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Predicting bond return predictability 

Abstract 

We document predictable shifts in bond return predictability related to economic 

activity and uncertainty in the U.S. Treasury bond market using standard bond 

excess return predictors. Bond returns are predictable in high (low) economic activity 

(uncertainty) states, but not in others. We develop a new test for equal conditional 

predictive ability among two or more forecasting methods and show that relative 

performances are predictable and exploitable in a real-time forecasting setting. Using 

a novel forecast combination scheme with dynamic trimming based on predicted 

forecasting performance leads to strongly countercyclical out-of-sample risk premia 

estimates and substantial gains in predictive accuracy and economic value. 
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1. Introduction 

We study time variation in bond return predictability and document predictable shifts 

related to economic activity and uncertainty. Existing evidence on bond return predictabil-

ity has mostly been established using linear predictive regressions designed to assess 

whether bond excess returns are predictable on average using time series that potentially 

span many diverse states of nature.1 If predictability shifts over time, however, then an 

unconditional approach may be misleading and yield unstable conclusions. The continued 

discussion of the degree of predictability in U.S. Treasury bonds is indicative of such 

instabilities. In-sample evidence frequently points to predictability by means of variables 

such as yield spreads (Campbell and Shiller, 1991), forward spreads (Fama and Bliss, 1987), 

linear combinations of forward rates (Cochrane and Piazzesi, 2005), and macroeconomic 

variables (Cooper and Priestley, 2009, Ludvigson and Ng, 2009, Cieslak and Povala, 2015, 

Eriksen, 2017), but out-of-sample exercises often fail to deliver consistent evidence of 

predictability and statistical and economic evaluations often disagree.2 Della Corte, Sarno, 

and Thornton (2008), Thornton and Valente (2012) and Sarno, Schneider, and Wagner 

(2016), for instance, fail to fnd economic value of statistical bond predictability. 

In this paper, we address this issue by developing a new method that is able to assess 

conditional predictive ability among two or more forecasting methods using observable 

state variables and identify methods anticipated to be informative of future relative forecast 

performance.3 Our contributions are fourfold. First, we provide new empirical evidence 

on predictable state-dependencies in bond return predictability. We document that bond 

return predictability shifts over time for a set of predictors well-known to the literature. 
1Early studies include Fama and Bliss (1987), Keim and Stambaugh (1986), Fama and French (1989), 

and Campbell and Shiller (1991). More recent studies of bond return predictability includes Cochrane 
and Piazzesi (2005), Cooper and Priestley (2009), Ludvigson and Ng (2009), Cieslak and Povala (2015), 
Eriksen (2017), Ghysels, Horan, and Moench (2018), Berardi, Markovich, Plazzi, and Tamoni (2019), 
Bianchi, Büchner, and Tamoni (2019), and Gargano, Pettenuzzo, and Timmermann (2019).

2Bauer and Hamilton (2018) even challenge in-sample predictability by pointing out that standard 
regressions are subject to serious small-sample distortions when using overlapping returns. A related point 
is made by Wei and Wright (2013).

3Being able to anticipate future relative forecast performance is also relevant viewed in the light of the 
numerous studies that provide empirical evidence of model instabilities in predictive models. Prominent 
examples include Pesaran, Pettenuzzo, and Timmermann (2006), Giacomini and Rossi (2009, 2010), 
Pettenuzzo and Timmermann (2011), Rossi (2013), and Pettenuzzo and Timmermann (2017). 

1 



In particular, we consider yield spreads, forward spreads, yield curve factors, forward 

rates, and macroeconomic factors. We begin with a standard evaluation of out-of-sample 

forecasts generated using a rolling window scheme and fnd that none of the predictors are 

able to reliably outperform the expectations hypothesis (EH) when considering traditional 

unconditional predictive ability tests. However, this does not exclude the possibility that 

a given method works well in certain states of the world. To facilitate a conditional, 

state-dependent view of bond return predictability, we therefore develop a new statistical 

test for equal (un)conditional predictive ability among two or more forecasting methods. 

The test is a multivariate generalization of the test presented in Giacomini and White 

(2006) that enables us to identify forecasting methods anticipated to be informative of 

future (relative) predictability.4 As such, our test is well-suited to study state-dependencies 

and shifts in predictability as it is directly designed to compare two or more competing 

forecast methods and reveal di˙erences in relative conditional predictive ability that 

would otherwise be hidden in standard unconditional tests of equal predictive ability. We 

then employ our test to examine di˙erences in conditional predictive abilities and fnd 

overwhelming evidence favoring state-dependencies in bond return predictability. 

Second, we document that these shifts are related to economic activity and uncertainty 

measured using the Purchasing Manager’s Index (PMI) (see, e.g. Berge and Jordà (2011) 

and Christiansen, Eriksen, and Møller (2014)) and the index (U) proposed in Jurado, 

Ludvigson, and Ng (2015), respectively. We uncover a striking pattern in bond return 

predictability across states related to these variables. More specifcally, interpreting the 

expectations hypothesis (EH) as a no-predictability benchmark, we fnd that bond risk 

premia are predictable in high (low) economic activity (uncertainty) states. Conversely, the 

EH implication of constant risk premia provides a reasonable approximation in low (high) 

economic activity (uncertainty) states. Consistent with this, we fnd that out-of-sample R2s 

(Campbell and Thompson, 2008) for individual predictors are mostly negative in low (high) 

economic activity (uncertainty) states and positive in high (low) activity (uncertainty) 
4The test further extends the (unconditional) multivariate Diebold-Mariano statistic (Diebold and 

Mariano, 1995) proposed in Mariano and Preve (2012) by allowing for comparison of a mixture of nested 
and non-nested models. 
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states. In short, albeit several predictors fail to provide valuable information on average, 

many outperform the EH conditional on the state of the world. 

Third, we show that the predictable state-dependencies in bond return predictability 

are exploitable for real-time forecasting purposes. In particular, we document sizable gains 

in predictive accuracy when evaluated using both standard statistical criteria and when 

measuring the economic value from the viewpoint of a mean-variance investor that trades 

in the Treasury bond market. To facilitate this analysis, we device a simple and intuitive 

dynamic ranking rule for identifying the set of forecasting methods with indistinguishable 

conditional predictive ability in real-time. The dynamic ranking rule is inspired by the 

Model Confdence Set (Hansen, Lunde, and Nason, 2011) (MCS) for ranking a set of 

forecasting methods. A rejection of the null hypothesis of equal conditional predictive 

ability implies that one or more methods display superior predictive ability in some or all 

states. The rule enables us to predict relative forecasting performance using simple least 

squares and, subsequently, to rank the methods according to their predictive performance. 

If a single method is selected, then this method constitutes the forecast. If several methods 

with equal conditional predictabive ability are identifed, then we perform equal-weighted 

forecast combination (Bates and Granger, 1969) among the selected methods. We refer 

to this strategy as a dynamic forecast combination strategy. It is well established in this 

literature that a simple equal-weighted combination forecast is hard to beat (Timmermann, 

2006). Yet, as pointed out by Aiolf, Capistrán, and Timmermann (2011), little attention 

has been paid to determining the optimal set of models to combine given a potential 

pool of candidate predictors. We argue that our dynamic forecast combination schemes 

provides a simple and intuitive way to dynamically trim the candidate set of predictors 

prior to combination.5 Our dynamic forecast combination strategy can thus be viewed as a 

dynamic trimming strategy (as opposed to the static version considered in, among others, 

Rapach et al. (2010)), where we only combine across forecasts from models anticipated to 

display superior predictive ability in the current state. 
5A large empirical literature documents gains from (statically) trimming forecasts prior to averaging. 

Notable examples include Aiolf and Favero (2005), Aiolf and Timmermann (2006), Timmermann (2006), 
Stock and Watson (2004), Rapach, Strauss, and Zhou (2010), Bjørnland, Gerdrup, Jore, Smith, and 
Thorsrud (2012), and Genre, Kenny, Meyler, and Timmermann (2013). 
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Fourth, we document that our dynamic forecast combination scheme generates out-of-

sample risk premia estimates that are strongly countercyclical and spikes in recessions. This 

is important as nearly all individual predictors (except the Ludvigson and Ng (2009) macro 

factor) generates procyclical risk premia estimates. The latter (former) is (in)consistent 

with standard fnance theory, where risk premia are expected to be high in bad times due 

to heightened risk aversion (Campbell and Cochrane, 1999, Wachter, 2006, Joslin, Priebsch, 

and Singleton, 2015, Cochrane, 2017). The equal-weighted combination schemes, on the 

other hand, generates acyclical forecasts that display no relation to the real economy. 

The fact that our dynamic forecast combination scheme delivers strongly countercyclical 

out-of-sample risk premia forecasts that improve overall predictive accuracy and economic 

value strongly supports our conclusion that our test is able to correctly identify and exploit 

shifts in bond returns predictability. 

In sum, we provide new empirical evidence of predictable state-dependencies in bond 

return predictability that are linked to economic activity and uncertainty. We document 

that these predictability shifts are exploitable in real-time and delivers sizable gains in 

both predictive accuracy and economic value. The gains originate from our method’s 

ability to correctly predict relative forecasting performance and that this leads to better 

and economically meaningful out-of-sample bond risk premia estimates. 

Related literature Our paper is related to two broad strands of literatures. First, there 

is an extensive literature that studies the predictability of Treasury bond excess returns. 

Most of the literature focuses on unconditional predictive ability relative to the EH. Yet, 

a recent literature has started to document state-dependencies and di˙erences in inference 

between statistical and economic evaluations. Della Corte et al. (2008), Thornton and 

Valente (2012) and Sarno et al. (2016) fnd that high statistical predictability does not 

translate into economic gains for mean-variance investors in out-of-sample tests. Gargano 

et al. (2019) reconcile the seemingly contradictory evidence on the statistical and economic 

value of bond prediction models by incorporating stochastic volatility and time-varying 

parameters into the predictive regression. They further fnd that bond return predictability 

is signifcantly stronger in recessions than in expansions. Related in-sample evidence for 
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time-varying predictive performance is found in Andreasen, Engsted, Møller, and Sander 

(2018) and Andreasen, Jørgensen, and Meldrum (2019). Specifcally, Andreasen et al. 

(2018) fnd that bond risk premia are positively (negatively) related to yield spreads in 

expansions (recessions) and Andreasen et al. (2019) argue that there is a signifcantly 

stronger relation between yield spreads and bond risk premia during the zero lower bound 

period. We contribute to this literature by uncovering novel evidence on predictable 

time-variations in forecasting performance for a broad set of well known bond predictors. 

We directly test for conditional predictive ability and documents that predictability itself 

varies over time and that it is predictable and exploitable. We further contribute to 

the understanding of bond market dynamics by demonstrating that relative performance 

is closely related to economic activity and macroeconomic uncertainty and that bond 

risk premia are predictable in times of high (low) economic activity (uncertainty) states, 

whereas the EH provides a reasonable anchor in low (high) economic activity (uncertainty) 

states. We also fnd that our out-of-sample forecasts are consistent with bond risk premia 

being high in bad times and spiking in recessions (Campbell and Cochrane, 1999, Wachter, 

2006). 

Our paper further contributes to a large and active literature on forecasting and forecast 

evaluations. First, we provide the frst multivariate test for equal conditional predictability 

ability. Our multivariate generalization of the Giacomini and White (2006) test provides 

forecasters with the opportunity to test equal (un)conditional predictive ability among 

many forecast methods without having to rely on multiple testing adjustments, which 

would otherwise be appropriate if testing many models against each other on a pairwise 

basis (Hubrich and West, 2010). Second, we facilitate easy testing of equal un(conditional) 

predictive ability as all our proposed tests are simple Wald statistics with chi-squared 

limited distribution as opposed to the non-standard and context-specifc distribution 

often found in the literature (Clark and McCracken, 2001, McCracken, 2007, Clark and 

McCracken, 2012, Gonçalves, McCracken, and Perron, 2017).6 Third, and in contrast to 
6Moreover, our tests are generally invariant to any reordering of the forecasting methods under 

comparison, ensuring that conclusions drawn from a single test is unaltered by any permutation of the 
ordering of the forecasting methods. This is important as it alleviates the need for incorporating multiple 
testing adjustments. 
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Hubrich and West (2010), Mariano and Preve (2012), and Clark and McCracken (2012), 

the proposed tests are applicable to a mixture of both nested and non-nested models, hold 

for a general loss function, and allow for non-stationarity in the data. Last, we allow for 

comparison of a wider class of forecasting methods not considered in the application of this 

paper, including linear, non-linear, Bayesian, and non-parametric methods, something that 

is not allowed in the methods proposed in Clark and McCracken (2012), Granziera, Hubrich, 

and Moon (2014), and Gonçalves et al. (2017) that apply to linear models only. We further 

contribute to a literature that studies the impact of trimming forecasts prior to combination. 

Makridakis and Winkler (1983) show that the marginal impact of including an additional 

method decreases as the number of methods increases. Similarly, Jose and Winkler (2008) 

document that trimming or winsorizing improve forecast accuracy and reduce the risk of 

large errors. Samuels and Sekkel (2017) fnd that using the (unconditional) MCS as a 

trimming device prior to constructing combined forecasts can greatly improve accuracy 

and Diebold and Shin (2018) propose a LASSO-based procedure that sets some combining 

weights to zero and shrinks the survivors toward equality. Our approach di˙ers from theirs 

by being rooted in a formal multivariate test of equal conditional predictive ability and 

by focusing in predicted performance rather than past performance. For comparison, we 

implement a version of the unconditional trimming rule (Samuels and Sekkel, 2017) and 

fnd that our conditional trimming provides superior predictive ability. Finally, our work 

is related to recent papers studying the predictability of relative forecast performance 

(Timmermann and Zhu, 2017, Granziera and Sekhposyan, 2019). 

The remainder of the paper proceeds as follows. Section 2 outlines our data and state 

variables. Section 3 develops our multivariate statistical tests for equal (un)conditional 

predictive ability and introduces our dynamic ranking rule. Section 4 present our main 

empirical results on state-dependencies in bond return predictability and Section 5 examines 

the sources of conditional predictability. Section 6 examines the link between our out-of-

sample risk premia estimates and the real economy. Section 7 examines the economic value 

attainable for a mean-variance investor. Finally, Section 8 provides concluding remarks. 
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2. Bond return predictability 

This section discusses our setting and describes the construction of monthly bond excess 

returns and provides summary statistics. We then outline the set of bond return predictors 

used in our empirical analysis and their construction and, last, discuss the state variables 

used to assess state-dependencies in bond excess return predictability. 

2.1. Predictive regression for bond returns 

To motivate our study, consider a classic predictive regression model for bond risk premia 

of the form 
(k) (k) + (k) (k)

rx = xt + " (1)t+˝ t+˝ , 

(k) (k−˝) (k) (˝)where rxt+˝ = pt+˝ − pt − pt denotes the ̋ -month log excess holding period return on 

a k-month zero-coupon Treasury bond and pt 
(k) is the time t log price of a bond with k 

months to maturity. We are interested in determining whether a set of predictors xt can 

predict bond excess returns, where a natural benchmark is the expectations hypothesis 

that implies (k) = 0 (i.e. no predictability). Our empirical analysis focuses on monthly 

U.S. Treasury bond excess returns (˝ = 1) over the period 1962 to 2018 constructed using 

the Gürkaynak, Sack, and Wright (2007) dataset and a one-month Treasury bill obtained 

from the Center for Research in Security Prices (CRSP) as in Gargano et al. (2019).7 The 

use of a monthly holding period returns avoids the many issues with persistence induced 

from using annual overlapping returns for conducting inference (Bauer and Hamilton, 

2018) and may better facilitate the capture of short-lived dynamics in bond excess returns 

across economic states (Farmer, Schmidt, and Timmermann, 2019, Gargano et al., 2019). 

[Insert Figure 1 About Here] 

Figure 1 plots time series of excess returns for bonds with two, three, four, and fve 

years to maturity, respectively. The same set of maturities are considered in, e.g., Fama 

and Bliss (1987) and Gargano et al. (2019). Bond excess returns are notably more volatile 
7We detail the construction of monthly log yields and bond prices in the Internet Appendix. The data 

are available at https://www.federalreserve.gov/data/nominal-yield-curve.htm. 
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during the early 1980s and more calm in the late 2010s. The magnitude of bond risk 

premia also appears to narrow towards the end of our sample period. 

[Insert Table 1 About Here] 

Panel A of Table 1 presents descriptive statistics for our monthly bond excess return 

series. We see that longer maturity bonds are more volatile and earn higher excess returns 

on average. The Sharpe ratios are generally high and range between 0.46 for the two-year 

bond and 0.35 for the fve-year bond. Morover, short-term bonds display higher skewness, 

kurtosis, and have slightly more persistent excess returns. However, the persistence 

in these monthly bond excess return series are substantially lower compared to those 

typically observed in studies using annual overlapping bond excess returns (e.g. Cochrane 

and Piazzesi (2005) and Ludvigson and Ng (2009)) and the frst-order autocorrelation 

coeÿcient never exceeds 0.17 across the maturity spectrum. Panel B of Table 1 provides 

contemporaneous bond excess return correlation across maturities and confrms the well 

known observation that bond excess returns are highly cross-sectionally correlated across 

maturities. Correlation coeÿcients range from 0.99 to 0.93, where bonds closest to each 

other in the maturity spectrum obtain the highest contemporaneous correlations. 

2.2. Predictor variables 

We consider a set of standard bond predictors from the extant literature. In particular, 

we consider yield spreads (Campbell and Shiller, 1991), forward spreads (Fama and Bliss, 

1987), principal components of yields (Litterman and Scheinkman, 1991), forward rates 

(Cochrane and Piazzesi, 2005), and macroeconomic factors (Ludvigson and Ng, 2009). 

In particular, the Campbell-Shiller (CS) yield spreads are computed as 

(k) (k) (1)
ys = y − y , (2)t t t 

(k) (1)where yt denotes the time t log yield on a bond with k periods to maturity and yt 

denotes the safe one-period return measured using the implied yield on a one-month 

Treasury bill obtained from CRSP. The Fama-Bliss (FB) forward spreads are computed 
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similarly as 
(k) (k) (1)

fs = f − y , (3)t t t 

where ft 
(k) denotes the forward rate for loans between t + k − 1 and t + k. The principal 

component (PC) of yields are computed from the set of 12-, 24-, 36-, 48-, and 60-month 

maturity yields and we focus on the frst three components often referred to as level, slope, 

and curvature. These components account for almost all of the variation in yields. The 

Cochrane-Piazzesi (CP) single factor is formed from a linear combination of forward rates 

using the projection 

(12) (24) (36) (48) (60)
rxt+1 = � + 1f + 2f + 3f + 4f + 5f + " t+1, (4)t t t t t 

P5 (i×12)where rxt+1 = 1
4 i=2 rxt+1 can be viewed as the excess return on a portfolio of Treasury 

bonds with di˙erent maturities. The CP factor is then obtained as CPt = �b + bft, with 
(12) (24) (36) (48) (60)b = (b1, b2, b3, b4, b5) and f t = (f , f , f , f , f )0. Last, the Ludvigson-Ng t t t t t 

(LN) factor is based on a T × M panel of macroeconomic variables, x, that we assume can 

be adequately described by a static factor model, i.e. 

xi,t = �igt + �i,t,, (5) 

where gt is an s × 1 vector of common factors with s ̋  M that we estimate using principal 

component analysis. We use the dataset from McCracken and Ng (2016). Following 

Ludvigson and Ng (2009), we build a single factor as a linear combination of a subset of 

the principal components. We determine the subset using the BIC and obtain the factor 

from a projection of rxt+1 onto the set of selected macroeconomic factors. 

