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Predicting bond return predictability

Abstract

We document predictable shifts in bond return predictability related to economic
activity and uncertainty in the U.S. Treasury bond market using standard bond
excess return predictors. Bond returns are predictable in high (low) economic activity
(uncertainty) states, but not in others. We develop a new test for equal conditional
predictive ability among two or more forecasting methods and show that relative
performances are predictable and exploitable in a real-time forecasting setting. Using
a novel forecast combination scheme with dynamic trimming based on predicted
forecasting performance leads to strongly countercyclical out-of-sample risk premia

estimates and substantial gains in predictive accuracy and economic value.
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1. Introduction

We study time variation in bond return predictability and document predictable shifts
related to economic activity and uncertainty. Existing evidence on bond return predictabil-
ity has mostly been established using linear predictive regressions designed to assess
whether bond excess returns are predictable on average using time series that potentially
span many diverse states of nature.! If predictability shifts over time, however, then an
unconditional approach may be misleading and yield unstable conclusions. The continued
discussion of the degree of predictability in U.S. Treasury bonds is indicative of such
instabilities. In-sample evidence frequently points to predictability by means of variables
such as yield spreads (Campbell and Shiller, 1991), forward spreads (Fama and Bliss, 1987),
linear combinations of forward rates (Cochrane and Piazzesi, 2005), and macroeconomic
variables (Cooper and Priestley, 2009, Ludvigson and Ng, 2009, Cieslak and Povala, 2015,
Eriksen, 2017), but out-of-sample exercises often fail to deliver consistent evidence of
predictability and statistical and economic evaluations often disagree.”? Della Corte, Sarno,
and Thornton (2008), Thornton and Valente (2012) and Sarno, Schneider, and Wagner
(2016), for instance, fail to find economic value of statistical bond predictability.

In this paper, we address this issue by developing a new method that is able to assess
conditional predictive ability among two or more forecasting methods using observable
state variables and identify methods anticipated to be informative of future relative forecast
performance.®> Qur contributions are fourfold. First, we provide new empirical evidence
on predictable state-dependencies in bond return predictability. We document that bond

return predictability shifts over time for a set of predictors well-known to the literature.

!Early studies include Fama and Bliss (1987), Keim and Stambaugh (1986), Fama and French (1989),
and Campbell and Shiller (1991). More recent studies of bond return predictability includes Cochrane
and Piazzesi (2005), Cooper and Priestley (2009), Ludvigson and Ng (2009), Cieslak and Povala (2015),
Eriksen (2017), Ghysels, Horan, and Moench (2018), Berardi, Markovich, Plazzi, and Tamoni (2019),
Bianchi, Biichner, and Tamoni (2019), and Gargano, Pettenuzzo, and Timmermann (2019).

2Bauer and Hamilton (2018) even challenge in-sample predictability by pointing out that standard
regressions are subject to serious small-sample distortions when using overlapping returns. A related point
is made by Wei and Wright (2013).

3Being able to anticipate future relative forecast performance is also relevant viewed in the light of the
numerous studies that provide empirical evidence of model instabilities in predictive models. Prominent
examples include Pesaran, Pettenuzzo, and Timmermann (2006), Giacomini and Rossi (2009, 2010),
Pettenuzzo and Timmermann (2011), Rossi (2013), and Pettenuzzo and Timmermann (2017).



In particular, we consider yield spreads, forward spreads, yield curve factors, forward
rates, and macroeconomic factors. We begin with a standard evaluation of out-of-sample
forecasts generated using a rolling window scheme and find that none of the predictors are
able to reliably outperform the expectations hypothesis (EH) when considering traditional
unconditional predictive ability tests. However, this does not exclude the possibility that
a given method works well in certain states of the world. To facilitate a conditional,
state-dependent view of bond return predictability, we therefore develop a new statistical
test for equal (un)conditional predictive ability among two or more forecasting methods.
The test is a multivariate generalization of the test presented in Giacomini and White
(2006) that enables us to identify forecasting methods anticipated to be informative of
future (relative) predictability.” As such, our test is well-suited to study state-dependencies
and shifts in predictability as it is directly designed to compare two or more competing
forecast methods and reveal differences in relative conditional predictive ability that
would otherwise be hidden in standard unconditional tests of equal predictive ability. We
then employ our test to examine differences in conditional predictive abilities and find
overwhelming evidence favoring state-dependencies in bond return predictability.
Second, we document that these shifts are related to economic activity and uncertainty
measured using the Purchasing Manager’s Index (PMI) (see, e.g. Berge and Jorda (2011)
and Christiansen, Eriksen, and Mgller (2014)) and the index (U) proposed in Jurado,
Ludvigson, and Ng (2015), respectively. We uncover a striking pattern in bond return
predictability across states related to these variables. More specifically, interpreting the
expectations hypothesis (EH) as a no-predictability benchmark, we find that bond risk
premia are predictable in high (low) economic activity (uncertainty) states. Conversely, the
EH implication of constant risk premia provides a reasonable approximation in low (high)
economic activity (uncertainty) states. Consistent with this, we find that out-of-sample R*s
(Campbell and Thompson, 2008) for individual predictors are mostly negative in low (high)

economic activity (uncertainty) states and positive in high (low) activity (uncertainty)

4The test further extends the (unconditional) multivariate Diebold-Mariano statistic (Diebold and
Mariano, 1995) proposed in Mariano and Preve (2012) by allowing for comparison of a mixture of nested
and non-nested models.



states. In short, albeit several predictors fail to provide valuable information on average,
many outperform the EH conditional on the state of the world.

