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Abstract 

We propose a new volatility timing strategy that are particularly favourable in the 

presence of both structural changes in covariance matrix and transaction costs. The approach 

relies on an assumption that the return covariance matrix changes sparsely over time, along 

with a novel regularized rolling window technique for tracking the significant changes. The new 

strategy strikes a good balance between reducing portfolio risk exposure and turnovers, earning 

larger out-of-sample certainty equivalent returns after transaction costs, compared with a set of 
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I. Introduction 

We motivate our study from a mean-variance investor perspective, who adjusts his 

allocation based on changes in the estimated conditional covariance matrix of returns, which are 

commonly referred to as “volatility timing” strategies. These strategies have gained popularity 

since the seminal work of Fleming et al. (2001), and recalled its importance during the recent 

global financial crisis (GFC)1 . Despite the theoretical attractiveness, implementing “volatility 

timing” remains an empirical challenge to both academics and practitioners due to the presence 

of transaction costs. The purpose of “volatility timing” strategy is to overcome the challenge 

that changing market conditions present to traditional static asset allocation, and hence requires 

investors to actively adjust portfolio weights based on sample information of the volatility 

dynamics. However, the presence of transaction costs makes otherwise optimal rebalancing 

costly, outweighing the benefit of timing volatility. This presented investors with a dilemma: 

how should we conduct “volatility timing” in the presence of transaction cost? Answering this 

question is relevant not only for portfolio allocation during extreme periods of volatility like 

those seen in 2008, but also much more generally as reducing risk exposure (through active 

trading) and raising transaction cost is a salient trade-off in portfolio allocation. To address 

the dilemma, we propose a new “volatility timing” strategy that detects significant changes 

(or structural breaks) in asset return covariance matrix, and rebalances portfolio solely when 

a change point has been detected. We document that this new strategy simultaneously lowers 

portfolio risk exposure and turnovers, and largely improves out-of-sample certainty equivalent 

returns (CER) after transaction costs, compared with other commonly used alternatives. These 

results suggest that investors can benefit from change detection in volatilities in the presence of 

transaction cost. We then interpret the new strategy from both portfolio choice under turnover 

penalization and a Bayesian portfolio construction perspective. 

A commonly employed approach in the literature to mitigate the impact of transaction 

cost in portfolio allocation is to slow down trading and allow investors to deviate from the 

zero-cost optimal positions. For example, the strategy discussed in Gârlranu and Pedersen 

(2013) and Gârlranu and Pedersen (2016) suggests invetors to trade only partially toward the 

1Fleming et al. (2001) showed that portfolios formed using “volatility timing” outperform the unconditionally 
efficient static portfolios that have the same target expected return and volatility. A recent work of Moreira and 
Muir (2019) documented that a long-term investor who ignores variation in volatility gives up the equivalent of 
2.4% of wealth per year. 
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desired position, e.g. trading only 15% toward the zero-cost optimal targets each day. Another 

strategy proposed by Kirby and Ostdiek (2012) allows the sensitivity of portfolio weights to 

volatility changes to be adjusted via a tuning parameter, and thus, the portfolio turnover 

can be controlled to a low level. Although these strategies successfully control over portfolio 

turnovers through reducing trading frequency, a common practice in these strategies is using a 

constant trading reduction rate over time, which would not be appropriate in reality. Intuitively, 

when the asset return volatility evolves smoothly such as what we have seen during the market 

calm periods, using a large reduction rate for trading can be appropriate as it can remarkably 

reduce transaction costs without highly increasing portfolio risk exposure. However, in more 

turbulent periods, a lower level of trading reduction rate would be required so that the portfolio 

weights can adjust faster and adapt with the significantly changed market conditions. Therefore, 

to better timing the volatility, we need a mechanism to locally detect significant variation in 

volatilities, and then, to tell investors when significant updates are needed for portfolio weights. 

So far, the canonical approach to assessing time variations in asset return volatility is to 

use a rolling window estimation (see DeMiguel et al. 2009b,a, Kirby and Ostdiek 2012, Kourtis 

et al. 2012, Goto and Xu 2015, for example). This analysis involves recursively estimating 

sample covariance matrix of the asset returns by re-weighting new observations according to 

a rolling window. Subsequently, analysis can be performed directly on the covariance matrix 

estimate to infer the dependence structure of asset returns when new observations arise. While 

rolling windows are a valuable tool for investigating dynamic changes, there are two main issues 

associated with its use. First, the choice of window length can be a difficult parameter to tune. 

It is advisable to set the window length to be large enough to allow for a robust estimation but 

without making it too large, which can result in overlooking short-term fluctuations. Second, 

the rolling window faces the potential issue of variability between temporally adjacent estimates. 

This arises as a direct consequence of the fact that each covariance matrix across the rolling 

windows is estimated independently without any mechanism present to encourage temporal 

homogeneity. This additional variability can jeopardise the accuracy of the estimation as well 

as hugely increase turnovers in the context of portfolio allocation. 

To address these issues, we propose a regularized rolling window (RRW) approach in this 

paper to assess the time variation of covariance matrices. Our RRW approach regularizes the 

standard rolling window estimation using a penalty term that assists which exploits temporal 
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similarity between consecutive window estimates, resulting in a piecewise constant estimate. 

Specifically, our approach estimates the covariance matrix using traditional quasi-maximum 

likelihood but with an additional constraint in order to shrinking the difference between con-

temporaneous and lagged estimates. Without the constraint, our approach is reduced back to 

the standard rolling window analysis, but with the constraint, the overall size of element-wise 

differences between consecutive covariance matrix estimates are penalized, producing two-fold 

estimation effects: (i) the time variation of any element of the covariance matrix (e.g. the (i, j)th 

entry) is set to be zero if the sample variation is below than a constraint whose strength relates 

to a turning parameter in the RRW optimisation problem; (ii) the time variation of any element 

of the covariance matrix is decreased toward zero by the magnitude of the threshold when the 

sample variation is above the threshold. As such, the penalty term leads the covariance ma-

trix estimate to achieve both shrinkage and sparsity in time variations, eliminating unnecessary 

evolutions embedded in the standard rolling window analysis. The motivation of our RRW ap-

proach is similar to the recent advances in machine learning and statistics on change detection in 

time-varying regression parameters: the “fused lasso” estimator of Tibshirani et al. (2005) that 

operates in a linear (least-squares) regression setting and acts to shrink the insignificant changes 

in consecutive parameter estimates towards zero. We extend the idea to detecting changes in a 

matrix at element level, and employ the matrix version of “fused lasso”, that is, the “graphical 

fused lasso” algorithm of Gibberd and Nelson (2017) to solve the estimation problem. 

Next, we apply our new covariance matrix estimate to mean-variance portfolio decision 

to develop a new volatility timing strategy. Under our approach, the portfolios are re-balanced 

monthly based solely on the significant changes detected in the covariance matrix, otherwise, re-

main as if a buy-and-hold portfolio. We control the sensitivity of change detection in covariance 

matrix, and also, the portfolio turnovers via a tuning parameter in the RRW approach. The 

tuning parameter is hence treated as a measure of change detection aggressiveness, and allows 

us to keep the turnover of the proposed strategies to a level competitive with other existed 

strategies, e.g. 1/N naive diversification. To better understand the economic motivation of the 

new strategy, we offer alternative interpretation on the strategy from both portfolio decision 

with turnover penalization and Bayesian portfolio decision perspective. A recent study of Haut-

sch and Voigt (2019) established a link between turnover penalization and covariance shrinkage 

in portfolio allocation. Following this study, we show that a zero-cost mean-variance portfo-
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lio formed using our new covariance matrix estimator is equivalent to a sample mean-variance 

portfolio achieved through using a turnover penalization, where (i) the turnover is measured by 

a weighted quadratic transaction cost, and (ii) the weights on transaction costs are determined 

by a term measuring the difference between the standard and our regularized rolling window 

based covariance matrix estimates. A large difference between the standard and our regularized 

rolling sample estimates implies that the real covariance structure is relatively stable so that 

the regularization removes hugely the unnecessary evolutions generated by the standard rol-

ling window analysis. Regularizing the weighted transaction costs, therefore, ensures that the 

strength of penalization on portfolio turnover is time-varying, depending on the magnitude of 

time variation in covariance matrix. To the best of our knowledge, the time varying turnover 

penalization is novel in the literature, as previous studies (e.g. DeMiguel et al. 2009b, DeMiguel 

and Olivares-Nadal 2018, Engle et al. 2012) usually adopted a constant tuning parameter to 

control the level of penalization on portfolio turnovers. Turning to the Bayesian interpretation, 

we know Bayesian investors often employ useful prior information about quantities of interest. 

We show that the covariance matrix estimate from our RRW approach can be interpreted as 

being the maximum a-posteriori (MAP) Bayesian estimate associated with Gaussian likelihood 

for asset returns and a Laplace prior on the time change of the inverse covariance matrix. The 

resulting portfolios are hence a Bayesian portfolio formed by the investors who have a prior 

belief on the changes of covariance matrix, and where they construct a portfolio that maximizes 

the posterior distribution of the change in the covariance matrix. 

