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Abstract
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I. Introduction

We motivate our study from a mean-variance investor perspective, who adjusts his
allocation based on changes in the estimated conditional covariance matrix of returns, which are
commonly referred to as “volatility timing” strategies. These strategies have gained popularity
since the seminal work of [Fleming et al.| (2001), and recalled its importance during the recent
global financial crisis (GFC)D Despite the theoretical attractiveness, implementing “volatility
timing” remains an empirical challenge to both academics and practitioners due to the presence
of transaction costs. The purpose of “volatility timing” strategy is to overcome the challenge
that changing market conditions present to traditional static asset allocation, and hence requires
investors to actively adjust portfolio weights based on sample information of the volatility
dynamics. However, the presence of transaction costs makes otherwise optimal rebalancing
costly, outweighing the benefit of timing volatility. This presented investors with a dilemmas:
how should we conduct “volatility timing” in the presence of transaction cost? Answering this
question is relevant not only for portfolio allocation during extreme periods of volatility like
those seen in 2008, but also much more generally as reducing risk exposure (through active
trading) and raising transaction cost is a salient trade-off in portfolio allocation. To address
the dilemma, we propose a new “volatility timing” strategy that detects significant changes
(or structural breaks) in asset return covariance matrix, and rebalances portfolio solely when
a change point has been detected. We document that this new strategy simultaneously lowers
portfolio risk exposure and turnovers, and largely improves out-of-sample certainty equivalent
returns (CER) after transaction costs, compared with other commonly used alternatives. These
results suggest that investors can benefit from change detection in volatilities in the presence of
transaction cost. We then interpret the new strategy from both portfolio choice under turnover
penalization and a Bayesian portfolio construction perspective.

A commonly employed approach in the literature to mitigate the impact of transaction
cost in portfolio allocation is to slow down trading and allow investors to deviate from the
zero-cost optimal positions. For example, the strategy discussed in |Garlranu and Pedersen

(2013) and Garlranu and Pedersen| (2016]) suggests invetors to trade only partially toward the

IFleming et al|(2001) showed that portfolios formed using “volatility timing” outperform the unconditionally
efficient static portfolios that have the same target expected return and volatility. A recent work of [Moreira and
Muir| (2019) documented that a long-term investor who ignores variation in volatility gives up the equivalent of
2.4% of wealth per year.



desired position, e.g. trading only 15% toward the zero-cost optimal targets each day. Another
strategy proposed by Kirby and Ostdiek| (2012)) allows the sensitivity of portfolio weights to
volatility changes to be adjusted via a tuning parameter, and thus, the portfolio turnover
can be controlled to a low level. Although these strategies successfully control over portfolio
turnovers through reducing trading frequency, a common practice in these strategies is using a
constant trading reduction rate over time, which would not be appropriate in reality. Intuitively,
when the asset return volatility evolves smoothly such as what we have seen during the market
calm periods, using a large reduction rate for trading can be appropriate as it can remarkably
reduce transaction costs without highly increasing portfolio risk exposure. However, in more
turbulent periods, a lower level of trading reduction rate would be required so that the portfolio
weights can adjust faster and adapt with the significantly changed market conditions. Therefore,
to better timing the volatility, we need a mechanism to locally detect significant variation in
volatilities, and then, to tell investors when significant updates are needed for portfolio weights.

So far, the canonical approach to assessing time variations in asset return volatility is to
use a rolling window estimation (see DeMiguel et al. |2009blal |Kirby and Ostdiek [2012, Kourtis
et al.| 2012 |Goto and Xu 2015, for example). This analysis involves recursively estimating
sample covariance matrix of the asset returns by re-weighting new observations according to
a rolling window. Subsequently, analysis can be performed directly on the covariance matrix
estimate to infer the dependence structure of asset returns when new observations arise. While
rolling windows are a valuable tool for investigating dynamic changes, there are two main issues
associated with its use. First, the choice of window length can be a difficult parameter to tune.
It is advisable to set the window length to be large enough to allow for a robust estimation but
without making it too large, which can result in overlooking short-term fluctuations. Second,
the rolling window faces the potential issue of variability between temporally adjacent estimates.
This arises as a direct consequence of the fact that each covariance matrix across the rolling
windows is estimated independently without any mechanism present to encourage temporal
homogeneity. This additional variability can jeopardise the accuracy of the estimation as well
as hugely increase turnovers in the context of portfolio allocation.

To address these issues, we propose a regularized rolling window (RRW) approach in this
paper to assess the time variation of covariance matrices. Our RRW approach regularizes the

standard rolling window estimation using a penalty term that assists which exploits temporal



similarity between consecutive window estimates, resulting in a piecewise constant estimate.
Specifically, our approach estimates the covariance matrix using traditional quasi-maximum
likelihood but with an additional constraint in order to shrinking the difference between con-
temporaneous and lagged estimates. Without the constraint, our approach is reduced back to
the standard rolling window analysis, but with the constraint, the overall size of element-wise
differences between consecutive covariance matrix estimates are penalized, producing two-fold
estimation effects: (i) the time variation of any element of the covariance matrix (e.g. the (7, j)th
entry) is set to be zero if the sample variation is below than a constraint whose strength relates
to a turning parameter in the RRW optimisation problem; (ii) the time variation of any element
of the covariance matrix is decreased toward zero by the magnitude of the threshold when the
sample variation is above the threshold. As such, the penalty term leads the covariance ma-
trix estimate to achieve both shrinkage and sparsity in time variations, eliminating unnecessary
evolutions embedded in the standard rolling window analysis. The motivation of our RRW ap-
proach is similar to the recent advances in machine learning and statistics on change detection in
time-varying regression parameters: the “fused lasso” estimator of Tibshirani et al. (2005) that
operates in a linear (least-squares) regression setting and acts to shrink the insignificant changes
in consecutive parameter estimates towards zero. We extend the idea to detecting changes in a
matrix at element level, and employ the matrix version of “fused lasso”, that is, the “graphical
fused lasso” algorithm of |Gibberd and Nelson| (2017) to solve the estimation problem.

Next, we apply our new covariance matrix estimate to mean-variance portfolio decision
to develop a new volatility timing strategy. Under our approach, the portfolios are re-balanced
monthly based solely on the significant changes detected in the covariance matrix, otherwise, re-
main as if a buy-and-hold portfolio. We control the sensitivity of change detection in covariance
matrix, and also, the portfolio turnovers via a tuning parameter in the RRW approach. The
tuning parameter is hence treated as a measure of change detection aggressiveness, and allows
us to keep the turnover of the proposed strategies to a level competitive with other existed
strategies, e.g. 1/N naive diversification. To better understand the economic motivation of the
new strategy, we offer alternative interpretation on the strategy from both portfolio decision
with turnover penalization and Bayesian portfolio decision perspective. A recent study of Haut-
sch and Voigt| (2019) established a link between turnover penalization and covariance shrinkage

in portfolio allocation. Following this study, we show that a zero-cost mean-variance portfo-



lio formed using our new covariance matrix estimator is equivalent to a sample mean-variance
portfolio achieved through using a turnover penalization, where (i) the turnover is measured by
a weighted quadratic transaction cost, and (ii) the weights on transaction costs are determined
by a term measuring the difference between the standard and our regularized rolling window
based covariance matrix estimates. A large difference between the standard and our regularized
rolling sample estimates implies that the real covariance structure is relatively stable so that
the regularization removes hugely the unnecessary evolutions generated by the standard rol-
ling window analysis. Regularizing the weighted transaction costs, therefore, ensures that the
strength of penalization on portfolio turnover is time-varying, depending on the magnitude of
time variation in covariance matrix. To the best of our knowledge, the time varying turnover
penalization is novel in the literature, as previous studies (e.g. DeMiguel et al.|2009b, DeMiguel
and Olivares-Nadal 2018, [Engle et al.[2012) usually adopted a constant tuning parameter to
control the level of penalization on portfolio turnovers. Turning to the Bayesian interpretation,
we know Bayesian investors often employ useful prior information about quantities of interest.
We show that the covariance matrix estimate from our RRW approach can be interpreted as
being the mazimum a-posteriori (MAP) Bayesian estimate associated with Gaussian likelihood
for asset returns and a Laplace prior on the time change of the inverse covariance matrix. The
resulting portfolios are hence a Bayesian portfolio formed by the investors who have a prior
belief on the changes of covariance matrix, and where they construct a portfolio that maximizes
the posterior distribution of the change in the covariance matrix.

Lastly, we investigate the economic value of our new volatility timing strategy using a
range of real data sets. We evaluate the out-of-sample empirical gains associated with inves-
ting in mean-variance portfolios using our new covariance matrix estimate, where the portfolio
expected returns are measured using the sample estimate which is a constant. Therefore, the
portfolio weights mainly focus on our estimation on the structure of covariance matrix. We find
that the new strategy outperforms a set of commonly used mean-variance portfolio alternati-
ves, including the standard rolling sample strategy where the covariance matrix is measured
by the rolling sample estimate, the 1/N naive diversification strategy and the volatility timing
strategies using covariance matrix forecasts from dynamic models, e.g., Exponential weighted
moving average (EWMA) model, in terms of both out-of-sample portfolio risk and turnover

control. More important, the new strategy earns significantly larger certainty equivalent re-



turn (CER) after transaction cost. For example, our strategy has an estimated annual CER
of 10.238% after transaction cost for a data set comprising 25 portfolios formed on size and
book-to-market characteristics. In comparison, the three competing strategies have estimated
CER (after transaction cost) of 4.924%, 3.927% and 8.458%, respectively. We further provide
additional insights into the gains generated by our new strategy, and attribute the gains to the
improved covariance matrix estimation accuracy as well as the better timing ability in significant
changes of the covariance matrix.

