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Abstract 

Technical trading rules are widely used by practitioners to forecast the U.S. 

equity premium. I decompose technical indicators into components with frequency-

specific information, showing that all the predictive power comes from periodicities 

between 16 to 64 months, without any evidence of predictability outside of this 

frequency band. An investor who only forecasts with these medium-frequency com-

ponents generates both statistically and economically sizable gains compared to the 

historical mean and the original technical indicators. The out-of-sample R2 is signif-

icant for each of the 14 adjusted indicators in the sample. A mean-variance investor 

who combines individual forecasts from medium-frequency components generates a 

sizable utility gain of more than 350 basis points relative to the historical mean for 

the forecasting period from January 1966 to December 2017. This is almost twice as 

large as utility gains from the historical mean and more than 200 basis points larger 

than for combination forecasts with unadjusted technical indicators. I show that 

the substantial gains mainly result from an improved forecasting ability of medium-

frequency components during recessions. 
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1 Introduction 

Predicting the equity premium has a long tradition in finance and is of interest for both 

academics and practitioners. Real-time forecasts are necessary to adequately allocate 

resources between risky assets and the risk-free rate to enhance investment performance 

(DeMiguel et al., 2009; Rapach and Zhou, 2013). Better estimates on both the condi-

tional mean and conditional variance of excess stock market returns help understanding 

the risk-return trade-off, see, among others, Ludvigson and Ng (2007). Furthermore, 

the equity premium is central for the evaluation of investment performance and in the 

characterization of return patterns among different assets, see Ferson (2010) and Goyal 

(2012) for reviews. Another important point is the consistency between stock return 

predictability and market efficiency (Balvers et al., 1990; Cujean and Hasler, 2017). 

Even though there is a voluminous literature, the overall evidence for stock return pre-

dictability is mixed. Generally, predictability is tested either over the full available 

sample (in-sample) or with a recursively expanding sample that mimics the real-time 

situation of an investor (out-of-sample). 

In this paper, I contribute to the literature on out-of-sample equity premium prediction 

by proposing a novel forecasting method that uses frequency-decomposed predictor vari-

ables. More precisely, I apply filtering methods to split the predictor time series into a 

sum of frequency-specific parts. Each part depicts oscillations of different frequencies, 

like high, medium, and low frequencies. This allows me to analyze whether short-horizon 

predictability only comes from specific frequency-bands of the predictor variables. As 

an example, the predictability from business-cycle oscillations of a predictor can easily 

be buried under high-frequency noise or low-frequency movements in the trend.2 

2According to Baxter and King (1999), a business-cycle has cyclical components with periodicities 
between 1.5 and 8 years. 
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I show that short-horizon predictability of technical indicators solely stems from medium-

frequency components. The oscillations between 16 to 64 months have an excellent 

forecasting performance during recessions without much evidence of predictability in 

expansions. This provides further evidence that stock return predictability concentrates 

in bad times. In a next step, I formally test whether this state-dependent predictability 

is related to business-cycle expectations. The idea behind is as follows: if predictability 

one-month ahead depends on current recession forecasts, then an investor could form 

a forecasting strategy that makes use of this dependency. Due to state-dependent pre-

dictability, the sophisticated model only statistically outperforms the historical mean in 

recessions. Therefore, the historical mean should be used in expansions, thereby lim-

iting forecasting errors. Indeed, I find strong evidence that predictability by medium-

frequencies of technical indicators is related to recession forecasts from a simple probit 

model. 

Building on this, I propose a nonlinear forecasting model. Whenever a recession is 

expected one-month ahead then the sophisticated forecasting model is applied and, oth-

erwise, when an expansion is expected then the historical mean is used for forecasting. 

This automatically takes the empirical fact of state-dependent predictability into ac-

count. Obviously, recessions cannot be forecasted perfectly. Thus, it is an empirical 

question whether lower forecast errors in expansions offset the cost of potentially not 

identifying a recession in advance. My results show that the combination of frequency-

decomposed predictor and nonlinear forecasting model generates sizable out-of-sample 

R2 values in the range of 2%. Even further, I examine the economic significance of 

frequency-decomposed predictors in an asset allocation exercise. An investor would be 

willing to pay more than 200 basis points annually to have access to forecasts from 

medium-frequencies of technical indicators rather than to forecasts from the original 

predictors. 
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My work is related to several parts of the literature. Firstly, I contribute to a growing 

literature that applies filtering methods to cross-sectional asset pricing and forecasting 

exercises, see, among others, Ortu et al. (2013); Kang et al. (2017); Xyngis (2017); Faria 

and Verona (2018b); Bandi et al. (2019a,b). The isolated parts from the original series 

capture different degrees of persistence and allow a more nuanced view on dependen-

cies between time series. As an example, Faria and Verona (2018b) highlight that the 

sum of frequency-decomposed parts improves on the original sum-of-the-parts forecast-

ing method of Ferreira and Santa-Clara (2011). Secondly, my findings are related to the 

literature on combination forecasts (Timmermann, 2006; Rapach et al., 2010). I show 

that combination forecasts from medium-frequency components of both economic vari-

ables and technical indicators improve on combination forecasts from the original time 

series. 

Thirdly, I show that medium-frequencies of technical indicators have significant fore-

casting power in recessions. Neely et al. (2014) find that technical indicators have a 

significant out-of-sample predictive power for the U.S. equity premium. I decompose 

these predictors into different frequencies, showing that all the predictive power comes 

from periodicities between 16 to 64 months. The R2 is highly significant for each of the OS 

14 medium-frequency components of technical indicators. Hence, the short-to-medium-

end of business-cycle oscillations covers all the predictive information. Surprisingly, the 

results for economic variables do not reveal frequency-specific predictability. This high-

lights that the critique of Welch and Goyal (2008) extends to frequency-decomposed 

parts of individual economic variables.3 

Fourth, I show that medium-frequency components of technical indicators are econom-

ically valuable for an investor. The gains in both certainty equivalent return (CER) 

3I only test short-horizon predictability. So, I cannot comment on whether frequency-specific parts 
have forecasting power over long horizons. 
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and Sharpe ratio (SR) are sizable. This is an important exercise because the correla-

tion between statistical measures of significance and economic measures of significance 

is only weak (Cenesizoglu and Timmermann, 2012). Combination forecasts from the 14 

unadjusted technical indicators taken together increase the annualized CER by roughly 

150 basis points compared to the CER for the historical mean, which is around 400 basis 

points. In contrast to that, combination forecasts from the respective medium-frequency 

parts of the technical indicators generate an increase in CER by more than 350 basis 

points. Hence, an investor would be willing to pay a sizable annual fee of more than 200 

basis points to have access to frequency-specific combination forecasts. This is compa-

rable in magnitude to gains from other recently proposed predictors (Rapach et al., 2016). 

Fifth, I test whether one-month ahead predictability depends on business-cycle expecta-

tions (Pesaran and Timmermann, 2009). The results show that expectations in month 

t on the state of the economy in period t + 1 are closely related to out-of-sample pre-

dictability in month t +1. So far, most of the articles have sorted forecasting gains on ex 

post available NBER recession periods, finding that gains are centered in recessions. In 

contrast to that, I document that business-cycle expectations, which are readily avail-

able in real time, are informative for predicting stock returns. Predictability significantly 

depends on recession forecasts. Building on this, I propose a nonlinear forecasting model 

that selects between the historical mean and sophisticated forecasting models. When 

forecasts signal a recession then the advanced model is used, otherwise forecasts are 

made according to the historical mean. By including recession forecasts into a model of 

return forecasts, I account for state-dependent predictability (Dangl and Halling, 2012; 

Rapach and Zhou, 2013). Generally, there is a trade-off between lower forecast errors in 

expansions and potentially missed predictability in a not identified recession. My find-

ings show that the benefits outweigh the costs, and that the increases in out-of-sample 

R2 statistics are sizable. 

4 



The remainder of the paper proceeds as follows. Section 2 describes the data. The 

time-frequency decomposition of the original series is explained in Section 3. Section 4 

outlines that frequency-decomposed predictors are statistically significant and incorpo-

rate useful forecasting information during recessions. Section 5 shows that the filtering 

method is economically significant. I explain in Section 6 that results are robust with 

respect to transaction costs, filtering methods, and parameter specifications. Section 7 

concludes. 

2 Data 

My dataset considers the same set of 28 predictors as Neely et al. (2014). One part of 

the dataset comprises the 14 most commonly used economic variables like the dividend-

price ratio and the term spread (Welch and Goyal, 2008; Campbell and Thompson, 2008; 

Rapach et al., 2010). The other part of the dataset consists of 14 technical indicators 

that are based on popular trend-following trading strategies. The sample covers monthly 

U.S. data from December 1950 to December 2017 and therefore extends the dataset of 

Neely et al. (2014) by six years. The variable that is to be predicted is the excess 

stock return as measured by continuously compounded returns on the S&P 500 index, 

including dividends, minus the treasury bill rate. I follow the literature and do not 

forecast excess returns directly but instead forecast log transformed excess returns. A 

description of the economic variables and technical indicators is given below. 

2.1 Economic variables 

Welch and Goyal (2008) provide an extensive comparison of the in-sample and out-of-

sample predictability of commonly applied economic variables. Many subsequent studies 

have analyzed similar variables, see Rapach and Zhou (2013), Pettenuzzo et al. (2014), 

and Baetje and Menkhoff (2016). The set of 14 economic variables is: 
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1. Dividend-price ratio (DP): Difference between log of dividends and log of stock 

prices (S&P 500 index). Dividends are measured using a one-year moving sum. 

2. Dividend yield (DY): Difference between the log of dividends and the log of lagged 

stock prices. 

3. Earnings-price ratio (EP): Difference between the log of earnings and the log of 

stock prices. Earnings are measured using a one-year moving sum. 

4. Dividend-payout ratio (DE): Difference between the log of dividends and the log 

of earnings. 

5. Equity risk premium volatility (RVOL): Based on a one-year moving standard 

deviation estimator.4 

6. Book-to-market ratio (BM): Ratio of book value to market value for the Dow Jones 

Industrial Average. 

7. Net equity expansion (NTIS): One-year moving sum of net issues by NYSE listed 

stocks divided by the total end-of-year market capitalization of NYSE stocks. 

8. Treasury bill rate (TBL): Secondary market rate on three-month treasury bill rates. 

9. Long-term yield (LTY): Long-term government bond yield. 

10. Long-term return (LTR): Return on long-term government bonds. 

11. Term spread (TMS): Difference between the long-term yield on government bonds 

and the treasury bill. 

12. Default yield spread (DFY): Difference between BAA- and AAA-rated corporate 

bond yields. 

\ P124RVOL is estimated as RVOLt = 
p 

π 
2 

√ 
12σ̂t, with σ̂t = 

12
1 

i=1 |rt+1−i|,where rt is the excess return 
(no log transformation) in month t (Mele, 2007). 
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13. Default return spread (DFR): Difference between long-term corporate bond and 

long-term government bond returns. 

14. Inflation (INFL): Calculated from the Consumer Price Index (All Urban Con-

sumers).5 

2.2 Technical indicators 

The trading strategies have in common that they are all based on decision rules that 

either generate a buy signal (Si,t = 1) or a sell signal (Si,t = 0). The first trend-following 

strategy is a moving-average (MA) rule that compares two moving averages of different 

lengths. In case that the short MA is greater than or equal to the long MA then this 

generates a buy signal otherwise this generates a sell signal: 

⎧ 

i=0 

⎪⎨1 if MAs,t ≥ MAl,t, 
Si,t = ⎪⎩0 if MAs,t < MAl,t, 

(1) 

whereby MA is defined as: 

1 
j−1X 

MAj,t = 
j 

Pt−i for j = s, l. (2) 

The level of the stock price index is given by Pt and s (l) refers to the short (long) MA 

(s < l). The short notation for a strategy that compares moving-averages of lengths s 

and l is MA(s, l). Six different MA strategies are compared with s = 1, 2, 3 and l = 9, 12. 

The second strategy is based on a momentum rule that generates a buy signal if the 

5I follow convention and lag inflation by one month to account for delayed data availability. 
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current stock price is higher than or equal to its m periods ago past value: 

⎧ ⎪⎨1 if Pt ≥ Pt−m, 
Si,t = ⎪⎩0 if Pt < Pt−m. 

(3) 

I include strategies for m = 9 and m = 12, denoted as MOM(9) and MOM(12). 

The third group of strategies is based on trading volume, whereby trade volume is 

defined as “on-balance” volume (OBV) (Granville, 1963): 

tX 
OBVt = VOLkDk. (4) 

k=1 

VOLk is the trading volume during month k and Dk is a binary variable that equals 1 for 

Pk ≥ Pk−1 and −1 otherwise. Therefore, trading volume has a positive effect on OBVk 

if the stock price has recently increased and vice versa trading volume negatively affects 

the sum if the stock price has dropped. Similar to the MA strategy for price levels, one 

can form a MA strategy based on OBV. The intuition is straightforward, a “relatively 

high recent volume together with recent price increases, say, indicate a strong positive 

market trend and generate a buy signal” (Neely et al., 2014, p. 1775). The volume-based 

strategy is defined as VOL(s, l) and I analyze trading rules with s = 1, 2, 3 and l = 9, 12. 

Monthly volume data on the S&P 500 index are obtained from Yahoo! Finance.6 

2.3 Descriptive statistics 

Table 1 presents descriptive statistics for the monthly log excess return, the 14 economic 

variables, and the 14 technical indicators. The average and standard deviation of the 

monthly equity premium are given by 0.53% and 4.15%. The autocorrelation in ex-

cess returns is rather low with a value of 0.06. In contrast to that, the autocorrelation 

6Further details can be found on https://de.finance.yahoo.com/. 
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for most economic variables is close to 1, with the only exceptions being LTR, DFR, 

and INFL. Some authors argue that the high degree of persistence results from steady 

state shifts in the mean, see Lettau and Van Nieuwerburgh (2008) and references therein. 

The mean for all technical indicators is around 0.70, so the trend-following strategies 

generate buy signals for roughly 70% of the sample. Interestingly, the level of persistence 

is relatively high as well, with a first-order autocorrelation above 0.50 for each indica-

tor. Baetje and Menkhoff (2016, p. 1196) interpret this as support for “the underlying 

assumption of the technical analysis that past price trends persist into the future”. 

3 Time-frequency decomposition of predictor variables 

In this section I explain the wavelet multiresolution analysis (MRA) that is used to 

decompose a predictor into a sum of frequency-specific components. Each part captures 

specific frequency bands of the original series, like high, medium, and low frequencies. An 

advantage of this approach is that each component can be analyzed separately, thereby 

revealing what periodicities actually drive stock return predictability.7 

3.1 The advantages of wavelets 

A drawback of classical Fourier analysis is that a signal is assumed to be homogeneous 

over time (Crowley, 2007). The sine and cosine functions do not fade away and are 

constant over time, which is problematic when “the signal shows a different behaviour 

in different time periods or when the signal is localized in time as well as frequency” 

(Rua, 2011, p. 668). As further explained by Crowley (2007, p. 209), a refinement of 

standard Fourier analysis is windowed Fourier analysis that relaxes the assumption of 

no variation over time by transforming “short segments of the signal separately”. How-

7It is beyond the scope of this paper to give an in-depth introduction to wavelets. For excellent 
introductory textbooks on wavelets I refer to Percival and Walden (2000) and Gençay et al. (2001). 
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ever, with this adjustment one simply splits different parts into respective sums of sine 

and cosine functions. So, the windowed Fourier transform “will not be able to revolve 

events when they happen to fall within the width of the window” (Gençay et al., 2001, p. 

2). To sum this point up: standard Fourier analysis is able to detect different frequen-

cies that are present in a time series, however, it does not provide information on when 

these oscillations change in the time domain, see Housworth et al. (2019) for an example. 

To overcome this shortcoming, a different set of basis functions has to be applied. Rather 

than sine and cosine functions one needs to use wavelet functions. Wavelets are a fur-

ther refinement of Fourier analysis, as they have finite energy over a compact set and 

provide a better resolution in the time domain. The wavelet transform gives up some 

frequency resolution in order to gain insights on events that are local in time (Gençay 

et al., 2001). Wavelets localize a signal both in frequency and time. This is especially 

helpful as many financial and economic series are non-stationary and exhibit structural 

breaks, instabilities, and volatility clusters (Faria and Verona, 2018b). 

A disadvantage of discrete wavelet transform (DWT) is that it is restricted to a dyadic 

sample size of 2j with j being a number from the set of positive integers. Therefore, 

rather than applying DWT many articles use maximum overlap discrete wavelet trans-

form (MODWT), which is free of sample size restrictions. Recent examples of articles 

that apply MODWT are Kang et al. (2017), Faria and Verona (2018a), Risse (2019). I 

follow this literature. The MODWT MRA is explained in the next section.8 

8The description mainly follows Percival and Walden (2000, Section 5). 
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3.2 Multiresolution analysis 

A MODWT MRA applies two different types of filters, namely a MODWT wavelet filter 

and a MODWT scaling filter. The MODWT wavelet filter must satisfy three properties: 

L−1 L−1 ∞X X X 
h̃ 
l = 0, h̃2 

l =
1 
, and h̃ 

lh̃ 
l+2n = 0. (5)

2 
l=0 l=0 l=−∞ 

1Hence, the filter must sum to zero, have energy of 2 , and is orthogonal to even shifts. 

Similarly, a MODWT scaling filter must satisfy the properties: 

LX−1 L−1 ∞X X 
g̃l = 1, g̃l 

2 =
1 
, and g̃lg̃l+2n = 0, (6)
2 

l=0 l=0 l=−∞ 

where L is the width of the filter. The last property in (5) and (6) holds for all nonzero 

integers n. The MODWT wavelet filter and MODWT scaling filter are defined as 
√ √

h̃l ≡ hl/ 2 and g̃l ≡ gl/ 2. Hereby, hl and gl are the wavelet filter and scaling fil-

ter. As an example, the Haar wavelet filter has a width of L = 2 and is given by 
√ √ √ 

h0 = 1/ 2 and h1 = −1/ 2. Additionally, the Haar scaling filter is given by g0 = 1/ 2 
√ 

and g1 = 1/ 2. The relationship between MODWT wavelet and MODWT scaling filter 

is g̃l = (−1)l+1h̃ 
L−1−l. 

Definitions (5) and (6) refer to scale 1, namely h̃ 
1,l = h̃ 

l and g̃1,l = g̃l. The idea 

of MODWT is to decompose a series into components that capture different scales. 

Therefore, the connection between wavelet and scaling filter and MODWT wavelet 

and scaling filter has to be extended to different scales. Generally, for different scales 

j we have h̃ 
j,l ≡ hj,l/2j/2 and g̃j,l ≡ gj,l/2j/2 . Each of the filters has a width of 

Lj ≡ (2j − 1)(L − 1) + 1, see Percival and Walden (2000, p. 169) for further details. As 

1 1an example, the Haar wavelet filter of scale j = 2 is h2,0 = 2 , h2,1 = 2 , h2,2 = −2
1 , and 

= −1 1 ˜ 1h2,3 2 . The respective MODWT Haar wavelet filter is given by h̃2,0 = 4 , h2,1 = 4 , 
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˜ ˜h2,2 = −4
1 , h2,3 = −4

1 . Similarly, the (MODWT) Haar scaling filter of scale j = 2 is 

1 1 g2,0 = · · · = g2,3 = (g̃2,0 = · · · = g̃2,3 = ).9 
2 4 

Let me clarify this with an example. Suppose we want to split a series into J = 2 

transitory components and one persistent component. Then, for a time series {xt}T 
t=1 

we can apply the scale j = 1 and scale j = 2 MODWT Haar wavelet filters to obtain: 

(1) xt − xt−1 (2) xt + xt−1 − xt−2 − xt−3 
t = , t = . (7)t 2 t 4 

Similarly, we can apply the scale j = 2 MODWT Haar scale filter: 

(2) xt + xt−1 + xt−2 + xt−3 
p = . (8)t 4 

(1) (2) (2)
t and t are transitory components, whereas p is a persistent component. It ist t t 

easily verifiable that xt can be decomposed into a sum of transitory and persistent 

components of different scales: 

(1) (2) (2)
xt = tt + tt + pt . (9) 

This example is similar in spirit to the one provided in Ortu et al. (2013) and Bandi 

et al. (2019b), and can be extended for any J > 2. However, a problem of this simple 

approach and discrete wavelet transform in general is that the sample size has to equal 

T = 2J observations.10 

To make this procedure practicable for any sample size I apply MODWT. The so called 

9The wavelet filter and scaling filter are as well known as mother wavelet and father wavelet. 
10See footnote 6 and Appendix B in Ortu et al. (2013). 
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wavelet and scaling coefficients of level j are defined as: 

LXj −1 LXj −1 

Wj,t ≡ h̃j,lxt−l mod T , Vj,t ≡ g̃j,lxt−l mod T , (10) 
l=0 l=0 

where mod is the modulo operator, see Percival and Walden (2000, p. 30). The modulo 

operator is needed to estimate the wavelet and scaling coefficients at the boundary of 

the sample. Two natural boundary conditions are to either assume that observations 

are “periodic” or that one should “reflect” the time series (Gençay et al., 2001, Section 

4.6.3). The former takes observations from the beginning of the sample to finish com-

putations (x1, x2, . . . ), whereas the latter takes the last observations (. . . , xT −1, xT ). I 

follow Kang et al. (2017) and Faria and Verona (2018a) and reflect data at the boundary. 

In matrix notation the wavelet and scaling coefficients can be written as: 

Wj = W̃ 
j x, Vj = Ṽj x, (11) 

where W̃ 
j and Ṽj contain the circularly shifted versions of periodized jth MODWT 

wavelet and scaling filters.11 Finally, the level j detail and smooth are defined as: 

| |Dj = W̃ Wj , Sj = Ṽ Vj . (12)j j 

A nice property of MODWT MRA is the MODWT additive decomposition: 

JX 
x = Dj + SJ , (13) 

j=1 

where D1, . . . , DJ are the wavelet details and SJ is the wavelet smooth.12 So, the origi-

nal series can be decomposed into parts that all represent different timescales. The sum 

11I refer to Percival and Walden (2000) for further details on the construction of the matrices. 
12 ˜ | |As an example, for j = 1 the time series can be decomposed as x = D1 + S1 = W1 W1 + Ṽ 

1 V1. 
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of the respective components adds up to the original time series. The wavelet details 

and the wavelet smooth are computed with the pyramid algorithm of Mallat (1989).13 

The different timescales can be related to certain frequency-bands (Percival and Walden, 

2000, pp. 96-100). An equivalent filter for the level j detail approximates a band-pass 

filter with a pass-band given by [1/2j+1 , 1/2j ]. Similarly, the equivalent filter for the 

level J smooth approximates a low-pass filter with a pass-band given by [0, 1/2J+1]. 