Lastly, we investigate the economic value of our new volatility timing strategy using a 

range of real data sets. We evaluate the out-of-sample empirical gains associated with inves-

ting in mean-variance portfolios using our new covariance matrix estimate, where the portfolio 

expected returns are measured using the sample estimate which is a constant. Therefore, the 

portfolio weights mainly focus on our estimation on the structure of covariance matrix. We find 

that the new strategy outperforms a set of commonly used mean-variance portfolio alternati-

ves, including the standard rolling sample strategy where the covariance matrix is measured 

by the rolling sample estimate, the 1/N naive diversification strategy and the volatility timing 

strategies using covariance matrix forecasts from dynamic models, e.g., Exponential weighted 

moving average (EWMA) model, in terms of both out-of-sample portfolio risk and turnover 

control. More important, the new strategy earns significantly larger certainty equivalent re-
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turn (CER) after transaction cost. For example, our strategy has an estimated annual CER 

of 10.238% after transaction cost for a data set comprising 25 portfolios formed on size and 

book-to-market characteristics. In comparison, the three competing strategies have estimated 

CER (after transaction cost) of 4.924%, 3.927% and 8.458%, respectively. We further provide 

additional insights into the gains generated by our new strategy, and attribute the gains to the 

improved covariance matrix estimation accuracy as well as the better timing ability in significant 

changes of the covariance matrix. 

Methodologically, our RRW approach relates to a burgeoning literature on estimating 

covariance matrix using the shrinkage technique developed in statistics and machine learning 

fields. The idea behind is to shrink an unbiased estimator towards a lower variance (or more 

stable) target so that the shrunk estimator can strike a balance between mis-specification biases 

and estimation risk. The existing shrinkage estimators of covariance matrix, so far, mainly 

focus on addressing the static single-period estimation problem, e.g. the “sparse” estimator of 

Goto and Xu (2015) that shrinks the off-diagonal elements of the (inverse) covariance matrix 

towards zero and thus reduces the cross-sectional dimension (or the number) of assets in the 

portfolio selection. The estimators of Ledoit and Wolf (2003) and Chan et al. (1999) shrink 

the sample covariance matrix towards a more parsimonious target matrix, such as a constant 

correlation matrix or a covariance matrix with industry factor structure. Our RRW estimator 

extends the shrinkage idea to a dynamic setting, casting attention on the time change of the 

covariance matrix. The improved covariance matrix estimator is hence particular conducive to 

dynamic portfolio selection. 

The second contribution of our study links with the work of Fleming et al. (2001), 

Fleming et al. (2003) and Moreira and Muir (2017) who study volatility timing empirically in 

the context of a short-term mean-variance investor. We go well beyond the results in these 

papers by proposing a sparse rather than continuous assumption on the time variation of the 

covariance matrix. We then design an algorithm to pick up the sparse set of time points where 

the covariance matrix experiences structural changes. In the context of portfolio allocation with 

the presence of transaction cost, the sparse assumption on the covariance matrix time variation 

is particularly attractive, as the resulting piecewise constant covariance matrix estimate would 

largely reduce portfolio turnovers without losing capacity in detecting significant changes. 

The rest of the paper is organized as follows. Section 2 provides a small simulation study 
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to address the motivation of our new RRW method. Section 3 introduces the RRW method for 

change detection in conditional covariance matrix and provides discussion on several empirical 

implementation issues. Section 4 develops our new volatility timing strategy using the RRW 

covariance matrix estimator and offers two alternative interpretations on the new strategy. 

Section 5 describes the data and presents the empirical analysis results. Section 6 examines the 

robustness of our results. Section 7 concludes. 

II. Motivating Examples 

There is a tradition in the portfolio allocation literature of using a rolling window to 

obtain sample estimates for the covariance matrix with the purpose of capturing the time-

varying market condition. This section provides a small motivating example showing that 

the sample estimate from standard rolling window approach is an unreliable estimate for two 

significant reasons. The first is that the standard rolling window may create extra variability in 

the consecutive window estimates, due to the estimator assuming independence across rolling 

windows without a mechanism to exploit the temporal similarity. The second is that the spurious 

variation introduced by rolling windows can potentially mask the existence of significant changes 

in true covariance matrix. How severe are these statistical issues? We address this question 

using the following simulation study and contrast the standard rolling window with our novel 

regularised rolling window. 

Consider a simple bivariate Gaussian process rt ∼ N (0, Σt) where the covariance Σt can 

change over time. To illustrate the issue of spurious estimator time variation, we will assume the 

covariance matrix is constant across time with Σ11 = 1, Σ22 = 0.4, and Σ12 = 0.1. However, we 

let the covariance Σ12 exhibits a changepoint at time τ , and its value changes to 0.2 throughout 

the rest of sample periods. We simulate T = 2000 return data from the bivariate process and set 

up τ = 1000. At first, we simply use a standard rolling window approach with width M = 100 

to estimate the covariance matrix, and then compares this to our newly proposed regularised 

rolling window (RRW) estimator. 

Table 1 represents estimation results of Σ12 across 300 simulation trials. µ1 and µ2 

denote the average of the estimators across the 300 trials before and after the change point 

τ = 1000, and σ1 and σ2 denote the standard deviation of the estimators. We also report 

the percentage of time points where the estimators exhibit changes from last period esti-
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mate at the last column of the table. First, looking at the average (µ1 and µ2) and stan-

dard deviation (σ1 and σ2), we find that while the standard rolling window estimator per-

forms slightly better than our estimator in terms of estimation bias, the estimation standard 

deviation is largely reduced by our estimator. This is consistent with the objective of regu-

larized estimation that shrinks the estimator from the unbiased estimator (the sample-based 

estimator) in the direction that reduces estimation errors. Second, turning to the average 

percentage of time points at which the estimates changes from the previous time-step, our 

estimator changes at much less time points than the standard rolling window counterpart, 

proving that with the regularization our estimator shows piece-wise constant over time, lar-

gely constraining spurious time variations exhibited by the standard rolling sample estima-

tor. As we will see later in the paper, this property proves extremely valuable for non-

zero cost dynamic portfolio selection. Third, as our estimator involves a turning parame-

ter (λ)tocontrolthestrengthoftheregularization, weseethatwhenweincreasethevalueofλ from 

0.05 to 0.1, both the standard deviation and percentage of changed time points of the estimator 

are further reduced. To further provide a visual evidence, Figure 1 plots the time series of 

standard rolling sample estimator v.s our estimator (by setting λ = 0.1) for Σ12 from a single 

simulation trial. Clearly, our RRW estimator is much more stable than the standard rolling 

sample estimator when the true covariance is constant, and also, has a better capacity to reflect 

the significant changes in the true covariance. 

In summary, the standard rolling window estimates vary substantially over time, even 

in periods where the true covariance is constant. As a result, when these estimates are used for 

portfolio allocation, the additional time variation would have a strong influence on the portfolio 

weights and turnovers, as even small time variations in the sample estimates of the covariance 

matrix can lead to large fluctuations in the portfolio weights (Kirby and Ostdiek 2012). In the 

next section we will introduce our new regularised rolling window approach to estimating the 

covariance matrix in more detail. 

III. Econometric Methodology 

A. The Regularised Rolling Window Approach 

We start with the standard rolling window approach, where the covariance matrix at 

each time t is estimated by minimizing a loss function (or negative log-likelihood) with return 
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Figure 1: A graphical comparison between the standard and regularized ”rolling window” approach. 
The top panel shows the estimation procedure of standard rolling window approach and the bottom panel shows 
the estimation procedure of the regularized rolling window approach. 

observations from the time window [t − 1 − h, t − 1], where h is the window length. Specifically, 

we consider � � 
Σ̂−1 := arg min l(Σ−1) .t 

Σ−1 t 
t 

with the loss 

l(Σ−1) := − log det(Σ−1) + trace(Ŝ 
tΣ
−1) . (1)t t t 

where Ŝ 
t and Σ−1 denote the sample and our estimate of the covariance matrix, respectively. t 

Thus, the time-varying covariance matrix through each time point are estimated recursively by 

including new observations according to the rolling window. Clearly, with the rolling window 

analysis, the covariance matrix is estimated independently across estimation windows without 

any mechanism present to encourage temporal similarity. A potential issue arises that the 

estimates for two adjacent time points might be largely different due to estimation errors which 

contradicts with the reality especially when the market is relatively stable. Additionally, the 

extra variability caused by the independent estimation across rolling windows can potentially 

mask significant changes in covariance matrix. 

To address these empirical features, we propose a regularized rolling window approach in 

order to enforce temporal homogeneity and thus reflect significant time variations in covariance 

matrix. We minimize a penalized loss function which contains the negative log-likelihood as 
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shown in Equation 1 and an additional penalty term that regularizes the difference between the 

contemporaneous and the lagged estimates produced by previous estimation window: 

Σ−1l(Σ− 
t 
1) = − log det(Σ− 

t 
1) + trace(Ŝ 

tΣ
− 
t 
1) + λkΣ− 

t 
1 − ˆ t−1k1, (2) 

Σ−1where ˆ is the lagged estimate from the previous estimation window, and the ` 1 norm, defined t 

as X 
kΣ−1 − Σ−1 k1 := |Σ−1 − Σ−1 | ,t t−1 ij,t ij,t−1 

i,j 

measuring the difference between the current and lagged inverse covariance matrix estimates 

(that is, the sum of the absolute values of edgewise differences between the two estimates.). The 

λ is a tuning parameter that controls the degree of regularization on the difference, becoming 

a soft threshold. 

Clearly, the new approach nests the standard rolling window estimation as a special case 

when the regularization parameter (λ) is equal to zero. Figure 2 gives a graphical interpreta-

tion about the relation between our RRW approach and the standard rolling window analysis. 

Σ−1The regularization term, λkΣ−1 − ˆ k1, restricts the difference between the current inverse t t−1 

Σ−1covariance matrix Σ−1 and the estimate of previous period ˆ For off-diagonal entries, if the t t−1. 

consecutive difference in the inverse-covariance is below than a pre-determined soft threshold, 

e.g. related to the size of λ, we set the difference to be zero, when the difference is above the 

soft threshold we shrink the difference by the the magnitude of the soft threshold toward zero. 