[Insert Table 2 About Here] 

Table 2 presents descriptive statistics for the set of predictors (Panel A) along with 

contemporaneous correlations (Panel B). All variables are constructed using the full range 

of available observations here, but are constructed recursively in the out-of-sample exercise. 

Yield spreads and forward spreads are fairly persistent with frst-order autocorrelations 
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between 0.82 and 0.92 and are heavily cross-correlated. Unsurprisingly, PC2 — the slope 

component of the yield curve — is strongly related to both yield and forward spreads. CP 

and LN are similarly positively correlated with the spread variables and also positively 

correlated with each other. Last, we note that CP and LN are relatively less persistent 

compared to the remaining variables. 

2.3. State variables 

Conventional tests of equal predictive ability gauge if forecasts are equally accurate on 

average, not if and when predictors exhibit predictive ability. We are interested in this 

latter question and below we develop a new test to address this question in a multivariate 

setting. The basic premise of the test rests on the intuition that even if a given predictor 

does not display unconditional predictive ability, it may display superior predictive ability 

conditional on some states of the world. To identify these states, we need to identity state 

variables that are likely to capture fuctuations in forecast losses. We consider two state 

variables well-known for their ability to capture salient features of the state and properties 

of the business cycle. We use the Purchasing Managers’ Index (PMI) published by the 

Institute of Supply Management and the macroeconomic uncertainty index (U) proposed 

in Jurado et al. (2015). 

2.3.1. Purchasing managers’ index The PMI is an index constructed from a survey of the 

manufacturing sector that ranges from 0 to 100 and is released on the frst business day of 

every month. The index is specifcally designed to capture the state of the economy with 

values below 50 indicating a recession in the manufacturing economy and is regarded as a 

prime leading indicator of the business cycle (Berge and Jordà, 2011, Christiansen et al., 

2014). Using a variable that tracks business cycle fuctuations to assess state-dependencies 

in bond predictability is motivated by a recent literature that documents stark di˙erences 

in predictive performance for asset returns across di˙erent phases of the business cycle 

(Henkel, Martin, and Nardari, 2011, Dangl and Halling, 2012, Andreasen et al., 2018, 

Eriksen, 2017, Gargano et al., 2019, Farmer et al., 2019). 
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2.3.2. Macroeconomic uncertainty U measures a common component in the time-varying 

volatilities of h-step ahead forecast errors across a large number of macroeconomic series 

that include categories such as real activity, prices, and fnancial assets.8 The index is 

therefore associated with the variance of the unpredictable components of macroeconomic 

variables.9 Macroeconomic uncertainty has recently been identifed as an important 

contributor to business cycle fuctuations (Bloom, 2009, Ludvigson, Ma, and Ng, 2019) 

and asset prices (Drechsler, 2013, Bali, Brown, and Tang, 2017, Borup and Schütte, 2019). 

Moreover, it has recently been been used to study state-dependent performance of aÿne 

term structure models (Sarno et al., 2016). Last, uncertainty is likely to be linked to risk 

aversion (Bekaert, Engstrom, and Xu, 2019), which bears direct infuence on the required 

compensation for bearing interest rate risk. 

[Insert Figure 2 About Here] 

Figure 2 displays the evolution of the two state variables over time. Green (yellow) 

shaded ares represent periods of (high) low activity and uncertainty, respectively, where 

high (low) episodes are identifed using the 80% (20%) quantiles of their time series. PMI 

and U are both persistent series with frst-order autoregressive coeÿcients of 0.94 and 

0.99, respectively. PMI (U) mostly takes on (low) high values in bad times and the two 

series realize a full sample correlation of −0.48, suggesting that the series are related, but 

not perfect substitutes. For our purpose, we remain agnostic about the lead-lag relation 

between uncertainty and the macroeconomy, but note that Ludvigson et al. (2019) provide 

evidence that higher macroeconomic uncertainty in recessions arises as an endogenous 

response to output shocks (see also Andreasen (2019)). 
8We focus on the index associated with h = 1 step ahead forecast errors to match the holding period 

of the bond as well as the data frequency in general. 
9An alternative is the macroeconomic uncertainty index proposed in Rossi and Sekhposyan (2015), 

although its quarterly frequency puts it at a disadvantage compared to the monthly frequency of the 
Jurado et al. (2015) index. 
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3. Multivariate tests for equal predictive ability 

This section introduces our econometric methodology. We develop a multivariate test for 

equal conditional predictive ability, present our main forecasting methods and hypotheses, 

and discuss applications within dynamic forecast selection and combination. 

3.1. Notation 

To introduce a general notation, let wt � (yt, xt)0 be an observed vector defned on the 

probability space (
 , F, P), where yt is the target object of interest and xt is a vector 

of predictors. We consider a setting where p + 1, p � 1, methods are available for 

forecasting ̋  periods into the future. We denote the forecast of yt+˝ originating a time t � � 
by f̂ i = f i wt, wt−1, . . . , wt−mi+1; �̂i for i = 1, . . . , p + 1, where f i is a measurablet+˝ t,mi 

forecast function. �̂ 
t,m

i 
i denotes the parameter estimates used to construct the forecast for 

the ith forecasting methods obtained using observations from the mi most recent periods 

in the past. For ease of exposition and along the lines of Giacomini and White (2006), 

we defne m = max {m1 , . . . ,mp+1} and require that m < 1. This excludes expanding 

window forecast schemes from our test, but allows for rolling window estimators. The 

number of out-of-sample forecasts is T = N − (m + ̋  − 1) with a total sample size of N 

(time series) observations. In order to assess the forecasting ability of each forecasting � � 
method, we use a real-valued loss function Lt+˝ Yt+˝ , f̂  

t
i 
+˝ . Important examples of L 

include economic measures such as utility or profts (Granger and Machina, 2006) and 

statistical measures such as the square or absolute value of the forecast errors (West, 2006), 
i f̂ iwhere forecast errors are given by et+˝ = t+˝ − yt+˝ . To ease the notational burden, we 

suppress the arguments of L and write the ith loss function as Lit+˝ for the remainder the 

of the paper. 

3.2. Rolling window forecasts 

Our out-of-sample analysis is based on conventional predictive regression models of the form 

presented in (1), which is arguably the most common methodology on forecasting bond risk 
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premia (see, e.g., Gargano et al. (2019)). We note, however, that our econometric framework 

is not limited to such regressions, but naturally extends to a broad array of parametric, 

non-parametric, and Bayesian methods. We consider a set of p methods, indexed by i, 

defned by the set of predictors outlined in Section 2.2 in addition to the natural EH 

benchmark. The predictive regression models will be estimated by a rolling window 

OLS scheme, in accordance with our and Giacomini and White (2006) assumptions, and 

forecasts generated at time t according to (suppressing maturity-dependence for notational 

simplicity) 

+ ˆ i if̂ i = ˆi xt, (6)t+˝ t t 

for i = 1, . . . , p + 1 with �̂i = 
� ̂

i ˆ i 
�0 
. The benchmark EH forecast naturally includes t,mi t, t 

no predictors and is simply defned as f̂ i = ˆi, which is consistent with a no-predictability t+˝ t 

interpretation as implied by fnancial theory. 

3.3. The hypothesis of equal conditional predictive ability 

We are interested in formally evaluating whether a set of p + 1 forecasting methods display 

equal conditional predictive ability using some ̇ -feld (information set), Gt. That is, we 

want to test the hypothesis that 

h i h i 
H0: E Li |Gt = E Li+1 |Gt , i = 1, . . . , p, (7)t+˝ t+˝ 

or equivalently that 

H0: E [�Lt+˝ |Gt] = 0, (8) 

� �0 j j j+1where �Lt+˝ = �L1 . . . , �Lp and �L = L − L for j = 1, . . . , p andt+˝ , t+˝ t+˝ t+˝ t+˝ 

where Lit+˝ is the loss function for the ith method. This null hypothesis o˙ers three main 

advantages. First, it allows us to study conditional predictive abilities and identify if 

and when there are di˙erences in the competing models’ conditional predictive accuracy. 
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This is distinctly di˙erent from testing whether methods have equal predictive accuracy 

on average. Indeed, a given forecasting method can display superior predictive ability in 

certain states of the world as captured by Gt, yet still perform poorly on average. In other 

words, the null hypothesis implies that Gt is uninformative about the relative predictive 

accuracy of one or more forecasting methods when forecasting the object of interest ̋  

periods into the future. A rejection of the null hypothesis, conversely, implies that relative 

predictive accuracy is predictable by Gt and that this may be exploited to improve forecasts. 

Second, if Gt is set to the trivial ̇ -feld, Gt = {;, }, then the null hypothesis becomes 

unconditional and, as such, comparable to the one considered in Mariano and Preve 

(2012). In this case, the hypothesis test provides information about the average predictive 

ability of the forecasting methods as in Diebold and Mariano (1995) and West (1996). 

Third, the loss functions depend explicitly on the parameter estimates and not on their 

probability limits, leading to a test statistic that takes into account estimation uncertainty. 

Importantly, by allowing for asymptotically non-vanishing estimation uncertainty, the test 

can accommodate the empirically relevant case of inclusion of nested models in the set 

of forecasting methods which is a feature that the (unconditional) multivariate test in 

Mariano and Preve (2012) cannot handle.10 This is particularly important in our context 

as the EH model is nested within every competing forecasting model coming from (1). 

3.4. The multivariate test statistic 

The null hypothesis in (8) is equivalent to stating that 

h i 
H0: E h̃ 

t�Lt+˝ = 0 (9) 

for all Gt-measurable functions h̃ 
t. We restrict attention to a subset of these functions that � �0(1) (q)we gather in the q-dimensional vector ht = h̃ 

t , . . . , h̃ 
t . We refer to this vector as the 

state function. For this choice of state function, we can reformulate the multivariate null 
10Technically, with Gt = {;, } and asymptotically vanishing estimation uncertainty the standard 

errors of di˙erences in forecast performance between a set of nested models will equal zero, leading to 
non-standard limiting distributions of the test statistics. 
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hypothesis of equal conditional predictive ability as follows 

H0,h: E [ht �Lt+˝ ] = 0, (10) 

where the subscript h indicates the dependence on the state function and denotes the 

Kronecker product. The specifcation in (10) is a natural multivariate extension of the null 

hypothesis in Giacomini and White (2006). Indeed, we obtain their econometric framework 

as a special case when p = 1. 

Our empirical analysis focuses on one-step ahead forecasting, ̋  = 1, as is common in 

the bond return predictability literature and we consider an information set Gt, Ft � Gt, 

containing the state variables discussed in Section 2.3. We view this setting our leading 

example, but provide theoretical results for multi-step ahead forecasting, i.e. ̋ > 1, in the 

Internet Appendix along with our assumptions that are identical to those of Giacomini and 

White (2006). Finally, let dt+1 = ht �Lt+1. We then consider the following quadratic 

statistic 

Sh = Td ¯ 0�̂ − 
T 

1 
d ¯ , (11) 

where d ¯ � T−1 PT
t=1 dt+1, and �̂ 

T � T −1 PT
t=1 dt+1dt 

0 
+1 is a (qp × qp) sample covariance 

matrix that consistently estimates the variance of dt+1.11 That is, Sh is a natural Wald 

statistic constructed for testing whether d ¯ is a zero vector. When formulating an alternative 

hypothesis, one must take into account the generality that data is allowed to exhibit non-

stationarity. We provide a discussion in the Internet Appendix. For some c > 0, we 

formulate the alternative in line with Giacomini and White (2006) as 

h i h i
¯ ¯HA,h: E d 
0 E d � c, (12) 

for all T suÿciently large. Under stationarity, the null and alternative hypothesis are 
11We note that for large values of q and/or p, the dimension of �T and d ¯ may become large, potentially 

leading to issues with statistical inferences in fnite samples. We propose remedies in Borup and Thyrsgaard 
(2017), but note that our empirical analysis use single instruments together with p = 6, leading to reasonable 
dimensions. 
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exhaustive. Under non-stationarity, this may not necessarily be the case. If an important Gt -h i h i
¯ ¯measurable variable is omitted from the state function, it may happen that E d 
0 E d = 0 

for a particular sample size due to, for instance, shifting means without the null hypothesis 

being true. As an example, one could easily imagine a situation where one method 

outperforms (some of) the other methods in certain states, while it performs worse than 

the same methods in other states. Therefore, the test has little power against alternatives 

where the loss di˙erentials are correlated with Gt-measurable random variables not included 

in the state function. While this concern is important, it also highlights the fexibility of 

the test statistic. As mentioned above, the econometrician chooses the state function to 

include state variables relevant for disentangling the forecasting abilities of two or more 

forecasting methods. The test therefore only provides power in situations when this is 

possible. As a result, the test statistic changes with the choice of state function and the 

subscript in Sh in (11) emphasizes this. 

The asymptotic properties of the test statistic are summarized in Theorem 1 and the 

proof can be found in the Internet Appendix. 

Theorem 1 (One-step multivariate conditional predictive ability test). Sup-

pose Giacomini and White (2006) type assumptions hold (Assumptions 1-3 in the Internet 

Appendix). Then the test statistic has the following properties. 

A. Asymptotic distribution under the null. For forecast horizon ˝ = 1, state 

function sequence {ht}, m < 1, and under H0 in (8), 

Sh −
d as T !1.! ̃2 (qp) , (13) 

B. Consistency under the alternative. For any c 2 R+ and under HA,h in (12), 

P [Sh > c] ! 1, as T !1. (14) 

C. Permutation invariance. Let L� t+1 be an arbitrary permutation of the forecast 
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losses, and defne �L� t+1 = DL� t+1, where 

32 

D = 

66666666664 

1 −1 0 . . . 0 

0 1 −1 . . . ... 
... . . . . . . . . . 0 

0 . . . 0 1 −1 

77777777775 
(15) 

� 
T−1 PT �

�is a p × (p + 1) matrix. Let d ¯ = t=1 d
� 
t+1 with d� t+1 = ht �L� t+1 and ˆ 

T � 
1 PT 

t+1. Then,T t=1 d
� 
t+1d

�0 

� 
�̂ � 
T 

�−1 ¯ d � m = Sh, 8T. (16)� Td ¯�0 S� h m 

We provide a corresponding result for the unconditional, possibly multi-step, case, in 

the Internet Appendix. This case, where we compare the average performance of the 

methods over the out-of-sample window, is obtained by setting ht = 1 for all t. The 

limiting distribution is ̃ 2 (p) for a test statistic that employs a HAC type covariance 

matrix estimator. In the case of the conditional test and multi-step forecast horizons an 

identical ̃ 2 (qp) limiting distribution is obtained when using an appropriate HAC type 

covariance matrix estimator to capture arising serial dependence.12 

Although any reordering of the forecasting methods alters the dynamics of dt+1, 

Theorem 1.C. shows that we obtain the same value of the test statistics and the same 

limiting distribution under the null hypothesis for each permutation (reordering) of the 

forecasting methods, irregardless of the null being true or not. This is important as it 

allows the researcher to perform just a single test. 

3.5. Understanding the test 

To provide an intuitive understanding of our test statistics, we consider the simplest case 

of p = 1, where the problem reduces to a comparison between a single forecasting method 
12Borup and Thyrsgaard (2017) provide Monte Carlo evidence for all test statistics. They show that all 

tests display good size and power properties in dimensions similar to the ones considered in this paper. 

17 



and a benchmark. An unconditional test is equivalent to the regression 

�Lt+1 = '0 + �t+1, (17) 

where the null hypothesis that '0 = 0 can be testing using a standard t-test using 

an appropriate HAC type of covariance estimator. The conditional test augments the 

regression with a set of state variables. Our empirical study considers a single state variable 

(plus a constant) at a time to facilitate economic interpretation. Suppose, accordingly, 

that we have a single state variable h̃ 
t, then the conditional test amounts to running the 

extended regression 

�Lt+1 = 'ht + �t+1 = '0 + '1h̃ 
t + �t+1, (18) 

with ' = ('0, '1) and ht = 
� 
1, h̃ 

t 

�0 
being the state function.13 In this case, we are 

interested in testing jointly '0 = 0 and '1 = 0 using a Wald test and an appropriate 

estimator of the covariance matrix. The limiting distribution under the null hypothesis is 

equivalent to the ones provided in Theorem 1. From (18), it is clear that a rejection of 

'1 = 0 indicates that there is information in the state variable that informs about future 

relative predictability of the models under consideration. That is, there is evidence of 

state-dependency. Importantly, the expression in (18) is nothing more than a full sample 

predictive regression similar in spirit to (1) estimated over the out-of-sample window. The 

key di˙erence being that (18) predicts the future relative predictive ability among the 

candidate forecasting methods using state variables whose values are observable at the 

construction of the forecast and are picked by the researcher. We refer to them as state 

regressions in the following. These ideas naturally extend to our case of p > 1, resembling 

a seemingly unrelated regression (SUR) type of interpretation of our test statistic. We will 

make use of this insight below when formulating a simple decision rule to exploit rejections 

of the null hypothesis to dynamically select or combine among forecasting methods with 

indistinguishable predicted performance. 
13If one uses several state variables in addition to the constant, this amounts to a multiple regression 

and joint inference on all parameters. 
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3.6. Ranking of forecasting methods 

Rejection of the null hypothesis suggests that one or more of the forecasting methods exhibit 

superior predictive ability in certain states. However, it provides no guidance towards 

which method(s) that causes the rejection and display(s) the strongest predictability. 

The identifcation of the method(s) is of both economic and practical interest. Central 

banks, international organizations (IMF, OECD, and the World Bank), and professional 

forecasters (SPF and Blue Chip) frequently generate forecasts that are widely followed 

by market participants and policy makers. Designing routines that can identify forecasts 

and/or forecasters that are predicted to do well in a given state of the world therefore 

seems worthwhile. To that end, we propose a simple and intuitive algorithm that ranks 

forecasting methods based on their predicted performance with respect to one or more 

state variables and identifes the set of best methods. This set may consists of a single 

model, all models, or any number of models in between. It depends on the ability of 

the state function to accurately inform us about any, possible time-varying, di˙erences 

in predictive accuracy. This procedure reveals potential fuctuations in predictive ability 

over time, similar in spirit to the fuctuation test of Giacomini and Rossi (2010), but also 

suggests why these fuctuation occurs due to the use of state variables. The procedure can 

also be applied dynamically, at the forecast origin date, to select forecast methods that is 

expected (conditional on Gt) to yield the lowest loss at a future time point and to conduct 

conditional combination techniques. In formulating the algorithm, we consider a MCS-type 

procedure (Hansen et al., 2011) to eliminate methods according to an elimination rule and 

rank forecasting methods into a best set whose elements have equal predicted conditional 

predictive ability. 

3.6.1. Full out-of-sample ranking rule We frst device a statistical algorithm for ranking all 

forecasting methods based on their predictive accuracy conditional on the state variable(s) 

over the fll sample. In line with our empirical analysis below, we will formulate the 

rule using a single state variable in addition to the constant, but note that it can be 

extended directly to a setting with several state variables. Since h̃ 
t may be continuous, 
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we assume that it can be classifed into a fnite set of A discrete, non-empty, states sa, 

a = 1, . . . , A. For example, the state variable can be a measure of economic growth, which 

may be classifed into recessionary or expansionary states, or a measure of macroeconomic 

uncertainty, which may be classifed into low, medium, and high uncertainty states. 

Let M0 be the set of the p + 1 forecasting methods under consideration and M� a set a 

of best forecasting methods in terms of some loss function within the ath state. We then 

consider the following three-step procedure. 

