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Abstract 

We examine how parameter learning amplifes the impact of macroeconomic 
shocks on equity prices and quantities in a standard production economy where 
a representative agent has Epstein-Zin preferences. An investor observes technol-
ogy shocks that follow a regime-switching process, but does not know the un-
derlying model parameters governing the short-term and long-run perspectives 
of economic growth. We show that rational parameter learning endogenously 
generates long-run productivity and consumption risks that help explain a wide 
array of dynamic pricing phenomena. The asset pricing implications of subjec-
tive long-run risks crucially depend on the introduction of a procyclical dividend 
process consistent with the data. 

Keywords: Parameter Learning, Equity Premium, Business Cycles, Markov 
Switching 

JEL: D83, E13, E32, G12 

9We would like to thank Frederico Belo, Andrea Gamba, Alessandro Graniero, Michal Kejak, Ian 
Khrashchevskyi, Ctirad Slavik, Sergey Slobodyan, Raman Uppal and conference/seminar participants 
at the 2019 EFA Meeting, the 2019 SAFE Asset Pricing Workshop, Warwick Business School, Università 
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1. Introduction 

Parameter learning has recently been proposed as an amplifcation mechanism 

for the pricing of macroeconomic shocks used to explain standard asset pricing 

moments. In the endowment economy, parameter uncertainty helps explain the 

observed equity premium, the high volatility of equity returns, the market price-

dividend ratio and the equity Sharpe ratio (Collin-Dufresne, Johannes and Lochstoer, 

2016; Johannes, Lochstoer and Mou, 2016). In contrast to the consumption-based 

approach, a production dynamic stochastic general equilibrium (DSGE) model en-

dogenously generates consumption and dividends and, as a result, it becomes more 

challenging to explain asset pricing puzzles in a production-based setting while si-

multaneously matching the moments of macroeconomic fundamentals. In this paper, 

we study how the macroeconomic risks arising from parameter uncertainty improve 

the performance of a standard DSGE model in jointly reproducing salient features of 

the macroeconomic quantities and equity returns. 

Kaltenbrunner and Lochstoer (2010) and Croce (2014) argue that the presence of 

a small but persistent long-run risk component in the productivity growth process 

can endogenously generate long-run risks in consumption growth that help boost-

ing up moments of fnancial variables. However, these long-run risk components are 

diffcult to identify in the data.1 In contrast, we demonstrate that rational pricing of 

parameter uncertainty is a source of these subjective long-run risks in productivity 

growth. This emphasizes the importance of accounting for parameter uncertainty in 

the productivity growth process. It is not clear, however, whether macroeconomic 

risks associated with rational learning about productivity growth amplify the mo-

ments of fnancial variables. If so, what is the magnitude of the effect? In this paper, 

we document a considerable amplifcation mechanism of rational parameter learning 

on asset prices. 

We introduce parameter uncertainty in the technology growth process of an oth-

erwise standard production-based asset pricing model. We depart from the extant 

macro-fnance literature by presuming that the representative investor does not know 

1Croce (2014) empirically demonstrates the existence of such a predictable component; however, 
the results are not robust to estimation method and sample choice. Moreover, low values for goodness-
of-ft statistics lead to a conclusion that there is considerable uncertainty about the model specifcation 
for productivity growth. 
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the parameters of the technology process and learns about true parameter values from 

the data. In each period, he updates his beliefs in a Bayesian fashion upon observ-

ing newly arrived data. Rational learning about unknown parameters together with 

recursive preferences gives rise to subjective long-lasting macroeconomic risks. Cou-

pled with endogenous long-run consumption risks due to consumption smoothing 

(Kaltenbrunner and Lochstoer, 2010) these risks are priced under the investor’s pref-

erence for early resolution of uncertainty. The model generates higher equity Sharpe 

ratios, risk premia and volatility, as well as lower interest rates and price-dividend 

ratios relative to the standard framework. Additionally, the model with rational be-

lief updating reproduces the excess return predictability patterns observed in the 

data. We show that under certain calibrations of capital adjustment cost parameters, 

parameter learning signifcantly magnifes propagation of productivity shocks and 

hence helps to match the moments and comovements of macroeconomic variables. 

In our analysis, we restrict our attention to uncertainty about parameters gov-

erning the magnitude and persistence of productivity growth over the various phases 

of the business cycle. In particular, we examine the implications of learning about the 

transition probabilities and mean growth rates in a two-state Markov-switching pro-

cess for productivity growth, where volatility of productivity growth is homoskedas-

tic and known.2 We consider two approaches to dealing with parameter uncertainty 

in the equilibrium models: anticipated utility (AU) and priced parameter uncertainty 

(PPU). The AU approach is common for most existing models, and assumes that 

economic agents learn about unknown parameters over time, but treat their current 

beliefs as true and fxed parameter values in the decision-making. For the PPU case, 

the representative investor calculates his utility and prices in the current period, as-

suming that posterior beliefs can be changed in the future. We quantify the impact of 

each type of parameter uncertainty pricing by comparing the results of AU and PPU 

with the full information (FI) model. 

We illustrate the economic importance of parameter uncertainty in a standard 

2There is a large strand of the literature emphasizing the importance of time-varying macroe-
conomic uncertainty (see, for example, Justiniano and Primiceri (2008); Bloom (2009); Fernandez-
Villaverde, Guerron-Quintana, Rubio-Ramirez and Uribe (2011); Born and Pfeifer (2014); Christiano, 
Motto and Rostagno (2014); Gilchrist, Sim and Zakrajsek (2014); Liu and Miao (2014) and more recent 
studies by Leduc and Liu (2016); Basu and Bundick (2017); Bloom, Floetotto, Jaimovich, Saporta-Eksten 
and Terry (2018)). We leave the investigation of learning about volatility risks for future research. 
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real business-cycle model with Epstein-Zin preferences and asymmetric quadratic 

capital adjustment costs. The increased uncertainty due to unknown parameters 

in the productivity growth process creates a stronger precautionary saving motive, 

which leads to a lower risk-free rate. Fully rational learning about unknown param-

eters generates endogenous long-run risks in the economy, which in turn increase 

the mean and volatility of levered returns to the frm’s payouts (Jermann, 1998). In 

contrast, fuctuations in parameter beliefs are not priced in the AU case. Thus, the 

PPU approach leads to around a two-fold increase in the risk premium (in addi-

tion to higher return volatility) on a levered frm’s dividends, relative to the FI and 

AU cases. The combination of time-varying posterior beliefs and rational parameter 

learning is crucial for generating long-term predictability of excess returns by Tobin’s 

Q, investment-capital, price-dividend and consumption-wealth ratios, as found in the 

empirical literature. The time-variation in beliefs leads to fuctuations in the equity 

risk premium and hence generates more predictability in the models with parameter 

uncertainty relative to the known parameter frameworks. Fully rational learning fur-

ther magnifes the impact of belief revisions on the conditional equity premium and 

therefore there is more signifcant return predictability with PPU compared to AU. 

Specifcally, the model with PPU closely replicates the increasing patterns (in absolute 

terms) of the regression coeffcients and R2’s. In contrast, both the FI and AU models 

generate less predictability power and cannot match the magnitude of slope coeff-

cients. In terms of the macroeconomic variables, the model with parameter learning 

has a sizable effect on the unconditional second moments of investment but smaller 

effects on volatilities of consumption and output. It also improves comovements be-

tween macroeconomic variables. 

The main mechanism of this paper is closely related to the work of Collin-

Dufresne, Johannes and Lochstoer (2016) who study a similar learning problem in 

the endowment economy. Our analysis differs from theirs in the following ways. 

First, we extend their methodology to a production economy setting and explore 

joint implications of parameter uncertainty for macroeconomic quantities and asset 

prices. Second, relative to the endowment model, one needs to generate procycli-

cal dividends in the production economy to obtain a signifcant amplifcation of eq-

uity moments by parameter learning. We document this fnding in the model with 
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costly reversibility, which generates endogenous procyclical frm’s payoffs. Further, 

we show the robustness of this feature to more common convex adjustment costs 

by pricing a claim to exogenous calibrated dividends. Third, rather than exploring 

the impact of learning in a rare events model (Rietz, 1988; Barro, 2006), we instead 

estimate the production parameters by the expectation maximization algorithm from 

the postwar U.S. data. Even though the estimated process for productivity growth 

does not refect rare states that are naturally diffcult to be learned about due to their 

rareness, fully rational parameter learning still matches well fnancial moments in our 

setting with more frequent states. The main reason for this is that long-run consump-

tion risks generated by consumption smoothing (see Kaltenbrunner and Lochstoer, 

2010) magnify the impact of endogenous long-run productivity risks originating from 

belief revisions on asset prices; therefore, less is needed in terms of the speed of pa-

rameter learning. 

Our paper speaks to macro-fnance research in the production-based economies. 

Cagetti, Hansen, Sargent and Williams (2002) is one of the frst examples of the real 

business-cycle model with parameter learning. In their paper, they consider a signal 

extraction problem about the unobservable mean growth rate of technology shocks. 

However, they do not study the implications of incomplete information for quantities 

and asset prices, a key focus of our analysis. Chen (2017) achieves amplifcations of 

fnancial moments by incorporating external habit in the standard real business-cycle 

model. The agent in the model is assumed to know true values of parameters of the 

productivity process. In a recent paper, Jahan-Parvar and Liu (2014) examine a pro-

duction economy with learning about a latent state in a productivity growth process 

following a two-state hidden Markov chain. Their paper is an adaption of the endow-

ment economy with ambiguity preferences (Ju and Miao, 2012) to a production set-

ting. The key differentiator of our study from Jahan-Parvar and Liu (2014), as well as 

the extant literature on learning in a real business-cycle model, is a multidimensional 

learning problem and rational pricing of parameter beliefs. Hirshleifer et al. (2015) 

demonstrate that introducing extrapolative bias into the production-based model also 

helps to reconcile stylized facts about business-cycle fuctuations and fnancial mar-

kets. We show that these salient stylized features of the data can be generated within 

rational framework without resorting to behavioral biases. 
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Our paper is also related to the long-run risks models introduced by Bansal and 

Yaron (2004) in the consumption-based setting. Kaltenbrunner and Lochstoer (2010) 

and Croce (2014) investigate the implications of long-run productivity risks in the 

production-based economy. In relation to these studies, we do not explicitly incor-

porate long-run risks in productivity growth by directly adopting the specifcation of 

Bansal and Yaron (2004). In our paper, Bayesian learning about unknown parameters 

in the productivity growth process gives rise to the subjective long-run macroeco-

nomic risks. Therefore, our approach is complementary to the existing long-run risks 

literature and in fact provides the empirical investigation of possible origins of long-

run risks. 

The paper proceeds as follows. Section 2 presents the formal model. Section 

3 investigates the quantitative implications of parameter learning for quantities and 

asset prices. Section 4 performs sensitivity analysis. Section 5 concludes. 