As such, the regularization achieves both sparsity and shrinkage in time variations of the co-

variance matrix estimation, encouraging a temporally stable (or piecewise constant) estimator 

which has capacity to reflect big changes in the matrix at element level, but is less sensitive to 

small ones. 

B. Empirical Implementation 

We next discuss several empirical issues related to the implementation of the RRW 

approach. First, we turn to the problem of solving Equation 2. Due to the presence of the 

penalty terms, this loss function is convex, however, because of the ` 1 norm it is not continu-

ously differentiable. In this context, the traditional optimization algorithms used for maximum 

likelihood estimation, or generalized method of moments, etc., cannot be adopted without furt-

her modifications. Instead, we employ the popular alternating directions method of multipliers 
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(ADMM) algorithm (Boyd et al. 2010) to solve the optimisation problem. The ADMM met-

hod is a form of augmented Lagrangian algorithm that is particularly well suited to addressing 

the highly structured nature of problems such as the one proposed here, for instance Danaher 

et al. (2013), Gibberd and Nelson (2017) also use this approach for fused estimation of inverse 

covariance matrices. We provide more detail on the estimation procedure using the ADMM 

algorithm in Appendix B. 

The second major challenge when implementing the RRW approach relates to the se-

lection of the regularisation parameter λ. In this paper, we employ a heuristic parameter-tuning 

technique inspired by the Akaike information criterion (AIC). We define the AIC for each win-

dow t = 1, . . . T as 

AICt(λ) = − log det(Σ−1) + trace(Ŝ 
tΣ
−1) + Kt, (3)t t 

where Kt is an estimate of the “degrees of freedom”. Further discussion of the degrees of 

freedom is deferred to Appendix C. In practice, we use the first T = 120 months as a training 

period (with window width M = 60) and use it to search for the value of λ that minimizes the PT average, (T − M)−1 AICt(λ). Following this training period, we adhere to this choice t=M 

throughout the out-of-sample testing period2 . 

IV. The Portfolio Problem 

In this section, we use our RRW approach based covariance matrix estimates to develop 

a new volatility timing strategy. To better understand the motivation of the new strategy, 

we offer two alternative interpretations from the portfolio choice with turnover penalization 

and the Bayesian portfolio choice perspectives. We conclude the section by introducing several 

commonly used mean-variance strategies and performance metrics which we will use to evaluate 

RRW portfolios. 

A. Volatility Timing Strategies 

To develop our volatility timing strategies, we consider a risk-averse investor who allo-

cates wealth across N risky assets plus a riskless asset, e.g. cash. The investor uses conditional 

mean-variance analysis to make his allocation decisions and re-balances his portfolio monthly. 

2Goto and Xu (2015) stated that when the “rolling horizon” approach is used, re-estimating the tuning 
parameters period by period can certainly improve the performance, but they did not adopt this approach due 
to the intensive computation burden associated with it. We refer to their statement here to justify our choice. 
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Let Rt+1, µ = E[Rt+1], and Σt = Et[(Rt+1 − µ)(Rt+1 − µ)0] denote an N × 1 vector of risky 

asset returns, the expected value of Rt+1, and the conditional covariance matrix of Rt+1. For 

each date t, to minimize conditional volatility subject to a given expected return, the investor 

solves the following quadratic program: 

wt+1 := min[w >Σtw] (4) 
w 

>s.t. µp = w µ + (1 − w >1)rfree, 

where w is an N × 1 vector of portfolio weights on the risky assets, rfree is the return on the 

riskless asset, and µp is the target expected return. The solution to this optimization problem 

is given by: 
Σ−1 µp µt wt+1 = , (5) 

µ>Σ−1 µt 

where w delivers the risky asset weights, and the weight on the riskless asset is 1 − w>1. 

The trading strategy implicit in Equation 5 identifies the dynamically re-balanced port-

folio that has minimum conditional variance for any choice of expected return, which is referred 

to as minimum volatility (MV) strategy. Similarly, we could conduct an analysis where the 

objective is to maximize the expected return subject to achieving a particular conditional va-

riance. To save the space, we only report results relating to the minimum volatility strategy 

in the empirical section. The results relating to the maximum return strategy are available 

upon request. The MV strategy given via Equation 5 implies that to identify portfolio weights 

requires us to have one-step-ahead estimates of both the vector of conditional means, µ, and the 

conditional covariance matrix, Σt. Merton (1980) shows that a very long sample period would 

be needed to produce reliable coefficient estimates in a predictive regression. We assume, the-

refore, that our investor models expected returns as constant (and we estimate it using sample 

mean), and the portfolio weights in the strategy primarily focus on time variation in covariance 

matrix. Plugging the RRW covariance matrix estimator into equation 5, we form a new MV 

strategy that updates portfolio weights solely based on significant changes in Σt. 

B. A Transaction Cost Interpretation of RRW 

In Hautsch and Voigt (2019), a link between turnover penalization and covariance 

shrinkage in portfolio allocation is investigated. Specifically, they show that the optimiza-

tion problem with quadratic transaction costs can be interpreted as a classical mean-variance 
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problem without transaction costs, however, where the covariance matrix is regularized towards 

the identity matrix. Following this line of interpretation, we show that how optimal MV port-

folio achieved using our RRW based covariance matrix estimate without transaction costs links 

with MV portfolio optimization problem with a time-varying quadratic transaction costs, where 

the time dependence is determined by the difference between our regularized and the sample 

covariance matrix. 

Proposition 1. RRW Equivalence to Transaction Cost Penalisation 

In the case of our RRW approach, the resulting covariance matrix is derived from the 

following optimization problem: 

h i 
Σ̂t,RRW := arg max log det(Σt) − tr(Σ− 

t− 
1
1, Σt − Ŝ 

t) . (6) 
Σt 

s.t. kΣt − Ŝ 
tk∞ ≤ λ 

where kXk∞ := maxij |Xij | is the dual norm of kXk1. Thus, the RRW covariance matrix 

estimator Σ̂t,RRW can be expressed associated with the sample covariance estimator Ŝ 
t as 

ˆ ˆΣt,RRW = St + λΔt, (7) 

where Δt := (Σ̂t,RRW − Ŝ 
t)/λ. The proof of the above is given in the Appendix A. and follows 

from basic duality properties of the RRW optimization problem. Plugging the RRW estimator 

∗into the standard mean-variance portfolio optimization, the portfolio allocation wt+1 can then 

be stated as 

h i 
∗ > ˆ > wt+1 = arg min w Σt,RRW w − w µ (8) 

w h i 
> + + = arg max w µ ∗ − w >Ŝ 

tw − λ(w − w )>Δt(w − w ) ,t t w 

where 

? + µ = µ − 2Δtw ,t t 

and the weights are normalized such that w>1 = 1. 

Intuitively, our RRW estimator regularizes the sample estimator Ŝ 
t through an additi-

onal matrix Δt, with λ serving as shrinkage parameter. Note that the regularization effect of 
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RRW estimator exhibits some similarity to the implications of the shrinkage approach proposed 

by Ledoit and Wolf (2003), but the RRW approach replaces the indentity matrix in the Le-

doit and Wolf estimator with Δt which is time-varying. The resulting zero-cost mean-variance 

portfolio using our RRW estimator is thus equivalent to a portfolio formed with a time-varying 

penalty on transaction cost. Figure 3 provides an example of time evolution of λΔt 
3 and high-

lights recession periods according to the NBER business cycle classification in grey. Clearly, 

in contrast with the constant identity matrix, the figure shows the Δt changes over time and 

peaks at the recession periods. 

To further illustrate the effect of time-varying transaction cost penalty on portfolio 

optimization, Figure. 4 plots the surface of mean-variance optimization function over time with 

both our time-varying and traditional constant quadratic transaction cost penalty. The optimal 

solution for first asset allocation (that is, w1) is also provided in the lower panel of the figure. 

The NBER defined recession periods are also highlighted in grey. We observe that the function 

surface under the time-varying transaction cost penalty (top left panel) exhibits much more 

stable than the one using constant penalty (top right panel) in most of time without losing 

capacity to reflect abrupt changes of market conditions during recession periods, such as the 

observed spikes in the function surface during 2008 crisis period. These findings are further 

collaborated by the time series plot of w1 in the lower panel of the figure. Taken together, 

the time-varying transaction cost penalty resulting from our RRW covariance matrix estimator 

helps to impose a market-condition-dependent regularization on the transaction cost, assisting 

investors to achieve better marketing timing and better balance between portfolio risk exposure 

and turnovers. 

C. Bayesian Portfolio Interpretation 

Kyung et al. (2010) and Wang (2012) respectively give Bayesian interpretations for 

regularised regression via the lasso Tibshirani (1996) and the graphical lasso Friedman et al. 

(2008). Since these estimators are closely aligned with the RRW optimisation problem we can 

follow their line of reasoning to give a Bayesian interpretation for our RRW covariance matrix 

estimator as well as the resulting portfolios. 

3To generate the examples in Figs. 3 and 4, we construct a two-asset portfolio using two randomly selected 
assets from the Fama-French 48 Industry portfolio dataset. We consider both the max and min elements of the 
matrix ΔttoillustrateitstimeevolutioninF igure3 
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Assumption 1. We start with the assumption that future stock returns are independently nor-

mally distributed according the previously estimated covariance, i.e. 

rt+1 ∼ N (0, Σt) , (9) 

and rt+1 ⊥ rt, i.e. there is no auto-correlation structure in returns. 