Third, we show that the predictable state-dependencies in bond return predictability
are exploitable for real-time forecasting purposes. In particular, we document sizable gains
in predictive accuracy when evaluated using both standard statistical criteria and when
measuring the economic value from the viewpoint of a mean-variance investor that trades
in the Treasury bond market. To facilitate this analysis, we device a simple and intuitive
dynamic ranking rule for identifying the set of forecasting methods with indistinguishable
conditional predictive ability in real-time. The dynamic ranking rule is inspired by the
Model Confidence Set (Hansen, Lunde, and Nason, 2011) (MCS) for ranking a set of
forecasting methods. A rejection of the null hypothesis of equal conditional predictive
ability implies that one or more methods display superior predictive ability in some or all
states. The rule enables us to predict relative forecasting performance using simple least
squares and, subsequently, to rank the methods according to their predictive performance.
If a single method is selected, then this method constitutes the forecast. If several methods
with equal conditional predictabive ability are identified, then we perform equal-weighted
forecast combination (Bates and Granger, 1969) among the selected methods. We refer
to this strategy as a dynamic forecast combination strategy. It is well established in this
literature that a simple equal-weighted combination forecast is hard to beat (Timmermann,
2006). Yet, as pointed out by Aiolfi, Capistran, and Timmermann (2011), little attention
has been paid to determining the optimal set of models to combine given a potential
pool of candidate predictors. We argue that our dynamic forecast combination schemes
provides a simple and intuitive way to dynamically trim the candidate set of predictors
prior to combination.” Our dynamic forecast combination strategy can thus be viewed as a
dynamic trimming strategy (as opposed to the static version considered in, among others,
Rapach et al. (2010)), where we only combine across forecasts from models anticipated to

display superior predictive ability in the current state.

A large empirical literature documents gains from (statically) trimming forecasts prior to averaging.
Notable examples include Aiolfi and Favero (2005), Aiolfi and Timmermann (2006), Timmermann (2006),
Stock and Watson (2004), Rapach, Strauss, and Zhou (2010), Bjgrnland, Gerdrup, Jore, Smith, and
Thorsrud (2012), and Genre, Kenny, Meyler, and Timmermann (2013).



Fourth, we document that our dynamic forecast combination scheme generates out-of-
sample risk premia estimates that are strongly countercyclical and spikes in recessions. This
is important as nearly all individual predictors (except the Ludvigson and Ng (2009) macro
factor) generates procyclical risk premia estimates. The latter (former) is (in)consistent
with standard finance theory, where risk premia are expected to be high in bad times due
to heightened risk aversion (Campbell and Cochrane, 1999, Wachter, 2006, Joslin, Priebsch,
and Singleton, 2015, Cochrane, 2017). The equal-weighted combination schemes, on the
other hand, generates acyclical forecasts that display no relation to the real economy.
The fact that our dynamic forecast combination scheme delivers strongly countercyclical
out-of-sample risk premia forecasts that improve overall predictive accuracy and economic
value strongly supports our conclusion that our test is able to correctly identify and exploit
shifts in bond returns predictability.

In sum, we provide new empirical evidence of predictable state-dependencies in bond
return predictability that are linked to economic activity and uncertainty. We document
that these predictability shifts are exploitable in real-time and delivers sizable gains in
both predictive accuracy and economic value. The gains originate from our method’s
ability to correctly predict relative forecasting performance and that this leads to better

and economically meaningful out-of-sample bond risk premia estimates.

Related literature Our paper is related to two broad strands of literatures. First, there
is an extensive literature that studies the predictability of Treasury bond excess returns.
Most of the literature focuses on unconditional predictive ability relative to the EH. Yet,
a recent literature has started to document state-dependencies and differences in inference
between statistical and economic evaluations. Della Corte et al. (2008), Thornton and
Valente (2012) and Sarno et al. (2016) find that high statistical predictability does not
translate into economic gains for mean-variance investors in out-of-sample tests. Gargano
et al. (2019) reconcile the seemingly contradictory evidence on the statistical and economic
value of bond prediction models by incorporating stochastic volatility and time-varying
parameters into the predictive regression. They further find that bond return predictability

is significantly stronger in recessions than in expansions. Related in-sample evidence for



time-varying predictive performance is found in Andreasen, Engsted, Mgller, and Sander
(2018) and Andreasen, Jorgensen, and Meldrum (2019). Specifically, Andreasen et al.
(2018) find that bond risk premia are positively (negatively) related to yield spreads in
expansions (recessions) and Andreasen et al. (2019) argue that there is a significantly
stronger relation between yield spreads and bond risk premia during the zero lower bound
period. We contribute to this literature by uncovering novel evidence on predictable
time-variations in forecasting performance for a broad set of well known bond predictors.
We directly test for conditional predictive ability and documents that predictability itself
varies over time and that it is predictable and exploitable. We further contribute to
the understanding of bond market dynamics by demonstrating that relative performance
is closely related to economic activity and macroeconomic uncertainty and that bond
risk premia are predictable in times of high (low) economic activity (uncertainty) states,
whereas the EH provides a reasonable anchor in low (high) economic activity (uncertainty)
states. We also find that our out-of-sample forecasts are consistent with bond risk premia
being high in bad times and spiking in recessions (Campbell and Cochrane, 1999, Wachter,
2006).