Step 0: Set Ma = M0 for a = 1, . . . , A. Estimate by OLS the regression model 

�Ljt+1 = 'jht + �t+1 (19) 

for all pairwise combinations of forecasting methods, j = 1, . . . , p × (p + 1) /2. The h i 
conditional expectation of the loss di˙erentials within each state, E �Ljt+˝ |s = sa = h i 
j j ˜ j j a a' 0 + ' 1E ht|s = sa , a = 1, . . . , A, is approximated by '̂0 + '̂1µ̂ , where µ̂ is the ˜ ˜h h 

sample average of the state variable h̃ 
t in state sa. Based on those estimated 

conditional means, rank all p + 1 methods (using a normalization of one method) 

in all states. The forecasting method with lowest predicted loss across all pairwise 

combinations is ranked frst and similarly the method with highest predicted value 

is ranked at last. 

Step 1: Run the multivariate test for equal conditional predictive ability. 

Step 2: If the test is not rejected, set M� 
a = Ma. Otherwise, eliminate the lowest 

ranked forecasting method from Ma based on the ranking that associates with state 

a. Iterate Steps 1–2 until the null is no longer rejected for all A states. 

Concluding the algorithm leads to a set M� 
a for each state sa that contains the best 

forecasting methods statistically indistinguishable in terms of predictive ability. A few 

remarks are worthwhile here. First, the ranking rule exploits the state regression in-

terpretation of our test statistic and is, as such, strongly rooted in econometric theory. 

Second, since the elimination of models is based on state-specifc ranking, it will capture 
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the state-dependency of predictability over the full out-of-sample period which proves 

insightful in the empirical analysis below. Third, since the algorithm provides sets of equal 

predictive ability within each state it can be thought of as a version of a conditional MCS 

algorithm. Last, since the test is permutation invariant as per Theorem 1, we only need to 

run it once for each time Step 2 is conducted, even though the elimination of models alters 

the ordering of models. However, the ranking of all models in Step 0 is not permutation 

invariant and requires, as such, an examination of all combinations. Fortunately, this step 

is only conducted once and has little computational demands being based on least squares. 

3.6.2. Dynamic ranking rule The above full out-of-sample ranking rule is not applicable 

for real-time forecasting as Step 0 depends on a regression over all out-of-sample periods. 

We therefore formulate a dynamic rule that enables researches to select and/or combine 

among methods conditional on the realization of the state variable at the time of the 

forecast. To that end, we divide the out-of-sample window into two parts. The frst part is 

used for initially estimating the state regression and the second part for forecast selection 

and/or combination. Suppose that the frst part has length T1 and that the second part has 

length T2 with T1 + T2 = T . We then propose the following three-step ranking algorithm 

at each time point t = m + T1, . . . , N − 1. 

Step 0: Set Mt = M0. Estimate by OLS the regression model 

j = 'jht�Lt+1 + �t+1 (20) 

over a rolling window of length T1 for all pairwise combinations of forecasting h i 
methods, j = 1, . . . , p × (p + 1) /2. The conditional expectation E �Ljt+1|Gt is 

estimated by '̂jht = '̂j0 + '̂j1h̃ 
t which measures the time t prediction of the future 

j’th loss di˙erential using current information in the state variable. Based on those 

predictions, rank all p + 1 methods (using a normalization of one method). The 

forecasting method with lowest predicted loss across all pairwise combinations is 

ranked frst and similarly the method with highest predicted value is ranked at last. 
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Step 1: Run the multivariate test for equal conditional predictive ability. 

= Mt. Otherwise, eliminate the lowest Step 2: If the test is not rejected, set M� 

ranked forecasting method from M based on the ranking of predicted forecast losses. 

Iterate Steps 1–2 until the null is no longer rejected. 

This algorithm is a real-time version of the full out-of-sample version above that allocates 

forecasting models at each time point t = m + T1, . . . , N − 1 into a set of the best models, 

t 

M� 

variable.14 Since this ranking is conducted at the same time forecasts are generated, it 

provides valuable information about the usefulness of a given set of models to base current 

predictions upon. 

3.7. Forecast combination 

We then formulate a simple and natural procedure for exploiting this ranking of predicted 

t , with lowest expected forecast losses, using the current information in the state 

t 

tperformances at each time t. Let f̂ � +1 denote a combination forecast given by 

1 X 
#M� f̂  

t
i 
+1, (21)= tf̂

� 
+1 

i2M� t 

t 

tttwhere #M� denotes the cardinality of (number of elements in) M� If M� 

a single forecasting method, then we rely on that single method for forecasting. If M� 

consists of more than one method, we perform forecast combination within the set of best 

models. To keep focus on the ability of our method to identify the best set of models, we 

consider the simplest possible combination scheme: equal-weighting.15 The equal-weighted 

combination scheme has a long tradition in the forecasting literature and is empirically 

hard to beat as it involves no estimation error in weights (Timmermann, 2006, Rapach 

et al., 2010). Other combination schemes are naturally possible, e.g. using estimated 

least squares weights, possibly with shrinkage to equal weights (Bates and Granger, 1969, 
14Note also that it does not require a categorization of the state variable into discrete states. 
15While one could possibly increase forecast performance further by considering more complicated 

combination schemes, this is not the aim of our paper. Instead, we focus on the ability of our method 
to discriminate between forecasting methods that are predicted to perform well and those predicted to 
perform poorly and show that this does indeed lead to signifcant improvements. 

consists of . 
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Granger and Ramanathan, 1984, Zellner, 1986, Diebold and Pauly, 1987). Our proposed 

combination scheme is essentially an equal-weighting principle, but with the modifcation 

that we dynamically trim the set of models prior to combination, where the trimming 

is based on the predicted losses from our dynamic ranking rule. In the case of only two 

models, p = 1, this reduces to the switching rule provided in Giacomini and White (2006). 

Timmermann and Zhu (2017) formally show that forecast improvements are guaranteed 

when state variables are powerful and Granziera and Sekhposyan (2019) provide empirical 

evidence. 

3.8. A check of size and power properties 

To check the fnite sample properties of our tests, we perform a Monte Carlo study. We 

focus on their size and power properties in settings corresponding to its application in 

both a full out-of-sample analysis and when used in the dynamic ranking rule. 

We examine a situation where the forecasts have equal predictive ability unconditionally, 

but conditional on some state variable h̃ 
t at least one of the forecasts are more (or less) 

accurate than the others. The data-generating process is set to 

�Lt+1 = µ(h̃ 
t − %) + " t+1, (22) 

where P[h̃ 
t = 1] = % and P[h̃ 

t = 0] = 1 − %. To allow for the presence of estimation error 

(approximately) asymptotically, as delineated by our theoretical setting, we re-sample 

with replacement from de-meaned loss di˙erentials from our empirical analysis when 

generating " t+1. In this way they maintain every infuence of the estimation coming the 

forecasting models as well as ensure simulated time series that exhibit realistic empirical 

behavior. Note also that E[�Lt+1] = 0, together with E[�Lt+1|h̃ 
t = 1] = µ(1 − %) and 

E[�Lt+1|h̃ 
t = 0] = −µ%. That is, the unconditional null hypothesis is true, whilst the 

conditional one is not necessarily so, depending on the value of (the elements in) µ and %. 

We consider three sample sizes; a short, medium, and long length. The medium size 

equals the length of our full out-of-sample window, T = 348, the short size equals the 

sample length used in the dynamic ranking rule in the application, T1 = 120, and the long 

23 



size is set to 1, 000 observations. Consistent with our empirical analysis, we set p = 5 as the 

number of models under comparison less one due to the computation of loss di˙erentials. 

Since our ranking rules eliminate a model sequentially until it no longer rejects, we consider 

the full range p = 1, . . . , 5. When p < 5, we randomly sample without replacement (in any 

random order) among our full set of models and subsequently reconstruct loss di˙erentials 

based on the selected models. Note that any reshu˜ing of the order of models has no 

infuence on the test statistic due to its permutation invariance, presented in Theorem 

1, such that it has no infuence on the performance of the test statistic within a fxed 

p. To obtain (samples of) " t+1, we consider two separate cases, using the empirical loss 

di˙erentials resulting from forecasting each of the 2-year and 5-year bonds, respectively. 

We set % = 0.4, since this links to our fndings below that documents notable superior 

predictability of at least one model in each of the high and low economic activity or 

uncertainty states, and less di˙erences in predictive accuracy within the normal state. We 

use 10,000 Monte Carlo replications. 

3.8.1. Size properties To examine the size properties of our test, we set µ = 0 such 

that both the unconditional and conditional null hypothesis are true. We consider two 

implementations of the test. The frst is unconditional and uses ht = 1 for all t, whereas a 

conditional implementation uses ht = (1, h̃ 
t)0. The results are reported in Table 3 for a 

signifcance level of 5%. Conclusions are identical using a 1% and 10% signifcance level, 

and relevant tables are available upon request. 

It is clear that both the conditional and unconditional tests are well-sized, showing 

negligible deviations from the nominal signifcance level. Those minor deviations generally 

decrease in sample size and increase in number of models under comparison. It is comforting 

to note that the tests maintain good size properties for the short sample size used in the 

dynamic ranking rule. There is no notable di˙erence when sampling from loss di˙erentials 

associated with the 2-year or 5-year bonds, except from in the short sample case where 

the 5-year bond loss di˙erentials lead to a slight undersizing. 
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3.8.2. Power properties To examine the power properties of our test, we let the frst 

element of µ deviate from zero, and set the remaining elements equal to zero in a similar 

style to Mariano and Preve (2012). Denote this frst element by µ1. The deviation is 

anchored in the empirical loss di˙erentials, making it realistic in the context of the present 

paper. Specifcally, we compute the average absolute loss di˙erentials across all models 

within the low and high activity states defned in the empirical section below, denoting 

it by �̂. We then set µ1 = c�̂ where c 2 [0, 2.5].16 Given the specifcation in (22) and 

% = 0.4, this allows µ1 to deviate at most 1.5 times the empirical value of average absolute 

loss di˙erentials. We have also implemented a version that lets all elements of µ deviate 

from zero with a fraction c of each respective element’s average absolute loss di˙erentials 

within the low and high activity states. The power is uniformly stronger in this case, and 

results are available upon request. Note also that, in both versions, the unconditional 

null hypothesis remains true. We therefore set ht = (1, h̃ 
t)0 and examine the power of the 

conditional version of our equal predictability test. The power curves for a 5% signifcance 

level are depicted in Figure 3. Conclusions are identical using a 1% and 10% signifcance 

level, and the results are available upon request. 

In line with the theoretical power result in Theorem 1, the test is consistent under 

the (local) alternative considered, as power increases to unity for stronger deviations 

from the null. It correctly exhibits empirical rejections equal to the nominal size at 

c = 0. Power is stronger for less model comparisons, as expected, but the di˙erence is 

not substantial. As was the case for the size properties, it is comforting that the test 

exhibits good power properties even for the relatively short sample length. To put this 

into context, for c = 1/% = 1.67 we recover the empirical value of the mean absolute values 

of loss di˙erentials obtained in the empirical analysis when using (22). In this case, the 

power exceeds 0.94 for the smallest sample size and p = 5, showing very desirable power 

properties. There is no notable di˙erence when sampling from loss di˙erentials associated 

with the 2-year or 5-year bonds. 
16We also ran the simulation using U as state variable, yielding similar conclusions, yet somewhat 

stronger power. 
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4. State-dependencies in bond return predictability 

This section discovers novel evidence on predictable state-dependencies in bond excess 

return predictability. We frst compute standard out-of-sample forecasts using a rolling 

window and then conduct full sample tests for equal (un)conditional predictive ability 

among a standard set of bond predictors using state variables capturing economic activity 

and uncertainty. Last, we document substantial gains in forecast accuracy from using 

a simple dynamic decision rule that exploits predictable di˙erences in relative forecast 

performance. 

4.1. Out-of-sample predictability 

We begin our empirical analysis by gauging the unconditional predictive ability of our 

predictors individually using a rolling window estimation scheme in which predictors and 

parameters are estimated recursively using information available at time t only. We use 

the period January 1962 to December 1989 as our initial estimation period, the period 

from January 1990 to December 1999 as initial our testing period, and the period from 

January 2000 to December 2018 as our evaluation period. We focus on U.S. Treasury 

bonds with k = {24, 36, 48, 60} months to maturity and consider models based on the 

predictor variables outlined in Section 2.2.17 To evaluate the out-of-sample performance of 

the predictive methods relative to the constant expected return benchmark implied by the 

EH, we compute the out-of-sample R2 statistic proposed in Fama and French (1989) and 

Campbell and Thompson (2008) 

�2PN 
� (k) (k)
rx rx t=R+1 t − c t,iR2 

OS,i,k = 1 − � �2 , (23)PN (k) (k)
rx − c t=R+1 t rxt,EH 

(k) (k)where c and c t+1,EH denote the forecast from the ith predictor model and the rxt+1,i rx 

EH benchmark, respectively, R = m + T1 denotes the end of the testing period, and N 

denotes the total number of observations. The R2 statistic in (23) is thus equivalent to OS 

17Our choice of k is motivated by previous research that similar focuses on these maturities, e.g. Fama 
and Bliss (1987), Cochrane and Piazzesi (2005), Ludvigson and Ng (2009), and Gargano et al. (2019). 
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(k)
MSPEione minus the ratio of mean squared prediction errors, i.e. R2 = 1 − . AnOS,i,k (k)
MSP EEH 

R2 
OS > 0 implies that the MSPE of the ith predictor model is lower than that of the EH 

benchmark model, indicating higher predictive accuracy. We interpret the EH model as � � 
a no-predictability benchmark and test the null of no predictability ROS 

2 � 0 against � � 
the one-sided alternative of predictability by the ith predictor model R2 using the OS > 0 

Diebold and Mariano (1995) (DM) test for equal predictive ability.18 

[Insert Table 4 About Here] 

Table 4 reports R2 values and DM p-values for our predictor models across theOS 

maturity spectrum. The key observation from this table is that no individual model is 

able to convincingly outperform the EH benchmark unconditionally for all maturities. 

Most models deliver negative R2 values and those that are positive are far from being OS 

signifcant at any of the conventional levels.19 These results are in line with Gargano et al. 

(2019), who similarly fnd few positive R2 values for linear predictive models. Like us,OS 

they fnd forward spreads to consistently be among the best predictor of monthly bond 

excess returns for short maturities and LN the best for longer maturities. However, we 

fnd poorer performance for CP using rolling window regressions, indicating that bond 

return predictability is sensitive to the forecasting setup.20 Last, we consider a simple 

equal-weighted forecast combination scheme (Bates and Granger, 1969, Timmermann, 

2006, Rapach et al., 2010). We denote this combined forecast by EW. The combined 

forecast generates positive R2 values from 6.08% for the two-year bond to 4.58% for the OS 

fve-year bond. These values are all signifcant according to the DM p-value at the fve 

percent level. That is, although no individual predictor is able to consistently outperform 

the EH, a simple equal-weighted average of the individual forecasts is. 

[Insert Figure 4 About Here] 
18Note that this is the unconditional version of the test statistic in Giacomini and White (2006) which 

is nested within our framework for p = 1. 
19We provide in-sample predictive regression results in the Internet Appendix, where we show that our 

set of predictors are reliably related to bond risk premia when using the full range of available information. 
20In unreported results, we indeed fnd that most of your R2 values improve when considering OS 

a forecasting environment with an expanding window instead. However, the qualitative results and 
conclusions are very similar. 
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Figure 4 plots the cumulative di˙erence in squared prediction errors (CDSPE) between 

the EH and the ith predictor model 

t � �2 t � �2X X(k) (k) (k) (k)CDSPE(k) = rx − c − rx − c , (24)rx rx t,i l l,EH l l,i 
l=R+1 l=R+1 

(k) (k)where R + 1 denotes the time of the frst forecast and c and c denote the rxt+1,i rxt+1,EH 

forecast from the ith predictor model and the EH benchmark, respectively. This graphical 

device is suggested by Goyal and Welch (2008) as a way to assess relative performance 

over time (and is thus indirectly a visual inspection of state-dependencies). Figure 4 plots 

the CDSPEs against economic activity and uncertainty states identifed using PMI and 

U, respectively, to assess the relation between relative forecasting performance and our 

state variables. The plots supports the use of conditioning variables that tracks salient 

features of the business cycle and that these are related to relative predictive abilities. For 

instance, CS and FB derive a sizable portion of their overall positive performance from 

high (low) economic activity (uncertainty) period. This is consistent with Andreasen et al. 

(2018). Moreover, CS and FB appears to provide valuable information over the 2008 to 

2018 periods, which is consistent with the stronger relationship between the slope of the 

yield curve and future excess bond returns documented in Andreasen et al. (2019). PC and 

CP are consistently poor, and especially so in low (high) economic activity (uncertainty) 

periods, whereas LN initially performs well, but particularly poorly at the end of the latest 

fnancial crisis. Consistent with the positive R2 values in Table 4, the equal-weighted OS 

forecast combination (EW) performs well over the entire evaluation period. 

4.2. Testing for equal conditional predictive ability 

The previous section establishes that linear predictive methods are unable to reliably beat 

the EH on average. However, this does not exclude the possibility that some methods 

provide signifcantly better forecast in certain states of the world. To investigate this 

hypothesis more formally, we consider our multivariate test for equal conditional predictive 

ability introduced in Section 3. A rejection of the null of equal conditional predictive ability 

implies that some methods are better than others and that relative forecasting performance 
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is predictable by the state variable(s). If conditional forecast performance is predictable, 

then it may be possible to exploit this information to generate more informative forecasts. 

A natural way to do so, which we explore in more detail below, is to combine across 

forecasts methods with indistinguishable conditional predictive ability. Throughout the 

empirical analysis, we consider three specifcations for the state regression. First, we 

consider the information in PMI to examine if predictive ability is related to economic 

activity and specify the state function as ht = (1, PMIt)0 . Second, we specify ht = (1, Ut)0 

to study the e˙ect of macroeconomic uncertainty. Last, we also consider an unconditional 

version of the multivariate test in which we set ht = 1 for all t. We denote this by NONE. 

[Insert Table 5 About Here] 

Table 5 reports test statistics and corresponding p-values for our multivariate test 

for equal (un)conditional predictive ability over the evaluation period using the three 

specifcations for the state regression discussed above using: PMI, U, and NONE. The 

implementation is based on a sample covariance matrix as dictated by theory (see Section 3 

and the Internet Appendix).21 We fnd strong rejections of the null hypothesis of equal 

conditional predictive ability for both specifcations of ht that uses conditioning information 

representing salient features of the business cycle across all maturities, indicating that there 

is substantial evidence favoring state-dependencies in bond excess return predictability. 

The unconditional test, on the other hand, fails to reject equal predictive abilities across all 

models and maturities. In other words, our choice of state variables enables the detection 

of conditional di˙erences. 

4.3. Full out-of-sample period ranking and elimination 

Having established that bond return predictability is state-dependent and related to state 

variables tracking economic activity and uncertainty, we now turn to a more detailed 

analysis of this link. We frst study the ranking and elimination of models over the full 
21We note that NONE should, in theory, by evaluated using a HAC estimator, but we use a sample 

estimator here to ease comparison. However, results are both qualitative and quantitatively similar when 
employing a Newey and West (1987) estimator with a bandwidth of 12 lags. 
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out-of-sample period and, subsequently in Section 4.4, how to use the information in a 

real-time forecasting exercise. 