Methodologically, our RRW approach relates to a burgeoning literature on estimating
covariance matrix using the shrinkage technique developed in statistics and machine learning
fields. The idea behind is to shrink an unbiased estimator towards a lower variance (or more
stable) target so that the shrunk estimator can strike a balance between mis-specification biases
and estimation risk. The existing shrinkage estimators of covariance matrix, so far, mainly
focus on addressing the static single-period estimation problem, e.g. the “sparse” estimator of
Goto and Xu| (2015) that shrinks the off-diagonal elements of the (inverse) covariance matrix
towards zero and thus reduces the cross-sectional dimension (or the number) of assets in the
portfolio selection. The estimators of [Ledoit and Wolf (2003) and |Chan et al. (1999) shrink
the sample covariance matrix towards a more parsimonious target matrix, such as a constant
correlation matrix or a covariance matrix with industry factor structure. Our RRW estimator
extends the shrinkage idea to a dynamic setting, casting attention on the time change of the
covariance matrix. The improved covariance matrix estimator is hence particular conducive to
dynamic portfolio selection.

The second contribution of our study links with the work of [Fleming et al| (2001)),
Fleming et al.| (2003) and Moreira and Muir| (2017)) who study volatility timing empirically in
the context of a short-term mean-variance investor. We go well beyond the results in these
papers by proposing a sparse rather than continuous assumption on the time variation of the
covariance matrix. We then design an algorithm to pick up the sparse set of time points where
the covariance matrix experiences structural changes. In the context of portfolio allocation with
the presence of transaction cost, the sparse assumption on the covariance matrix time variation
is particularly attractive, as the resulting piecewise constant covariance matrix estimate would
largely reduce portfolio turnovers without losing capacity in detecting significant changes.

The rest of the paper is organized as follows. Section 2 provides a small simulation study



to address the motivation of our new RRW method. Section 3 introduces the RRW method for
change detection in conditional covariance matrix and provides discussion on several empirical
implementation issues. Section 4 develops our new volatility timing strategy using the RRW
covariance matrix estimator and offers two alternative interpretations on the new strategy.
Section 5 describes the data and presents the empirical analysis results. Section 6 examines the

robustness of our results. Section 7 concludes.

II. Motivating Examples

There is a tradition in the portfolio allocation literature of using a rolling window to
obtain sample estimates for the covariance matrix with the purpose of capturing the time-
varying market condition. This section provides a small motivating example showing that
the sample estimate from standard rolling window approach is an unreliable estimate for two
significant reasons. The first is that the standard rolling window may create extra variability in
the consecutive window estimates, due to the estimator assuming independence across rolling
windows without a mechanism to exploit the temporal similarity. The second is that the spurious
variation introduced by rolling windows can potentially mask the existence of significant changes
in true covariance matrix. How severe are these statistical issues? We address this question
using the following simulation study and contrast the standard rolling window with our novel
regularised rolling window.

Consider a simple bivariate Gaussian process r¢ ~ N (0, 3;) where the covariance ¥; can
change over time. To illustrate the issue of spurious estimator time variation, we will assume the
covariance matrix is constant across time with 311 = 1, Y99 = 0.4, and X5 = 0.1. However, we
let the covariance 319 exhibits a changepoint at time 7, and its value changes to 0.2 throughout
the rest of sample periods. We simulate 7' = 2000 return data from the bivariate process and set
up 7 = 1000. At first, we simply use a standard rolling window approach with width M = 100
to estimate the covariance matrix, and then compares this to our newly proposed regularised
rolling window (RRW) estimator.

Table [1] represents estimation results of 315 across 300 simulation trials. p; and po
denote the average of the estimators across the 300 trials before and after the change point
7 = 1000, and o7 and oy denote the standard deviation of the estimators. We also report

the percentage of time points where the estimators exhibit changes from last period esti-

6



mate at the last column of the table. First, looking at the average (1 and p2) and stan-
dard deviation (o7 and o03), we find that while the standard rolling window estimator per-
forms slightly better than our estimator in terms of estimation bias, the estimation standard
deviation is largely reduced by our estimator. This is consistent with the objective of regu-
larized estimation that shrinks the estimator from the unbiased estimator (the sample-based
estimator) in the direction that reduces estimation errors. Second, turning to the average
percentage of time points at which the estimates changes from the previous time-step, our
estimator changes at much less time points than the standard rolling window counterpart,
proving that with the regularization our estimator shows piece-wise constant over time, lar-
gely constraining spurious time variations exhibited by the standard rolling sample estima-
tor. As we will see later in the paper, this property proves extremely valuable for non-
zero cost dynamic portfolio selection. Third, as our estimator involves a turning parame-
ter (\)tocontrolthestrengtho ftheregularization, weseethatwhenweincreasethevalueof A from
0.05 to 0.1, both the standard deviation and percentage of changed time points of the estimator
are further reduced. To further provide a visual evidence, Figure (1| plots the time series of
standard rolling sample estimator v.s our estimator (by setting A = 0.1) for X2 from a single
simulation trial. Clearly, our RRW estimator is much more stable than the standard rolling
sample estimator when the true covariance is constant, and also, has a better capacity to reflect
the significant changes in the true covariance.

In summary, the standard rolling window estimates vary substantially over time, even
in periods where the true covariance is constant. As a result, when these estimates are used for
portfolio allocation, the additional time variation would have a strong influence on the portfolio
weights and turnovers, as even small time variations in the sample estimates of the covariance
matrix can lead to large fluctuations in the portfolio weights (Kirby and Ostdiek|2012). In the
next section we will introduce our new regularised rolling window approach to estimating the

covariance matrix in more detail.

ITI. Econometric Methodology

A. The Regularised Rolling Window Approach

We start with the standard rolling window approach, where the covariance matrix at

each time ¢ is estimated by minimizing a loss function (or negative log-likelihood) with return
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Standard Rolling Window Approach
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Figure 1: A graphical comparison between the standard and regularized ”rolling window” approach.
The top panel shows the estimation procedure of standard rolling window approach and the bottom panel shows
the estimation procedure of the regularized rolling window approach.

observations from the time window [t — 1 — h, ¢ — 1], where h is the window length. Specifically,
we consider

31 i=argmin [1(X;1)] .
-1

t
with the loss

1571 := —logdet(S;1) + trace(S; 27 1) . (1)

where S, and Xy 1 denote the sample and our estimate of the covariance matrix, respectively.
Thus, the time-varying covariance matrix through each time point are estimated recursively by
including new observations according to the rolling window. Clearly, with the rolling window
analysis, the covariance matrix is estimated independently across estimation windows without
any mechanism present to encourage temporal similarity. A potential issue arises that the
estimates for two adjacent time points might be largely different due to estimation errors which
contradicts with the reality especially when the market is relatively stable. Additionally, the
extra variability caused by the independent estimation across rolling windows can potentially
mask significant changes in covariance matrix.

To address these empirical features, we propose a regularized rolling window approach in
order to enforce temporal homogeneity and thus reflect significant time variations in covariance

matrix. We minimize a penalized loss function which contains the negative log-likelihood as
8



shown in Equation [T and an additional penalty term that regularizes the difference between the

contemporaneous and the lagged estimates produced by previous estimation window:
1271 = —logdet(3;1) + trace(S:2 1) + M|2 ! = 274 |, (2)

where ﬁ)t_ lis the lagged estimate from the previous estimation window, and the £; norm, defined

as

||Et_1 - Et_—11||1 = E |Ez_31t - Ei_j,lt71| )

.3
measuring the difference between the current and lagged inverse covariance matrix estimates
(that is, the sum of the absolute values of edgewise differences between the two estimates.). The
A is a tuning parameter that controls the degree of regularization on the difference, becoming
a soft threshold.

Clearly, the new approach nests the standard rolling window estimation as a special case
when the regularization parameter () is equal to zero. Figure [2]gives a graphical interpreta-
tion about the relation between our RRW approach and the standard rolling window analysis.
The regularization term, A\, — 21 |1, restricts the difference between the current inverse
covariance matrix 3, 1 and the estimate of previous period i];ll. For off-diagonal entries, if the
consecutive difference in the inverse-covariance is below than a pre-determined soft threshold,
e.g. related to the size of A, we set the difference to be zero, when the difference is above the
soft threshold we shrink the difference by the the magnitude of the soft threshold toward zero.
As such, the regularization achieves both sparsity and shrinkage in time variations of the co-
variance matrix estimation, encouraging a temporally stable (or piecewise constant) estimator
which has capacity to reflect big changes in the matrix at element level, but is less sensitive to

small ones.

B.  Empirical Implementation

We next discuss several empirical issues related to the implementation of the RRW
approach. First, we turn to the problem of solving Equation Due to the presence of the
penalty terms, this loss function is convex, however, because of the ¢; norm it is not continu-
ously differentiable. In this context, the traditional optimization algorithms used for maximum
likelihood estimation, or generalized method of moments, etc., cannot be adopted without furt-

her modifications. Instead, we employ the popular alternating directions method of multipliers
9



(ADMM) algorithm (Boyd et al. [2010) to solve the optimisation problem. The ADMM met-
hod is a form of augmented Lagrangian algorithm that is particularly well suited to addressing
the highly structured nature of problems such as the one proposed here, for instance |Danaher
et al.| (2013), |Gibberd and Nelson (2017) also use this approach for fused estimation of inverse
covariance matrices. We provide more detail on the estimation procedure using the ADMM
algorithm in Appendix B.