Assumption 2. In order to understand the RRW estimator, we now make a further assump-

tion, and put ourselves in the shoes of an investor who has a prior belief that the inverse covari-

ance may change in a sparse manner over time, i.e. changes will not be at every time-step, but 

occur rarely. Specifically, we will assume that the temporal variation of the inverse-covariance 

follows a Laplace (double exponential) distribution: 

N 

p(Θt+1 − Θ̂ 
t|ρ) = Z−1 fDE(Θt;ij − Θ̂ 

t−1;ij |ρ) × fExp(Θt+1;ii − Θ̂ 
t;ii|ρ/2) 1Θt�0 , 

i<j i=1 

Yn o Yn o 

where fDE(x|ρ) = (ρ/2) exp(−ρ|x|) has the form of the double exponential density, fExp(x|ρ) = 

ρ exp(−ρx)1x>0 has the form of the exponential density, and Z is a normalising constant. The 

notation 1Θ�0 is used to denote the indicator function, in this case for the space of positive 

definite matrices for Θt. 

ˆProposition 2. Given that assumptions 1 and 2 hold, and we further assume Σt = Σt in 

Equation 9, then one can interpret the RRW estimator (minimiser of Eq. 2) as being the 

maximum-a-posteriori (MAP) estimate for the inverse covariance at time t + 1. Specifically, 

assume that investor believes the temporal variation of inverse covariance matrix has a prior 

distribution as above, there exists a threshold parameter ρ such that our RRW estimator is the 

mode of the posterior distribution of Θt. 

Now it is clear that under our framework, choosing the portfolio that maximizes the 

posterior distribution of the change of (inverse) covariance matrix guarantees that the inves-

tor is choosing the portfolio with the highest probability of being the MV portfolio given the 

investors prior distribution on the temporal change of the (inverse) covariance matrix and the 

observed asset-return data. In other words, in our setting, the investor chooses the portfolio 

that maximizes the posterior probability (i.e. the posterior mode) of the change of (inverse) 

covariance matrix. This interpretation is a bit different from the traditional Bayesian portfolio 
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choice literature in which the investor either chooses the portfolio that maximizes expected 

utility with respect to the posterior distribution of stock returns (for instance, Jorion 1986) or 

the portfolio that maximizes the posterior distribution of portfolio weights directly (see DeMi-

guel et al. 2009a, Tu and Zhou 2010). In our framework the investor has a prior belief on the 

change of (inverse) covariance matrix rather than on the asset-return distribution or on the 

portfolio weights. Consequently, while the Bayesian investor in the traditional setting chooses 

the portfolio that maximizes expected utility with respect to the posterior distribution of asset 

returns, or chooses the portfolio that maximizes portfolio weights with respect to the posterior 

distribution of portfolio weights, in our setting the investor chooses the portfolio that maximizes 

the posterior distribution of the (inverse) covariance matrix changes. 

D. Performance Evaluation Metrics 

To measure the economic value of our new approach, we compare its performance with 

several competing MV strategies using a series of performance evaluation metrics. Our approach 

builds on the standard rolling window estimation, and thus, a natural choice for the benchmark 

is the MV portfolio using standard rolling sample estimates of covariance matrix, which we refer 

to as MVsample. This approach uses the rolling sample covariance matrix as a predictor for the 

future covariance-matrix (Chan et al. 1999, DeMiguel et al. 2009b,a, Kirby and Ostdiek 2012, 

Kourtis et al. 2012, Goto and Xu 2015). To further reduce the estimation error of the sample 

covariance matrix, we use the shrunk version of the sample estimator (Ledoit and Wolf 2003) 

that shrinks the sample estimate of covariance matrix towards an identity matrix. Counterparts 

for the RRW approach can be generated by using the shrunk sample estimator for St in Equation 

1. Secondly, we consider the näıve 1/N strategy, denoted by MVequal. The näıve 1/N strategy 

demonstrates favorable out-of-sample performance and has been found very hard to beat in 

practice, especially in the presence of high transaction costs. We use it as a benchmark in order 

to examine the ability of our new approach in terms of controlling transaction costs. Thirdly, 

we consider other volatility timing strategies, specifically, the MV portfolios using covariance 

forecasts from dynamic models, e.g. the Exponentially Weighted Moving Average (EWMA) 

model (Zakamulin 2015). This method of estimating the covariance matrix is popularized by 

the RiskMetrics group, and Zakamulin (2015) also find that the simple EWMA covariance 

matrix forecast performs comparably with the multivariate GARCH forecast. In this approach, 
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the exponentially weighted covariance matrix is estimated using the following recursive form: 

ŜEWMA ŜEWMA 
t = (1 − λEWMA)εt−1ε

> 
t−1 + λEWMA t−1 , (10) 

where 0 < λEWMA < 1 is the decay constant, and εt−1 is the return residual. We follow the 

recommendations of the RiskMetrics group and estimate the EWMA covariance-matrix using 

λEW MA = 0.97. This comparison is of particular useful for examining whether investors benefit 

from sparse rather than continuous time variation assumption on covariance matrix. 

Next, we evaluate portfolio out-of-sample performance from several perspective. First, 

we test out-of-sample performance in terms of risk exposure and Sharpe ratio. The portfolio 

risk exposure is measured by standard deviation of out-of-sample portfolio returns, and the 

Sharpe ratio is calculated as �
ŜR = µ̂ σ̂ , (11) 

where µ̂ and σ̂ are mean and standard deviation of portfolio return over the out-of-sample 

testing period. Secondly, we examine portfolio turnovers measured by 

XT NX1 
Turnover = (|ŵi,t+1 − ŵi,t+ |), (12)

T 
t=1 i=1 

where ŵi,t+1 and ŵi,t are the desired portfolio weights in asset i at time t and t + 1, after 

rebalancing, and ˆ is the portfolio weight before rebalancing at t + 1. The turnover quantity wi,t+ 

defined can be interpreted as the average percentage of wealth traded in each period. Lastly, 

we assess whether our new strategy has economic gain. We calculate the annualized certainty 

equivalent excess return (CER) of the portfolio after subtracting the transaction costs (TCOST), 

i.e. 

CERTcost := µ̂ − 
γ
σ̂2 − TCOST, (13)
2 

where µ̂ and σ̂2 are the (annualized) mean and variance of out-of-sample portfolio excess returns. 

Alternatively, the CERTcost can be interpreted as the return increase compared to the risk-free 

rate that an investor is willing to trade for a risky portfolio after accounting for transaction 

costs and variance. 
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V. Empirical Analysis 

A. Data 

We employ three data sets: two from Ken French’s Web site for portfolio investing 

analysis, and one from the Center for Research in Security Prices (CRSP) database for individual 

asset investing analysis. The Ken French data sets contain the returns on 25 value-weighted 

portfolios of stocks sorted by size and book-to-market (that is, 25FF), and the 48 industry 

value-weighted portfolios (that is, 48Ind). For close-to-close returns, we use data from 1967 to 

2017 downloaded from Ken French’s Web site. The second data set consists of 50 individual 

stock returns from the CRSP database (that is, CRSP50), containing close-to-close returns on 

all stocks that were part of the S&P 500 index at some point between 1992 and 2017. 

Table 2 summarizes the sample information for each data set, and also provides infor-

mation regarding the question whether the sparse assumption on time variation of covariance 

matrix is supported by the real data. Looking at the column 8 and 9 of the table, where we 

report the optimal value of λ we choose for each data set (as selected via AIC), and the average 

percentage of non-changed off-diagonal elements between consecutive covariance matrix estima-

tes throughout the whole sample periods. The latter measures the degree of sparsity in time 

variation of the covariance matrix. We find that the degree of sparsity ranges from 35.43% to 

23.55% across these data sets, meaning that a significant fraction of elements in covariance ma-

trix did not significantly change between consecutive periods. Hence, the sparse time variation 

assumption appears reasonable in practice. 

B. Portfolio Investing: 25FF and 48Ind 

We now turn to evaluating the out-of-sample portfolio performance. We start with 

portfolio investing by focusing on the two Fama-French portfolio data sets: 25FF and 48IND, a 

move towards analysis on the individual stock level is given in the next section. In each month 

t, we construct the MV portfolios using stock returns from past M = 60 months (5 years)4 . We 

hold such portfolios for 1 month and calculate the portfolio returns for out-of-sample month 

t + 1. We continue this process by adding the return for the next period in the data set and 

dropping the earliest return from the estimation window. 

4The choice of the rolling estimation window size, M = 60, follows the standard practice in the literature. To 
save space, we report the results only for M = 60. We have also conducted an analysis using a longer estimation 
window of M = 120 and found the results are generally robust. The results are available upon request. 
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Our primary interest is in the ability of the proposed MV strategy in reducing the 

out-of-sample portfolio risk. We first construct the time series of out-of-sample returns for 

the four portfolios: MVRRW, MVsample, MVequal and MVEWMA. We then compare out-of-

sample return variance to see whether MVRRW achieves out-of-sample risk reduction. Last, 

we test the significance of any difference between MVRRW and other alternatives using the 

stationary bootstrap of Politis and Romano (1994). Panel A of Table 3 reports the monthly 

out-of-sample risk for each MV portfolio strategy, and Panel B gives the difference test results. 

From the table, we observe: i). compared to the standard sample MV portfolio, MVsample, 

our portfolio (MVRRW) significantly reduces the portfolio out-of-sample risk, suggesting that 

the regularization increases the ability of the rolling sample estimates in change detection of 

the covariance matrix, and thereby improves the portfolio performance by better controlling 

portfolio risk exposure. For example, the portfolio risk decreases from 18.757(%2) to 13.707(%2) 

for 25FF, and from 44.991(%2) to 13.157(%2) for 48IND. ii). compared with the näıve 1/N 

strategy (MVequal), our portfolio (MVRRW) still achieves lower risk, implying that “volatility 

timing” favors portfolio out-of-sample risk reduction; iii). compared with the MV portfolio 

formed using covariance matrix forecasts from the EWMA model, MVEWMA, our portfolio once 

again offers smaller risk, e.g. 13.707 v.s. 14.422 in 25FF, and 13.157 v.s. 18.043 in 48IND. This 

supports the assumption that sparse rather than continuous changes in the covariance matrix 

does not weaken, but rather strengthens the portfolio out-of-sample risk reduction. 