The inverse of the pass-band frequencies gives the approximate periodicities that are 

captured by the respective timescales. Hence, the level j detail reflects all movements 

with periodicities between 2j and 2j+1 , whereas the level J smooth captures oscillations 

greater than 2J+1 periods. As an example, this means for monthly data and J = 6 

that D1 captures periodicities between 2 and 4 months, that D6 represents oscillations 

between 64 and 128 months, and that S6 captures periodicities greater than 128 months. 

So far I have only explained the Haar wavelet with a width of 2. However, there are 

several other wavelets like Daubechies, Coiflets, Least Asymmetric, or Fejér-Korovkin 

wavelets that have different widths and forms. Actually, the choice of wavelet and scal-

ing filter is not that important for MODWT compared to DWT. Gençay et al. (2001, 

p. 144) write the following: “because of its added correlation between adjacent wavelet 

coefficients, the choice of wavelet function is not as vital when using the MODWT to 

decompose a given time series”. I show in the Online Appendix that results are ro-

bust with respect to the choice of wavelet. In the main text I always apply the Haar 

wavelet and Haar scaling filter. This choice is well in line with the literature, see, Ortu 

et al. (2013); Xyngis (2017); Faria and Verona (2018a); Risse (2019); Bandi et al. (2019a). 

Figure 1 presents a level J = 6 multiresolution analysis for MA(1,9). As explained 

13I use the R package waveslim and the function mra to carry out the multiresolution analysis. 
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before, the sum of the seven parts D1, . . . , D6, S6 equals the original time series. The 

MODWT MRA decomposition of the technical indicator reveals dynamics that are not 

visible in the aggregated series. While the original series is either 0 or 1, the respective 

components show pronounced time-variation in the levels. As an example, D5 approx-

imates periodicities between 32 and 64 months, having its lowest values in 1974:2 and 

2008:7 during the oil crisis and global financial crisis. 

4 Empirical results: statistical significance of forecasts 

The standard linear predictive regression model is: 

rt = αi,t + βi,txi,t−1 + �t, (14) 

where rt is the log excess return in period t, xi,t−1 is a lagged predictor, and �t is the 

error term. To generate out-of-sample forecasts I split the sample into an in-sample part 

of M periods and an out-of-sample part of T − M periods. For the one-month ahead 

forecast, r̂i,M+1, the investor uses data up to time M to estimate α̂i,M and β̂i,M . This 

is exactly the situation of a professional forecaster who estimates parameters based on 

the most recently available information. For the second forecast the investor updates 

information and reestimates the regression with data up to M + 1. In this recursively 

expanding manner I estimate forecasts for each of the 28 predictors and M + 1, . . . , T 

periods. 

Following Rapach et al. (2010), I combine individual forecasts to “combination fore-

casts”. To do so, I weight individual forecasts with ψi,t to compute a weighted average: 

NX 
r̂c,t+1 = ψi,tr̂i,t+1, (15) 

i=1 
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where the sum of weights equals one. In the simplest case I equally weight the N 

individual forecasts. Additionally, I weight predictors by the mean squared prediction 

error from previous forecasts. The estimated weights depend on the interval over which 

the past performance is evaluated. I focus on a relatively short evaluation period of 12 

months to allow for sufficient time-variation in the weights.14 The weights are: 

φ−1 h−1X
i,t

ψi,t = PN , φj,t = θs(rt−s − r̂j,t−s)
2 , (16) 

φ−1 
j=1 j,t s=0 

and h is the holdout period. Similar to Stock and Watson (2004) I allow more recent 

and more distant squared prediction errors to have a different impact on the weights. 

For θ = 1 all squared errors are weighted equally, whereas for θ < 1 more distant periods 

are discounted. I show results for h = 12 and discount factors of θ = 1 and θ = 0.9.15 

Forecasts from the sophisticated models are compared to the historical mean. Among 

others, Campbell and Thompson (2008) and Welch and Goyal (2008) show that this 

natural benchmark cannot be consistently outperformed by economic variables. The 

1 Pt one month ahead forecast from this model is r̄  t+1 = t j=1 rj . 

4.1 Forecast evaluation: out-of-sample R2 

Campbell and Thompson (2008) propose an out-of-sample R2 statistic that is comparable 

with the in-sample R2 statistic. The statistic is computed as 

PT (rt − r̂t)2 
t=M+1R2 = 1 − , (17)OS PT (rt − r̄  t)2 
t=M+1 

where rt is the log excess return on the S&P 500 index, r̂t is the prediction from the 

preferred forecasting model, and r̄  t is the historical mean. A positive R2 indicates that OS 

14This is in contrast to Rapach et al. (2010) who consider a holdout period of 40 observations. I choose 
a shorter evaluation period as scale specific predictability potentially varies stronger over time. 

15For weights with a holdout period I generate the first out-of-sample forecast for period M + 1 − h 
rather than M + 1. The weights then are estimated based on the forecasting performance in periods 
M + 1 − h, . . . , M . So, the evaluation period remains M + 1, . . . , T . 
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the predictive regression model has lower average mean squared prediction error than 

the naive benchmark. 

I present results relative to the historical mean, therefore I apply the Clark and West 

(2007) test for nested models. The null hypothesis is that the data are generated by the 

constant-only model. Clark and West (2007) suggest adding an adjustment term to the 

difference in squared prediction errors to test the null. The adjusted MSFE series is: 

� �
˜ 2 2dt = e1,t − e2,t − (r̂t − r̄  t−1)

2 t = M + 1, . . . T, (18) 

˜with e1,t = rt − r̂t and e2,t = rt − r̄  t−1. Clark and West (2007) propose to regress dt 

for t = M + 1, . . . , T on a constant. The t-statistic of the constant then is the MSFE-

adjusted statistic. I follow Neely et al. (2014) and use the usual least squares standard 

errors. The null hypothesis of the MSFE-adjusted statistic is equal forecast accuracy 

and the one-sided alternative is that the preferred model outperforms the historical mean. 

It is important to mention that one can still reject the null in favor of the one-sided 

alternative even if the R2 value is negative. Even though this seems counter-intuitive, OS 

it is possible when comparing nested models. Let me explain the logic behind: under 

the null of no predictability the historical mean is expected to generate a smaller MSFE 

than the more sophisticated model. This simply results from the introduced noise in the 

larger model, thereby inflating MSFE. The more parsimonious model “gains efficiency 

by setting to zero parameters that are zero in population” (Clark and West, 2007, p. 

292). The MSFE-adjusted statistic accounts exactly for the fact that we expect a nega-

tive difference between MSFE of the historical mean and MSFE of a larger model under 

the null. Therefore, one can still reject the null that the parsimonious model generates 

the data even if the R2 is negative.16 
OS 

16See footnote 21 in Neely et al. (2014) for further information on this point. 
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Table 2 presents results of R2 statistics for out-of-sample forecasts from 1966:1 toOS 

2017:12. Column (1) depicts the respective predictor and column (2) shows results for 

the unadjusted series. In line with Welch and Goyal (2008), I find that most economic 

variables have a negative R2 statistic, even though the null of no predictability is re-OS 

jected for RVOL, TBL, LTY, LTR, and TMS. The last three rows in Panel A show results 

for combination forecasts. CF-ECONMEAN is the simple average of the 14 individual 

economic forecasts and CF-ECONWEIG (CF-ECONWEIG) is the weighted combination θ=1 θ=0.9 

with θ = 1 (θ = 0.9). Similar to Rapach et al. (2010), I find that combination forecasts 

significantly outperform the benchmark and that results are robust with respect to the 

choice of combination technique. An R2 of 1.11% appears small but in light of the large OS 

unpredictable component in monthly stock returns an R2 of 0.50% already amounts OS 

to a large increase in portfolio returns (Campbell and Thompson, 2008). 

Columns (3) to (5) present results for the frequency-decomposed components of the 

predictors with an MODWT MRA of length J = 6. The number of overall compo-

nents is reduced from seven to three by aggregating multiple timescales, see Ortu et al. 

(2013); Kang et al. (2017); Faria and Verona (2018b); Bandi et al. (2019a) for similar 

approaches.17 I construct a high-frequency part as DH = D1 + D2 + D3, a medium-

frequency component as DM = D4 + D5, and a low-frequency series as DL = D6 + S6. 

In terms of periodicities, DH approximately captures cycles between 2 and 16 months, 

DM approximates periodicities between 16 and 64 months, and DL captures oscillations 

that exceed 64 months. Hence, DM represents fluctuations at the short-to-medium end 

of the business-cycle. 

The R2 statistic does not reveal a general underlying pattern in the predictability OS 

17This is analogous to isolating fluctuations in specific frequency bands with band-pass filters. Results 
for the individual timescales are shown in Table A.1 of the Online Appendix. 
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of economic variables that is specific to certain frequency bands. Even though there is 

some evidence of frequency-specific predictability, like for TBL and LTY in timescales 

DH and DM , the overall evidence is rather poor. However, the combination of frequency-

decomposed forecasts reveals that the predictability only stems from DM . 

The picture is clearer for technical indicators. Interestingly, all of the predictability 

comes from timescales DM without any evidence of predictability from the remaining 

components. This finding holds true for each of the 14 technical indicators in the sample. 

Even though it can be rejected that data are generated from a parsimonious model, the 

improvements in terms of reduced MSFE are still rather poor. The picture is the same 

for combined forecasts from technical indicators and from all predictors taken together. 

The best result is achieved for CF-ALLMEAN , amounting to an R2 of 1.64% for DM ,OS 

thereby almost doubling compared to forecast combinations from the unadjusted series 

(Basic). I conclude from these first results that most of the predictability comes from 

cycles with a length of 16 to 64 months. 

4.2 Forecast performance and the business-cycle 

The forecast performance of a model can heavily fluctuate over time and positive values 

for the R2 statistic can easily be driven by a few outliers. Following Welch and Goyal OS 

(2008), I plot the differences in cumulative squared forecast errors (CDSFE) between 

two models to gain further insights on the potential determinants of predictability and 

the relative performance over time. The CDSFE in period t is estimated as: 

tX 
CDSFEt = (rj − r̄j )

2 − (rj − r̂j )
2 . (19) 

j=M+1 

A consistently upward-sloping line would mean that the historical mean is outperformed 

in each and every period. However, this is in stark contrast to what is documented in 
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empirical studies. Welch and Goyal (2008) show that predictability of economic vari-

ables is heavily driven by the 1973-75 oil shock. Even further, performance relative to 

the historical mean is extremely unstable and rather poor in the last 40 years. 

Figure 2 shows CDSFE plots for selected variables. The plot for TBL nicely depicts 

the critique by Welch and Goyal (2008). In the 1970s TBL pronouncedly outperforms 

the historical mean during NBER-dated recession periods. Since then, TBL has mainly 

underperformed the benchmark. This is particularly visible in the last two recessions. 

Similarly, the solid black line for CF-ECONMEAN shows that combination forecasts from 

medium frequencies of economic variables performed extremely well in the 1970s and 

1980s but since then they performed rather poor. 

CDSFE plots for the technical indicators as well as for the combination forecasts CF-

TECHMEAN and CF-ALLMEAN depict a different picture. Even though the basic models 

for MA(1,9) and VOL(2,9) perform better than their medium frequency counterparts, 

one can clearly see that the latter ones perform especially well during the 2008 financial 

crisis. Even more, most of these models have performed extremely well during the crises 

in the 1970s and 1980s, as well as during the dot-com crash. The only exception is the 

early 1990s recession, where no model was able to beat the historical mean. Hence, the 

figures motivate a strong relation between predictability and the state of the economy. In 

the next section I formally test whether return predictability depends on business-cycle 

expectations. If this is the case, then an investor can potentially improve forecasts by 

taking this dependence into account. 

4.3 Testing dependence between current predictability and 

business-cycle expectations 

Several studies document that return predictability is centered in NBER-dated recession 

periods, with only weak or no evidence of predictability in expansions, see Henkel et al. 
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(2011); Zhu and Zhu (2013); Rapach and Zhou (2013); Baetje and Menkhoff (2016). 

Thus, if it is possible to accurately forecast recessions then these forecasts are also good 

candidates for periods with predictability. Forecasting recessions on its own is a difficult 

task but some advances have been made in the past, see Estrella and Mishkin (1998); 

Kauppi and Saikkonen (2008); Liu and Moench (2016) and references therein. 

I use the parametric probit model of Liu and Moench (2016) to predict recessions one-

month ahead. The authors identify a model with the term spread, the term spread 

lagged by six months, and the one-year growth rate in the S&P 500 index to perform 

best in predicting recessions at the three-month horizon.18 Let yt be a binary variable 

that equals 1 for NBER-dated recession periods and 0 otherwise. The probit model is: 

� SPt−1 − SPt−13 � 
yt = Φ δ0 + δ1TMSt−1 + δ2TMSt−7 + δ3 , (20)

SPt−13 

where SP is the monthly return on the S&P 500 index and TMS is the term spread. Let 

the one-month ahead forecast for the probability of a recession be given by p̂t. In order 

to classify p̂t into a binary variable with 1 for recession and 0 for expansion one needs 

to specify a threshold level θ. For p̂t ≥ θ a recession is predicted, ŷt = 1, and for p̂t < θ 

an expansion is predicted, ŷt = 0. 

The threshold level θ is a critical choice as it determines the amount of predicted reces-

sions. I make use of the Youden index to estimate the optimal cut-point in discriminating 

between the binary outcomes. The Youden index is a commonly applied evaluation cri-

terion that is defined as the difference between the true positive ratio (TPR) and false 

18Even though the forecast horizon differs, this model performs well in forecasting one month ahead. 
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⎪ ⎪
⎪ ⎪

positive ratio (FPR) (Youden, 1950). TPR and FPR are: 

T T 

nR nEt=1 t=1 

where nR is the number of recession periods (yt = 1) and nE is the number of expan-

X 

FP FPsionary periods ( 0) in the sample. I and I indicator functions that equaly = aret t t 

1 for correctly and falsely predicted recessions, respectively: 

X1 1 
ITP , FPR(θ) = t IFP 

tTPR(θ) = (21), 

⎧ ⎪⎨ 

⎧ ⎪⎨1 if yt = 1 and ŷt = 1, 1 if yt = 0 and ŷt = 1, 
ITP 
t = IFP 

t = (22)⎪⎩ ⎪⎩0 otherwise, 0 otherwise. 

I select the optimal threshold level θ∗ from an evenly spaced grid of 101 candidate values 

G = {0, 0.01, ..., 0.99, 1}: 

θ ∗ = arg max TPR(θ) − FPR(θ). (23) 
θ∈G 

For the out-of-sample exercise I estimate the optimal threshold and forecast for each pe-

riod from 1966:1 to 2017:12, covering a total of 624 months..19 The resulting one-month 

ahead recession forecasts are shown in Figure A.1 of the Online Appendix. During this 

period the NBER has classified 90 months as recessions and the probit model has fore-

casted 131 recession periods. From the 90 months of actual recessions the model has 

correctly forecasted 76 months. 

Next, I formally test the hypothesis that current predictability is related to expecta-

tions on the business-cycle. Rather than using NBER-dated recession periods I utilize 

forecasts from the probit model. The reason for this is that recession forecasts are readily 

available for an investor in real-time, whereas NBER-dated recession periods are classi-

19NBER business-cycle data become available with an announcement delay. Thus, I only use infor-
mation up to yt−24 to estimate the regression parameters δ̂0, δ̂1, δ̂2, and δ̂3 
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fied with a delay. More formally, I test whether the difference in squared forecast errors 

is related to expectations about the state of the economy.20 I follow Wang et al. (2018) 

and apply the test of Pesaran and Timmermann (2009). While they test for “momentum 

of predictability”, I test whether predictability depends on business-cycle expectations. 

Let cpt be a binary variable that identifies periods of current predictability: 

cpt = I[(rt − r̂t)
2 − (rt − r̄  t)

2 < 0]. (24) 

I[.] as an indicator function that equals 1 if the squared forecast error of the preferred 

model is smaller than the squared forecast error from the historical mean, and 0 other-

wise. The idea now is to test whether cpt depends on business-cycle forecasts: 

cpt = c + γŷt + ut. (25) 

The test of independence is equal to testing γ = 0. I apply the dynamically augmented 

reduced rank regression approach of Pesaran and Timmermann (2009) to test the null 

of independence. This test allows for serially correlated observations, a point that is 

especially present in business-cycles. 

Panel A in Table 3 shows p-values for the null hypothesis that current predictability 

of a forecast model is independent of business-cycle expectations from the probit model. 

The null can be rejected for six of the 14 basic economic variables. Even further, the null 

is rejected at the 10% level for eight low-frequency components of economic variables. 

Contrarily, neither the unadjusted nor the frequency-decomposed technical indicators 

show any evidence of dependence between predictability and expectations. 

20In Figure A.2 of the Online Appendix I show boxplots of (rt − r̂t)2 − (rt − r̄  t)2 for the 14 medium-
frequency components of the technical indicators (DM ). The difference in squared forecast errors is 
centered around zero with outliers both to the left (DM performs better) and the right (historical mean 
performs better). I test whether points on the left side of the distribution depend on business-cycle 
expectations. 
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A potential explanation for the weak evidence of dependence is the definition of cpt. 

The variable takes a value of 1 no matter whether the predictor marginally or substan-

tially outperforms the benchmark. To account for this shortcoming, I redefine current 

predictability as: 

HIGH cp = I[(rt − r̂t)
2 − (rt − r̄  t)

2 < −IQR × 1.5], (26)t 

where IQR is the interquartile range. So, I assign a value of 1 only to points that are 

outliers. According to this new definition, I test whether periods with a pronounced 

forecasting improvement depend on business-cycle expectations. This rules out that the 

dependence is hidden under marginal forecasting improvements unrelated to the state 

of the economy. 

Panel B in Table 3 presents results for the alternative definition. The null of inde-

pendence now is rejected for 12 medium-frequencies of technical indicators; 9 of the 

indicators even reject the null at the 1% level. Interestingly, especially the performance 

of moving average strategies and volume strategies depends on expectations. Combina-

tion forecasts for the technical indicators strongly reject the null, whereas combination 

forecasts from the economic variables and all predictors taken together only weakly reject 

the null. 

4.4 Nonlinear forecasting model 

I have shown that forecasting gains for technical indicators are especially pronounced 

when a recession is expected. In a next step, I run a pseudo out-of-sample exercise that 

incorporates this dependence. More precisely, I propose a nonlinear model that selects 

between the historical mean and the sophisticated model depending on the expected 
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⎪

state of the economy one-month ahead. The nonlinear model is: 

⎧ ⎪⎨r̂t+1 if ŷt+1 = 1 
r̂NL = (27)t+1 ⎪⎩r̄  t+1 if ŷt+1 = 0, 

and nests both the linear regression model (ŷt+1 = 1 for all t) and the historical mean 

(ŷt+1 = 0 for all t). An investor that applies this model estimates in each period the 

probability of a recession one-month ahead and decides whether a recession is expected 

or not. If the investor expects a recession, then the sophisticated model is used, other-

wise the historical mean is selected. This mimics the real-time situation of an investor 

that incorporates the empirical finding of state-dependent predictability in a forecasting 

model. 

Table 4 shows how the R2 statistics are affected when switching to the nonlinear fore-OS 

casting model. Columns (2), (4), (6), and (8) repeat estimates from Table 2, whereas 

columns (3), (5), (7), and (9) state results for the nonlinear approach. As an example, 

the R2 for the medium-frequency component of MA(1,9) changes from -2.16% for theOS 

linear model to 2.71% for the nonlinear model. The nonlinear models that select be-

tween medium-frequencies of technical indicators and the historical mean perform well. 

For each of the 14 indicators the R2 is significant at the 5% or 1% level, with sizableOS 

gains compared to Basic and DM . For the combined forecasts the R2 increases fromOS 

0.45% (Basic) to 1.98% (DNL). The improvements do not translate to economic vari-M 

ables (Panel A) or to combination forecasts from all predictors taken together (Panel 

C); this is in line with Table 3. 

Figure 3 presents CDSFE plots for MA(1,9) and CF-TECHMEAN . The patterns of the 

CDSFE plots for DNL show high similarity among the different indicators. ThroughoutM 

the 1970s and 1980s the plot behaves almost like a step function, with jumps in expected 
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recessions and horizontal movement otherwise. From the mid-1980s to the end of the 

1990s no gains were realized. More recently, the models outperformed the historical 

mean in the dot-com crisis and especially in the global financial crisis, resulting in the 

largest jump in the last 50 years. 

5 Empirical results: economic significance of forecasts 

So far I have only presented statistical measures of predictability. This does not nec-

essarily imply that an investor would have benefited economically from a forecasting 

model. In this section I explain two economic measures of forecast evaluation, namely 

the gain in certainty equivalent representation (ΔCER) and the gain in Sharpe ratio 

(ΔSR). The former computes the increase in average realized utility and the latter states 

the ratio between reward-to-variability. Cenesizoglu and Timmermann (2012) show that 

R2 
OS , ΔCER, and ΔSR are only weakly correlated. 