Our paper further contributes to a large and active literature on forecasting and forecast
evaluations. First, we provide the first multivariate test for equal conditional predictability
ability. Our multivariate generalization of the Giacomini and White (2006) test provides
forecasters with the opportunity to test equal (un)conditional predictive ability among
many forecast methods without having to rely on multiple testing adjustments, which
would otherwise be appropriate if testing many models against each other on a pairwise
basis (Hubrich and West, 2010). Second, we facilitate easy testing of equal un(conditional)
predictive ability as all our proposed tests are simple Wald statistics with chi-squared
limited distribution as opposed to the non-standard and context-specific distribution
often found in the literature (Clark and McCracken, 2001, McCracken, 2007, Clark and

McCracken, 2012, Gongalves, McCracken, and Perron, 2017).° Third, and in contrast to

6Moreover, our tests are generally invariant to any reordering of the forecasting methods under
comparison, ensuring that conclusions drawn from a single test is unaltered by any permutation of the
ordering of the forecasting methods. This is important as it alleviates the need for incorporating multiple
testing adjustments.



Hubrich and West (2010), Mariano and Preve (2012), and Clark and McCracken (2012),
the proposed tests are applicable to a mixture of both nested and non-nested models, hold
for a general loss function, and allow for non-stationarity in the data. Last, we allow for
comparison of a wider class of forecasting methods not considered in the application of this
paper, including linear, non-linear, Bayesian, and non-parametric methods, something that
is not allowed in the methods proposed in Clark and McCracken (2012), Granziera, Hubrich,
and Moon (2014), and Gongalves et al. (2017) that apply to linear models only. We further
contribute to a literature that studies the impact of trimming forecasts prior to combination.
Makridakis and Winkler (1983) show that the marginal impact of including an additional
method decreases as the number of methods increases. Similarly, Jose and Winkler (2008)
document that trimming or winsorizing improve forecast accuracy and reduce the risk of
large errors. Samuels and Sekkel (2017) find that using the (unconditional) MCS as a
trimming device prior to constructing combined forecasts can greatly improve accuracy
and Diebold and Shin (2018) propose a LASSO-based procedure that sets some combining
weights to zero and shrinks the survivors toward equality. Our approach differs from theirs
by being rooted in a formal multivariate test of equal conditional predictive ability and
by focusing in predicted performance rather than past performance. For comparison, we
implement a version of the unconditional trimming rule (Samuels and Sekkel, 2017) and
find that our conditional trimming provides superior predictive ability. Finally, our work
is related to recent papers studying the predictability of relative forecast performance
(Timmermann and Zhu, 2017, Granziera and Sekhposyan, 2019).

The remainder of the paper proceeds as follows. Section 2 outlines our data and state
variables. Section 3 develops our multivariate statistical tests for equal (un)conditional
predictive ability and introduces our dynamic ranking rule. Section 4 present our main
empirical results on state-dependencies in bond return predictability and Section 5 examines
the sources of conditional predictability. Section 6 examines the link between our out-of-
sample risk premia estimates and the real economy. Section 7 examines the economic value

attainable for a mean-variance investor. Finally, Section 8 provides concluding remarks.



2. Bond return predictability

This section discusses our setting and describes the construction of monthly bond excess
returns and provides summary statistics. We then outline the set of bond return predictors
used in our empirical analysis and their construction and, last, discuss the state variables

used to assess state-dependencies in bond excess return predictability.

2.1. Predictive regression for bond returns

To motivate our study, consider a classic predictive regression model for bond risk premia
of the form

Txgljr)T = k)4 (k’)mt +€§i)77 (1)

where m’gﬂ = pgﬁ?) — pgk) - pgT) denotes the 7-month log excess holding period return on

a k-month zero-coupon Treasury bond and pgk) is the time t log price of a bond with &
months to maturity. We are interested in determining whether a set of predictors x; can
predict bond excess returns, where a natural benchmark is the expectations hypothesis
that implies ® = 0 (i.e. no predictability). Our empirical analysis focuses on monthly
U.S. Treasury bond excess returns (7 = 1) over the period 1962 to 2018 constructed using
the Giirkaynak, Sack, and Wright (2007) dataset and a one-month Treasury bill obtained
from the Center for Research in Security Prices (CRSP) as in Gargano et al. (2019).” The
use of a monthly holding period returns avoids the many issues with persistence induced
from using annual overlapping returns for conducting inference (Bauer and Hamilton,
2018) and may better facilitate the capture of short-lived dynamics in bond excess returns

across economic states (Farmer, Schmidt, and Timmermann, 2019, Gargano et al., 2019).
[Insert Figure 1 About Here]

Figure 1 plots time series of excess returns for bonds with two, three, four, and five
years to maturity, respectively. The same set of maturities are considered in, e.g., Fama

and Bliss (1987) and Gargano et al. (2019). Bond excess returns are notably more volatile

"We detail the construction of monthly log yields and bond prices in the Internet Appendix. The data
are available at https://www.federalreserve.gov/data/nominal-yield-curve.htm.


https://www.federalreserve.gov/data/nominal-yield-curve.htm

during the early 1980s and more calm in the late 2010s. The magnitude of bond risk

premia also appears to narrow towards the end of our sample period.
[Insert Table 1 About Here]

Panel A of Table 1 presents descriptive statistics for our monthly bond excess return
series. We see that longer maturity bonds are more volatile and earn higher excess returns
on average. The Sharpe ratios are generally high and range between 0.46 for the two-year
bond and 0.35 for the five-year bond. Morover, short-term bonds display higher skewness,
kurtosis, and have slightly more persistent excess returns. However, the persistence
in these monthly bond excess return series are substantially lower compared to those
typically observed in studies using annual overlapping bond excess returns (e.g. Cochrane
and Piazzesi (2005) and Ludvigson and Ng (2009)) and the first-order autocorrelation
coefficient never exceeds 0.17 across the maturity spectrum. Panel B of Table 1 provides
contemporaneous bond excess return correlation across maturities and confirms the well
known observation that bond excess returns are highly cross-sectionally correlated across
maturities. Correlation coefficients range from 0.99 to 0.93, where bonds closest to each

other in the maturity spectrum obtain the highest contemporaneous correlations.