In principle, if the out-of-sample mean return remains the same, the out-of-sample risk 

reduction would lead to the increase of the out-of-sample Sharpe ratio. Our experiments here 

validate this statement in the context of the RRW portfolio. Panel A of Table 4 reports Sharpe 

ratios for the six portfolios, and Panel B of the table gives the different test results. The 

portfolios MVRRW still outperform all the alternatives by retaining the highest Sharpe ratios 

across almost all the data sets. The Sharpe ratio of portfolio MVRRW ranges from 0.219 to 

0.371, followed by the portfolio MVEWMA. 

We now turn to investigating the ability of our RRW strategy in controlling portfolio 

turnover. We calculate the monthly portfolio turnovers as stated in Equation 12 for the six 

portfolios and report these results in Panel A of Table 5. It is not surprising we observe that 

the equally weighted 1/N portfolio provides the lowest turnover for all the data sets. The näıve 

diversification requires only a very small amount of trades to maintain the equal weights. On 
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the contrary, the sample portfolio MVsample and the other volatility timing strategy, MVEWMA, 

always suffer large turnovers, because it requires active trading to adapt with the changing 

covariance matrix in order to achieve the best risk diversification. Our portfolio (MVRRW) 

significantly reduces the portfolio turnovers. The favorable performance in portfolio turnover 

control verifies that the RRW approach offers a more stable estimate for the covariance matrix 

that significantly reduces the portfolio turnovers and thus the associated transaction costs. 

Finally, we assess the economic gain of the RRW strategy by looking at certainty equiva-

lent returns (CER) after transaction cost. Following standard practice in most of the literature 

(DeMiguel et al. 2009b,a, Goto and Xu 2015), we set the risk aversion coefficient γ = 5, and the 

transaction costs are measured by the annualized asset turnover multiplied by 50 basis points 

per trade. Table 6 reports the CER of the six portfolios after subtracting transaction costs. We 

observe that while the sample portfolio offers negative CER after transaction cost, our portfolio 

realizes positive economic gains in all the data sets. Moreover, the gains compare favorably 

with those of other alternatives. The improvement on economic gain over other alternatives 

can be attributed to i) the RRW covariance matrix estimator leads to much reduced portfolio 

turnover, and thus reduces transaction costs; and ii) the RRW estimator substantially reduces 

the out-of-sample portfolio risk. 

C. Individual Asset Investing: CRSP50 

In this section we conduct a portfolio analysis operating based on individual assets. 

We randomly select 100 samples from S&P500 stocks and each sample contains 50 stocks. 

We then compare our RRW strategy with other alternatives in terms of out-of-sample portfolio 

performance among the 100 samples. The 100 random samples are useful not only for examining 

the average performance of our strategy in individual stock investing, but also for investigating 

the relation between the level of regularization on covariance matrix to achieve temporal stability 

and the magnitude of out-of-sample portfolio performance improvement. 

The average performance across the 100 stock samples is presented in the last line of 

Table 3 to Table 6. Once again, these results confirm that the individual asset investor also 

benefits from using RRW to identify changes in the covariance matrix. The advantage of the 

new strategy reported in portfolio investing is still preserved here. 

Then, we report summary statistics of portfolio performance across the 100 samples 

with an expectation that samples need higher value of regularization parameters should exhibit 
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greater benefit when using our strategy. In Table 7 Panels A to D, we present monthly mean, 

standard deviation, minimum and maximum values of the estimation results for i) the out-of-

sample portfolio risk, ii) the out-of-sample Sharpe ratio, iii) the portfolio turnover, and iv) the 

CER after transaction cost for each of the four portfolios: MVRRW, MVsample, MVequal, and 

MVEWMA. 

Panel A of Table 7 shows that the portfolio (MVRRW achieves lower out-of-sample 

portfolio risk than other alternatives in all 100 runs, which offers compelling evidence for the 

ability of MVRRW to achieve significant reduction in out-of-sample portfolio risk. We turn to 

Sharpe ratio in Panel B and observe that MVRRW achieves higher Sharpe ratio in all 100 runs. 

In terms of portfolio turnover and economic gains, we find that the MVRRW provides lower 

turnover and higher CER after transaction cost in the majority of runs than any of the other 

alternative portfolio strategies. Finally, in Panel E of Table 7, we report the relation between the 

level of regulation on covariance matrix and the improved magnitude of out-of-sample economic 

gain (measured by the difference of CER after transaction cost achieved by our strategy and 

the standard rolling sample estimate). We show that when we regress the CER difference on 

the value of RRW regularization tuning parameter, the slope coefficient is 1.213 (t-statistic = 

3.445) which is significantly positive. This suggests that our RRW estimator provides larger 

economic gains for a panel of sample that has a relatively stable covariance matrix structure 

and calls for a higher level of temporal stability regularization. 

D. Decomposing the Performance Gain: Estimation Accuracy and the Ability to Time Signi-

ficant Changes 

While the above findings support the existence of additional economic gains from using 

our RRW estimator in MV strategies, in this section, we attempt to answer the question: where 

are the gains generated from? We explain the advantage of our RRW estimator from two 

perspectives: estimation accuracy and the ability o timing significant changes. 

Firstly, we attribute the better portfolio performance to the improved covariance matrix 

forecasts. We examine forecasting accuracy of our RRW approach based covariance matrix 

estimate, compared with the shrunk rolling sample estimate and the forecasts from EWMA 

model using the following log predictive likelihood: 

Σ−1 >Σ̂−1lt(Σ
−1) = ln(det(ˆ )) − r̃  r̃t, (14)t−1 t t−1 
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where T is the total number of out-of-sample testing periods. ret denotes the demeaned return 

vector at time t, and Σt−1 is the covariance matrix estimate for time t but made at time 

t − 1. We average lt(Σ−1) across the whole out-of-sample testing period, that is, L(Σ−1) = PT(1/T ) lt(Σ
−1). We calculate out-of-sample log predictive likelihood for each covariance t=1 

matrix estimator, and then test the significance of the difference between ones from our estimator 

and the other alternatives. Table 8 reports the testing results. Column 2 of the table shows that 

our RRW estimate has a significantly higher predictive likelihood than does the shrunk rolling 

sample estimates in all the data sets, proving that imposing temporal similarity regularization 

in rolling window approach reduces the covariance matrix predictive errors. Column 3 shows 

that the RRW estimate outperforms the EWMA based estimate, suggesting that allowing for 

piecewise constancy is conducive to increase the predictive accuracy for out-of-sample covariance 

matrix. Overall, these results confirm that the RRW approach improves forecasting accuracy 

of the covariance matrix, leading to the better out-of-sample portfolio performance. 

Next, we demonstrate the advantage of our RRW approach in timing significant changes 

of the covariance matrix. The top panel of Figure 2 plots the temporal variation of our RRW (the 

solid line) and the shrunk sample (the dotted line) covariance matrix estimators, measured by P ˆthe trace of the estimated covariance structures ( Σii,t). We highlight in grey the recessionii 

periods according to the NBER business cycle classification. Clearly, the RRW estimator is 

more stable than the sample counterpart during the calm period, such as the period between 

2002-2007, but without loosing capacity to reflect large changes during the recession period, 

such as the GFC period from 2008-2010. 

To further illustrate this point, we split the whole sample into “good” and “bad” eco-

nomic periods according to the NBER business cycle classification. Then, we compare out-of-

sample portfolio turnover and risk exposure of our RRW strategy with those of 1/N (MVequal) 

and the shrunk rolling sample strategy (MVsample). The results are reported in Table 9. If 

our strategy has better capacity in timing significant changes, we expect that it allows more 

aggressive updates in portfolio weights and thus larger increase in portfolio turnovers compared 

with the 1/N strategy during “bad” periods. On the contrary, during “good” periods, it should 

have more conservative response to the change of covariance matrix, leading much less portfolio 

turnovers compared with the shrunk rolling sample strategy. Looking at the portfolio turnovers 

reported in the table, we observe that during “good” periods, the portfolio turnover of MVRRW 
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PN ˆFigure 2: Top: Estimated Total Market Volatility ( i=1 Σii) for both the standard rolling window (dashed), and 
regularised rolling window (solid). Bottom: Transaction costs as measured via portfolio weights kwt − wt−1k1. 
Note: In this case, we set M = 12 and λ = 40 to highlight the changes in variance which can occur in periods of 
recession. 

is quite close to that of the 1/N portfolio, but the both are much less than that of MVsample. 

For example, for the data of 25FF , the portfolio turnover of MVRRW is only 0.019 that is close 

to 0.017 of the 1/N portfolio, but much less than 0.047 of the MVsample. On the other hand, 

during the bad periods, the portfolio turnover of MVRRW hugely increases to 1.033, but the tur-

nover of the 1/N portfolio only slightly increases to 0.018. Comparatively, the sample portfolio 

MVsample has a constantly higher portfolio turnovers, which is also increasing during the bad 

period. The bottom panel of Figure 2 plots the portfolio turnovers using our RRW (the solid 

line) and the sample (the dotted line) strategies against the business cycles. Our RRW strategy 

always offers less portfolio turnovers, but reasonably increases turnovers when the market is in 

distress. 