I follow Ferreira and Santa-Clara (2011) and Rapach et al. (2016) and perform an asset 

allocation exercise to estimate the economic significance of a forecasting strategy.21 I 

consider a mean-variance investor that allocates wealth between the S&P 500 index and 

the risk-free rate based on forecasts from a predictive regression model. The maximiza-

tion problem at the end of period t is: 

γ 
max U(rp,t+1) = Et[rp,t+1] − Vart(rp,t+1) (28)
ωt 2 

f s.t. rp,t+1 = ωtrt+1 + rt+1, (29) 

where U(·) is utility and rp,t+1 is the portfolio return. The investor decides on the share 

of wealth, ωt, that is allocated to the risky asset. Solving the maximization problem, 

21In this section I use excess returns rather than log excess returns. 
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the optimal weight assigned to the risky asset at the end of period t is: 

1 Et(rt+1)
ω ∗ = , (30)t γ Vart(rt+1) 

where Et(rt+1) and Vart(rt+1) are the conditional expectation and the conditional vari-

f ance of excess stock returns. γ is the coefficient of relative risk aversion and r is the t+1 

risk-free rate between period t and t + 1. The conditional expectation is estimated by 

the respective forecasting model, Et(rt+1) = r̂t+1. Following Campbell and Thompson 

(2008), I estimate the conditional variance, Vart(rt+1), as a rolling five-year window. 

Portfolio weights on stocks are constrained to lie between 0% and 150% to prevent 

shorting stocks and leveraging more than 50%. γ is set to 5, and the optimal portfolio 

f∗ return is given by rp,t+1 = ωt 
∗ rt+1 + r The average realized utility level (or certainty t+1. 

equivalent return (CER)) is v̂ = µ̂ − γ σ̂2 , where µ̂ and σ̂2 are the mean and variance of2 

∗ r The CER can be interpreted as “the fee the investor would be willing to pay top,t+1. 

use the information in each forecast model” (Ferreira and Santa-Clara, 2011, p. 527). It 

can also be interpreted as the risk-free rate that an investor is willing to accept in order 

not to adopt the risky portfolio (DeMiguel et al., 2009). 

Suppose that the investor wants to compare two different forecasting models i and j 

i jwith excess return forecasts r̂  and r̂  Then the optimal portfolio weights aret+1 t+1. 

ω∗,i i i − γ σ2,iand ω∗,j and the respective average realized utility level is v̂ = µ̂ ˆ and2 

j j − γ σ2,j jv̂ = µ̂ ˆ . Then the difference in CER is ΔCER = v̂i − v̂ , which is the fee an2 

investor would be willing to pay to use model i rather than model j. I multiply ΔCER 

by 1,200 so that it can be interpreted as “the annual percentage portfolio management 

fee” that an investor would be willing to pay (Neely et al., 2014, p. 1788). 

I as well estimate the Sharpe ratio (SR). SR is the mean portfolio return in excess 
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of the risk-free rate divided by the standard deviation of the excess portfolio return. 

SR = σ
µ̃ , where µ̃ and σ̃ are the mean and standard deviation of the excess portfolio ˜ 

return over the out-of-sample period. The annualized gain in SR of model i relative to 
√ 

model j then is ΔSR = 12(SRi − SRj ). 

To measure the statistical significance of ΔCER and ΔSR I separately estimate p-values 

for the null hypotheses CERi − CERj ≤ 0 and SRi − SRj ≤ 0. I calculate p-values 

according to the bootstrap approach described in DeMiguel et al. (2013). For two port-

folios i and j, I obtain B=5,000 pairs of (excess) portfolio returns for CER (SR) by 

resampling with replacement from the observed portfolio returns. Each of the B pairs 

∗,i ∗,jis of size T − M . To account for cross-correlation I resample pairs of (r ).p,t+1,rp,t+1 

Additionally, I resample blocks of observations to control for potential autocorrelation. 

The length of each block has a geometric distribution with an average block length of 

five observations, see Politis and Romano (1994).22 

For the b = 1, . . . , 5, 000 bootstrap samples I estimate ΔCERb and ΔSRb: 

i j
γ γ µ̃ µ̃i 2,i j 2,j b bΔCERb = (µ̂b − σ̂ ) − (µ̂ − σ̂ ), ΔSRb = − , (31)b b b σi j2 2 ˜b σ̃b 

i j j i j jwhereby µ̂b, µ̂b, σ̂b
i , σ̂ (µ̃b, µ̃b, σ̃b

i , σ̃ ) are the means and volatilities of the resampled b b 

(excess) portfolio returns. Then, the respective p-value is: 

B BX X1 1 
p̂CER = I[ΔCERb ≤ 0], p̂SR = I[ΔSRb ≤ 0]. (32)

B B 
b=1 b=1 

The alternative is accepted for sufficiently small values of p̂CER and p̂SR. 

22For example, Goetzmann and Jorion (1993) and Maio and Santa-Clara (2012) have a fix block length 
of 1, whereas v. Binsbergen et al. (2012) show results for an average block length of 1,5, and 15 months. 
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5.1 Results for ΔCER and ΔSR 

Table 5 presents the annualized difference in CER relative to the historical mean. Similar 

to results from the previous section the unadjusted economic variables generally perform 

poor. Exceptions are TBL, LTY, and TMS with utility gains of 180, 165, and 179 basis 

points. However, only TBL is significant at the 10% level. Combination forecasts of 

the unadjusted series generate significant gains, amounting to increases in the range of 

170 to 190 basis points. Interestingly, each of the 14 technical indicators has a positive 

utility gain, with a maximum of 267 basis points for MA(2,12). An investor would be 

willing to pay a sizable annual fee to have access to this model. Nonetheless, the gains 

are well below those of the medium-frequency components. 

Column (6) shows utility gains for forecasts from medium-frequency components. A 

comparison between columns (2) and (6) highlights that medium-frequency components 

generate sizable utility gains. For nine technical indicators the utility gains are larger 

than 300 basis points, with the largest gains amounting to 446 basis points for VOL(1,12). 

Contrarily, only three unadjusted indicators generate gains above 200 basis points, with 

none exceeding 300 basis points. Results for each of the 14 technical indicators improve. 

Moreover, utility gains for combination forecasts increase when switching from base-

line predictors to medium-frequencies. Panels B and C show that ΔCER more than 

doubles for technical indicators and for all predictors taken together. Taking the av-

erage of the 28 individual forecasts provides a gain of 431 basis points. The CER for 

the historical mean is 434 basis points; thus the utility gain is almost twice as large. A 

buy-and-hold investor that passively holds the market portfolio realizes a ΔCER of 83 

basis points, well below gains from the more sophisticated models. 

I have shown in Section 4 that the nonlinear models improve R2 statistics for theOS 
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medium-frequency parts of technical indicators. This is not the case for ΔCER. A com-

parison between columns (6) and (7) reveals that the nonlinear model does not generally 

boost utility gains. Hence, the additional estimation of business-cycle expectations is 

not necessary for improving economic measures of predictability. The only step that has 

to be carried out is to isolate medium-frequency parts of technical indicators; thereby 

capturing the short-to-medium end of business-cycle oscillations. 

Table 6 reports results for the annualized gains in Sharpe ratio. The picture is qualita-

tively the same as for ΔCER. Results for combination forecasts generally improve when 

using frequency-decomposed predictors, resulting in more than twice as large Sharpe 

ratios for technical indicators when comparing columns (2) and (6). The SR for the 

historical mean is 0.28 and the ΔSR of a buy-and-hold investor is 0.12. The largest 

ΔSR is 0.35 for the medium-frequency component of VOL(1,12). 

5.2 Portfolio weights over time 

To understand what exactly drives the gains in ΔCER and ΔSR, I present the optimal 

shares of risky assets over time. The difference in ω∗ among forecasting models resultst 

from varying conditional expectations of one-month ahead excess stock returns. Figure 

4 shows forecasts from the historical mean (solid gray line), the combination of unad-

justed technical indicators (solid black line), and the combination of medium-frequencies 

of technical indicators (dashed black line). While the historical mean is a slow moving 

object with mild time-variation, the combination forecasts show pronounced movements. 

A clear pattern can be detected for DM . A negative equity premium is predicted at 

the beginning of a recession and a large positive premium is predicted towards the end 

and directly after a recession. This finding is in line with Dangl and Halling (2012); 

they as well document that the predicted risk premium peaks towards the end of the 
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recession as investors become more risk-averse. They interpret their results as follows: 

“Thus, we conclude that predictability reflects business cycle risk rather than market 

inefficiency. Therefore, it is also not surprising that predictability is not driven away 

over time” (Dangl and Halling, 2012, p. 169). As an example, in the beginning of the 

1973-75 oil crisis and the 2008-09 global financial crisis the model predicts negative ex-

cess returns, followed by large positive excess returns directly after the recession. 

Figure 5 presents the optimal weights of risky assets over time. The equity exposure of 

the historical mean portfolio rapidly shrinks during the crises of the 1970s and during 

the more recent financial crisis. However, the equity weights always remain above 40% 

and are rather persistent with long lasting episodes of increases and decreases. Contrar-

ily, the weights from combination forecasts of medium-frequencies of technical indicators 

show substantial fluctuations. The weights often change from 0% to 150% within a few 

years and vice versa. This pattern is most salient around recessions. At the beginning 

of a recession the equity weights either run down rapidly or are already close to zero. 

A few months later the exposure then again is build up at the end of or shortly after a 

recession. The large time-variation in equity weights together with the sizable gains in 

ΔCER and ΔSR reveals an excellent market timing. 

6 Robustness 

In this section I show that the gains in CER and SR are robust with respect to transaction 

costs. Additionally, I outline that results remain qualitatively unchanged for several 

alternative specifications, like different wavelet and scaling filters. 

6.1 Performance after transaction costs 

So far, I have not taken transaction costs into account. Unfortunately, this holds true 

for many studies on the economic significance of forecasting models, see, among others 
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Rapach et al. (2010), Ferreira and Santa-Clara (2011), Dangl and Halling (2012), Rapach 

et al. (2016). This is problematic as both economic variables and technical indicators 

generate higher monthly turnovers (Neely et al., 2014). Hence, ignoring transaction costs 

results in positively biased values for ΔCER and ΔSR. Here, I focus on CF-TECHMEAN 

and only show adjusted results for this specific strategy.23 

Suppose that an investor has an initial wealth of $1 at the beginning of period t, then 

the wealth at the end of period t +1 is Wt+1 = 1+ rt
f 
+1 + ωt 

∗ rt+1, and the wealth in risky 

f assets is W R = ω∗(1 + rt+1 + rt+1). At the end of period t + 1 the investor estimates t+1 t 

the optimal share of risky assets for the next period and the new target level of wealth; 

given by W T = ωt 
∗ 
+1Wt+1. So, the investor has to make adjustments in risky assets oft+1 

|Wt
T 
+1 − Wt

R 
+1|. The percentage of wealth traded at the end of period t + 1 (denoted as 

turnover) then is: 

|W T − W R |t+1 t+1Turnovert+1 = , (33)
Wt+1 

whereby the numerator equals the adjustment in risky assets and the denominator equals 

the amount of total wealth at the end of period t+1. Following DeMiguel et al. (2009), I 

assume that the investor has to pay a proportional transaction cost of c on the turnover 

in each period. Therefore, the return net of transaction costs is: 

TC f rp,t+1 = (1 + ωt 
∗ rt+1 + rt+1)(1 − c × Turnovert+1) − 1, (34) 

in which c × Turnovert+1 is the transaction cost per unit of total wealth. I follow the 

literature and fix the parameter c to 0.005, which equals 50 basis points per transaction 

(Balduzzi and Lynch, 1999). The cumulative wealth after accounting for transaction 

= W TC TC costs then is W TC (1 + rt+1 t p,t+1). 

23See Section G of the Online Appendix for additional results. 
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Figure 6 plots the log cumulative wealth for an investor that begins with $1 and reinvests 

all proceeds. Results are shown for four different forecasting models. The historical mean 

is depicted by the solid gray line. Clearly, this model performs especially poor during the 

global financial crisis in 2008-09. The other three models show the log cumulative wealth 

for CF-TECHMEAN , whereby ω∗ is estimated according to the basic linear approach t 

(dashed gray line), the nonlinear approach with medium frequencies (dashed black line), 

and the linear approach with medium frequencies (solid black line), respectively. Even 

though all three models outperform the historical mean the frequency-decomposed fore-

casts perform best. DM outperforms DNL , implying that the combination of mediumM 

frequencies not only adds economic value during recessions but during expansions as well. 

The average turnover of Basic, DNL , and DM relative to the average turnover of the his-M 

torical mean is 3.20, 2.75, and 4.11. This is in line with Neely et al. (2014) and highlights 

that more sophisticated models often generate higher rates of portfolio rebalancing. The 

differences in annualized CER relative to the historical mean, with respective p-values 

(in %) in brackets, are 1.29 (14.00), 2.82 (0.88), and 3.30 (2.00). The annualized differ-

ences in SR for Basic, DM
NL , and DM are 0.08 (16.00), 0.21 (0.92), and 0.26 (1.60). Even 

though the average turnover for DM is higher than for Basic, both ΔCER and ΔSR 

remain more than twice as large when accounting for transaction costs. 

6.2 Further robustness checks 

I present several additional robustness checks in the Online Appendix. Firstly, I show 

in Section C that the results of the asset allocation exercise are robust with respect 

to the choice of parameters. I repeat the analysis with the specification of Rapach et 

al. (2016), finding that the annualized utility gains improve even further in magnitude. 

Secondly, I provide in Section D separate results for the out-of-sample forecasting horizon 
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from 1990:1 to 2017:12. Thirdly, I repeat the analysis in Section E for frequency-specific 

principal components. The main results translate from combination forecasts to principal 

component analysis. Fourth, I show in Section F that alternative wavelet and scaling 

filters leave results almost unchanged. Section G presents results after adjusting for 

transaction costs. 

7 Concluding remarks 

This paper examines short-horizon predictability with frequency-decomposed predictor 

variables. The set of predictors consists of commonly used economic variables and tech-

nical indicators (Rapach et al., 2010; Neely et al., 2014). In contrast to previous work, 

I do not analyze the original series but rather apply filtering methods to decompose 

the predictor into components with specific periodicity. This approach allows for a more 

nuanced view on equity premium predictability as the predictive power of some variables 

potentially is hidden behind high-frequency noise or low frequency trends. 

I document that fluctuations at the short-to-medium end of the business-cycle incorpo-

rate the relevant information for predicting excess stock returns. The predictive power 

of technical indicators solely stems from periodicities of 16 to 64 months, without any 

evidence of predictability from other periodicities. Furthermore, I present evidence that 

the historical mean is mainly outperformed during recessions. This is in line with other 

articles and further emphasizes the role of the business-cycle (Henkel et al., 2011; Ra-

pach and Zhou, 2013). The novel finding is that this state-dependent predictability is 

better captured by medium-frequency oscillations in technical indicators rather than in 

the original series. 

The predictive power for technical indicators is both statistically and economically sig-

nificant. I show that the gains in ΔCER and ΔSR more than double for combination 
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forecasts from medium-frequencies of technical indicators compared to combination fore-

casts from the original series. Surprisingly, results for economic variables do not improve 

strongly. This extends the critique by Welch and Goyal (2008) to frequency-specific parts 

of economic variables. In this article I have only focused on short-horizon predictability, 

leaving the field of frequency-decomposed long-horizon forecasts for future research. 
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Gençay, R., F. Selçuk, and B. Whitcher, An Introduction to Wavelets and Other 
Filtering Methods in Finance and Economics, Academic Press San Diego, 2001. 

Goetzmann, W. N. and P. Jorion, “Testing the Predictive Power of Dividend 
Yields,” Journal of Finance, 1993, 48 (2), 663–679. 

Goyal, A., “Empirical cross-sectional asset pricing: a survey,” Financial Markets and 
Portfolio Management, 2012, 26 (1), 3–38. 

Granville, J. E., New key to stock market profits, New York: Prentice-Hall, 1963. 

Henkel, S. J., J. S. Martin, and F. Nardari, “Time-varying short-horizon pre-
dictability,” Journal of Financial Economics, 2011, 99, 560–580. 

Housworth, E. A., T. B. Walker, and C. Xu, “Structural asset pricing theory with 
wavelets,” Quantitative Finance, 2019, 19 (10), 1659–1672. 

36 



Kang, B. U., F. In, and T. S. Kim, “Timescale betas and the cross section of equity 
returns: Framework, application, and implications for interpreting the Fama-French 
factors,” Journal of Empirical Finance, 2017, 42, 15–39. 

Kauppi, H. and P. Saikkonen, “Predicting U.S. recessions with dynamic binary 
response models,” Review of Economics and Statistics, 2008, 90 (4), 777–791. 

Lettau, M. and S. Van Nieuwerburgh, “Reconciling the Return Predictability Ev-
idence,” Review of Financial Studies, 2008, 21 (4), 1607–1652. 

Liu, W. and E. Moench, “What predicts US recessions?,” International Journal of 
Forecasting, 2016, 32, 1138–1150. 

Ludvigson, S. C. and S. Ng, “The empirical risk-return relation: A factor analysis 
approach,” Journal of Financial Economics, 2007, 83, 171–222. 

Maio, P. and P. Santa-Clara, “Multifactor models and their consistency with the 
ICAPM,” Journal of Financial Economics, 2012, 106, 586–613. 

Mallat, S. G., “A Theory for Multiresolution Signal Decomposition: The Wavelet Rep-
resentation,” IEEE Transactions on Pattern Analysis and Machine Learning, 1989, 
11 (7), 674–693. 

Mele, A., “Asymmetric stock market volatility and the cyclical bevahior of expected 
returns,” Journal of Financial Economics, 2007, 86, 446–478. 

Neely, C. J., D. E. Rapach, J. Tu, and G. Zhou, “Forecasting the Equity Risk 
Premium: The Role of Technical Indicators,” Management Science, 2014, 60 (7), 
1772–1791. 

Ortu, F., A. Tamoni, and C. Tebaldi, “Long-Run Risk and the Persistence of 
Consumption Shocks,” Review of Financial Studies, 2013, 26 (11), 2876–2915. 

Percival, D. B. and A. T. Walden, Wavelet Methods for Time Series Analysis, 
Cambridge University Press, 2000. 

Pesaran, M. H. and A. Timmermann, “Testing Dependence Among Serially Corre-
lated Multicategory Variables,” Journal of the American Statistical Association, 2009, 
104 (485), 325–337. 

Pettenuzzo, D., A. Timmermann, and R. Valkanov, “Forecasting stock returns 
under economic constraints,” Journal of Financial Economics, 2014, 114, 517–553. 

Politis, D. N. and J. P. Romano, “The Stationary Bootstrap,” Journal of the Amer-
ican Statistical Association, 1994, 89 (428), 1303–1313. 

Rapach, D. E. and G. Zhou, “Forecasting Stock Returns,” in G. Elliott and A. Tim-
mermann, eds., Handbook of Economic Forecasting, Vol. 2A, Elsevier, Amsterdam, 
2013, pp. 329–383. 

37 



, J. K. Strauss, and G. Zhou, “Out-of-Sample Equity Premium Prediction: Com-
bination Forecasts and Links to the Real Economy,” Review of Financial Studies, 
2010, 23 (2), 821–862. 

, M. C. Ringgenberg, and G. Zhou, “Short interest and aggregate stock returns,” 
Journal of Financial Economics, 2016, 121, 46–65. 

Risse, M., “Combining wavelet decomposition with machine learning to forecast gold 
returns,” International Journal of Forecasting, 2019, 35, 601–615. 

Rua, A., “A Wavelet Approach for Factor-Augmented Forecasting,” Journal of Fore-
casting, 2011, 30, 666–678. 

Stock, J. H. and M. W. Watson, “Combination Forecasts of Output Growth in a 
Seven-Country Data Set,” Journal of Forecasting, 2004, 23, 405–430. 

Timmermann, A., “Forecast Combinations,” in G. Elliott, C. W.J. Granger, and 
A. Timmermann, eds., Handbook of Economic Forecasting, Vol. 1, Elsevier B.V., 2006, 
chapter 4. 

v. Binsbergen, J., M. Brandt, and R. Koijen, “On the Timing and Pricing of 
Dividends,” American Economic Review, 2012, 102 (4), 1596–1618. 

Wang, Y., L. Liu, F. Ma, and X. Diao, “Momentum of return predictability,” 
Journal of Empirical Finance, 2018, 45, 141–156. 

Welch, I. and A. Goyal, “A Comprehensive Look at The Empirical Performance of 
Equity Premium Prediction,” Review of Financial Studies, 2008, 21, 1455–1508. 

Xyngis, G., “Business-cycle variation in macroeconomic uncertainty and the cross-
section of expected returns: Evidence for scale-dependent risks,” Journal of Empirical 
Finance, 2017, 44, 43–65. 

Youden, W. J., “Index for Rating Diagnostic Tests,” Cancer, 1950, 3, 32–35. 

Zhu, X. and J. Zhu, “Predicting stock returns: A regime-switching combination 
approach and economic links,” Journal of Banking & Finance, 2013, 37, 4120–4133. 

38 



1950 1970 1990 2010

0.
0

0.
4

0.
8

MA(1,9)

1950 1970 1990 2010

−
0.

4
0.

0
0.

4

D1

1950 1970 1990 2010

−
0.

4
0.

0
0.

4 D2

1950 1970 1990 2010

−
0.

3
0.

0
0.

2

D3

1950 1970 1990 2010

−
0.

3
−

0.
1

0.
1

D4

1950 1970 1990 2010

−
0.

3
0.

0
0.

2

D5

1950 1970 1990 2010

−
0.

2
0.

0
0.