2. Model 

In this section, we present a production-based asset pricing model similar to Jer-

mann (1998), Campanale, Castro and Clementi (2010), Kaltenbrunner and Lochstoer 

(2010), and Croce (2014). The model is a standard real business-cycle framework 

(Kydland and Prescott, 1982; Long and Plosser, 1983) populated by a representative 

frm with Cobb-Douglas production technology and a representative household with 

Epstein-Zin preferences. The frm produces a single consumption-investment good 

using labor and capital as inputs subject to productivity shocks and capital adjust-

ment costs. The household participates in the production process by working for the 

frm and providing investment for capital. Additionally, the household trades frm 

shares and risk-free bonds to maximize lifetime utility of a consumption stream sub-

ject to a sequential budget constraint. Ultimately, the frm maximizes its value by 

choosing labor and investment demand. Our objective is to investigate the impact 

of rational learning about unknown parameters in the productivity process on the 

moments of macroeconomic quantities and equity returns as well as predictability 

patterns observed in the data. 
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2.1. Household 

A representative household has recursive preferences of Epstein and Zin (1989): ( ) 1i� 1−1/ψ 1−1/ψh� 
= (1 − β)V1−1/ψ 

t U1−γ + β 
1−γ

Et t+1Ut (1) 

where Et[·] is the expectation operator, β ∈ (0, 1) is the discount factor, ψ > 0 is the 

elasticity of inter-temporal substitution (EIS), and γ > 0 is the risk aversion param-

eter. The utility index, Vt, depends on consumption, Ct, and hours worked, Nt, and 

takes a standard Cobb-Douglas form: 

Vt = Ct(1 − Nt)
ν , 

where ν > 0 is the leisure preference. It is straightforward to show that the stochastic 

discount factor of the economy is defned as: 

�(1−1/ψ)ν 

⎛ ⎜⎜⎝ 
⎞ ⎟⎟⎠ 

1/ψ−γ 

. (2) 
� 

Ct+1 
�−1/ψ � 1 N− 1t+ Ut+1Mt+1 = β h� i� 1Ct 1 − Nt 

U1−γ 1−γ
Et t+1 

A calibration with 1/ψ 6= γ implies the utility function is not time-additive. This 

feature of recursive preferences allows for a separation of agent’s relative risk aver-

sion from the elasticity of inter-temporal substitution. Further, we set γ > 1 andψ 

hence the household prefers earlier resolution of uncertainty. When the household’s 

continuation utility, Ut+1, is below the certainty equivalent, the last multiplier in the 

pricing kernel increases, raising a premium for future low utility states. 

2.2. Firm 

The representative frm produces the consumption good using a constant returns 

to scale Cobb-Douglas production function: 

Yt = Kt 
α(AtNt)

1−α , (3) 

where Yt is the output, Kt is the capital stock, Nt is labor hours, and At is an ex-

ogenous, labor-enhancing technology level (which we also refer to as productivity). 

The frm’s capital accumulation equation incorporates capital adjustment costs and 

is given by: 

Kt+1 = (1 − δ)Kt + ϕ(It/Kt)Kt, 
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where δ ∈ (0, 1) is the capital depreciation rate, It = Yt − Ct is gross investment, and 

ϕ(·) is the capital adjustment cost function. 

Following Abel and Eberly (1994, 1996) and Zhang (2005), we include investment 

frictions in the form of costly reversibility: frms face higher adjustment costs for con-

tracting than expanding their capital stock. We model costly reversibility by adopting 

an asymmetric capital adjustment cost function, which takes a quadratic form: 

θt 2ϕ(xt) = xt − · (xt − x0) ,
2 

where 

θt = θ+ · I(xt ≥ x0) + θ− · I(xt < x0) 

and I(·) denotes the indicator operator that equals 1 if the condition is satisfed and 

0 otherwise. We choose the constant x0 such that there are no adjustment costs in 

the non-stochastic steady state, which implies x0 = exp(µ̄) − 1 + δ. The remaining 

two parameters θ+ and θ− satisfy the condition 0 < θ+ < θ− to capture the idea 

of costly reversibility: the representative frm faces higher capital adjustment costs 

for the investment decisions leading to the capital stock being below a non-stochastic 

steady state value. 

2.3. Technology 

��We consider a parsimonious two-state Markov switching model for the produc-

tivity growth rate Δat = ln A
A
t− 

t 
1

: 

iidΔat = µst + σεt, εt ∼ N(0, 1) 

where st is a two state Markov chain with transition matrix: 

Π = 

⎡⎣ π11 1 − π11 

⎤⎦ , 
1 − π22 π22 

with πii ∈ (0, 1). We label st = 1 the ”good” regime with high productivity growth 

and st = 2 the ”bad” regime with low productivity growth. In this paper, we inves-

tigate the impact of learning about unknown parameters governing the technology 

process. Our aim is to quantitatively evaluate the degree of the model improvement 

due to parameter learning in explaining salient features of the macroeconomic and 

fnancial data. 
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2.4. Asset Prices 

In the competitive equilibrium of the economy, the representative household 

works for the frm and trades its shares to maximize the lifetime utility over a con-

sumption stream. The representative frm chooses labor and capital inputs to maxi-

mizes the frm’s value, the present value of its future cash fows. The frm’s maximiza-

tion problem implies the following equilibrium conditions for gross return Rj,t+1 : 

� � 
Et Mt+1Rj,t+1 = 1. (4) 

In particular, the equation above is satisfed by the investment return, RI,t+1 : � � � �� � 
1 It+1 αYt+1 − It+1RI,t+1 = Qt+1 1 − δ + ϕ + , (5)

Qt Kt+1 Kt+1 

where Qt is Tobin’s marginal Q defned as Qt = �1 � . The return on investment 
ϕ
0 It 

Kt 
can be interpreted as the return of an equity claim to the unlevered frm’s payouts 

(Restoy and Rockinger, 1994). As the frm behaves competitively, the labor input is 

chosen at a level equal to its marginal product: 

wt = ∂Yt/∂Nt = (1 − α)A1−αKt 
α N−α = (1 − α)Yt/Nt. (6)t t 

The unlevered frm value, FVt, is given by FVt = QtKt+1, and the frm’s unlevered 

dividends, Dt
u , are defned by: 

(6)
Du = Yt − wtNt − It = αYt − It. (7)t 

Since the observed aggregate stock market dividends are not directly comparable 

to the endogenous payouts defned above, we consider pricing levered equity claims.3 

We introduce fnancial leverage in the spirit of Jermann (1998) by presuming that in 

each period the frm issues long-term bonds for a fxed fraction of capital and pays the 

outstanding debt from previous periods. Note that Modigliani and Miller conditions 

hold in this setting and hence the fnancial leverage does not change the equilibrium 

allocations. It only infuences the dynamics of a frm’s payouts and the way we report 

the returns on a claim to the frm’s dividends. In particular, the fnancial leverage 

increases volatility of dividends and makes equity returns more risky. 

3As noted by other studies, unlevered cash fows and investment returns are not directly observed 
in reality. Additionally, the equity prices observed on the market are for leveraged corporations, in 
contrast to unlevered dividend payments of production companies in the model. 
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Following Jermann (1998), we assume that the frm issues n period discount 

bonds and pays back its outstanding debt of n period maturity in each period. The 

fraction ω of the frm’s capital Kt at time t is invested in long-term bonds. Denoting 

the price of the n period discount bonds at time t by Bt,n, the levered dividends are: 

Dt = αYt − It + ω (Kt − Kt−n/Bt−n,n) , (8) 

where the frst part, αYt − It, represents the operating cash fow of an unlevered claim, 

whereas the second part, ω (Kt − Kt−n/Bt−n,n) , is the difference between proceeds 

from newly issued bonds in period t at the price Bt,n and repayments of the bonds 

purchased in period t − n at the price Bt−n,n. 

The prices of the n-period bonds are defned recursively by: 

Bt,n = Et [Mt+1Bt+1,n−1] , (9) 

with the boundary condition Bt,0 = 1 for any t. We denote the price of the levered 

equity claim by Pt and the levered equity return by Rt+1 = (Pt+1 + Dt+1)/Pt. As is 

well known, one can readily compute the equity price as Pt = FVt − DVt, where FVt 

is a frm’s value and DVt is a net balance of the long-term debt issued over the period 

from t − n + 1 to t. The quantities FVt and DVt satisfy the conditions: 

n Bt,jωKt−n+jFVt = QtKt+1 and DVt = ∑ . 
j=1 Bt−n+j,n 

3. Calibration 

3.1. Parameter Values 

Panel A in Table 1 reports the parameter values of an investor’s preferences, 

production and capital adjustment cost functions. The coeffcient of relative risk 

aversion (γ) is equal to 10, an upper bound of the interval considered plausible 

by Mehra and Prescott (1985). The subjective discount factor (β) is set to 0.995. 

This value allows the benchmark calibration to match the low risk-free rate in the 

data. There is no consensus in the literature about the value of the elasticity of 

inter-temporal substitution. We follow the disaster risk literature (Gourio, 2012) and 

long-run risks models (Bansal and Yaron, 2004; Ai, Croce and Li, 2013; Bansal, Kiku, 

Shaliastovich and Yaron, 2014) by setting EIS (ψ) to 2. Consistent with the existing 

real business-cycle literature, the constant capital share in a Cobb-Douglas production 
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Table 1 
Benchmark Calibration 

Parameter Description Value 

Panel A: Preferences, Production and Capital Adjustment Cost Functions 

β Discount factor 0.995 
γ Risk aversion 10 
ψ EIS 2 
α Capital share 0.36 
δ Depreciation rate 0.025 
θ+ Adjustment cost coeffcient 5 
θ−/θ+ Asymmetry of adjustment costs 20 

Panel B: Markov-switching Model of Productivity Growth 

π11 Transition probability from expansion to expansion 0.961 
π22 Transition probability from recession to recession 0.625 
µ1 Productivity growth in expansion 0.52 
µ2 Productivity growth in recession −1.86 
σ Productivity volatility 1.47 

This table reports the parameter values in the benchmark calibration. Panel A presents preferences 
parameters, values in the production and adjustment costs functions. Panel B shows the maximum 
likelihood estimates of parameters in a two-state Markov-switching model for productivity growth. 
We obtain these estimates by applying the expectation maximization algorithm (Hamilton, 1990) to 
quarterly total factor productivity growth rates from 1947:Q2 to 2016:Q4. 

function (α) is 0.36. We set the quarterly depreciation rate (δ) to 0.025, which implies 

an annual rate of 10% (Favilukis and Lin, 2016). 

We further calibrate the adjustment cost coeffcient (θ+) and the degree of asym-

metry (θ−/θ+). We jointly set values of these parameters by using the estimates from 

prior studies and by matching key moments in the data. Specifcally, we target the 

volatility of investment and the correlation between consumption and levered divi-

dends. The empirical estimates of θ+ vary from 2 to 8 in quarterly frequency. We 

choose a middle point of this range and set θ+ = 5 as in Zhang (2005). There is 

limited empirical evidence on the degree of asymmetry. In the benchmark calibra-

tion, we set θ−/θ+ = 20. These parameter choices allow the model to match the 

large volatility of investment and, most importantly, to generate procyclical levered 

dividends of the frm. 

