1.76 2.01%* 0.64 0.89 0.49
CF-ECON &I 1.40%* 0.67 -1.77 -1.77 L.97** 0.67 0.90 0.51
Panel B: Technical indicators
MA(1,9) 1.09 1.79%* -2.78 -1.23 2.27 3.24%** -0.38 0.92
MA(1,12) 2.19* 2.36%* -2.21 -1.09 3.13%* 2.71%* -0.47 0.84
MA(2,9) 1.29 2.24%** -2.53 -1.34 2.47% 3.10%** 0.09 1.02
MA(2,12) 2.29* 2.51%* -1.94 -1.02 3.22%* 2.66%* -0.32 0.85
MA(3,9) 1.70 2.37*** -2.07 -1.07 2.26 2.67** -0.22 0.68
MA(3,12) 0.92 1.36* -1.12 -0.99 2.50* 2.10%* -0.52 0.72
MOM(9) 1.01 1.20 -1.52 -1.03 2.81%* 2.12%* -0.58 0.70
MOM(12) 0.95 1.12 -1.35 -0.62 1.76* 1.90%* -0.47 0.97
VOL(1,9) 0.54 1.48%* -1.88 -0.89 2.67* 2.81%* 0.69 1.44
VOL(1,12) 1.19 2.11%* -1.90 -0.89 4.06%** 2.90%** 0.57 1.41
VOL(2,9) 0.52 1.32%* -2.05 -0.99 3.14%* 2.57%* 0.03 1.09
VOL(2,12) 0.66 1.07 -2.00 -1.12 3.34%* 2.41%* 0.54 1.35
VOL(3,9) 0.36 1.16%* -1.81 -0.95 2.80* 2.57** 0.37 1.23
VOL(3,12) 1.57 2.12%* -1.44 -0.94 2.98%** 2.26%* 0.28 1.13
CF-TECHMEAN 1.29 1.72%* -1.68 -1.09 3.30%* 2.82%%* 0.17 0.98
CF-TECHYVEIG 1.30 1.73%* -1.68 -1.09 3.30%* 2.83%** 0.19 1.00
CF-TECHVEIS 1.30 1.73%* -1.69 -1.09 3.30%* 2.83%** 0.18 1.00
Panel C: All predictors taken together
CF-ALLMEAN 1.46%** 1.10%* -2.71 -2.37 3.96*** 2.69%** 0.53 1.00
CF-ALLVEIG 1.52** 1.20%* -2.15 -1.83 3.81%** 2.71%%* 0.54 1.03
CF-ALL %I 1.53%* 1.24%* -2.13 -1.81 3.76%** 2.71%** 0.56 1.07
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Table A.13
Annualized gains in SR after transaction costs

This table reports the annualized gain in the Sharpe ratio (SR) relative to the SR from the historical mean. Results
are net of a proportional transaction cost of 50 basis points per transaction. ASR is estimated for a mean-variance
investor with a relative risk aversion of five who allocates each month between the S&P 500 index and the risk-free
rate. The optimal weight is estimated according to forecasts of one-month ahead excess returns from predictive
regression models. The optimal weight in risky assets is constrained to lie between 0 and 1.5 to prevent shorting
stocks and leveraging more than 50%. The out-of-sample period runs from 1966:1 to 2017:12.

(1) () 3) (4) ®) (6) (7) ®) 9)
1966:1 to 2017:12

Predictor Basic BasicNL Dy DgL Dy DRT/IL Dy, DEL

Panel A: Economic variables

DP -0.12 0.05 -0.21 -0.16 -0.02 0.01 0.02 0.05*
DY -0.11 0.08 -0.29 -0.11 -0.12 -0.01 0.02 0.06*
EP -0.02 0.02 -0.07 -0.04 0.01 0.04 -0.03 -0.01
DE -0.07 -0.00 0.02 -0.00 -0.01 0.02 -0.03 0.01
RVOL -0.01 0.04 -0.07 -0.01 -0.02 0.01 -0.04 -0.01
BM -0.09 -0.01 -0.26 -0.18 -0.00 0.01 -0.03 -0.04
NTIS 0.04 -0.07 -0.00 0.00 0.03 -0.08 -0.06 0.01
TBL 0.12 -0.03 0.05 -0.02 0.13 0.05 0.08 -0.04
LTY 0.09 -0.04 0.16%* 0.05 0.17%* -0.03 0.04 -0.05
LTR -0.08 0.03 -0.14 0.01 0.06 0.05 0.02 0.01
T™MS 0.17%* 0.05 -0.14 -0.07 0.00 0.06 0.09 0.00
DFY -0.03 -0.00 -0.05 -0.01 -0.01 0.06 -0.04 -0.04
DFR -0.09 -0.02 -0.11 -0.05 0.00 0.06 -0.01 0.04
INFL -0.05 -0.08 0.01 0.08** 0.07 0.05 0.12* -0.03
CF-ECONMEAN 0.07* 0.02 -0.12 -0.10 0.16** 0.05 0.03 0.00
CF-ECONWEIG 0.08* 0.03 -0.10 -0.08 0.16** 0.06 0.04 0.00
CF-ECON/BIG 0.08* 0.04 -0.10 -0.08 0.16** 0.06 0.04 0.01
Panel B: Technical indicators
MA(1,9) 0.06 0.12** -0.17 -0.09 0.19* 0.25%** 0.01 0.04
MA(1,12) 0.16* 0.16%* -0.14 -0.08 0.24** 0.20** 0.02 0.03
MA(2,9) 0.08 0.15** -0.16 -0.10 0.19* 0.23*** 0.05 0.05
MA(2,12) 0.17* 0.18** -0.12 -0.08 0.25%* 0.19%* 0.03 0.04
MA(3,9) 0.12 0.17 ** -0.14 -0.08 0.18* 0.19%* 0.03 0.02
MA(3,12) 0.05 0.08* -0.06 -0.07 0.19** 0.14* 0.02 0.03
MOM(9) 0.06 0.07 -0.09 -0.08 0.21%* 0.14* 0.01 0.03
MOM(12) 0.05 0.06 -0.09 -0.04 0.12 0.12% 0.03 0.05
VOL(1,9) 0.02 0.09* -0.10 -0.07 0.22* 0.21%* 0.07 0.09
VOL(1,12) 0.08 0.15%* -0.12 -0.07 0.32%** 0.21*** 0.07 0.09
VOL(2,9) 0.03 0.08* -0.13 -0.08 0.25%* 0.19%* 0.03 0.06
VOL(2,12) 0.04 0.06 -0.12 -0.09 0.26*** 0.17%* 0.07 0.08
VOL(3,9) 0.02 0.07** -0.10 -0.07 0.22%* 0.19%* 0.06 0.07
VOL(3,12) 0.11 0.15%* -0.10 -0.07 0.24** 0.16** 0.05 0.06
CF-TECHMEAN 0.08 0.11%* -0.10 -0.09 0.26** 0.21%** 0.05 0.05
CF-TECHYVEIG 0.08 0.11%* -0.10 -0.09 0.26** 0.21%** 0.06 0.05
CF-TECHVEIS 0.08 0.11%%* -0.10 -0.09 0.26** 0.217%** 0.06 0.05
Panel C: All predictors taken together
CF-ALLMEAN 0.09%** 0.06™* -0.14 -0.12 0.31%** 0.20%** 0.05 0.04
CF-ALL%Z:EIG 0.09** 0.07** -0.12 -0.10 0.30%** 0.20%** 0.05 0.05
CF-ALLYBIG 0.10** 0.07** -0.12 -0.10 0.29%** 0.20%** 0.05 0.05
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