2.2. Predictor variables

We consider a set of standard bond predictors from the extant literature. In particular,
we consider yield spreads (Campbell and Shiller, 1991), forward spreads (Fama and Bliss,
1987), principal components of yields (Litterman and Scheinkman, 1991), forward rates
(Cochrane and Piazzesi, 2005), and macroeconomic factors (Ludvigson and Ng, 2009).
In particular, the Campbell-Shiller (CS) yield spreads are computed as
k k

ysi =yt =y, (2)

where yt(k) denotes the time t log yield on a bond with £ periods to maturity and yél)

denotes the safe one-period return measured using the implied yield on a one-month

Treasury bill obtained from CRSP. The Fama-Bliss (FB) forward spreads are computed



similarly as

k k
foi = f9 M) (3)

where ft(k) denotes the forward rate for loans between ¢ + k — 1 and ¢ + k. The principal
component (PC) of yields are computed from the set of 12-, 24-, 36-, 48-, and 60-month
maturity yields and we focus on the first three components often referred to as level, slope,
and curvature. These components account for almost all of the variation in yields. The
Cochrane-Piazzesi (CP) single factor is formed from a linear combination of forward rates

using the projection

TZp1 = 0 + 1ft(12) + 2ft(24) + Bft(gﬁ) + 4ft(48) + 5ft(60) + €41, (4)

. ix12 . .
where 77,11 = i o, mc&l ) can be viewed as the excess return on a portfolio of Treasury

bonds with different maturities. The CP factor is then obtained as CP; = 5 C ~ fi, with
T (e ) and fy = (A AP0 PO A HOY) . Last, the Ludvigson-Ng
(l@) factor is based on a T' x M panel of macroeconomic variables, x, that we assume can

be adequately described by a static factor model, i.e.
Tip = Kige + Vig,, (5)

where ¢; is an s X 1 vector of common factors with s < M that we estimate using principal
component analysis. We use the dataset from McCracken and Ng (2016). Following
Ludvigson and Ng (2009), we build a single factor as a linear combination of a subset of
the principal components. We determine the subset using the BIC and obtain the factor

from a projection of 7Z;,1 onto the set of selected macroeconomic factors.
[Insert Table 2 About Here]

Table 2 presents descriptive statistics for the set of predictors (Panel A) along with
contemporaneous correlations (Panel B). All variables are constructed using the full range
of available observations here, but are constructed recursively in the out-of-sample exercise.

Yield spreads and forward spreads are fairly persistent with first-order autocorrelations



between 0.82 and 0.92 and are heavily cross-correlated. Unsurprisingly, PC2 — the slope
component of the yield curve — is strongly related to both yield and forward spreads. CP
and LN are similarly positively correlated with the spread variables and also positively
correlated with each other. Last, we note that CP and LN are relatively less persistent

compared to the remaining variables.

2.8. State variables

Conventional tests of equal predictive ability gauge if forecasts are equally accurate on
average, not if and when predictors exhibit predictive ability. We are interested in this
latter question and below we develop a new test to address this question in a multivariate
setting. The basic premise of the test rests on the intuition that even if a given predictor
does not display unconditional predictive ability, it may display superior predictive ability
conditional on some states of the world. To identify these states, we need to identity state
variables that are likely to capture fluctuations in forecast losses. We consider two state
variables well-known for their ability to capture salient features of the state and properties
of the business cycle. We use the Purchasing Managers’ Index (PMI) published by the
Institute of Supply Management and the macroeconomic uncertainty index (U) proposed

in Jurado et al. (2015).

2.3.1. Purchasing managers’ index The PMI is an index constructed from a survey of the
manufacturing sector that ranges from 0 to 100 and is released on the first business day of
every month. The index is specifically designed to capture the state of the economy with
values below 50 indicating a recession in the manufacturing economy and is regarded as a
prime leading indicator of the business cycle (Berge and Jorda, 2011, Christiansen et al.,
2014). Using a variable that tracks business cycle fluctuations to assess state-dependencies
in bond predictability is motivated by a recent literature that documents stark differences
in predictive performance for asset returns across different phases of the business cycle
(Henkel, Martin, and Nardari, 2011, Dangl and Halling, 2012, Andreasen et al., 2018,

Eriksen, 2017, Gargano et al., 2019, Farmer et al., 2019).
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2.3.2. Macroeconomic uncertainty U measures a common component in the time-varying
volatilities of h-step ahead forecast errors across a large number of macroeconomic series
that include categories such as real activity, prices, and financial assets.® The index is
therefore associated with the variance of the unpredictable components of macroeconomic
variables.” Macroeconomic uncertainty has recently been identified as an important
contributor to business cycle fluctuations (Bloom, 2009, Ludvigson, Ma, and Ng, 2019)
and asset prices (Drechsler, 2013, Bali, Brown, and Tang, 2017, Borup and Schiitte, 2019).
Moreover, it has recently been been used to study state-dependent performance of affine
term structure models (Sarno et al., 2016). Last, uncertainty is likely to be linked to risk
aversion (Bekaert, Engstrom, and Xu, 2019), which bears direct influence on the required

compensation for bearing interest rate risk.
[Insert Figure 2 About Here]

Figure 2 displays the evolution of the two state variables over time. Green (yellow)
shaded ares represent periods of (high) low activity and uncertainty, respectively, where
high (low) episodes are identified using the 80% (20%) quantiles of their time series. PMI
and U are both persistent series with first-order autoregressive coefficients of 0.94 and
0.99, respectively. PMI (U) mostly takes on (low) high values in bad times and the two
series realize a full sample correlation of —0.48, suggesting that the series are related, but
not perfect substitutes. For our purpose, we remain agnostic about the lead-lag relation
between uncertainty and the macroeconomy, but note that Ludvigson et al. (2019) provide
evidence that higher macroeconomic uncertainty in recessions arises as an endogenous

response to output shocks (see also Andreasen (2019)).