Following the methodology of Stock and Watson (1999), we use the macroe-

conomic data to construct the cumulative Solow residuals. We further scale these 

residuals by the labor share (1 − α) in order to interpret them as labor-augmenting 

technology. We estimate a two-state Markov switching process of quarterly produc-

tivity growth rates by applying the expectation maximization algorithm developed 
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by Hamilton (1990). Panel B in Table 1 reports the maximum likelihood estimates for 

the transition probabilities (πii), productivity growth rates (µi) as well as the constant 

volatility (σ). Productivity is estimated to grow at the quarterly rate of about 0.52 per-

cent in expansions and about -1.86 percent in recessions. The productivity volatility 

comes out around 1.47 percent. The transition probability to the expansion (recession) 

conditional on being in the expansion (recession) is estimated around 0.961 (0.625). 

These numbers imply the average duration of the high-growth expansion state of 

about 25.64 quarters and the average duration of the low-growth recession of about 

2.67 quarters. Our maximum likelihood estimates are consistent with the values re-

ported by Hamilton (1989) and Cagetti, Hansen, Sargent and Williams (2002). 

In terms of the fnancial leverage, we assume that the frm issues long-term 

bonds with a maturity of n = 60 quarters. For each model, we choose the leverage 

parameter (ω) to match the average debt-to-equity ratio of around 1:1 similar to 

Gourio (2012) and Jahan-Parvar and Liu (2014). The calibrated values of ω across 

different models are in the interval [0.75%, 1.00%]. The model-implied leverage ratio 

is consistent with the empirical estimates of Rauh and Suf (2010) and Jermann and 

Quadrini (2012), who document the average total debt to capital ratio of around 50%. 

3.2. Parameter Uncertainty and Initial Beliefs 

There are fve parameters in the productivity growth process of the economy. 

We employ conjugate priors for each unknown parameter in order to obtain conju-

gate posteriors via Bayesian updating. If all parameters are assumed to be unknown 

for the household, we obtain a 10-dimensional vector of state variables including 

the current regime of the Markov chain, capital stock, time and hyperparameters of 

prior distributions. In addition to the curse of dimensionality, the numerical solution 

methodology in the production-based setting requires solving the agent’s maximiza-

tion problem for all combinations of state variables in each period. This makes the 

model solution especially slow. To mitigate this complexity in the model solution, 

we investigate the impact of uncertainty about the transition probabilities and mean 

growth rates, whereas a volatility parameter is assumed to be known.4 Furthermore, 

4We motivate our choice of unknown parameters by the results in the consumption-based asset 
pricing model. Collin-Dufresne, Johannes and Lochstoer (2016) conclude that uncertainty about vari-
ance has a negligible effect on asset prices. Meanwhile, learning about transition probabilities has 
long-lasting asset pricing implications. Mean growth rates are harder to learn than volatilities, though 
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our analysis assumes homoskedastic volatility of productivity growth, though a large 

strand of the macroeconomic literature documents the importance of time-varying 

uncertainty on macroeconomic variables and asset returns. We leave the important 

investigation of the implications of learning about volatility risk and regime switches 

in volatility of productivity growth for future research. 

Having decided which parameters the household does not know, we compare 

two approaches to dealing with unknown parameters: anticipated utility and priced 

parameter uncertainty. Anticipated utility assumes investors learn about unknown 

parameters over time but in each period they treat their current beliefs as ”true” 

values. In this case, agents ignore the possibility that beliefs will change later. In con-

trast, priced parameter uncertainty implies economic agents learn about unknown 

parameters from the data and acknowledge that their current beliefs will be updated 

in the future. Consequently, agents take into account future belief revisions while cal-

culating utility and asset prices. The forward-looking nature of rationally accounting 

for parameter uncertainty gives rise to subjective long-run risks.5 These parameter 

learning-generated, permanent risks are priced in the economy with recursive utility, 

where agents have a preference for early resolution of uncertainty. 

To quantitatively evaluate the impact of these additional macroeconomic risks, 

we consider different specifcations of the production economy. Specifcally, we solve 

three frameworks: a model with full information about parameters in the produc-

tivity growth process and an identical calibration with unknown parameters when 

the investor applies either priced parameter uncertainty or anticipated utility pricing. 

This comparison illustrates the contribution of rational parameter learning relative 

to the cases when the investor has full structural knowledge of the economy or has 

incomplete information about the true parameters while applying anticipated utility 

pricing. Furthermore, we study the role of a household’s prior knowledge by inject-

ing different training samples into the model. For instance, we assume 100, 150, and 

200 years of prior learning before reporting model-generated results. By experiment-

ing with the prior samples, we can evaluate the persistence of the impact of priced 

parameter uncertainty on the macroeconomic and fnancial variables. 

the implications are less pronounced compared to learning about unknown transition probabilities. 
5This is due to the fact that posterior beliefs of parameters are martingales and hence Bayesian 

learning produces permanent shocks to agents’ expectations. 
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In sum, we compare the performance of the model assuming different informa-

tion settings. In the case of incomplete investor knowledge, we distinguish between 

rational parameter learning and more commonly assumed anticipated utility. We use 

standard, conjugate priors distributions for the unknown parameters: beta and nor-

mal distributions for the transition probabilities and mean growth rates, respectively. 

We center initial beliefs at the true values of unknown parameters estimated from 

the post-war sample and further fne-tune hyperparameters of prior distributions to 

embody various samples of prior learning. Calibrating initial beliefs based on the 

historical data is a more realistic procedure and would likely improve the model’s 

performance due to pessimism induced by the Great Depression and both World 

Wars. We refrain from doing this to illustrate that our results do not require pes-

simistic beliefs and are robust to ”look-ahead” priors. Finally, we numerically solve 

the production economy using the methodology outlined in the Appendix. 

3.3. Results 

Unconditional Moments. Panel A in Table 2 presents the quarterly moments of 

macroeconomic variables from different models and the data. The data column shows 

that output is more volatile than consumption and hours worked but less volatile 

than investment. Also, there is the positive but not perfect correlation between the 

series. Comparing the empirical moments with the model-generated statistics, all the 

models with priced parameter uncertainty, anticipated utility, and known parameters 

explain the empirical moments reasonably well. In general, rational parameter learn-

ing increases investment growth volatility, lowers consumption growth volatility, and 

brings the correlations between the quantities closer to the data. However, parameter 

learning has quantitatively marginal effects on the macro dynamics. 

Panel B in Table 2 shows that priced parameter uncertainty improves signif-

cantly the performance of the model in terms of matching fnancial moments. The 

last two columns show that the production economy with known parameters, or with 

unknown parameters but AU pricing, generates a too high average risk-free rate and 

price-dividend ratio as well as a too low mean and volatility of excess equity returns 

compared to the data.6 Columns 3 to 6 shows that rationally taking into account 

6For the AU case, we report the results only with a prior period of 100 years as the results remain 
similar across different prior specifcations. 
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Table 2 
Sample Moments 

Data PPU AU FI 

100 yrs 150 yrs 200 yrs ∞ yrs 100 yrs 

Panel A: Macroeconomic Quantities 

E(Δc) 0.47 0.30 0.30 0.30 0.29 0.28 0.29 
σ(Δc) 0.72 0.97 0.98 0.97 0.98 0.97 0.99 
ar1(Δc) 0.21 0.14 0.14 0.14 0.14 0.14 0.13 

σ(Δi) 2.39 2.53 2.51 2.49 2.34 2.28 2.36 
σ(Δy) 1.28 1.21 1.21 1.21 1.19 1.18 1.18 
σ(Δn) 0.67 0.55 0.53 0.52 0.48 0.45 0.49 

ρ(Δi, Δy) 0.62 0.86 0.86 0.86 0.85 0.86 0.84 
ρ(Δc, Δy) 0.45 0.73 0.75 0.77 0.80 0.82 0.79 
ρ(Δc, Δi) 0.35 0.32 0.33 0.35 0.39 0.44 0.35 

ρ(Δn, Δi) 0.62 0.88 0.87 0.87 0.85 0.86 0.87 
ρ(Δn, Δy) 0.68 0.54 0.53 0.53 0.48 0.51 0.47 

Panel B: Financial Variables 

Debt/Equity 1.00 1.01 1.01 1.01 1.00 1.00 1.01 

E(R f ) − 1 0.23 0.20 0.27 0.31 0.42 0.45 0.46 
σ(R f ) 0.40 0.43 0.36 0.32 0.22 0.20 0.20 

E(R − R f ) 1.59 1.84 1.54 1.40 0.92 0.80 0.83 
σ(R − R f ) 7.75 5.63 5.16 5.07 4.99 4.30 4.59 
SR(R − R f ) 0.21 0.34 0.31 0.29 0.19 0.19 0.16 

E(pd) 4.38 4.13 4.29 4.37 4.72 4.78 4.83 
σ(pd) 0.34 0.22 0.23 0.24 0.27 0.27 0.30 
ar1(pd) 0.96 0.88 0.86 0.85 0.80 0.82 0.77 

E(Δd) 0.49 0.23 0.25 0.27 0.30 0.30 0.31 
σ(Δd) 5.25 7.66 9.36 10.01 13.56 14.08 16.14 
ar1(Δd) 0.01 −0.10 −0.10 −0.10 −0.12 −0.12 −0.15 
ρ(Δc, Δd) 0.09 0.14 0.15 0.16 0.18 0.13 0.20 

This table reports the average sample moments from 1,000 simulations of 279 quarters 
of the data from the production economy considered in this paper. The historical data 
moments are reported in the ”Data” column and correspond to the U.S. data from 
1947:Q2 to 2016:Q4. The ”PPU” column refers to the production economy with priced 
parameter uncertainty, whereas the ”AU” column refers to the production economy 
with AU pricing. In both cases, parameter uncertainty includes unknown transition 
probabilities and mean growth rates. The ”FI” column presents the results of the model 
in which the parameters are known. E(x), σ(x), and SR(x) denote the average sample 
mean, standard deviation, and Sharpe ratio of x, respectively. ar1(x) and ρ(x, y) denote 
the average sample autocorrelation of x and correlation between x and y, respectively. 
All statistics are expressed in quarterly terms. 

parameter uncertainty in the productivity growth process leads to a lower risk-free 

rate and price-dividend ratio. The risk premium, the Sharpe ratio of excess equity 

returns, and the volatility of the risk-free rate are more than two times higher with 

rational parameter learning, whereas the equity volatility also increases substantially. 

Overall, the production economy with priced parameter uncertainty and 100 years 
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of prior learning is able to match the frst and second moments of interest rates, to 

generate a large equity premium and around three quarters of its volatility, while 

capturing large equity Sharpe ratios and low price-dividend ratios. 

Furthermore, the fnancial moments remain amplifed in the model with param-

eter learning and compare well with the data even after 200 years of prior learning. 

This impact is long-lasting despite the conservative amount of parameter uncertainty 

in the calibration of the model and its simulations. Indeed, using 200-year prior in 

1947 effectively implies that households had access to the productivity data from the 

beginning of the Industrial Revolution back in 1750s. In reality, however, one would 

expect a much higher degree of parameter uncertainty due to a shorter sample of 

the productivity data. Also, there is a considerable amount of uncertainty faced by 

investors when calibrating prior beliefs, which are set at the true parameter values in 

our simulations. Finally, the household in our model faces uncertainty about parame-

ters governing business-cycle fuctuations, which are relatively frequent. Augmenting 

the productivity growth process with a rare state is likely to amplify the impact and 

persistence of parameter learning. 