2

D6

1950 1970 1990 2010

0.
5

0.
7

0.
9

S6

Figure 1 
Multiresolution analysis of MA(1,9) 
This figure presents the different timescale components for MA(1,9). The time series is decomposed with a MODWT MRA 
of level J = 6 using the Haar filter and data at the boundary are reflected. Dj refers to the level j wavelet detail and S6 is 
the wavelet smooth. The sample is 1950:12 to 2017:12. 
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Figure 2 
Out-of-sample performance for selected predictors 
This figure plots the out-of-sample performance of different forecasting models relative to the historical mean. The dashed black 
line shows performance of the model with unadjusted predictors, whereas the solid black line presents results for the medium-
frequency components. The out-of-sample period runs from 1966:1 to 2017:12 and NBER recession periods are colorized in red 
for the medium-frequency models. 
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Figure 3 
Out-of-sample performance of the nonlinear model 
This figure plots the out-of-sample performance of different forecasting models relative to the historical mean. The solid 
black line shows performance of the nonlinear forecasting model with medium-frequency components, the solid gray line 
shows performance of the nonlinear forecasting model with unadjusted series, and the dashed black line shows performance 
of the linear forecasting model with unadjusted series. The relative performance is shown for MA(1,9) and CF-TECHMEAN . 
The out-of-sample period runs from 1966:1 to 2017:12. 
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Figure 4 
Excess return forecasts from CF-TECHMEAN and from the historical mean 
This figure presents out-of-sample forecasts of excess stock returns from the historical mean (solid gray 
line), from the combination of forecasts from unadjusted technical indicators (solid black line), and from 
the combination of forecasts from medium-frequency components of technical indicators (dashed back 
line). The out-of-sample period runs from 1966:1 to 2017:12. 
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Figure 5 
Optimal share in risky assets over time 
This figure presents the optimal portfolio weights in risky assets (ωt 

∗ ) for different forecasting models over time. Results 
are shown for the historical mean (top graph), as well as for the combination of medium-frequency components from 
technical indicators (bottom graph). The optimal weight of risky assets is restricted to lie between 0 and 1.5. The 
out-of-sample periods runs from 1966:1 to 2017:12. NBER recession periods are colorized in red. 
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Figure 6 
Log cumulative wealth for CF-TECHMEAN after taking transaction costs into 
account 
This figure presents the log cumulative wealth of four different forecasting models after accounting for 
transaction costs of 50 basis points per transaction. The sample covers the period from 1966:1 to 
2017:12. The solid gray line shows results for the historical mean forecasting model. The dashed gray 
line (Basic) depicts the log wealth development for CF-TECHMEAN with a simple average of forecasts 
from 14 technical indicators. The dashed black line (DNL) shows results for the nonlinear forecastingM 
model that combines both combination forecasts from medium range frequencies and the historical mean. 
DM depicts combination forecasts from the medium range frequencies of the 14 technical indicators. 
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Table 1 
Summary statistics 

This table reports summary statistics of the monthly log equity premium, the 14 economic variables, 
and the 14 technical indicators. The statistics include the mean (Mean), standard deviation (Std. dev.), 
skewness (Skew.), kurtosis (Kurt.), minimum (Min.), maximum (Max.), and the first-order autocorrela-
tion (ρ1). The sample period is 1950:12 to 2017:12. 

(1) (2) (3) (4) (5) (6) (7) (8) 

1950:12 to 2017:12 

Variable Mean Std. dev. Skew. Kurt. Min. Max. ρ1 

Log excess return 
rt 0.53 4.15 -0.67 5.47 -24.84 14.87 0.06 
Economic variables 
DP -3.53 0.41 -0.21 2.37 -4.52 -2.60 0.99 
DY -3.52 0.42 -0.21 2.40 -4.53 -2.59 0.99 
EP -2.80 0.42 -0.74 5.88 -4.84 -1.90 0.99 
DE -0.73 0.29 2.60 18.78 -1.24 1.38 0.99 
RVOL 0.14 0.05 0.83 3.89 0.05 0.32 0.96 
BM 0.52 0.25 0.59 2.64 0.12 1.21 0.99 
NTIS 0.01 0.02 -0.92 3.72 -0.06 0.05 0.98 
TBL 4.28 3.09 0.88 4.08 0.01 16.30 0.99 
LTY 5.99 2.76 0.82 3.19 1.75 14.82 0.99 
LTR 0.53 2.75 0.51 6.26 -11.24 15.23 0.05 
TMS 1.71 1.39 -0.14 2.89 -3.65 4.55 0.96 
DFY 0.96 0.44 1.82 7.65 0.32 3.38 0.97 
DFR 0.03 1.39 -0.39 9.91 -9.75 7.37 -0.08 
INFL 0.29 0.36 0.14 5.71 -1.92 1.81 0.55 
Technical indicators 
MA(1,9) 0.70 0.46 -0.86 1.74 0.00 1.00 0.69 
MA(1,12) 0.72 0.45 -0.99 1.99 0.00 1.00 0.78 
MA(2,9) 0.70 0.46 -0.88 1.77 0.00 1.00 0.76 
MA(2,12) 0.72 0.45 -0.98 1.96 0.00 1.00 0.82 
MA(3,9) 0.71 0.46 -0.90 1.81 0.00 1.00 0.79 
MA(3,12) 0.72 0.45 -0.99 1.97 0.00 1.00 0.82 
MOM(9) 0.72 0.45 -0.96 1.92 0.00 1.00 0.76 
MOM(12) 0.73 0.44 -1.06 2.12 0.00 1.00 0.80 
VOL(1,9) 0.69 0.46 -0.80 1.64 0.00 1.00 0.56 
VOL(1,12) 0.71 0.45 -0.94 1.88 0.00 1.00 0.66 
VOL(2,9) 0.68 0.47 -0.77 1.59 0.00 1.00 0.73 
VOL(2,12) 0.70 0.46 -0.89 1.80 0.00 1.00 0.79 
VOL(3,9) 0.69 0.46 -0.84 1.71 0.00 1.00 0.75 
VOL(3,12) 0.70 0.46 -0.89 1.80 0.00 1.00 0.82 
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Table 2 
Out-of-sample R2 statistics (in %) for aggregated timescales 

This table presents statistics on the out-of-sample predictability of one month ahead log excess returns on the S&P 
500 index. Panel A (Panel B) shows results for economic variables (technical indicators). In addition to the individual 
forecasts, I display results for three different combination forecasting methods. Panel C shows results when combining 
both sets of predictors. For each model the out-of-sample R2 (in %) is displayed (Campbell and Thompson, 2008). ∗ , 
∗∗ ∗∗∗ , and indicate significance at the 10%, 5%, and 1% levels, respectively according to the Clark and West (2007) 
MSFE-adjusted statistic. The null hypothesis is equal MSFE and the alternative is that the more sophisticated model 
has smaller MSFE than the historical mean benchmark. Column (1) shows the respective predictor and column (2) 
shows results for the unadjusted predictors. Columns (3) to (5) present results for the frequency-decomposed predictors. 
DH refers to components with periodicities between 2 to 16 months, DM refers to components with periodicities between 
16 to 64 months, and DL captures oscillations above 64 months. 

(1) (2) (3) (4) (5) 

1966:1 to 2017:12 

Predictor Basic DH DM DL 

Panel A: Economic variables 
DP -0.28 -40.91 -0.24 0.32 ∗ 

DY -0.24 -25.39 -0.83 0.32 ∗ 

EP -0.60 -42.64 -0.69 -0.30 
DE -0.86 -10.49 -2.13 -0.86 
RVOL -0.07 ∗ -2.89 -1.76 -0.47 
BM -1.25 -27.11 -0.10 -0.71 
NTIS -0.88 0.28 ∗ -3.09 -0.72 
TBL -0.81 ∗∗ 0.63 ∗∗ -4.75 ∗∗ -0.64 
LTY -0.71 ∗∗ 1.50 ∗∗∗ -2.16 ∗∗∗ -0.69 
LTR 0.32 ∗∗ -0.41 -0.77 ∗∗ 0.09 
TMS -0.86 ∗∗ -0.82 -6.64 -0.54 
DFY -0.63 -8.72 -3.71 ∗ -1.33 
DFR -0.48 -0.68 -3.83 ∗∗ -2.04 
INFL -0.36 0.28 -0.70 ∗ -0.22 

CF-ECONMEAN 1.11 ∗∗∗ -2.06 1.35 ∗∗∗ 0.11 
CF-ECONWEIG 

θ=1 
CF-ECONWEIG 

θ=0.9 

1.11 ∗∗∗ 

1.13 ∗∗∗ 
-1.00 
-0.92 

1.31 ∗∗∗ 

1.25 ∗∗∗ 
0.12 
0.12 

Panel B: Technical indicators 
MA(1,9) 
MA(1,12) 
MA(2,9) 
MA(2,12) 
MA(3,9) 
MA(3,12) 
MOM(9) 
MOM(12) 
VOL(1,9) 
VOL(1,12) 
VOL(2,9) 
VOL(2,12) 
VOL(3,9) 
VOL(3,12) 

0.27 
0.63 ∗ 

0.29 
0.69 ∗∗ 

0.39 ∗ 

0.02 
0.10 
0.12 
0.15 
0.46 ∗ 

0.19 
0.24 
0.00 

0.64 ∗∗ 

-3.47 
-2.86 
-3.35 
-2.27 
-1.78 
-2.07 
-2.71 
-2.11 
-1.53 
-2.10 
-2.31 
-3.63 
-2.24 
-1.98 

-2.16 ∗∗ 

-0.06 ∗∗ 

-0.97 ∗∗ 

0.45 ∗∗∗ 

-0.57 ∗∗ 

0.49 ∗∗ 

0.66 ∗∗ 

0.82 ∗∗ 

-2.46 ∗∗ 

-0.20 ∗∗∗ 

-1.07 ∗∗ 

-0.04 ∗∗∗ 

-0.99 ∗∗ 

0.26 ∗∗ 

-7.41 
-8.07 
-6.46 
-7.44 
-5.92 
-7.17 
-6.67 
-6.16 
-2.82 
-3.19 
-4.18 
-2.52 
-2.71 
-3.30 

CF-TECHMEAN 0.45 ∗ -1.65 0.35 ∗∗∗ -4.71 
CF-TECHWEIG 

θ=1 
CF-TECHWEIG 

θ=0.9 

0.45 ∗ 

0.46 ∗ 
-1.64 
-1.65 

0.33 ∗∗ 

0.31 ∗∗ 
-4.66 
-4.66 

CF-ALLMEAN 
Panel C: All predictors taken together 

0.89 ∗∗∗ -1.53 1.64 ∗∗∗ -1.37 
CF-ALLWEIG 

θ=1 
CF-ALLWEIG 

θ=0.9 

0.89 ∗∗ 

0.90 ∗∗ 
-1.09 
-1.05 

1.59 ∗∗∗ 

1.55 ∗∗∗ 
-1.38 
-1.32 
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Table 3 
Testing dependence between current predictability and business-cycle expectations 

This table reports p-values for the null hypothesis that current predictability is independent of business-cycle 
expectations. Current predictability in Panel A is defined as cpt = I[(rt − r̂t)2 − (rt − r̄  t)2 < 0], whereas current 

HIGHpredictability in Panel B is defined as cpt = I[(rt − r̂t)2 − (rt − r̄  t)2 < −IQR × 1.5]. IQR is the interquartile 
range. Business-cycle expectations are estimated from the Liu and Moench (2016) probit model with an optimal 
threshold according to the maximum Youden index. The p-values are estimated with the dynamically augmented 
reduced rank regression approach of Pesaran and Timmermann (2009). The out-of-sample period is 1966:1 to 
2017:12. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Predictor Basic DH DM DL Predictor Basic DH DM DL 

Panel A: cpt = I[(rt − r̂t)2 − (rt − r̄t)2 < 0] 

DP 
DY 
EP 

6.53 ∗ 

4.95 ∗∗ 

6.51 ∗ 

1.85 ∗∗ 

40.10 
2.87 ∗∗ 

96.71 
53.12 
84.75 

9.09 ∗ 

8.73 ∗ 

41.17 

MA(1,9) 
MA(1,12) 
MA(2,9) 

33.97 
84.36 
33.84 

30.75 
77.49 
33.29 

82.38 
38.78 
17.40 

26.39 
41.38 
19.31 

DE 57.72 79.79 93.20 14.94 MA(2,12) 41.59 42.87 35.40 16.02 
RVOL 
BM 
NTIS 
TBL 
LTY 
LTR 

47.68 
0.22 ∗∗∗ 

35.01 
10.66 
4.18 ∗∗ 

33.99 

61.64 
21.72 
25.54 
78.63 
50.07 
61.88 

74.08 
26.28 
62.29 
95.18 
9.22 ∗ 

44.40 

72.72 
9.78 ∗ 

63.71 
5.15 ∗ 

5.27 ∗ 

8.93 ∗ 

MA(3,9) 
MA(3,12) 
MOM(9) 
MOM(12) 
VOL(1,9) 
VOL(1,12) 

28.62 
52.02 
72.66 
33.43 
73.40 
14.16 

41.57 
44.16 
97.59 
87.19 
36.37 
21.25 

21.83 
16.94 
77.17 
4.95 ∗∗ 

32.04 
18.95 

19.29 
46.43 
8.24 ∗ 

28.51 
92.54 
89.39 

TMS 
DFY 

49.55 
12.71 

39.47 
79.98 

95.84 
45.75 

81.42 
9.22 ∗ 

VOL(2,9) 
VOL(2,12) 

52.38 
33.48 

25.19 
28.69 

22.43 
64.24 

97.22 
97.17 

DFR 
INFL 

72.86 
0.86 ∗∗∗ 

98.22 
8.94 ∗ 

36.88 
83.84 

82.45 
6.04 ∗ 

VOL(3,9) 
VOL(3,12) 

12.51 
7.93 ∗ 

16.70 
67.74 

26.81 
23.20 

92.53 
94.06 

CF-ECONMEAN 22.83 31.52 50.93 19.63 CF-TECHMEAN 13.93 10.05 31.36 75.01 
CF-ECONWEIG 

θ=1 
CF-ECONWEIG 

θ=0.9 

48.25 
71.29 

27.45 
26.11 

55.21 
62.71 

20.95 
21.13 

CF-TECHWEIG 
θ=1 

CF-TECHWEIG 
θ=0.9 

14.04 
13.81 

10.05 
9.79 ∗ 

31.74 
50.36 

74.85 
74.85 

CF-ALLMEAN 53.58 12.39 28.03 32.09 
CF-ALLWEIG 

θ=1 39.16 23.36 14.60 69.76 
CF-ALLWEIG 

θ=0.9 39.86 27.29 15.34 74.10 

HIGHPanel B: cp = I[(rt − r̂t)2 − (rt − r̄t)2 < −IQR × 1.5]t 

DP 
DY 
EP 
DE 
RVOL 
BM 
NTIS 
TBL 
LTY 
LTR 
TMS 
DFY 
DFR 
INFL 

40.31 
91.84 
19.28 
82.65 
2.09 ∗∗ 

0.11 ∗∗∗ 

20.54 
16.98 
12.21 
15.22 
11.08 
1.87 ∗∗ 

7.56 ∗ 

1.25 ∗∗ 

97.53 
40.01 
85.52 
65.81 
10.86 
83.68 
52.18 
14.03 
7.52 ∗ 

6.52 ∗ 

54.58 
62.70 
2.07 ∗∗ 

69.95 

58.01 
80.97 
18.01 
82.87 
18.58 
39.90 
97.22 
2.20 ∗∗ 

28.53 
73.41 
1.38 ∗∗ 

0.50 ∗∗∗ 

21.51 
83.07 

24.87 
20.72 
37.29 
42.69 
55.48 
32.39 
59.02 
93.56 
12.09 
10.87 
1.79 ∗∗ 

10.42 
85.55 
65.84 

MA(1,9) 
MA(1,12) 
MA(2,9) 
MA(2,12) 
MA(3,9) 
MA(3,12) 
MOM(9) 
MOM(12) 
VOL(1,9) 
VOL(1,12) 
VOL(2,9) 
VOL(2,12) 
VOL(3,9) 
VOL(3,12) 

4.34 ∗∗ 

20.00 
5.53 ∗ 

30.40 
9.06 ∗ 

98.50 
5.38 ∗ 

63.64 
67.52 
11.16 
90.78 
53.13 

0.05 ∗∗∗ 

9.15 ∗ 

61.50 
26.82 
12.97 
3.40 ∗∗ 

20.61 
42.02 
68.23 
87.97 
83.95 
10.42 
31.93 
86.92 
14.46 
42.46 

0.00 ∗∗∗ 

1.31 ∗∗ 

0.02 ∗∗∗ 

7.08 ∗ 

0.25 ∗∗∗ 

4.55 ∗∗ 

37.13 
33.80 

0.03 ∗∗∗ 

0.00 ∗∗∗ 

0.19 ∗∗∗ 

0.02 ∗∗∗ 

0.01 ∗∗∗ 

0.05 ∗∗∗ 

33.78 
35.06 
32.64 
50.90 
45.92 
52.12 
69.60 
23.07 
73.28 
66.30 
48.63 
66.18 
66.50 
32.16 

CF-ECONMEAN 31.09 38.11 6.95 ∗ 98.08 CF-TECHMEAN 13.25 74.78 0.01 ∗∗∗ 86.80 
CF-ECONWEIG 

θ=1 
CF-ECONWEIG 

θ=0.9 

28.61 
47.24 

54.40 
51.38 

5.46 ∗ 

4.53 ∗∗ 
88.07 
62.66 

CF-TECHWEIG 
θ=1 

CF-TECHWEIG 
θ=0.9 

13.15 
13.15 

72.26 
72.26 

0.00 ∗∗∗ 

0.00 ∗∗∗ 
89.74 
89.74 

CF-ALLMEAN 22.04 61.19 6.46 ∗ 88.34 
CF-ALLWEIG 

θ=1 
CF-ALLWEIG 

θ=0.9 

31.65 
24.34 

51.16 
51.16 

10.01 
9.96 ∗ 

72.55 
73.95 
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Table 4 
Out-of-sample R2 statistics (in %) for the nonlinear model 

This table presents statistics on the out-of-sample predictability of one month ahead log excess returns on the 
S&P 500 index. Panel A (Panel B) shows results for economic variables (technical indicators). In addition to the 
individual forecasts, I display results for three different combination forecasting methods. Panel C shows results 
when combining both sets of predictors. For each model the out-of-sample R2 (in %) is displayed (Campbell and 
Thompson, 2008). ∗ , ∗∗ , and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively according to the 
Clark and West (2007) MSFE-adjusted statistic. The null hypothesis is equal MSFE and the alternative is that 
the more sophisticated model has smaller MSFE than the historical mean benchmark. Column (1) shows the 
respective predictor and column (2) shows results for the unadjusted series. Columns (3) to (9) present results 
for the frequency-decomposed predictors. DH refers to components with periodicities between 2 to 16 months, 
DM refers to components with periodicities between 16 to 64 months, and DL captures oscillations above 64 
months. The superscript NL indicates that the nonlinear forecasting model is applied in columns (3), (5), (7), 
and (9). 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1966:1 to 2017:12 

Predictor Basic BasicNL DH DNL 
H DM DNL 

M DL DNL 
L 

Panel A: Economic variables 
DP -0.28 0.56 ∗ -40.91 -24.64 -0.24 -0.17 0.32 ∗ 0.49 ∗∗∗ 

DY -0.24 0.80 ∗∗ -25.39 -13.39 -0.83 -0.30 0.32 ∗ 0.53 ∗∗∗ 

EP -0.60 -0.41 -42.64 -22.67 -0.69 -0.06 -0.30 -0.07 
DE -0.86 -0.42 -10.49 -6.05 -2.13 -0.08 -0.86 -0.42 
RVOL -0.07 ∗ 0.40 ∗ -2.89 -1.38 -1.76 -0.43 -0.47 -0.19 
BM -1.25 -0.46 -27.11 -15.53 -0.10 -0.03 -0.71 -0.54 
NTIS -0.88 -1.27 0.28 ∗ 0.04 -3.09 -2.76 -0.72 -0.12 
TBL -0.81 ∗∗ -1.62 0.63 ∗∗ -0.61 -4.75 ∗∗ -1.57 -0.64 -1.27 
LTY -0.71 ∗∗ -1.56 1.50 0.29 ∗ -2.16 ∗∗∗ -1.91 -0.69 -1.10 
LTR 0.32 ∗∗ 1.00 ∗∗ -0.41 0.75 ∗∗ -0.77 ∗∗ -0.38 0.09 0.22 
TMS -0.86 ∗∗ 0.19 ∗∗ -0.82 -0.76 -6.64 -1.66 -0.54 -0.09 
DFY -0.63 0.07 -8.72 -6.53 -3.71 ∗ -0.74 ∗ -1.33 -0.95 
DFR -0.48 -0.14 -0.68 -0.16 -3.83 ∗∗ 0.72 ∗ -2.04 -1.16 
INFL -0.36 -1.11 0.28 0.65 ∗∗ -0.70 ∗ -0.87 -0.22 -1.22 

CF-ECONMEAN 1.11 ∗∗∗ 0.37 ∗ -2.06 -2.19 1.35 ∗∗∗ 0.46 0.11 -0.13 
CF-ECONWEIG 

θ=1 
CF-ECONWEIG 

θ=0.9 

1.11 ∗∗∗ 

1.13 ∗∗∗ 
0.43 ∗ 

0.48 ∗ 
-1.00 
-0.92 

-1.35 
-1.33 

1.31 ∗∗∗ 

1.25 ∗∗∗ 
0.60 ∗ 

0.62 ∗ 
0.12 
0.12 

-0.13 
-0.11 

Panel B: Technical indicators 
MA(1,9) 
MA(1,12) 
MA(2,9) 
MA(2,12) 
MA(3,9) 
MA(3,12) 
MOM(9) 
MOM(12) 
VOL(1,9) 
VOL(1,12) 
VOL(2,9) 
VOL(2,12) 
VOL(3,9) 
VOL(3,12) 

0.27 
0.63 ∗ 

0.29 
0.69 ∗∗ 

0.39 ∗ 

0.02 
0.10 
0.12 
0.15 
0.46 ∗ 

0.19 
0.24 
0.00 

0.64 ∗∗ 

0.81 ∗∗ 

0.86 ∗∗ 

0.95 ∗∗ 

0.97 ∗∗ 

1.03 ∗∗ 

0.44 ∗ 

0.30 
0.20 

0.63 ∗∗ 

0.78 ∗∗ 

0.46 ∗ 

0.28 
0.48 ∗ 

0.85 ∗∗ 

-3.47 
-2.86 
-3.35 
-2.27 
-1.78 
-2.07 
-2.71 
-2.11 
-1.53 
-2.10 
-2.31 
-3.63 
-2.24 
-1.98 

-1.89 
-1.50 
-2.05 
-1.31 
-1.21 
-1.71 
-1.65 
-0.85 
-0.96 
-1.35 
-1.33 
-2.15 
-1.53 
-1.39 