8We focus on the index associated with h = 1 step ahead forecast errors to match the holding period
of the bond as well as the data frequency in general.

9An alternative is the macroeconomic uncertainty index proposed in Rossi and Sekhposyan (2015),
although its quarterly frequency puts it at a disadvantage compared to the monthly frequency of the
Jurado et al. (2015) index.

11



3. Multivariate tests for equal predictive ability

This section introduces our econometric methodology. We develop a multivariate test for
equal conditional predictive ability, present our main forecasting methods and hypotheses,

and discuss applications within dynamic forecast selection and combination.

3.1. Notation

To introduce a general notation, let w; = (y;, «;)’ be an observed vector defined on the
probability space (Q,F,P), where y; is the target object of interest and x; is a vector
of predictors. We consider a setting where p + 1, p > 1, methods are available for
forecasting 7 periods into the future. We denote the forecast of y;,, originating a time ¢

N . i ) -
by fi, =f (wt,wt_l, ey Wy i Gtvmi) for i =1,...,p+ 1, where f* is a measurable

~T

forecast function. @, . denotes the parameter estimates used to construct the forecast for

tomi
the ith forecasting methods obtained using observations from the m® most recent periods
in the past. For ease of exposition and along the lines of Giacomini and White (2006),
we define m = max {m',...,mP™} and require that m < co. This excludes expanding
window forecast schemes from our test, but allows for rolling window estimators. The
number of out-of-sample forecasts is ' = N — (m + 7 — 1) with a total sample size of N
(time series) observations. In order to assess the forecasting ability of each forecasting
method, we use a real-valued loss function L;, . (YHT, ft’ +T). Important examples of L
include economic measures such as utility or profits (Granger and Machina, 2006) and
statistical measures such as the square or absolute value of the forecast errors (West, 2006),
where forecast errors are given by e}, = ff +r — Yi+r- To ease the notational burden, we

suppress the arguments of L and write the ith loss function as L?, _ for the remainder the

t+7

of the paper.

3.2. Rolling window forecasts

Our out-of-sample analysis is based on conventional predictive regression models of the form

presented in (1), which is arguably the most common methodology on forecasting bond risk

12



premia (see, e.g., Gargano et al. (2019)). We note, however, that our econometric framework
is not limited to such regressions, but naturally extends to a broad array of parametric,
non-parametric, and Bayesian methods. We consider a set of p methods, indexed by i,
defined by the set of predictors outlined in Section 2.2 in addition to the natural EH
benchmark. The predictive regression models will be estimated by a rolling window
OLS scheme, in accordance with our and Giacomini and White (2006) assumptions, and
forecasts generated at time ¢ according to (suppressing maturity-dependence for notational

simplicity)

flow="14 i, (6)
N . oA /
fori=1,...,p+1with 0, = ( b t) . The benchmark EH forecast naturally includes

no predictors and is simply defined as fg ., = "1, which is consistent with a no-predictability

interpretation as implied by financial theory.

3.3. The hypothesis of equal conditional predictive ability

We are interested in formally evaluating whether a set of p+ 1 forecasting methods display
equal conditional predictive ability using some o-field (information set), §;. That is, we

want to test the hypothesis that

Hy: E [<§+,|9t] —E [{iiﬂst] ( i=1,....p, (7)
or equivalently that
HO: E [ALt+T’9t] = 0, (8)

where AL, = (ALLFT, . ,ALerT)/ and AL, = L., — LI} for j = 1,...,p and
where Lj, _ is the loss function for the ith method. This null hypothesis offers three main
advantages. First, it allows us to study conditional predictive abilities and identify if

and when there are differences in the competing models’ conditional predictive accuracy.

13



This is distinctly different from testing whether methods have equal predictive accuracy
on average. Indeed, a given forecasting method can display superior predictive ability in
certain states of the world as captured by G, yet still perform poorly on average. In other
words, the null hypothesis implies that G, is uninformative about the relative predictive
accuracy of one or more forecasting methods when forecasting the object of interest 7
periods into the future. A rejection of the null hypothesis, conversely, implies that relative
predictive accuracy is predictable by G; and that this may be exploited to improve forecasts.
Second, if G; is set to the trivial o-field, §; = {0, }, then the null hypothesis becomes
unconditional and, as such, comparable to the one considered in Mariano and Preve
(2012). In this case, the hypothesis test provides information about the average predictive
ability of the forecasting methods as in Diebold and Mariano (1995) and West (1996).
Third, the loss functions depend explicitly on the parameter estimates and not on their
probability limits, leading to a test statistic that takes into account estimation uncertainty.
Importantly, by allowing for asymptotically non-vanishing estimation uncertainty, the test
can accommodate the empirically relevant case of inclusion of nested models in the set
of forecasting methods which is a feature that the (unconditional) multivariate test in
Mariano and Preve (2012) cannot handle.!Y This is particularly important in our context

as the EH model is nested within every competing forecasting model coming from (1).