The bottom of Panel B in Table 2 shows standard moments of levered dividends 

from the data and different models. According to our calibration strategy, all speci-

fcations reasonably capture the positive correlation between consumption and div-

idends, a hard-to-match moment in the real business-cycle model. Also, the speci-

fcation with rational parameter learning better captures the volatility of dividends. 

Intuitively, the impact of investment frictions on levered dividends works as follows. 

In bad times, it is more diffcult for a representative frm to reduce investment, due 

to higher costs that would lead to a smaller drop in investment compared to the sym-

metric capital adjustment cost. Thus, net profts after deducting investment appear 

less countercyclical. With the fnancial leverage, a frm’s dividends are the sum of a 

frm’s profts and the net balance of the long-term debt. The latter is proportional to 

capital and therefore declines in the recession. The overall sum of the profts and net 

issuance of the long-term debt results in procyclical dividends. 

It is well known that a frictionless production economy cannot capture a large 

equity premium and equity volatility mainly due to countercyclical dividends of the 

frm (Kaltenbrunner and Lochstoer, 2010). In this paper, we show that a combination 
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of a fnancial leverage and asymmetric adjustment cost is able to match the observed 

procyclical dividends in the data.7 In the sensitivity analysis, we further evaluate the 

importance of this feature to warrant a sizable amplifcation mechanism for produc-

tivity shocks by priced parameter uncertainty. 

Return Predictability. A large strand of the empirical literature documents that 

excess returns at an aggregate level can be predicted by variables like the investment-

capital ratio (Cochrane, 1991; Bansal and Yaron, 2004), Tobin’s Q (Pontiff and Schall, 

1998; Lewellen, 2004), the dividend-price ratio (Campbell and Shiller, 1988; Fama 

and French, 1989), and the consumption-wealth ratio (Lettau and Ludvigson, 2001). 

The conclusion of the extensive empirical literature is that high dividend yields, high 

book-to-market, and consumption-wealth ratios predict high future excess returns, 

whereas high investment rates forecast low future excess returns. Furthermore, the 

predictive regressions suggest that the slope coeffcients (in absolute terms) and R2’s 

are relatively large and tend to increase over the forecast horizon. These regularities 

pose a signifcant challenge for the standard real business-cycle model. In this sec-

tion, we compare the long-term predictability patterns generated by the production 

economy with parameter uncertainty (both the PPU and AU cases, which embody 

100 years of prior learning) and known parameters to the predictability observed in 

the post-war data. 

Tobin’s Q, the investment-capital and consumption-wealth ratios are endoge-

nously specifed in our production economy. Furthermore, we follow Epstein and 

Zin (1989) and calculate the wealth-consumption ratio as: � �1−1/ψWt 1 Ut 

Ct 
= 

1 − β Ct 
, 

where the equilibrium allocations of the agent’s utility and consumption are endoge-

nously determined. Using these model-generated quantities, we run the aforemen-

tioned predictive regressions and report results in Table 3. We fnd that all models 

can generate monotonic patterns in the slope coeffcients and R2’s over the forecast 

horizon, but the magnitudes differ across different frameworks. 

7A number of studies (Uhlig, 2007; Belo, Lin and Bazdresch, 2014; Favilukis and Lin, 2016) intro-
duce wage rigidity in the standard production model in order to generate more volatile and procyclical 
dividends. This extension of the model can further improve our results and possibly magnify the effect 
of parameter learning. However, we leave the investigation of the interplay between sticky wages and 
parameter uncertainty for future research. 
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Table 3 
Return Predictability 

Data PPU AU FI 

h Slope R2 Slope R2 Slope R2 Slope R2 

Panel A: Investment-capital ratio (ik) 

1Y −0.38 0.07 −0.35 0.07 −0.25 0.04 −0.35 0.04 
2Y −0.62 0.12 −0.59 0.12 −0.47 0.08 −0.57 0.07 
3Y −1.27 0.25 −0.78 0.16 −0.65 0.11 −0.75 0.10 
4Y −1.82 0.33 −0.96 0.20 −0.82 0.14 −0.92 0.12 
5Y −2.31 0.37 −1.12 0.24 −0.98 0.16 −1.07 0.14 

Panel B: Tobin’s Q 

1Y −0.45 0.08 −0.45 0.10 −0.31 0.06 −0.43 0.09 
2Y −1.57 0.13 −0.72 0.16 −0.54 0.10 −0.65 0.13 
3Y −1.95 0.16 −0.94 0.22 −0.73 0.14 −0.84 0.16 
4Y −2.47 0.19 −1.14 0.27 −0.91 0.17 −1.00 0.19 
5Y −2.75 0.25 −1.32 0.31 −1.06 0.20 −1.14 0.22 

Panel C: Dividend-price ratio (dp) 

1Y 0.13 0.09 0.13 0.09 0.04 0.02 0.07 0.04 
2Y 0.23 0.17 0.20 0.14 0.06 0.03 0.09 0.04 
3Y 0.28 0.20 0.26 0.17 0.07 0.04 0.10 0.05 
4Y 0.33 0.23 0.30 0.20 0.09 0.04 0.10 0.05 
5Y 0.39 0.27 0.35 0.23 0.10 0.05 0.10 0.06 

Panel D: Consumption-wealth ratio (cw) 

1Y 1.51 0.08 3.16 0.09 2.96 0.07 6.29 0.04 
2Y 4.41 0.16 4.92 0.14 5.38 0.13 10.46 0.07 
3Y 5.25 0.24 6.31 0.18 7.48 0.19 14.02 0.10 
4Y 6.47 0.28 7.55 0.22 9.35 0.24 17.24 0.12 
5Y 7.63 0.31 8.65 0.25 11.01 0.28 20.06 0.14 

This table reports the results of univariate regressions of cumulative excess 
log equity returns on several valuation and macroeconomic variables over 
various forecasting horizons (h years; 1 to 5). We use investment-capital ratio, 
Tobin’s Q, dividend-price and consumption-wealth ratios as the right-hand 
side variable (xt) in the linear projection: 

ex r = Intercept + β(h) × xt + εt+h,t+1→t+h 

where rex are h-year future excess log equity returns. The empiricalt+1→t+h 
statistics are for the U.S. data from 1947:Q2 to 2016:Q4. The PPU column 
refers to the production economy with rational pricing of parameter uncer-
tainty, whereas the AU column refers to the production economy with AU 
pricing. In both cases, parameter uncertainty includes unknown transition 
probabilities and mean growth rates. The FI column presents the results of 
the full information case where the parameters are known. For each model, 
we simulate 1,000 economies at a quarterly frequency with a sample size 
equal to the empirical counterpart. We obtain the slope coeffcients and R2’s 
for each simulation and report average sample statistics over all 1,000 artif-
cial series. 

Panels A and B show that, in the regressions with investment rates and Tobin’s 

Q, priced parameter uncertainty generates larger R2’s in both cases, while there is 
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no noticeable difference between the slope coeffcients across three models. Panel C 

shows that, in the regression with dividend yields, the model with known parame-

ters generates too small slope coeffcients and R2’s at around 0.1 and 5%, respectively. 

Surprisingly, Bayesian learning in the AU model leads to slightly worse results. In 

contrast, the model with priced parameter uncertainty displays signifcant return pre-

dictability with the magnitudes of coeffcient estimates and R2’s being comparable to 

the empirical results. Panel D shows that, in the regression with consumption-wealth 

ratios, both PPU and AU frameworks dominate the model with full information in 

terms of R2’s, while rational parameter uncertainty better captures the coeffcient 

estimates by producing the lowest slopes among the three models. 

In sum, rational pricing of the risks generated by Bayesian learning not only 

helps match unconditional moments of the macroeconomic and fnancial variables, 

but it also helps explain excess return predictability observed in the data. Intuitively, 

dynamic updating of beliefs about unknown parameters generates the time-variation 

in the equity risk premium, leading to stronger return predictability in the parameter 

learning models. Furthermore, rational pricing of parameter uncertainty amplifes 

the impact of belief revisions on the equilibrium quantities and risk premium, and 

hence it increases (in absolute terms) the slope coeffcients and R2’s compared to 

anticipating utility pricing. Finally, priced parameter uncertainty has a stronger effect 

on fnancial variables than macroeconomic quantities, and therefore there is generally 

more signifcant improvement in the regression results using dividend yields and 

consumption-wealth ratios as predictors. 

4. Inspecting the Mechanism 

4.1. Capital Adjustment Costs 

The benchmark calibration shows that asymmetric adjustment costs coupled 

with the fnancial leverage can generate procyclical dynamics of leveraged dividends 

of the frm. We examine the sensitivity of our results to the choice of the two pa-

rameters (θ+ , θ−) in the capital adjustment cost function. We present the results of 

the models with different degrees of asymmetry as well as symmetric quadratic ad-

justment costs. Specifcally, we choose three pairs of (θ+ , θ−) : (15, 15), (6, 90), (8, 80). 

Also, we present the results of the model with the more common convex capital 
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adjustment costs (Jermann, 1998): 

a2 1−1/ξϕ(x) = a1 + x , (10)
1 − 1/ξ 

in which ξ is the elasticity of the investment rate to Tobin’s Q and it is equal to 2.5.8 To 

put the models considered on a comparable footing, the adjustment cost parameters 

are chosen to deliver similar investment volatility across different calibrations. 

Table 4 presents the results of a sensitivity analysis. For convenience, we report 

summary statistics of the PPU and AU models based on a 100-year prior period. Sev-

eral observations are noteworthy. First, smaller degree of asymmetry of adjustment 

costs reduces a positive correlation between consumption and levered dividends, as 

expected. Consequently, the average equity premium and excess return volatility are 

smaller compared to the benchmark calibration, though priced parameter uncertainty 

still provides a comparable amplifcation of moments. Second, shutting down costly 

reversibility by considering symmetric adjustment costs leads to strongly counter-

cyclical frm’s dividends, and therefore the impact of rational pricing of posterior 

beliefs becomes negligible. Finally, the model with convex adjustment costs provide 

similar results by generating countercyclical frm’s cash fows, too small risk premium 

and its volatility, too high risk-free rate and price-dividend ratio. 

