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Abstract 

We examine how extreme market risks are priced in the cross-section of asset returns at vari-
ous horizons. Based on the decomposition of covariance between indicator functions captur-
ing fluctuations of different parts of return distributions over various frequencies, we define 
a quantile spectral beta representation that characterizes asset’s risk generally. Nesting the 
traditional frameworks, the new representation explains tail -specific as well as horizon-, or 
frequency-specific spectral risks. Further, we work with two notions of frequency-specific 
extreme market risks. First, we define tail market risk that captures dependence between 
extremely low market and asset returns. Second, extreme market volatility risk is character-
ized by dependence between extremely high increments of market volatility and extremely 
low asset return. Empirical findings based on the datasets with long enough history, 30 
Fama-French Industry portfolios, and 25 Fama-French portfolios sorted on size and book-
to-market support our intuition. We reach the same conclusion using stock-level data as 
well as daily data. These results suggest that both frequency-specific tail market risk and 
extreme volatility risk are priced and our final model provides significant improvement over 
specifications considered by previous literature. 
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1 Introduction 

Classical result of asset pricing literature states that price of an asset should be equal to its 
expected discounted payoff. In the Capital Asset Pricing Model (CAPM) introduced by Sharpe 
(1964), Lintner (1965), Black (1972), we assume that stochastic discount factor can be approxi-
mated by return on market portfolio and thus expected excess returns can be fully described by 
their market betas based on covariance between asset return and market return. Yet, decades 
of the consequent research show that we are unable to sufficiently explain the cross-section of 
asset returns with this notion. Instead, literature calls for more accurate characterization of 
risks associated with assets that will better reflect preferences of investors. We aim to show that 
in order to understand formation of expected returns, one has to look deeper into the features of 
asset returns that are crucial in terms of preferences of a representative investor. We argue that 
the two important features are risk related to tail events, and frequency-specific (spectral) risk 
capturing behavior at different investment horizons. To characterize the risks, we derive novel 
quantile spectral representation of beta. Our work nests classical representation that simply 
averages beta with equal weights over different quantile levels, as well as frequencies. 
Economists has long recognized that decisions under risk are more sensitive to changes in 

probability of possible extreme events compared to probability of a typical event. The expected 
utility might not reflect this behavior since it weights probability of outcomes linearly. Conse-
quently, CAPM beta as an aggregate measure of risk may fail to explain the cross-section of 
asset returns. Several alternative notions emerged in the literature. Mao (1970) presents survey 
evidence showing that decision makers tend to think of risk in terms of the possibility of out-
comes below some target. For an expected utility maximizing investor, Bawa and Lindenberg 
(1977) has provided a theoretical rationale for using lower partial moment as a measure of port-
folio risk. Based on the rank-dependent expected utility due to Yaari (1987), Polkovnichenko 
and Zhao (2013) introduce utility with probability weights and derive corresponding pricing 
kernel. More recently, Ang et al. (2006); Lettau et al. (2014) argue that downside risk – risk of 
negative returns – is priced across asset classes and is not captured by CAPM betas. Further, 
Farago and Tédongap (2018) extend the results using general equilibrium model based on gen-
eralized disappointment aversion and show that downside risks in terms of market return and 
market volatility are priced in the cross-section of asset returns.1 

The results described above leads us to question the role of the expected utility maximizers 
in asset pricing. A recent strand of literature solves the problem by considering quantile of the 
utility instead of expectation. This literature complements the previously described empirical 
findings focusing on downside risk as it highlights the notion of economic agents particularly 
averse to outcomes below some threshold compared to outcomes above this threshold. The 
concept of a quantile maximizer and its features was pioneered by Manski (1988), and later 
axiomatized by Rostek (2010). Most recently, de Castro and Galvao (2019) develop a model 
of quantile optimizer in a dynamic setting. A different approach to emphasizing investor’s 
aversion towards least favorable outcomes defines theory based on Choquet expectations. This 

1In addition, it is interesting to note that equity and variance risk premium are also associated with com-
pensation for jump tail risk (Bollerslev and Todorov, 2011). More general exploration of asymmetry of stock 
returns is provided by Ghysels et al. (2016), who propose a quantile-based measure of conditional asymmetry 
and show that stock returns from emerging markets are positively skewed. Conrad et al. (2013) use option 
price data and find a relation between stock returns and their skewness. Another notable approach uses high 
frequency data to define realized semivariance as a measure of downside risk (Barndorff-Nielsen et al., 2008). 
From a risk-measure standpoint, dealing with negative events, especially rare events, is highly discussed theme 
in both practice and academics. The most prominent example is Value-at-Risk (Adrian and Brunnermeier, 2016; 
Engle and Manganelli, 2004). 
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approach is based on distortion function that alters probability distribution of future outcomes 
by accentuating probabilities associated with least desirable outcomes. This approach was 
utilized in finance, for example, by Bassett Jr et al. (2004). 
Whereas aggregating linearly weighted outcomes may not reflect the sensitivity of investors 

to tail risk, aggregating linearly weighted outcomes over various frequencies, or economic cycles 
may not reflect risk specific to different investment horizons. One can suspect that an investor 
cares differently about short-term and long-term risk according to their preferred investment 
horizon. Distinguishing between long-term and short-term dependence between economic vari-
ables was proven to be an insightful approach since the introduction of co-integration (Engle 
and Granger, 1987). Frequency decomposition of risk thus uncovers another important fea-
ture of risk which cannot be captured solely by market beta which captures risk averaged over 
all frequencies. This recent approach to asset pricing enables to shed light on asset returns 
and investor’s behaviour from a different point of view highlighting heterogeneous preferences. 
Empirical justification is brought by Boons and Tamoni (2015) and Bandi and Tamoni (2017) 
who show that exposure in long-term returns to innovations in macroeconomic growth and 
volatility of matching half-life is significantly priced in variety of asset classes. The results are 
based on decomposition of time series into components of different persistence proposed by 
Ortu et al. (2013). Piccotti (2016) further sets portfolio optimization problem into frequency 
domain using matching of utility frequency structure and portfolio frequency structure, and 
Chaudhuri and Lo (2016) present approach to constructing mean-variance-frequency optimal 
portfolio. This optimization yields mean-variance optimal portfolio for a given frequency band, 
and thus optimizes portfolio for a given investment horizon. 
From a theoretical point of view, preferences derived by Epstein and Zin (1989) enables to 

study frequency aspects of investor’s preferences, and quickly became a standard in the asset 
pricing literature. With the important results of Bansal and Yaron (2004), long-run risk started 
to enter asset pricing discussions. Dew-Becker and Giglio (2016) investigate frequency-specific 
prices of risk for various models and conclude that cycles longer than business cycle are signif-
icantly priced in the market. Other papers utilize frequency domain and Fourier transform to 
facilitate estimation procedures for parameters hard to estimate using conventional approaches. 
Berkowitz (2001) generalizes band spectrum regression and enables to estimate dynamic ratio-
nal expectations models matching data only in particular ways, for example, forcing estimated 
residuals to be close to white noise. Dew-Becker (2016) proposes spectral density estimator of 
long-run standard deviation of consumption growth, which is a key component for determining 
risk premiums under Epstein-Zin preferences, and shows its superior performance compared to 
the previous approaches. Crouzet et al. (2017) develop model of multi-frequency trade set in 
frequency domain and show that restricting trading frequencies reduces price informativeness 
at those frequencies, reduces liquidity and increases return volatility. 
The debate clearly indicates that the standard assumptions leading to classical asset pricing 

models do not correspond with reality. In this paper, we suggest that more general pricing 
models have to be defined and they should take into consideration both asymmetry of depen-
dence structure among stock market, and different behavior of investors at various investment 
horizons. 
The main contribution of this paper is threefold. First, based on the frequency decomposi-

tion of covariance between indicator functions, we define the quantile spectral beta of an asset 
capturing tail-specific as well as frequency-specific risks and corresponding ways of measuring 
the beta. The newly defined notion of beta can be viewed as disaggregation of a classical beta 
to a frequency-, and tail- specific beta. With this notion, we examine how extreme market risks 
are priced in the cross-section of asset returns at various horizons. We define frequency-specific 
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tail market risk that captures dependence between extremely low market and asset returns, as 
well as extreme market volatility risk that is characterized by dependence between extremely 
high increments of market volatility and extremely low asset return. 
Second, we motivate emergence of these types of risks in a simple theoretical model in which 

the representative investor cares differently about long- and short-term risk associated with an 
asset. Moreover, we incorporate notion of aversion to losses into the investor’s decision making 
in such framework. This model then leads to the four-factor representation of the risk premium 
and is used for building our empirical model. 
Third, based on the quantile spectral betas, we estimate models that provides considerable 

improvements in explaining cross-section of asset returns. Results on a 30 Fama-French Industry 
portfolios, and 25 Fama-French portfolios sorted on size and book-to-market suggest extreme 
market risk is priced in cross-section of asset returns and it is differently priced for long and 
short horizon. This extreme market risk is characterized by the risk of extremely low returns or 
extremely high volatility. Since most of the state of the art models do not perform very well on a 
daily sampling frequency, we also challenge our models with daily data for the same portfolios, 
and finally with individual stock data from the CRSP database. We document substantial 
improvements in both additional datasets. 
The rest of the paper has the following structure. Section 2 introduces the concept of 

quantile spectral betas later employed in the empirical analysis. Section 3 defines a simple 
theoretical model which incorporates both investment horizons and aversion to losses. Section 
4 defines the empirical models used for testing significance of extreme risks. Section 5 conducts 
the empirical analysis of the extreme risks and provides definition of tested robustness checks. 
Section 6 concludes. In Appendix A, we provide some details on the derivation of the theoretical 
model, in Appendix B, we shed light on the estimation procedure of the quantile spectral betas, 
and the rest of the Appendix report results from the robustness checks. 