[Insert Figure 5 About Here] 

Our state variables, PMI and U, are continuous variables. To facilitate interpretation 

and later empirical analyses, we therefore classify our sample into low, normal, and high 

economic activity (uncertainty) periods using the 20% and 80% quantiles of the time series 

for PMI (U), similarly to Rapach et al. (2010). Figure 5 illustrates the full out-of-sample 

elimination order of the predictive models when conditioning on the low, normal, and high 

PMI and U states, respectively, using a 10% signifcance level. Specifcally, whenever we 

reject the null of equal predictive ability, we use the ranking rule discussed in Section 3, 

which determines the order of elimination and the best set of models within each state. The 

patterns that emerge are striking. First, the EH is always excluded in the high economic 

activity state across the entire maturity spectrum. If we interpret EH as a no-predictability 

benchmark, this implies that bond risk premia are predictable when economic activity is 

high. Conversely, the EH is always included in the best set of models in the low economic 

activity state, suggesting that bond risk premia are unpredictable when the economy is 

doing poorly. This is consistent with the in-sample result in Andreasen et al. (2018) which 

focus on yield curve slope risk only. LN, PC, FB, and CS are instead (mostly) included 

in (excluded from) the best set of methods in periods with high (low) economic activity. 

Using U as our state variable produces similar results. The EH is always included in 

(excluded from) the best set of methods in high (low) uncertainty states. Last, the EH 

is usually included in the best of methods in normal times, where LN, CP, and PC are 

usually excluded. 

Overall, we argue that our empirical results are consistent with, and clearly points 

to, state-dependencies in bond excess return predictability linked to economic activity 

and uncertainty. Bond excess returns are predictable in states with high (low) economic 

activity (uncertainty), whereas the EH serves as a reliable anchor in the remaining states 

of the world. 
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4.4. Dynamic forecast combination 

Bond excess return predictability displays state-dependencies over the full out-of-sample 

period. As a natural next step, we investigate if they can be exploited to improve out-

of-sample forecasts in real-time. As detailed in Section 3.6.2, we consider a dynamic 

rule that enables the identifcation at each point time of the best set of methods with 

indistinguishable conditional predictive ability. If the set consists of a single method, then 

we rely on the forecasts for that method. If the set consists of two or more models, we 

perform forecast combination within the set using equal weights. Forecast combination 

has since the seminal work of Bates and Granger (1969) been viewed as an elegant way 

to improve forecast accuracy and combinations of individual forecasts often deliver more 

accurate forecasts than using the single best model (Timmermann, 2006). However, as 

pointed out in Aiolf et al. (2011), little focus has been put on determining the optimal 

set of models to combine given a potential pool of predictors. We view our procedure 

as a way to do exactly that. It identifes the best set of forecasting methods whose 

conditional predictive ability is indistinguishable.22 We denote this set by Mt 
� and note 

that its composition may vary over time and is identical to the standard equal-weighted 

combination forecasts when all models exhibit equal conditional predictability, whereas it 

collapses to dynamic method selection if the set is a singleton. For cases in between, we 

simply average across the selected forecasting methods in Mt 
�. 

Panel B of Table 4 presents the results for our dynamic forecast combination scheme 

using PMI and U, respectively, as conditioning variables and using NONE as the uncondi-

tional alternative. This unconditional alternative is related to Samuels and Sekkel (2017) 

who suggest trimming a given set of models using a recursive implementation of the MCS. 

Our conditional alternative achieves trimming using a conditional MCS idea with the 

elimination based on the predictability of bond excess return predictability. One can view 

this as a dynamic extension of the trimming strategy considered in, among others, Rapach 

et al. (2010). Strikingly, this strategy delivers positive R2 values relative to the EH across OS 

22Recent alternative suggestions include determining the optimal set based on past performance (Aiolf 
and Timmermann, 2006), the model confdence set (Samuels and Sekkel, 2017), and lasso-based procedures 
(Diebold and Shin, 2018). 
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all conditioning variables and bond maturities. R2 values are economically large with OS 

values between 5.11% and 7.98% for PMI and between 4.98% and 9.86% for U. Moreover, 

these values generally exceed even those of the EW strategy with some margin. All (most) 

are signifcant relative to the EH (EW) at conventional levels when using either PMI or U, 

whereas NONE does not deliver signifcant improvements against the EW. 

[Insert Figure 6 About Here] 

Figure 6 plots the CDSPE for our two dynamic forecast combination strategies and 

the unconditional alternative NONE relative to the EH. Overall, we fnd that relative 

forecasting gains are mostly uniformly distributed across the out-of-sample evaluation 

period and that no particular event or period drive the positive results, although we 

do observe a particularly forceful increase during the latest recession relative to the EH 

benchmark for the fve-year bond using PMI as the state variable. 

[Insert Figure 7 About Here] 

Figure 7 plots the CDSPE for our two dynamic forecast combination strategies and 

NONE relative to EW. As above, we fnd that that our dynamic forecast combination strat-

egy always performs on par or better than EW. This is also refected in Panel C of Table 4 

in which we observe positive R2 values that are of economically meaningful magnitudes OS 

and most are signifcant at conventional signifcance levels. These relative forecasting 

gains are concentrated in periods with low (high) economic activity (uncertainty). That 

is, our dynamic forecast combination scheme delivers improvements in forecast accuracy 

in periods of turmoil, exactly when investors and forecasters arguably needs it the most. 

Moreover, we see that trimming the set of candidate methods prior to combination using a 

dynamic rule rooted in our multivariate test for equal conditional predictive ability delivers 

sizable improvements. 

In sum, our results establish that bond return predictability display predictable and 

exploitable state-dependencies in an out-of-sample forecasting exercise. Our results are 

further supportive of the notion that bond return predictability itself is linked to variables 

capturing economic activity and uncertainty. 
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5. Understanding the sources of conditional predictability 

This section studies the underlying sources of conditional predictability and the sizable 

improvements in predictive accuracy established above. We address this in several steps. 

First, we compute inclusion frequencies for each forecasting method and conditioning 

variable using the low, normal, and economic activity and uncertainty regimes, respectively, 

identifed earlier. We then study how the individual methods perform in each state and 

relate it to the overall performance. Third, we inspect the methods selected by the decision 

rule over time. 

5.1. Inclusion frequencies 

We compute inclusion frequencies for each forecasting method and state variable using the 

low, normal, and high states for economic activity (PMI) and uncertainty (U), respectively, 

defned in Section 4.2. Within each state sa, we then defne the inclusion frequency of the 

ith forecasting method as the fraction of months the model is included in the best set 

relative to the total number of months in state a. 

[Insert Table 6 About Here] 

Table 6 reports the inclusion frequencies for bond return predictor models when 

conditioning on PMI and U, respectively. These inclusion frequency largely mirror the 

image from the full sample elimination order in Figure 5. The EH is almost always included 

in the low activity state, whereas the inclusion frequencies are low for the high activity 

state. That is, bond excess returns are predictable in high economic activity states, but 

less so in other states. The EH, conversely, provides a reliable anchor in periods with 

low and normal economic activity. A similar conclusion is reached when conditioning on 

macroeconomic uncertainty. EH is almost always included in the high uncertainty state, 

but rarely in the low uncertainty state. PC, CP, and LN, on the other hand, is mostly 

included in high (low) economic activity (uncertainty) states. 
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5.2. State-dependent predictability 

The inclusion frequencies are indicative of when certain models are predicted to do well. 

In this section, we ask whether the inclusion frequencies align with relative performance. 

That is, we ask whether the procedure correctly identifes methods with good and bad 

relative performance. 

[Insert Table 7 About Here] 

Table 7 reports state-specifc R2 values for the individual predictors relative to the OS 

EH. The results are supportive of the procedure correctly identifying methods that do 

well. We fnd that individual predictors are generally performing poorly (R2 
OS < 0) in low 

(high) economic activity (uncertainty) states and well (R2 
OS > 0) in high (low) economic 

activity (uncertainty) states. This is consistent with the inclusion frequencies of the 

EH. Specifcally, the procedure appears to correctly anticipate periods in which the EH 

provides a reasonable anchor for expected bond excess returns and period in which bond 

risk premia are predictable. Moreover, there is also a close mapping between the inclusion 

frequencies and the magnitudes of the R2 values, where models are more likely to be OS 

included (excluded) in a given state the higher (lower) its R2 That is, the gains in OS. 

predictive accuracy are coming from the rule’s ability to correctly predict predictability. 

5.3. Decision rule and model selection 

Figure 8 illustrates the models selected for the best set of models using the decision rule 

over time using PMI and U as conditioning variables, respectively. Green (yellow) shaded 

aras indicate high (low) states identifed using the 20% and 80% quantiles of the series. A 

“+” indicates inclusion. 

[Insert Figure 8 About Here] 

[Insert Figure 9 About Here] 

Figures 9 illustrates the size of the set of best models selected over time using the 

decision rule using PMI and UNC as conditioning variables, respectively. We note that 
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the best set of models varies considerably over time and includes situations in which the 

set include all models, leading to forecasts equal to EW, and situations with a singleton. 

That is, at times there is no need for trimming of the full set of models and at other 

times we should only use the forecasts from a single model. Importantly, this tells us that 

dynamically trimming leads to improvements over a simple, static trimming rule. 

6. Links to the real economy 

In this section, we examine the link between our out-of-sample bond risk premia fore-

casts and the real economy. Standard fnance theory implies that investors demand a 

compensation for risks associated with recessions (or macroeconomic activity in general) 

due to heightened risk aversion, see, among many, Fama and French (1989), Campbell 

and Cochrane (1999), Wachter (2006), Cochrane (2017), and Bekaert et al. (2019). That 

is, bond risk premia ought to be countercyclical and spike in recessions (Ludvigson and 

Ng, 2009, Joslin et al., 2015, Andreasen et al., 2018). 

[Insert Table 8 About Here] 

We employ PMI as our measure of economic activity (Berge and Jordà, 2011) and report 

in Table 8 the contemporaneous correlation among PMI and the risk premia estimates from 

the set of individual models, EW, and the dynamic forecast combinations generated by 

PMI, U, and NONE. The results o˙er two main insights. First, yield-based variables such 

as CP, FB, PC, and CP all deliver risk premia estimates that are signifcantly positively 

correlated with real economic activity. That is, these models imply procyclical risk premia, 

which sharply contrasts canonical theory. LN, on the other hand, obtains a signifcant 

negative correlation of about -38% across the maturity spectrum, which is consistent with 

countercyclical risk premia. Interestingly, the EW combination strategy produces risk 

premia estimates with almost identically zero correlation with the real economy. That 

is, even though the EW combination produces signifcantly more accurate forecasts, cf. 

Table 4, they are acyclical and unrelated to the state of the economy. The acyclicality 

is likely to be caused by the, apparently too crude, equal-weighting across counter and 
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procyclical forecasts. Our dynamic combination strategy that selects individual methods 

for subsequent combination, based on information in the state variables, produces markedly 

negative and statistically signifcant correlations with the real economy. As such, our 

conditional view and associated trimming rule provides both economically meaningful risk 

premia estimates, through marked countercyclicality, and much stronger predictability.23 

[Insert Figure 10 About Here] 

Supporting this, Figure 10 depicts our dynamic combination forecast using PMI and U 

as state variables, along with NBER-dated recessions. We see a clear tendency for the risk 

premia estimates to increase during recessionary periods and decline during expansionary 

periods, resembling a countercyclicality in business cycles. These fndings altogether 

demonstrate the importance of appropriately selecting among plausible models, as done in 

the present paper. 

7. Economic value 

This section measures the economic value of the strong predictive improvements established 

above for our dynamic forecast combination strategy. Specifcally, we consider the asset 

allocation decision of an investor with mean-variance preferences and relative risk aversion � �(k) (k)that chooses the weight !t to invest in a k-period bond and the weight 1 − !t to 

invest in a one-period safe bond (Marquering and Verbeek, 2004).24 The resulting portfolio 

return is then 
(k) (1) (k) (k)
rp,t+1 = yt + !t rxt+1, (25) 

23Other types of business cycle indicators can naturally be entertained. We report in the Internet 
Appendix contemporaneous correlations among generated forecasts and each of the macroeconomic 
uncertainty (U), recession probabilities of Chauvet and Piger (2008), the Chicago Fed National Activity 
Index (CFNAI), and logarithmic growth rates to industrial production growth. It stands out that our 
dynamic forecasting combination technique leads to much stronger countercyclical bond risk premia than 
all yield-based variables and EW. 

24Assuming that investors have mean-variance preferences in asset allocation exercises has a long 
tradition in predictability studies and similar approaches can be found in, among many, Campbell and 
Thompson (2008), Goyal and Welch (2008), Wachter and Warusawitharana (2009), Thornton and Valente 
(2012), Sarno et al. (2016), Eriksen (2017), Ghysels et al. (2018), and Gargano et al. (2019). 
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(k)where rxt+1 denotes monthly bond excess returns for a Treasury bond with k periods until 
(k)maturity. We assume that the investor has a utility function, U(rp,t+1), of the form 

h i h i(k) (k) 1 (k)
U(rp,t+1) = Et rp,t+1 − Vart rp,t+1 , (26)2 

where denotes the Pratt-Arrow measure of relative risk aversion. Solving the maximiza-

tion problem yields the optimal portfolio weights 

h i(k)
rx (k) 1 Et t+1 

!t = h (k) 
i , (27)

Vart rxt+1 

h i h i(k) (k)where Et rxt+1 is estimated using the ith predictive method and Vart rxt+1 is computed 

using a rolling window of past bond excess return realizations.25 We winzorize weights 

according to reasonable leverage and shorting constraints, similarly to Thornton and 

Valente (2012) and Gargano et al. (2019), such that !t 
(k) 2 [−1, 2] for all maturities. 

Using the sequence of portfolio weights, we can compute the average utility, or certainty 

equivalent return (CER), for each forecast method using (26). We similarly compute the 

CER for the EH benchmark prediction in lieu of the predictive models. The CER gain 

is then the di˙erence between the CER for the predictive models and the CER for the 

EH benchmark. We annualize the CER gain so that it can be interpreted as the annual 

portfolio management fee that an investor would be willing to pay to have access to the 

information in the predictive forecast relative to the EH benchmark.26 In this way, we 

measure directly the economic value of bond excess return predictability. 

7.1. Certainty equivalent returns 

Table 9 reports annualized CER gains for all individual bond predictors (for comparison) 

relative to the EH in Panel A and for our dynamic forecast combination strategy relative 

to the EH and the equal-weighted combination strategy in Panels B and C, respectively. 

In our main results, we set = 10 as in Eriksen (2017), but show in the Internet Appendix 
25We always use the same variance estimated over the same period as the forecasts for all models so 

that the optimal portfolio weights only di˙er because of di˙erences in the excess bond return forecast. 
26Trading costs are generally small in U.S. Treasury bond markets (Adrian, Fleming, and Vogt, 2017). 
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that our results are almost identical for lower values of relative risk aversion, e.g. = 5. 

In order to evaluate the statistical signifcance of the CER gains, we follow Eriksen (2017) 

and Gargano et al. (2019) and conduct a conventional t-test on the mean of the time series 

of realized utility di˙erences, evaluated using a Newey and West (1987) estimator for the 

standard errors. 

[Insert Table 9 About Here] 

Overall, we fnd little evidence of individual predictive models reliably generating 

economic value. The exception is LN that generally do remarkably well utility-wise, 

something that starkly contrast the statistical results. CS and FB do poorly for the two-

and three-year maturities, but obtains positive CER gains for the four- and fve-year 

maturities, albeit not signifcantly so. PC and CP are overall unable to deliver any 

economic value to an investor above that provided by the EH benchmark. LN, on the 

other hand, delivers positive and signifcant CER gains across the full maturity spectrum. 

Overall, we fnd little evidence that predictable deviations from the EH can be exploited 

to generate economic value on average when considering individual methods. EW, on the 

other hand, obtains positive CER gains for all maturities, indicating that combination 

forecasts may improve the economic value. 

Panel B considers the CER gains for our dynamic forecast combination scheme for 

PMI, U, and NONE. Consistent with our statistical results, we obtain positive CER gains 

in almost all instances and many are reliably di˙erent from zero. The PMI-based dynamic 

forecast scheme delivers positive CER gains between 0.39 and 1.43, which are signifcantly 

di˙erent from zero at the ten percent level for all maturities. The U-based dynamic forecast 

scheme similarly delivers positive values that are signifcant for the longer maturity bonds. 

NONE is mostly delivering less economic value than PMI and U. As such, the overall 

message is clearly supportive of the notion that taking state-dependencies in bond return 

predictability into account leads to substantial improvements in forecasting accuracy and 

that these improvement translates into better investment performance for a mean-variance 

investor that trades in the U.S. Treasury bond market. 

Panel C mirrors this conclusion by documenting positive CER gains for the dynamic 
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forecast combination strategies relative to EW. All PMI-based CER gains are statistically 

signifcant at the ten percent level and the U-based CER gains are signifcant for the three-

and four-year bonds. We argue that this strongly supports the idea that dynamically trim-

ming the set of models prior to averaging can substantially improve forecast performance 

and the resulting economic value. That is, eliminating forecasting methods predicting to 

perform poorly and only maintaining methods with indistinguishable conditional predictive 

ability delivers both statistical as well as economic value. 

[Insert Figure 11 About Here] 

[Insert Figure 12 About Here] 

Figures 11 and 12 plots the cumulative realized utilities for our dynamic forecast 

combination strategies relative to the EH and the EW, respectively. Overall, we note that 

utility gains are enjoyed uniformly over the out-of-sample period relative to the EH. This 

is remarkable as our approach is not designed to capture utility, but predictability. 

7.2. State-dependent utility 

Analogous to Section 5.2, we report in Table 10 the state-dependent CER gains for the 

individual predictors relative to the EH. 

[Insert Table 10 About Here] 

We fnd that individual predictors are generally delivering negative CER gains in 

low (high) economic activity (uncertainty) states and positive CER gains in high (low) 

economic activity (uncertainty) states. This is fully consistent with the results from the 

statistical evaluation and suggest that PMI and U predict not only statistical performance, 

but economic value as well. The only di˙erence is LN, which generally delivers positive 

CER gains across all states and maturities. That is, although it looks poor overall from a 

statistical point of view, it is superior from an economic point of view. 
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8. Concluding remarks 

We study predictable state-dependencies in bond return predictability and provide empirical 

evidence consistent with bond return predictability being state-dependent and closely 

related to economic activity and macroeconomic uncertainty. We show that bond risk 

premia are predictable in times of high (low) economic activity (uncertainty) states 

identifed using the the Purchasing Managers’ Index (PMI) and the uncertainty index 

proposed in Jurado et al. (2015), whereas the EH implication of constant risk premia (no-

predictability) provides a reasonable anchor in low (high) economic activity (uncertainty) 

states. A dynamic forecast combination strategy that averages across forecasting methods 

predicted to do well delivers forecasts that are substantially more informative than a 

simple, static equal-weighted forecast combination scheme. This holds both across standard 

statistical evaluation metrics and when considering the economic value to a mean-variance 

investor that trades in the U.S. Treasury bond market. We provide evidence that the 

improved forecast performance originates from the state variables ability to correctly 

predict periods in which individual predictors are likely to perform well. 

To facilitate our empirical analysis, and to explicitly take into account the fact that 

we have more than two forecasting methods to distinguish between, we develop a new 

multivariate statistical test for equal conditional and unconditional predictive ability. 

The test is a multivariate generalization of the test presented in Giacomini and White 

(2006) and therefore inherits the main properties of their test. Most importantly for our 

application, it allows for a mixture of nested and non-nested models. Our dynamic forecast 

combination strategy is rooted in this test and delivers a simple and intuitive way to trim 

the pool of candidate forecasting methods prior to averaging. 