4.2. Priced Parameter Uncertainty with Jermann Adjustment Costs 

The previous subsection demonstrates that convex adjustment costs of Jermann 

(1998) result in countercyclical levered frm’s dividends. Although dividends re-

main quite volatile in the economy, the wrong comovement between dividends and 

consumption signifcantly undermines the model-implied moments of fnancial vari-

ables. This subsection shows that the amplifcation mechanism provided by priced 

parameter uncertainty is robust to Jermann adjustment costs once a frm’s dividends 

become procyclical. For illustrative purposes, we consider a simplifed version of the 

benchmark model with the fxed amount of labor hours (Nt = 1) and convex ad-

justment costs (ξ = 4). Also, instead of adding additional ingredients, we directly 

8We follow Boldrin, Christiano and Fisher (2001) and choose the constants a1 and a2 such that 
there are no adjustment costs in the non-stochastic steady state: 

1 
a1 = (1 − δ − exp(µ̄)) , a2 = (exp(µ̄) − 1 + δ) ,

ξ − 1 

where µ̄ is the unconditional mean of µst . 
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Table 4 
Sensitivity Analysis: Sample Moments 

Data θ+ = 15 θ+ = 6 θ+ = 8 Convex 
θ− = 15 θ− = 90 θ− = 80 ξ = 2.5 

PPU AU PPU AU PPU AU PPU AU 

Panel A: Macroeconomic Quantities 

E(Δc) 0.47 0.30 0.31 0.30 0.29 0.30 0.30 0.30 0.31 
σ(Δc) 0.72 0.93 0.89 0.96 0.96 0.95 0.95 0.87 0.88 
ar1(Δc) 0.21 0.08 0.14 0.14 0.14 0.14 0.14 0.09 0.14 

σ(Δi) 2.39 2.04 1.80 2.30 2.24 2.05 2.07 2.16 1.99 
σ(Δy) 1.28 1.18 1.17 1.20 1.18 1.17 1.17 1.22 1.19 
σ(Δn) 0.67 0.38 0.22 0.46 0.44 0.38 0.37 0.39 0.28 

ρ(Δi, Δy) 0.62 0.92 0.99 0.88 0.87 0.90 0.89 0.94 0.97 
ρ(Δc, Δy) 0.45 0.88 0.99 0.82 0.84 0.88 0.88 0.90 0.96 
ρ(Δc, Δi) 0.35 0.62 0.95 0.46 0.48 0.59 0.58 0.70 0.87 

ρ(Δn, Δi) 0.62 0.90 0.97 0.87 0.87 0.86 0.86 0.93 0.95 
ρ(Δn, Δy) 0.68 0.65 0.92 0.55 0.53 0.55 0.55 0.76 0.85 

Panel B: Financial Variables 

Debt/Equity 1.00 1.03 1.01 0.99 1.00 0.98 1.00 0.99 0.95 

E(R f ) − 1 0.23 0.31 0.46 0.20 0.45 0.20 0.46 0.31 0.46 
σ(R f ) 0.40 0.33 0.20 0.43 0.20 0.43 0.20 0.33 0.20 

E(R − R f ) 1.59 0.58 0.38 1.71 0.78 1.60 0.74 0.64 0.38 
σ(R − R f ) 7.75 2.24 1.99 5.14 4.08 4.80 3.96 2.41 2.11 
SR(R − R f ) 0.21 0.26 0.20 0.34 0.20 0.34 0.19 0.27 0.19 

E(pd) 4.38 5.14 5.32 4.20 4.80 4.25 4.83 5.07 5.34 
σ(pd) 0.34 0.35 0.32 0.21 0.27 0.20 0.25 0.36 0.34 
ar1(pd) 0.96 0.92 0.95 0.89 0.84 0.90 0.87 0.93 0.94 

E(Δd) 0.49 0.17 0.27 0.23 0.30 0.23 0.31 0.19 0.25 
σ(Δd) 5.25 12.44 8.04 7.09 13.20 5.95 9.98 11.99 9.48 
ar1(Δd) 0.01 −0.11 0.02 −0.08 −0.11 −0.08 −0.08 −0.06 −0.00 
ρ(Δc, Δd) 0.09 −0.17 −0.64 0.07 0.08 −0.02 0.00 −0.31 −0.57 

This table reports the average moments from 1,000 simulations of 260 quarters of the data from the 
production economy considered in this paper, where the transition probabilities and mean growth 
rates are assumed to be unknown. The PPU column refers to the production economy with rational 
pricing of parameter uncertainty, whereas the AU column refers to the production economy with 
AU pricing. In both cases, parameter uncertainty includes unknown transition probabilities and 
mean growth rates. E(x) and σ(x) denote the average sample mean and standard deviations of x, 
respectively. ar1(x) and ρ(x, y) denote the average sample autocorrelation of x and correlation be-
tween x and y, respectively. All statistics are expressed in annualized terms, except for correlations 
and autocorrelations expressed in quarterly terms. 

calibrate and price an exogenous dividend process to match salient moments of stock 

market dividends. 

Following Bansal and Yaron (2004), we price a levered consumption claim with 

a leverage factor λ. We formally defne quarterly log dividend growth as follows: 

ΔdM = gd + λΔct + σdεd
t , (11)t 
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Table 5 
Sensitivity Analysis : Return Predictability 

Data θ+ = 15 Convex 
θ− = 15 ξ = 2.5 

PPU AU PPU AU 

h Slope R2 Slope R2 Slope R2 Slope R2 Slope R2 

Panel A: Investment-capital ratio (ik) 

1Y −0.38 0.07 −0.09 0.04 −0.08 0.03 −0.10 0.05 −0.09 0.04 
2Y −0.62 0.12 −0.15 0.06 −0.14 0.05 −0.18 0.09 −0.16 0.06 
3Y −1.27 0.25 −0.21 0.09 −0.19 0.07 −0.25 0.11 −0.21 0.08 
4Y −1.82 0.33 −0.27 0.11 −0.24 0.09 −0.31 0.15 −0.26 0.10 
5Y −2.31 0.37 −0.33 0.14 −0.30 0.10 −0.37 0.17 −0.31 0.12 

Panel B: Tobin’s Q 

1Y −0.45 0.08 −0.21 0.04 −0.18 0.03 −0.26 0.05 −0.22 0.03 
2Y −1.57 0.13 −0.37 0.06 −0.33 0.05 −0.46 0.08 −0.39 0.06 
3Y −1.95 0.16 −0.52 0.09 −0.45 0.06 −0.62 0.11 −0.52 0.08 
4Y −2.47 0.19 −0.67 0.11 −0.58 0.08 −0.79 0.14 −0.65 0.10 
5Y −2.75 0.25 −0.82 0.14 −0.71 0.10 −0.95 0.17 −0.78 0.12 

Panel C: Dividend-price ratio (dp) 

1Y 0.13 0.09 0.01 0.02 0.01 0.01 0.02 0.04 0.01 0.02 
2Y 0.23 0.17 0.02 0.04 0.02 0.02 0.03 0.06 0.02 0.03 
3Y 0.28 0.20 0.03 0.05 0.02 0.03 0.04 0.07 0.03 0.04 
4Y 0.33 0.23 0.04 0.06 0.02 0.04 0.05 0.09 0.03 0.05 
5Y 0.39 0.27 0.05 0.08 0.03 0.05 0.06 0.11 0.03 0.06 

Panel D: Consumption-wealth ratio (cw) 

1Y 1.51 0.08 0.98 0.04 1.11 0.03 1.17 0.05 1.29 0.04 
2Y 4.41 0.16 1.67 0.06 2.03 0.06 2.02 0.08 2.29 0.08 
3Y 5.25 0.24 2.18 0.08 2.78 0.09 2.65 0.10 3.07 0.10 
4Y 6.47 0.28 2.74 0.10 3.53 0.11 3.25 0.12 3.82 0.13 
5Y 7.63 0.31 3.33 0.12 4.27 0.13 3.85 0.15 4.53 0.15 

This table reports univariate regressions of cumulative excess log equity returns on several 
valuation and macroeconomic variables over various forecasting horizons (h years; 1 to 5). 
We use investment-capital ratio, Tobin’s Q, dividend-price and consumption-wealth ratios as 
the right-hand side variable (xt) in the linear projection: 

ex r = Intercept + β(h) × xt + εt+h,t+1→t+h 

where rt
ex 
+1→t+h are h-year future excess log equity returns. The empirical statistics are for the 

U.S. data from 1947:Q2 to 2016:Q4. The PPU column refers to the production economy with 
rational pricing of parameter uncertainty, whereas the AU column refers to the production 
economy with AU pricing. In both cases, parameter uncertainty includes unknown transition 
probabilities and mean growth rates. The FI column presents the results of the full informa-
tion case where the parameters are known. For each model, we simulate 1,000 economies at 
a quarterly frequency with a sample size equal to the empirical counterpart. We obtain the 
slope coeffcients and R2’s for each simulation and report average sample statistics over all 
1,000 artifcial series. 

iidwhere εd ∼ N(0, 1), gd and σd are the dividend growth rate and volatility, respec-t 

tively. We calibrate the parameters gd, σd, and λ to make model implied statistics 
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of dividend growth consistent with the historical data. We set the mean adjustment 

gd = −0.50 and the idiosyncratic dividend volatility σd = 6.5 to match the observed 

quarterly mean growth (0.49 percent) and volatility (5.25 percent) of dividends for 

the considered period. The leverage parameter (λ) is equal to 3.5, a midpoint of the 

range from 2.5 to 4.5 used in other studies. 

Let Rt
M 
+1 denote the return on a claim delivering stochastic dividends given by 

(11). Then: 
PM PM DM 

RM t+1 + Dt
M 
+1 t+1/Dt

M 
+1 + 1 t+1 = · t+1 = . 

PM PM/DM DM 
t t t t 

Substituting this expression into the equilibrium condition (4), the price-dividend 

ratio of a claim on the aggregate stock market dividends satisfes the equation: " ! # 
PM PM DM 

t t+1 t+1 = Et Mt+1 1 + . (12)
DM DM DM 

t t+1 t 

Unconditional Moments. Now we take a closer look at the equity claim pay-

ing stochastic dividends as a leverage on consumption similarly to Bansal and Yaron 

(2004). The numerical methods used to solve for the equilibrium price-dividend ratio 

are presented in the Appendix. Table 6 shows the model-implied statistics of divi-

dend growth, excess equity returns, the Sharpe ratio and the price-dividend ratio. 

The calibrated dividends closely replicate the empirical frst and second mo-

ments as well as a positive correlation between dividends and consumption observed 

in the data. Our conservative choice of a leverage parameter produces a slightly 

higher correlation between dividend and consumption growth rates, but it is cru-

cial that the correlation remains positive in all models. Turning to equity moments, 

parameter uncertainty with AU pricing produces similar results to the production 

model with known parameters. Relative to the FI and AU cases, a priced parameter 

uncertainty approach signifcantly improves the ft of the model with the data. The 

model with parameter uncertainty and a prior sample of learning of 100 years match 

the sample equity premium, its volatility, the equity Sharpe ratio and the level of 

the price-dividend ratio well. Furthermore, the volatility of the price-dividend ratio 

comes out two to three times its value with fxed parameters, though it still remains 

lower than in the data. In the data, the log price-dividend ratio is highly persistent 

and the model with parameter learning reconciles this feature. Furthermore, looking 
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Table 6 
Calibrated Stock Market Dividend Claim 

Data PPU AU FI 

100 yrs 150 yrs 200 yrs ∞ yrs 100 yrs 

E(R f ) − 1 0.23 0.20 0.26 0.30 0.42 0.43 0.44 
σ(R f ) 0.40 0.37 0.34 0.29 0.20 0.20 0.18 

E(RM − R f ) 1.59 1.68 1.49 1.26 0.83 0.75 0.72 
σ(RM − R f ) 7.75 7.98 7.73 7.55 7.45 7.40 7.25 
SR(RM − R f ) 0.21 0.22 0.20 0.18 0.10 0.08 0.09 

E(pdM) 
σ(pdM) 

4.38 
0.34 

4.33 
0.07 

4.44 
0.05 

4.56 
0.04 

5.05 
0.03 

5.11 
0.05 

5.14 
0.02 

ar1(pdM) 0.96 0.90 0.87 0.84 0.79 0.90 0.76 

E(ΔdM) 0.49 0.49 0.47 0.45 0.42 0.40 0.40 
σ(ΔdM) 5.25 5.68 5.70 5.71 5.71 5.71 5.72 
ar1(ΔdM) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
ρ(Δc, ΔdM) 0.09 0.32 0.32 0.32 0.32 0.32 0.32 

This table reports the average moments from 1,000 simulations of 260 quarters of the 
data from the production economy considered in this paper, where the transition prob-
abilities and mean growth rates are assumed to be unknown. As in Bansal and Yaron 
(2004), equity is a claim to an exogenous dividend stream. The historical data mo-
ments are reported in the data column and correspond to the U.S. data from 1947:Q2 
to 2016:Q4. The PPU column refers to the production economy with rational pricing 
of parameter uncertainty, whereas the AU column refers to the production economy 
with AU pricing. In both cases, parameter uncertainty includes unknown transition 
probabilities and mean growth rates. The FI column presents the results of the full 
information case where the parameters are known. E(x) and σ(x) denote the average 
sample mean and standard deviations of x, respectively. ar1(x) and ρ(x, y) denote the 
average sample autocorrelation of x and correlation between x and y, respectively. All 
statistics are expressed in annualized terms, except for correlations and autocorrela-
tions expressed in quarterly terms. 

at the results based on different training samples, one can see that Bayesian learning 

and rational pricing of an investor’s subjective beliefs generates permanent shocks in 

the production economy. 