-2.16 ∗∗ 

-0.06 ∗∗ 

-0.97 ∗∗ 

0.45 ∗∗∗ 

-0.57 ∗∗ 

0.49 ∗∗ 

0.66 ∗∗ 

0.82 ∗∗ 

-2.46 ∗∗ 

-0.20 ∗∗∗ 

-1.07 ∗∗ 

-0.04 ∗∗∗ 

-0.99 ∗∗ 

0.26 ∗∗ 

2.71 ∗∗∗ 

1.93 ∗∗∗ 

2.45 ∗∗∗ 

1.84 ∗∗∗ 

2.17 ∗∗∗ 

1.47 ∗∗∗ 

1.44 ∗∗ 

1.01 ∗∗ 

1.70 ∗∗∗ 

1.79 ∗∗∗ 

1.75 ∗∗∗ 

1.56 ∗∗∗ 

1.75 ∗∗∗ 

1.44 ∗∗∗ 

-7.41 
-8.07 
-6.46 
-7.44 
-5.92 
-7.17 
-6.67 
-6.16 
-2.82 
-3.19 
-4.18 
-2.52 
-2.71 
-3.30 

-3.23 
-3.46 
-2.68 
-3.08 
-2.85 
-3.20 
-3.02 
-2.59 
-1.12 
-1.54 
-2.12 
-1.21 
-1.20 
-1.62 

CF-TECHMEAN 0.45 ∗ 0.69 ∗∗ -1.65 -1.32 0.35 ∗∗∗ 1.98 ∗∗∗ -4.71 -2.24 
CF-TECHWEIG 

θ=1 
CF-TECHWEIG 

θ=0.9 

0.45 ∗ 

0.46 ∗ 
0.69 ∗∗ 

0.69 ∗∗ 
-1.64 
-1.65 

-1.32 
-1.32 

0.33 ∗∗ 

0.31 ∗∗ 
1.97 ∗∗∗ 

1.97 ∗∗∗ 
-4.66 
-4.66 

-2.23 
-2.22 

CF-ALLMEAN 0.89 ∗∗∗ 
Panel C: All predictors taken together 

0.56 ∗∗ -1.53 -1.61 1.64 ∗∗∗ 1.52 ∗∗∗ -1.37 -0.82 
CF-ALLWEIG 

θ=1 
CF-ALLWEIG 

θ=0.9 

0.89 ∗∗ 

0.90 ∗∗ 
0.60 ∗∗ 

0.63 ∗∗ 
-1.09 
-1.05 

-1.24 
-1.23 

1.59 ∗∗∗ 

1.55 ∗∗∗ 
1.59 ∗∗∗ 

1.61 ∗∗∗ 
-1.38 
-1.32 

-0.84 
-0.77 
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Table 5 
Annualized gains in CER 

This table reports the annualized gain in certainty equity return (CER) relative to the CER from the historical 
mean (in percent). ΔCER is estimated for a mean-variance investor with a relative risk aversion of five who 
allocates each month between the S&P 500 index and the risk-free rate. The optimal weight is estimated according 
to forecasts of one-month ahead excess returns from predictive regression models. The optimal weight in risky 
assets is constrained to lie between 0 and 1.5 to prevent shorting stocks and leveraging more than 50%. The 
out-of-sample period runs from 1966:1 to 2017:12. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1966:1 to 2017:12 

Predictor Basic BasicNL DH DNL 
H DM DNL 

M DL DNL 
L 

Panel A: Economic variables 
DP -0.67 0.53 -3.05 -3.18 0.19 0.13 0.65 0.94 ∗∗ 

DY -0.24 1.08 -3.93 -2.50 -1.34 -0.56 0.70 1.06 ∗∗ 

EP 0.25 0.44 -0.83 -0.49 0.28 0.83 ∗ -0.24 0.08 
DE -0.32 0.18 -0.12 -0.52 -1.01 0.18 0.25 0.56 
RVOL -1.04 0.00 -0.45 -0.64 -1.45 -0.58 -0.24 0.02 
BM -1.25 -0.13 -3.46 -3.06 0.15 0.15 -0.60 -0.26 
NTIS 0.14 -0.89 0.76 0.12 0.00 -1.55 -0.51 0.58 
TBL 1.80 ∗ -0.01 1.16 ∗ -0.33 1.11 0.70 1.52 -0.00 
LTY 1.65 -0.01 3.13 ∗∗∗ 1.05 ∗ 2.39 ∗ 0.04 1.15 -0.11 
LTR 0.87 0.83 ∗ 0.20 0.63 1.48 0.80 0.52 0.37 
TMS 1.79 0.93 -1.24 -0.92 -0.61 0.66 1.10 0.58 
DFY -0.78 -0.21 -0.31 -0.44 -1.03 0.35 0.18 0.01 
DFR 0.16 0.17 -0.65 -0.38 1.03 1.23 0.81 1.21 
INFL 0.27 -0.53 0.74 1.19 1.79 0.90 1.67 0.08 

CF-ECONMEAN 1.72 ∗∗∗ 0.67 ∗ -1.47 -2.01 2.32 ∗∗ 0.69 0.99 0.59 
CF-ECONWEIG 

θ=1 
CF-ECONWEIG 

θ=0.9 

1.82 ∗∗∗ 

1.83 ∗∗∗ 
0.83 ∗ 

0.89 ∗ 
-0.88 
-0.86 

-1.46 
-1.48 

2.39 ∗∗ 

2.39 ∗∗ 
0.90 ∗ 

0.94 ∗ 
1.03 
1.05 

0.63 
0.66 

Panel B: Technical indicators 
MA(1,9) 
MA(1,12) 
MA(2,9) 
MA(2,12) 
MA(3,9) 
MA(3,12) 
MOM(9) 
MOM(12) 
VOL(1,9) 
VOL(1,12) 
VOL(2,9) 
VOL(2,12) 
VOL(3,9) 
VOL(3,12) 

1.55 ∗ 

2.62 ∗∗ 

1.75 ∗ 

2.67 ∗∗ 

2.18 ∗ 

1.15 
1.23 
1.14 
1.18 
1.79 ∗ 

0.88 
0.89 
0.61 
1.88 ∗ 

1.96 ∗∗∗ 

2.57 ∗∗∗ 

2.41 ∗∗∗ 

2.71 ∗∗∗ 

2.58 ∗∗∗ 

1.50 ∗∗ 

1.31 ∗ 

1.22 ∗ 

1.65 ∗∗ 

2.27 ∗∗∗ 

1.44 ∗∗ 

1.17 ∗ 

1.27 ∗∗ 

2.27 ∗∗∗ 

-1.92 
-1.64 
-1.76 
-1.45 
-1.45 
-0.55 
-0.86 
-0.79 
-0.62 
-0.98 
-1.21 
-1.39 
-1.07 
-0.94 

-1.00 
-0.89 
-1.13 
-0.85 
-0.88 
-0.78 
-0.80 
-0.46 
-0.60 
-0.70 
-0.77 
-0.92 
-0.73 
-0.77 

2.92 ∗ 

3.56 ∗∗ 

2.99 ∗∗ 

3.58 ∗∗∗ 

2.77 ∗∗ 

2.85 ∗∗ 

3.14 ∗∗ 

2.00 ∗ 

3.32 ∗∗ 

4.46 ∗∗∗ 

3.66 ∗∗ 

3.74 ∗∗∗ 

3.26 ∗∗ 

3.34 ∗∗ 

3.53 ∗∗∗ 

2.97 ∗∗∗ 

3.36 ∗∗∗ 

2.89 ∗∗∗ 

2.94 ∗∗∗ 

2.31 ∗∗ 

2.32 ∗∗ 

2.03 ∗∗ 

3.15 ∗∗∗ 

3.16 ∗∗∗ 

2.86 ∗∗∗ 

2.67 ∗∗ 

2.87 ∗∗∗ 

2.49 ∗∗ 

-0.05 
-0.18 
0.36 
-0.07 
0.05 
-0.25 
-0.32 
-0.25 
0.96 
0.81 
0.31 
0.74 
0.61 
0.51 

1.17 
1.11 
1.28 
1.11 
0.95 
0.98 
0.96 
1.20 
1.68 ∗ 

1.65 ∗ 

1.34 
1.57 ∗ 

1.46 
1.36 

CF-TECHMEAN 1.59 ∗ 1.85 ∗∗ -1.02 -0.89 3.71 ∗∗∗ 3.05 ∗∗∗ 0.39 1.21 
CF-TECHWEIG 

θ=1 
CF-TECHWEIG 

θ=0.9 

1.60 ∗ 

1.60 ∗ 
1.86 ∗∗ 

1.86 ∗∗ 
-1.00 
-1.01 

-0.89 
-0.89 

3.71 ∗∗∗ 

3.71 ∗∗∗ 
3.06 ∗∗∗ 

3.06 ∗∗∗ 
0.41 
0.41 

1.23 
1.23 

CF-ALLMEAN 1.71 ∗∗∗ 
Panel C: All predictors taken together 

1.24 ∗∗ -1.90 -2.12 4.31 ∗∗∗ 2.92 ∗∗∗ 0.71 1.19 
CF-ALLWEIG 

θ=1 
CF-ALLWEIG 

θ=0.9 

1.80 ∗∗∗ 

1.82 ∗∗∗ 
1.35 ∗∗ 

1.40 ∗∗ 
-1.39 
-1.37 

-1.60 
-1.57 

4.17 ∗∗∗ 

4.15 ∗∗∗ 
2.95 ∗∗∗ 

2.96 ∗∗∗ 
0.74 
0.76 

1.23 
1.27 
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Table 6 
Annualized gains in SR 

This table reports the annualized gain in the Sharpe ratio (SR) relative to the SR from the historical mean. ΔSR 
is estimated for a mean-variance investor with a relative risk aversion of five who allocates each month between the 
S&P 500 index and the risk-free rate. The optimal weight is estimated according to forecasts of one-month ahead 
excess returns from predictive regression models. The optimal weight in risky assets is constrained to lie between 
0 and 1.5 to prevent shorting stocks and leveraging more than 50%. The out-of-sample period runs from 1966:1 to 
2017:12. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1966:1 to 2017:12 

Predictor Basic BasicNL DH DNL 
H DM DNL 

M DL DNL 
L 

Panel A: Economic variables 
DP -0.11 0.06 -0.08 -0.13 -0.01 0.01 0.03 0.06 ∗∗ 

DY -0.08 0.09 ∗ -0.17 -0.09 -0.10 0.00 0.03 0.07 ∗∗ 

EP -0.01 0.03 0.03 -0.01 0.03 0.05 -0.03 -0.00 
DE -0.06 0.01 0.04 0.01 0.00 0.04 -0.02 0.02 
RVOL 0.01 0.05 0.02 0.01 -0.01 0.02 -0.03 -0.01 
BM -0.08 0.00 -0.14 -0.15 0.01 0.02 -0.02 -0.03 
NTIS 0.06 -0.06 0.06 0.01 0.05 -0.07 -0.04 0.02 
TBL 0.12 -0.02 0.10 ∗∗ -0.00 0.14 0.08 0.09 -0.03 
LTY 0.10 -0.03 0.25 ∗∗∗ 0.09 ∗ 0.19 ∗∗ -0.01 0.04 -0.04 
LTR 0.11 ∗ 0.08 ∗∗ 0.04 0.06 ∗ 0.15 ∗∗ 0.08 ∗ 0.05 0.02 
TMS 0.19 ∗∗ 0.08 ∗ -0.09 -0.06 0.02 0.08 0.10 0.02 
DFY -0.02 0.01 0.04 0.01 0.01 0.08 ∗ -0.03 -0.03 
DFR 0.01 0.01 -0.04 -0.02 0.11 0.10 0.05 0.07 
INFL 0.01 -0.05 0.05 0.09 ∗∗ 0.14 ∗ 0.07 0.13 ∗ -0.02 

CF-ECONMEAN 0.11 ∗∗ 0.04 -0.05 -0.08 0.19 ∗∗∗ 0.07 ∗ 0.05 0.01 
CF-ECONWEIG 

θ=1 
CF-ECONWEIG 

θ=0.9 

0.12 ∗∗ 

0.12 ∗∗ 
0.05 ∗ 

0.06 ∗ 
-0.03 
-0.03 

-0.06 
-0.06 

0.19 ∗∗∗ 

0.19 ∗∗∗ 
0.08 ∗ 

0.08 ∗∗ 
0.05 
0.05 

0.02 
0.02 

Panel B: Technical indicators 
MA(1,9) 
MA(1,12) 
MA(2,9) 
MA(2,12) 
MA(3,9) 
MA(3,12) 
MOM(9) 
MOM(12) 
VOL(1,9) 
VOL(1,12) 
VOL(2,9) 
VOL(2,12) 
VOL(3,9) 
VOL(3,12) 

0.10 ∗ 

0.19 ∗∗ 

0.12 ∗ 

0.20 ∗∗ 

0.16 ∗ 

0.07 
0.07 
0.07 
0.07 
0.13 ∗ 

0.06 
0.06 
0.04 
0.14 ∗ 

0.13 ∗∗∗ 

0.18 ∗∗ 

0.17 ∗∗∗ 

0.20 ∗∗∗ 

0.19 ∗∗∗ 

0.09 ∗ 

0.08 
0.07 

0.11 ∗∗ 

0.16 ∗∗∗ 

0.09 ∗∗ 

0.07 
0.08 ∗∗ 

0.16 ∗∗∗ 

-0.10 
-0.09 
-0.10 
-0.09 
-0.09 
-0.02 
-0.04 
-0.04 
-0.01 
-0.05 
-0.06 
-0.08 
-0.05 
-0.06 

-0.08 
-0.07 
-0.09 
-0.06 
-0.07 
-0.06 
-0.06 
-0.03 
-0.05 
-0.06 
-0.06 
-0.07 
-0.05 
-0.06 

0.24 ∗∗ 

0.28 ∗∗ 

0.24 ∗∗ 

0.28 ∗∗∗ 

0.22 ∗∗ 

0.22 ∗∗ 

0.24 ∗∗ 

0.14 ∗ 

0.26 ∗∗ 

0.35 ∗∗∗ 

0.29 ∗∗∗ 

0.30 ∗∗∗ 

0.26 ∗∗ 

0.26 ∗∗∗ 

0.27 ∗∗∗ 

0.22 ∗∗∗ 

0.26 ∗∗∗ 

0.21 ∗∗∗ 

0.22 ∗∗∗ 

0.16 ∗∗ 

0.16 ∗∗ 

0.14 ∗∗ 

0.24 ∗∗∗ 

0.24 ∗∗∗ 

0.21 ∗∗∗ 

0.20 ∗∗ 

0.21 ∗∗∗ 

0.18 ∗∗ 

0.03 
0.04 
0.07 
0.04 
0.05 
0.03 
0.03 
0.04 
0.09 
0.08 
0.05 
0.08 
0.07 
0.06 

0.06 
0.06 
0.07 
0.06 
0.05 
0.05 
0.05 
0.07 
0.11 
0.11 
0.08 
0.10 
0.09 
0.08 

CF-TECHMEAN 0.11 ∗ 0.12 ∗∗ -0.05 -0.07 0.29 ∗∗∗ 0.23 ∗∗∗ 0.07 0.07 
CF-TECHWEIG 

θ=1 
CF-TECHWEIG 

θ=0.9 

0.11 ∗ 

0.11 ∗ 
0.12 ∗∗ 

0.13 ∗∗ 
-0.05 
-0.05 

-0.07 
-0.07 

0.29 ∗∗∗ 

0.29 ∗∗∗ 
0.23 ∗∗∗ 

0.23 ∗∗∗ 
0.07 
0.07 

0.07 
0.07 

CF-ALLMEAN 0.11 ∗∗∗ 
Panel C: All predictors taken together 

0.08 ∗∗ -0.09 -0.11 0.34 ∗∗∗ 0.22 ∗∗∗ 0.06 0.06 
CF-ALLWEIG 

θ=1 
CF-ALLWEIG 

θ=0.9 

0.12 ∗∗∗ 

0.12 ∗∗∗ 
0.08 ∗∗ 

0.09 ∗∗ 
-0.07 
-0.07 

-0.09 
-0.09 

0.33 ∗∗∗ 

0.33 ∗∗∗ 
0.22 ∗∗∗ 

0.22 ∗∗∗ 
0.07 
0.07 

0.07 
0.07 
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A R2 for individual timescalesOS 

In the main article I have only provided results for the aggregated timescales DH , DM , 

and DL. Table A.1 shows the R2 statistics for the individual timescales D1 to D6, andOS 

S6. Panel B highlights that predictability by technical indicators solely stems from D4 

and D5, which approximates periodicities between 16 to 32 months and 32 to 64 months. 

B Recession forecasts and differences in squared forecasting errors 

The so called receiver operating characteristic (ROC) curve plots the entire set of possi-

ble combinations of TPR(θ) and FPR(θ) (Berge and Jordà, 2011). Figure A.1 presents 

the ROC curve for the grid of candidate values for the full sample from 1950:12 to 

2017:12. Firstly, I generate in-sample predictions for the probability of a recession one-

month ahead. Secondly, I estimate the respective values of TPR(θ) and FPR(θ) for the 

101 candidate values. Then, the value is selected that maximizes the difference between 

both ratios. Graphically, the optimal point is the point with the largest distance to the 

diagonal line (Baker and Kramer, 2007). The dashed diagonal line is the equivalent of a 

random guess and a model with optimal accuracy “would have a ROC curve that hugged 

the top left corner” (Liu and Moench, 2016, p. 1141). The ROC curve shows that the 

probit model has an excellent classification ability for the full sample. For the in-sample 

exercise the optimal threshold level equals θ∗ = 0.19. The one-month ahead recession 

forecasts from the probit model are shown in the right panel of Figure A.1. 

Figure A.2 shows boxplots of (rt − r̂t)2 − (rt − r̄  t)2 for the 14 medium-frequency com-

ponents of the technical indicators (DM ). The difference in squared forecast errors is 

centered around zero with outliers both to the left (DM performs better) and the right 

(historical mean performs better). A predictor that consistently outperforms the naive 

benchmark would only have observations to the left of zero. I show in the main article 
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that points on the left side of the distribution depend on business-cycle expectations. 

C Asset allocation exercise with alternative choice of parameters 

In this section I set the parameters of the asset allocation exercise identical to Rapach 

et al. (2016). I restrict the share of risky assets to lie between −0.5 and 1.5, allowing for 

a short position in risky assets of 50%. The coefficient of relative risk aversion is set to 

three and the volatility forecast is estimated according to a ten-year moving window of 

past excess returns. The results for ΔCER and ΔSR under this specification are shown 

in Table A.2 and Table A.3. 

D Subsample analysis: 1990:1 to 2017:12 

Tables A.4 to A.6 present results for the out-of-sample period from 1990:1 to 2017:12. 

Results remain qualitatively the same. For the more recent sample the combination 

forecasts of economic variables perform rather poor. Contrarily, combination forecasts 

of medium frequencies from technical indicators provide a sizable utility gain of 357 basis 

points relative to the historical mean, and a gain of 143 basis points relative to combi-

nation forecasts from the unadjusted indicators. The R2 for the nonlinear forecastingOS 

model with combination forecasts from medium frequencies of technical indicators is 

2.25%. This is more than three times larger than for the simple combination forecasts. 

E Principal component analysis 

Similar to Neely et al. (2014), I analyze the forecasting performance of principal compo-

nents. Firstly, I split each predictor into frequency-specific components and then group 

the respective components for all predictors. Thus, the frequency-specific information 

of all predictors is saved in respective matrices. Secondly, I normalize the predictors 

to have a mean of zero and a standard deviation of one. Thirdly, I estimate the first, 
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second, and third principal components of the frequency-specific matrices. Table A.7 

shows the R2 values, whereas Table A.8 and Table A.9 present results for ΔCER andOS 

ΔSR. 

F Alternative choice of wavelet filter 

In the main text I have only applied the Haar wavelet filter to decompose time series. 

The choice of the Haar filter is often justified by the fact that “the wavelet coefficients 

are simply differences of moving averages” (Faria and Verona, 2018a). Ortu et al. (2013) 

show that the Haar filter is a simple method to decompose time series along the per-

sistence dimension. Bandi et al. (2019a, p. 17) write that “alternative nonparametric 

filters, like the Daubechies filter, could have been used instead without affecting the em-

pirical results”. Likewise, Kang et al. (2017, p. 24) use the “least asymmetric” wavelet 

filter, writing that their findings “are not specific to the particular wavelet filter used”. 

In line with this, Rua (2011, p. 671) states that results do not change much when us-

ing Daubechies and Coiflets rather than a symmlet 4 wavelet. Similarly, Risse (2019) 

explains that Daubechies wavelets do not lead to superior performance compared to the 

Haar wavelet. So, the choice of wavelet seems to be a “technical note” rather than a 

crucial choice (Kang et al., 2017, p. 24). Percival and Walden (2000, p. 197) write the 

following: 

“To summarize, as compared to DWT-based MRAs, a MODWT-based MRA 

is less dependent upon our choice of wavelet filter, but not so much so that 

we can recommend always using a particular filter. A careful study of the 

differences between MRAs based on different wavelet filters is still needed to 

see which filter is best matched to a particular application.” 

Hence, there is no clear guidance on the choice of wavelet. Therefore, I simply repeat 

the analysis from the previous sections with four different wavelets. Table A.10 presents 
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results for R2 
OS , ΔCER, and ΔSR, when using combination forecasts and alternative 

wavelets to isolate the medium-frequency components of predictors. It can be seen that 

results are qualitatively the same, with different wavelets only having a minor effect. 

The wavelets with a lower width (D(4) and FK(4)) seem to perform slightly better in 

terms of R2 compared to wavelets with a width of 8 or 16 observations.1 
OS However, the 

overall role of wavelet choice is subordinate. Thus, my findings are in line with other 

articles documenting that the choice of filter is of minor importance. 

G Performance after transaction costs 

Table A.11 presents the average turnover of portfolios resulting from advanced fore-

casting models relative to the average turnover of the portfolio based on forecasts from 

the historical mean. The average turnover of a portfolio based on the historical mean 

forecast is 2.13%. None of the portfolios from more advanced forecasting models has 

a relative average turnover below one. Each of these portfolios has higher transaction 

costs, therefore it is important to analyze whether the gains in ΔCER and ΔSR remain 

significant after accounting for these costs. Table A.13 and Table A.14 show results after 

accounting for a proportional transaction cost of 50 basis points per transaction. As an 

example, the combination forecasts from medium frequencies of all predictors generate 

a utility gain of 396 basis points relative to the historical mean, and a utility gain of 

250 basis points relative to the unadjusted predictors. The results remain sizable after 

accounting for transaction costs. 