3.4. The multivariate test statistic

The null hypothesis in (8) is equivalent to stating that
Ho: E [ ALy | 6 0 (9)

for all G;-measurable functions ;Lt. We restrict attention to a subset of these functions that
~ ~ /
we gather in the g-dimensional vector h; = (hgl), ceey h,@) . We refer to this vector as the

state function. For this choice of state function, we can reformulate the multivariate null

OTechnically, with §; = {0, } and asymptotically vanishing estimation uncertainty the standard
errors of differences in forecast performance between a set of nested models will equal zero, leading to
non-standard limiting distributions of the test statistics.
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hypothesis of equal conditional predictive ability as follows
Hon:Elhy ALy, =0, (10)

where the subscript h indicates the dependence on the state function and  denotes the
Kronecker product. The specification in (10) is a natural multivariate extension of the null
hypothesis in Giacomini and White (2006). Indeed, we obtain their econometric framework
as a special case when p = 1.

Our empirical analysis focuses on one-step ahead forecasting, 7 = 1, as is common in
the bond return predictability literature and we consider an information set G;, F, C G,
containing the state variables discussed in Section 2.3. We view this setting our leading
example, but provide theoretical results for multi-step ahead forecasting, i.e. 7 > 1, in the
Internet Appendix along with our assumptions that are identical to those of Giacomini and
White (2006). Finally, let d;,1 = hy AL, ;. We then consider the following quadratic

statistic
Sy =Td3X; d, (11)

where d = T-' YL dyyy, and B = T YL dyyad,, , is a (gp x qp) sample covariance
matrix that consistently estimates the variance of d,,,.'" That is, S, is a natural Wald
statistic constructed for testing whether d is a zero vector. When formulating an alternative
hypothesis, one must take into account the generality that data is allowed to exhibit non-
stationarity. We provide a discussion in the Internet Appendix. For some ¢ > 0, we

formulate the alternative in line with Giacomini and White (2006) as

mucE ][> (12)

for all T" sufficiently large. Under stationarity, the null and alternative hypothesis are

1'We note that for large values of ¢ and/or p, the dimension of ¥7 and d may become large, potentially
leading to issues with statistical inferences in finite samples. We propose remedies in Borup and Thyrsgaard
(2017), but note that our empirical analysis use single instruments together with p = 6, leading to reasonable
dimensions.
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exhaustive. Under non-stationarity, this may not necessarily be the case. If an important G;-
measurable variable is omitted from the state function, it may happen that E [El/} [El} =0
for a particular sample size due to, for instance, shifting means without the null hypothesis
being true. As an example, one could easily imagine a situation where one method
outperforms (some of) the other methods in certain states, while it performs worse than
the same methods in other states. Therefore, the test has little power against alternatives
where the loss differentials are correlated with §,-measurable random variables not included
in the state function. While this concern is important, it also highlights the flexibility of
the test statistic. As mentioned above, the econometrician chooses the state function to
include state variables relevant for disentangling the forecasting abilities of two or more
forecasting methods. The test therefore only provides power in situations when this is
possible. As a result, the test statistic changes with the choice of state function and the
subscript in Sy in (11) emphasizes this.

The asymptotic properties of the test statistic are summarized in Theorem 1 and the

proof can be found in the Internet Appendix.

Theorem 1 (One-step multivariate conditional predictive ability test). Sup-
pose Giacomini and White (20006) type assumptions hold (Assumptions 1-3 in the Internet

Appendiz). Then the test statistic has the following properties.

A. Asymptotic distribution under the null. For forecast horizon T = 1, state

Junction sequence {h;}, m < oo, and under Hy in (8),

Sp L\ (gp), as T — oc. (13)

B. Consistency under the alternative. For any ¢ € Ry and under Hy,, in (12),

P[S,>c—1, as T — oc. (14)

C. Permutation invariance. Let Ly , be an arbitrary permutation of the forecast

16



losses, and define ALy | = DLy, where

(—1 0 ... 0

0 1 -1

({ 0 1 —1_(

is a p x (p+1) matriz. Let d = T-'SL, d; , with d; , = h, AL; , and 3=

1 T * !
T 2t=1di1di . Then,

St =Td", (fi})l d. =S, VT (16)

We provide a corresponding result for the unconditional, possibly multi-step, case, in
the Internet Appendix. This case, where we compare the average performance of the
methods over the out-of-sample window, is obtained by setting h; = 1 for all £. The
limiting distribution is x? (p) for a test statistic that employs a HAC type covariance
matrix estimator. In the case of the conditional test and multi-step forecast horizons an
identical x? (¢p) limiting distribution is obtained when using an appropriate HAC type
covariance matrix estimator to capture arising serial dependence.'?

Although any reordering of the forecasting methods alters the dynamics of d;,q,
Theorem 1.C. shows that we obtain the same value of the test statistics and the same
limiting distribution under the null hypothesis for each permutation (reordering) of the

forecasting methods, irregardless of the null being true or not. This is important as it

allows the researcher to perform just a single test.

3.5. Understanding the test

To provide an intuitive understanding of our test statistics, we consider the simplest case

of p =1, where the problem reduces to a comparison between a single forecasting method

2Borup and Thyrsgaard (2017) provide Monte Carlo evidence for all test statistics. They show that all
tests display good size and power properties in dimensions similar to the ones considered in this paper.