Quantile spectral beta: measuring the tail risks across hori-
zons 

The empirical search for explanation of why different assets earn different average returns centers 
around return factor models arising from the Euler equation. With the only assumption of ‘no 
arbitrage’, a stochastic discount factor mt+1 exists and, for the ith excess return ri,t+1 satisfies 
E[mt+1ri,t+1] = 0, hence � � 

Cov(mt+1ri,t+1) Var(mt+1)E[ri,t+1] = − = βiλ (1)
Var(mt+1) E[mt+1] 

where loading βi can be interpreted as exposure to systematic risk factors, and λ as the risk 
price associated with factors. 
Empirical literature centering around this expression assumes silently that the risk factors 

aggregate information over the distribution of returns as well as investment horizons. Part of 
the literature tracing back to early work by Roy (1952); Markowitz (1952); Hogan and Warren 
(1974); Bawa and Lindenberg (1977) argue that the reason we do not empirically find the 
support for the above thinking is that pricing relationship is fundamentally too simplistic. If 
investors are averse to volatility only when it leads to losses, not gains, the total variance as 
a relevant measures of risk should be disaggregated. Later work by Ang et al. (2006); Lettau 
et al. (2014); Farago and Tédongap (2018) show that investors require additional premium 
as a compensation for exposures to disappointment-related risk factors called downside risk. 
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Recently, Lu and Murray (2019) argue that bear risk capturing the left tail outcomes is even 
more important, and Bollerslev et al. (2019) introduce betas based on semi-covariances. In 
contrast to the promising results, Levi and Welch (2019) conclude that estimated downside 
betas do not provide superior predictions compared to standard aggregated beta, partially due 
to the difficulties of accurately determining downside betas from daily returns. 
With a similar argument of too simplistic pricing relation, another part of the literature 

looks at frequency decomposition and explores the fact that risk factors being claims on the 
consumption risk should be frequency dependent since consumption has strong cyclical compo-
nents (Bandi et al., 2018; Dew-Becker and Giglio, 2016). 
These studies however fail to fully account for the horizon specific information in tails while 

one of the main reasons turns to be inability to measure such risks. Here we propose robust 
methods for measurement of such risks, and we argue that exploring the risk related to tail 
events as well as frequency-specific risk is crucial. 
First, we define quantile risk measure based on covariance between indicator functions, which 

has natural economic interpretation in terms of probabilities. Second, we introduce frequency 
decomposition, and combine these two frameworks into quantile spectral risk measure, which 
is the building block for our empirical model. This measure enables to robustly test for the 
presence of extreme market risks over various horizons in the asset prices. The aim is not to 
convince the reader that the functional form of the preferences follows precisely our model, but 
to show that there is a heterogeneity in the weights that investors put to the risk for different 
investment horizons and different parts of the distribution of their future wealth. By estimating 
prices of risk for short- and long-term part, we are able to identify the horizon the investor care 
most about. Moreover, by estimating prices of risk for various threshold values, we are able to 
identify the part of the joint distribution towards which is the investor the most risk averse. 
This is done by controlling for CAPM beta and the influence of these new measures is measured 
as an incremental information over simplifying assumptions that lead to the CAPM beta asset 
pricing models. 

2.1 Tail risk 

As argued above, risk premium of an asset or a portfolio can be explained by its covariance with 
some reference economic or financial variable such as consumption growth or return on market 
portfolio. This measure may not be sufficient in the cases in which the investor cares about 
different parts of the distribution of his future wealth differently. Hence, the most widely used 
measure of dependence between stochastic discount factor mt+1 and ri,t+1, cross-covariance at 
lag k, � � 

γk 
i,m = Cov mt+k, ri,t ≡ E[(mt+k − m̄ )(ri,t − r̄i)], (2) 

is unable to describe asymmetry features of dependence structure between two variables due 
to its averaging nature unless the variables are jointly normal. In case we are interested to 
measure dependence separately in different parts of a joint distribution, we need to employ 
more flexible measures. Since we are interested in pricing extreme negative events, we want to 
measure dependence and risk in lower quantiles of the joint distribution, and propose a quantity 
of the following form � � 

γk 
i,m(τ) ≡ Cov I{mt+k ≤ qm(τ )}, I{ri,t ≤ qm(τ )} , (3) 

where mt and ri,t are two time series of strictly stationary random variables, qm(τ) is a quantile 
function of mt for τ ∈ (0, 1), and I{A} is indicator function of event A. The measure is given 

5 



	
by the covariance between two indicator functions and can fully describe joint distribution of 
the pair of random variables m and ri. If distribution functions of the variables are continuous, 
the quantity is essentially difference between copula of pair m and ri and independent copula,� 
i.e., the following quantity Pr mt+k ≤ qm(τ ), ri,t ≤ qm(τ) − ττi where τi = Fri {qm(τ )} and 
Fri is cdf of ri. Thus, covariance between indicators measures additional information from the 
copula over independent copula about how likely is that the series are jointly less or equal to a 
given quantile of the variable m. It enables to flexibly measure both cross-sectional structure 
and time-series structure of the pair of random variables. 
Note that the quantity introduced in Eq. 3 can be further generalized in the way that one 

can replace qm(τ) by some general threshold values derived from distribution of a reference 
variable. Being below the threshold value corresponds to an inconvenient event for the investor 
and thus this measure of dependence adequately captures the corresponding risk. In our model, 
we set threshold values to be equal. In case the stochastic discount factor is linear in factors and 
we consider the market return as a risk factor, we further look at the dependence between asset 
returns and market returns rm,t, and the threshold values are based on quantiles of market 
returns qm(τ ) = qrm (τ). A market beta associated with the tail risk is then defined using 
quantity given in 3 for k = 0 and normalized by variance of the indicator function of the 

Var(I{rm,t ≤ qrm (τ)}) 

market return � � 
Cov 

βi(τ) ≡ 
I{rm,t ≤ qrm (τ))}, I{ri,t ≤ qrm (τ)} . (4) 

Note that Var(I{rm,t ≤ qrm (τ)}) = τ (1 − τ ). 

2.2 Frequency-specific (spectral) risk 

It is further natural to assume that economic agents care not only about different parts of the 
wealth distribution, but they care differently about long-, and short-term investment horizon 
in terms of expected returns and associated risks. Investors may be interested in long-term 
profitability of their portfolio and do not concern with short-term fluctuations. Frequency-
dependent features of an asset return then play an important role for an investor. Bandi and 
Tamoni (2017) argue that covariance between two returns can be decomposed into covariance 
between disaggregated components evolving over different time scales, and thus the risk on these 
components can vary. Hence, market beta can be decomposed into linear combination of betas 
measuring dependence at various scales, i.e., dependence between fluctuations with various 
half-lives. Frequency specific risk at given time plays an important role for determination of 
asset prices, and the price of risk in various frequency bands may differ, this means that the 
expected return can be decomposed into linear combination of risks in various frequency bands. 
The most simple and natural way how to decompose covariance between two assets into 

dependencies over different horizons is via its Fourier and inverse Fourier transform. Frequency 
domain counterpart of cross-covariance is obtained as Fourier transform of the cross-covariance 
functions. Conversely, cross-covariance can be obtained from inverse Fourier transform of its 
cross-spectrum in the following way 

∞X1 
γk −ikω Si,m(ω) = i,me 

2π 
k=−∞Z π 

γk ikωdω= i,m Si,m(ω)e 
−π 
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where Si,m(ω) is cross-spectral density√ of random variables ri,t and mt, γk is cross-covariance 
function given by equation 2 and i = −1. It is important to note that cross-covariance can be 
decomposed into frequencies, more specifically, for k = 0, we can decompose covariance between 
two time series into the covariance components at each frequency ω Z π 

Cov(mt, ri,t) = Si,m(ω)dω. 
−π 

Following the same logic decomposition of variance follows as Z π 

Var(mt) = Sm(ω)dω. 
−π 

where Sm(ω) is spectrum of mt. 
Since we can decompose cross-covariance between two returns into covariances at each fre-

quency, we can disentangle the dependence at short- and long-term components. Then, beta 
for an asset i and factor m can be decomposed to βi(ω) at a given frequency using spectral 
decomposition as Z π Z πCov(mt, ri,t) Si,m(ω)

βi ≡ = w(ω) dω = w(ω)βi(ω)dωVar(mt) Sm(ω)−π −π 

Sm(ω)where w(ω) = R π represent weights. The decomposition is important step since it pro-
−π Sm(ω)dω 

vides decomposition of classical beta into the weighted frequency-specific betas. Using similar 
approach, Bandi and Tamoni (2017) estimate price of risk for different investment horizons and 
show that investors posses heterogeneous preferences over various economic cycles instead of 
looking only on averaged quantities over the whole frequency spectrum. 

2.3 Quantile spectral beta 

Since we argue that both tail risk as well as frequency-specific (spectral) risk are important in 
explaining formation of asset returns, we aim to combine these risks into a single model. We 
start by defining measure of risk associated with various combinations of quantile and frequency 
in order to determine the most important combination priced across assets. 
Our measures of risk in the quantile spectral domain are based on the dependence measures 

recently introduced by Baruńık and Kley (2019). To quantify risk premium across frequencies 
and across the joint distribution, we use the quantile spectral densities to build a quantile 
spectral beta. 
The cornerstone of the new beta representation lies in quantile cross-spectral density kernels 

which are defined as 

∞ 
−ikω ≡ 

1 X 
γk (5)fi,m(ω; τ ) i,m(τ)e 

2π 
k=−∞ 
∞

1 X � � −ikω = Cov I{mt+k ≤ qm(τ)}, I{ri,t ≤ qm(τ)} e . (6)
2π 

k=−∞ 

with = τ ∈ (0, 1). A quantile cross-spectral density kernel is obtained as a Fourier transform of 
covariances of indicator functions defined in Equation 3, and will allow us to define beta that 
will capture the tail risks as well as spectral risks. 
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A quantile spectral (QS) betas for a given τ quantile of market returns are defined as P∞ γk −ikω fi,m(ω; τ) k=−∞ i,m(τ )e 
βi(ω; τ) ≡ ≡ P∞ . (7)

γk −ikω fm(ω; τ) mk=−∞ (τ )e 

QS betas for given asset quantify the dependence between ith asset and market factor m for a 
given frequency ω at chosen quantiles τ ∈ (0, 1) of the joint distribution. 
For better interpretability, we construct beta for a given frequency band corresponding to 

reasonable economic cycles as Z 
fi,m(ω; τ)

βi(Ω; τ) ≡ dω (8)
(ω; τ)Ω fm 

where Ω ≡ [ω1, ω2), ω1, ω2 ∈ [−π, π], ω1 < ω2 is a frequency band. This definition is important 
since it allows to define short-run, or long-run bands covering corresponding frequencies, and 
hence disaggregate beta based on the specific demands of a researcher. The justification for 
assuming that this definition of beta gives relevant quantity of risk for given assets provides 
theoretical model from Section 3. We will see that the risk premium of an asset can be char-
acterized as two β’s and λ’s for an investment horizons - risk factors present in the economy. 
Moreover, each of them has two parts for values below and above the threshold value given by 
some quantile of consumption reflecting the investor’s aversion to (large) losses. 