We end by emphasizing that our multivariate test of conditional predictive ability is 

not confned to studies of the Treasury bond market, but may fnd many and diverse 

applications across the felds of economics and fnance. For instance, it would be natural 

to study the conditional predictive ability of, say, the Goyal and Welch (2008) set of 

predictors in a multivariate setting as a complement to the large literature on their 
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unconditional performance. Indeed, recent studies suggest that state-dependencies are 

present in stock return predictability Henkel et al. (2011), Dangl and Halling (2012), 

Farmer et al. (2019). Similarly, the approach is likely to be useful in evaluating infation 

predictability and identifying periods in which variables such as unemployment rates 

provides useful information. Finally, we also envision its use in comparing professional 

forecasters and, in particular, to determine if some forecasters are better than others 

conditional on being in a certain state. We leave these considerations for future research. 

41 



References 

Adrian, T., M. Fleming, and E. Vogt (2017). An index of Treasury market liquidity: 

1991-2017. Federal Reserve Bank of New York Sta˙ Reports, no. 827. 

Aiolf, M., C. Capistrán, and A. Timmermann (2011). Forecast combination. In M. P. 

Clements and D. F. Hendry (Eds.), Oxford Handbook of Economic Forecasting, Chap-

ter 12, pp. 355–388. Oxford University Press. 

Aiolf, M. and C. A. Favero (2005). Model uncertainty, thick modelling and the predictabil-

ity of stock returns. Journal of Forecasting 24 (4), 233–254. 

Aiolf, M. and A. Timmermann (2006). Persistence in forecasting performance and 

conditional combination strategies. Journal of Econometrics 135 (1-2), 31–53. 

Andreasen, M. M. (2019). Explaining bond return predictability in an estimated New 

Keynesian model. Working paper, Aarhus University. 

Andreasen, M. M., T. Engsted, S. V. Møller, and M. Sander (2018). The yield spread 

and bond return predictability in expansion and recessions. Working paper, Aarhus 

University. 

Andreasen, M. M., K. Jørgensen, and A. Meldrum (2019). Bond risk premiums at the 

zero lower bound. Working paper, Aarhus University. 

Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance 

matrix estimation. Econometrica 59 (3), 817–858. 

Bali, T. G., S. J. Brown, and Y. Tang (2017). Is economic uncertainty priced in the 

cross-section of stock returns? Journal of Financial Economics 126, 471–489. 

Bates, J. M. and C. W. J. Granger (1969). The combination of forecasts. Operational 

Research Quarterly 20 (4), 451–468. 

Bauer, M. D. and J. D. Hamilton (2018). Robust bond risk premia. Review of Financial 

Studies 31 (2), 399–448. 

42 



Bekaert, G., E. C. Engstrom, and N. R. Xu (2019). The time variation in risk appetite 

and uncertainty. Working paper, Columbia University. 

Berardi, A., M. Markovich, A. Plazzi, and A. Tamoni (2019). Mind the (covergence) gap: 

Bond predictability strikes back! Working paper. 

Berge, T. J. and Ò. Jordà (2011). Evaluating the classifcation of economic activity into 

recessions and expansion. American Economic Journal: Macroeconomics 3, 246–277. 

Bianchi, D., M. Büchner, and A. Tamoni (2019). Bond risk premia with machine learning. 

Working paper, Warwick Business School. 

Bjørnland, H. C., K. Gerdrup, A. S. Jore, C. Smith, and L. A. Thorsrud (2012). Does 

forecast combination improve Norges bank infation forecasts? Oxford Bulletin of 

Economics and Statistics 74 (2), 163–179. 

Bloom, N. (2009). The impact of uncertainty shocks. Econometrica 77 (3), 623–685. 

Borup, D. and E. C. M. Schütte (2019). Asset pricing with data revisions. Working paper. 

Borup, D. and M. Thyrsgaard (2017). Statistical tests for equal predictive ability across 

multiple forecasting methods. Working paper, Aarhus University. 

Campbell, J. Y. and J. H. Cochrane (1999). By force of habit: A consumption-based 

explanation of aggregate stock market behavior. Journal of political Economy 107 (2), 

205–251. 

Campbell, J. Y. and R. J. Shiller (1991). Yield spreads and interest rate movements: A 

bird’s eye view. Review of Economic Studies 58 (3), 495–514. 

Campbell, J. Y. and S. B. Thompson (2008). Predicting excess stock returns out of 

sample: Can anything beat the historical average? Review of Financial Studies 21 (4), 

1509–1531. 

Chauvet, M. and J. Piger (2008). A comparison of the real-time performance of business 

cycle dating methods. Journal of Business & Economic Statistics 26 (1), 42–49. 

43 



Christiansen, C., J. N. Eriksen, and S. V. Møller (2014). Forecasting US recessions: The 

role of sentiment. Journal of Banking and Finance 49, 459–468. 

Cieslak, A. and P. Povala (2015). Expected returns in treasury bonds. Review of Financial 

Studies 28 (10), 2859–2901. 

Clark, T. E. and M. McCracken (2013). Advances in forecast evaluation. In Handbook of 

Economic Forecasting Volume 2, Elsevier B.V., 1107–1201. 

Clark, T. E. and M. W. McCracken (2001). Tests of equal forecat accuracy and encom-

passing for nested models. Journal of Econometrics 105 (1), 85–110. 

Clark, T. E. and M. W. McCracken (2012). Reality checks and comparison of nested 

predictive models. Journal of Business & Economic Statistics 30 (1), 53–66. 

Cochrane, J. H. (2017). Macro-fnance. Review of Finance 21 (3), 945–985. 

Cochrane, J. H. and M. Piazzesi (2005). Bond risk premia. American Economic Re-

view 95 (1), 138–160. 

Cooper, I. and R. Priestley (2009). Time-varying risk premiums and the output gap. 

Review of Financial Studies 22 (7), 2801–2833. 

Dangl, T. and M. Halling (2012). Predictive regressions with time-varying coeÿcients. 

Journal of Financial Economics 106, 157–181. 

Della Corte, P., L. Sarno, and D. L. Thornton (2008). The expectations hypothesis of the 

term structure of very short-term rates: Statistical tests and economic value. Journal 

of Financial Economics 89, 158–174. 

Diebold, F. X. and R. S. Mariano (1995). Comparing predictive accuracy. Journal of 

Business & Economic Statistics 13 (3), 134–144. 

Diebold, F. X. and P. Pauly (1987). Structural change and the combination of forecasts. 

Journal of Forecasting 6 (1), 21–40. 

44 



Diebold, F. X. and M. Shin (2018). Machine learning for regularized survey forecast 

combination: Partially-egalitarian lasso and its derivatives. International Journal of 

Forecasting, Forthcoming. 

Drechsler, I. (2013). Uncertainty, time-varying fear, and asset prices. Journal of Fi-

nance 68 (5), 1843–1889. 

Eriksen, J. N. (2017). Expected business conditions and bond risk premia. Journal of 

Financial and Quantitative Analysis 52 (4), 1667–1703. 

Fama, E. and K. R. French (1997). Industry cost of equity. Journal of Financial 

Economics 43 (2), 153–193. 

Fama, E. F. (1984). Forward and spot exchange rates. Journal of Monetary Economics 14, 

319–338. 

Fama, E. F. and R. R. Bliss (1987). The information in long-maturity forward rates. 

American Economic Review 77 (4), 680–692. 

Fama, E. F. and K. R. French (1989). Business conditions and expected returns on stocks 

and bonds. Journal of Financial Economics 25, 23–49. 

Farmer, L. E., L. Schmidt, and A. Timmermann (2019). Pockets of predictability. Working 

paper, University of Virginia. 

Gargano, A., D. Pettenuzzo, and A. Timmermann (2019). Bond return predictability: 

Economic value and links to the macroeconomy. Management Science 65 (2), 508–540. 

Genre, V., G. Kenny, A. Meyler, and A. Timmermann (2013). Combining expert forecasts: 

Can anything beat the simple average? International Journal of Forecasting 29, 108–121. 

Ghysels, E., C. Horan, and E. Moench (2018). Forecasting through the rearview mirror: 

Data revisions and bond return predictability. Review of Financial Studies 31 (2), 

678–714. 

45 



Giacomini, R. and B. Rossi (2009). Detecting and predicting forecast breakdowns. Review 

of Economic Studies 76 (2), 669–705. 

Giacomini, R. and B. Rossi (2010). Forecast comparisons in unstable environments. Journal 

of Applied Econometrics 25 (4), 595–620. 

Giacomini, R. and H. White (2006). Tests of conditional predictive ability. Economet-

rica 74 (6), 1545–1578. 

Gonçalves, S., M. W. McCracken, and B. Perron (2017). Tests of equal accuracy for nested 

models with estimated factors. Journal of Econometrics 198 (2), 231–252. 

Goyal, A. and I. Welch (2008). A comprehensive look at the empirical performance of 

equity premium prediction. Review of Financial Studies 21 (4), 1455–1508. 

Granger, C. W. J. and M. J. Machina (2006). Forecasting and decision theory. In Handbook 

of Economic Forecasting, Elsevier B.V. 1, 82–98. 

Granger, C. W. J. and R. Ramanathan (1984). Improved method of combining forecasts. 

Journal of Forecasting 3 (2), 197–204. 

Granziera, E., K. Hubrich, and H. R. Moon (2014). A predictability test for a small 

number of nested models. Journal of Econometrics 182 (1), 174–185. 

Granziera, E. and T. Sekhposyan (2019). Predicting relative forecasting performance: An 

empirical investigation. International Journal of Forecasting, In Press. 

Gürkaynak, R. S., B. Sack, and J. H. Wright (2007). The U.S. treasury yield curve: 1961 

to the present. Journal of Monetary Economics 54 (8), 2291–2304. 

Hansen, P. R., A. Lunde, and J. M. Nason (2011). The model confdence set. Economet-

rica 79 (2), 453–497. 

Henkel, S. J., J. S. Martin, and F. Nardari (2011). Time-varying short-horizon predictability. 

Journal of Financial Economics 99, 560–580. 

46 



Hubrich, K. and K. D. West (2010). Forecast evaluation of small nested model sets. 

Journal of Applied Econometrics 25, 574–594. 

Jose, V. R. R. and R. L. Winkler (2008). Simple robust averages of forecasts: Some 

empirical results. International Journal of Forecasting 24, 163–169. 

Joslin, S., M. Priebsch, and K. J. Singleton (2015). Risk premiums in dynamic term 

structure models with unspanned macro risk. Journal of Finance 69 (3), 1197–1233. 

Jurado, K., S. C. Ludvigson, and S. Ng (2015). Measuring uncertainty. American Economic 

Review 105 (3), 1177–1216. 

Keim, D. B. and R. F. Stambaugh (1986). Predicting returns in the stock and bond 

markets. Journal of Financial Economics 17, 357–390. 

Litterman, R. and J. Scheinkman (1991). Common factors a˙ecting bond returns. Journal 

of Fixed Income 1 (1), 54–61. 

Ludvigson, S. C., S. Ma, and S. Ng (2019). Uncertainty and business cycles: Exogenous 

impulse or endogenous response? Working paper, New York University. 

Ludvigson, S. C. and S. Ng (2009). Macro factors in bond risk premia. Review of Financial 

Studies 22 (12), 5027–5067. 

Makridakis, S. and R. L. Winkler (1983). Averages of forecasts: Some empirical results. 

Management Science 29 (9), 987–1112. 

Mariano, R. S. and D. Preve (2012). Statistical tests for multiple forecast comparison. 

Journal of Econometrics 169 (1), 123–130. 

Marquering, W. and M. Verbeek (2004). The economic value of predicting stock index 

returns and volatility. Journal of Financial and Quantitative Analysis 39 (2), 407–429. 

McCracken, M. W. (2007). Asymptotics for out of sample tests of Granger causality. 

Journal of Econometrics 140 (2), 719–752. 

47 



McCracken, M. W. and S. Ng (2016). FRED-MD: A monthly database for macroeconomic 

research. Journal of Business & Economic Statistics 34 (4), 574–589. 

Nelson, C. R. and A. F. Siegel (1987). Parsimonious modeling of yield curves. Journal of 

Business 60 (4), 473–489. 

Newey, W. K. and K. D. West (1987). A simple, positive semi-defnite, heteroskedasticity 

and autocorrelation consistent covariance matrix. Econometrica 55 (3), 703–708. 

Paye, B. S. and A. Timmermann (2006). Instability of return prediction models. Journal 

of Empirical Finance 13 (3), 274–315. 

Pesaran, M. H., D. Pettenuzzo, and A. Timmermann (2006). Forecasting time series 

subject to multiple structural breaks. Review of Economic Studies 73 (4), 1057–1084. 

Pettenuzzo, D. and A. Timmermann (2011). Predictability of stock returns and asset 

allocation under structural breaks. Journal of Econometrics 164, 60–78. 

Pettenuzzo, D. and A. Timmermann (2017). Forecasting macroeconomic variables under 

model instability. Journal of Business & Economic Statistics 35 (2), 183–201. 

Rapach, D. E., J. K. Strauss, and G. Zhou (2010). Out-of-sample equity premium 

prediction: Combination forecasts and links to the real economy. Review of Financial 

Studies 23 (2), 821–862. 

Rossi, B. (2013). Advances in forecasting under instability. In G. Elliott and A. Timmer-

mann (Eds.), Handbook of Economic Forecasting, Volume 2, Part B, Chapter 21, pp. 

1203–1324. Elsevier. 

Rossi, B. and T. Sekhposyan (2015). Macroeconomic uncertainty indices based on nowcast 

and forecast error distributions. American Economic Review 105 (5), 650–655. 

Samuels, J. D. and R. M. Sekkel (2017). Model confdence sets and forecast combination. 

International Journal of Forecasting 33, 48–60. 

48 



Sarno, L., P. Schneider, and C. Wagner (2016). The economic value of predicting bond 

risk premia. Journal of Empirical Finance 37, 247–267. 

Schrimpf, A. and Q. Wang (2010). A reappraisal of the leading indicator properties of 

the yield curve under structural instability. International Journal of Forecasting 26 (4), 

836–857. 

Stock, J. H. and M. W. Watson (2003). Forecasting output and infation: the role of asset 

prices. Journal of Economic Literature 41 (3), 788–829. 

Stock, J. H. and M. W. Watson (2004). Combination forecasts of output growth in a 

seven-country data set. Journal of Forecasting 23, 405–430. 

Svensson, L. E. O. (1994). Estimating and interpreting forward interest rates: Sweden 

1992-1994. NBER Working Paper No. 4871. 

Thornton, D. L. and G. Valente (2012). Out-of-sample predictions of bond excess re-

turns and forward rates: An asset allocation perspective. The Review of Financial 

Studies 25 (10), 3141–3168. 

Timmermann, A. (2006). Forecast combination. In G. Elliott, C. W. J. Granger, and 

A. Timmermann (Eds.), Handbook of Economic Forecasting, Volume 1, Chapter 4, pp. 

135–196. Elsevier. 

Timmermann, A. and Y. Zhu (2017). Monitoring forecast performance. Working paper, 

Rady School of Management. 

Wachter, J. A. (2006). A consumption-based model of the term structure of interest rates. 

Journal of Financial Economics 79 (2), 365–399. 

Wachter, J. A. and M. Warusawitharana (2009). Predictable returns and asset allocation: 

Should a skeptical investor time the market? Journal of Econometrics 148, 162–178. 

Wei, M. and J. H. Wright (2013). Reverse regressions and long-horizon forecasting. Journal 

of Applied Econometrics 28, 353–371. 

49 



West, K. D. (1996). Asymptotic inference about predictive ability. Econometrica 64 (5), 

1067–1084. 

West, K. D. (2006). Forecast evaluation. In Handbook of Economic Forecasting, Elsevier 

B.V. 1, 100–134. 

White, H. (1994). Estimation, inference and specifcation analysis. New York: Cambridge 

University Press. 

White, H. (2001). Asymptotic theory for econometricians. San Diego: Academic Press. 

Wooldridge, J. M. and H. White (1988). Some invaraince principles and central limit 

theorems for dependent heterogeneous processes. Econometric Theory 4 (2), 210–230. 

Zellner, A. (1986). On assessing prior distributions and bayesian regression analysis with 

g -prior distributions. Bayesian Inference and Decision Techniques: Essays in Honor of 

Bruno De Finetti 6, 233–43. 

50 



Table 1: Descriptive statistics 
This table presents descriptive statistics for monthly excess bond returns. Panel A reports 
mean, standard deviation, skewness, kurtosis, Sharpe ratios, and frst-order autocorrelation 
(AC(1)) of bond excess returns for two- to fve-year bond maturities. Bond returns are in 
excess of the implied yield on a one-month Treasury bill. Gross returns do not subtract 
the one-month implied Treasury bill yield. Monthly bond excess returns are constructed 
using end-of-month Treasury yield data from Gürkaynak et al. (2007). Panel B reports 
contemporaneous correlations between the excess bond return series. The sample period 
is January 1962 to December 2018. 

2-year bond 3-year bond 4-year bond 5-year bond 

Panel A: Descriptive statistics 

Mean 1.29 1.60 1.85 2.06 
Mean (Gross) 
Std. dev. 
Skewness 

5.73 
2.80 
0.57 

6.04 
3.92 
0.25 

6.29 
4.95 
0.08 

6.50 
5.93 
0.03 

Kurtosis 16.68 11.76 8.58 7.05 
Sharpe ratio. 
AR(1) 

0.46 
0.17 

0.41 
0.15 

0.37 
0.13 

0.35 
0.12 

Panel B: Correlations 

2-year bond 
3-year bond 
4-year bond 
5-year bond 

1.00 
0.99 
0.96 
0.93 

1.00 
0.99 
0.97 

1.00 
0.99 1.00 
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Table 3: Empirical size properties 
This table reports the rejection frequency (empirical size) of the multivariate test for equal 
predictive ability with a nominal size of 5%, data-generating process given by (22) with 
µ = 0, and 10,000 Monte Carlo replications. We implement an unconditional test that 
sets ht = 1 for all t and a conditional test that sets ht = (1, h̃ 

t)0, and use three samples 
sizes referred to as short (120 observations), medium (348 observations) and long (1,000 
observations). Panel A (B) reports results where " t+1 in (22) is sampled from the empirical 
loss di˙erentials when forecasting the 2-year (5-year) bond. The value of p indicates the 
dimension of the test arising from the number of comparing models less one. 

Unconditional test (ht = 1) Conditional test (ht = (1, h̃ 
t)0) 

Short Medium Long Short Medium Long 

Panel A: 2-year bond 

p = 1 5.22 5.08 4.84 5.48 4.82 5.08 
p = 2 4.65 4.99 5.09 4.85 5.27 4.98 
p = 3 4.82 5.34 4.88 5.33 5.38 5.17 
p = 4 4.91 5.12 5.03 4.84 5.27 5.14 
p = 5 5.22 4.61 4.76 4.62 5.10 5.29 

Panel B: 5-year bond 

p = 1 4.73 4.87 5.26 3.96 4.53 4.99 
p = 2 4.36 4.56 4.99 4.07 4.48 4.92 
p = 3 4.05 4.47 4.99 3.79 4.56 4.78 
p = 4 4.38 4.24 4.96 3.69 4.34 5.11 
p = 5 4.30 4.59 5.02 3.22 4.50 4.89 
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Table 4: Out-of-sample results 
This table reports out-of-sample R2 values for various linear predictive models for bond OS 

excess return. We consider fve di˙erent predictors: yield spreads (Campbell and Shiller, 
1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman 
and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the 
Ludvigson and Ng (2009) macroeconomic factor. For each model, we report the out-
of-sample R2 from Campbell and Thompson (2008) and the associated Diebold and 
Mariano (1995) p-value in parenthesis for the null of no predictability implied by the EH 
(Panels A and B) and a static forecast combination strategy (Panel C). PMI denotes the 
Purchasing Managers Index published by the Institute for Supply Management and U 
is the macroeconomic uncertainty index from Jurado et al. (2015). The out-of-sample 
evaluation period runs from January 2000 to December 2018. 