17



and a benchmark. An unconditional test is equivalent to the regression

ALip1 = @0 + N1, (17)

where the null hypothesis that ¢y = 0 can be testing using a standard t-test using
an appropriate HAC type of covariance estimator. The conditional test augments the
regression with a set of state variables. Our empirical study considers a single state variable
(plus a constant) at a time to facilitate economic interpretation. Suppose, accordingly,
that we have a single state variable h,, then the conditional test amounts to running the

extended regression

ALy = phy + 100 = o + 901ilt + Net1, (18)

with ¢ = (¢o,¢1) and h, = ( ,ﬁt)l being the state function.'® In this case, we are
interested in testing jointly ¢g = 0 and ¢; = 0 using a Wald test and an appropriate
estimator of the covariance matrix. The limiting distribution under the null hypothesis is
equivalent to the ones provided in Theorem 1. From (18), it is clear that a rejection of
1 = 0 indicates that there is information in the state variable that informs about future
relative predictability of the models under consideration. That is, there is evidence of
state-dependency. Importantly, the expression in (18) is nothing more than a full sample
predictive regression similar in spirit to (1) estimated over the out-of-sample window. The
key difference being that (18) predicts the future relative predictive ability among the
candidate forecasting methods using state variables whose values are observable at the
construction of the forecast and are picked by the researcher. We refer to them as state
regressions in the following. These ideas naturally extend to our case of p > 1, resembling
a seemingly unrelated regression (SUR) type of interpretation of our test statistic. We will
make use of this insight below when formulating a simple decision rule to exploit rejections
of the null hypothesis to dynamically select or combine among forecasting methods with

indistinguishable predicted performance.

13If one uses several state variables in addition to the constant, this amounts to a multiple regression
and joint inference on all parameters.
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3.6. Ranking of forecasting methods

Rejection of the null hypothesis suggests that one or more of the forecasting methods exhibit
superior predictive ability in certain states. However, it provides no guidance towards
which method(s) that causes the rejection and display(s) the strongest predictability.
The identification of the method(s) is of both economic and practical interest. Central
banks, international organizations (IMF, OECD, and the World Bank), and professional
forecasters (SPF and Blue Chip) frequently generate forecasts that are widely followed
by market participants and policy makers. Designing routines that can identify forecasts
and/or forecasters that are predicted to do well in a given state of the world therefore
seems worthwhile. To that end, we propose a simple and intuitive algorithm that ranks
forecasting methods based on their predicted performance with respect to one or more
state variables and identifies the set of best methods. This set may consists of a single
model, all models, or any number of models in between. It depends on the ability of
the state function to accurately inform us about any, possible time-varying, differences
in predictive accuracy. This procedure reveals potential fluctuations in predictive ability
over time, similar in spirit to the fluctuation test of Giacomini and Rossi (2010), but also
suggests why these fluctuation occurs due to the use of state variables. The procedure can
also be applied dynamically, at the forecast origin date, to select forecast methods that is
expected (conditional on G;) to yield the lowest loss at a future time point and to conduct
conditional combination techniques. In formulating the algorithm, we consider a MCS-type
procedure (Hansen et al., 2011) to eliminate methods according to an elimination rule and
rank forecasting methods into a best set whose elements have equal predicted conditional

predictive ability.

3.6.1. Full out-of-sample ranking rule We first device a statistical algorithm for ranking all
forecasting methods based on their predictive accuracy conditional on the state variable(s)
over the fill sample. In line with our empirical analysis below, we will formulate the
rule using a single state variable in addition to the constant, but note that it can be

extended directly to a setting with several state variables. Since h; may be continuous,
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we assume that it can be classified into a finite set of A discrete, non-empty, states s,
a=1,...,A. For example, the state variable can be a measure of economic growth, which
may be classified into recessionary or expansionary states, or a measure of macroeconomic
uncertainty, which may be classified into low, medium, and high uncertainty states.

Let M° be the set of the p + 1 forecasting methods under consideration and M} a set
of best forecasting methods in terms of some loss function within the ath state. We then

consider the following three-step procedure.

Step 0: Set M, = M° for a =1,..., A. Estimate by OLS the regression model
ALy =@ hy + 1 (19)

for all pairwise combinations of forecasting methods, j =1,...,p x (p+1) /2. The
conditional expectation of the loss differentials within each state, E [AL{+T|S = sa} =
) + QIR [ﬂt\s = sa} a=1,...,A, is approximated by @} + g?){,&%, where fif is the
sample average of the state variable h, in state s,. Based on those estimated
conditional means, rank all p + 1 methods (using a normalization of one method)
in all states. The forecasting method with lowest predicted loss across all pairwise
combinations is ranked first and similarly the method with highest predicted value

is ranked at last.
Step 1: Run the multivariate test for equal conditional predictive ability.

Step 2: If the test is not rejected, set M = M,. Otherwise, eliminate the lowest
ranked forecasting method from M, based on the ranking that associates with state

a. Iterate Steps 1-2 until the null is no longer rejected for all A states.

Concluding the algorithm leads to a set M, for each state s, that contains the best
forecasting methods statistically indistinguishable in terms of predictive ability. A few
remarks are worthwhile here. First, the ranking rule exploits the state regression in-
terpretation of our test statistic and is, as such, strongly rooted in econometric theory.

Second, since the elimination of models is based on state-specific ranking, it will capture
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the state-dependency of predictability over the full out-of-sample period which proves
insightful in the empirical analysis below. Third, since the algorithm provides sets of equal
predictive ability within each state it can be thought of as a version of a conditional MCS
algorithm. Last, since the test is permutation invariant as per Theorem 1, we only need to
run it once for each time Step 2 is conducted, even though the elimination of models alters
the ordering of models. However, the ranking of all models in Step 0 is not permutation
invariant and requires, as such, an examination of all combinations. Fortunately, this step

is only conducted once and has little computational demands being based on least squares.