Conditional Dynamics. To better understand of the source of the model im-

provement, we focus on the conditional dynamics of the risk premium and key prices 

in response to a regime switch in mean productivity growth. For a better illustration, 

the results are presented in the economy with unknown transition probabilities. In 

particular, we consider three typical recessions lasting for 1 quarter, 3 quarters and 

2 years. The economy is assumed to grow at the mean growth µ1 and µ2 in each 

state. Before the economy enters the recession, the representative investor holds un-

biased beliefs about the uncertain parameters (the transition probabilities π11 and 

π22) assuming a 100-year prior period. We feed these simulated paths of beliefs and 
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productivity growth series into the model and calculate the equilibrium quantities as 

described in Appendix C. 

The top panels in Figure 1 show the mean beliefs about the transition proba-

bilities. Upon the onset of the recession, the mean belief about staying in the good 

regime falls sharply and stays at the same level during the recession. Once the econ-

omy returns back to the high growth state, the investor gradually updates his beliefs 

about π11 upward. In contrast, learning about π22 happens only in the recession. The 

random durations of 1 quarter, 3 quarters and 2 years correspond to the realization 

of a short economic decline, an average recession and a long downturn, respectively. 

When the agent experiences an average duration of the recession, his belief about 

π22 increases but then returns back to the initial value. The mean belief about π22 

remains permanently lower (higher) relative to the initial belief in the case of the 

recession that is shorter (longer) than the average downturn. 

Figure 1 further plots the responses of several key variables to a bad state real-

ization, that lasts for 1 quarter, 3 quarters and 2 years. The sharp decline in beliefs 

about the probability of staying in the good state leads to a reduction in the interest 

rate, a decline in the price-dividend ratio as well as an increase in the risk premium 

and equity volatility. As long as the economy stays in the low productivity growth 

regime, the agent learns about the persistence of the bad state by revising his be-

liefs upward. During this period, the interest rates are low, the price-dividend ratio 

keeps declining, while the equity Sharpe ratio, the conditional equity premium and 

volatility remain elevated. Although both AU and PPU pricing predict similar paths 

of fnancial variables in response to a negative long-run risk shock to the expected 

productivity growth, the magnitude of their responses is substantially different. 

For the anticipated utility case, one can observe very moderate responses in the 

returns, prices and conditional moments upon the onset of the bad state. Before 

the regime switch, both the conditional equity premium and the conditional Sharpe 

ratio are too low relative to the data and then they approximately double in response 

to the negative shock. Meanwhile, the conditional equity volatility increases only 

marginally in this case. In contrast, rationally priced parameter uncertainty predicts 

around 6-fold and 3-fold increases in the conditional risk premium and the equity 

Sharpe ratio, respectively. The equity volatility turns out to be highly countercyclical 
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Figure 1: Conditional Prices and Moments. This fgure shows the conditional risk-free rate, the price-
dividend and equity Sharpe ratios, as well as the conditional equity premium and its volatility. The 
simulated variables are impulse response functions to the realization of a bad state of 1 quarter, 3 
quarters and 2 years in the production economy, considered in this paper for the case of a 100-year 
prior. The economy is assumed to stay in the high productivity growth steady-state for a long period, 
and the representative agent holds unbiased initial mean beliefs. We report the conditional dynamics 
of the variables for the AU and PPU cases. For the sake of a convenient exposition, the former one 
includes only the responses to a 1-quarter bad state realization. The Appendix describes the numerical 
approach used. 
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as it increases by a factor of about 2.5. The interest rate drops more in bad times with 

parameter uncertainty, while the realized equity returns are more volatile. The price-

dividend ratio experiences about the same percentage decline upon the realization 

of the low productivity growth state in both cases. However, the level of the price-

dividend ratio is substantially higher with AU, while parameter learning generates 

reasonable levels of the price-dividend ratio. 

In sum, rational pricing of parameter uncertainty is able to reproduce salient fea-

tures of the risk-free rate, the price-dividend ratio and equity returns in the economy 

with convex adjustment costs as long as the dividends are procyclical. 

5. Conclusion 

We show that introducing parameter uncertainty into an otherwise standard real 

business cycle framework improves the model’s ability to match salient moments of 

macroeconomic and asset return data. Combined with investment frictions in the 

form of costly reversibility, parameter uncertainty gives rise to additional macroeco-

nomic risks that help to capture the low mean and volatility of the risk-free rate, the 

large equity premium and around three quarters of excess return volatility, the large 

equity Sharpe ratio and the level of the price-dividend ratio, while matching invest-

ment volatility and other moments of macroeconomic quantities. Furthermore, time-

varying posterior beliefs about unknown parameters reproduce the long-horizon pre-

dictability of excess returns by macroeconomic and valuation variables as observed in 

the data. The asset pricing implications of subjective long-run risks crucially depend 

on the introduction of a procyclical dividend process consistent with the data. 

Future research may consider extending our mechanism to a richer model with 

sticky prices and fnancial frictions. In particular, modeling wage rigidity in the 

spirit of Favilukis and Lin (2016) can help endogenously generate procyclical divi-

dend growth in the model. The interaction between sticky prices and learning effects 

may have additional interesting implications for the labor market. Motivated by a 

large strand of the literature on time-varying macroeconomic uncertainty, it is inter-

esting and straightforward to extend our methodology to learning about volatility 

risks. This might have additional asset pricing implications, especially for volatility 

sensitive assets, as well as interesting effects for the real economy. 
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Appendix 

A. Numerical Algorithm: Anticipated Utility 

In the AU case, the representative household learns about the unknown param-

eters by updating his beliefs upon the realization of new data, but ignores parameter 

uncertainty when making decisions. Thus, although the beliefs vary over time, the 

household centers the ”true” parameters at the current posterior means and keeps 

these subjective estimates constant while solving for the continuation utility and equi-

librium asset prices in each period. 

In this paper, we focus on two learning about parameters economies with un-

known transition probabilities, and unknown transition probabilities and mean growth 

rates.9 The numerical solution for both models under AU pricing simplifes to solv-

ing for the equilibrium pricing ratios when all parameters are actually known by the 

household. We fnd the solution of these simplest economies on a dense grid for 

unknown parameters (that is, unknown transition probabilities in the former model; 

unknown transition probabilities and mean growth rates in the latter model). Then 

the household uses these equilibrium pricing functions for the decision making and 

asset pricing based on the current beliefs. 

A.1. All Known Parameters 

Productivity growth is given by: 

iidΔat = µst + σεt, εt ∼ N(0, 1), 

where st is a two state Markov chain with transition matrix: 

Π = 

⎡⎣ π11 1 − π11 

⎤⎦ , 
1 − π22 π22 

where πii ∈ (0, 1). The regimes switches in st are independent of the Gaussian shocks 

εt. 

Here, we give details on how the continuation utility is computed for the econ-

omy with all parameters known. We defne the following stationary variables: � �� 
Ct It Yt Kt UtC̃t, Ĩt, Ỹt, K̃t, Ũ t = , , , , .
At At At At At 

9The methodology for the AU case (as well as the priced parameter uncertainty case in Appendix 
B) can be further extended for learning about the volatility of productivity growth. However, we leave 
this investigation for the future research. 
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 ⎪⎪
⎪⎪

The household’s problem is: 

⎧ ⎫ 1 
1−ψ" #! 1− 1 ⎪ � ψ ⎪⎨ 1− 1 �1−γ 1−γ ⎬ 

ψ At+1Ũ t = max (1 − β)Ṽ 
t + β Et Ũ 

t 
1 
+ 
− 

1 
γ · (A1) 

C̃t, Ĩt,Nt At⎪ ⎪⎩ ⎭ 
subject to the constraints: 

Ṽt = C̃t(1 − Nt)
ν (A2) 

C̃t + Ĩt = K̃ 
t 
α N1−α (A3)t � � 

Ĩt eΔat+1 K̃t+1 = (1 − δ)K̃t + ϕ ˜ K̃t (A4)
Kt 

Δat = µst + σεt, εt ∼ N(0, 1). (A5) 

Since all parameters are assumed known, st and K̃t are the only state variables in the 

economy. Ultimately, the recursive equation (A1) can be rewritten as: 

Ũ t(st, K̃t) (A6) ⎧ ⎫ 1 ⎨ 1− 1 � h � i� 1− ψ 
1 ⎬ 1−ψ 

ψ �1−γ (1−γ)Δat+1 1−γ 
= max (1 − β)Ṽ 

t + β Et Ũ t+1 st+1, K̃t+1 · e 
C̃t, Ĩt,Nt ⎩ ⎭ 

To solve the recursion (A6), we use the the value function iteration algorithm. In 

particular, the numerical algorithm proceeds as follows: 

1. We fnd the de-trended steady state capital K̃ ss, assuming the productivity growth 

equals the steady state level predicted by a Markov-switching model. The state 

space for capital normalized by technology is set at [0.5K̃ ss, 3.5K̃ ss]. We further 

use nk = 50 points on a grid for capital in the numerical computation. A denser 

grid does not lead to signifcantly different results. 

2. For any level of capital K̃t at time t, we construct a grid for Ĩt with uniformly 

distributed points between 0 and K̃ 
t 
α . Specifcally, we use ni = 100 points. 

3. For each pair (K̃t, Ĩt) on the grids for K̃t, and Ĩt, we fnd Nt = Nt(K̃t, Ĩt) that 

solves 

max(K̃α N1−α − Ĩt)(1 − Nt)
ν 

Nt 
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4. For the expectation, we use the Gauss-Hermite quadrature with ngh = 8 points. 

Using the quadrature weights and nodes, we can calculate the expression on 

the right hand side. 