The second major challenge when implementing the RRW approach relates to the se-
lection of the regularisation parameter A. In this paper, we employ a heuristic parameter-tuning
technique inspired by the Akaike information criterion (AIC). We define the AIC for each win-
dowt=1,...T as

AIC;(\) = —logdet(2;1) + trace(S;2; 1) + K, (3)

where K, is an estimate of the “degrees of freedom”. Further discussion of the degrees of
freedom is deferred to Appendix C. In practice, we use the first 7' = 120 months as a training
period (with window width M = 60) and use it to search for the value of A that minimizes the
average, (T — M)~} ZtT: v AIC,(X). Following this training period, we adhere to this choice

throughout the out-of-sample testing periodﬂ

IV. The Portfolio Problem

In this section, we use our RRW approach based covariance matrix estimates to develop
a new volatility timing strategy. To better understand the motivation of the new strategy,
we offer two alternative interpretations from the portfolio choice with turnover penalization
and the Bayesian portfolio choice perspectives. We conclude the section by introducing several
commonly used mean-variance strategies and performance metrics which we will use to evaluate

RRW portfolios.

A. Volatility Timing Strategies
To develop our volatility timing strategies, we consider a risk-averse investor who allo-
cates wealth across N risky assets plus a riskless asset, e.g. cash. The investor uses conditional

mean-variance analysis to make his allocation decisions and re-balances his portfolio monthly.

JGoto and Xu (2015) stated that when the “rolling horizon” approach is used, re-estimating the tuning
parameters period by period can certainly improve the performance, but they did not adopt this approach due
to the intensive computation burden associated with it. We refer to their statement here to justify our choice.
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Let Rit1, o = E[Ry4+1], and Xy = Ey[(Riy1 — ) (Rey1 — p)'] denote an N x 1 vector of risky
asset returns, the expected value of R4 1, and the conditional covariance matrix of Ry; 1. For
each date t, to minimize conditional volatility subject to a given expected return, the investor

solves the following quadratic program:

wiy1 = minfw' S (4)
w

st. pp = U)TM + (1 - le)rfree’

where w is an IV x 1 vector of portfolio weights on the risky assets, 7ce i the return on the
riskless asset, and p,, is the target expected return. The solution to this optimization problem

is given by:

where w delivers the risky asset weights, and the weight on the riskless asset is 1 — w ' 1.

The trading strategy implicit in Equation [5|identifies the dynamically re-balanced port-
folio that has minimum conditional variance for any choice of expected return, which is referred
to as minimum volatility (MV) strategy. Similarly, we could conduct an analysis where the
objective is to maximize the expected return subject to achieving a particular conditional va-
riance. To save the space, we only report results relating to the minimum volatility strategy
in the empirical section. The results relating to the maximum return strategy are available
upon request. The MV strategy given via Equation [5| implies that to identify portfolio weights
requires us to have one-step-ahead estimates of both the vector of conditional means, u, and the
conditional covariance matrix, ;. [Merton (1980) shows that a very long sample period would
be needed to produce reliable coefficient estimates in a predictive regression. We assume, the-
refore, that our investor models expected returns as constant (and we estimate it using sample
mean), and the portfolio weights in the strategy primarily focus on time variation in covariance
matrix. Plugging the RRW covariance matrix estimator into equation |5, we form a new MV

strategy that updates portfolio weights solely based on significant changes in ;.

B. A Transaction Cost Interpretation of RRW
In Hautsch and Voigt| (2019), a link between turnover penalization and covariance
shrinkage in portfolio allocation is investigated. Specifically, they show that the optimiza-

tion problem with quadratic transaction costs can be interpreted as a classical mean-variance
11



problem without transaction costs, however, where the covariance matrix is regularized towards
the identity matrix. Following this line of interpretation, we show that how optimal MV port-
folio achieved using our RRW based covariance matrix estimate without transaction costs links
with MV portfolio optimization problem with a time-varying quadratic transaction costs, where
the time dependence is determined by the difference between our regularized and the sample

covariance matrix.

Proposition 1. RRW FEquivalence to Transaction Cost Penalisation
In the case of our RRW approach, the resulting covariance matriz is derived from the

following optimization problem:

XA]t,RRW = argmax [log det(%y) — tr(2,74, 8 — S| . (6)
t

st |2 — Sillee < A

where || X |l := max;j; |Xj| is the dual norm of || X||1. Thus, the RRW covariance matriz

estimator 27 RRW can be expressed associated with the sample covariance estimator S't as
2t,RRW =S, + A, (7)

where Ay := (EA]aRRW — St)/A. The proof of the above is given in the Appendix and follows
from basic duality properties of the RRW optimization problem. Plugging the RRW estimator
into the standard mean-variance portfolio optimization, the portfolio allocation wy,, can then

be stated as

wy,, = argmin [wTitRwa - wTu} (8)
w

= argmax {w—ru* —w' Syw — Mw —w;) T Ay(w — w})
w

9

where

= p— 280w,
and the weights are normalized such that w'1 = 1.

Intuitively, our RRW estimator regularizes the sample estimator S, through an additi-

onal matrix A, with A serving as shrinkage parameter. Note that the regularization effect of

12



RRW estimator exhibits some similarity to the implications of the shrinkage approach proposed
by [Ledoit and Wolf (2003), but the RRW approach replaces the indentity matrix in the Le-
doit and Wolf estimator with A; which is time-varying. The resulting zero-cost mean-variance
portfolio using our RRW estimator is thus equivalent to a portfolio formed with a time-varying
penalty on transaction cost. Figure |3 provides an example of time evolution of )\AE and high-
lights recession periods according to the NBER business cycle classification in grey. Clearly,
in contrast with the constant identity matrix, the figure shows the A; changes over time and
peaks at the recession periods.

To further illustrate the effect of time-varying transaction cost penalty on portfolio
optimization, Figure. [ plots the surface of mean-variance optimization function over time with
both our time-varying and traditional constant quadratic transaction cost penalty. The optimal
solution for first asset allocation (that is, w;) is also provided in the lower panel of the figure.
The NBER defined recession periods are also highlighted in grey. We observe that the function
surface under the time-varying transaction cost penalty (top left panel) exhibits much more
stable than the one using constant penalty (top right panel) in most of time without losing
capacity to reflect abrupt changes of market conditions during recession periods, such as the
observed spikes in the function surface during 2008 crisis period. These findings are further
collaborated by the time series plot of w; in the lower panel of the figure. Taken together,
the time-varying transaction cost penalty resulting from our RRW covariance matrix estimator
helps to impose a market-condition-dependent regularization on the transaction cost, assisting
investors to achieve better marketing timing and better balance between portfolio risk exposure

and turnovers.

C. Bayesian Portfolio Interpretation

Kyung et al.| (2010) and [Wang (2012) respectively give Bayesian interpretations for
regularised regression via the lasso [Tibshirani (1996)) and the graphical lasso Friedman et al.
(2008). Since these estimators are closely aligned with the RRW optimisation problem we can
follow their line of reasoning to give a Bayesian interpretation for our RRW covariance matrix

estimator as well as the resulting portfolios.

3To generate the examples in Figs. |3 and [4] we construct a two-asset portfolio using two randomly selected
assets from the Fama-French 48 Industry portfolio dataset. We consider both the max and min elements of the
matrix AttoillustrateitstimeevolutioninFigur
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Assumption 1. We start with the assumption that future stock returns are independently nor-

mally distributed according the previously estimated covariance, i.e.
i1 ~ N(0,5¢) (9)

and rey1 L e, i.e. there is no auto-correlation structure in returns.

Assumption 2. In order to understand the RRW estimator, we now make a further assump-
tion, and put ourselves in the shoes of an investor who has a prior belief that the inverse covari-
ance may change in a sparse manner over time, i.e. changes will not be at every time-step, but
occur rarely. Specifically, we will assume that the temporal variation of the inverse-covariance

follows a Laplace (double exponential) distribution:

N
PO —Oulp) =27 ] {fDE(@t;ij - @tfl;ij|P)} <11 {fEXp(®t+1;ii - @t;ii!p/Q)} le.-o

i<j i=1
where fpe(z|p) = (p/2) exp(—plx|) has the form of the double exponential density, frxp(z|p) =
pexp(—px)1ly~o has the form of the exponential density, and Z is a normalising constant. The
notation leyqo ts used to denote the indicator function, in this case for the space of positive

definite matrices for Oy.

Proposition 2. Given that assumptions 1 and 2 hold, and we further assume ¥; = S in
Equation @ then one can interpret the RRW estimator (minimiser of Eq. @) as being the
mazimum-a-posteriori (MAP) estimate for the inverse covariance at time t + 1. Specifically,
assume that investor believes the temporal variation of inverse covariance matrix has a prior
distribution as above, there exists a threshold parameter p such that our RRW estimator is the

mode of the posterior distribution of Oy.

Now it is clear that under our framework, choosing the portfolio that maximizes the
posterior distribution of the change of (inverse) covariance matrix guarantees that the inves-
tor is choosing the portfolio with the highest probability of being the MV portfolio given the
investors prior distribution on the temporal change of the (inverse) covariance matrix and the
observed asset-return data. In other words, in our setting, the investor chooses the portfolio
that maximizes the posterior probability (i.e. the posterior mode) of the change of (inverse)

covariance matrix. This interpretation is a bit different from the traditional Bayesian portfolio
14



choice literature in which the investor either chooses the portfolio that maximizes expected
utility with respect to the posterior distribution of stock returns (for instance, |Jorion |1986) or
the portfolio that maximizes the posterior distribution of portfolio weights directly (see |[DeMi-
guel et al.|2009a), [Tu and Zhou/2010)). In our framework the investor has a prior belief on the
change of (inverse) covariance matrix rather than on the asset-return distribution or on the
portfolio weights. Consequently, while the Bayesian investor in the traditional setting chooses
the portfolio that maximizes expected utility with respect to the posterior distribution of asset
returns, or chooses the portfolio that maximizes portfolio weights with respect to the posterior
distribution of portfolio weights, in our setting the investor chooses the portfolio that maximizes

the posterior distribution of the (inverse) covariance matrix changes.