1The Haar wavelet has a width of 2 and as well belongs to discrete Daubechies wavelets. Therefore, 
the Haar wavelet is also called D(2) wavelet. 
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Figure A.1 
ROC curve and business-cycle forecasts 
This figure plots the ROC curve for the in-sample period from 1950:12 to 2017:12 (left panel) and the 
out-of-sample recession forecasts for the period from 1966:1 to 2017:12 (right panel). The recession 
periods are classified according to the maximum Youden index and the probability forecasts are based 
on the probit model. 
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Figure A.2 
Boxplots for differences in squared forecasting errors 
This figure presents boxplots for differences in squared forecasting errors. The squared errors from forecasts with 
medium-frequency components of technical indicators are subtracted from squared forecasting errors of the historical 
mean, (rt − r̂t)2 − (rt − r̄  t)2 . The out-of-sample forecasting period is 1966:1 to 2017:12. The ends of the box are the 
upper and lower quartiles, so the box spans the interquartile range (IQR). The whiskers are the dashed lines that 
extend from both sides of the box up to the highest or lowest value within ±1.5 × IQR. The dots represent points 
that are outside of this range. 
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Table A.1 
Out-of-sample R2 statistics (in %) 

This table presents statistics on the out-of-sample predictability of one month ahead log excess returns on the S&P 
500 index. Panel A (Panel B) shows results for economic variables (technical indicators). In addition to the individual 
forecasts, I display results for three different combination forecasting methods. Panel C shows results when combining 
both sets of predictors. For each model the out-of-sample R2 (in %) is displayed (Campbell and Thompson, 2008). ∗ , 
∗∗ ∗∗∗ , and indicate significance at the 10%, 5%, and 1% levels, respectively according to the Clark and West (2007) 
MSFE-adjusted statistic. The null hypothesis is equal MSFE and the alternative is that the more sophisticated model 
has smaller MSFE than the historical mean benchmark. Column (1) shows the respective predictor and column (2) 
shows results for the unadjusted series. Columns (3) to (9) present results for the frequency-decomposed predictors. D1 

refers to the component with the highest frequency and S6 refers to the component with the lowest frequency. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1966:1 to 2017:12 

Predictor Basic D1 D2 D3 D4 D5 D6 S6 

Panel A: Economic variables 
DP -0.28 -29.86 -26.21 -4.30 -0.49 -0.20 -0.80 0.18 
DY -0.24 -0.13 -53.15 -20.07 -2.62 -0.19 -0.56 0.16 
EP -0.60 -38.56 -28.80 -0.71 -0.30 -1.09 -1.63 -0.11 
DE -0.86 -6.23 -18.18 -5.27 -2.34 -2.19 -1.24 -0.17 
RVOL -0.07 ∗ -0.47 -4.34 -7.66 -5.23 -0.65 -0.49 -0.31 
BM -1.25 -17.58 -17.07 -3.05 -0.71 0.05 -1.11 -0.55 
NTIS -0.88 -0.44 0.25 -1.66 -3.50 -2.20 -0.62 -0.51 
TBL -0.81 ∗∗ -1.96 -0.27 -0.94 ∗∗ -7.82 ∗∗ -2.77 ∗∗ -2.10 -0.20 
LTY -0.71 ∗∗ -0.47 0.76 ∗∗ -2.23 ∗∗∗ -2.37 ∗∗∗ -1.56 ∗ -1.09 -0.41 
LTR 0.32 ∗∗ 0.38 ∗ -2.22 ∗ -3.45 -1.40 ∗∗ 0.02 ∗∗ 0.04 -1.31 
TMS -0.86 ∗∗ -1.39 -1.18 -1.34 -8.75 -3.92 ∗ -1.83 -0.18 
DFY -0.63 -1.20 -5.02 -17.45 -8.42 ∗ -1.55 -0.93 -1.13 
DFR -0.48 -0.49 -0.71 -3.54 -3.79 ∗ -2.55 -1.35 -1.41 
INFL -0.36 0.16 0.32 ∗ -1.06 -2.26 0.51 ∗∗ -0.10 -0.09 

CF-ECONMEAN 1.11 ∗∗∗ -1.82 -1.91 -0.59 1.05 ∗∗∗ 0.95 ∗∗ -0.38 0.08 
CF-ECONWEIG 

θ=1 
CF-ECONWEIG 

θ=0.9 

1.11 ∗∗∗ 

1.13 ∗∗∗ 
-1.70 
-1.70 

-1.19 
-1.11 

-0.49 
-0.47 

0.91 ∗∗ 

0.85 ∗∗ 
0.99 ∗∗ 

0.98 ∗∗ 
-0.35 
-0.33 

0.09 
0.09 

Panel B: Technical indicators 
MA(1,9) 
MA(1,12) 
MA(2,9) 
MA(2,12) 
MA(3,9) 
MA(3,12) 
MOM(9) 
MOM(12) 
VOL(1,9) 
VOL(1,12) 
VOL(2,9) 
VOL(2,12) 
VOL(3,9) 
VOL(3,12) 

0.27 
0.63 ∗ 

0.29 
0.69 ∗∗ 

0.39 ∗ 

0.02 
0.10 
0.12 
0.15 
0.46 ∗ 

0.19 
0.24 
0.00 

0.64 ∗∗ 

-2.88 
-2.82 
-1.85 
-0.90 
-0.43 
-0.26 
-1.21 
-0.78 
-1.15 
-0.65 
-0.52 
-1.06 
-0.60 
-0.20 

-2.55 
-2.64 
-6.89 
-5.41 
-4.80 
-4.61 
-1.58 
-1.89 
-1.26 
-2.44 
-5.02 
-6.23 
-3.71 
-4.05 

-0.15 
0.09 
0.08 
-0.25 
-0.18 
-1.14 
-0.75 
-1.43 
-0.56 
0.10 
-0.09 
-0.60 
-0.39 
-1.05 

-2.42 ∗ 

-0.15 ∗∗ 

-1.10 ∗ 

0.32 ∗∗ 

-0.60 ∗ 

0.42 ∗∗ 

0.58 ∗∗ 

0.31 ∗ 

-2.81 ∗ 

-0.39 ∗∗ 

-0.92 ∗ 

0.20 ∗∗ 

-0.74 ∗ 

0.35 ∗∗ 

-1.87 ∗∗ 

-0.54 ∗∗ 

-1.08 ∗∗ 

-0.17 ∗∗ 

-0.89 ∗∗ 

-0.30 ∗∗ 

-0.27 ∗∗ 

0.36 ∗∗ 

-1.53 ∗∗ 

-0.32 ∗∗∗ 

-1.16 ∗∗∗ 

-0.87 ∗∗ 

-1.12 ∗∗ 

-0.61 ∗∗ 

-9.30 
-8.39 
-7.80 
-6.96 
-6.57 
-6.77 
-6.57 
-5.05 
-3.40 
-3.51 
-4.82 
-4.10 
-3.51 
-3.35 

-3.66 
-4.06 
-3.16 
-4.34 
-2.91 
-3.89 
-3.65 
-3.74 
-1.20 
-1.36 
-1.51 
-0.93 
-1.10 
-1.41 

CF-TECHMEAN 0.45 ∗ -0.52 -2.24 -0.10 0.13 ∗∗ -0.07 ∗∗ -4.97 -2.38 
CF-TECHWEIG 

θ=1 
CF-TECHWEIG 

θ=0.9 

0.45 ∗ 

0.46 ∗ 
-0.53 
-0.53 

-2.28 
-2.29 

-0.12 
-0.11 

0.12 ∗∗ 

0.12 ∗∗ 
-0.10 ∗∗ 

-0.11 ∗∗ 
-4.83 
-4.82 

-2.35 
-2.34 

CF-ALLMEAN 0.89 ∗∗∗ -0.99 
Panel C: All predictors taken together 

-1.72 -0.10 1.17 ∗∗∗ 1.33 ∗∗∗ -1.59 -0.76 
CF-ALLWEIG 

θ=1 
CF-ALLWEIG 

θ=0.9 

0.89 ∗∗ 

0.90 ∗∗ 
-0.97 
-0.97 

-1.45 
-1.41 

-0.09 
-0.08 

1.07 ∗∗∗ 

1.03 ∗∗∗ 
1.36 ∗∗∗ 

1.34 ∗∗∗ 
-1.49 
-1.44 

-0.73 
-0.73 
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Table A.2 
Annualized gains in CER 

This table reports the annualized gain in certainty equity return (CER) relative to the CER from the historical 
mean (in percent). ΔCER is estimated for a mean-variance investor with a relative risk aversion of three who 
allocates each month between the S&P 500 index and the risk-free rate. The optimal weight is estimated according 
to forecasts of one-month ahead excess returns from predictive regression models. The optimal weight in risky 
assets is constrained to lie between -0.5 and 1.5. The out-of-sample period runs from 1966:1 to 2017:12. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1966:1 to 2017:12 

Predictor Basic BasicNL DH DNL 
H DM DNL 

M DL DNL 
L 

Panel A: Economic variables 
DP -1.17 0.95 -3.58 -3.06 -0.13 0.05 0.63 1.12 ∗∗ 

DY -1.10 1.17 ∗ -5.19 -2.56 -1.20 -0.31 0.73 1.25 ∗∗ 

EP 0.26 0.72 -0.46 -0.52 0.38 1.01 -0.80 -0.07 
DE -0.75 0.08 0.77 0.30 -0.78 0.59 -0.01 0.74 
RVOL -0.55 0.59 ∗ 0.23 0.01 -1.28 0.07 -0.39 -0.13 
BM -0.66 0.35 -3.55 -3.66 0.06 0.28 -0.99 -0.83 
NTIS 0.51 -0.54 1.51 ∗ 0.80 ∗∗ 0.93 -0.81 -1.12 -0.02 
TBL 1.99 -0.51 1.06 -0.68 2.65 1.39 0.81 -0.78 
LTY 1.21 -0.84 4.09 ∗∗∗ 1.58 2.43 -0.47 0.40 -0.89 
LTR 2.06 ∗ 1.47 ∗ 0.26 0.75 1.82 1.36 0.58 0.51 
TMS 3.66 ∗∗ 1.28 -1.55 -0.89 0.54 1.15 1.87 0.60 
DFY -1.03 -0.51 -0.98 -0.63 0.11 0.82 -1.75 -1.06 
DFR 0.54 0.04 -0.44 -0.40 0.19 1.06 1.11 0.91 
INFL 0.49 -0.59 0.51 1.19 ∗∗∗ 2.60 ∗ 0.70 2.09 -0.28 

CF-ECONMEAN 1.73 ∗∗ 0.86 -1.23 -1.66 2.62 ∗∗ 0.98 0.64 0.47 
CF-ECONWEIG 

θ=1 
CF-ECONWEIG 

θ=0.9 

1.93 ∗∗ 

1.98 ∗∗ 
1.11 ∗ 

1.22 ∗ 
-0.54 
-0.46 

-1.03 
-1.00 

2.62 ∗∗ 

2.51 ∗∗ 
1.21 
1.21 

0.72 
0.74 

0.51 
0.55 

Panel B: Technical indicators 
MA(1,9) 
MA(1,12) 
MA(2,9) 
MA(2,12) 
MA(3,9) 
MA(3,12) 
MOM(9) 
MOM(12) 
VOL(1,9) 
VOL(1,12) 
VOL(2,9) 
VOL(2,12) 
VOL(3,9) 
VOL(3,12) 

1.55 
2.78 ∗ 

1.74 
2.91 ∗ 

2.29 
0.96 
1.16 
1.09 
1.21 
1.89 
1.32 
1.52 ∗ 

0.72 
2.22 ∗ 

1.92 ∗∗ 

2.29 ∗ 

2.17 ∗∗ 

2.45 ∗ 

2.44 ∗∗ 

1.28 ∗ 

1.06 
0.93 

1.77 ∗∗ 

2.06 ∗∗ 

1.41 ∗∗ 

1.13 ∗ 

1.33 ∗∗ 

2.18 ∗∗ 

-3.26 
-2.69 
-2.62 
-2.11 
-2.10 
-1.97 
-1.66 
-1.54 
-1.01 
-1.27 
-1.90 
-2.15 
-1.84 
-1.81 

-1.65 
-1.30 
-1.64 
-1.21 
-1.17 
-1.25 
-1.04 
-0.27 
-0.44 
-0.87 
-1.01 
-1.23 
-0.99 
-1.30 

3.24 
4.51 ∗∗ 

3.32 
4.55 ∗∗ 

3.22 ∗ 

3.44 ∗ 

4.12 ∗∗ 

2.80 ∗∗ 

3.59 ∗ 

5.21 ∗∗ 

4.42 ∗∗ 

4.72 ∗∗ 

4.28 ∗∗ 

4.39 ∗∗ 

4.26 ∗∗ 

3.64 ∗∗ 

4.09 ∗∗ 

3.57 ∗∗ 

3.62 ∗∗ 

2.94 ∗∗ 

2.93 ∗∗ 

2.55 ∗∗ 

3.41 ∗∗ 

3.60 ∗∗ 

3.49 ∗∗ 

3.19 ∗∗ 

3.58 ∗∗ 

3.04 ∗∗ 

-0.28 
0.24 
0.15 
-0.04 
0.15 
-0.04 
-0.08 
-0.09 
1.71 
1.47 
0.71 
1.47 
1.39 
0.99 

0.39 
0.43 
0.46 
0.54 
0.32 
0.43 
0.45 
0.81 
1.57 
1.45 
0.67 
1.48 
1.39 
1.18 

CF-TECHMEAN 1.77 ∗ 1.78 ∗∗ -2.22 -1.40 4.94 ∗∗ 4.00 ∗∗ 0.76 0.83 
CF-TECHWEIG 

θ=1 
CF-TECHWEIG 

θ=0.9 

1.78 ∗ 

1.78 ∗ 
1.79 ∗∗ 

1.79 ∗∗ 
-2.19 
-2.19 

-1.39 
-1.40 

4.94 ∗∗ 

4.96 ∗∗ 
3.99 ∗∗ 

4.01 ∗∗ 
0.79 
0.78 

0.84 
0.85 

CF-ALLMEAN 1.72 ∗∗ 
Panel C: All predictors taken together 

1.40 ∗∗ -2.07 -1.76 5.00 ∗∗∗ 3.48 ∗∗∗ 0.75 0.58 
CF-ALLWEIG 

θ=1 
CF-ALLWEIG 

θ=0.9 

1.80 ∗∗ 

1.83 ∗∗ 
1.50 ∗∗ 

1.56 ∗∗ 
-1.74 
-1.74 

-1.48 
-1.47 

5.09 ∗∗∗ 

5.07 ∗∗∗ 
3.65 ∗∗∗ 

3.65 ∗∗∗ 
0.85 
0.88 

0.62 
0.67 
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Table A.3 
Annualized gains in SR 

This table reports the annualized gain in the Sharpe ratio (SR) relative to the SR from the historical mean. ΔSR 
is estimated for a mean-variance investor with a relative risk aversion of three who allocates each month between 
the S&P 500 index and the risk-free rate. The optimal weight is estimated according to forecasts of one-month 
ahead excess returns from predictive regression models. The optimal weight in risky assets is constrained to lie 
between -0.5 and 1.5. The out-of-sample period runs from 1966:1 to 2017:12. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1966:1 to 2017:12 

Predictor Basic BasicNL DH DNL 
H DM DNL 

M DL DNL 
L 

Panel A: Economic variables 
DP -0.11 0.06 ∗ -0.19 -0.15 -0.02 0.00 0.03 0.06 ∗∗ 

DY -0.11 0.07 ∗ -0.29 -0.12 -0.08 -0.00 0.03 0.07 ∗∗ 

EP 0.00 0.04 -0.03 -0.03 0.02 0.05 -0.05 -0.00 
DE -0.07 -0.00 0.05 0.03 -0.04 0.04 -0.02 0.03 
RVOL -0.01 0.05 ∗∗ 0.02 0.01 -0.05 0.02 -0.03 -0.01 
BM -0.05 0.02 -0.21 -0.19 -0.00 0.02 -0.05 -0.06 
NTIS 0.05 -0.02 0.08 0.05 ∗ 0.05 -0.04 -0.06 -0.01 
TBL 0.11 -0.04 0.06 -0.03 0.16 0.08 0.03 -0.06 
LTY 0.05 -0.07 0.24 ∗∗∗ 0.09 0.14 -0.04 -0.01 -0.07 
LTR 0.12 ∗ 0.09 ∗ 0.02 0.04 0.11 0.08 0.03 0.02 
TMS 0.22 ∗∗ 0.08 -0.09 -0.05 0.04 0.07 0.11 0.02 
DFY -0.03 -0.02 -0.05 -0.02 0.01 0.06 -0.16 -0.08 
DFR 0.03 0.00 -0.03 -0.03 0.01 0.06 0.05 0.04 
INFL 0.02 -0.05 0.03 0.07 ∗∗∗ 0.15 ∗ 0.04 0.12 -0.03 

CF-ECONMEAN 0.09 ∗∗ 0.04 -0.07 -0.08 0.15 ∗∗ 0.06 0.02 0.01 
CF-ECONWEIG 

θ=1 
CF-ECONWEIG 

θ=0.9 

0.11 ∗∗ 

0.11 ∗∗ 
0.06 
0.07 ∗ 

-0.03 
-0.03 

-0.05 
-0.05 

0.15 ∗∗ 

0.15 ∗∗ 
0.07 
0.07 

0.02 
0.03 

0.01 
0.02 

Panel B: Technical indicators 
MA(1,9) 
MA(1,12) 
MA(2,9) 
MA(2,12) 
MA(3,9) 
MA(3,12) 
MOM(9) 
MOM(12) 
VOL(1,9) 
VOL(1,12) 
VOL(2,9) 
VOL(2,12) 
VOL(3,9) 
VOL(3,12) 

0.08 
0.16 ∗ 

0.10 
0.17 ∗ 

0.13 
0.05 
0.06 
0.06 
0.06 
0.11 
0.07 
0.08 ∗ 

0.04 
0.13 ∗ 

0.11 ∗∗ 

0.13 ∗ 

0.12 ∗∗ 

0.14 ∗ 

0.14 ∗∗ 

0.06 
0.05 
0.04 

0.10 ∗∗ 

0.12 ∗∗ 

0.07 ∗ 

0.06 ∗ 

0.07 ∗∗ 

0.12 ∗∗ 

-0.19 
-0.15 
-0.16 
-0.12 
-0.12 
-0.12 
-0.09 
-0.09 
-0.06 
-0.07 
-0.11 
-0.12 
-0.11 
-0.11 

-0.10 
-0.08 
-0.10 
-0.07 
-0.07 
-0.07 
-0.06 
-0.01 
-0.03 
-0.05 
-0.06 
-0.07 
-0.06 
-0.08 

0.19 
0.27 ∗∗ 

0.20 
0.28 ∗∗ 

0.19 ∗ 

0.20 ∗ 

0.25 ∗∗ 

0.16 ∗∗ 

0.21 ∗ 

0.32 ∗∗∗ 

0.27 ∗∗ 

0.29 ∗∗ 

0.26 ∗∗ 

0.26 ∗∗ 

0.26 ∗∗ 

0.22 ∗∗ 

0.25 ∗∗ 

0.22 ∗∗ 

0.22 ∗∗ 

0.17 ∗∗ 

0.17 ∗∗ 

0.15 ∗∗ 

0.20 ∗∗ 

0.22 ∗∗ 

0.21 ∗∗ 

0.19 ∗∗ 

0.22 ∗∗ 

0.18 ∗∗ 

-0.03 
0.01 
0.00 
-0.01 
0.00 
-0.01 
-0.01 
-0.00 
0.10 
0.08 
0.03 
0.08 
0.08 
0.05 

0.00 
0.01 
0.01 
0.02 
0.00 
0.01 
0.01 
0.04 
0.08 
0.07 
0.02 
0.08 
0.07 
0.06 

CF-TECHMEAN 0.10 ∗ 0.10 ∗∗ -0.12 -0.08 0.30 ∗∗ 0.24 ∗∗ 0.04 0.03 
CF-TECHWEIG 

θ=1 
CF-TECHWEIG 

θ=0.9 

0.10 ∗ 

0.10 ∗ 
0.10 ∗∗ 

0.10 ∗∗ 
-0.12 
-0.12 

-0.08 
-0.08 

0.30 ∗∗ 

0.30 ∗∗ 
0.24 ∗∗ 

0.25 ∗∗ 
0.04 
0.04 

0.03 
0.04 

CF-ALLMEAN 0.09 ∗∗ 
Panel C: All predictors taken together 

0.07 ∗∗ -0.11 -0.09 0.31 ∗∗∗ 0.21 ∗∗∗ 0.03 0.02 
CF-ALLWEIG 

θ=1 
CF-ALLWEIG 

θ=0.9 

0.10 ∗∗ 

0.10 ∗∗ 
0.08 ∗∗ 

0.08 ∗∗ 
-0.09 
-0.09 

-0.07 
-0.07 

0.32 ∗∗∗ 

0.31 ∗∗∗ 
0.22 ∗∗∗ 

0.22 ∗∗∗ 
0.04 
0.04 

0.02 
0.02 
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Table A.4 
Out-of-sample R2 statistics (in %) - 1990:1 to 2017:12 

This table presents statistics on the out-of-sample predictability of one month ahead log excess returns on the 
S&P 500 index. Panel A (Panel B) shows results for economic variables (technical indicators). In addition to the 
individual forecasts, I display results for three different combination forecasting methods. Panel C shows results 
when combining both sets of predictors. For each model the out-of-sample R2 (in %) is displayed (Campbell and 
Thompson, 2008). ∗ , ∗∗ , and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively according to the 
Clark and West (2007) MSFE-adjusted statistic. The null hypothesis is equal MSFE and the alternative is that 
the more sophisticated model has smaller MSFE than the historical mean benchmark. Column (1) shows the 
respective predictor and column (2) shows results for the unadjusted series. Columns (3) to (9) present results 
for the frequency-decomposed predictors. DH refers to components with periodicities between 2 to 16 months, 
DM refers to components with periodicities between 16 to 64 months, and DL captures oscillations above 64 
months. The superscript NL indicates that the nonlinear forecasting model is applied in columns (3), (5), (7), 
and (9). 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1990:1 to 2017:12 