2.3.1 Quantile spectral beta under Gaussianity 

Before we continue and use the new beta representation, it is important to note how newly 
defined quantity relates to a classical beta under the assumption of Gaussian distribution, as 
commonly assumed by many asset pricing models. Assuming that returns of an asset and re-
turns of market portfolio are jointly normal random variables independently distributed through 
the time (correlated Gaussian white noises), QS betas would be in the following form 

CGauss(τ, τi; ρ) − ττi
βGauss(ω; τ ) = (9)i τ(1 − τ) 

where CGauss is Gaussian copula with correlation coefficient ρ. This stems from the fact that� 
quantile cross-spectral density corresponds to a difference of probabilities Pr ri,t ≤ qrm (τ), rm,t ≤ 
qrm (τ ) − ττi, where τ and τi are probability levels under Gaussian distribution. 
In our case, the threshold values are given by the market quantile. So, if we want to compute 

beta for an asset i and market under the Gaussian distribution assumption, first, value of τi bhas to be estimated. We do that by using the empirical distribution function Fri of asset i’s 
returns, i.e. τi = Fb 

ri {qm(τ)}. 
QS betas for Gaussian variables are important since the quantity is constant over frequencies, 

and depend only on chosen quantiles and correlation coefficient between asset and market 
return. Hence Eq. 9 provides the quantile spectral counterpart to classical CAPM beta. We 
will use this fact to construct our model later. In the spirit of Ang et al. (2006) and Lettau 
et al. (2014), we define relative QS betas which capture additional information not contained 
in the classical CAPM beta. 
Finally, we note that for serially uncorrelated variables (no matter of their joint or marginal 

distributions), the Frećhet/Hoeffding bounds gives the limits that QS beta can attain max{τ+τi−1,0}−ττi ≤τ(1−τ ) 

βi(ω; τ) ≤ min{τ,τi}−ττi where τi is derived as described above. τ(1−τ ) 
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3 Quantile spectral risk and its cross-sectional implications 

Knowing how to estimate risk in various parts of the joint distribution and over various in-
vestment cycles, we would like to provide a notion of how this type of risk may be priced 
cross-sectionally in an equilibrium setting. Frequency part is important because of the fact 
that the risk premium in the setting described above is determined by the covariance between 
asset return and two parts of the wealth process - short- and long-term. The measure of depen-
dence between asset return and wealth in specific part of the distribution is important because 
agent is highly averse to extremely low outcomes and thus requires a premium for assets that 
posses high covariance with wealth. We motivate this discussion using simple economic model 
and show how the aversion to tail market risk, which varies with different investment horizons, 
may emerge. Instead of developing a general asset pricing model, we aim to discuss the pricing 
implications in a simple setting that will later lead to a simple empirical framework for testing 
the implications on data. 
We propose a simple endowment-type model of the economy with two sources of aggregate 

risk: long-term and short-term dividend streams of the endowment cashflows. The consumption 
(wealth) process is based on the two-tree model of Cochrane et al. (2007) that extends a general 
equilibrium model of Lucas Jr (1978). We utilize these two endowment trees and interpret them 
as long-term and short-term risk factors in the economy. The first tree, corresponding to the 
long-term risk, generates dividend that is more persistent and this cash-flow bears the long-
term risk in the economy. On the other hand, the overall variability of this process is much 
smaller than the variability of the short-term process. The second tree generates much less 
persistent dividend returns and represents the short-term risk in the economy. The variability 
of short-term cash-flows is considerably higher than the variability of the long-term part. This 
means that the dividend share of the short-term part is higher. 
We define our model in continuous-time setting for two main reasons. First, as noted in 

Cochrane (2012), we do not have to worry about the timing; in the discrete time setting, there 
is an ambiguity whether investment made at time t directly joins the capital stock and generate 
a return at time t + 1 (finance timing), or whether the investment made at time t sits for 
one period and joins the capital stock at time t + 1. Second, it enables to handle various 
nonlinearities and obtain intuitive closed-form formulas of the equity premium. 
The representative investor has the following utility over the stream of consumption Z ∞ 

Ut = Et e −δτ u(ct+τ )dτ. 
0 

We start the discussion without specific functional form of the instantaneous utility function 
of the representative investor. Later, we discuss the case of power utility and then the case of 
asymmetric utility which generates the aversion to tail risk. 
In the economy, there are two trees which generate dividend and they follow geometric 

Brownian motion with different values of mean and variance parameters 

dD` 
= µ`dt + σ`dZ`, ` = 1, 2 

D` 

where dZ` is a standard Brownian motion and the processes are orthogonal. Because this 
is an endowment economy, the prices adjust until consumption equals the sum of dividends, 
c = D1 + D2. We argue that the natural choice is that these two cash-flows represent long-
term and short-term investment, respectively. Thus, the long-term dividend is characterized 
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by more persistent process with small time variance, and short-term dividend corresponds to a 
less persistent process with higher variance, µ1 > 0, µ2 = 0 and σ1 < σ2

2 . 
Relative sizes of these trees determine state variable for the economy. Let’s denote 

D1 
s = 

D1 + D2 

the relative size of the first dividend - long-term part of the consumption. Applying Itôs lemma, 
we obtain the dynamics for the consumption process 

dct 
= [µ1s + µ2s(1 − s)]dt + σ1sdZ1 + σ2(1 − s)dZ2. (10) 

ct 

Let’s suppose that the investor is offered to purchase an asset for price pt which pays a 
dividend stream dt. We assume that the price follows geometric Brownian motion 

dpt 
= µdt + σdZ. 

pt 

We do not directly link cashflow of the aggregate consumption with the cashflow generated by 
this asset. Rather, we model consumption cash-flows as claims on certain risk factors in the 
consumption process3 . 
Let’s define the instantaneous total excess return of the asset as 

dpt dt
R = + dt. 

pt pt 

Then, it can be shown4 that the expected excess return is equal to �dct dpt � 
fEt(R) − r = γtEt (11)t ct pt 

where γt is utility curvature parameter (coefficient of relative risk aversion) 

00(ct)ctu 
γt = − . 

u0(ct) 

The functional form of the instantaneous utility function u(c) determines the nature of γt. For 
power utility, the parameter is constant for all values of consumption, yielding constant relative 
risk aversion over all states of consumption. On the other hand, in the case of the loss-averse 
utility, the relative risk parameter differs across the distribution of the consumption. 
The risk premium of an asset from Equation 11, can be expressed in terms of covariance 

rather than expectations as � � 
f dct dptEt(R) − r = γtCovt , . (12)t ct pt 

We see that the risk premium is proportional to the covariance between growth rate of the 
asset’s price and consumption growth multiplied by the curvature parameter. By substituting 

2This is very similar to the long-run risk model of Bansal and Yaron (2004), in which consumption growth 
contains a small persistent part which has a significant asset pricing implications. 

3This is not an unusual approach; the same assumption is adopted in pricing dividend claim in various 
models, e.g., Bansal and Yaron (2004) or Backus et al. (2011). 

4See, for example, Cochrane (2009). 
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for the consumption growth from Equation 10 into the Equation 12, we can rewrite the risk 
premium in the form of 

fEt(R) − r dt = β1λ1 + β2λ2 (13)t t t t t 

where we define the betas and lambdas for long and short horizon risk, respectively, as 

ρ1σdt ρ2σdt 
β1 ≡ , β2 ≡t t stσ1dt (1 − st)σ2dt (14) 

λ1 2σ2 λ2≡ γts 1dt, ≡ γt(1 − st)
2σ2
2dt.t t t 

For more detailed derivation, see Appendix A. We stress that the coefficients βi (quantities oft 
risk) are specific for every asset, and λi (prices of risk) are common for every asset in the economy t 
representing the risk premium of the asset. Parameter β1 corresponds to the covariance between t 
asset’s return and dividend growth of the first tree (long-term part of the consumption), and 
the parameter β2 to the covariance between asset’s return and dividend growth of the secondt 
tree. Moreover, we see that the prices of risk are dependent on the share size and variance of a 
given tree. If the variance and/or share of a tree is small, then the corresponding risk premium 
is also small. 
From the previous, we see that the risk premium is given by short-term dependence between 

consumption process and asset’s return process, and long-term dependence. As stated in Bandi 
et al. (2018), frequency is a dimension of risk and thus investors care differently about its various 
parts. 

3.1 Power utility 

Until now we worked with a general notion of a utility function. Let’s consider more specific 
instantaneous utility function of a representative investor 

1−ξc 
u(c) = , ξ > 0, ξ 6= 1 (15)

1 − ξ 

where ξ is relative risk aversion coefficient; if ξ = 1, then the we obtain log utility, which 
was studied in Cochrane et al. (2007). Power utility is widely used due to its simplicity and 
number of desirable properties (e.g., homogeneity) although it generates many puzzles in the 
asset pricing literature (e.g., equity premium puzzle). 
Moreover, the constant curvature parameter γt = ξ makes the aversion to risk constant 

throughout the whole distribution of consumption. If we substitute ξ into 14 we obtain the 
formulas for both quantities of risk and prices of risk and these values are independent of the 
current value of consumption (only on the proportions of the consumption due to the long- and 
short-term dividends). Hence we arrive to a model that assumes frequency-specific risk, but 
also the same risk across all points of return distribution. 