D. Performance Evaluation Metrics

To measure the economic value of our new approach, we compare its performance with
several competing MV strategies using a series of performance evaluation metrics. Our approach
builds on the standard rolling window estimation, and thus, a natural choice for the benchmark
is the MV portfolio using standard rolling sample estimates of covariance matrix, which we refer
to as MVgample- This approach uses the rolling sample covariance matrix as a predictor for the
future covariance-matrix (Chan et al.[[1999, DeMiguel et al. 2009blla; [Kirby and Ostdiek| 2012,
Kourtis et al[2012, Goto and Xu/2015). To further reduce the estimation error of the sample
covariance matrix, we use the shrunk version of the sample estimator (Ledoit and Wolf|2003])
that shrinks the sample estimate of covariance matrix towards an identity matrix. Counterparts
for the RRW approach can be generated by using the shrunk sample estimator for S; in Equation
Secondly, we consider the naive 1/N strategy, denoted by MVequal. The naive 1/N strategy
demonstrates favorable out-of-sample performance and has been found very hard to beat in
practice, especially in the presence of high transaction costs. We use it as a benchmark in order
to examine the ability of our new approach in terms of controlling transaction costs. Thirdly,
we consider other volatility timing strategies, specifically, the MV portfolios using covariance
forecasts from dynamic models, e.g. the Ezponentially Weighted Moving Average (EWMA)
model (Zakamulin| 2015). This method of estimating the covariance matrix is popularized by
the RiskMetrics group, and |[Zakamulin (2015) also find that the simple EWMA covariance

matrix forecast performs comparably with the multivariate GARCH forecast. In this approach,
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the exponentially weighted covariance matrix is estimated using the following recursive form:

SEWMA — (1 — Apwwma)et—16(_1 + Aewma Sy (10)
where 0 < Agwwma < 1 is the decay constant, and e;_1 is the return residual. We follow the
recommendations of the RiskMetrics group and estimate the EWMA covariance-matrix using
Aewma = 0.97. This comparison is of particular useful for examining whether investors benefit
from sparse rather than continuous time variation assumption on covariance matrix.

Next, we evaluate portfolio out-of-sample performance from several perspective. First,
we test out-of-sample performance in terms of risk exposure and Sharpe ratio. The portfolio
risk exposure is measured by standard deviation of out-of-sample portfolio returns, and the
Sharpe ratio is calculated as

SR=i/¢ (11)

where i and 6 are mean and standard deviation of portfolio return over the out-of-sample
testing period. Secondly, we examine portfolio turnovers measured by
1 N
Turnover = Z (

T Wi g 41 — W 4+]), (12)
t=1 i=1

where w; ;41 and w;; are the desired portfolio weights in asset ¢ at time ¢ and ¢ + 1, after
rebalancing, and w; ,+ is the portfolio weight before rebalancing at ¢+ 1. The turnover quantity
defined can be interpreted as the average percentage of wealth traded in each period. Lastly,
we assess whether our new strategy has economic gain. We calculate the annualized certainty
equivalent excess return (CER) of the portfolio after subtracting the transaction costs (TCOST),
i.e.

CER reost 1= fi — %rﬁ — TCOST, (13)

where i and 62 are the (annualized) mean and variance of out-of-sample portfolio excess returns.
Alternatively, the CERT¢ost can be interpreted as the return increase compared to the risk-free
rate that an investor is willing to trade for a risky portfolio after accounting for transaction

costs and variance.
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V. Empirical Analysis

A. Data

We employ three data sets: two from Ken French’s Web site for portfolio investing
analysis, and one from the Center for Research in Security Prices (CRSP) database for individual
asset investing analysis. The Ken French data sets contain the returns on 25 value-weighted
portfolios of stocks sorted by size and book-to-market (that is, 25FF), and the 48 industry
value-weighted portfolios (that is, 48Ind). For close-to-close returns, we use data from 1967 to
2017 downloaded from Ken French’s Web site. The second data set consists of 50 individual
stock returns from the CRSP database (that is, CRSP50), containing close-to-close returns on
all stocks that were part of the S&P 500 index at some point between 1992 and 2017.

Table [2| summarizes the sample information for each data set, and also provides infor-
mation regarding the question whether the sparse assumption on time variation of covariance
matrix is supported by the real data. Looking at the column 8 and 9 of the table, where we
report the optimal value of A we choose for each data set (as selected via AIC), and the average
percentage of non-changed off-diagonal elements between consecutive covariance matrix estima-
tes throughout the whole sample periods. The latter measures the degree of sparsity in time
variation of the covariance matrix. We find that the degree of sparsity ranges from 35.43% to
23.55% across these data sets, meaning that a significant fraction of elements in covariance ma-
trix did not significantly change between consecutive periods. Hence, the sparse time variation

assumption appears reasonable in practice.

B. Portfolio Investing: 25FF and 48Ind

We now turn to evaluating the out-of-sample portfolio performance. We start with
portfolio investing by focusing on the two Fama-French portfolio data sets: 25FF and 48IND, a
move towards analysis on the individual stock level is given in the next section. In each month
t, we construct the MV portfolios using stock returns from past M = 60 months (5 years)ﬁ We
hold such portfolios for 1 month and calculate the portfolio returns for out-of-sample month
t + 1. We continue this process by adding the return for the next period in the data set and

dropping the earliest return from the estimation window.

4The choice of the rolling estimation window size, M = 60, follows the standard practice in the literature. To
save space, we report the results only for M = 60. We have also conducted an analysis using a longer estimation
window of M = 120 and found the results are generally robust. The results are available upon request.
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Our primary interest is in the ability of the proposed MV strategy in reducing the
out-of-sample portfolio risk. We first construct the time series of out-of-sample returns for
the four portfolios: MVgrw, MVgamples MVequal and MVgwwma. We then compare out-of-
sample return variance to see whether MVggrw achieves out-of-sample risk reduction. Last,
we test the significance of any difference between MVgrw and other alternatives using the
stationary bootstrap of Politis and Romano| (1994)). Panel A of Table [3[ reports the monthly
out-of-sample risk for each MV portfolio strategy, and Panel B gives the difference test results.
From the table, we observe: i). compared to the standard sample MV portfolio, MVsample,
our portfolio (MVgrw) significantly reduces the portfolio out-of-sample risk, suggesting that
the regularization increases the ability of the rolling sample estimates in change detection of
the covariance matrix, and thereby improves the portfolio performance by better controlling
portfolio risk exposure. For example, the portfolio risk decreases from 18.757(%?2) to 13.707(%?)
for 25FF, and from 44.991(%?) to 13.157(%?2) for 48IND. ii). compared with the naive 1/N
strategy (MVequal), our portfolio (MVgrw) still achieves lower risk, implying that “volatility
timing” favors portfolio out-of-sample risk reduction; iii). compared with the MV portfolio
formed using covariance matrix forecasts from the EWMA model, MVgwa, our portfolio once
again offers smaller risk, e.g. 13.707 v.s. 14.422 in 25FF, and 13.157 v.s. 18.043 in 48IND. This
supports the assumption that sparse rather than continuous changes in the covariance matrix
does not weaken, but rather strengthens the portfolio out-of-sample risk reduction.

In principle, if the out-of-sample mean return remains the same, the out-of-sample risk
reduction would lead to the increase of the out-of-sample Sharpe ratio. Our experiments here
validate this statement in the context of the RRW portfolio. Panel A of Table [f] reports Sharpe
ratios for the six portfolios, and Panel B of the table gives the different test results. The
portfolios MVgrw still outperform all the alternatives by retaining the highest Sharpe ratios
across almost all the data sets. The Sharpe ratio of portfolio MVyrw ranges from 0.219 to
0.371, followed by the portfolio MVEwmA -

We now turn to investigating the ability of our RRW strategy in controlling portfolio
turnover. We calculate the monthly portfolio turnovers as stated in Equation for the six
portfolios and report these results in Panel A of Table |5l It is not surprising we observe that
the equally weighted 1/N portfolio provides the lowest turnover for all the data sets. The naive

diversification requires only a very small amount of trades to maintain the equal weights. On
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the contrary, the sample portfolio MV ,mple and the other volatility timing strategy, MVEwwma,
always suffer large turnovers, because it requires active trading to adapt with the changing
covariance matrix in order to achieve the best risk diversification. Our portfolio (MVgrrw)
significantly reduces the portfolio turnovers. The favorable performance in portfolio turnover
control verifies that the RRW approach offers a more stable estimate for the covariance matrix
that significantly reduces the portfolio turnovers and thus the associated transaction costs.
Finally, we assess the economic gain of the RRW strategy by looking at certainty equiva-
lent returns (CER) after transaction cost. Following standard practice in most of the literature
(DeMiguel et al.2009bLa, Goto and Xu/[2015), we set the risk aversion coefficient v = 5, and the
transaction costs are measured by the annualized asset turnover multiplied by 50 basis points
per trade. Table[6] reports the CER of the six portfolios after subtracting transaction costs. We
observe that while the sample portfolio offers negative CER after transaction cost, our portfolio
realizes positive economic gains in all the data sets. Moreover, the gains compare favorably
with those of other alternatives. The improvement on economic gain over other alternatives
can be attributed to i) the RRW covariance matrix estimator leads to much reduced portfolio
turnover, and thus reduces transaction costs; and ii) the RRW estimator substantially reduces

the out-of-sample portfolio risk.