To conclude the section we examine the portfolio risk and whether the better ability of 

MVRRW to time changes results in a better control on portfolio risk exposure. We notice that 

MVRRW always achieves the lowest risk, and the 1/N strategy outperforms the sample strategy 

in “good” periods by achieving lower risk, and vice versa in “bad” periods. In summary, we 

observe that our RRW covariance estimator has a great ability to highlight significant changes, 

helping the resulting portfolio to strike a better balance between portfolio turnovers and risk 

exposure. 
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VI. Robustness Checks 

A. Large scale portfolio 

The large scale portfolio allocations remains a challenge for econometricians and practi-

tioners. In this section, we examine whether the economic gain achieved by our RRW approach 

is robust to large scale portfolios. We employ two large data sets from Ken French’s Web site for 

portfolio investing analysis: 100 value-weighted portfolios of stocks sorted by size and book-to-

market (that is, 100FF), and the combination of 100 value-weighted portfolios of stocks sorted by 

size and book-to-market and the 48 industry value-weighted portfolios (that is, 100FF+48Ind). 

We also randomly select 100 stocks from S&P stocks to construct the third large data set for 

individual stock investing analysis. Table 10 reports the annualized CER after transaction cost 

for our RRW portfolio and other competitors. We can see that the superiority of our RRW port-

folio is preserved in these large scale portfolio allocations. The MVRRW achieves the highest 

CER after transaction cost in all the three large data sets. 

B. The Estimation Window Length 

To some extent, one may argue that the RRW estimator uses longer samples (from the 

previous estimation window) than other competing methods used in empirical evaluations of 

the out-of-sample portfolio performance. This makes it difficult to evaluate the performance 

gain from the RRW approach over other methods. Does the performance gain come from the 

particular regularization, or does it comes from the use of a longer sample? We examine a 

simple way to address this question, that is, we adopt the standard rolling window approach 

in other competing methods with a fixed longer estimation window, e.g. M = 120 months. 

Table 11 reports the results and two patterns are observed: i) all the competing methods 

perform better with longer estimation window. This is not surprising as the longer sample of 

observations provides more historical information which helps achieving more robust estimation; 

ii) the RRW estimator still outperforms all the other competitors, confirming that through 

exploiting similarity between two consecutive estimation windows using the temporal similarity 

regularization, the temporally stable estimator largely reduces “spurious” time variations caused 

by estimation errors based on the standard rolling window approach. The resulting portfolio, 

therefore, exhibits more stable out-of-sample performance. 
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C. Weekly Return Data 

We use monthly stock returns in the benchmark analysis; here, we evaluate the per-

formance of the different portfolios regarding weekly return data for the five data sets to see 

whether the results are robust to the return data frequency. We report the CER after tran-

saction cost in Table 12 for the cases with transaction costs of 0 and 50 basis points. We find 

that our results are generally robust to the use of weekly data. For instance, we find that even 

with weekly data, our doubly regularized portfolios with γ = 5 generally outperform the alter-

natives. When we compare the performance of the portfolios for monthly and weekly return 

data, we find that the portfolios perform slightly better with monthly than with weekly data. 

We believe the reason is that the benefit of more frequently adjusting the hedge trades is offset 

by the higher transaction costs. 

D. Robustness to Investor’s Risk Aversion 

Lastly, in our main body of results for CER after transaction cost, we choose that the 

investor has a risk aversion of γ = 5. To investigate whether the portfolio performances are 

robust to this choice, we report the CER after transaction of different portfolios in Table 13 

using other values for γ, for example, γ = 2 and γ = 10. Generally, as we expected, the CER 

after transaction costs becomes larger when γ = 2 and becomes smaller when γ = 10 in all 

the portfolio strategies, as the former gives less weight and the latter gives more weight to the 

out-of-sample portfolio risk. However, the ranking of portfolio performance is not changed at 

all compared with the main results. Our RRW portfolio still outperform the alternatives. 

VII. Conclusion 

In this paper, we propose a regularized rolling window approach to estimate the time-

varying covariance matrix, which imposes a temporal variation constraint on the standard rol-

ling window based sample estimates. This new method is simple and interpretable, whilst also 

yielding superior out-of-sample forecasts for the covariance matrix and capable of detecting sig-

nificant changes in covariance matrix. We demonstrate that in the presence of both structural 

changes and transaction cost, the resulting portfolio achievs simultanenously low risk exposure 

and turnover, earning significant economic gains compared to a set of commonly used alterna-

tives. These results support our initial motivation of this study: in the presence of transaction 

cost, investors can benefit from volatility significant change detection. 
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Appendix A: Theory and Methodology 

A. Proof of Proposition 1 

Proof. Let Ŝ 
t be the empirical covariance at t and forecast until t + 1. Let Θt−1 be the estimate 

of the precision matrix at the previous timestep. The RRW problem we solve is 

n o 
Θ̂ = argmax f(U, Ŝ) . 

U�0 

where 

f(U, Ŝ) := log det(U) − tr(Ŝ 
tU) − λkU − Θt−1k1 . 

Using similar arguments to the regular graphical laso case (Banerjee and Ghaoui 2008), we 

can formulate an equivalent (due to convexity) dual problem. Noting that the ` 1 norm can be 

expressed as 

kUk1 = max tr(UV ) , 
kV k∞≤1 

we can then consider the ` 1 norm applied to the difference of a matrix. The dual problem is 

thus constructed as 

n o 
max{f(U)} ≡ max min log det U − tr(U, Ŝ 

t + V ) + tr(Θt−1V ) . 
U U�0 kV k∞≤λ 

Swapping the max and min, performing the optimisation over U gives us 

max f(U) = min {− log det(S + V ) + tr(Θt−1V ) − p} . (15)
U kV k∞≤λ 

Writing W := Ŝ 
t + V we obtain the desired result. In general we can replace k · k∞ with k · kD 

in Eq. 15. The final equivalence in terms of transaction cost is trivial due to the definition of 

Δt and Σ̂ 
t;λ. A simillar analysis of transaction costs is performed for the case with the penalty 

+kw − w k2 is given in Hautsch and Voigt (2019), our result is a generalisation of this witht 2 

the penalty based on kxk2 = x>Lx, the Hautsch and Voigt (2019) results relates to adding aL 

diagonal to the empirical covariance. 
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B. An Alternating Directions Method of Multipliers Algorithm for RRW (RRW-ADMM) 

Based on the algorithms in Danaher et al. (2013), Gibberd and Nelson (2017), we propose 

to solve the RRW estimator using a version of the Alternating Direction Method of Multipliers 

(ADMM) algorithm. The basic intuituion behind this approach is to utilise linear seperability 

in the objective function, in our case between the likelihood term and the regulariser, in order 

to decompose the optimisation problem into a series of simplified problems. The basic form of 

the algorithm can be explained in relation to solving the generic problem min{u,v}{f(u)+ r(v)} 

(for convex f , r) subject to the constraint that u = v. A standard approach is to instead solve 

the Lagrangian dual problem 

max{g(p) := min{f(u) + r(b) + hp, u − vi} , (16) 
p u,v 

where p represents a set of Lagrange multipliers. Principally, we see that the Lagrangian penalty, 

the inner product hp, u − vi, penalises divergence from the equality requirement u = v. As the 

functions f , r are both convex, strong duality holds, and the maxima g(p ∗) for the dual problem 

is equivalent to the value of the explicitly constrained problem f(u ∗) + r(v ∗). Without further 

modification, the minimisation task minu,v{·} in (16) needs to be performed jointly, i.e. we 

should not expect to be able to sequentially minimise with respect to u and then v. However, 

with slight modification, through an additional augmentation term, one can break down this 

joint minimisation problem into a sequential one. Specifically, the augmented Lagrangian 

L(u, v, p) = f(u) + r(b) + hp, u − vi + 
γ ku − vk2 , (17)F2 

gives rise to the ADMM algorithm which performs dual ascent through the following iterations: 

1. Minimise uk+1 = arg minu L(u, vk, pk) 

2. Minimise vk+1 = arg minv L(uk+1, v, pk) 

3. Tightening the Lagrangian constraint, via dual ascent pk+1 = pk + (uk+1 − vk+1) 

For further information on the ADMM formulation and convex optimisation the reader is di-

rected to the work of Boyd et al. (2010), and the excellent book by Boyd and Vandenberghe 

(2004). In the following we detail the specifics required to adapt this algorithm to the RRW 
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estimator. The augmented Lagrangian (specific version of Eq. 17) for the RRW estimator is 

given as: 

L({U, V, P }) = − log det(U) + tr(UŜ) + λkV − Θ̂ 
t−1k1 � 

. . . + 
γ 
2 
kU − V + P k2 

F − kP k2 
F (18). 

The ADMM algorithm proceeds to minimise (18) subject to increasing the constraint imposed 

by the Lagrange multipliers P . 

Step 1: Maintaining Positive Semi-definite Solutions 

Initially, we minimise with respect to the primal variable U , and therefore need to solve 

the equation n o 
− log det(U) + tr(UŜ) + 

γ kU − Γk2 
FUk+1 := arg min

U�0 
,

2 

where Γ := Vk −Pk. We can interpret this minimisation as pulling the estimate for Uk+1 towards 

that given by the difference between the auxilary variable and the dual (Vk − Pk) and note that 

the prior knowledge imposed by the smoothing (and potentially sparse) regulariser is encoded 

within Vk. 

The gradient of the above gives −(U)−1 + Ŝ + γU − γΓ) = 0, and therefore 

(U)−1 − γU = Ŝ − γΓ 

We construct a solution for U by equating the eigen-vectors of the left and right hand-sides. The 

−1eigen-values of each side, respectively {uh}p and {sh}p obbey the quadratic u −γuh = sh.h=1 h=1 h 

Obtaining the eigenvectors {vh ∈ Rp} := eigenvec(Ŝ − 2γΓ) and corresponding eigenvalues {sh} 
2we can update for uh by solving the quadratic uh = −(2γ)−1{sh ±(s +4γ)1/2}, for h = 1, . . . , p.h 

A positive-semi-definite update for Uk+1 can now be constructed according to 

⎞⎛⎞⎛⎞⎛ > ⎜⎜⎜⎜⎝ 

v1 ⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎠ 

u1 

. . . 

⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎠ 

v1 ⎟⎟⎟⎟⎠ 
Uk+1 = . 

vp up vp 
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⎪
⎪

Step 2: Enforcing Prior Knowledge 

The second step in the algorithm requires us to incorporate the influence of the regula-

risers. At this point, there are a variety of updates that may be required dependent on the form 

of the regulariser, however, in this paper we only have a single smoothing term corresponding 

to the ` 1 penalty on the differences. Minimising L({U, V, P }) with respect to V we obtain the 

problem � � 

Vk+1 = arg min 
1 kΓ − V kF 

2 + 
λ kV − Θ̂ 

t−1k1 , (19)
V 2 γ 

where we utilise the substitution Γ ≡ Uk+1 + Pk. Simply writing V 0 = V − Θ̂ 
t−1, we obtain the 

equivalent problem V 0∗ = arg minV 0 {(1/2)kΓ0−V 0k2 +(λ/γ)kV 0k1}, where Γ0 ≡ Uk+1+Pk −Θ̂ 
t−1F 

which has a closed form soft-threshold solution ⎧ ⎪⎨0 if |Γ0 i,j | ≤ λ/γ 
V 0∗ = soft(Γ0; λ/γ) ≡ . ⎪Γ0 i,j − (λ/γ)sign(Γ0 i,j ) if |Γ0 i,j | > λ/γ⎩ 

The solution for Vk+1 can then be recovered simply by adding the previous estimate, i.e. Vk+1 = 

V 0∗ + Θ̂ 
t−1. As an aside, we note that this step of the algorithm may easily be altered to enable 

both sparse and smooth estimation, for instance, as discussed in Section ??. To simplify the 

application of such combined priors, in our implementation we utilise the SLEP package (Liu 

et al. 2009) and Fused Lasso Signal Approximator to solve the update, as in Eq. 19. 

Step 3: Dual Update and Convergence 

The final step in the algorithm is to update the dual variables. With the Lagrangian 

in the simplified form of (18) this is as simple as updating according to the difference between 

the primal and auxilary variables, specifically, we set Pk+1 = Pk + (Uk+1 − Vk+1). Repeating 

the above steps is guranteed to lead to minimisation of the RRW objective due to its convex 

nature, for further details on such arguments the reader is directed towards Boyd et al. (2010). 

One may note that the above algorithm introduces an additional tuning parameter 

γ > 0. While this does not affect the eventual solution, i.e. minima found by the algorithm, 

it can drastically affect the time it takes the algorithm to get there. In practice, and in our 

experiments, we found reasonable convergence speed with γ = 1, however, it is still an open 

problem how to optimally tune this parameter. Finally, it is worth noting that the RRW-

ADMM algorithm can be signficantly sped up if it is initiated with a warm start. That is, if we 
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set the initial {U0, V0, P0} to be close to the actual solution, we should expect the algorithm to 

converge much faster. In our work, we harness this property to speed up the parameter search 

over λ. 

C. Estimating Degrees of Freedom and Tuning Regularisers 

Given that there is no consensus on how to implement AIC/BIC type tuning for high-

dimensional problems (where we may have M < N), we study a variety of methods to select 

tuning parameters and estimate degrees of freedom. As such, the AIC criteria we employ should 

be taken purely as a heuristic. Consider the set 

ˆDt = {(i, j) | Θ̂ 
t;ij =6 Θt−1;ij ; i 6= j} , 

which represents the support of the difference of inverse-covariance matrices. In the graphical 

lasso setting, where we apply a sparsity penalty to the inverse covariance matrix entries it is 

common place to assume the degrees of freedom may be estmated according to the number of 

non-zero entries in the inverse covariance. Analogously, in our case, as we are fusing against a 

fixed target, i.e. the previous precision estimate, we instead propose to measure the degrees of 

ˆfreedom in terms of the differencing set, i.e. Ksmooth = |Dt|. Interestingly, this can be linked, via 

the GMV construction, to counting variation in the change in portfolio weights. For instance, 

ˆa large Ksmooth implies we need to change many of our positions to reach a new portfolio, in 

this way, one can directly see how our approach should limit portfolio turnover. 

Although, our experiments focus on using AIC to select λ we also note there are other 

ways one might tune these parameters for completeness. In particular, while AIC attempts to 

construct an in-sample estimate of out-of-sample performance, we may also consider assessing 

out-of-sample performance directly, equivalently to how one may evaluate the task of covariance 

prediction. In this case, we can simply assess the negative log-likelihood of the next data-points 

given our current estimate 

ltest(Θ̂ 
t; xt+1) = − log det(Θ̂ 

t) + tr(xt+1xt 
> 
+1Θ̂

 
t) . 

Averaging the out-of-sample likelihoods over a training period lets us assess the performance of 

the RRW estimator in covariance prediction. 
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Table 1: Motivating Example. Mean and standard-deviation of the covariance estimates from both the first and second periods (i.e. we take means and standard 
deviations over the stationary periods). The last column gives the average percentage of time-points at which the estimates change from the previous time-step. Statistics 
are taken over 300 trials. In this case, the true values are Σ12 = 0.1 and Σ12 = 0.2 for the first and second periods respectively, T = 2000, τ = 1000. 
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Method µ1 µ2 σ1 σ2 %change 

Empirical 0.100 0.195 0.046 0.050 100 
RRW (λ = 0.05) 0.100 0.187 0.036 0.042 25 
RRW (λ = 0.1) 0.102 0.166 0.029 0.036 1 

Table 2: Data Description. This table lists the data sets used in our empirical analysis. Column 2 provides the abbreviation used to refer to the testing portfolios. 
Column 3 gives more detailed descriptions about the data sets. Column 4 reports the number of stocks in each data set, and Column 5 reports the length of sample period. 
Column 6 and 7 present the training and testing period in out-of-sample analysis. Column 8 and 9 give the optimal value we used for the regularization parameter (λ) in 
RRW approach and the average percentage of non-changed off-diagonal elements between consecutive covariance matrix estimates throughout the whole sample period. 

Data Percentage of unchanged 
Set Abbreviation Description N T Training Period Testing Period λ matrix off-diagonal elements 

1 25FF 25 size and BM portfolios 25 553 Jan. 1967-Dec. 1972 Jan.1973-Dec.2017 0.5 23.55% 
2 48IND 48 industry portfolios 48 553 Jan. 1967-Dec. 1972 Jan.1973-Dec.2017 0.5 30.23% 
3 Individuals 100 stocks from SP500 100 553 Jan. 1992-Dec. 1997 Jan.1998-Dec.2017 0.4 25.21% 



Table 3: Out-of-Sample Portfolio Risk (monthly). For each data set, this table reports the monthly out-
of-sample return variances for the following four portfolios: portfolio using our RRW estimator (denoted as 
MVRRW); portfolio using rolling window based shrunk sample estimate of the covariance matrix (denoted as 
MVsample); equally weighted portfolio; and portfolio using EWMA based estimates of covariance matrix (denoted 
as MVEWMA). Panel A tabulates the point estimates of the out-of-sample monthly return variances measured 
in %2 , and Panel B tabulates the mean differences in out-of-sample return variances. We test the null of no 
differences using the two-sided bootstrap intervals. *, **, and *** indicate significant differences at the 10%, 5% 
and 1% levels, respectively. 

Data Set MVRRW MVequal MVsample MVEWMA 

Panel A: Return Variance (%2) 
25FF 
48IND 
Individuals 

13.707 
13.157 
15.008 

25.589 
24.725 
22.453 

27.629 
27.833 
17.674 

14.422 
18.043 
17.112 

Panel B: Difference Test 
25FF 
48IND 
Individuals 

-5.050*** 
-31.834*** 
-4.223*** 

-13.922*** 
-14.676*** 
-11.257*** 

-0.715 
-4.886*** 
-2.104*** 
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Table 4: Out-of-Sample Sharpe Ratio (monthly). For each data set, this table reports the monthly out-
of-sample sharp ratio for the following four portfolios: portfolio using our RRW estimator (denoted as MVRRW); 
portfolio using rolling window based shrunk sample estimate of the covariance matrix (denoted as MVsample); 
equally weighted portfolio; and portfolio using EWMA based estimates of the covariance matrix (denoted as 
MVEWMA). Panel A tabulates the monthly Sharpe ratio in the out-of-sample period. Panel B reports the 
difference in sharp ratio between the best portfolio and other alternatives. Using the portfolio (MVRRW) as 
a benchmark, we test the null of no difference between the benchmark and other competitors indirectly by 
constructing the two-sided bootstrap intervals. *, **, and *** indicate significant difference at the 10%, 5% and 
1% levels, respectively. 

Data Set MVRRW MVequal MVsample MVEWMA 

Panel A: Monthly SRs 
25FF 
48IND 
Individuals 

0.371 
0.251 
0.267 

0.221 
0.109 
0.152 

0.209 
0.178 
0.169 

0.374 
0.214 
0.173 

Panel B: Differences in SRs 
25FF 
48IND 
Individuals 

0.149*** 
0.142*** 
0.115*** 

0.162*** 
0.073* 
0.098* 

0.004 
0.038* 
0.094* 

Table 5: Out-of-sample Portfolio Turnover. For each data set, this table reports the portfolio turnover for 
the following four portfolios: portfolio using our RRW estimator (denoted as MVRRW); portfolio using rolling 
window based shrunk sample estimate of the covariance matrix (denoted as MVsample); equally weighted portfolio; 
and portfolio using EWMA based estimates of the covariance matrix (denoted as MVEWMA). Calculation of the 
portfolio turnover follows the equation 12. 