2-year 3-year 4-year 5-year 

Panel A: Individual bond predictors against EH 

CS -2.73 -0.53 0.67 1.38 

FB 
(0.70) 
-0.02 

(0.56) 
1.31 

(0.40) 
1.72 

(0.27) 
1.78 

PC 
(0.50) 
-9.86 

(0.29) 
-7.64 

(0.22) 
-5.91 

(0.23) 
-4.83 

CP 
(0.92) 
-6.63 

(0.93) 
-5.29 

(0.92) 
-4.27 

(0.90) 
-3.43 

LN 
(0.96) 
-7.61 

(0.96) 
-0.48 

(0.94) 
1.93 

(0.90) 
2.43 

EW 
(0.73) 
6.08 

(0.52) 
5.28 

(0.42) 
4.89 

(0.39) 
4.58 

(0.03) (0.02) (0.02) (0.02) 

Panel B: Dynamic forecast combination against EH 

PMI 7.98 5.64 5.11 6.16 

U 
(0.01) 
9.86 

(0.02) 
6.77 

(0.02) 
6.09 

(0.01) 
4.98 

NONE 
(0.01) 
6.66 

(0.00) 
5.31 

(0.00) 
5.25 

(0.01) 
4.81 

(0.02) (0.02) (0.01) (0.02) 

Panel C: Dynamic forecast combination against EW 

PMI 2.02 0.39 0.23 1.66 

U 
(0.01) 
4.02 

(0.24) 
1.58 

(0.33) 
1.26 

(0.06) 
0.42 

NONE 
(0.02) 
0.62 

(0.00) 
0.04 

(0.00) 
0.38 

(0.22) 
0.24 

(0.21) (0.47) (0.16) (0.32) 
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Table 5: Testing for equal (un)conditional predictive ability 
This table reports full sample multivariate test statistics for equal (un)conditional predictive 
ability using three di˙erent conditioning variables. PMI refers to the case of ht = (1, PMIt)0 
that is designed to capture business cycle fuctuations. U refers to the case of ht = (1, Ut)0 
that is chosen to study the e˙ect of macroeconomic uncertainty. NONE refers to an 
unconditional version of the tests in which ht = 1 for all t. PMI is the Purchasing 
Managers’ Index and UNC is the macroeconomic uncertainty index of Jurado et al. (2015). 
p-values are presented in parenthesis. The full sample test period runs from January 1990 
to December 2018. 

2-year bond 3-year bond 4-year bond 5-year bond 

PMI 31.36 34.65 29.76 26.73 

U 
(0.00) 
27.03 

(0.00) 
27.95 

(0.00) 
26.16 

(0.00) 
26.22 

NONE 
(0.00) 
8.07 

(0.00) 
5.68 

(0.00) 
5.10 

(0.00) 
5.77 

(0.15) (0.34) (0.40) (0.33) 
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Table 6: Inclusion frequencies across states 
This table reports the inclusion frequencies of the predictor models in three di˙erent states 
of the world identifed using the 20% and 80% quantiles of the Purchasing Managers’ 
Index (PMI). We consider fve di˙erent predictors: yield spreads (Campbell and Shiller, 
1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman 
and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the 
Ludvigson and Ng (2009) macroeconomic factor. EH denotes the benchmark expectations 
hypothesis model. The out-of-sample evaluation periods runs from January 2000 to 
December 2018. 

2-year 3-year 4-year 5-year 2-year 3-year 4-year 5-year 

Panel A: Low activity Panel D: Low uncertainty 

CS 1.00 1.00 1.00 1.00 0.25 0.64 0.64 0.57 
FB 0.94 1.00 0.88 0.76 0.25 0.64 0.64 0.57 
PC 0.45 0.36 0.42 0.42 1.00 1.00 0.93 1.00 
CP 0.88 0.91 1.00 1.00 0.25 0.57 0.54 0.46 
LN 0.73 0.67 0.70 0.64 0.96 1.00 1.00 1.00 
EH 0.97 1.00 1.00 1.00 0.18 0.50 0.57 0.46 

Panel B: Normal activity Panel E: Normal uncertainty 

CS 0.86 0.90 0.94 0.98 0.69 0.88 0.86 0.84 
FB 0.90 0.98 0.98 0.95 0.79 0.93 0.88 0.76 
PC 0.51 0.41 0.47 0.50 0.43 0.53 0.54 0.58 
CP 0.65 0.68 0.68 0.62 0.62 0.71 0.63 0.51 
LN 0.71 0.79 0.87 0.86 0.83 0.85 0.90 0.92 
EH 0.70 0.84 0.85 0.82 0.63 0.83 0.85 0.75 

Panel C: High activity Panel F: High uncertainty 

CS 0.58 0.75 0.85 0.93 0.95 1.00 1.00 0.98 
FB 0.65 0.80 0.88 0.83 0.95 1.00 0.98 0.95 
PC 0.83 0.74 0.78 0.88 0.49 0.51 0.44 0.28 
CP 0.53 0.53 0.45 0.08 0.95 1.00 0.98 0.98 
LN 1.00 1.00 1.00 0.95 0.72 0.98 0.95 1.00 
EH 0.33 0.45 0.45 0.48 1.00 1.00 1.00 0.98 
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Table 7: Out-of-sample R2 across states 
This table reports out-of-sample R2 values for various linear predictive models for bond OS 

excess return conditional on states identifed by the Purchasing Manager’s Index (PMI) 
and the the macroeconomic uncertainty index (U) proposed in Jurado et al. (2015). We 
consider fve di˙erent predictors: yield spreads (Campbell and Shiller, 1991), forward 
spreads (Fama and Bliss, 1987), principal components of yields (Litterman and Scheinkman, 
1991), the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson and Ng 
(2009) macroeconomic factor. For each model, we report the out-of-sample R2 from 
Campbell and Thompson (2008) relative to the expectations hypothesis. High (low) 
states are identifed using the 80% (20%) quantiles of the time series of PMI and U. The 
out-of-sample evaluation period runs from January 2000 to December 2018. 

2-year 3-year 4-year 5-year 2-year 3-year 4-year 5-year 

Panel A: Low activity Panel D: Low uncertainty 

CS -19.73 -10.56 -6.41 -3.85 14.33 9.87 7.79 6.40 
FB -13.17 -6.09 -3.43 -2.22 15.19 8.57 5.00 3.03 
PC -37.08 -26.84 -20.98 -17.02 24.53 16.39 12.09 10.05 
CP -13.30 -7.27 -3.54 -0.83 -83.09 -42.16 -23.01 -12.28 
LN -23.94 -15.44 -12.03 -11.24 14.05 10.04 7.52 5.73 

Panel B: Normal activity Panel E: Normal uncertainty 

CS 2.16 1.68 1.95 2.20 -2.64 -0.51 0.61 1.28 
FB 4.26 3.25 2.90 2.62 1.09 1.78 2.00 2.00 
PC -5.04 -5.29 -4.19 -3.26 -4.86 -4.46 -3.44 -2.74 
CP -6.09 -6.42 6.06 -5.61 -1.03 -2.14 -2.56 -2.90 
LN -2.58 3.8 5.78 6.25 -2.15 4.31 6.44 7.16 

Panel C: High activity Panel F: High uncertainty 

CS 6.86 5.32 5.38 5.78 -4.29 -2.03 -0.67 0.30 
FB 4.44 3.79 3.83 4.02 -2.82 -0.55 0.50 0.98 
PC 20.26 12.96 9.43 7.36 -19.49 -16.08 -13.96 -12.51 
CP 9.32 7.30 6.43 6.00 -7.19 -4.90 -3.26 -1.81 
LN -8.41 -2.57 0.26 2.18 -18.80 -11.59 -8.99 -8.73 
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Table 8: Correlations between forecasts and economic activity 
This table reports correlation coeÿcients between out-of-sample generated forecasts from 
individual bond predictors (Panel A) and the dynamic forecast strategy (Panel B) and 
economic activity as measured by the Purchasing Managers’ Index (PMI). We report 
p-values for the null of no correlation in parenthesis. The out-of-sample evaluation period 
runs from January 2000 to December 2018. 

2-year bond 3-year bond 4-year bond 5-year bond 

Panel A: Individual bond predictors 

CS 0.36 0.31 0.27 0.23 

FB 
(0.00) 
0.27 

(0.00) 
0.19 

(0.00) 
0.14 

(0.00) 
0.09 

PC 
(0.00) 
0.33 

(0.00) 
0.36 

(0.01) 
0.36 

(0.08) 
0.35 

CP 
(0.00) 
0.15 

(0.00) 
0.16 

(0.00) 
0.16 

(0.00) 
0.16 

LN 
(0.01) 
-0.38 

(0.00) 
-0.38 

(0.00) 
-0.38 

(0.00) 
-0.38 

EH 
(0.00) 
0.07 

(0.00) 
0.14 

(0.00) 
0.16 

(0.00) 
0.17 

EW 
(0.17) 
0.01 

(0.01) 
0.01 

(0.00) 
0.00 

(0.00) 
-0.01 

(0.88) (0.87) (0.98) (0.90) 

Panel B: Dynamic forecast combination 

PMI -0.39 -0.40 -0.39 -0.35 

U 
(0.00) 
-0.40 

(0.00) 
-0.36 

(0.00) 
-0.37 

(0.00) 
-0.39 

NONE 
(0.00) 
-0.29 

(0.00) 
-0.26 

(0.00) 
-0.27 

(0.00) 
-0.28 

(0.00) (0.00) (0.00) (0.00) 
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Table 9: Economic Value 
This table reports certainty equivalent return (CER) gains for various linear predictive 
models for bond excess return. We consider fve di˙erent predictors: yield spreads 
(Campbell and Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal components 
of yields (Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward 
rate factor, and the Ludvigson and Ng (2009) macroeconomic factor. For each model, we 
report the CER gains relative to the expectations hypothesis (Panels A and B) and a 
static forecast combination strategy (Panel C). PMI denotes the Purchasing Managers 
Index published by the Institute for Supply Management and U is the macroeconomic 
uncertainty index from Jurado et al. (2015). CER gains are based on an investor with 
mean-variance preferences and a relative risk aversion of = 10. The out-of-sample 
evaluation period runs from January 2000 to December 2018. 

2-year 3-year 4-year 5-year 

Panel A: Individual bond predictors against EH 

CS -0.64 -0.35 0.10 0.45 

FB 
(0.90) 
-0.43 

(0.75) 
-0.12 

(0.43) 
0.32 

(0.20) 
0.58 

PC 
(0.84) 
-1.65 

(0.62) 
-1.78 

(0.24) 
-1.65 

(0.17) 
-1.44 

CP 
(0.98) 
-0.66 

(0.96) 
-0.83 

(0.93) 
-0.76 

(0.89) 
-0.48 

LN 
(0.96) 
0.85 

(0.95) 
1.75 

(0.87) 
2.32 

(0.73) 
2.74 

EW 
(0.00) 
0.10 

(0.00) 
0.34 

(0.00) 
0.86 

(0.00) 
1.07 

(0.36) (0.16) (0.03) (0.02) 

Panel B: Dynamic forecast combination against EH 

PMI 0.39 0.59 1.05 1.43 

U 
(0.08) 
0.26 

(0.06) 
0.60 

(0.02) 
1.17 

(0.00) 
1.18 

NONE 
(0.16) 
0.17 

(0.05) 
0.33 

(0.01) 
0.92 

(0.02) 
1.16 

(0.26) (0.19) (0.03) (0.02) 

Panel C: Dynamic forecast combination against EW 

PMI 0.28 0.25 0.19 0.37 

U 
(0.01) 
0.16 

(0.04) 
0.25 

(0.09) 
0.31 

(0.03) 
0.12 

NONE 
(0.06) 
0.06 

(0.02) 
-0.02 

(0.01) 
0.06 

(0.27) 
0.09 

(0.13) (0.56) (0.24) (0.26) 
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Table 10: CER gains across states 
This table reports certainty equivalent return (CER) gains for various linear predictive 
models for bond excess return conditional on states identifed by the Purchasing Manager’s 
Index (PMI) and the the macroeconomic uncertainty index (U) proposed in Jurado 
et al. (2015). We consider fve di˙erent predictors: yield spreads (Campbell and Shiller, 
1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman 
and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the 
Ludvigson and Ng (2009) macroeconomic factor. For each model, we report the CER gain 
relative to the expectations hypothesis. High (low) states are identifed using the 80% 
(20%) quantiles of the time series of PMI and U. CER gains are based on an investor 
with mean-variance preferences and a relative risk aversion of = 10. The out-of-sample 
evaluation period runs from January 2000 to December 2018. 

2-year 3-year 4-year 5-year 2-year 3-year 4-year 5-year 

Panel A: Low activity Panel D: Low uncertainty 

CS -3.22 -2.41 -2.04 -2.05 0.02 0.08 1.29 1.68 
FB -2.44 -1.82 -1.83 -2.70 0.01 0.16 0.98 0.86 
PC -7.17 -7.06 -6.92 -6.77 0.02 0.94 2.28 2.76 
CP -2.42 -1.85 -0.91 -0.05 0.08 0.78 2.13 2.70 
LN 1.22 2.47 2.05 0.25 0.02 0.41 1.30 1.55 

Panel B: Normal activity Panel E: Normal uncertainty 

CS -0.19 0.01 0.32 0.48 -0.36 -0.21 0.03 0.24 
FB -0.10 0.04 0.13 -0.01 -0.32 -0.21 0.01 0.07 
PC -1.00 -1.20 -0.96 -0.72 -0.66 -0.72 -0.58 -0.49 
CP -0.35 -0.78 -1.03 -1.02 -0.58 -0.80 -0.68 -0.69 
LN 0.82 1.32 1.50 1.78 0.90 1.47 1.72 1.94 

Panel C: High activity Panel F: High uncertainty 

CS 0.51 0.57 1.43 1.82 -1.41 -0.57 -0.06 -0.18 
FB 0.25 0.23 1.17 1.38 -0.82 -0.38 -0.55 -1.69 
PC 1.75 2.44 2.84 2.56 -5.19 -5.62 -5.67 -5.60 
CP 0.34 0.80 1.61 1.86 -0.74 -1.14 -1.98 -1.42 
LN 0.59 1.34 1.99 1.88 1.16 2.30 1.71 0.29 
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Figure 1: Bond excess returns 
This fgure plots times series of monthly bond excess returns (in percentage) for Treasury 
bonds with maturities ranging from two to fve years. Shaded areas represent NBER 
recession dates. Monthly bond returns are in excess of the implied yield on a one-month 
Treasury bill rate. Yield data are end-of-month and have been obtained from Gürkaynak 
et al. (2007) over the period January 1962 to December 2018. 
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Figure 2: Conditioning variables 
This fgure shows times series of the Purchasing managers’ index (PMI) published by the 
Institute for Supply Management and the macroeconomic uncertainty (U) index from 
Jurado et al. (2015). Green (yellow) shaded ares represent periods of (high) low activity 
and uncertainty, respectively, where high (low) episodes are identifed using the 80% (20%) 
quantiles of their time series. The sample period covers January 1962 to December 2018. 
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Figure 3: Empirical power curves 
This fgure shows the rejection frequency (empirical power) of the multivariate test for 
equal predictive ability with a nominal size of 5% and data-generating process given by 
(22) with the frst element in µ deviating and the remaining elements are set to zero. The 
frst element of µ is set to c�̂ where �̂ is the average absolute loss di˙erentials across all 
models within the low and high economic activity states defned in the empirical section 
and c 2 [0, 2.5]. We use 10,000 Monte Carlo replications. We implement a conditional test 
that sets ht = (1, h̃ 

t)0, and use three samples sizes referred to as short (120 observations), 
medium (348 observations) and long (1,000 observations). The left (right) panel depicts 
results where " t+1 in (22) is sampled from the empirical loss di˙erentials when forecasting 
the 2-year (5-year) bond. The value of p indicates the dimension of the test arising from 
the number of comparing models less one. 
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Figure 4: Relative forecasting performance 
This fgure plots the recursively updated cumulative di˙erence in the squared prediction 
errors from the EH benchmark model and the ith predictor model over the out-of-sample 
evaluation period. We consider fve di˙erent predictors: yield spreads (Campbell and 
Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal components of yields 
(Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, 
and the Ludvigson and Ng (2009) macroeconomic factor. We also consider a simple equal-
weighted combination of the individual forecasts. A positive (negative) slope indicates that 
the predictive model delivers more (less) accurate forecasts than the EH benchmark. Green 
(yellow) shaded ares represent periods of high (low) activity and uncertainty, respectively, 
where activity is measured using the Purchasing Managers’ Index (PMI) and uncertainty 
in the index developed by Jurado et al. (2015). High (low) episodes are identifed using the 
80% (20%) quantiles of their time series. White areas are normal times. The out-of-sample 
evaluation periods runs from January 2000 to December 2018. 
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Figure 5: Full sample elimination order 
This fgure displays the full sample elimination order of predictive model in high, normal, 
and low states separately for the Purchasing Managers’ Index (PMI) (left graphs) and the 
macroeconomic uncertainty index (U) of Jurado et al. (2015) (right graphs) using the 20% 
and 80% quantiles of their time series. White squares denote models included in the best 
set of models and numbered tiles denotes eliminated models and their elimination order. 
We consider fve di˙erent predictors: yield spreads (Campbell and Shiller, 1991), forward 
spreads (Fama and Bliss, 1987), principal components of yields (Litterman and Scheinkman, 
1991), the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson and Ng 
(2009) macroeconomic factor. The out-of-sample evaluation periods runs from January 
2000 to December 2018. 
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Figure 6: Dynamic forecast combinations 
This fgure plots the recursively updated cumulative di˙erence in the squared prediction 
errors from the EH benchmark model and the dynamic forecast combination forecast for 
each of the tree conditioning cases. We consider the Purchasing Managers’ Index (PMI) 
and the macroeconomic uncertainty index (U) from Jurado et al. (2015) as our conditioning 
variables along with an unconditional version labeled NONE. A positive (negative) slope 
indicates that the dynamic forecast combination delivers more (less) accurate forecasts 
than the EH benchmark. Green (yellow) shaded ares represent periods of high (low) 
activity and uncertainty, respectively, where high (low) episodes are identifed using the 
80% (20%) quantiles of their time series. White areas are normal times. The out-of-sample 
evaluation periods runs from January 2000 to December 2018. 