C. Individual Asset Investing: CRSP50

In this section we conduct a portfolio analysis operating based on individual assets.
We randomly select 100 samples from S&P500 stocks and each sample contains 50 stocks.
We then compare our RRW strategy with other alternatives in terms of out-of-sample portfolio
performance among the 100 samples. The 100 random samples are useful not only for examining
the average performance of our strategy in individual stock investing, but also for investigating
the relation between the level of regularization on covariance matrix to achieve temporal stability
and the magnitude of out-of-sample portfolio performance improvement.

The average performance across the 100 stock samples is presented in the last line of
Table [3] to Table [6l Once again, these results confirm that the individual asset investor also
benefits from using RRW to identify changes in the covariance matrix. The advantage of the
new strategy reported in portfolio investing is still preserved here.

Then, we report summary statistics of portfolio performance across the 100 samples

with an expectation that samples need higher value of regularization parameters should exhibit
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greater benefit when using our strategy. In Table [7] Panels A to D, we present monthly mean,
standard deviation, minimum and maximum values of the estimation results for i) the out-of-
sample portfolio risk, ii) the out-of-sample Sharpe ratio, iii) the portfolio turnover, and iv) the
CER after transaction cost for each of the four portfolios: MVgrw, MVgample; MVequal, and
MVewma.

Panel A of Table [7| shows that the portfolio (MVgrrw achieves lower out-of-sample
portfolio risk than other alternatives in all 100 runs, which offers compelling evidence for the
ability of MVRggrw to achieve significant reduction in out-of-sample portfolio risk. We turn to
Sharpe ratio in Panel B and observe that MVggw achieves higher Sharpe ratio in all 100 runs.
In terms of portfolio turnover and economic gains, we find that the MVggrw provides lower
turnover and higher CER after transaction cost in the majority of runs than any of the other
alternative portfolio strategies. Finally, in Panel E of Table [7] we report the relation between the
level of regulation on covariance matrix and the improved magnitude of out-of-sample economic
gain (measured by the difference of CER after transaction cost achieved by our strategy and
the standard rolling sample estimate). We show that when we regress the CER difference on
the value of RRW regularization tuning parameter, the slope coefficient is 1.213 (t-statistic =
3.445) which is significantly positive. This suggests that our RRW estimator provides larger
economic gains for a panel of sample that has a relatively stable covariance matrix structure

and calls for a higher level of temporal stability regularization.

D. Decomposing the Performance Gain: Estimation Accuracy and the Ability to Time Signi-

ficant Changes

While the above findings support the existence of additional economic gains from using
our RRW estimator in MV strategies, in this section, we attempt to answer the question: where
are the gains generated from? We explain the advantage of our RRW estimator from two
perspectives: estimation accuracy and the ability o timing significant changes.

Firstly, we attribute the better portfolio performance to the improved covariance matrix
forecasts. We examine forecasting accuracy of our RRW approach based covariance matrix
estimate, compared with the shrunk rolling sample estimate and the forecasts from EWMA

model using the following log predictive likelihood:

~

L(57) = In(det(S,) — 7 £, 7, (14)
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where T is the total number of out-of-sample testing periods. 7 denotes the demeaned return
vector at time ¢, and X»; 1 is the covariance matrix estimate for time ¢ but made at time
t — 1. We average [;(X~!) across the whole out-of-sample testing period, that is, L(X7!) =
(1/T) Zthl 1;(X71). We calculate out-of-sample log predictive likelihood for each covariance
matrix estimator, and then test the significance of the difference between ones from our estimator
and the other alternatives. Table[8|reports the testing results. Column 2 of the table shows that
our RRW estimate has a significantly higher predictive likelihood than does the shrunk rolling
sample estimates in all the data sets, proving that imposing temporal similarity regularization
in rolling window approach reduces the covariance matrix predictive errors. Column 3 shows
that the RRW estimate outperforms the EWMA based estimate, suggesting that allowing for
piecewise constancy is conducive to increase the predictive accuracy for out-of-sample covariance
matrix. Overall, these results confirm that the RRW approach improves forecasting accuracy
of the covariance matrix, leading to the better out-of-sample portfolio performance.

Next, we demonstrate the advantage of our RRW approach in timing significant changes
of the covariance matrix. The top panel of Figure plots the temporal variation of our RRW (the
solid line) and the shrunk sample (the dotted line) covariance matrix estimators, measured by
the trace of the estimated covariance structures (>, i]“t) We highlight in grey the recession
periods according to the NBER business cycle classification. Clearly, the RRW estimator is
more stable than the sample counterpart during the calm period, such as the period between
2002-2007, but without loosing capacity to reflect large changes during the recession period,
such as the GFC period from 2008-2010.

To further illustrate this point, we split the whole sample into “good” and “bad” eco-
nomic periods according to the NBER business cycle classification. Then, we compare out-of-
sample portfolio turnover and risk exposure of our RRW strategy with those of 1/N (MVequal)
and the shrunk rolling sample strategy (MVgample). The results are reported in Table @ If
our strategy has better capacity in timing significant changes, we expect that it allows more
aggressive updates in portfolio weights and thus larger increase in portfolio turnovers compared
with the 1/N strategy during “bad” periods. On the contrary, during “good” periods, it should
have more conservative response to the change of covariance matrix, leading much less portfolio
turnovers compared with the shrunk rolling sample strategy. Looking at the portfolio turnovers

reported in the table, we observe that during “good” periods, the portfolio turnover of MVyrw
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Figure 2: Top: Estimated Total Market Volatility (31, ;) for both the standard rolling window (dashed), and

regularised rolling window (solid). Bottom: Transaction costs as measured via portfolio weights |[w; — wi—1]]1.
Note: In this case, we set M = 12 and A = 40 to highlight the changes in variance which can occur in periods of
recession.

is quite close to that of the 1/N portfolio, but the both are much less than that of MVgample-
For example, for the data of 25F' F, the portfolio turnover of MVggrw is only 0.019 that is close
to 0.017 of the 1/N portfolio, but much less than 0.047 of the MVgample. On the other hand,
during the bad periods, the portfolio turnover of MVyrgrw hugely increases to 1.033, but the tur-
nover of the 1/N portfolio only slightly increases to 0.018. Comparatively, the sample portfolio
MVgample has a constantly higher portfolio turnovers, which is also increasing during the bad
period. The bottom panel of Figure [2| plots the portfolio turnovers using our RRW (the solid
line) and the sample (the dotted line) strategies against the business cycles. Our RRW strategy
always offers less portfolio turnovers, but reasonably increases turnovers when the market is in
distress.

To conclude the section we examine the portfolio risk and whether the better ability of
MVgrw to time changes results in a better control on portfolio risk exposure. We notice that
MVRgrw always achieves the lowest risk, and the 1/N strategy outperforms the sample strategy
in “good” periods by achieving lower risk, and vice versa in “bad” periods. In summary, we
observe that our RRW covariance estimator has a great ability to highlight significant changes,

helping the resulting portfolio to strike a better balance between portfolio turnovers and risk

exposure.
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VI. Robustness Checks

A. Large scale portfolio

The large scale portfolio allocations remains a challenge for econometricians and practi-
tioners. In this section, we examine whether the economic gain achieved by our RRW approach
is robust to large scale portfolios. We employ two large data sets from Ken French’s Web site for
portfolio investing analysis: 100 value-weighted portfolios of stocks sorted by size and book-to-
market (that is, 100FF), and the combination of 100 value-weighted portfolios of stocks sorted by
size and book-to-market and the 48 industry value-weighted portfolios (that is, 100FF+48Ind).
We also randomly select 100 stocks from S&P stocks to construct the third large data set for
individual stock investing analysis. Table [L0|reports the annualized CER after transaction cost
for our RRW portfolio and other competitors. We can see that the superiority of our RRW port-
folio is preserved in these large scale portfolio allocations. The MVyrgrw achieves the highest

CER after transaction cost in all the three large data sets.

B. The Estimation Window Length

To some extent, one may argue that the RRW estimator uses longer samples (from the
previous estimation window) than other competing methods used in empirical evaluations of
the out-of-sample portfolio performance. This makes it difficult to evaluate the performance
gain from the RRW approach over other methods. Does the performance gain come from the
particular regularization, or does it comes from the use of a longer sample? We examine a
simple way to address this question, that is, we adopt the standard rolling window approach
in other competing methods with a fixed longer estimation window, e.g. M = 120 months.
Table reports the results and two patterns are observed: i) all the competing methods
perform better with longer estimation window. This is not surprising as the longer sample of
observations provides more historical information which helps achieving more robust estimation;
ii) the RRW estimator still outperforms all the other competitors, confirming that through
exploiting similarity between two consecutive estimation windows using the temporal similarity
regularization, the temporally stable estimator largely reduces “spurious” time variations caused
by estimation errors based on the standard rolling window approach. The resulting portfolio,

therefore, exhibits more stable out-of-sample performance.
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C. Weekly Return Data

We use monthly stock returns in the benchmark analysis; here, we evaluate the per-
formance of the different portfolios regarding weekly return data for the five data sets to see
whether the results are robust to the return data frequency. We report the CER after tran-
saction cost in Table [12] for the cases with transaction costs of 0 and 50 basis points. We find
that our results are generally robust to the use of weekly data. For instance, we find that even
with weekly data, our doubly regularized portfolios with v = 5 generally outperform the alter-
natives. When we compare the performance of the portfolios for monthly and weekly return
data, we find that the portfolios perform slightly better with monthly than with weekly data.
We believe the reason is that the benefit of more frequently adjusting the hedge trades is offset

by the higher transaction costs.