3.2 Asymmetric utility 

To introduce loss (tail risk) aversion into the model, we employ asymmetric utility function 
over instantaneous consumption5 . We employ utility function based on the prospect theory 

5The use of behavioral finance in continuous time setting is quite rare. Two examples are Berkelaar et al. 
(2004) and Jin and Yu Zhou (2008) 
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(PT) of Tversky and Kahneman (1979) and Tversky and Kahneman (1992) which posses a 
kink at some reference point6 . This approach was shown to resolve many puzzles generated by 
conventional models which do not correspond to empirical facts present in the real-world data. 
Generally, PT is combined with some other theory to match an observed phenomenon. One of 
the first successful attempts to introduce it into the asset pricing literature was Benartzi and 
Thaler (1995), proposing myopic loss aversion as a possible solution to equity premium puzzle. 
Barberis et al. (2001) employ prospect theory model in conjunction with habit formation in an 
intertemporal setting and show that their model can help explain high mean, excess volatility, 
and predictability of excess returns. Others combine PT, for example, with disposition effect 
(Li and Yang, 2013), narrow framing (Barberis et al., 2006). etc7 . In a way, we follow this 
stream by combining PT with investment horizons. 
The concept of PT is based on the notion that investor does not care about the absolute 

value of his final wealth, but he compares it with some benchmark value - reference point, and 
thus he specifically cares about gain or loss induced by the risk. Based on that, investor is 
more sensitive to reduction in his well-being than to increases. This feature is mimicked by 
modeling the investor’s utility being convex in the realm of outcomes below the reference point, 
and concave in the realm above the reference point8 . Later in the empirical part, we show that 
the data support the notion that the benchmark corresponds to the left-tail values of market 
returns. 
The utility function of Tversky and Kahneman (1979) relative to some reference point c0 

for gains and losses can be written in terms of consumption as 

u(c) = (c − c0)
αI{c ≥ c0} − δ(−(c − c0))

�I{c < c0}. (16) 

In our setting, we assume that the reference point is derived from the distribution of consump-
tion (wealth) returns, specifically, we obtain the benchmark value as c0,t+1 = ctr where r is 
derived from the distribution of consumption growth and it is its τ -quantile, r = qrc (τ ), where 
qrc is the quantile function of the distribution of consumption growth9 . 
Because of the presence of the kink at the reference point, the original utility function of PT 

is not differentiable at the point of the kink. This feature makes the utility hard to incorporate 
into the intertemporal setting. So, instead of using the original utility function of Tversky and 
Kahneman (1979), we use the specification introduced in Hung and Wang (2005) 

� 

In the setting of the original prospect theory (Tversky and Kahneman, 1979) and cumulative prospect 

u(c) = (1 − e −�(c−c0))I{c ≥ c0} − δ(1 − e δ (c−c0))I{c < c0} (17) 

where � is risk aversion coefficient and δ is aversion to losses coefficient10 . This leads to 
6

theory (Tversky and Kahneman, 1992), not only the utility function posses a kink in the reference point, but 
also the probabilities are non-linearly transformed mimicking the distortion of the objective probabilities into 
the decision weights. We do not aim to fully incorporate this theory into our model as the main objective is to 
introduce the loss aversion in the most simple way. 

7This is just a tip of the iceberg, some of the recent applications of PT in asset pricing feature, for example, 
Yogo (2008), Barberis et al. (2016), or Wang et al. (2017) 

8There are various ways how to define loss aversion. Since we assume differentiability of the utility function, 
we use common approach based on u 0(x) < u 0(−x), ∀x > 0. On the other hand, Köbberling and Wakker (2005) 

u 0(0−)define it as ≥ 1, which works well with non-differentiable utility functions. 
u0(0+ ) 

9There is a large literature which deals with the question how to set the reference point, see, e.g., Kőszegi 
and Rabin (2006). 

10This utility function is a special case of of exponential loss-averse utility from Köbberling and Wakker (2005) 
with index of loss aversion being equal to 1, and it posses risk aversion in our sense as long as δ > 1. There is 
nothing particularly special about the proposed utility function. We may as well use another twice-differentiable 
loss-averse utility function, e.g., one from Bahamonde-Birke (2018). 
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consumption-dependent relative risk aversion of the form 

00(ct)ctu � 
γt = − = ct�I{ct ≥ c0,t} − ct I{ct < c0,t}. (18) 

u0(ct) δ 

The relation between consumption level and relative risk aversion of the asymmetric utility 
function is interesting. As we approach the reference point from the left, the relative risk 
aversion decreases and the investor is risk-seeker in this region. On the other hand, as we 
move to the right from the reference point, the risk aversion is increasing and the investor is 
risk-averse. 
The asymmetric utility then leads to the following decomposition of the risk premium 

fEt(R) − r dt = β1λ1 + β2λ2 + β1λ3 + β2λ4 (19)t t t t t t t t t 

where the betas are defined as follows 

ρ1σdt 
β1 ≡ I{ct ≥ c0,t}t stσ1dt 

ρ1σdt 
βt 
2 ≡ I{ct < c0,t}

stσ1dt 
ρ2,σdt 

βt 
3 ≡ I{ct ≥ c0,t}

(1 − st)σ2dt 
ρ2σdt 

βt 
4 ≡ I{ct < c0,t},

(1 − st)σ2dt 

and lambdas read as 

λ1 ≡ ct�s
2σ1
2dtt t 

� 
λ2 2σ2≡ −ct s 1 dtt δ t 

λ3 ≡ ct�(1 − st)
2σ2
2dtt 

λ4 
t ≡ −ct δ

� 
(1 − st)

2σ2
2dt. 

From Equation 19, we see that the traditional beta is decomposed to a 4-beta specification 
decomposing market risk to a quantile spectral risk. If the consumption is below the reference 
point, the investor is a risk seeker and tries to do everything to get out of his inconvenient 
situation. On the other hand, if the investor is above the reference point, he posses a risk 
aversion and requires a higher expected return on the asset. 
Intuitively, because the investor will require a negative risk premium in the bad states 

(assuming positive correlations between the Brownian motion of dividend and asset), the assets 
that strongly covary with the consumption in these states should yield a higher risk premium. 
Moreover, this premium is not captured by the conventional beta because it aggregates the 
dependence over all the possible states. 

Pricing model for extreme risks across frequency domain 

Quantile spectral betas defined in the previous sections will be the cornerstone of our empirical 
model. Using the theoretical motivation, we assume that QS betas for low threshold values 
will be significant determinants of risk. Similarly to Ang et al. (2006) and Lettau et al. (2014), 
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we define relative QS betas which capture additional information not contained in the classical 
CAPM beta. This way we can test the significance of tail market risk and extreme volatility 
risks decomposed into the long- and short-term components in order to obtain their prices of 
risk separately. 
Tail market risk (TR) represents dependence between extreme negative events of both mar-

ket as well as asset return. It differs from downside risk used in Ang et al. (2006); Lettau 
et al. (2014) since downside betas are computed based on covariates of asset return with a 
market return being under some threshold value. In contrast, QS betas captures risk that both 
market as well as asset return will be extremely unfavorable. In other words, it captures joint 
probability that market as well as asset returns will be below some threshold level. 
Extreme market volatility risk (EVR) captures unpleasant situations in which extremely 

high increments of market volatility are linked to the extremely low asset asset returns. We 
argue that both these risks are significant determinants of risk of an asset and thus should be 
priced in cross-section of asset returns. 
Here, we remind the reader how we set the threshold values in the covariance between 

indicator measure of dependence. Values of τi, percentage value for the quantiles for asset 
thresholds, are not explicitly fixed to quantile of their returns because we do not explicitly 
care about dependence between quantile values in the cross-section. We rather care about 
dependence in extreme market situations. Thus the threshold values for asset returns are given 
by values of quantile of market returns; these threshold values are same for all the assets, which 
corresponds to different quantiles for each asset. Formally, for each portfolio we obtain threshold 
values as a τi quantile of its distribution where τi = Fri {qm(τ)}. Let’s consider a model in which 
we set threshold value to be equal to 5% quantile of market return. Value of τ is equal to 5% 
but τi must be estimated. First, this 5% market quantile must be transformed using empirical 
cumulative distribution functions into probability that given asset return is below this value 
for each asset, and then the QS betas are computed as βi(ω; τ). This implies that τi differs 
across assets (for one asset 5% quantile of market return may correspond to 1% quantile of its 
distribution, for another asset it may correspond to 8% quantile of its distribution). Same logic 
is applied to both tail market risk betas and extreme volatility risk betas. By setting market 
return and portfolio threshold equal, we avoid problem of potential data-mining. Potentially 
better fit could be obtained by finding threshold values with the best model fit for a specific 
dataset, but may not be robust across datasets. 
Regarding the frequency decomposition of the risks, we specify our models to include disag-

gregation of risk into two horizons - long and short. Long horizon is defined by corresponding 
frequencies of cycles of 1.5 year and longer, and short horizon by frequencies of cycles shorter 
than 1.5 year. Procedure how to obtain these betas is explained in Section 5. 
In each of the models defined in the paper we control for CAPM beta as a baseline measure 

of risk. This ensures that if the QS betas are significant determinants of risk premium, they do 
not simply duplicate information contained in CAPM beta. Moreover, in case of tail market 
risk, we define relative betas that explicitly capture only the additional information over CAPM 
beta. Throughout the paper we impose the restriction that market price of risk is correctly 
priced implying that it is equal its average return. 

4.1 Tail market risk 

We expect the dependence between market return and asset return during extreme negative 
events will be priced across assets. The stronger the relationship, the higher the risk premium 
required by investors. Because we want to quantify risk which is not captured by CAPM beta, 
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we propose to test significance of tail market risk via differences of the estimated QS beta and 
QS beta implied by the Gaussian white noise assumption. The notion comes from the fact 
that traditional market beta is decomposed to a quantile spectral beta. Hence if information 
captured by tails at different frequencies is valuable, it will not be subsumed by an aggregated 
beta which assumes constant risk across frequencies and tails. We call this difference relative 
QS betas. For a given frequency band Ωj and given market τ -quantile level, the relative beta 
is defined as follows 

βrel(Ωj ; τ) ≡ βi(Ωj ; τ) − βGauss(Ωj , τ). (20)i i 

Relative QS betas measure additional information not captured by classical CAPM beta. 
In case that CAPM beta captures all information, and returns are Gaussian, the relative QS 
beta will be zero at all frequencies and quantiles. 
Our first model is a three-factor market model which contains only tail market risk, and is 

defined as 
2X 

e βrel(Ωj ; τ)λ
TR(Ωj ; τ ) + βCAPMλCAPME[r , (21)i,t+1] = i i 

j=1 

where βi 
CAPM is an aggregate CAPM beta, λCAPM is price of aggregate risk of market captured 

by the classical beta, and λTR(Ωj , τ) is price of tail risk (TR) for given quantile and given 
frequency band. We follow Lettau et al. (2014) and impose a restriction that the market risk 

λCAPMis correctly priced, i.e. is equal to average market return. If asset returns do not 
posses features of deviations from assumptions mentioned above, then the relative betas will be 
equal to zero and thus all the information about dependency during extreme events is captured 
by CAPM betas. On the other hand, if there is a significant difference between information 
captured by CAPM beta and QS betas, then the difference will be nonzero and may be priced 
in cross-section of asset returns, which will be assessed based on significance of related prices 
of risk. This model directly relates to the model proposed in the Section 3. 