Predictor Basic BasicNL DH DNL 
H DM DNL 

M DL DNL 
L 

Panel A: Economic variables 
DP -1.71 0.79 ∗∗ -44.16 -25.71 -0.49 -0.18 -0.48 0.24 
DY -1.87 1.04 ∗∗ -27.84 -10.93 -2.01 -0.53 -0.49 0.29 
EP -0.58 -0.27 -39.36 ∗ -21.91 -0.66 0.15 -0.85 -0.29 
DE -2.04 -0.25 -24.28 -13.21 -4.03 -0.63 -0.57 0.25 
RVOL -0.52 0.08 -3.27 -1.76 -1.26 -0.58 -0.92 -0.55 
BM -0.41 0.17 -16.75 -8.07 0.01 0.16 ∗ -0.59 -0.44 
NTIS -1.86 -1.36 0.10 -0.06 -4.89 -3.59 -0.81 0.05 
TBL -0.57 -0.86 -1.14 -1.16 -6.83 -3.17 0.21 -0.16 
LTY 0.11 -0.34 -0.37 -0.58 -0.71 -0.47 0.06 -0.18 
LTR -0.52 0.21 -0.32 0.36 -2.14 -0.63 0.15 0.01 
TMS -1.46 -0.51 -1.03 -0.67 -7.04 -2.62 0.26 ∗ 0.21 ∗∗ 

DFY -0.85 -0.52 -13.21 -11.02 -6.05 -2.72 -1.04 -0.47 
DFR -0.49 -0.53 -0.83 -0.81 -7.84 0.69 -0.10 -0.01 
INFL -1.17 -1.40 0.85 ∗∗ 1.30 ∗∗∗ -1.03 -0.60 0.55 ∗ -0.02 

CF-ECONMEAN -0.31 -0.13 -2.19 -2.02 -1.07 -0.50 -0.06 0.01 
CF-ECONWEIG 

θ=1 -0.27 -0.11 -1.32 -1.18 -0.95 -0.36 -0.06 0.00 
CF-ECONWEIG 

θ=0.9 -0.28 -0.11 -1.28 -1.23 -0.99 -0.36 -0.06 0.01 

Panel B: Technical indicators 
MA(1,9) 
MA(1,12) 
MA(2,9) 
MA(2,12) 
MA(3,9) 
MA(3,12) 
MOM(9) 
MOM(12) 
VOL(1,9) 
VOL(1,12) 
VOL(2,9) 
VOL(2,12) 
VOL(3,9) 
VOL(3,12) 

0.69 ∗ 

0.77 
0.24 
0.81 
-0.16 
0.01 
0.37 
0.43 
0.29 
0.59 
0.25 
0.90 ∗ 

0.14 
1.11 ∗ 

0.71 ∗ 

0.96 ∗ 

0.87 ∗ 

1.04 ∗ 

0.62 
0.38 
0.53 
0.48 
0.54 
0.67 
0.37 
0.54 
0.34 
0.86 ∗ 

-4.66 
-2.75 
-3.31 
-2.09 
-1.45 
-1.40 
-2.10 
-2.25 
-1.30 
-1.23 
-1.01 
-2.62 
-2.09 
-1.71 

-1.56 
-1.15 
-1.62 
-0.89 
-0.86 
-0.79 
-1.14 
-1.12 
-0.76 
-0.77 
-0.35 
-0.93 
-0.77 
-1.05 

-1.36 ∗ 

0.49 ∗ 

-1.29 
0.91 ∗∗ 

-0.39 
0.90 ∗ 

1.46 ∗∗ 

1.12 ∗ 

-2.38 ∗ 

0.15 ∗∗ 

-1.08 ∗ 

0.63 ∗∗ 

-0.96 
0.71 ∗∗ 

3.27 ∗∗ 

2.57 ∗∗ 

2.65 ∗∗ 

2.48 ∗∗ 

2.47 ∗∗ 

2.09 ∗∗ 

2.15 ∗∗ 

1.50 ∗∗ 

1.71 ∗ 

1.90 ∗ 

1.56 ∗ 

1.59 ∗ 

1.77 ∗ 

1.61 ∗ 

-6.71 
-7.22 
-5.73 
-6.61 
-5.25 
-6.22 
-5.69 
-5.24 
-0.72 
-1.11 
-1.04 
-0.44 
-0.93 
-0.74 

-1.87 
-2.27 
-1.76 
-2.10 
-1.97 
-2.32 
-2.07 
-1.87 
-0.17 
-0.52 
-0.63 
-0.52 
-0.41 
-0.56 

CF-TECHMEAN 0.59 0.66 -1.15 -0.83 0.69 ∗ 2.25 ∗∗ -3.20 -1.25 
CF-TECHWEIG 

θ=1 
CF-TECHWEIG 

θ=0.9 

0.60 
0.60 

0.66 
0.66 

-1.12 
-1.12 

-0.82 
-0.83 

0.65 ∗ 

0.65 ∗ 
2.25 ∗∗ 

2.25 ∗∗ 
-3.12 
-3.10 

-1.25 
-1.23 

CF-ALLMEAN 0.24 
Panel C: All predictors taken together 

0.30 -1.41 -1.35 0.70 ∗ 1.24 ∗∗ -0.56 -0.34 
CF-ALLWEIG 

θ=1 
CF-ALLWEIG 

θ=0.9 

0.26 
0.26 

0.31 
0.32 

-1.02 
-0.99 

-0.95 
-0.97 

0.78 ∗ 

0.75 ∗ 
1.37 ∗∗ 

1.38 ∗∗ 
-0.52 
-0.49 

-0.39 
-0.35 
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Table A.5 
Annualized gains in CER - 1990:1 to 2017:12 

This table reports the annualized gain in certainty equity return (CER) relative to the CER from the historical 
mean (in percent). ΔCER is estimated for a mean-variance investor with a relative risk aversion of five who 
allocates each month between the S&P 500 index and the risk-free rate. The optimal weight is estimated according 
to forecasts of one-month ahead excess returns from predictive regression models. The optimal weight in risky 
assets is constrained to lie between 0 and 1.5. The out-of-sample period runs from 1990:1 to 2017:12. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1990:1 to 2017:12 

Predictor Basic BasicNL DH DNL 
H DM DNL 

M DL DNL 
L 

Panel A: Economic variables 
DP -1.86 1.73 ∗∗ -3.46 -1.48 -0.32 -0.15 -0.40 0.84 
DY -1.58 2.18 ∗∗ -3.85 -0.52 -2.31 -0.45 -0.38 1.00 
EP 1.77 2.25 ∗ 3.15 2.56 ∗ 0.53 0.97 ∗ -0.72 0.12 
DE -2.05 -0.19 -3.32 -1.68 -2.07 0.38 -0.19 0.58 
RVOL -2.42 -0.60 -0.86 -0.69 -1.38 -0.44 -0.66 -0.46 
BM -0.53 0.70 -4.39 -1.51 -0.24 -0.04 -0.47 -0.37 
NTIS -0.62 -0.59 0.55 0.06 -3.02 -2.01 0.47 1.33 
TBL -0.00 -0.84 -1.39 -1.28 -3.18 -0.88 0.27 -0.34 
LTY -0.04 -0.47 -0.33 -0.34 -0.84 -0.84 -0.12 -0.29 
LTR -0.70 0.28 -0.47 0.21 0.02 0.34 0.15 -0.02 
TMS -0.44 -0.53 -1.26 -0.70 -3.81 -0.77 0.79 ∗∗ 0.13 
DFY -1.16 -0.72 -1.59 -1.13 -3.69 -0.54 0.02 0.57 
DFR 0.42 0.47 -1.12 -1.05 -0.76 1.28 1.83 1.90 
INFL -1.07 -1.13 1.83 2.21 ∗∗∗ 1.30 1.54 0.80 0.16 

CF-ECONMEAN -0.59 -0.29 -1.17 -0.81 -1.17 -0.71 0.47 0.55 
CF-ECONWEIG 

θ=1 -0.51 -0.24 -0.34 -0.21 -0.92 -0.49 0.46 0.55 
CF-ECONWEIG 

θ=0.9 -0.53 -0.24 -0.33 -0.26 -0.89 -0.47 0.47 0.56 

Panel B: Technical indicators 
MA(1,9) 
MA(1,12) 
MA(2,9) 
MA(2,12) 
MA(3,9) 
MA(3,12) 
MOM(9) 
MOM(12) 
VOL(1,9) 
VOL(1,12) 

2.06 ∗ 

3.20 ∗ 

1.94 
3.20 ∗ 

1.69 
1.52 
2.07 
1.93 
1.55 
2.39 

2.04 ∗ 

3.19 ∗ 

2.67 ∗ 

3.28 ∗ 

2.42 ∗ 

1.82 
2.08 
1.96 
1.94 ∗ 

2.63 ∗ 

-2.47 
-1.14 
-1.75 
-0.89 
-0.94 
-0.12 
-0.33 
-0.95 
-0.45 
-0.61 

-0.37 
-0.35 
-0.46 
-0.24 
-0.29 
-0.20 
-0.47 
-0.59 
-0.21 
-0.13 

3.11 
3.34 ∗ 

1.97 
3.41 ∗ 

2.12 
2.72 
3.34 ∗ 

2.41 
3.38 

4.76 ∗∗∗ 

3.77 ∗∗ 

3.44 ∗ 

3.46 ∗∗ 

3.39 ∗∗ 

2.98 ∗ 

2.91 ∗ 

2.97 ∗ 

2.91 ∗ 

3.25 ∗ 

3.40 ∗∗ 

1.97 
1.75 
1.97 
1.83 
1.56 
1.54 
1.34 
1.76 
2.89 ∗ 

2.52 

2.47 
2.19 
2.21 
2.17 
1.94 
1.97 
2.05 
2.02 
2.51 
2.44 

VOL(2,9) 
VOL(2,12) 
VOL(3,9) 
VOL(3,12) 

1.39 
2.11 
1.02 
2.80 ∗ 

1.83 
2.06 ∗ 

1.34 
2.75 ∗ 

-0.64 
-1.09 
-0.94 
-0.70 

-0.11 
-0.43 
-0.13 
-0.42 

3.21 
4.08 ∗∗ 

2.84 
3.90 ∗∗ 

2.66 
2.75 ∗ 

2.86 
2.83 ∗ 

2.23 
2.76 ∗ 

2.22 ∗ 

2.71 ∗ 

2.20 
2.18 
2.25 
2.24 

CF-TECHMEAN 2.14 2.25 ∗ -0.37 -0.21 3.57 ∗ 3.26 ∗∗ 2.23 2.21 
CF-TECHWEIG 

θ=1 
CF-TECHWEIG 

θ=0.9 

2.15 
2.15 

2.26 ∗ 

2.26 ∗ 
-0.33 
-0.33 

-0.20 
-0.20 

3.55 ∗ 

3.56 ∗ 
3.27 ∗∗ 

3.27 ∗∗ 
2.25 
2.25 

2.23 
2.23 

CF-ALLMEAN 0.96 
Panel C: All predictors taken together 

0.99 -1.02 -1.01 2.98 ∗ 2.96 ∗∗ 2.18 1.89 
CF-ALLWEIG 

θ=1 
CF-ALLWEIG 

θ=0.9 

1.04 
1.04 

1.05 
1.06 

-0.79 
-0.83 

-0.75 
-0.80 

2.95 ∗ 

2.95 ∗ 
3.01 ∗∗ 

3.01 ∗∗ 
2.17 
2.19 

1.87 
1.89 
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Table A.6 
Annualized gains in SR - 1990:1 to 2017:12 

This table reports the annualized gain in the Sharpe ratio (SR) relative to the SR from the historical mean. ΔSR 
is estimated for a mean-variance investor with a relative risk aversion of five who allocates each month between the 
S&P 500 index and the risk-free rate. The optimal weight is estimated according to forecasts of one-month ahead 
excess returns from predictive regression models. The optimal weight in risky assets is constrained to lie between 
0 and 1.5. The out-of-sample period runs from 1990:1 to 2017:12. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1990:1 to 2017:12 

Predictor Basic BasicNL DH DNL 
H DM DNL 

M DL DNL 
L 

Panel A: Economic variables 
DP -0.32 0.14 ∗∗ -0.17 -0.07 -0.04 -0.01 -0.05 0.06 
DY -0.28 0.18 ∗∗ -0.22 -0.01 -0.20 -0.01 -0.05 0.07 
EP 0.19 ∗ 0.19 ∗ 0.24 0.21 ∗ 0.04 0.07 ∗ -0.06 0.00 
DE -0.20 -0.01 -0.19 -0.09 -0.13 0.03 -0.04 0.04 
RVOL -0.15 -0.02 -0.05 -0.03 -0.08 -0.01 -0.05 -0.03 
BM -0.07 0.05 -0.26 -0.10 -0.02 0.00 -0.00 -0.03 
NTIS -0.04 -0.04 0.04 0.01 -0.22 -0.13 0.03 0.10 
TBL 0.04 -0.05 -0.09 -0.08 -0.15 -0.03 0.04 ∗ -0.02 
LTY 0.02 -0.03 -0.01 -0.02 -0.02 -0.04 -0.00 -0.02 
LTR -0.04 0.03 -0.03 0.02 0.02 0.03 0.02 0.00 
TMS 0.00 -0.03 -0.10 -0.05 -0.23 -0.03 0.07 ∗∗ 0.01 
DFY -0.10 -0.05 -0.09 -0.07 -0.22 -0.02 -0.00 0.04 
DFR 0.03 0.03 -0.08 -0.07 -0.07 0.10 0.14 0.15 
INFL -0.06 -0.08 0.14 0.17 ∗∗∗ 0.10 0.12 0.08 ∗ 0.01 

CF-ECONMEAN -0.06 -0.02 -0.07 -0.04 -0.07 -0.03 0.04 0.04 
CF-ECONWEIG 

θ=1 -0.05 -0.02 -0.03 -0.01 -0.06 -0.02 0.03 0.04 
CF-ECONWEIG 

θ=0.9 -0.05 -0.02 -0.03 -0.01 -0.06 -0.02 0.04 0.04 

Panel B: Technical indicators 
MA(1,9) 
MA(1,12) 
MA(2,9) 
MA(2,12) 
MA(3,9) 
MA(3,12) 
MOM(9) 
MOM(12) 
VOL(1,9) 
VOL(1,12) 

0.17 ∗ 

0.27 ∗ 

0.16 
0.27 ∗ 

0.13 
0.12 
0.17 
0.16 
0.12 
0.20 

0.17 ∗∗ 

0.28 ∗∗ 

0.23 ∗∗ 

0.29 ∗∗ 

0.20 ∗ 

0.15 
0.17 ∗ 

0.16 ∗ 

0.16 ∗ 

0.22 ∗ 

-0.15 
-0.06 
-0.11 
-0.05 
-0.05 
0.01 
-0.01 
-0.06 
-0.01 
-0.03 

-0.03 
-0.02 
-0.03 
-0.02 
-0.02 
-0.01 
-0.03 
-0.04 
-0.01 
-0.01 

0.25 
0.27 
0.16 
0.29 ∗ 

0.17 
0.22 
0.28 ∗ 

0.20 
0.27 

0.40 ∗∗ 

0.33 ∗∗ 

0.31 ∗∗ 

0.31 
0.30 ∗∗ 

0.26 ∗ 

0.25 ∗ 

0.26 ∗ 

0.25 ∗ 

0.28 ∗ 

0.30 ∗∗ 

0.16 
0.14 

0.16 ∗∗ 

0.15 
0.13 
0.13 
0.12 
0.15 
0.23 
0.20 

0.21 
0.18 
0.18 
0.18 
0.15 
0.16 
0.17 
0.16 
0.21 
0.20 

VOL(2,9) 
VOL(2,12) 
VOL(3,9) 
VOL(3,12) 

0.11 
0.17 
0.08 
0.23 ∗ 

0.15 
0.17 ∗ 

0.10 ∗ 

0.23 ∗∗ 

-0.03 
-0.06 
-0.05 
-0.05 

-0.00 
-0.03 
-0.01 
-0.03 

0.26 
0.33 ∗∗ 

0.23 
0.32 ∗∗ 

0.22 
0.23 ∗ 

0.24 ∗ 

0.24 ∗ 

0.18 
0.22 
0.18 
0.21 

0.18 
0.18 
0.18 
0.18 

CF-TECHMEAN 0.17 0.19 ∗ -0.01 -0.01 0.30 ∗ 0.28 ∗∗ 0.18 0.18 
CF-TECHWEIG 

θ=1 
CF-TECHWEIG 

θ=0.9 

0.18 
0.18 

0.19 ∗ 

0.19 ∗ 
-0.01 
-0.01 

-0.01 
-0.01 

0.30 ∗ 

0.30 ∗ 
0.29 ∗∗ 

0.29 ∗∗ 
0.18 
0.18 

0.18 
0.18 

CF-ALLMEAN 0.07 
Panel C: All predictors taken together 

0.07 ∗ -0.06 -0.06 0.25 ∗ 0.25 ∗∗ 0.17 0.15 
CF-ALLWEIG 

θ=1 
CF-ALLWEIG 

θ=0.9 

0.08 
0.08 

0.08 ∗ 

0.08 ∗ 
-0.05 
-0.05 

-0.05 
-0.05 

0.25 ∗ 

0.25 ∗ 
0.26 ∗∗ 

0.26 ∗∗ 
0.17 
0.17 

0.15 
0.15 
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Table A.7 
Out-of-sample R2 statistics (in %) - principal component analysis 

This table presents statistics on the out-of-sample predictability of one month ahead log excess returns on the S&P 
500 index. Panel A (Panel B) shows results for economic variables (technical indicators). Panel C shows results for all 
predictors taken together. I display results for the first, second, and third principal component. For each model the 

∗ ∗∗ ∗∗∗ out-of-sample R2 (in %) is displayed (Campbell and Thompson, 2008). , , and indicate significance at the 10%, 
5%, and 1% levels, respectively according to the Clark and West (2007) MSFE-adjusted statistic. The null hypothesis 
is equal MSFE and the alternative is that the more sophisticated model has smaller MSFE than the historical mean 
benchmark. Column (1) shows the respective predictor and column (2) shows results for the unadjusted series. Columns 
(3) to (9) present results for the frequency-decomposed predictors. DH refers to components with periodicities between 2 
to 16 months, DM refers to components with periodicities between 16 to 64 months, and DL captures oscillations above 
64 months. The superscript NL indicates that the nonlinear forecasting model is applied in columns (3), (5), (7), and 
(9). 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1966:1 to 2017:12 

Predictor Basic BasicNL DH DNL 
H DM DNL 

M DL DNL 
L 

PC-ECON1 

PC-ECON2 

PC-ECON3 

1.24 ∗∗∗ 

-6.80 
-15.37 

0.75 ∗∗ 

-1.98 
-5.25 

Panel A: Economic variables 
-29.85 -15.51 0.16 ∗∗ 

-33.10 -12.46 -12.49 
-9.75 -3.58 -3.69 

0.62 ∗ 

-4.12 
-1.92 

-0.48 
-1.59 
-3.32 

-0.81 
-0.83 
0.35 

PC-TECH1 

PC-TECH2 

PC-TECH3 

0.52 ∗ 

0.24 
-5.64 

0.88 ∗∗ 

0.39 
-3.56 

Panel B: Technical indicators 
-5.56 -3.41 -0.04 ∗∗∗ 

-0.17 0.65 ∗∗∗ -2.96 ∗∗ 

-0.45 -0.21 -188.19 

2.04 ∗∗∗ 

1.41 ∗∗∗ 

-74.03 

-6.86 
-0.00 ∗ 

-64.72 

-3.34 
-0.95 
-28.94 

PC-ALL1 

PC-ALL2 

PC-ALL3 

0.35 
-3.16 
-2.75 

0.52 
-1.25 
-1.43 

Panel C: All predictors taken together 
-11.77 -6.28 -0.22 ∗∗ 

-3.13 -0.70 -18.43 
-10.20 -1.62 ∗ -3.27 

1.57 ∗∗ 

-8.67 
-0.37 

-5.76 
-3.01 
-1.63 

-3.06 
-0.96 
-0.48 
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Table A.8 
Annualized gains in CER - principal component analysis 

This table reports the annualized gain in certainty equity return (CER) relative to the CER from the historical 
mean (in percent). ΔCER is estimated for a mean-variance investor with a relative risk aversion of five who 
allocates each month between the S&P 500 index and the risk-free rate. The optimal weight is estimated according 
to forecasts of one-month ahead excess returns from predictive regression models. The optimal weight in risky 
assets is constrained to lie between 0 and 1.5 to prevent shorting stocks and leveraging more than 50%. The 
out-of-sample period runs from 1966:1 to 2017:12. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1966:1 to 2017:12 

Predictor Basic BasicNL DH DNL 
H DM DNL 

M DL DNL 
L 

PC-ECON1 

PC-ECON2 

PC-ECON3 

2.09 ∗∗ 

-0.65 
-2.53 

1.23 ∗∗ 

0.40 
-1.23 

Panel A: Economic variables 
-2.24 -0.75 1.04 
-2.34 -0.60 -0.52 
-1.00 -0.22 -0.48 

0.64 
-0.22 
0.37 

1.18 
0.54 
-0.22 

0.11 
-0.12 

2.27 ∗∗ 

PC-TECH1 

PC-TECH2 

PC-TECH3 

2.07 ∗ 

1.57 ∗ 

-2.37 

2.35 ∗∗∗ 

1.32 ∗∗ 

-2.28 

Panel B: Technical indicators 
-1.49 -1.03 3.75 ∗∗∗ 

0.40 0.76 ∗∗∗ 3.56 ∗∗ 

-0.26 -0.02 -3.09 

3.00 ∗∗∗ 

2.99 ∗∗∗ 

-1.13 

0.33 
1.43 
1.97 

1.22 
0.31 
1.72 

PC-ALL1 

PC-ALL2 

PC-ALL3 

1.94 ∗ 

0.00 
1.36 

2.03 ∗∗ 

1.15 
1.15 ∗ 

Panel C: All predictors taken together 
-2.35 -2.02 3.26 ∗∗ 

-0.74 -0.06 -1.00 
-0.36 0.47 -0.58 

2.68 ∗∗ 

-1.24 
-0.06 

0.36 
-1.94 
-0.03 

1.10 
0.15 
-0.28 
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Table A.9 
Annualized gains in SR - principal component analysis 