D. Robustness to Investor’s Risk Aversion

Lastly, in our main body of results for CER after transaction cost, we choose that the
investor has a risk aversion of v = 5. To investigate whether the portfolio performances are
robust to this choice, we report the CER after transaction of different portfolios in Table
using other values for v, for example, v = 2 and v = 10. Generally, as we expected, the CER
after transaction costs becomes larger when v = 2 and becomes smaller when v = 10 in all
the portfolio strategies, as the former gives less weight and the latter gives more weight to the
out-of-sample portfolio risk. However, the ranking of portfolio performance is not changed at

all compared with the main results. Our RRW portfolio still outperform the alternatives.

VII. Conclusion

In this paper, we propose a regularized rolling window approach to estimate the time-
varying covariance matrix, which imposes a temporal variation constraint on the standard rol-
ling window based sample estimates. This new method is simple and interpretable, whilst also
yielding superior out-of-sample forecasts for the covariance matrix and capable of detecting sig-
nificant changes in covariance matrix. We demonstrate that in the presence of both structural
changes and transaction cost, the resulting portfolio achievs simultanenously low risk exposure
and turnover, earning significant economic gains compared to a set of commonly used alterna-
tives. These results support our initial motivation of this study: in the presence of transaction

cost, investors can benefit from volatility significant change detection.
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Appendix A: Theory and Methodology

A.  Proof of Proposition

Proof. Let S; be the empirical covariance at ¢ and forecast until t +1. Let ©,_1 be the estimate
of the precision matrix at the previous timestep. The RRW problem we solve is

6= argmax{f(U,S”)} .

U>0

where

f(U,S) :=logdet(U) — tr(S;U) — A\|U — ©4_1]|1 -

Using similar arguments to the regular graphical laso case (Banerjee and Ghaoui 2008), we
can formulate an equivalent (due to convexity) dual problem. Noting that the ¢; norm can be
expressed as

UL = max tr(UV),
Vleo<1

we can then consider the #; norm applied to the difference of a matrix. The dual problem is

thus constructed as

ml?x{f(U)} = max HVIﬁiDSA {log det U — tr(U, S + V) + tr(@t,ﬂ/)} .

Swapping the max and min, performing the optimisation over U gives us

U) = i —logdet(S+ V) 4+ tr(©;-1V) — p} . 15
max f(U) ||Vrﬁ1:on9{ ogdet(S + V) + tr(6;1V) — p} (15)
Writing W := S; + V we obtain the desired result. In general we can replace Il lloo With || - |lp

in Eq. The final equivalence in terms of transaction cost is trivial due to the definition of
A and f)t; A~ A simillar analysis of transaction costs is performed for the case with the penalty
lw — w;"||3 is given in Hautsch and Voigt| (2019)), our result is a generalisation of this with
the penalty based on ||z]|2 = x T Lz, the Hautsch and Voigt| (2019) results relates to adding a

diagonal to the empirical covariance.
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B. An Alternating Directions Method of Multipliers Algorithm for RRW (RRW-ADMM)

Based on the algorithms in Danaher et al.| (2013)),/Gibberd and Nelson| (2017)), we propose
to solve the RRW estimator using a version of the Alternating Direction Method of Multipliers
(ADMM) algorithm. The basic intuituion behind this approach is to utilise linear seperability
in the objective function, in our case between the likelihood term and the regulariser, in order
to decompose the optimisation problem into a series of simplified problems. The basic form of
the algorithm can be explained in relation to solving the generic problem ming, ,3{f(u) +r(v)}
(for convex f, r) subject to the constraint that u = v. A standard approach is to instead solve

the Lagrangian dual problem

max{g(p) = min{f (u) +7(6) + (p.u— 0}} (16)

where p represents a set of Lagrange multipliers. Principally, we see that the Lagrangian penalty,
the inner product (p,u — v), penalises divergence from the equality requirement u = v. As the
functions f, r are both convex, strong duality holds, and the maxima g(p*) for the dual problem
is equivalent to the value of the explicitly constrained problem f(u*) + r(v*). Without further
modification, the minimisation task min, ,{-} in needs to be performed jointly, i.e. we
should not expect to be able to sequentially minimise with respect to u and then v. However,
with slight modification, through an additional augmentation term, one can break down this

joint minimisation problem into a sequential one. Specifically, the augmented Lagrangian
v
L(u,v,p) = f(u) +7(b) + (p,u = v) + S Ju— o[, (17)

gives rise to the ADMM algorithm which performs dual ascent through the following iterations:
1. Minimise ug41 = arg min, £(u, vg, p)
2. Minimise vgy1 = arg min, £(ug+1, v, Pk)
3. Tightening the Lagrangian constraint, via dual ascent pgi1 = pr + (ugr1 — Vkr1)

For further information on the ADMM formulation and convex optimisation the reader is di-
rected to the work of Boyd et al. (2010), and the excellent book by Boyd and Vandenberghe

(2004). In the following we detail the specifics required to adapt this algorithm to the RRW
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estimator. The augmented Lagrangian (specific version of Eq. for the RRW estimator is

given as:

L{U,V,P}) = —logdet(U) + tr(US) + A||V — 6411

v
oot 5 (I =V + Pl |PIF) - (18)

The ADMM algorithm proceeds to minimise ([18]) subject to increasing the constraint imposed

by the Lagrange multipliers P.

Step 1: Maintaining Positive Semi-definite Solutions
Initially, we minimise with respect to the primal variable U, and therefore need to solve

the equation

— o YA
Ui := argrl}lé%{ log det(U) + tr(US) + 2||U I‘||F} ,

where I' := V, — P,. We can interpret this minimisation as pulling the estimate for Uy; towards
that given by the difference between the auxilary variable and the dual (Vi — Py) and note that
the prior knowledge imposed by the smoothing (and potentially sparse) regulariser is encoded
within V..

The gradient of the above gives —(U)~! 4+ S + U —ATL') = 0, and therefore
(U) ' =qU=8-1T

We construct a solution for U by equating the eigen-vectors of the left and right hand-sides. The
eigen-values of each side, respectively {up},_, and {sp}}_; obbey the quadratic u;l —YUup = Sp.
Obtaining the eigenvectors {v;, € RP} := eigenvec(S — 24T) and corresponding eigenvalues {sy,}
we can update for uy by solving the quadratic uy = —(27) s+ (s%+4v)1/2}, forh=1,...,p.

A positive-semi-definite update for U411 can now be constructed according to

T

Uks1 =
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Step 2: Enforcing Prior Knowledge

The second step in the algorithm requires us to incorporate the influence of the regula-
risers. At this point, there are a variety of updates that may be required dependent on the form
of the regulariser, however, in this paper we only have a single smoothing term corresponding
to the ¢ penalty on the differences. Minimising L({U, V, P}) with respect to V' we obtain the
problem

Viwr =arguin {510~ VI3 + 21V~ 61111} (19)
where we utilise the substitution I' = U1 + Pg. Simply writing V' =V — (:)t,l, we obtain the
equivalent problem V"* = arg miny{(1/2)| T’ —=V"||%+(\/7)|[V'[|1}, where T! = Up 11+ P, —6; 4
which has a closed form soft-threshold solution

] /. .
V* = soft(P’; Ay) = 0 if [T z,J’ <\~

I — (A/v)sign(Iiz) if (Vi ] > A/~

The solution for Vi1 can then be recovered simply by adding the previous estimate, i.e. Vi11 =
V’* +©,_1. As an aside, we note that this step of the algorithm may easily be altered to enable
both sparse and smooth estimation, for instance, as discussed in Section ?7?7. To simplify the
application of such combined priors, in our implementation we utilise the SLEP package (Liu

et al.|2009) and Fused Lasso Signal Approximator to solve the update, as in Eq.

Step 8: Dual Update and Convergence

The final step in the algorithm is to update the dual variables. With the Lagrangian
in the simplified form of this is as simple as updating according to the difference between
the primal and auxilary variables, specifically, we set Pyy1 = Px + (Ugy1 — Vir1). Repeating
the above steps is guranteed to lead to minimisation of the RRW objective due to its convex
nature, for further details on such arguments the reader is directed towards Boyd et al.| (2010).

One may note that the above algorithm introduces an additional tuning parameter
~v > 0. While this does not affect the eventual solution, i.e. minima found by the algorithm,
it can drastically affect the time it takes the algorithm to get there. In practice, and in our
experiments, we found reasonable convergence speed with v = 1, however, it is still an open
problem how to optimally tune this parameter. Finally, it is worth noting that the RRW-

ADMM algorithm can be signficantly sped up if it is initiated with a warm start. That is, if we
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set the initial {Up, Vp, Po} to be close to the actual solution, we should expect the algorithm to
converge much faster. In our work, we harness this property to speed up the parameter search

over \.

C. Estimating Degrees of Freedom and Tuning Regularisers

Given that there is no consensus on how to implement AIC/BIC type tuning for high-
dimensional problems (where we may have M < N), we study a variety of methods to select
tuning parameters and estimate degrees of freedom. As such, the AIC criteria we employ should

be taken purely as a heuristic. Consider the set

Dy = {(17]) ’ é)t;ij # ét—l;ij 51 F# ]} ,

which represents the support of the difference of inverse-covariance matrices. In the graphical
lasso setting, where we apply a sparsity penalty to the inverse covariance matrix entries it is
common place to assume the degrees of freedom may be estmated according to the number of
non-zero entries in the inverse covariance. Analogously, in our case, as we are fusing against a
fixed target, i.e. the previous precision estimate, we instead propose to measure the degrees of
freedom in terms of the differencing set, i.e. Ksmooth = |Dy|. Interestingly, this can be linked, via
the GMV construction, to counting variation in the change in portfolio weights. For instance,
a large Ksmooth implies we need to change many of our positions to reach a new portfolio, in
this way, one can directly see how our approach should limit portfolio turnover.