4.2 Extreme volatility risk 

Assets with high sensitivities to innovations in aggregate volatility have low average returns 
(Ang et al., 2006). Because of the fact that time of high volatility within the economy is 
perceived as a time with high uncertainty, investors are willing to pay more for the assets that 
yield high returns during these turmoils and thus positively covary with innovations in market 
volatility. This drives the prices of these assets up and decreases expected returns. This notion 
is formally anchored in the intertemporal pricing model, such as intertemporal CAPM model of 
Merton (1973) or Campbell (1993). According to these models, market volatility is stochastic 
and causes changes in the investment opportunity set by changing the expected market returns, 
or by changing the risk-return trade-off. Market volatility thus determines the systematic risk 
and should determine expected returns of individual assets or portfolios. Moreover, according 
to the tail-risk aversion utility framework employed in this paper, we assume that extreme 
events in the market volatility play significant role in the perception of systematic risk, and 
that the exposure to them affects the risk premium of the assets. 
In addition, decomposition of volatility into short-run and long-run when determining asset 

premium was proven to be useful as well (Adrian and Rosenberg, 2008). Moreover, Bollerslev 
et al. (2016) incorporated notion of downside risk into concept of volatility risk and showed 
that stocks with high negative realized semivariance yield higher returns. Farago and Tédongap 
(2018) examine downside volatility risk in their five-factor model and obtain model with negative 
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prices of risk of volatility downside factor yielding low returns for assets that positively covary 
with innovations of market volatility during disappointing events. 
We assume that assets that yield highly negative returns during times of large innovations 

of volatility are less desirable for investors and thus holding these assets should be rewarded 
by higher risk premium. For simplicity reasons, we estimate market volatility using basic 
GARCH(1,1) model 11 and obtain estimates of squared volatility. Then the changes in squared 
volatility are calculated as 

Δσ2 ≡ σ2 − σ2 
t t t−1. 

Because of the nature of covariance between indicator functions, we work with negative differ-
ences of the volatility, −Δσt 

2 , then the high volatility increments correspond to low quantiles of 
distribution of the negative differences. We investigate whether dependence between extreme 
market volatility and tail events of assets is priced across assets. Threshold values for portfolio 
returns are obtained in the same manner as for tail market risk and are derived from distribution 
of market returns, τi = Fri {qrm (τ)}. For example, for model with τ = 0.05, extreme market 
volatility beta is computed using threshold for innovations of market squared volatility as 5% 
quantile of its distribution of negative values (corresponding to 95% quantile of the original 
distribution), and threshold for portfolio returns is computed as 5% quantile of distribution of 
market returns. 
Three-factor model containing solely extreme volatility risk (EVR) is defined as 

2X 
e βΔσ2 

(Ωj ; τ)λ
EV(Ωj ; τ) + βCAPMλCAPME[r ,i,t+1] = i i 

j=1 

where, as earlier, we also impose restriction that market risk is correctly priced, i.e. λCAPM is 
equal to average market return. 

4.3 Full five-factor model 

Finally, we combine the risks into a single five-factor model that includes both tail market 
risk and extreme volatility risk for both short- and long-run horizons, as well as market risk 
associated with classical CAPM beta. Model posses the following form 

2X 
e βrel(Ωj ; τ)λ

TR(Ωj ; τ) + βCAPMλCAPME[ri,t+1] = i i 
j=1 

2X 
βΔσ2 

(Ωj ; τ)λ
EV(Ωj ; τ )+ i 

j=1 

where we restrict λCAPM to be equal to the average market return. We remind that the market 
threshold is equal to portfolio threshold. Throughout the paper, we focus on results for τ equal 
to 5% and 10% (models denoted as QS05 and QS10). In addition, we report various results for 
1%, 15%, and 25% quantiles. Moreover, root mean squared pricing error of the fitted models is 
reported for continuum of quantiles between 1% and 50% for completeness. The choice of 5% 
and 10% quantiles is natural and arises in many economic and finance applications. Probably 
the most prominent example is Value-at-Risk, which is a benchmark measure of risk widely 
used in practice and studied among academics. 

11As a robustness check, we compute volatility as realized volatility from daily data 
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4.4 Three-factor model aggregating frequencies 

As an intermediary step, we define model which contains both tail market risk and extreme 
market volatility risk but does not take into consideration frequency decomposition. It posses 
the following form 

e (τ)λTR(τ) + βCAPMλCAPM + βΔσ2 
(τ )λEV(τ)E[ri,t+1] = βrel 

i i i 

where we define quantile betas as in Equation 4. This measure of dependence is very similar 
to the one proposed by Han et al. (2016). The main difference is that our measure is only 
partly based on quantile-hit process (market return) and partly on threshold-hit process (asset 
return). To see that, compare Equation 3. 
Relative beta in case of TR is defined as difference between quantile beta and beta defined 

under normality assumption 

βrel(τ ) ≡ βi(τ) − βGauss(τ) (22)i i 

where beta under normality assumption is the same as in Equation 9 since it does not depend 
on frequency. Threshold values are obtained in the same way as in case of Full 5-factor model. 

5 Quantile spectral risk and the cross-section of expected re-
turns 

In this section, we estimate the models defined in the previous section and assess whether 
the extreme risks are priced in the cross-section of asset returns and whether we capture new 
features of priced risk not described by other competing models. 
Estimation of QS betas (for both TR and EVR) relies on proper estimation of quantile 

cross-spectral densities using rank-based copula cross-periodograms, which are then smoothed 
in order to obtain consistency of the estimator. Technical details are provided in the Appendix 
B. Betas from the simplified model defined in Equation 22 are simply estimated using empirical 
distribution function of the market return distribution. 

5.1 Fama-MacBeth regressions 

To test our models, we employ procedure of Fama and MacBeth (1973). In the first stage, 
we estimate all required QS betas, relative QS betas, and CAPM betas for all portfolios. We 
define two non-overlapping horizons: short and long. Horizon is specified by the corresponding 
frequency band. We specify long horizon by frequencies with corresponding cycles 1.5 year and 
longer, and short horizon by frequencies with corresponding cycles below 1.5 year. QS betas 
for these horizons are obtained by averaging QS betas over these frequency bands 

nLX1 
βi(ΩL; τ) ≡ βi(ωj

L; τ) 
nL j=1 

(23)nSX1 
βi(ΩS ; τ ) ≡ βi(ωj

S ; τ) 
nS j=1 

where ΩL (ΩS ) is frequency band for long (short) horizon, and ωj
L ∈ ΩL (ωj

S ∈ ΩS ). 
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In the second stage, we use these betas as explanatory variables and regress average portfolio 
returns on them. We assess significance of a given risk by significance of the corresponding price 
of risk 12 . Thus, in the second stage in case of the Full 5-factor full model, we estimate model 
of the following form 

2 
e βrel βCAPMλCAPM r̄ = 

X b (Ωj ; τ)λ
TR(Ωj ; τ ) + b 

i i i 
j=1 

(24)
2 

βΔσ2 
+ 
X b (Ωj ; τ)λ

EV(Ωj ; τ) + ei.i 
j=1 

The same estimation logic applies to other three-factor models. 
As mentioned earlier, we estimate our models for various values of threshold value given 

by τ quantile of market return. In the scatter plots of actual and predicted returns, we focus 
on our simple model with τ = 0.05 (Q05) and two versions of our full model where τ = 0.05 
(QS05) and τ = 0.10 (QS10). We compare the results of our models with i) classical CAPM 
ii) downside risk model of Ang et al. (2006) (DR1) iii) downside risk model of Lettau et al. 
(2014) (DR2) iv) 3-factor model of Fama and French (1993) v) GDA3 and GDA5 models of 
Farago and Tédongap (2018). Performance of all models is assessed based on their root mean 
squared pricing error (RMSPE), which is widely used metric for assessing model fit in asset 
pricing literature. All the competing models are estimated for comparison purposes without 
any restrictions except that the market price of risk is correctly priced (equal to the average 
market return over the observed period) using OLS. Thus, GDA3 and GDA5 are despite their 
theoretical background estimated without setting any restriction to their coefficients and are 
also estimated in two stages. 

5.2 Data 

To illustrate the main findings, we use three popular datasets. First, we look at 30 Fama-French 
industry portfolios sampled monthly between July 1926 and November 2017 (1097 observations). 
These data satisfy the need of our model to posses long enough history in order to obtain 
reliable results. In Appendix E, we report also results for 25 Fama-French portfolios sorted on 
size and book-to-market over the same time span. In our empirical investigation, we measure 
aggregate wealth by the market portfolio13 . Specifically, the excess market return is computed 
using value-weight average return on all CRSP stocks and Treasury bill rate from Ibbotson 
Associates14 . 
Since most of the state of the art models do not perform very well on a daily sampling 

frequency, we also challenge our models with daily data. We employ the same datasets as in 
the main analysis but with daily frequency. The sampling period for daily data is between 
July 1926 and March 2019. The performance in this case will be also compared with above 
mentioned competing models. 
Finally, we also use individual stock data from the CRSP database. These data are sampled 

monthly between January 1926 and December 2015. 

12As shown in Shanken (1992), if the betas are estimated over the whole period, the second stage regression 
is T -consistent. 

13This is not an unusual assumption in the asset pricing literature. The same approach is adopted in original 
versions of every competing model considered in our analysis to avoid problems with consumption data. Campbell 
(1993) gives a justification for this simplification in case of preferences of Epstein and Zin (1989). 

14All the data were obtained from Kenneth French’s online data library. 

18 



Tail market risk Extreme volatility risk 

τ λTR 
long λTR 

short λCAPM RMSPE λEV 
long λEV 

short λCAPM RMSPE 
0.01 0.18 1.14 0.66 14.66 0.32 -1.01 0.66 23.61 

(3.50) (7.32) (7.85) (-1.61) 
0.05 0.86 1.10 0.66 20.15 0.45 -3.26 0.66 17.70 

(4.29) (1.82) (11.72) (-2.84) 
0.1 1.38 0.85 0.66 19.65 0.55 -2.61 0.66 16.44 

(5.19) (1.14) (14.62) (-2.22) 
0.15 1.53 1.26 0.66 17.51 0.71 -3.64 0.66 14.41 

(8.45) (1.58) (14.97) (-3.35) 
0.25 2.36 1.24 0.66 21.24 0.93 -4.06 0.66 16.64 

(6.77) (1.14) (14.14) (-2.91) 

Table 1: Estimated coefficients. Prices of risk of two versions of three-factor model estimated on monthly 
data of 30 Fama-French equal-weight industry portfolios sampled between July 1926 and November 2017. 
Models are estimated for various values of thresholds. Market price of risk is imposed to be equal to the 
average market return. 