5. We solve the optimization problem in the Bellman equation (A6) subject to the 

constraints (A2)-(A5) and update a new value function Ũ t = Ũ t(st, K̃t) given an 

old one Ũ t+1 = Ũ t+1(st+1, K̃t+1). Note that the optimal labor hours Nt corre-

sponding to a given capital K̃t and investment Ĩt are taken from Step 3. 

6. We iterate Steps 2-5 by updating the continuation utility on each iteration until 

a suitable convergence is achieved. Specifcally, the stopping rule is that the 

distance between the new and old value functions satisfes |Ũ t+1 − Ũ t|/|Ũ t| < 

10−12. 

B. Numerical Algorithm: Priced Parameter Uncertainty 

The numerical solution for the case of priced parameter uncertainty consists of 

two steps.10 First, we solve for the equilibrium pricing ratios when true parameters 

are actually known by the household (by assumption, these are learned at T = ∞). We 

fnd the solution of this simplest limiting economy on a dense grid of state variables. 

Second, we use the known parameters boundary economies as terminal values in the 

backward recursion to obtain the equilibrium function at time t. For the frst step, 

Appendix A outlines details of the numerical algorithm for all known parameters. In 

this section, we present details of the solution methodology employed at the second 

step for two models with unknown transition probabilities, and unknown transition 

probabilities and mean growth rates. 

B.1. Unknown Transition Probabilities 

Productivity growth is given by: 

Δat = µst + σεt, εt 
iid∼ N(0, 1), 

10Johnson (2007) uses this solution methodology in a case with parameter learning and power 
utility. Collin-Dufresne, Johannes and Lochstoer (2016) apply this approach to the case of Epstein-Zin 
utility in the endowment economy. We further extend the numerical solution to the production-based 
setting with Epstein-Zin preferences of the representative household. 
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where st is a two state Markov chain with a transition matrix: 

Π = 

⎡⎣ π11 1 − π11 

⎤⎦ , 
1 − π22 π22 

with πii ∈ (0, 1). The regimes switches in st are independent of the Gaussian shocks 

εt. 

In the case of unknown transition probabilities, the representative household 

knows true values of the parameters within each state (µ1, µ2, σ) and observes states 

(st) but does not know the transition probabilities (π11, π22). At time t = 0, the 

household holds priors about uncertain probabilities in the transition matrix and 

updates beliefs each period upon realization of new series and regimes. 

We assume a Beta distributed prior for unknown transition probabilities and, 

hence, posterior beliefs are also Beta distributed. The Beta distribution has the prob-

ability density function of the form: 

πa−1(1 − π)b−1 
p(π|a, b) = ,

B(a, b) 

where B(a, b) is the Beta function (a normalization constant), a and b are two positive 

shape parameters. We are particularly interested in the expected value of the Beta 

distribution defned by: 
a

E[π|a, b] = . 
a + b 

We use two pairs of hyperparameters parameters (a1, b1) and (a2, b2) for unknown 

transition probabilities π11 and π22, respectively. At time t, the household uses Bayes’ 

rule and the fact that states are observable to update hyperparameters for each state 

i as follows: 

ai,t = ai,0 + #(state i has been followed by state i), (B7) 

bi,t = bi,0 + #(state i has been followed by state j), (B8) 

given the initial prior beliefs ai,0 and bi,0. 

Once we fnd the limiting boundary economies on the frst step, we perform a 

31 



���

backward recursion using the following state variables: 

τ1,t = a1,t − a1,0 + b1,t − b1,0 (B9) 
a1,t

λ1,t = Et[π11] = (B10)
a1,t + b1,t 

τ2,t = a2,t − a2,0 + b2,t − b2,0 (B11) 
a2,t

λ2,t = Et[π22] = (B12)
a2,t + b2,t 

To defne the equilibrium recursion, note that Xt = {τ1,t, λ1,t, τ2,t, λ2,t} are suffcient 

statistics for the agent’s priors. We can update Xt+1 using the equations (B7)-(B12), 

the next period regime, and suffcient statistics: 

Xt+1 = f (st+1, st, Xt). 

For notational purposes, it might be useful to denote Xs ≡ {τ1,t, λ1,t, τ2,t, λ2,t} andt 

XΔa ≡ {K̃t}, where the superscripts s and Δa indicate that variables in the vectors t 

Xs and XΔa are a function of the observed state realization st and a function of the t t � � 
Xt

s , XΔa 
trealized productivity growth, respectively. Denote Xt = . Using these nota-

tions, we can rewrite 

Ũ t+1(st+1, Xt+1) = Ũ t+1(st+1, st, Xt
s , Δat+1, XΔa)t 

to better indicate the dependence of state variables on specifc shocks. Ultimately, the 

recursive equation (A1) can be rewritten as: 

Ũ t(st, Xt) (B13) ⎧⎨ ⎩(1 − β)Ṽ 

1 ��h� i� 1− ψ 
1 1−ψ 

1− ψ 
1 

Et Ũ1−γ st+1, st, Xt
s , Δat+1, XΔa · e(1−γ)Δat+1 st, Xt 

1−γ 

t+1 t+ βmax= ,t
C̃t, Ĩt,Nt 
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where the expectation on the right hand side is equivalent to: h � � i 
U1−γ (1−γ)Δat+1Et ˜ st+1, st, Xt

s , Δat+1, XΔa · e st, Xtt+1 t h h � � i i 
= Et Et Ũ1−γ st+1, st, Xt

s , Δat+1, Xt 
Δa · e(1−γ)Δat+1 st+1, st, Xt st, Xtt+1 

2 
= ∑ P(st+1|st, Xt

s) ... 
st+1=1 h � � i 

× Et Ũ 
t 
1 
+ 
− 

1 
γ st+1, st, Xt

s , Δat+1, Xt 
Δa · e(1−γ)Δat+1 st+1, st, Xt 

2 
= ∑ Et(πst+1,st |st, Xt

s) ... 
st+1=1 h � � i 

U1−γ (1−γ)Δat+1× ˜ st+1, st, Xt
s , Δat+1, XΔa · e , (B14)Et t+1 t st+1, st, Xt 

where the frst and second equalities follow from the independency of the regime 

changes and the Gaussian shocks to productivity growth (st+1 and εt+1). Let the 

conditional density of πst+1,st be g(πst+1,st |st, Xt
s), then the third equality follows from: Z 1 

P(st+1|st, Xt
s) = πst+1,st g(πst+1,st |st, Xt)dπst+1,st = Et(πst+1,st |st, Xt)

0 

Furthermore, using the defnition of our state variables, this last conditional expecta-

tion equals λst,t or 1 − λst,t. 

Note that before choosing the optimal consumption, investment and labor hours 

in (B13), we need to solve numerically frst the inner expectation, which is equiva-

lently represented by (B14). Hopefully, we have an analytical expression for the con-

ditional expectation of transition probabilities in (B14), which is either λst,t or 1 − λst,t. 

For the second conditional expectation in (B14), we do not have a closed form since 

the continuation utility depends on the realized productivity growth through K̃t+1. 

Therefore, we use quadrature-type numerical methods to evaluate this expectation as 

follows: h � � i 
Et Ũ 

t 
1 
+ 
− 

1 
γ st+1, st, Xt

s , Δat+1, Xt 
Δa · e(1−γ)Δat+1 st+1, st, Xt 

J h � � i 
U1−γ (1−γ)Δa(j)≈ ωε(j) ˜ st+1, st, Xt

s , Δa(j), XΔa · e , (B15)∑ t+1 t st+1, st, Xt 
j=1 

where ωε(j) is the quadrature weight corresponding to the quadrature node nε(j) 

used for the integration of a standard normal shock εt+1 in productivity growth. The 

observed realized productivity growth, Δa(j), and a state variable, Xt 
Δ 
+ 
a 
1(j) = K̃t+1(j), 
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are updated as follows: 

Δa(j) = µst+1 (B16) 

e 

+ σ · nε(j) 

Δa(j) K̃t+1(j) = (1 − δ)K̃t + ϕ 

� � 
Ĩt K̃t, (B17)
K̃t 

where 

Ĩt = K̃ 
t 
α N1−α − C̃t. (B18)t 

Finally, the numerical backward recursion can be performed by using (B13)-(B18). 

The boundary conditions are defned by the limiting economies τ1,∞ and τ2,∞, where 

the transition probabilities π11 and π22 are known. 

B.1.1. Solving for a Dividend Claim 

We also solve for the price-dividend ratio of the equity claim written on ag-

gregate dividends, which are defned as a leverage to aggregate consumption. Let 

exogenous aggregate dividends be given by: 

Δdt+1 = gd + λΔct+1 + σdεd,t+1, � �� � 
where gd = 1 − λ E(P(s∞ = 1|π11, π22))µ1 + E(P(s∞ = 2|π11, π22))µ2 and 

P(s∞ = i|π11, π22) is the ergodic probability of being in state i conditional on the tran-

sition probabilities π11 and π22. Note that the long run mean of dividends growth, 

gd, is changing under the household’s fltration, though the true long run growth is 

constant. The subjective beliefs about the true parameter values induce fuctuations 

in gd, which can be expressed as gd = gd(st+1, st, Xt). 

The equilibrium condition for the price-dividend ratio is standard in the Epstein-

Zin economy and is given by: 

PDt = Et 

⎡ ⎢⎢⎣β 

� ���− 1 
ψ 

⎛⎝ ⎞⎠ 
1 
ψ −γ �

C̃t+1 
�− 1 

ψ
� 

At+1 
� � ˜ At+1Ut+1 · At Dt+1� ̃

Rt Ut+1 · 
�� 

At+1 Dt 
(PDt+1 + 1)

C̃t At 
At 

(B19) 

Similarly to the solution for the value function, we rewrite all variables in the re-

cursion (B19) as a function of the state variables and further use quadrature-type 

numerical methods to evaluate expectations on the right hand side of (B19). Addi-

tionally, we update the long run dividends growth, gd(st+1, st, Xt), which is in fact 

⎤ ⎥⎥⎦ 
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random. Consequently, the equilibrium recursion used to solve the model is then: 

PDt(st, Xt, ) 

Et 

⎡ ⎢⎢⎣ Xs ,t t� 
⎤ ⎥⎥⎦ 

��� 
λ− 1 (Δc̃t+1+Δat+1) ˜ Δat+1

ψ Ut+1·eβe 
Rt(Ũ t+1·eΔat+1 ) 

� 1 
ψ −γ 

... 
= 

PDt+1 
� 

egd(st+1,st,Xt)+0.5σ2 
d · st+1, st, Xt

s , Δat+1, XΔa 
t + 1× 

Et 

⎡ ⎢⎢⎣Et 

⎡ ⎢⎢⎣ 
��� � 1 

ψ −γ
λ− 1 (Δc̃t+1+Δat+1) ˜ Δat+1

ψ Ut+1·eβe ... 
Rt(Ũ t+1·eΔat+1 ) st+1, st, Xt st, Xt= �� 

+ 1egd(st+1,st,Xt)+0.5σ2 
d st+1, st, Xt

s , Δat+1, XΔa 
tPDt+1× · 

2 
= ∑ P(st+1|st, Xt

s) ... 
st+1=1 ⎡ ⎢⎢⎣ 

⎤ ⎥⎥⎦ 
��� � 1 

ψ −γ
λ− 1 (Δc̃t+1+Δat+1) ˜ Δat+1

ψ Ut+1·eβe ... 
Rt(Ũ t+1·eΔat+1 )× Et st+1, st, Xt� 

PD 1t+ 
�� 

egd(st+1,st,Xt)+0.5σ2 
d st+1, st, Xt

s , Δat+1, XΔa 
t + 1× · 

2 
= ∑ Et(πst+1,st |st, Xt

s) ... 
st+1=1⎡ ⎢⎢⎣ 

⎤ ⎥⎥⎦ 
� � 1� � 

ψ −γ
λ− 1 (Δc̃t+1+Δat+1) Ũ t+1·eΔat+1

βe ψ ... 
Rt(Ũ t+1·eΔat+1 )× Et st+1, st, Xt 

egd(st+1,st,Xt)+0.5σ2 
d · PDt+1 st+1, st, Xt

s , Δat+1, XΔa 
t 

�� 
+ 1× 

Again, the conditional expectation of transition probabilities under the household’s 

fltration permits an analytical formula, while the inner expectation in the expression 

above can be evaluated using the quadrature-type integration methods. 