This table reports the annualized gain in the Sharpe ratio (SR) relative to the SR from the historical mean. ΔSR 
is estimated for a mean-variance investor with a relative risk aversion of five who allocates each month between the 
S&P 500 index and the risk-free rate. The optimal weight is estimated according to forecasts of one-month ahead 
excess returns from predictive regression models. The optimal weight in risky assets is constrained to lie between 
0 and 1.5 to prevent shorting stocks and leveraging more than 50%. The out-of-sample period runs from 1966:1 to 
2017:12. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1966:1 to 2017:12 

Predictor Basic BasicNL DH DNL 
H DM DNL 

M DL DNL 
L 

PC-ECON1 

PC-ECON2 

PC-ECON3 

0.14 ∗∗ 

-0.00 
-0.14 

0.09 ∗ 

0.04 
-0.06 

Panel A: Economic variables 
-0.05 -0.02 0.11 ∗ 

-0.07 -0.02 -0.02 
-0.01 0.02 -0.04 

0.07 ∗ 

-0.00 
0.03 

0.06 
0.04 
-0.09 

-0.02 
-0.01 

0.17 ∗∗ 

PC-TECH1 

PC-TECH2 

PC-TECH3 

0.15 ∗ 

0.10 
-0.15 

0.17 ∗∗ 

0.08 ∗ 

-0.10 

Panel B: Technical indicators 
-0.06 -0.08 0.29 ∗∗∗ 

0.02 0.06 ∗∗∗ 0.28 ∗∗∗ 

-0.01 0.00 -0.10 

0.23 ∗∗∗ 

0.23 ∗∗∗ 

-0.02 

0.07 
0.11 
0.16 

0.07 
0.01 
0.13 

PC-ALL1 

PC-ALL2 

PC-ALL3 

0.14 ∗ 

-0.03 
0.12 

0.14 ∗∗ 

0.07 
0.09 ∗ 

Panel C: All predictors taken together 
-0.09 -0.11 0.26 ∗∗ 

-0.02 -0.00 -0.04 
0.02 0.05 -0.00 

0.20 ∗∗ 

-0.07 
0.01 

0.06 
-0.13 
0.07 

0.06 
0.01 
0.02 
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Table A.10 
Results for different wavelet filters from combined forecasts of medium-
frequency components 

This table presents results on the out-of-sample performance of combination forecasts from economic 
variables and technical indicators for different wavelets. Panel A presents results for R2 

OS , whereas Panel 
B (Panel C) shows the annualized ΔCER (monthly ΔSR). The respective wavelets are the Daubechies 
wavelet with width 4 and 8 (D(4) and D(8)), the Fejér-Korovkin wavelet with width 4 (FK(4)), and the 
least asymmetric wavelet with width 16 (LA(16)).The out-of-sample period runs from 1966:1 to 2017:12. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Predictor 

CF-ECONMEAN 

CF-TECHMEAN 

CF-ALLMEAN 

D(4) 

1.13 ∗∗∗ 

0.29 ∗∗∗ 

1.53 ∗∗∗ 

Panel A: R2 
OS 

DM 

D(8) FK(4) LA(16) 

1.02 ∗∗∗ 1.26 ∗∗∗ 0.95 ∗∗∗ 

0.19 ∗∗∗ 0.33 ∗∗∗ 0.07 ∗∗∗ 

1.43 ∗∗∗ 1.60 ∗∗∗ 1.32 ∗∗∗ 

D(4) 

0.39 
1.93 ∗∗∗ 

1.46 ∗∗∗ 

DNL 
M 

D(8) FK(4) 

0.34 0.43 
1.85 ∗∗∗ 1.97 ∗∗∗ 

1.38 ∗∗∗ 1.49 ∗∗∗ 

LA(16) 

0.32 
1.76 ∗∗∗ 

1.31 ∗∗∗ 

Predictor 

CF-ECONMEAN 

CF-TECHMEAN 

CF-ALLMEAN 

D(4) 

2.07 ∗∗ 

3.93 ∗∗∗ 

4.31 ∗∗∗ 

Panel B: ΔCER 
DM 

D(8) FK(4) LA(16) 

1.93 ∗∗ 2.23 ∗∗ 1.91 ∗∗ 

3.84 ∗∗∗ 3.83 ∗∗∗ 3.70 ∗∗∗ 

4.07 ∗∗∗ 4.34 ∗∗∗ 3.85 ∗∗∗ 

Predictor 

CF-ECONMEAN 

CF-TECHMEAN 

CF-ALLMEAN 

D(4) 

0.05 ∗∗ 

0.09 ∗∗∗ 

0.10 ∗∗∗ 

Panel C: ΔSR 
DM 

D(8) FK(4) LA(16) 

0.05 ∗∗ 0.05 ∗∗∗ 0.05 ∗∗ 

0.09 ∗∗∗ 0.09 ∗∗∗ 0.08 ∗∗∗ 

0.09 ∗∗∗ 0.10 ∗∗∗ 0.09 ∗∗∗ 
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Table A.11 
Relative average turnover 

This table reports the average turnover of a portfolio based on a sophisticated forecasting model relative to the 
average turnover of a portfolio based on the historical mean forecast. Turnover is defined as the percentage of 
wealth traded at the end of each period. The out-of-sample period runs from 1966:1 to 2017:12. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1966:1 to 2017:12 

Predictor Basic BasicNL DH DNL 
H DM DNL 

M DL DNL 
L 

Panel A: Economic variables 
DP 2.03 2.45 16.87 4.54 1.77 1.62 1.56 1.77 
DY 2.79 2.90 16.92 4.39 2.66 2.26 1.62 1.83 
EP 1.63 2.08 13.21 4.55 2.44 2.01 1.46 1.62 
DE 2.02 2.21 3.86 2.34 2.93 3.13 1.65 1.87 
RVOL 4.07 2.44 11.44 3.51 3.08 2.06 1.87 1.57 
BM 2.32 2.40 15.37 4.61 1.87 1.77 1.68 1.82 
NTIS 3.09 2.22 6.58 1.94 3.30 3.03 2.16 1.59 
TBL 1.44 2.52 6.16 3.37 2.93 3.51 1.13 2.46 
LTY 1.03 2.53 10.46 4.21 3.14 2.75 1.10 2.41 
LTR 22.89 6.12 20.18 5.92 10.83 4.20 3.34 2.14 
TMS 4.15 3.79 5.90 2.44 4.03 3.45 2.21 2.45 
DFY 2.52 2.13 11.84 4.34 3.22 3.01 1.33 2.12 
DFR 10.04 4.30 8.25 4.12 12.45 5.08 5.67 2.76 
INFL 7.59 3.52 5.39 1.74 8.01 3.40 1.59 2.41 

CF-ECONMEAN 3.94 2.47 9.05 3.51 3.56 2.96 1.94 1.99 
CF-ECONWEIG 

θ=1 4.21 2.59 8.54 3.41 3.95 3.03 2.04 2.02 
CF-ECONWEIG 

θ=0.9 4.32 2.63 8.42 3.35 4.21 3.08 2.11 2.03 

Panel B: Technical indicators 
MA(1,9) 4.30 2.34 8.44 2.82 5.75 3.17 3.51 2.92 
MA(1,12) 4.00 2.54 5.95 2.60 4.12 2.97 3.24 2.97 
MA(2,9) 4.39 2.30 7.37 2.65 5.01 2.98 3.06 2.91 
MA(2,12) 3.74 2.47 4.94 2.31 3.83 2.74 3.03 2.97 
MA(3,9) 4.54 2.62 5.98 2.49 4.91 2.99 3.14 3.01 
MA(3,12) 2.73 2.10 5.56 2.61 3.68 2.62 3.11 2.96 
MOM(9) 2.62 1.82 6.53 2.76 3.48 2.50 3.09 2.97 
MOM(12) 2.38 1.72 5.56 2.20 2.78 1.99 2.72 2.75 
VOL(1,9) 5.67 2.33 11.36 3.25 5.71 3.65 3.05 2.76 
VOL(1,12) 5.37 2.23 8.57 2.47 4.02 3.01 2.81 2.78 
VOL(2,9) 3.70 1.94 7.67 2.66 4.93 3.22 3.21 2.88 
VOL(2,12) 2.74 1.76 5.83 2.52 4.04 2.97 2.60 2.60 
VOL(3,9) 2.91 1.83 6.91 2.76 4.60 3.25 2.88 2.73 
VOL(3,12) 3.24 2.14 4.94 2.34 3.75 2.74 2.77 2.79 

CF-TECHMEAN 3.20 2.01 6.36 2.60 4.11 2.75 2.70 2.67 
CF-TECHWEIG 

θ=1 3.21 2.02 6.45 2.61 4.09 2.74 2.73 2.69 
CF-TECHWEIG 

θ=0.9 3.22 2.02 6.47 2.61 4.11 2.74 2.75 2.69 

Panel C: All predictors taken together 
CF-ALLMEAN 2.95 2.03 7.61 3.07 3.63 2.79 2.40 2.46 
CF-ALLWEIG 

θ=1 3.14 2.13 7.13 2.89 3.79 2.82 2.51 2.47 
CF-ALLWEIG 

θ=0.9 3.24 2.17 7.09 2.88 3.94 2.87 2.57 2.46 
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Table A.12 
Annualized gains in CER after transaction costs 

This table reports the annualized gain in certainty equity return (CER) relative to the CER from the historical 
mean (in percent). Results are net of a proportional transaction cost of 50 basis points per transaction. ΔCER is 
estimated for a mean-variance investor with a relative risk aversion of five who allocates each month between the 
S&P 500 index and the risk-free rate. The optimal weight is estimated according to forecasts of one-month ahead 
excess returns from predictive regression models. The optimal weight in risky assets is constrained to lie between 
0 and 1.5 to prevent shorting stocks and leveraging more than 50%. The out-of-sample period runs from 1966:1 to 
2017:12. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1966:1 to 2017:12 

Predictor Basic BasicNL DH DNL 
H DM DNL 

M DL DNL 
L 

Panel A: Economic variables 
DP -0.78 0.35 -4.85 -3.58 0.09 0.05 0.57 0.84 ∗∗ 

DY -0.46 0.83 -5.97 -2.93 -1.54 -0.71 0.62 0.95 ∗∗ 

EP 0.17 0.31 -2.22 -0.91 0.09 0.70 -0.31 -0.00 
DE -0.46 0.02 -0.47 -0.68 -1.26 -0.10 0.17 0.44 
RVOL -1.42 -0.17 -1.77 -0.96 -1.71 -0.70 -0.36 -0.06 
BM -1.41 -0.32 -5.10 -3.47 0.04 0.05 -0.69 -0.37 
NTIS -0.13 -1.06 0.05 0.00 -0.29 -1.81 -0.67 0.50 
TBL 1.74 -0.21 0.49 -0.64 0.87 0.37 1.51 -0.20 
LTY 1.65 -0.22 1.90 ∗∗ 0.63 2.12 ∗ -0.20 1.14 -0.30 
LTR -1.98 0.16 -2.29 -0.02 0.21 0.39 0.22 0.21 
TMS 1.39 0.56 -1.87 -1.11 -0.99 0.35 0.94 0.38 
DFY -0.97 -0.35 -1.70 -0.86 -1.30 0.09 0.13 -0.13 
DFR -1.02 -0.25 -1.58 -0.78 -0.47 0.69 0.20 0.97 
INFL -0.58 -0.86 0.17 1.09 ∗∗ 0.89 0.59 1.60 ∗ -0.11 

CF-ECONMEAN 1.34 ∗∗ 0.47 -2.44 -2.30 1.99 ∗∗ 0.44 0.87 0.45 
CF-ECONWEIG 

θ=1 
CF-ECONWEIG 

θ=0.9 

1.41 ∗∗ 

1.40 ∗∗ 
0.62 
0.67 

-1.82 
-1.77 

-1.76 
-1.77 

2.01 ∗∗ 

1.97 ∗∗ 
0.64 
0.67 

0.89 
0.90 

0.49 
0.51 

Panel B: Technical indicators 
MA(1,9) 
MA(1,12) 
MA(2,9) 
MA(2,12) 
MA(3,9) 
MA(3,12) 
MOM(9) 
MOM(12) 
VOL(1,9) 
VOL(1,12) 
VOL(2,9) 
VOL(2,12) 
VOL(3,9) 
VOL(3,12) 

1.09 
2.19 ∗ 

1.29 
2.29 ∗ 

1.70 
0.92 
1.01 
0.95 
0.54 
1.19 
0.52 
0.66 
0.36 
1.57 

1.79 ∗∗ 

2.36 ∗∗ 

2.24 ∗∗∗ 

2.51 ∗∗ 

2.37 ∗∗∗ 

1.36 ∗ 

1.20 
1.12 

1.48 ∗∗ 

2.11 ∗∗ 

1.32 ∗∗ 

1.07 
1.16 ∗∗ 

2.12 ∗∗ 

-2.78 
-2.21 
-2.53 
-1.94 
-2.07 
-1.12 
-1.52 
-1.35 
-1.88 
-1.90 
-2.05 
-2.00 
-1.81 
-1.44 

-1.23 
-1.09 
-1.34 
-1.02 
-1.07 
-0.99 
-1.03 
-0.62 
-0.89 
-0.89 
-0.99 
-1.12 
-0.95 
-0.94 

2.27 
3.13 ∗∗ 

2.47 ∗ 

3.22 ∗∗ 

2.26 
2.50 ∗ 

2.81 ∗∗ 

1.76 ∗ 

2.67 ∗ 

4.06 ∗∗∗ 

3.14 ∗∗ 

3.34 ∗∗ 

2.80 ∗ 

2.98 ∗∗ 

3.24 ∗∗∗ 

2.71 ∗∗ 

3.10 ∗∗∗ 

2.66 ∗∗ 

2.67 ∗∗ 

2.10 ∗∗ 

2.12 ∗∗ 

1.90 ∗∗ 

2.81 ∗∗ 

2.90 ∗∗∗ 

2.57 ∗∗ 

2.41 ∗∗ 

2.57 ∗∗ 

2.26 ∗∗ 

-0.38 
-0.47 
0.09 
-0.32 
-0.22 
-0.52 
-0.58 
-0.47 
0.69 
0.57 
0.03 
0.54 
0.37 
0.28 

0.92 
0.84 
1.02 
0.85 
0.68 
0.72 
0.70 
0.97 
1.44 
1.41 
1.09 
1.35 
1.23 
1.13 

CF-TECHMEAN 1.29 1.72 ∗∗ -1.68 -1.09 3.30 ∗∗ 2.82 ∗∗∗ 0.17 0.98 
CF-TECHWEIG 

θ=1 
CF-TECHWEIG 

θ=0.9 

1.30 
1.30 

1.73 ∗∗ 

1.73 ∗∗ 
-1.68 
-1.69 

-1.09 
-1.09 

3.30 ∗∗ 

3.30 ∗∗ 
2.83 ∗∗∗ 

2.83 ∗∗∗ 
0.19 
0.18 

1.00 
1.00 

CF-ALLMEAN 1.46 ∗∗∗ 
Panel C: All predictors taken together 

1.10 ∗∗ -2.71 -2.37 3.96 ∗∗∗ 2.69 ∗∗∗ 0.53 1.00 
CF-ALLWEIG 

θ=1 
CF-ALLWEIG 

θ=0.9 

1.52 ∗∗ 

1.53 ∗∗ 
1.20 ∗∗ 

1.24 ∗∗ 
-2.15 
-2.13 

-1.83 
-1.81 

3.81 ∗∗∗ 

3.76 ∗∗∗ 
2.71 ∗∗∗ 

2.71 ∗∗∗ 
0.54 
0.56 

1.03 
1.07 
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Table A.13 
Annualized gains in SR after transaction costs 

This table reports the annualized gain in the Sharpe ratio (SR) relative to the SR from the historical mean. Results 
are net of a proportional transaction cost of 50 basis points per transaction. ΔSR is estimated for a mean-variance 
investor with a relative risk aversion of five who allocates each month between the S&P 500 index and the risk-free 
rate. The optimal weight is estimated according to forecasts of one-month ahead excess returns from predictive 
regression models. The optimal weight in risky assets is constrained to lie between 0 and 1.5 to prevent shorting 
stocks and leveraging more than 50%. The out-of-sample period runs from 1966:1 to 2017:12. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1966:1 to 2017:12 

Predictor Basic BasicNL DH DNL 
H DM DNL 

M DL DNL 
L 

Panel A: Economic variables 
DP -0.12 0.05 -0.21 -0.16 -0.02 0.01 0.02 0.05 ∗ 

DY -0.11 0.08 -0.29 -0.11 -0.12 -0.01 0.02 0.06 ∗ 

EP -0.02 0.02 -0.07 -0.04 0.01 0.04 -0.03 -0.01 
DE -0.07 -0.00 0.02 -0.00 -0.01 0.02 -0.03 0.01 
RVOL -0.01 0.04 -0.07 -0.01 -0.02 0.01 -0.04 -0.01 
BM -0.09 -0.01 -0.26 -0.18 -0.00 0.01 -0.03 -0.04 
NTIS 0.04 -0.07 -0.00 0.00 0.03 -0.08 -0.06 0.01 
TBL 0.12 -0.03 0.05 -0.02 0.13 0.05 0.08 -0.04 
LTY 0.09 -0.04 0.16 ∗∗ 0.05 0.17 ∗∗ -0.03 0.04 -0.05 
LTR -0.08 0.03 -0.14 0.01 0.06 0.05 0.02 0.01 
TMS 0.17 ∗∗ 0.05 -0.14 -0.07 0.00 0.06 0.09 0.00 
DFY -0.03 -0.00 -0.05 -0.01 -0.01 0.06 -0.04 -0.04 
DFR -0.09 -0.02 -0.11 -0.05 0.00 0.06 -0.01 0.04 
INFL -0.05 -0.08 0.01 0.08 ∗∗ 0.07 0.05 0.12 ∗ -0.03 

CF-ECONMEAN 0.07 ∗ 0.02 -0.12 -0.10 0.16 ∗∗ 0.05 0.03 0.00 
CF-ECONWEIG 

θ=1 
CF-ECONWEIG 

θ=0.9 

0.08 ∗ 

0.08 ∗ 
0.03 
0.04 

-0.10 
-0.10 

-0.08 
-0.08 

0.16 ∗∗ 

0.16 ∗∗ 
0.06 
0.06 

0.04 
0.04 

0.00 
0.01 

Panel B: Technical indicators 
MA(1,9) 
MA(1,12) 
MA(2,9) 
MA(2,12) 
MA(3,9) 
MA(3,12) 
MOM(9) 
MOM(12) 
VOL(1,9) 
VOL(1,12) 
VOL(2,9) 
VOL(2,12) 
VOL(3,9) 
VOL(3,12) 

0.06 
0.16 ∗ 

0.08 
0.17 ∗ 

0.12 
0.05 
0.06 
0.05 
0.02 
0.08 
0.03 
0.04 
0.02 
0.11 

0.12 ∗∗ 

0.16 ∗∗ 

0.15 ∗∗ 

0.18 ∗∗ 

0.17 ∗∗ 

0.08 ∗ 

0.07 
0.06 
0.09 ∗ 

0.15 ∗∗ 

0.08 ∗ 

0.06 
0.07 ∗∗ 

0.15 ∗∗ 

-0.17 
-0.14 
-0.16 
-0.12 
-0.14 
-0.06 
-0.09 
-0.09 
-0.10 
-0.12 
-0.13 
-0.12 
-0.10 
-0.10 

-0.09 
-0.08 
-0.10 
-0.08 
-0.08 
-0.07 
-0.08 
-0.04 
-0.07 
-0.07 
-0.08 
-0.09 
-0.07 
-0.07 

0.19 ∗ 

0.24 ∗∗ 

0.19 ∗ 

0.25 ∗∗ 

0.18 ∗ 

0.19 ∗∗ 

0.21 ∗∗ 

0.12 
0.22 ∗ 

0.32 ∗∗∗ 

0.25 ∗∗ 

0.26 ∗∗∗ 

0.22 ∗∗ 

0.24 ∗∗ 

0.25 ∗∗∗ 

0.20 ∗∗ 

0.23 ∗∗∗ 

0.19 ∗∗ 

0.19 ∗∗ 

0.14 ∗ 

0.14 ∗ 

0.12 ∗ 

0.21 ∗∗ 

0.21 ∗∗∗ 

0.19 ∗∗ 

0.17 ∗∗ 

0.19 ∗∗ 

0.16 ∗∗ 

0.01 
0.02 
0.05 
0.03 
0.03 
0.02 
0.01 
0.03 
0.07 
0.07 
0.03 
0.07 
0.06 
0.05 

0.04 
0.03 
0.05 
0.04 
0.02 
0.03 
0.03 
0.05 
0.09 
0.09 
0.06 
0.08 
0.07 
0.06 

CF-TECHMEAN 0.08 0.11 ∗∗ -0.10 -0.09 0.26 ∗∗ 0.21 ∗∗∗ 0.05 0.05 
CF-TECHWEIG 

θ=1 
CF-TECHWEIG 

θ=0.9 

0.08 
0.08 

0.11 ∗∗ 

0.11 ∗∗ 
-0.10 
-0.10 

-0.09 
-0.09 

0.26 ∗∗ 

0.26 ∗∗ 
0.21 ∗∗∗ 

0.21 ∗∗∗ 
0.06 
0.06 

0.05 
0.05 

CF-ALLMEAN 0.09 ∗∗ 
Panel C: All predictors taken together 

0.06 ∗∗ -0.14 -0.12 0.31 ∗∗∗ 0.20 ∗∗∗ 0.05 0.04 
CF-ALLWEIG 

θ=1 
CF-ALLWEIG 

θ=0.9 

0.09 ∗∗ 

0.10 ∗∗ 
0.07 ∗∗ 

0.07 ∗∗ 
-0.12 
-0.12 

-0.10 
-0.10 

0.30 ∗∗∗ 

0.29 ∗∗∗ 
0.20 ∗∗∗ 

0.20 ∗∗∗ 
0.05 
0.05 

0.05 
0.05 
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