5.3 Estimation results 

5.3.1 Three-factor models 

We report estimation results of the three-factor models in the Table 1. To take into account 
multiple hypothesis testing, we follow Harvey et al. (2016) and report t-statistics of estimated 
parameters (in parenthesis). Regarding the TR model, beta for short-horizon is more significant 
for τ being equal to 0.01, in the rest of the cases, beta for long horizon is more significant. In case 
of the EVR model, beta for the long-horizon is more significant determinant of risk premium 
for all the values of τ in comparison to short-horizon beta. We can see that the TR model 
outperforms the EVR model for τ being equal to 0.01. 

5.3.2 Full model 

As a preliminary investigation, we conduct an analysis in which we examine tail risk and 
extreme volatility risk without taking into consideration the frequency aspect. To do that, we 
employ our simple model. Estimated coefficients can be found in left panel of Table 2. We 
can observe that TR is significantly priced across low quantiles with expected positive sign. 
Extreme volatility risk is significantly priced for 10%, 15%, and 25% quantiles suggesting that 
investors price dependence between assets and market volatility, but focus on more probable 
market situations. RMSPE of the model for various market threshold defined as τ quantile of 
market return is depicted in left panel of Figure 2. We can deduce that better fit is obtained 
for lower values of thresholds and for very low τ it outperforms the best performing GDA5 
model. For higher values of τ , RMSPE of our simple model exceeds RMSPE of GDA5 model 
suggesting that indeed extreme risks of the assets are priced factor. 
Estimated parameters of the full model can be found in the right panel of Table 2. We 

observe that significant determinants of the risk are short tail risk and long extreme volatility 
risk, both significantly priced across portfolios with expected signs. Tail risk is more significant 
for lower values of τ meaning that dependence between market return and portfolio return dur-
ing extremely negative events is a significant determinant of risk premium. On the other hand, 
long-run extreme volatility risk is significantly priced across all values of τ , but becomes more 
prominent for higher values of the quantile. We can deduce that price of long-run risk of Bansal 
and Yaron (2004) is hidden in this coefficient. Coefficients of the prices of risk for long tail risk 
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Simple model Full model 

τ λTR λEV λCAPM RMSPE λTR 
long λTR 

short λEV 
long λEV 

short λCAPM RMSPE 

0.01 1.56 0.35 0.66 15.57 -0.12 1.14 0.22 0.02 0.66 13.74 
(10.96) (0.80) (-0.71) (7.01) (1.88) (0.06) 

0.05 2.41 0.48 0.66 20.78 -0.45 1.27 0.50 -2.93 0.66 15.87 
(4.72) (0.55) (-0.96) (2.49) (2.86) (-2.71) 

0.1 2.07 1.61 0.66 19.69 -0.15 0.81 0.51 -2.23 0.66 15.94 
(3.48) (2.34) (-0.29) (1.25) (3.52) (-1.82) 

0.15 3.67 1.58 0.66 19.85 0.61 0.72 0.46 -3.51 0.66 13.30 
(4.80) (1.88) (1.60) (1.13) (3.50) (-3.35) 

0.25 4.50 3.26 0.66 25.44 0.69 0.71 0.68 -3.86 0.66 15.61 
(4.15) (2.34) (1.35) (0.85) (4.37) (-2.83) 

Table 2: Estimated coefficients. Prices of risk of simple 3-factor and full 5-factor model estimated 
on monthly data of 30 Fama-French equal-weight industry portfolios sampled between July 1926 and 
November 2017. Model is estimated for various values of thresholds given by τ . Market price of risk is 
imposed to be equal to the average market return. 

and short extreme volatility risk posses negative sign, which may seem counterintuitive. This 
may suggests that investors are extremely averse to long-run dependence between extremely 
negative returns and high volatility but at the same time exposure to the extreme volatility 
risk in the short run is desirable as the prices will adjust to the market turmoil quickly. Tail 
risk in the long run for lower quantiles is also negative but the coefficients are not significant. 
One potential explanation for the results that the long-run TR is not significantly priced is 

that only a small fraction of the market return is due to the long-term component in comparison 
to short-term risk premium, and thus the risk premium for this risk is only small. Moreover, 
the long-term aspect of the risk may by fully captured by the extreme volatility risk. Variance 
is much more persistent than the market return (high portion of variance due to the long-term 
part) and thus the investors fear the variability in long-term variance much more than the 
variance in the short term. 
In Figure 1, we compare performance of our QS models, QS05 (τ = 0.05) and QS10 (τ = 

0.10), with various other models. It is notable that CAPM, and DR1 model completely fail 
to price the portfolios, better fit and lower RMSPE is obtained by GDA3 and GDA5 models. 
Finally, the best fit is provided by our QS models since returns lie closer to the 45 degree 
line. Right panel of Figure 2 depicts performance of the QS model against market thresholds 
given by τ quantile of market distribution. We observe better performance of our model in 
comparison to GDA5 model for all threshold values below 30% market quantile, and generally 
very good performance for low values of threshold suggesting that extreme risks are significant 
determinants of risk premium. 
Moreover, to compare our model with a model that is not based on a specific measure of 

market (volatility) risk, we estimate 3-factor model of Fama and French (1993). Same as in the 
case of other models, we restrict the risk premium of market risk to be equal to the average 
market return, and obtain RMSPE of 23.7215 . This shows the overall strength of our models 
to deliver quality results. 

15Without any restriction on risk premium, their model produces RMSPE of 18.01, which is also considerably 
higher than RMSPE of our models. 
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Figure 1: Predicted returns. Plots of predicted versus actual returns for competing models estimated on 
monthly data of 30 Fama-French equal-weight industry portfolios. 
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Figure 2: RMSPE for simple and full model estimated on monthly data of 30 Fama-French equal-weight 
industry portfolios for various values of threshold given by τ quantile of market returns. Horizontal line represents 
RMSPE of GDA5 model. 
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Tail market risk Extreme volatility risk 

τ λTR λTR 
long λTR 

short λCAPM RMSPE λEV λEV 
long λEV 

short λCAPM RMSPE 

0.01 0.31 0.15 0.90 0.66 14.62 3.85 -0.01 -3.58 0.66 21.35 
(0.41) (2.05) (1.45) (2.45) (-0.05) (-2.99) 

0.05 0.53 0.74 0.73 0.66 20.14 0.17 0.43 -3.41 0.66 17.70 
(0.18) (1.05) (0.35) (0.04) (0.80) (-0.78) 

0.1 3.09 0.71 -1.64 0.66 19.34 -3.75 0.98 0.73 0.66 16.18 
(0.93) (0.92) (-0.59) (-0.94) (2.15) (0.20) 

0.15 8.03 0.14 -5.72 0.66 16.12 -8.88 1.38 4.47 0.66 13.30 
(2.20) (0.21) (-1.75) (-2.17) (4.40) (1.15) 

0.25 6.42 1.58 -4.43 0.66 20.63 -1.09 1.00 -3.06 0.66 16.63 
(1.27) (2.24) (-0.97) (-0.19) (2.80) (-0.55) 

Table 3: Estimated coefficients from the horse race estimation. Prices of risk of simple 3-factor models 
also including the simple betas for the respective risks estimated on monthly data of 30 Fama-French 
equal-weight industry portfolios sampled between July 1926 and November 2017. Model is estimated 
for various values of thresholds given by τ . Market price of risk is imposed to be equal to the average 
market return. 

5.4 Disentangling model performance 

We will answer the question whether the performance of our model is driven by the quantile 
decomposition of the risk only, or the frequency decomposition brings a significant improvement 
over the simple specification. To do that, we employ horse race between betas from the simple 
model and betas from the full model, and assess the significance of the prices of risk for given 
betas based on their t-statistics. We will run the regression separately for the tail market risk 
betas and extreme volatility risk betas. 
The results can be seen in Table 3 and they clearly indicate that the frequency decomposition 

of risk is a valuable dimension to explore. First, for the TR model we observe that, especially 
for the lowest quantile, i.e. τ = 0.01, frequency decomposed measures outperform the simple 
measure of tail market risk. For the models given by the higher quantiles, we observe ambiguous 
results and cannot clearly decide whether the performance is more driven by the quantile 
definition of risk only. Moreover, the values of the coefficients (both simple and full model) 
vary significantly probably because of the correlation between these measures. In that case, we 
argue that the frequency decomposition is valuable as it is not decisively outperformed by the 
simple quantile measure. Moreover, the best performance of the model is achieved for τ = 0.01 
and in that case the long- and short-term betas drive out the simple beta. 
Second, the results of the EVR model are less indecisive. For the low values of the quantiles, 

the decomposition into horizons is outperformed by the simple measure of extreme volatility 
risk. On the other hand, with increasing value of quantile, we can see that disentangling the 
risk into long and short horizon brings a valuable information and moreover, the performance 
improves in comparison to the low values of τ . 

5.5 GDA and QS measures of risk 

In this subsection, we compare the performance of our model with the GDA5 model of Farago 
and Tédongap (2018). To do that, we construct horse race regressions between their measures of 
risk and ours. We compare risk measures associated with market return and market volatility 
increments separately. The aim of this analysis is to decide which measures of risk better 
capture the notion of extreme risks associated with risk premium. 
The results are depicted in Table 4. In case of tail market risk, we see that GDA5 measures 
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of risk (λD and λWD) do not drive out our measures of risk for any value of τ . This clearly 
suggests that our measures are better in capturing the asymmetric risk priced in the cross-
section of assets. 
In case of volatility risk, we see from Table 4 that the situation is pretty much the same 

as in the case of tail market risk. Especially, the price of risk for long-term EVR betas stays 
strong over all values of quantile, and GDA5 measures of volatility risk remain insignificant in 
all of the cases. 
All the results suggest that our model brings an improvement in terms of identifying form 

of asymmetric risk which is priced in the cross-section of asset returns. 

Tail market risk Extreme volatility risk 

τ λD λW D λTR 
long λTR 

short λCAPM RMSPE λX λXD λEV 
long λEV 

short λCAPM RMSPE 

0.01 -0.03 0.04 -0.14 0.89 0.66 12.42 2.73 -1.12 0.17 -0.84 0.66 22.26 
(-0.69) (0.12) (-0.97) (4.66) (1.21) (-0.57) (1.85) (-1.30) 

0.05 -0.02 0.14 -0.14 1.25 0.66 17.08 -1.73 1.36 0.48 -3.72 0.66 17.44 
(-0.36) (0.36) (-0.39) (2.28) (-0.87) (0.86) (4.54) (-2.83) 

0.1 0.01 0.28 0.33 0.98 0.66 17.28 -1.98 1.34 0.63 -3.22 0.66 16.07 
(0.19) (0.72) (0.71) (1.41) (-1.07) (0.89) (5.77) (-2.43) 

0.15 -0.02 -0.03 0.93 1.01 0.66 16.17 0.07 -0.51 0.78 -3.69 0.66 14.21 
(-0.45) (-0.07) (2.40) (1.30) (0.05) (-0.42) (7.02) (-3.32) 

0.25 -0.03 0.04 1.02 0.66 0.66 16.90 1.56 -1.10 0.85 -4.14 0.66 16.34 
(-0.44) (0.10) (2.09) (0.72) (0.96) (-0.79) (5.42) (-2.89) 

Table 4: Estimated coefficients from the horse race estimation between QS measures of risk and GDA5 
measures of risk. Prices of risk of 3-factor models including respective GDA5 measures of risk estimated 
on monthly data of 30 Fama-French equal-weight industry portfolios sampled between July 1926 and 
November 2017. Model is estimated for various values of thresholds given by τ . Market price of risk is 
imposed to be equal to the average market return. 