B.1.2. Limiting Economies - Boundary Values for General Case 

The key assumption of the numerical solution is that the household eventually 

learns the true values of all uncertain parameters in the productivity growth. Thus, 

the simplest limiting economy is the one where all parameters are known, including 

both transition probabilities π11 and π22. In this case, st and Kt are the only state 

variables in the economy. We employ the numerical solution methodology outlined 

for AU pricing for this limiting economy. Specifcally, we fnd the continuation utility 

(and the price-dividend ratio of the equity claim) for a grid on π11 and π22. 
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B.2. Unknown Transition Probabilities and Unknown Mean Growth Rates 

Productivity growth is given by: 

Δat = µst + σεt, 

where εt 
iid∼ N(0, 1), st is a two state Markov chain with the transition matrix: 

Π = 

⎡⎣ π11 1 − π11 

⎤⎦ , 
1 − π22 π22 

where πii ∈ (0, 1). The regimes switches in st are independent of the Gaussian shocks 

εt. 

As before, we assume that the representative household does not know the tran-

sition probabilities (π11, π22). Additionally, the mean growth rates within each state 

(µ1, µ2) are assumed to be unknown, while the realization of states (st) and pro-

ductivity volatility (σt) remain observable. Due to the limitations of the numerical 

solution algorithm under the prices parameter uncertainty case, we are unable to ex-

tend the economy to unobservable regimes, while it is still possible to assume that 

the household does not know a volatility parameter. Nevertheless, the extension to 

the case with all parameters unknown, including volatility except for states, is quite 

straightforward, and we leave the investigation of learning about volatility parame-

ters for future research. 

Regarding priors, we assume a conjugate prior for transition probabilities and 

mean growth rates within each state i : the Beta distributed prior and the truncated 

normal distributed prior, respectively. The updating equations for two pairs of hy-

perparameters (a1, b1) and (a2, b2) remain as before. Additionally, we denote hyper-

parameters of the truncated normal distributed prior for mean growth in state i by 

µi,t and σi,t, which are updated by the Bayes’ rule as follows: 

σ2 

µi,t+1 = µi,t + 1st+1=i
i,t (Δat+1 − µi,t) (B20)

σ2 + σ2 
i i,t 

σ−2 · σ−2 + σ−2 = 1st+1=i , (B21)i,t+1 i i,t 

where 1 is an indicator function that equals 1 if the condition in subscript is true and 

0 otherwise. 

Note that since the variance hyperparameters σ1,
2 

t and σ2,
2 

t are a function of the 

time, the following 6-dimensional vector Xt ≡ {τ1,t, λ1,t, τ2,t, λ2,t, µ1,t, µ2,t} is suffcient 
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statistics for the priors. Thus, we can defne Xt+1 using the equations (B7)-(B12), 

(B20)-(B21), the next period regime, and suffcient statistics at time t : 

Xt+1 = f (st+1, st, Xt). 

Following the notations of a previous section, we defne Xs ≡ {τ1,t, λ1,t, τ2,t, λ2,t}t 

and XΔa ≡ {K̃t, µ1,t, µ2,t}, where the superscripts s and Δa indicate that variables t 

in the vectors Xs and XΔa are a function only of the observed state realization stt t 

and a function of (also) the realized productivity growth, respectively. Thus, Xt = � � 
Xt

s , XΔa . Using these notations, we can rewrite t 

Ũ t+1(st+1, Xt+1) = Ũ t+1(st+1, st, Xt
s , Δat+1, XΔa)t 

to better indicate the dependence of state variables on specifc shocks. Ultimately, the 

recursive equation (A1) is of the same form: 

Ũ t(st, Xt) (B22) ⎧ ⎫ 1 
1−ψ⎨ 1− 1 � h � � i� 1− ψ 

1 ⎬ 
ψ U1−γ = max (1 − β)C̃ + β Et ˜ st+1, st, Xt

s , Δat+1, XΔa · e(1−γ)Δat+1 st, Xt 
1−γ 

,t t+1 t˜ ⎩ ⎭Ct, Ĩt 

where the expectation on the right hand side is equivalent to: h � � i 
U1−γ (1−γ)Δat+1Et ˜ st+1, st, Xt

s , Δat+1, XΔa · e st, Xtt+1 t 

2 
= ∑ Et(πst+1,st |st, Xt

s) ... 
st+1=1 h � � i 

U1−γ (1−γ)Δat+1× Et ˜ st+1, st, Xt
s , Δat+1, XΔa · e st+1, st, Xt . (B23)t+1 t 

In this case, we compute the conditional expectation in (B23) by integrating over 

conditional distribution of mean growth rates as well as Gaussian distribution of the 

error term in productivity growth. In particular: h � � i 
Et Ũ1−γ st+1, st, Xt

s , Δat+1, Xt 
Δa · e(1−γ)Δat+1 st+1, st, Xtt+1 " # 

J K � � 
U1−γ (1−γ)Δa(j,k)≈ ∑ ωε(j) ∑ ωµst+1 

(k) · ˜ 
t+1 st+1, st, Xt

s , Δa(j, k), Xt 
Δa · e st+1, st, Xt , 

j=1 k=1 

(B24) 

where ωε(j) is the quadrature weight corresponding to the quadrature node nε(j) 

used for the integration of a standard normal shock εt+1 in productivity growth, and 
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ωµst+1 
(k) is the quadrature weight corresponding to the quadrature node nµst+1 

(k) 

used for the integration of a truncated standard normal variable µst+1 . The observed 

realized productivity growth, Δa(j, k), and a state variable, Xt 
Δ 
+ 
a 
1(j, k) = K̃t+1(j, k), are 

updated as follows: 

Δa(j, k) = nµst+1 
(k) + σ · nε(j) (B25)� � 

ĨtΔa(j,k) ˜e Kt+1(j, k) = (1 − δ)K̃t + ϕ ˜ K̃t, (B26)
Kt 

where 

Ĩt = K̃ 
t 
α N̄1−α − C̃t. (B27) 

Finally, the numerical backward recursion can be performed by using (B22)-

(B27). The boundary conditions are defned by the limiting economies τ1,∞ and τ2,∞, 

where the transition probabilities π11 and π22, and mean growth rates µ1 and µ2, are 

known. 

B.2.1. Solving for a Dividend Claim 

We also solve for the price-dividend ratio of the equity claim written on ag-

gregate dividends, which are defned as a leverage to aggregate consumption. Let 

exogenous aggregate dividends be given by: 

Δdt+1 = gd + λΔct+1 + σdεd,t+1, � �� � 
where gd = 1 − λ E(P(s∞ = 1|π11, π22))µ1 + E(P(s∞ = 2|π11, π22))µ2 and 

P(s∞ = i|π11, π22) is the ergodic probability of being in state i conditional on the 

transition probabilities π11 and π22. 

Note that the long run mean of dividends growth, gd, is changing under the 

household’s fltration, though the true long run growth is constant. The subjective 

beliefs about the true parameter values induce fuctuations in gd, which can be ex-

pressed as gd = gd(st+1, st, Xt). The equilibrium condition for the price-dividend 

ratio and the equilibrium recursion remain the same as in the ”unknown transition 

probabilities” model. The only difference between the two models lie in the way 

we calculate the conditional expectations. With unknown transition probabilities and 

mean growth rates in the productivity growth process, we employ quadrature-type 

integration methods analogous to solving for the continuation utility in this economy. 
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B.2.2. Limiting Economies - Boundary Values for General Case 

The key assumption of the numerical solution is that the household eventually 

learns the true values of all uncertain parameters in the productivity growth. Thus, 

the simplest limiting economy is the one where all parameters are known, including 

both transition probabilities π11 and π22, mean growth rates µ1 and µ2. In this case, st 

and Kt are the only state variables in the economy. We employ the numerical solution 

methodology outlined for AU pricing for this limiting economy. Specifcally, we fnd 

the continuation utility (and the price-dividend ratio of the equity claim) for a grid 

on π11, π22, µ1 and µ2. 

B.3. Existence of Equilibrium 

Similarly to Collin-Dufresne, Johannes and Lochstoer (2016) and Johannes, Lochstoer 

and Mou (2016), the existence of the equilibrium in our production-based economy 

relies on the fact that the value function is concave and fnite for all parameters known 

economies. Therefore, we verify that these conditions are satisfed for all limiting 

boundary economies. 

C. Impulse Responses 

In this section, we consider the numerical procedure used to obtain impulse 

responses of key macroeconomic and fnancial variables to a regime switch in the 

mean growth rate of productivity. In particular, we assume that the economy stays 

in the high growth state for a long period and then moves to a low growth regime at 

time 0. We further consider three possible scenarios where the economy remains in 

the bad regime for one quarter, three quarters, or two years before returning to the 

good state. The details of the numerical algorithm look as follows. 

First, we fnd the steady state of capital, K̃, in the high growth regime, st = 

1, assuming unbiased parameter beliefs, Xt, which are centered at the true values. 

Formally, K̃ solves the equation: 

K̃ = f k(s−1 = 1, X−1, K̃), 

where f K(·) is the policy function for capital assuming the productivity growth is 

high forever. 

Second, suppose that the economy starts in the high growth steady state before 

time 0 and the investor holds unbiased parameter beliefs. Then unexpectedly the 
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economy shifts to to the bad state at time 0 and stays there for τ periods. Using the 

policy function, capital is computed recursively as: 

K̃−1 = K̃, 

K̃0 = f k(s0 = 2, X0, K̃−1), ... 

K̃τ = f k(sτ = 2, Xτ, K̃τ−1), 

K̃τ+1 = f k(sτ+1 = 1, Xτ+1, K̃τ), ... 

K̃t = f k(st = 1, Xt, K̃t−1), ∀t, 

where investor’s parameter beliefs are updated in each period. 

Third, we use policy functions for investment and consumption to obtain equi-

librium values of Ĩt and C̃t. Finally, we calculate the remaining macroeconomic and 

fnancial variables using the updated state variables. 
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