Data set MVRRW MVequal MVsample MVEWMA 

25FF 0.020 0.0172 0.291 0.320 
48IND 0.025 0.029 0.346 0.461 
Individuals 0.053 0.041 0.213 0.345 

Table 6: Out-of-sample CER after Transaction Cost (annual %). For each data set, this table reports 
the values of the CER after transaction cost for the following four portfolios: portfolio using our RRW estimator 
(denoted as MVRRW); portfolio using rolling window based shrunk sample estimate of the covariance matrix 
(denoted as MVsample); equally weighted portfolio; and portfolio using EWA based estimates of the covariance 
matrix (denoted as MVEWMA). The transaction cost of each is calculated as 50 basis points times monthly 
turnover times 12 (to annualize). 

Data Set MVRRW MVequal MVsample MVEWMA 

25FF 10.238 4.924 3.927 8.458 
48IND 5.146 3.687 3.754 4.167 
Individuals 4.834 3.593 3.693 3.732 
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Table 7: Detailed Descriptions on Portfolio Performance for 50 individual stocks. This table reports summary statistics of out-of-sample portfolio risk, sharpe 
ratio, turnovers and CER after transaction cost for the following four portfolio strategies: portfolio using our RRW estimator (denoted as MVRRW); portfolio using rolling 
window based shrunk sample estimate of the covariance matrix (denoted as MVsample); equally weighted portfolio; and portfolio using EWMA based estimates of covariance 
matrix (denoted as MVEWMA), based on 100 random samples from the S&P500 stocks (each consists of 50 individual stocks). 

MVRRW MVequal MVsample MVEWMA 

Panel A: out-of-sample portfolio risk(monthly) 
mean 15.008 19.218 26.265 18.093 
std 2.010 2.33 2.67 7.05 
max 15.226 25.224 31.789 21.516 
min 6.128 6.327 10.224 7.276 

Panel B: portfolio Sharpe ratio 
mean 0.267 0.151 0.169 0.215 
std 0.028 0.036 0.039 0.064 
max 0.301 0.286 0.251 0.265 
min 0.062 0.055 0.048 0.047 

Panel C: portfolio turnover 
mean 0.053 0.226 0.213 0.177 
std 0.003 0.013 0.014 0.352 
max 0.082 0.337 0.421 0.312 
min 0.022 0.035 0.052 0.251 

Panel D: CER after transaction cost 
mean 3.834 3.525 3.693 3.184 
std 0.035 0.049 0.055 0.156 
max 4.987 3.982 4.164 3.967 
min 0.998 0.598 0.616 0.879 

Panel E: the relation between regularization and the improved economic gains 
Intercept -0.135 
regularization 1.213(3.445) 



Table 8: Out-of-sample covariance matrix prediction. This table reports differences in log predictive 
likelihood (see equation 14) between different covariance matrix estimators. Column 2-3, denoted as LRRW − 
Lsample and LRRW − LEWMA, give the difference between our RRW estimator and the shrunk sample estimator of 
Ledoit and Wolf (2003), and the EWMA model implied estimate, respectively. We test the null hypothesis of no 
difference between our regularized estimator and other competitors using Politis and Romano (1994) stationary 
bootstrap to construct two-sided bootstrap intervals. *, ** and *** indicate significance at the 10%, 5% and 1% 
levels, respectively. 

Data Set LRRW − Lsample LRRW − LEWMA 

25FF 0.987** 3.105*** 
48IND 1.053** 4.121*** 
Individuals 1.211*** 3.137*** 
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Table 9: Portfolio performance during “good” and “bad” periods.This table reports the portfolio turnover 
and CER after transaction cost for the following four portfolios: portfolio using our RRW estimator (denoted 
as MVRRW); portfolio using rolling window based shrunk sample estimate of the covariance matrix (denoted as 
MVsample); equally weighted portfolio; and portfolio using EWMA based estimates of covariance matrix (denoted 
as MVEWMA). The “good” and “bad” periods are based on NBER business cycle classifications. 

Date set MVRRW MVsample MVequal 

Panel A: Good period 
Portfolio turnover 
25FF 0.019 0.047 0.017 
48IND 0.029 0.053 0.023 
Individuals 0.041 0.064 0.032 
Portfolio risk 
25FF 12.543 17.112 14.121 
48IND 12.897 20.206 15.654 
Individuals 12.256 17.564 14.589 

Panel B: Bad period 
Portfolio turnover 
25FF 1.033 2.076 0.0184 
48IND 2.039 4.105 0.032 
Individuals 2.567 5.453 0.058 
Portfolio risk 
25FF 15.128 20.564 27.096 
48IND 14.896 20.656 26.098 
Individuals 16.275 21.290 25.027 

Table 10: Robustness check using large scale portfolios. For each data set, this table reports the values 
of the CER after transaction cost for the following four portfolios: portfolio using our RRW estimator (denoted 
as MVRRW); portfolio using rolling window based shrunk sample estimate of the covariance matrix (denoted as 
MVsample); equally weighted portfolio; and portfolio using EWMA based estimates of covariance matrix (denoted 
as MVEWMA). 

Data Set MVRRW MVequal MVsample MVEWMA 

100FF 4.352 -3.381 -6.093 -25.667 
100FF+48IND 5.032 -3.347 -7.298 -14.490 
Individuals (100 S&P stocks) 3.834 3.593 3.693 1.532 

Table 11: Robustness check using longer estimation window for competing methods. For each data 
set, this table reports the values of the CER after transaction cost for the following four portfolios: portfolio using 
our RRW estimator (denoted as MVRRW); portfolio using rolling window based shrunk sample estimate of the 
covariance matrix (denoted as MVsample); equally weighted portfolio; and portfolio using EWA based estimates 
of covariance matrix (denoted as MVEWMA). The RRW estimator is formed with rolling window of M = 60, and 
other covariance matrix estimators are formed with rolling window of M = 120. The transaction cost of each is 
calculated as 50 basis points times monthly turnover times 12 (to annualize). 

Data Set MVRRW MVequal MVsample MVEWMA 

25FF 10.238 7.519 6.942 10.114 
48IND 4.146 3.962 3.990 1.408 
Individuals 3.834 4.887 4.175 2.717 
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Table 12: Robustness test using weekly returns. For each data set, this table reports the values of the 
CER after transaction cost for the following four portfolios: portfolio using our RRW estimator (denoted as 
MVRRW); portfolio using rolling window based shrunk sample estimate of the covariance matrix (denoted as 
MVsample); equally weighted portfolio; and portfolio using EWMA based estimates of covariance matrix (denoted 
as MVEWMA). The transaction cost of each is calculated as 50 basis points times weekly turnover times 52 (to 
annualize). 

Data Set MVRRW MVequal MVsample MVEWMA 

25FF 9.765 3.996 2.978 8.123 
48IND 3.882 3.235 3.087 0.765 
Individuals 2.365 2.106 1.987 1.032 

Table 13: Robustness test using different investor risk aversion. For each data set, this table reports the 
CER after transaction using different risk aversion parameters for the following four portfolios: portfolio using 
our RRW estimator (denoted as MVRRW); portfolio using rolling window based shrunk sample estimate of the 
covariance matrix (denoted as MVsample); equally weighted portfolio; and portfolio using EWMA based estimates 
of covariance matrix (denoted as MVEWMA). The transaction cost of each is calculated as 20 basis points in 
Panel A, and 100 basis points in Panel B, times monthly turnover times 12 (to annualize). 

Data Set MVRRW MVequal MVsample MVEWMA 

Panel A: γ = 2 
25FF 
48IND 
Individuals 

13.129 
6.896 
4.142 

7.114 
5.709 
4.129 

5.149 
4.132 
4.106 

12.156 
2.328 
2.654 

Panel A: γ = 10 
25FF 
48IND 
Individuals 

9.453 
3.227 
3.125 

4.128 
3.220 
2.967 

3.124 
2.187 
2.774 

9.356 
0.987 
1.438 
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True Changepoint

Figure 1: Estimates from a single trial of a synthetic experiment for assessing covariance estimation, in this case 
we have Σ12 = 0.1 for t ≤ τ = 1000 and Σ12 = 0.2 for t > τ = 1000. 

Figure 2: A graphical comparison between the standard and regularized ”rolling window” approach. 
The top panel shows the estimation procedure of standard rolling window approach and the bottom panel shows 
the estimation procedure of the regularized rolling window approach. 
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Figure 3: Plot of how maxij (ΣRRW,t − St) and minij (ΣRRW,t − St) vary as a function of time. According to Eq. 
6 the RRW estimator should always maintain maxij (|[Σ̂ 

RRW,t − Ŝ 
t]ij |) ≤ λ. Note how the difference tends to 

increase before or around recession period, these are periods where jumps in the portfolio position (and estimated 
covariance) are likely to occur, see Figs. 4 for comparison. 

Figure 4: Surface plots of the portfolio optimization objective function over business cycles. The optimum 
portfolio lies at the minimiser of these objective functions and the corresponding portfolio allocation solution for 
first asset (that is, w1) is indicated in the lower panels by the solid line v.s w1 produced by minimizing w 0Σw 
without transaction cost (the dashed line). We set estimation window length M = 12 and λ = 40 to allow 
comparison with Figs. 3. The grey overlaid bands (in the lower panes) denote recession periods. Note: we here 

+)> + use the notation kwk2 := (w − w Δt(w − w ).Δt t t 
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