Although, our experiments focus on using AIC to select A we also note there are other
ways one might tune these parameters for completeness. In particular, while AIC attempts to
construct an in-sample estimate of out-of-sample performance, we may also consider assessing
out-of-sample performance directly, equivalently to how one may evaluate the task of covariance
prediction. In this case, we can simply assess the negative log-likelihood of the next data-points

given our current estimate
ltest(@t; $t+1) = — log det(@t) + tr($t+1$;1@t) .

Averaging the out-of-sample likelihoods over a training period lets us assess the performance of

the RRW estimator in covariance prediction.

29



References

Banerjee, O., Ghaoui, L. E., 2008. Model Selection Through Sparse Maximum Likelihood Estimation for Multi-
variate Gaussian or Binary Data. Journal of Machine Learning Research 9, 485-516.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., 2010. Distributed optimization and statistical learning
via the alternating direction method of multipliers. Found. Trends. Mach. Learn. 3, 1-122.

Boyd, S., Vandenberghe, L., 2004. Convex Optimization.

Chan, L., Karceski, J., Lakonishok, J., 1999. On portfolio optimization: Forecasting covariances and choosing
the risk model. Review of Financial Studies 12, 937-974.

Danaher, P., Wang, P., Witten, D. M., 2013. The joint graphical lasso for inverse covariance estimation across
multiple classes. Journal of the Royal Statistical Society: Series B (Statistical Methodology).

DeMiguel, V., Garlappi, L., Uppal, R., 2009a. A generalized approach to portfolio optimization: Improving
performance by constraining portfolio norms. Management Science 55 (5), 798-812.

DeMiguel, V., Garlappi, L., Uppal, R., 2009b. Optimal versus naive diversification: How inefficient is the 1/n
portfolio strategy? Review of Financial Studies 22, 1915-1953.

DeMiguel, V., Olivares-Nadal, A. V., 2018. Technical note-a robust perspective on transaction costs in portfolio
optimization. Operations Research, forthcoming.

Engle, R. F., Robert, F.; Jekrey, R., 2012. Measuring and modeling execution cost and risk. Journal of Portfolio
Management 38 (2), 14-28.

Fleming, J., Kirby, C., Ostdiek, B., 2001. The economic value of volatility timing. Journal of Finance 56 (1),
329-352.

Fleming, J., Kirby, C., Ostdiek, B., 2003. The economic value of volatility timing using realized volatility. Journal
of Financial Economics 67 (3), 473 — 5009.

Friedman, J., Hastie, T., Tibshirani, R., 2008. Sparse inverse covariance estimation with the graphical lasso.
Biostatistics 9, 432-441.

Garlranu, N., Pedersen, L., 2013. Dynamic trading with predictable returns and transaction costs. The Journal
of Finance LXVIII (6), 2309-2340.

Garlranu, N., Pedersen, L., 2016. Dynamic portfolio choice with frictions. Journal of Economic Theory 165,
487-516.

Gibberd, A. J., Nelson, J. D. B., 2017. Regularized Estimation of Piecewise Constant Gaussian Graphical Models:
The Group-Fused Graphical Lasso. Journal of Computational and Graphical Statistics 26 (3), 623—-634.

Goto, S., Xu, Y., 2015. Improving mean variance optimization through sparse hedging restrictions. Journal of
Financial and Quantitative Analysis 50, 1415-1441.

Hautsch, N., Voigt, S., 2019. Large-scale portfolio allocation under transaction costs and model uncertainty.
Journal of Econometrics.

Jorion, P., 1986. Bayes-stein estimation for portfolio analysis. Journal of Financial and Quantative Analysis 21,
279-292.

Kirby, C., Ostdiek, B., 2012. Its all in the timing: Simple active portfolio strategies that outperform naive

diversification. Journal of Financial and Quantitative Analysis 47, 437—467.

30



Kourtis, A., Dotsis, G., Markellos, R., 2012. Parameter uncertainty in portfolio selection: Shrinking the inverse
covariance matrix. The Journal of Banking and Finance 36, 2522-2613.

Kyung, M., J. Gill, M. G., Casalla, G., 2010. Penalized regression, standard error, and bayesian lasso. Bayesian
Analysis 5, 369-412.

Ledoit, O., Wolf, M., 2003. Improved estimation of the covariance matrix of stock returns with an application to
portfolio selection. Journal of Empirical Finance 10, 603—-621.

Liu, J., Ji, S., Ye, J., 2009. SLEP: Sparse Learning with Efficient Projections. Arizona State University.
URL http://www.public.asu.edu/~jye02/Software/SLEP

Merton, R., 1980. On estimating the expected return on the market: An exploratory investigation. Journal of
Financial Economics 8, 323-361.

Moreira, A., Muir, T., 2017. Volatility-managed portfolios. The Journal of Finance 72 (4), 1611-1644.

Moreira, A., Muir, T., 2019. Should long-term investors time volatility? Journal of Financial Economics 131 (3),
507-527.

Politis, D., Romano, J., 1994. The stationary bootstrap. Journal of the American Statistical Association, 1303—
1313.

Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society.
Series B.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K., 2005. Sparsity and smoothness via the fused lasso.
Journal of Royal Statistics Society B 67 (1), 91-108.

Tu, J., Zhou, G., 2010. Incorporating economic objectives into bayesian priors: Portfolio choice under parameter
uncertainty. Journal of Financial and Quantitative Analysis 45 (4), 959-986.

Wang, H., dec 2012. Bayesian Graphical Lasso Models and Efficient Posterior Computation. Bayesian Analysis
7 (4), 867-886.

Zakamulin, V., 2015. A test of covariance-matrix forecasting methods. The Journal of Portfolio Management

41 (3), 97-108.

31


http://www.public.asu.edu/~jye02/Software/SLEP

48

Table 1: Motivating Example. Mean and standard-deviation of the covariance estimates from both the first and second periods (i.e. we take means and standard
deviations over the stationary periods). The last column gives the average percentage of time-points at which the estimates change from the previous time-step. Statistics
are taken over 300 trials. In this case, the true values are ¥12 = 0.1 and ¥12 = 0.2 for the first and second periods respectively, 7" = 2000, 7 = 1000.

Method M1 2 01 02 %change

Empirical 0.100 0.195 0.046 0.050 100
RRW (A =0.05) 0.100 0.187 0.036 0.042 25
RRW (A=0.1) 0.102 0.166 0.029 0.036 1

Table 2: Data Description. This table lists the data sets used in our empirical analysis. Column 2 provides the abbreviation used to refer to the testing portfolios.
Column 3 gives more detailed descriptions about the data sets. Column 4 reports the number of stocks in each data set, and Column 5 reports the length of sample period.
Column 6 and 7 present the training and testing period in out-of-sample analysis. Column 8 and 9 give the optimal value we used for the regularization parameter (\) in
RRW approach and the average percentage of non-changed off-diagonal elements between consecutive covariance matrix estimates throughout the whole sample period.

Data Percentage of unchanged
Set  Abbreviation Description N T Training Period Testing Period A matrix off-diagonal elements

1 25FF 25 size and BM portfolios 25 553 Jan. 1967-Dec. 1972 Jan.1973-Dec.2017 0.5 23.55%
2 48IND 48 industry portfolios 48 553 Jan. 1967-Dec. 1972 Jan.1973-Dec.2017 0.5 30.23%
3 Individuals 100 stocks from SP500 100 553 Jan. 1992-Dec. 1997 Jan.1998-Dec.2017 0.4 25.21%




Table 3: Out-of-Sample Portfolio Risk (monthly). For each data set, this table reports the monthly out-
of-sample return variances for the following four portfolios: portfolio using our RRW estimator (denoted as
MVRgrw); portfolio using rolling window based shrunk sample estimate of the covariance matrix (denoted as
MV sample ); equally weighted portfolio; and portfolio using EWMA based estimates of covariance matrix (denoted
as MVgwwma). Panel A tabulates the point estimates of the out-of-sample monthly return variances measured
in %2, and Panel B tabulates the mean differences in out-of-sample return variances. We test the null of no
differences using the two-sided bootstrap intervals. *, ** and *** indicate significant differences at the 10%, 5%
and 1% levels, respectively.

Data Set MVgrw Mvequal MVsample MVEwwma

Panel A: Return Variance (%2)

25FF 13.707 25.589 27.629 14.422
48IND 13.157 24.725 27.833 18.043
Individuals 15.008 22.453 17.674 17.112

Panel B: Difference Test

25FF -5.050%F*  -13.922%** -0.715
48IND -31.834%**  _14.676***  -4.886%**
Individuals -4.223%HF  _11.257FF 2 1047
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Table 4: Out-of-Sample Sharpe Ratio (monthly). For each data set, this table reports the monthly out-
of-sample sharp ratio for the following four portfolios: portfolio using our RRW estimator (denoted as MVrrw );
portfolio using rolling window based shrunk sample estimate of the covariance matrix (denoted as MVsample);
equally weighted portfolio; and portfolio using EWMA based estimates of the covariance matrix (denoted as
MVgewwma). Panel A tabulates the monthly Sharpe ratio in the out-of-sample period. Panel B reports the
difference in sharp ratio between the best portfolio and other alternatives. Using the portfolio (MVgrw) as
a benchmark, we test the null of no difference between the benchmark and other competitors indirectly by
constructing the two-sided bootstrap intervals. *, ** and *** indicate significant difference at the 10%, 5% and
1% levels, respectively.