5.6 Robustness checks 

As a robustness check, we first report results based on 30 Fama-French industry portfolio 
data which are value-weight. Results are summarized in Appendix C.1. We report estimated 
coefficients for both simple and full model, RMSPE for continuum of τ and comparison with 
competing models. We also conduct the same analysis with volatility being computed from 
daily data as a realized volatility for each month in the sample. It is obvious from estimated 
simple models that both tail market risk and extreme volatility risk are priced in cross-section. 
Estimated full models suggest that short tail risk is the driving force of aggregated tail risk, 
and although coefficients for long extreme volatility risk are not significant, they posses the 
right sign and are numerically close to their counterparts computed on volatility from GARCH 
model. We argue that this is due to highly non-smoothed nature of the volatility computed as 
a sum over respective months. On the other hand, EVR is consistently priced using the Simple 
3-factor model. This seems natural as the realized volatility poses non-smoothed nature and 
the frequency decomposition is not so effective as in the case of smoothed volatility estimates 
as in the case of GARCH model. 
In Appendix E, we perform the same analysis on 25 Fama-French portfolios sorted on size 

and book-to-market. We report results based on both equal and value-weight portfolios, and 
volatility is computed using GARCH model and as realized volatility from daily data. In the 
case of models with volatility computed from GARCH model, our model performs comparable to 
GDA5 model but slightly worse, but outperforms all the other competing models, and moreover, 
all the features observed in the case of 30 industry portfolios are present in this case, also, with 
values of the coefficients being similar. In the case of volatility computed from daily data, our 
model outperforms all the competing models including GDA5 model. 
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Simple model Full model 

τ λTR λEV λCAPM RMSPE λTR 
long λTR 

short λEV 
long λEV 

short λCAPM RMSPE 

0.01 1.31 0.31 0.65 35.90 0.08 1.03 0.10 0.07 0.65 34.28 
(12.79) (1.01) (0.55) (6.92) (0.88) (0.24) 

0.05 2.86 1.22 0.65 33.41 -0.00 1.60 0.45 0.48 0.65 33.20 
(10.21) (2.66) (-0.01) (4.49) (4.26) (0.98) 

0.1 3.13 3.67 0.65 34.27 -0.13 1.11 0.72 1.35 0.65 32.09 
(6.35) (5.92) (-0.54) (2.28) (8.13) (1.83) 

0.15 4.17 4.68 0.65 35.33 0.14 1.50 0.78 1.15 0.65 31.42 
(7.67) (7.07) (0.65) (2.93) (7.79) (1.58) 

0.25 3.76 8.82 0.65 43.53 -0.47 1.18 1.58 0.18 0.65 30.66 
(5.22) (8.91) (-2.00) (2.18) (14.77) (0.21) 

Table 5: Estimated coefficients. Prices of risk of Simple 3-factor and Full 5-factor model estimated on 
individual stocks from CRSP database. Model is estimated for various values of thresholds given by τ . 
Market price of risk is imposed to be equal to the average market return. 

As an another robustness check for the TR betas, in the first stage regression, we standardize 
the returns of both market and portfolio returns using estimated volatility and estimate the 
TR betas using these transformed series, and the second stage regression remains the same. 
Volatility is estimated for each time series separately using GARCH(1,1) model for simplicity 
reasons. This robustness check aims to show that the betas do not solely capture the common 
trend in volatility present in both market and portfolio returns. Results of this analysis are 
captured in Table 14. We observe that, especially for the long-term TR betas, the coefficients 
remain significant even after this standardization procedure. 

5.7 Individual stocks performance 

We estimate both simple model and full model on individual stocks obtained from Center 
for Research in Security Prices database (CRSP). Our version of the database covers period 
between January 1926 and December 2015. For the excess market return we work with returns 
computed using value-weight average return on all CRSP stocks and Treasury bill rate from 
Ibbotson Associates. We select stocks with history longer than 70 years, which leads to the 
total number of stocks included in our analysis equal to 147. The data are sampled with a 
monthly frequency. The results are summarized in the Table 5. We observe that the results are 
very similar to those obtained in the analysis of 30 industry portfolios discussed earlier. For 
the simple model, we observe that both tail risk and extreme volatility risk are priced in the 
cross-section. Tail risk is more significant for low threshold values and extreme volatility risk 
increases with the threshold. In the case of full model, we see that the significance of the tail risk 
is mainly driven by its short-term component. On the other hand, the extreme volatility risk 
is contained in its long-term part. Overall, the RMSPE slightly decreases with the threshold 
values suggesting that for individual stocks the extreme volatility risk is significant determinant 
of risk premium. Comparison with competing models captures Figure 3. The best performance 
provide QS10 model, and even our simple 3-factor model can outperform GDA5 model. 

5.8 Estimation on daily data 

We estimate our simple and full models using daily data, too. First, we estimate our models on 
30 Fama-French equal-weight industry portfolios and compare the results with the competing 
models. We know that the performance of asset pricing models, in most of the cases, is sub-
stantially worse when working with data with sampling frequency higher than one month and 
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Figure 3: Predicted returns. Plots of predicted versus actual returns for competing models estimated on 
monthly data of individual stocks from CRSP. 
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Simple model Full model 

τ λTR λEV λCAPM RMSPE λTR 
long λTR 

short λEV 
long λEV 

short λCAPM RMSPE 

0.01 0.11 0.24 0.03 1.02 -0.02 0.16 0.03 0.26 0.03 1.02 
(3.50) (2.66) (-0.81) (3.14) (2.10) (2.19) 

0.05 0.16 0.28 0.03 1.01 -0.01 0.19 0.03 0.28 0.03 1.02 
(3.84) (4.05) (-0.27) (2.23) (2.13) (1.32) 

0.1 0.20 0.33 0.03 1.07 -0.02 0.24 0.03 0.19 0.03 1.04 
(4.34) (4.75) (-0.35) (3.00) (2.61) (0.90) 

0.15 0.22 0.46 0.03 1.25 -0.02 0.27 0.05 0.02 0.03 1.15 
(3.85) (5.43) (-0.39) (3.46) (3.75) (0.09) 

0.25 0.27 1.01 0.03 1.73 -0.11 0.40 0.06 0.59 0.03 1.37 
(3.37) (7.50) (-1.58) (4.19) (4.21) (1.39) 

Table 6: Estimated coefficients. Prices of risk of Simple 3-factor and Full 5-factor model estimated on 
daily data of 30 Fama-French equal-weight industry portfolios sampled between July 1926 and March 
2019. Model is estimated for various values of thresholds given by τ . Market price of risk is imposed to 
be equal to the average market return. 

some of them are even useless in this case. We want to show that this is not the case of our 
models and that the models perform better than the other models 
Estimated parameters of our simple and full model are summarized in Table 6. We can 

see that the coefficients for simple model are significant through all the quantiles but the best 
performance is achieved for low values of τ . The comparison between our models and the other 
is depicted in Figure 4 and based on RMSPE, our model predicts the returns the best among 
all the tested models. Performance of the model in relation to τ is captured in Figure 5. We 
can see that our models achieve better performance that the GDA5 model for low values of τ . 
In the Appendix F, we report also estimates of the models on daily data of 25 Fama-French 

equal-weight portfolios sorted on size and book-to-market. We choose this dataset for the 
analysis because our models in the robustness check procedure perform relatively the worst on 
this dataset when compared to the GDA5 model. So, to see whether this also holds for the 
daily data, we compare all the competing models on this dataset. The estimated coefficients 
of the simple 3-factor and full 5-factor model are reported in Table 15. From the comparisons 
between the competing models depicted in Figures 21 and 20, we can see that our models 
provide a significantly better fit to the daily data, and the full 5-factor model achieves better 
performance for all values of τ . 
To summarize, we can see that the both in terms of coefficient significancy and relative model 

performance, our models can provide a good fit to the daily data, which is quite uncommon 
among asset pricing models. This results only confirms our hypothesis that the extreme risks 
are priced in the cross-section of asset returns. 

Conclusion 

We have shown that extreme risks at different horizons are priced in cross-section of asset 
returns. In the paper, we argue it is important to distinguish between tail market risk and 
extreme volatility risk. Tail market risk is characterized by the dependence between highly 
negative market and asset events. Extreme volatility risk is defined as co-occurrence of ex-
tremely high increases of market volatility and highly negative asset returns. Negative events 
are derived from distribution of market returns and its respective quantile is used for deter-
mining threshold values for computing quantile spectral betas. We define two empirical models 
for testing associated risk premium. Simple model, which does not take into consideration 
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Figure 4: Predicted returns. Plots of predicted versus actual returns for competing models estimated on daily 
data of 30 Fama-French equal-weight industry portfolios. 
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Figure 5: RMSPE for simple and full model estimated on daily data of 30 Fama-French equal-weight industry 
portfolios. Horizontal line represents RMSPE of GDA5 model. 
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frequency aspect, confirms that investors require premium for bearing both tail market risk 
and extreme volatility risk. Full model further identifies that premium for tail market risk is 
mostly featured in its short-term component, and premium for extreme volatility risk is mostly 
associated with its long-term component. 
In order to consistently estimate the model, data with long enough history has to be em-

ployed. But if the data are available, our model is able to outperform competing models and its 
performance is best for low threshold values suggesting that investors require risk premium for 
holding assets susceptible to extreme risks. Moreover, our models can perform very well even 
on the daily data, which is not common for asset pricing models. 

28 



References 
Adrian, T. and M. K. Brunnermeier (2016). Covar. American Economic Review 106 (7), 1705–41. 

Adrian, T. and J. Rosenberg (2008). Stock returns and volatility: Pricing the short-run and long-run components 
of market risk. The Journal of Finance 63 (6), 2997–3030. 