2002 2004 2006 2008 2010 2012 2014 2016 2018

0

10

20

30

2002 2004 2006 2008 2010 2012 2014 2016 2018

0

10

20

30

2002 2004 2006 2008 2010 2012 2014 2016 2018

0

10

20

30

66 



Figure 7: Dynamic versus static forecast combination 
This fgure plots the recursively updated cumulative di˙erence in the squared prediction 
errors from a static equal-weighted forecast combination benchmark and the dynamic 
forecast combination forecast for each of the tree conditioning cases. We consider the 
Purchasing Managers’ Index (PMI) and the macroeconomic uncertainty index (U) from 
Jurado et al. (2015) as our conditioning variables along with an unconditional version 
labeled NONE. A positive (negative) slope indicates that the dynamic forecast combination 
delivers more (less) accurate forecasts than the static equal-weighted forecast combination 
benchmark. Green (yellow) shaded ares represent periods of high (low) activity and 
uncertainty, respectively, where high (low) episodes are identifed using the 80% (20%) 
quantiles of their time series. White areas are normal times. The out-of-sample evaluation 
periods runs from January 2000 to December 2018. 
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Figure 8: Inclusion plots across states 
This fgure displays the inclusion of each predictive model into the best set of models. 
Green (yellow) shaded ares represent periods of high (low) states of the Purchasing 
Managers’ Index (PMI) (left) and the Jurado et al. (2015) macroeconomic uncertainty 
index (U) (right) identifed using the 20% and 80% quantiles of the series. White areas are 
normal times. We consider fve di˙erent predictors: yield spreads (Campbell and Shiller, 
1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman 
and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the 
Ludvigson and Ng (2009) macroeconomic factor. EH denotes the benchmark expectations 
hypothesis model. Inclusion of a predictive model is marked with +. The out-of-sample 
evaluation periods runs from January 2000 to December 2018. 
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Figure 9: Size of the set of best models 
This fgure illustrates the size of the set of best predictive models for each of the four bond 
maturities and conditioning variables. Green (yellow) shaded ares represent periods of 
high (low) activity and uncertainty, respectively, where activity is measured using the 
Purchasing Manager’s Index (PMI) published by the Institute for Supply Management 
and uncertainty is the macroeconomic uncertainty index (U) proposed in Jurado et al. 
(2015). High (low) episodes are identifed using the 80% (20%) quantiles of their time 
series. White areas are normal times. The out-of-sample evaluation periods runs from 
January 2000 to December 2018. 
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Figure 10: Bond risk premia forecasts for dynamic combination strategy 
This fgure illustrates the time series behavior of bond risk premia forecasts originating 
from our dynamic forecast combination strategy. PMI is the Purchasing Managers’ Index 
published by the Institute for Supply Management and U is the macroeconomic uncertainty 
index proposed in Jurado et al. (2015). The out-of-sample forecasting periods runs from 
January 2000 to December 2018. 
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Figure 11: Dynamic forecast combinations: CER gains 
This fgure plots the recursively updated cumulative di˙erence in realized utility from 
the dynamic forecast combination forecast for each of the tree conditioning cases and 
the EH benchmark model. We consider the Purchasing Managers’ Index (PMI) and 
the macroeconomic uncertainty index (U) from Jurado et al. (2015) as our conditioning 
variables along with an unconditional version labeled NONE. A positive (negative) slope 
indicates that the dynamic forecast combination delivers more (less) accurate forecasts 
than the EH benchmark. Green (yellow) shaded ares represent periods of high (low) 
activity and uncertainty, respectively, where high (low) episodes are identifed using the 
80% (20%) quantiles of their time series. White areas are normal times. The out-of-sample 
evaluation periods runs from January 2000 to December 2018. 
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Figure 12: Dynamic versus static forecast combination: CER gains 
This fgure plots the recursively updated cumulative di˙erence in the squared prediction 
errors from the dynamic forecast combination forecast for each of the tree conditioning 
cases and a static equal-weighted forecast combination benchmark. We consider the 
Purchasing Managers’ Index (PMI) and the macroeconomic uncertainty index (U) from 
Jurado et al. (2015) as our conditioning variables along with an unconditional version 
labeled NONE. A positive (negative) slope indicates that the dynamic forecast combination 
delivers more (less) accurate forecasts than the static equal-weighted forecast combination 
benchmark. Green (yellow) shaded ares represent periods of high (low) activity and 
uncertainty, respectively, where high (low) episodes are identifed using the 80% (20%) 
quantiles of their time series. White areas are normal times. The out-of-sample evaluation 
periods runs from January 2000 to December 2018. 
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IA.A. Theoretical results, assumptions, and proofs 

This section explains the Giacomini and White (2006) assumptions used in Theorem 1 

along with its proof. The outline of several of the proofs follow Giacomini and White 

(2006), making the necessary adjustments to account for the multivariate nature of our 

tests. We also provide theoretical results with associated proofs for the case of multi-step 

ahead forecasting, ̋ > 1, and the unconditional case, Gt = {;, }. 

IA.A.1. One-step ahead forecasting and Giacomini and White (2006) assumptions 

In the one-step ahead case, ̋  = 1, we impose the following assumptions that are adopted 

from Giacomini and White (2006). 

� � 
Assumption 1. {ht} and {wt} are °-mixing with °(t) = O t−r/(2r−1)−� , r � 1, or � � 

− 
r−1 −�-mixing with (t) = O t 

r 

, r > 1, for some � > 0. 

Assumption 1 imposes relatively mild restrictions on the dependence structure and het-

erogeneity of data. We do not impose the stricter and common (covariance) stationarity 

assumption as used in for instance Diebold and Mariano (1995) and Mariano and Preve 

(2012). Specifcally, data may exhibit arbitrary structural changes, which is a common 

feature found in many empirical studies within e.g. macroeconomic prediction (see e.g. 

Stock and Watson (2003) and Schrimpf and Wang (2010)), stock return prediction (see 

e.g. Fama and French (1997) and Paye and Timmermann (2006)), and exchange rate 

prediction (see e.g. Giacomini and Rossi (2010)) to name a few. 

Assumption 2. E[|dt+1,i|2(r+�)] < 1 for some � > 0, i = 1, . . . , qp, and for all t, where 

subscript i indicate the i’th element of dt+1. 

Assumption 3. �T � T−1 PT
t=1 E[dt+1dt 

0 
+1] is uniformly positive defnite. 

Assumptions 2-3 are mainly technical assumptions ensuring (uniformly) bounded moments 

of data and positive defniteness of the asymptotic variance. Both of these assumptions 

are common in the forecast evaluation literature. 
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IA.A.1.1. Proof of Theorem 1 The proof of part A. and B. adopts the necessary steps 

in Giacomini and White (2006). We start by proving part A. Let dt+1 = ht �L+1 and 

write 

dt+1d
0 
t+1 = g(ht, wt+1, . . . , wt−m) (IA.A.1) 

for some measurable function g. Since m < 1, and {ht} and {wt} are mixing of the 

same size according to Assumption 1, it follows from Theorem 3.49 in White (2001) that 

{dt+1d
0 
t+1} is mixing of the same size as {ht} and {wt}. 

By Assumption 2 there exists a C ¯ 2 R+ and � > 0 such that E[|dm,t+1,i|2(r+�)] < C ¯ < 1 

for i = 1, . . . , qp and for all t, where subscript i indicates the i’th element in dt+1. Hence, 

by the Cauchy-Schwartz inequality, one obtains 

E[|dt+1,idt+1,j|r+�] � E[|d2 
t+1,i|r+�]1/2E[|dt 2+1,j|r+�]1/2 < C ¯ (IA.A.2) 

for i, j = 1, . . . , qp and for all t. By Corollary 3.48 in White (2001), it then follows 

that �̂ 
T − �T −!

P 0. Furthermore, by Assumption 2 it follows that �T is fnite and by 

Assumption 3 it is uniformly positive defnite. 

Next, let � 2 Rqp with �0� = 1 and consider 

p TX−1 

�0�−1/2 
T ̄ �0�−1/2 

T dt+1 = T −1/2 
T dt+1. (IA.A.3) 

t=1 

Pqp Let �̃ 
i denote the i’th element of the product �0�T 

−1/2, such that �0�T 
−1/2

dt+1 = i=1 �̃ 
idt+1,i. 

Hence, under the null hypothesis 

" # 
E[�0�−1/2 

qp 

˜ 
qp 

˜X X 
dt+1|Gt] = E �idt+1,i|Gt = �iE[dt+1,i|Gt] = 0, (IA.A.4)T 

i=1 i=1 

by measurability of �̃ 
i, such that the sequence {�0�−1/2

dt+1, Gt} is an MDS. The asymp-T 
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totic variance is 

p
˙d 

2 = Var[�0�T 
−1/2 

Td ¯] 
p

= �0�− T 
1/2Var[ Td ¯]�− T 

1/2
� 

= �0�−1/2�T �−1/2
�T T 

= 1 (IA.A.5) 

for suÿciently large T . Furthermore, since �̂ 
T − �T !−

P 0 it follows by the Continuous 

Mapping Theorem that 

X 
�0�−1/2

d0 � − ̇21 T 

T t+1dt+1�− T 
1/2 

dT t=1 

= �0�−1/2�̂ 
T �−1/2

� − �0�−1/2�T �−1/2
� −P (IA.A.6)! 0.T T T T 

Lastly, we need to check that �0�− T 
1/2
dt+1 has absolute 2 + � moment. By Minkowski’s 

inequality and Assumption 2 we obtain 

" # qpX 2+� 
E[|�0�−1/2

dt+1|2+�] = E ˜ 
T �idt+1,i 

i=1 

qp h !2+�X i1/(2+�)˜� �iE |dt+1,i|2+� < 1. (IA.A.7) 
i=1 

p dConsequently, we can apply the CLT for MDS and deduce that �0�− T 
1/2 

T d ¯ !− N(0, 1). 

By the Cramér-Wold device it then follows that 

p 
!d N(0, Iqp �−1/2 Td ¯ − ). (IA.A.8) 

Since �̂ 
T − �T −

P! 0, we deduce that 

p p
�
−1/2 d

T ( ˆ d ¯)0 T�−1/2
d ¯ = T d ¯ 0�̂ −1 

d ¯ = Sh − (IA.A.9)! ̃2(qp),T T T 

as T !1. 
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We now prove part B. By the same arguments as in the proof for part B., it follows that the 

sequence {dt+1} is mixing of the same size as {wt} and {ht}. Furthermore, Assumption 2 

ensures that each element of dt+1 is bounded uniformly in t, such that 

d ¯ − E[d ¯] −P (IA.A.10)! 0 

by Corollary 3.48 in White (2001). Under the alternative hypothesis there exists � > 0 

such that E[d ¯ 
m 

0 ]E[d ¯ 
m] > 2� for T suÿciently large. It follows that 

0 ̄ 0 ̄P[d ¯ d > �] � P[d ¯ d − E[d ¯ 0]E[d ¯] > −�] 
0 ̄  � P[|d ¯ d − E[d ¯ 0]E[d ¯]| < �] ! 1, (IA.A.11)m 

where the convergence to unity is due to (IA.A.10). By identical arguments as the proof 

of part B., d0 t+1dt+1 is mixing with the same size as {wt} and each element is uniformly 

bounded in t. Corollary 3.48 in White (2001) can then be applied, and it follows that �̂ 
T 

is a consistent estimator of �T . By Assumption 3, �T is uniformly positive defnite. Let 

c 2 R+. It then follows from Theorem 8.13 in White (1994) that 

P[Sh > c] ! 1, as T !1. (IA.A.12) 

Lastly, we prove part C. Let L� t+1 be an arbitrary permutation of the forecasting losses, 

i.e. L� t+1 = PLt+1, where P is a (p + 1) × (p + 1) permutation matrix and Lt+1 = 

(L1 . , Lp+1 . Defne the p × (p + 1) matrix D by t+1, . . t+1 )0 
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such that �L� t+1 = DL� t+1 = DP Lt+1. In total, the number of permutations of the 

forecast losses at each point of time t is (p+1)!. Mariano and Preve (2012) show that there 

always exists a nonsingular matrix B of dimension p × p such that B�Lt+1 = �L� t+1. 

Consequently, defne the qp × qp matrix A = (Iq B), where Iq is the q × q identity 

matrix. By standard properties of the Kronecker product A is nonsingular, and we have 

that 

d� t+1 = ht �L� t+1 = (Iqht) (B�Lt+1) = (Iq B)(ht �Lt+1) = Adt+1. 

(IA.A.13) 

Since the null hypothesis implies that the asymptotic variance can be estimated consistently 

by the sample variance, it follows that 

1 X 1 X
�̂ � 
T � 

T 

d� t+1d
�0 = 

T 

Adt+1dt 
0 
+1A

0 = A�̂ 
T A

0 .t+1T Tt=1 t=1 

Due to the nonsingularity of A and �̂ 
T , it follows that 

�0 � 
d ¯ 
t+1(�̂ � 

T )−1d ¯ 
t+1 = d0 t+1A

0(A�̂ 
T A

0)−1Adt+1 

= d0 �̂ −1 
t+1 T dt+1, 

which shows that the test is invariant to a permutation of the ordering of the forecast 

losses. 

IA.A.2. Unconditional and multi-step predictive ability tests 

In both the unconditional, Gt = {;, }, and multistep conditional case the loss series are 

no longer martingale di˙erence sequences under the null hypothesis. Thus, the sequence 

{ht �Lt+˝ } may be serially autocorrelated.27 In the conditional setting, the null 

hypothesis imposes a particular structure on the serial correlation, namely that it can 

be at most order ̋  − 1. However, in the unconditional case no such restriction exists. 

Consequently, we can no longer rely on the sample variance under the null for estimating 
27Note that that in the unconditional case ht = 1 for all t. 
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� �

the covariance matrix as was the case in the one-step conditional setting considered in the 

previous section. Instead, we consider a HAC-type estimator (see e.g. Newey and West 

(1987) and Andrews (1991)) with a bandwidth choice guided by the implications of the 

null hypothesis. The estimator is given by 

� T 
�̃ 
T =

1 X 
dt+˝ d

0 
t+˝T t=1 

bT T � �X X � 
+ �(j, bT ) dt+˝ d

0 
t+˝−j + dt+˝−jd0 t+˝ , (IA.A.14) 

j=1 t=1+j 

where {bT } is an integer-valued truncation point sequence satisfying bT !1 as T !1 

and bT = o(T ) (Newey and West, 1987) in the unconditional case, and bT = ˝ − 1 in the 

conditional case. Furthermore, �(·, ·) is a real-valued kernel weight function satisfying 

the condition that �(j, bT ) ! 1 as T ! 1 for each j = 1, . . . , bT (Andrews, 1991), and 

�(j, bT ) = 0 for j > bT . For a review of data driven bandwidth selection methods see Clark 

and McCracken (2013). 

Along the lines of the construction of the conditional test with ̋  = 1, we construct the 

following Wald statistic which can be used in testing either unconditional or multi-step 

conditional equal predictive ability. The test statistic is given by 

�−1 ̄  Sh,˝ = Td ¯ ˜ 
T d, (IA.A.15) 

where d ¯ = T −1 P 
t
T 
=1 dt+˝ . Before turning the properties of the proposed test statistic, we 

will need a slight modifcation of the assumptions from the previous section on one-step 

ahead forecasting. � � 
Assumption 1�. {ht} and {wt} are °−mixing with °(t) = O t−r/(2r−2)−� , r � 2, or � � 

− 
r−2 −�−mixing with (t) = O t 

r 

, r > 2, for some � > 0. 

Assumption 2�. E[|dt+˝,i|r+�] < 1 for some � > 0, i = 1, . . . , qp, and for all t, where 

subscript i indicate the i’th element of dt+1. � 
Assumption 3�. �T � T −1 PT

t=1 E[dt+˝ d0 t+˝ ] + T−1 Pb
j 

T
=1 
P 
t
T 
=1+j E[dt+˝ d0 t+˝−j]� 

+ E[dt+˝−jd0 t+˝ ] is uniformly positive defnite, where bT = ˝ − 1 in the conditional case 
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and bT = T − 1 in the unconditional case. 

Analogue to Theorem 1 Sh,˝ is asymptotically chi-squared distributed with qp degrees of 

freedom under the null hypothesis, has power under the alternative hypothesis, and is 

permutation invariant. We summarize these results in Theorem 2 below. 

Theorem 2 (Multistep multivariate predictive ability tests). Suppose Assumptions 

1*-3* hold. 

A. Asymptotic distribution under the null. Suppose that either Gt = {;, } and 

˝ � 1 or Ft � Gt and ̋ > 1. For any test function sequence {ht}, m < 1, and under H0 

in (8), 

Sh,˝ −!
d 
˜2(qp), as T !1. (IA.A.16) 

B. Consistency under the alternative. For any c 2 R+ and under HA,h in (12), 

P[Sh,˝ > c] ! 1, as T !1. (IA.A.17) 

C. Permutation invariance. Let L� t+˝ be an arbitrary permutation of the forecast 
�losses, and defne �L� t+˝ = DL� t+˝ , d ¯ = T−1 P 

t
T 
=1 d

� 
t+˝ with d� t+˝ = ht �Lt � +˝ and �̃ 

T 

� 

be the associated covariance estimator defned in equation (IA.A.14). Then, 

� 
S� � T d ¯�0 (�̃ � )−1d ¯ = Sh,˝ (IA.A.18)h,˝ m T 

for all T . 

Consequently, a multivariate test for equal conditional multistep predictive ability or 

(multistep) unconditional predictive ability can be conducted by rejecting the null hy-

pothesis whenever Sh,˝ > z1− �,qp. The permutation invariance result in Theorem 2 for the 

unconditional case is similar to Proposition 2 in Mariano and Preve (2012), but holds under 

the milder Assumptions 1*-3*, and hence also applies in a setting with non-stationary 

data, inclusion of nested models and explicit account of estimation uncertainty. 
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IA.A.2.1. Proof of Theorem 2 We start by proving part A. We proceed by a similar 

procedure as in the proof of Theorem 1, however with modifcations due to the dependency 

in dt+˝ under the null hypothesis. First, by Assumptions 2* and 3*, �T is fnite and 
p

uniformly positive defnite. Let � 2 Rqp with �0� = 1 and consider �0�− T 
1/2 

T d ¯ = 

T−1/2 PT 
t=1 �

0�− T 
1/2
dt+˝ . Furthermore, identical arguments as in Theorem 1 imply that 

{�0�−1/2
dt+˝ } being mixing of the same size as {ht} and {wt}. Moreover, the asymptotic T 

p
variance satisfes ̇ 2 = Var[�0�−1/2 

Td ¯] = �0�−1/2�T �−1/2
� = 1 for all T suÿciently d T T T 

large. By Minkowski’s inequality and computations as in (IA.A.7), �0�− T 
1/2
dt+˝ has 

absolute 2 + � moment for some � > 0. Then, by Corollary 3.1 in Wooldridge and White 
p d(1988) we deduce that �0�T 

−1/2 
T d ¯ −! N(0, 1). Hence, by the Cramér-Wold device it 

p dfollows that �−1/2 
T d ¯ − ).T ! N(0, Iqp 

It remains to be shown that �̃ 
T − �T !−

P 0. Consider 

T � �1 X
�̃ 
T − �T = dt+˝ dt 

0 
+˝ − E[dt+˝ dt 0 +˝ ]T t=1 

bT T1 X X � 
+ �(j, bT ) dt+˝ dt 

0 
+˝−j − E[dt+˝ dt 0 +˝−j]T j=1 t=1+j � 

+ dt+˝−jd0 − E[dt+˝−jd0 ] . (IA.A.19)t+˝ t+˝ 

By Theorem 3.49 in White (2001), {dt+˝ d0 } is mixing of the same size as {ht} andt+˝−j 

{wt} for each j = 0, . . . , bT . Moreover, each of its elements are bounded uniformly in t 

by Assumption 2*. Hence, since �(j, bT ) ! 1 as T ! 1 and �(0, bT ) = 1 it follows via 

Corollary 3.48 in White (2001) that 

T � �1 X P
�(j, ̋) dt+˝ d

0 
t+˝−j − E[dm,t+˝ d0 t+˝−j −] ! 0,

T t=1+j 

for each j = 0, . . . , bT . Combined with equation IA.A.19, this implies that ˜ −P�T − �T ! 0 

(see also Andrews (1991)). Hence, we can deduce via similar steps as in (IA.A.9) that 

!d ˜2(qp) as T !1.Sh,˝ −

We now prove part B. The result follows by arguments similar to those in the proof of 
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Theorem 1. Hence, {dt+˝ } is mixing with the same size as {ht} and {wt} and each element 

in dt+˝ is bounded uniformly in t by Assumption 2*. Then it follows by Corollary 3.48 in 

White (2001) that d ¯ − E[d ¯] !−P 0, and consequently similar computations as in (IA.A.11) 

applies. By arguments identical to those in the proof of part A., �̃ 
T − �T !−

P 0, where �T 

is positive defnite by Assumption 3*. Theorem 8.13 in White (1994) then implies that 

under HA,h in (12) and for any constant c 2 R+, P[Sh,˝ > c] ! 1 as T !1. 