Data Set MVRRW Mvequal Mvsample MVEWMA

Panel A: Monthly SRs

25FF 0.371 0.221 0.209 0.374
48IND 0.251 0.109 0.178 0.214
Individuals 0.267 0.152 0.169 0.173

Panel B: Differences in SRs

25FF 0.149***  (.162*** 0.004
48IND 0.142%** 0.073* 0.038*
Individuals 0.115%** 0.098* 0.094*

Table 5: Out-of-sample Portfolio Turnover. For each data set, this table reports the portfolio turnover for
the following four portfolios: portfolio using our RRW estimator (denoted as MVrrw); portfolio using rolling
window based shrunk sample estimate of the covariance matrix (denoted as MVgample ); equally weighted portfolio;
and portfolio using EWMA based estimates of the covariance matrix (denoted as MVgwwma ). Calculation of the
portfolio turnover follows the equation

Data set MVRRW Mvequal Mvsample MVEWMA

25FF 0.020 0.0172 0.291 0.320
48IND 0.025 0.029 0.346 0.461
Individuals 0.053 0.041 0.213 0.345

Table 6: Out-of-sample CER after Transaction Cost (annual %). For each data set, this table reports
the values of the CER after transaction cost for the following four portfolios: portfolio using our RRW estimator
(denoted as MVgrw ); portfolio using rolling window based shrunk sample estimate of the covariance matrix
(denoted as MVsample); equally weighted portfolio; and portfolio using EWA based estimates of the covariance
matrix (denoted as MVgwwma). The transaction cost of each is calculated as 50 basis points times monthly
turnover times 12 (to annualize).

Data Set MVRRW Mvequal MVsample MVEWMA

25FF 10.238 4.924 3.927 8.458
48IND 5.146 3.687 3.754 4.167
Individuals  4.834 3.593 3.693 3.732
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Table 7: Detailed Descriptions on Portfolio Performance for 50 individual stocks. This table reports summary statistics of out-of-sample portfolio risk, sharpe
ratio, turnovers and CER after transaction cost for the following four portfolio strategies: portfolio using our RRW estimator (denoted as MVgrrw ); portfolio using rolling
window based shrunk sample estimate of the covariance matrix (denoted as MVampie); equally weighted portfolio; and portfolio using EWMA based estimates of covariance
matrix (denoted as MVgwwma ), based on 100 random samples from the S&P500 stocks (each consists of 50 individual stocks).

MVRRW MVequal Mvsample MVEWMA

Panel A: out-of-sample portfolio risk(monthly)

mean 15.008 19.218 26.265 18.093
std 2.010 2.33 2.67 7.05

max 15.226 25.224 31.789 21.516
min 6.128 6.327 10.224 7.276

Panel B: portfolio Sharpe ratio

mean 0.267 0.151 0.169 0.215
std 0.028 0.036 0.039 0.064
max 0.301 0.286 0.251 0.265
min 0.062 0.055 0.048 0.047

Panel C: portfolio turnover

mean 0.053 0.226 0.213 0.177
std 0.003 0.013 0.014 0.352
max 0.082 0.337 0.421 0.312
min 0.022 0.035 0.052 0.251

Panel D: CER after transaction cost

mean 3.834 3.525 3.693 3.184
std 0.035 0.049 0.055 0.156
max 4.987 3.982 4.164 3.967
min 0.998 0.598 0.616 0.879

Panel E: the relation between regularization and the improved economic gains
Intercept -0.135
regularization 1.213(3.445)




Table 8: Out-of-sample covariance matrix prediction. This table reports differences in log predictive
likelihood (see equation between different covariance matrix estimators. Column 2-3, denoted as Lrrw —
Lsample and Lrrw — LEwMa, give the difference between our RRW estimator and the shrunk sample estimator of
Ledoit and Wolf| (2003)), and the EWMA model implied estimate, respectively. We test the null hypothesis of no
difference between our regularized estimator and other competitors using |Politis and Romano| (1994) stationary
bootstrap to construct two-sided bootstrap intervals. *, ¥* and *** indicate significance at the 10%, 5% and 1%
levels, respectively.

Data Set Lrrw — Lsample Lrrw — LEWMA

25FF 0.987** 3.105%**
48IND 1.053** 4.121%**
Individuals 1.211%** 3.137F**
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Table 9: Portfolio performance during “good” and “bad” periods.This table reports the portfolio turnover
and CER after transaction cost for the following four portfolios: portfolio using our RRW estimator (denoted
as MVgrgw ); portfolio using rolling window based shrunk sample estimate of the covariance matrix (denoted as
MV sample); equally weighted portfolio; and portfolio using EWMA based estimates of covariance matrix (denoted
as MVewwma ). The “good” and “bad” periods are based on NBER business cycle classifications.

Date set MVRgrw Mvsample Mvequal

Panel A: Good period
Portfolio turnover

25FF 0.019 0.047 0.017
48IND 0.029 0.053 0.023
Individuals 0.041 0.064 0.032
Portfolio risk

25FF 12.543 17.112 14.121
48IND 12.897 20.206 15.654
Individuals 12.256 17.564 14.589

Panel B: Bad period
Portfolio turnover

25FF 1.033 2.076 0.0184
48IND 2.039 4.105 0.032

Individuals 2.567 5.453 0.058

Portfolio risk

25FF 15.128 20.564 27.096
48IND 14.896 20.656 26.098
Individuals 16.275 21.290 25.027

Table 10: Robustness check using large scale portfolios. For each data set, this table reports the values
of the CER after transaction cost for the following four portfolios: portfolio using our RRW estimator (denoted
as MVgrw ); portfolio using rolling window based shrunk sample estimate of the covariance matrix (denoted as
MV sample ); equally weighted portfolio; and portfolio using EWMA based estimates of covariance matrix (denoted

as MVEwwma).

Data Set MVgrrw MVequat  MVgample MVEwmA
100FF 4.352 -3.381 -6.093 -25.667
100FF+48IND 5.032 -3.347 -7.298 -14.490
Individuals (100 S&P StOCkS) 3.834 3.593 3.693 1.532

Table 11: Robustness check using longer estimation window for competing methods. For each data
set, this table reports the values of the CER after transaction cost for the following four portfolios: portfolio using
our RRW estimator (denoted as MVggrw); portfolio using rolling window based shrunk sample estimate of the
covariance matrix (denoted as MVgample); equally weighted portfolio; and portfolio using EWA based estimates
of covariance matrix (denoted as MVgwwma ). The RRW estimator is formed with rolling window of M = 60, and
other covariance matrix estimators are formed with rolling window of M = 120. The transaction cost of each is
calculated as 50 basis points times monthly turnover times 12 (to annualize).

Data Set MVRRW Mvequal Mvsample MVEWMA

25FF 10.238 7.519 6.942 10.114
48IND 4.146 3.962 3.990 1.408
Individuals  3.834 4.887 4.175 2.717
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Table 12: Robustness test using weekly returns. For each data set, this table reports the values of the
CER after transaction cost for the following four portfolios: portfolio using our RRW estimator (denoted as
MVgrw); portfolio using rolling window based shrunk sample estimate of the covariance matrix (denoted as
MV ample); equally weighted portfolio; and portfolio using EWMA based estimates of covariance matrix (denoted
as MVEwwma ). The transaction cost of each is calculated as 50 basis points times weekly turnover times 52 (to
annualize).

Data Set ~ MVeRrw MVequat MViample MVEwMmA

25FF 9.765 3.996 2.978 8.123
48IND 3.882 3.235 3.087 0.765
Individuals 2.365 2.106 1.987 1.032

Table 13: Robustness test using different investor risk aversion. For each data set, this table reports the
CER after transaction using different risk aversion parameters for the following four portfolios: portfolio using
our RRW estimator (denoted as MVggrw); portfolio using rolling window based shrunk sample estimate of the
covariance matrix (denoted as MVgsampie); equally weighted portfolio; and portfolio using EWMA based estimates
of covariance matrix (denoted as MVgwwma). The transaction cost of each is calculated as 20 basis points in
Panel A, and 100 basis points in Panel B, times monthly turnover times 12 (to annualize).

Data Set MVRrw  MVequat MVgample MVEwma
Panel A: v =2

25FF 13.129 7.114 5.149 12.156
48IND 6.896 5.709 4.132 2.328
Individuals 4.142 4.129 4.106 2.654

Panel A: v =10

25FF 9.453 4.128 3.124 9.356
48IND 3.227 3.220 2.187 0.987
Individuals 3.125 2.967 2.774 1.438
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Regularised vs Standard Rolling Window Estimation
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Figure 1: Estimates from a single trial of a synthetic experiment for assessing covariance estimation, in this case
we have Y12 = 0.1 for t <7 = 1000 and 12 = 0.2 for ¢ > 7 = 1000.

Standard Rolling Window Approach
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Regularized Rolling Window Approach
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Figure 2: A graphical comparison between the standard and regularized ”rolling window” approach.
The top panel shows the estimation procedure of standard rolling window approach and the bottom panel shows
the estimation procedure of the regularized rolling window approach.
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RRW vs Empirical Covariance (%, — 5;)
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Figure 3: Plot of how max;;(Xrrw, — St) and

min;; (X rrw,+ — St) vary as a function of time. According to Eq.
the RRW estimator should always maintain

maxi; (|[Srrw.: — St)ij]) < A. Note how the difference tends to
increase before or around recession period, these are periods where jumps in the portfolio position (and estimated
covariance) are likely to occur, see Figs. El for comparison.
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Figure 4: Surface plots of the portfolio optimization objective function over business cycles. The optimum
portfolio lies at the minimiser of these objective functions and the corresponding portfolio allocation solution for
first asset (that is, w) is indicated in the lower panels by the solid line v.s w1 produced by minimizing w’>Xw
without transaction cost (the dashed line). We set estimation window length M = 12 and A = 40 to allow
comparison with Figs. The grey overlaid bands (in the lower panes) denote recession periods. Note: we here

use the notation ||wl|, = (w —w;") T A(w — w").
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