Ang, A., J. Chen, and Y. Xing (2006). Downside risk. Review of Financial Studies 19 (4), 1191–1239. 

Ang, A., R. J. Hodrick, Y. Xing, and X. Zhang (2006). The cross-section of volatility and expected returns. The 
Journal of Finance 61 (1), 259–299. 

Backus, D., M. Chernov, and I. Martin (2011). Disasters implied by equity index options. The journal of 
finance 66 (6), 1969–2012. 

Bahamonde-Birke, F. J. (2018). Estimating the reference frame: A smooth twice-differentiable utility function 
for non-compensatory loss-averse decision-making. Journal of choice modelling 28, 71–81. 

Bandi, F. M., S. E. Chaudhuri, A. W. Lo, and A. Tamoni (2018). Spectral factor models. 

Bandi, F. M. and A. Tamoni (2017). The horizon of systematic risk: a new beta representation. Available at 
SSRN 2337973 . 

Bansal, R. and A. Yaron (2004). Risks for the long run: A potential resolution of asset pricing puzzles. The 
journal of Finance 59 (4), 1481–1509. 

Barberis, N., M. Huang, and T. Santos (2001). Prospect theory and asset prices. The quarterly journal of 
economics 116 (1), 1–53. 

Barberis, N., M. Huang, and R. H. Thaler (2006). Individual preferences, monetary gambles, and stock market 
participation: A case for narrow framing. American economic review 96 (4), 1069–1090. 

Barberis, N., A. Mukherjee, and B. Wang (2016). Prospect theory and stock returns: An empirical test. The 
Review of Financial Studies 29 (11), 3068–3107. 

Barndorff-Nielsen, O. E., S. Kinnebrock, and N. Shephard (2008). Measuring downside risk-realised semivariance. 
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A Asset pricing model with horizon specific risk 

A.1 General result 

In case of general form of curvature parameter γt, we obtain the following pricing equation h � � � �i 
fEt(R) − r dt = γt Covt stσ1dZ1, dZ + Covt (1 − st)σ2dZ2, dZ t � � 

Covt stσ1dZ1, dZ � � 
= � � Vart stσ1dZ1 γt 

Vart stσ1dZ1 � � 
Covt (1 − st)σ2dZ2, dZ � � 

+ � � Vart (1 − st)σ2dZ2 γt 
Vart (1 − st)σ2dZ2 

= β1λ1 + β2λ2 
t t t t 

where we define the β’s and λ’s for long and short horizon risk, respectively, as � � � � 

β1 ≡t 

Covt stσ1dZ1, σdZ � � , β2 ≡t 

Covt (1 − st)σ2dZ2, σdZ � � 
Vart stσ1dZ1 � � 

Vart (1 − st)σ2dZ2 � � 
(25) 

λ1 ≡ γtVartt stσ1dZ1 , λ2 ≡ γtVartt (1 − st)σ2dZ2 . 

A.2 Power utility 

Here, we derive the formulas for 2-factor asset pricing model including horizon specific risk in 
case that the representative investor posses power utility. In this case, the curvature parameter 
is constant and equal to ξ. 

� � 
Covt stσ1dZ1, σdZ � � 

fEt(R) − r dt = � � Vart stσ1dZ1 ξt 
Vart stσ1dZ1 � � 

Covt (1 − st)σ2dZ2, σdZ � � 
+ � � Vart (1 − st)σ2dZ2 ξ 

Vart (1 − st)σ2dZ2 

= β1λ1 + β2λ2 
t t t t 

where the betas (quantities of risk) for long and short horizon risk are defined as � � 
Covt stσ1dZ1, σdZ ρ1σdt 

β1 ≡ � � = ,t stσ1dtVart stσ1dZ1 � � 
Covt (1 − st)σ2dZ2, σdZ ρ2σdt 

β2 ≡ � � = ,t (1 − st)σ2dtVart (1 − st)σ2dZ2 
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and lambdas (prices of risk) read as � � 
λ1 ≡ ξVart stσ1dZ1 = ξs2σ1

2dt,t t � � 
λ2 ≡ ξVart (1 − st)σ2dZ2 = ξ(1 − st)

2σ2
2dtt 

A.3 Asymmetric utility 

Asymmetric utility leads to a model which can be decomposed into 4 factors. 2 factors consist 
of risk below the reference point (for long and short horizon) and 2 factors stand for risk above 
the reference point. More specifically, knowing that the relative risk aversion reads as 

00(ct)ctu � 
γt = − = ct�I{ct ≥ c0,t} − ct I{ct < c0,t}, 

u0(ct) δ 

the risk premium can be rewritten in the following way �dct dpt 
� 

fEt(R) − r = γtCovt ,t ct pt �dct dpt 
� � �dct dpt 

� 
= ct�I{ct ≥ c0,t}Covt , − ct I{ct < c0,t}Covt , 

ct pt δ ct pt 

= β1λ1 + β2λ2 + β1λ3 + β2λ4 
t t t t t t t t 

where the quantities of risk posses the following form � � 
Covt (stσ1dZ1, σdZ ρ1σdt 

βt 
1 ≡ � � I{ct ≥ c0,t} = I{ct ≥ c0,t}

stσ1dtVart stσ1dZ1 � � 
Covt (stσ1dZ1, σdZ ρ1σdt 

β2 �t ≡ � I{ct < c0,t} = I{ct < c0,t}
stσ1dtVart stσ1dZ1 � � 

Covt (1 − st)σ2dZ2, σdZ ρ2,σdt 
βt 
3 ≡ � � I{ct ≥ c0,t} = I{ct ≥ c0,t}

(1 − st)σ2dtVart (1 − st)σ2dZ2 � � 
Covt (1 − st)σ2dZ2, σdZ ρ2σdt 

β4 ≡ � � I{ct < c0,t} = I{ct < c0},t (1 − st)σ2dtVart stσ1dZ2 

and prices of risk are � � 
λ1 ≡ Vart stσ1dZ1 ct� = ct�s

2σ1
2dtt t � � 
2λ2 ≡ −Vart stσ1dZ1 ct 

� 
= −ct 

�
s σ1

2dtt δ δ t � � 
λ3 ≡ Vart (1 − st)σ2dZ2 ct� = ct�(1 − st)

2σ2
2dtt � � � � 

λ4 
t ≡ −Vart (1 − st)σ2dZ2 ct 

δ 
= −ct (1 − st)

2σ2
2dt. 

δ 
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B Estimation of quantile spectral betas 

Estimation of QS betas defined in our paper is based on the smoothed quantile cross-periodograms 
studied in Baruńık and Kley (2019). For a strictly stationary time series X0,j , . . . , Xn−1,j , we P−1 n−1define I{F̂n,j (Xt,j ) ≤ τ } = I{Rn;t,j ≤ nτ} where F̂n,j (x) ≡ n t=0 I{Xt,j ≤ x} is the empir-
ical distribution function of Xt,j and Rn;t,j denotes the rank of Xt,j among X0,j , . . . , Xn−1,j . We 
have seen that the cornerstone of quantile spectral beta is quantile cross-spectral density de-
fined in Equation 5. Its population counterpart is called rank-based copula cross-periodogram, 
CCR-periodogram, and is defined as 

1j1,j2 j1 j2I (ω; τ1, τ2) ≡ d (ω; τ1)d (−ω; τ2) (26)n,R n,R n,R2πn 

where 

n−1 n−1X X 
j −iωt −iωt d (ω; τ) ≡ I{F̂n,j (Xt,j ) ≤ τ }e = I{Rn;t,j ≤ nτ}e , τ ∈ [0, 1]. (27)n,R 

t=0 t=0 

As discussed in Baruńık and Kley (2019), CCR-periodogram is not a consistent estimator of 
quantile cross-spectral density. Consistency can be achieved by smoothing CCR-periodogram 
across frequencies. Following Baruńık and Kley (2019), we employ the following 

n−1X2πj1,j1 j1,j2Ĝ (ω; τ1, τ2) ≡ Wn(ω − 2πs/n)I (2πs/n, τ1, τ2) (28)n,R n,Rn 
s=0 

where Wn is defined in Section 3 of Baruńık and Kley (2019). Estimator of quantile spectral 
beta is defined as 

j1,j2Ĝ (ω; τ1, τ2)j1,j2 n,R
β̂n,R (ω; τ1, τ2) ≡ 

j2 
. (29)

Ĝn,R(ω; τ2) 

Consistency of the estimator can be proven using exactly same logic as in Theorem 3.4 in 
Baruńık and Kley (2019) by replacing quantile coherency with quantile spectral beta. 
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C Robustness checks 

C.1 Realized volatility 

Simple model Full model 

τ λTR λEV λCAPM RMSPE λTR 
long λTR 

short λEV 
long λEV 

short λCAPM RMSPE 

0.01 1.00 0.45 0.66 13.14 0.04 0.80 -0.03 0.64 0.66 12.70 
(5.20) (3.72) (0.37) (4.33) (-0.39) (2.83) 

0.05 1.23 0.57 0.66 18.65 0.17 0.97 0.05 0.66 0.66 17.68 
(2.12) (2.65) (0.38) (1.57) (0.16) (1.30) 

0.1 0.72 0.91 0.66 16.28 0.24 0.82 0.18 0.52 0.66 17.00 
(1.18) (4.56) (0.43) (1.17) (0.43) (0.83) 

0.15 1.59 0.91 0.66 15.80 1.09 0.22 -0.64 1.77 0.66 14.64 
(2.05) (4.66) (2.45) (0.27) (-1.52) (2.44) 

0.25 1.33 1.43 0.66 15.83 0.41 0.81 0.38 0.63 0.66 15.36 
(1.65) (7.61) (0.83) (0.96) (1.41) (1.40) 

Table 7: Estimated coefficients. Prices of risk of simple 3-factor and full 5-factor model estimated 
on monthly data of 30 Fama-French equal-weight industry portfolios sampled between July 1926 and 
November 2017. Model is estimated for various values of thresholds given by τ . Market price of risk 
is imposed to be equal to the average market return. Volatility is computed as realized volatility from 
daily data. 
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Figure 6: RMSPE for simple and full model estimated on monthly data of 30 Fama-French equal-weight 
industry portfolios for various values of threshold given by τ quantile of market returns. Horizontal line represents 
RMSPE of GDA5 model. Volatility is computed as realized volatility from daily data. 
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Figure 7: Predicted returns. Plots of predicted versus actual returns for competing models estimated on 
monthly data of 30 Fama-French equal-weight industry portfolios. Volatility is computed as realized volatility 
from daily data. 
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