Lastly, we prove part C. Due the arguments in the proof of Theorem 1 it suÿces to show 

that �̃ 
T � = A�̃ 

T A
0 , where A = Iq B. Thus, let 

T 

�̃ 
T (b) � 

1 X 
dt+˝ d

0 
t+˝−b,T t=1+b 

for b = 0, 1, 2 . . .. It then follows that 

1 X 1 X
�̃ 
T (b)� � 

T 

d� d�
0 = 

T 

Adt+˝ d
0 A0 = A�̃ 

T (b)A0 .t+˝ t+˝−b t+˝−bT T t=1+b t=1+b 

Consequently, it follows that �̃ 
T 

� = A�̃ 
T A

0 , which completes the proof. 
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IA.B. Bond data 

We use the Gürkaynak et al. (2007) dataset from 1962:M1 to 2018:M12. The time t log 

yield on a k-period bond is computed using the methods developed in Nelson and Siegel 

(1987) and Svensson (1994) as 

� � 2 � � !3 n n1 − exp − 1 − exp −(k) �1,t �1,t n 
yt = 0,t + 1,t + 2,t 4 − exp − 5 

n n �1,t�1,t �1,t2 � � !3 n1 − exp − n+ 3,t 4 n

�2,t − exp − 5 , (IA.B.20)
�2,t�2,t 

where we use parentheses in the superscript to distinguish maturity from exponentiation 

and n = 
m
k and m denotes, respectively, the bond maturity in years and the number of 

periods per year. � �(k) (k)Let pt = − 
m
k yt be the log price of a k-period bond at time t. The log forward 

rate at time t for loans between t + k − 1 and t + k is defned as 

(k) (k−1) (k) (k−1) (k)
f = p − p = −k

m 
−1 y + 

m
k y . (IA.B.21)t t t t t 

The excess return to purchasing a k-period bond today and selling it as a k − 1 period 

bond after one month is 

(k) (k−1) (k) (1) (k−1) (k) (1)
rx = p − p − p = −k−1 y + k y − 1 y , (IA.B.22)t+1 t+1 t t t+1 t tm m m 

where yt 
(1) denotes the risk-free one-period rate that we proxy using the implied yield on a 

one-month Treasury bill obtained from the Center for Research in Security Prices (CRSP) 

as in Gargano et al. (2019).28 

(1) (1) (k−1) (0) (0)28For k = 1, we have that f = y and that y = y = 0 due to p being zero (log of terminal t t t t t 
payo˙ of one is zero). 

xi 



IA.C. Additional empirical results 

IA.C.1. Descriptive statistics for state variables 

Table IA.1 presents full sample descriptive statistics for our two state variables that 

captures economic activity and uncertainty, respectively: the Purchasing Managers’ Index 

(PMI) and the macroeconomic uncertainty index of Jurado et al. (2015). 

[Insert Table IA.1 About Here] 

The series are both highly persistent with autocorrelation coeÿcients well above 0.9. 

Most importantly, we note that the series obtains a negative contemporaneous correlation 

of −0.48 in the data, suggesting that they capture part of the some features, but are not 

perfect substitutes. 

IA.C.2. In-sample predictive regressions 

Table IA.2 presents full sample least squares estimation results to facilitate comparison 

with the extant literature. Specifcally, we estimate predictive regressions of the form 

presented in (1) with the risk premium on a Treasury bond with k-periods to maturity 
(k)

rxt+1 as the dependent variable. We focus on bonds with k = {24, 36, 48, 60} months to 

maturity and consider models based on the predictor variables outlined in Section 2.2. We 

stress that these results are not available to a real-time investor, but they are useful for 

gauging the mechanisms of the predictive models. 

[Insert Table IA.2 About Here] 

The slope coeÿcients for CS and FB are all positive and increasing with maturity and 

are all statistically signifcant at conventional levels.29 We note that these positive slope 

coeÿcients imply negative slopes for the companion regression of yield or forward spreads 

on future yield changes as documented in Campbell and Shiller (1991). Thus, both yield 
29Bauer and Hamilton (2018) show that statistical test of predictive regression in full sample analyses 

are subject to serious small sample distortions when using 12-month overlapping returns. However, we 
use one-month non-overlapping returns here and are therefore not a˙ected by their results. See also the 
discussion in Gargano et al. (2019). 
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and forward spreads contain useful information about future bond excess returns over 

the full range of available observations. Turning to the principal components, we fnd 

that PC1 has a constant slope coeÿcient across maturities, PC2 increased monotonically, 

and PC3 displays an inverse U-shape. P1 and PC3 are mostly insignifcant, whereas PC2 

is signifcant for the longer maturities. This mirrors the results for CS, but shows that 

maturity-specifc spreads are more informative than the common slope factor. Last, CP 

and LN both display monotonically increasing slope coeÿcients that are highly signifcant. 

Of all the models, LN appears to explain the largest fraction of bond risk premia, closely 

followed by CP and yield spreads. Overall, in-sample results points to predictive relation 

between all our candidate predictors. 

IA.C.3. Links to uncertainty 

Table IA.4 presents contemporaneous correlations among U and the risk premia estimates 

from the set of individual models, EW, and the dynamic forecast combinations generated 

by PMI, U, and NONE. 

[Insert Table IA.4 About Here] 

We fnd that most forecasts are positively correlated with uncertainty, implying that 

investors higher risk premia in periods with heightened uncertainty. The exception is CS 

and FB for the shorter maturities, where we observe negative correlations. As for our 

main results concerning the relation to economic activity (see Table 8), we fnd that LN 

displays the highest correlation with U among the individual predictors and EW. Turning 

to the dynamic forecast combination estimates in Panel B, we fnd that both PMI and U 

trimming delivers forecasts that are tightly linked to uncertainty. That is, not only do 

they produce countercyclical risk premia estimates, they only procedure forecasts closely 

linked to uncertainty. 

IA.C.4. Additional results for economic value 

Figure IA.1 plots the cumulative CER gains for the individual predictor variables along 

with the equal-weighted forecast (EW). The results largely mirrors those in Table 9 in the 
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main paper and illustrate that most individual predictors fail to deliver economic value on 

a consistent basis. The exception being LN. 

[Insert Figure IA.1 About Here] 

[Insert Table IA.5 About Here] 

Table IA.5 reconstructs the results from Table 9 in the main paper using instead a 

coeÿcient of relative risk aversion of = 5 to verify that our results are robust to other, 

and lower, values of risk aversion. The table clearly demonstrates that this is the case. 
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Table IA.1: Conditioning variables 
This table presents descriptive statistics for the state variables used in the empirical analysis. 
PMI is the Purchasing Managers’ Index published by the Institute for Supply Managers 
and U is the macroeconomic uncertainty index developed in Jurado et al. (2015). The 
table reports mean, standard deviation, skewness, kurtosis, and frst-order autocorrelation 
(AC(1)) of each state variable. We also report the contemporaneous correlation between 
the variables. The sample period is January 1962 to December 2018. 

PMI U 

Mean 52.61 0.66 
Std. dev. 6.37 0.09 
Skewness -0.61 1.63 
Kurtosis 4.37 5.79 
AR(1) 
Correlation 

0.94 
-0.48 

0.99 
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Table IA.2: In-sample regressions 
This table reports full sample least squares estimates of the slope coeÿcients for various 
linear predictive models for bond excess return. We consider fve di˙erent predictors: yield 
spreads (Campbell and Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal 
components of yields (Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005) 
forward rate factor computed from a projection of average excess bond returns on two-, 
three-, four-, and fve-year forward rates, and the Ludvigson and Ng (2009) macroeconomic 
factor computed as a projection of average excess bond returns on factors obtained from 
a large panel of macroeconomic variables. For each model, we report slope coeÿcients, 
Newey and West (1987) t-statistics using a bandwidth of twelve lags in parenthesis, and 
the adjusted R2 in square brackets. The sample period is January 1962 to December 2018. 

2-year 3-year 4-year 5-year 

Panel A: Campbell-Shiller 

CS 2.02 
(2.67) 
[2.55] 

2.36 
(2.64) 
[2.32] 

2.75 
(2.85) 
[2.42] 

3.15 
(3.17) 
[2.61] 

Panel B: Fama-Bliss 

FB 1.20 
(2.20) 
[1.80] 

1.41 
(2.30) 
[1.68] 

1.69 
(2.79) 
[1.90] 

1.99 
(3.38) 
[2.14] 

Panel C: Principal components 

PC1 

PC2 

PC3 

0.01 
(1.43) 
0.13 
(1.72) 
0.23 
(0.66) 
[1.05] 

0.01 
(1.04) 
0.21 
(2.10) 
0.31 
(0.63) 
[1.09] 

0.01 
(0.76) 
0.29 
(2.46) 
0.24 
(0.39) 
[1.19] 

0.01 
(0.56) 
0.37 
(2.77) 
0.09 
(0.13) 
[1.30] 

Panel D: Cochrane-Piazzesi 

CP 0.65 
(4.60) 
[2.37] 

0.88 
(4.30) 
[2.16] 

1.11 
(4.12) 
[2.17] 

1.36 
(4.08) 
[2.30] 

Panel E: Ludvigson-Ng 

LN 0.65 
(3.68) 
[6.62] 

0.90 
(3.96) 
[6.47] 

1.12 
(4.25) 
[6.33] 

1.33 
(4.46) 
[6.15] 
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Table IA.3: Correlations between forecasts and macroeconomic uncertainty 
This table reports correlation coeÿcients between out-of-sample generated forecasts from 
individual bond predictors (Panel A) and the dynamic forecast strategy (Panel B) and 
economic uncertainty as measured by the the macroeconomic uncertainty index (U) from 
Jurado et al. (2015). We report p-values for the null of no correlation in parenthesis. The 
out-of-sample evaluation period runs from January 2000 to December 2018. 

2-year bond 3-year bond 4-year bond 5-year bond 

Panel A: Individual bond predictors 

CS -0.09 -0.04 0.01 0.05 

FB 
(0.10) 
-0.04 

(0.41) 
0.07 

(0.92) 
0.12 

(0.39) 
0.15 

PC 
(0.49) 
0.03 

(0.21) 
0.04 

(0.02) 
0.05 

(0.00) 
0.06 

CP 
(0.57) 
0.12 

(0.5) 
0.11 

(0.34) 
0.10 

(0.23) 
0.10 

LN 
(0.02) 
0.44 

(0.04) 
0.46 

(0.06) 
0.47 

(0.07) 
0.48 

EH 
(0.00) 
0.43 

(0.00) 
0.38 

(0.00) 
0.34 

(0.00) 
0.32 

EW 
(0.00) 
0.31 

(0.00) 
0.34 

(0.00) 
0.35 

(0.00) 
0.35 

(0.00) (0.00) (0.00) (0.00) 

Panel B: Dynamic forecast combination 

PMI 0.54 0.53 0.50 0.50 

U 
(0.00) 
0.59 

(0.00) 
0.56 

(0.00) 
0.54 

(0.00) 
0.55 

NONE 
(0.00) 
0.54 

(0.00) 
0.47 

(0.00) 
0.46 

(0.00) 
0.47 

(0.00) (0.00) (0.00) (0.00) 
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Table IA.4: Alternative proxies for economic activity 
This table reports correlation coeÿcients between forecasts and alternative proxies for 
economic activity. We use the Chicago Fed National Activity Index (Panel A), recession 
probabilities from Chauvet and Piger (2008) (Panel B), and log growth rates to industrial 
production (Panel C). We report p-values for the null of no correlation in parenthesis. The 
out-of-sample evaluation period runs from January 2000 to December 2018. 

2-year bond 3-year bond 4-year bond 5-year bond 

Panel A: Chicago Fed National Activity Index (CFNAI) 

CS 0.10 0.04 -0.01 -0.05 

FB 
(0.07) 
0.04 

(0.40) 
-0.06 

(0.89) 
-0.13 

(0.35) 
-0.16 

PC 
(0.46) 
0.19 

(0.25) 
0.18 

(0.02) 
0.15 

(0.00) 
0.12 

CP 
(0.00) 
-0.10 

(0.00) 
-0.09 

(0.01) 
-0.08 

(0.03) 
-0.07 

LN 
(0.05) 
-0.48 

(0.10) 
-0.49 

(0.15) 
-0.50 

(0.17) 
-0.51 

EH 
(0.00) 
-0.20 

(0.00) 
-0.17 

(0.00) 
-0.16 

(0.00) 
-0.15 

EW 
(0.00) 
-0.26 

(0.00) 
-0.29 

(0.00) 
-0.30 

(0.01) 
-0.32 

PMI 
(0.00) 
-0.51 

(0.00) 
-0.55 

(0.00) 
-0.54 

(0.00) 
-0.51 

U 
(0.00) 
-0.56 

(0.00) 
-0.54 

(0.00) 
-0.54 

(0.00) 
-0.57 

NONE 
(0.00) 
-0.53 

(0.00) 
-0.49 

(0.00) 
-0.49 

(0.00) 
-0.50 

(0.00) (0.00) (0.00) (0.00) 

Panel B: Recession probabilities (Chauvet and Piger, 2008) 

CS -0.01 0.02 0.05 0.08 

FB 
(0.89) 
0.03 

(0.72) 
0.09 

(0.33) 
0.14 

(0.13) 
0.16 

PC 
(0.64) 
-0.05 

(0.09) 
-0.05 

(0.01) 
-0.03 

(0.00) 
-0.01 

CP 
(0.37) 
0.10 

(0.35) 
0.08 

(0.57) 
0.06 

(0.86) 
0.05 

LN 
(0.08) 
0.56 

(0.16) 
0.57 

(0.26) 
0.58 

(0.32) 
0.59 

EH 
(0.00) 
0.18 

(0.00) 
0.13 

(0.00) 
0.11 

(0.00) 
0.09 

EW 
(0.00) 
0.37 

(0.01) 
0.38 

(0.05) 
0.38 

(0.09) 
0.38 

PMI 
(0.00) 
0.51 

(0.00) 
0.54 

(0.00) 
0.53 

(0.00) 
0.53 

U 
(0.00) 
0.55 

(0.00) 
0.56 

(0.00) 
0.54 

(0.00) 
0.55 

NONE 
(0.00) 
0.58 

(0.00) 
0.53 

(0.00) 
0.51 

(0.00) 
0.52 

(0.00) (0.00) (0.00) (0.00) 

Panel C: Log industrial production growth 

CS 0.07 0.06 0.03 0.01 

FB 
(0.16) 
0.07 

(0.28) 
0.01 

(0.55) 
-0.03 

(0.86) 
-0.05 

PC 
(0.16) 
0.16 

(0.79) 
0.15 

(0.61) 
0.14 

(0.33) 
0.13 

CP 
(0.00) 
-0.08 

(0.00) 
-0.07 

(0.01) 
-0.07 

(0.02) 
-0.07 

LN 
(0.16) 
-0.26 

(0.17) 
-0.27 

(0.18) 
-0.28 

(0.18) 
-0.28 

EH 
(0.00) 
-0.09 

(0.00) 
-0.10 

(0.00) 
-0.10 

(0.00) 
-0.10 

EW 
(0.11) 
-0.12 

(0.08) 
-0.14 

(0.07) 
-0.15 

(0.06) 
-0.16 

PMI 
(0.03) 
-0.23 

(0.01) 
-0.25 

(0.01) 
-0.27 

(0.00) 
-0.23 

U 
(0.00) 
-0.28 

(0.00) 
-0.25 

(0.00) 
-0.25 

(0.00) 
-0.27 

NONE 
(0.00) 
-0.25 

(0.00) 
-0.22 

(0.00) 
-0.21 

(0.00) 
-0.21 

(0.00) (0.00) (0.01) (0.01) 









Table IA.5: Economic Value: = 5 
This table reports certainty equivalent return (CER) gains for various linear predictive 
models for bond excess return. We consider fve di˙erent predictors: yield spreads 
(Campbell and Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal components 
of yields (Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward 
rate factor, and the Ludvigson and Ng (2009) macroeconomic factor. For each model, we 
report the CER gains relative to the expectations hypothesis (Panels A and B) and a static 
forecast combination strategy (Panel C). PMI denotes the Purchasing Managers Index 
published by the Institute for Supply Management and U is the macroeconomic uncertainty 
index from Jurado et al. (2015). CER gains are based on an investor with mean-variance 
preferences and a relative risk aversion of = 5. The out-of-sample evaluation period runs 
from January 2000 to December 2018. 

2-year 3-year 4-year 5-year 

Panel A: Individual bond predictors against EH 

CS -0.91 -0.88 -0.52 -0.25 

FB 
(0.94) 
-0.62 

(0.87) 
-0.68 

(0.74) 
-0.55 

(0.62) 
-0.34 

PC 
(0.88) 
-2.06 

(0.86) 
-2.46 

(0.80) 
-2.41 

(0.67) 
-2.36 

CP 
(0.99) 
-0.80 

(0.96) 
-1.20 

(0.93) 
-1.31 

(0.9) 
-1.36 

LN 
(0.96) 
0.61 

(0.94) 
1.39 

(0.91) 
2.41 

(0.87) 
3.24 

EW 
(0.01) 
0.03 

(0.01) 
0.25 

(0.00) 
0.70 

(0.00) 
1.08 

(0.46) (0.32) (0.13) (0.07) 

Panel B: Dynamic forecast combination against EH 

PMI 0.28 0.59 1.07 1.47 

U 
(0.19) 
0.19 

(0.14) 
0.53 

(0.05) 
1.22 

(0.02) 
1.60 

NONE 
(0.27) 
0.12 

(0.14) 
0.30 

(0.02) 
0.76 

(0.01) 
1.07 

(0.34) (0.28) (0.10) (0.07) 

Panel C: Dynamic forecast combination against EW 

PMI 0.25 0.34 0.37 0.39 

U 
(0.02) 
0.16 

(0.04) 
0.28 

(0.05) 
0.52 

(0.03) 
0.52 

NONE 
(0.08) 
0.09 

(0.02) 
0.04 

(0.00) 
0.06 

(0.02) 
-0.01 

(0.15) (0.35) (0.28) (0.52) 
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Figure IA.1: Relative certainty equivalent returns 
This fgure plots the recursively updated cumulative di˙erence in realized utility from the 
EH benchmark model and the ith predictor model over the out-of-sample evaluation period. 
We consider fve di˙erent predictors: yield spreads (Campbell and Shiller, 1991), forward 
spreads (Fama and Bliss, 1987), principal components of yields (Litterman and Scheinkman, 
1991), the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson and Ng 
(2009) macroeconomic factor. We also consider a simple equal-weighted combination of 
the individual forecasts. A positive (negative) slope indicates that the predictive model 
delivers more (less) accurate forecasts than the EH benchmark. Green (yellow) shaded 
ares represent periods of high (low) activity and uncertainty, respectively, where activity 
is measured using the Purchasing Managers’ Index (PMI) and uncertainty in the index 
developed by Jurado et al. (2015). High (low) episodes are identifed using the 80% (20%) 
quantiles of their time series. White areas are normal times. The out-of-sample evaluation 
periods runs from January 2000 to December 2018. 
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