3.6.2. Dynamic ranking rule The above full out-of-sample ranking rule is not applicable
for real-time forecasting as Step 0 depends on a regression over all out-of-sample periods.
We therefore formulate a dynamic rule that enables researches to select and/or combine
among methods conditional on the realization of the state variable at the time of the
forecast. To that end, we divide the out-of-sample window into two parts. The first part is
used for initially estimating the state regression and the second part for forecast selection
and/or combination. Suppose that the first part has length 7} and that the second part has
length T, with T} + T, = T. We then propose the following three-step ranking algorithm

at each time point t =m +1Ty,...,N — 1.

Step 0: Set M; = M,. Estimate by OLS the regression model
ALy = @ h 41 (20)

over a rolling window of length T} for all pairwise combinations of forecasting
methods, j = 1,...,p X (p+1) /2. The conditional expectation E {AL{H]QJ is
estimated by @’h, = @) 4+ ¢ h, which measures the time ¢ prediction of the future
j'th loss differential using current information in the state variable. Based on those
predictions, rank all p + 1 methods (using a normalization of one method). The
forecasting method with lowest predicted loss across all pairwise combinations is

ranked first and similarly the method with highest predicted value is ranked at last.
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Step 1: Run the multivariate test for equal conditional predictive ability.

Step 2: If the test is not rejected, set M, = M;. Otherwise, eliminate the lowest
ranked forecasting method from M based on the ranking of predicted forecast losses.

Iterate Steps 1-2 until the null is no longer rejected.

This algorithm is a real-time version of the full out-of-sample version above that allocates
forecasting models at each time point ¢t = m + T},..., N — 1 into a set of the best models,
M}, with lowest expected forecast losses, using the current information in the state
variable.* Since this ranking is conducted at the same time forecasts are generated, it
provides valuable information about the usefulness of a given set of models to base current

predictions upon.

3.7. Forecast combination

We then formulate a simple and natural procedure for exploiting this ranking of predicted

performances at each time t. Let ﬁ’ﬁrl denote a combination forecast given by

~ 1 ~.
ft*+1 = #Wiz_<fi+u (21)

eM;

where #M; denotes the cardinality of (number of elements in) M;. If M} consists of
a single forecasting method, then we rely on that single method for forecasting. If M}
consists of more than one method, we perform forecast combination within the set of best
models. To keep focus on the ability of our method to identify the best set of models, we
consider the simplest possible combination scheme: equal-weighting.'® The equal-weighted
combination scheme has a long tradition in the forecasting literature and is empirically
hard to beat as it involves no estimation error in weights (Timmermann, 2006, Rapach
et al., 2010). Other combination schemes are naturally possible, e.g. using estimated

least squares weights, possibly with shrinkage to equal weights (Bates and Granger, 1969,

MNote also that it does not require a categorization of the state variable into discrete states.

15While one could possibly increase forecast performance further by considering more complicated
combination schemes, this is not the aim of our paper. Instead, we focus on the ability of our method
to discriminate between forecasting methods that are predicted to perform well and those predicted to
perform poorly and show that this does indeed lead to significant improvements.
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Granger and Ramanathan, 1984, Zellner, 1986, Diebold and Pauly, 1987). Our proposed
combination scheme is essentially an equal-weighting principle, but with the modification
that we dynamically trim the set of models prior to combination, where the trimming
is based on the predicted losses from our dynamic ranking rule. In the case of only two
models, p = 1, this reduces to the switching rule provided in Giacomini and White (2006).
Timmermann and Zhu (2017) formally show that forecast improvements are guaranteed
when state variables are powerful and Granziera and Sekhposyan (2019) provide empirical

evidence.

3.8. A check of size and power properties

To check the finite sample properties of our tests, we perform a Monte Carlo study. We
focus on their size and power properties in settings corresponding to its application in
both a full out-of-sample analysis and when used in the dynamic ranking rule.

We examine a situation where the forecasts have equal predictive ability unconditionally,
but conditional on some state variable h; at least one of the forecasts are more (or less)

accurate than the others. The data-generating process is set to

ALyt = p(hy — 0) + €041, (22)

where P[hy = 1] = g and P[h; = 0] = 1 — p. To allow for the presence of estimation error
(approximately) asymptotically, as delineated by our theoretical setting, we re-sample
with replacement from de-meaned loss differentials from our empirical analysis when
generating €,.1. In this way they maintain every influence of the estimation coming the
forecasting models as well as ensure simulated time series that exhibit realistic empirical
behavior. Note also that E[AL; 4] = 0, together with E[AL;1|h; = 1] = (1 — o) and
E[AL, 1|k = 0] = —po. That is, the unconditional null hypothesis is true, whilst the
conditional one is not necessarily so, depending on the value of (the elements in) p and p.

We consider three sample sizes; a short, medium, and long length. The medium size
equals the length of our full out-of-sample window, T" = 348, the short size equals the

sample length used in the dynamic ranking rule in the application, 77 = 120, and the long
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size is set to 1,000 observations. Consistent with our empirical analysis, we set p = 5 as the
number of models under comparison less one due to the computation of loss differentials.
Since our ranking rules eliminate a model sequentially until it no longer rejects, we consider
the full range p = 1,...,5. When p < 5, we randomly sample without replacement (in any
random order) among our full set of models and subsequently reconstruct loss differentials
based on the selected models. Note that any reshuffling of the order of models has no
influence on the test statistic due to its permutation invariance, presented in Theorem
1, such that it has no influence on the performance of the test statistic within a fixed
p. To obtain (samples of) &;,1, we consider two separate cases, using the empirical loss
differentials resulting from forecasting each of the 2-year and 5-year bonds, respectively.
We set p = 0.4, since this links to our findings below that documents notable superior
predictability of at least one model in each of the high and low economic activity or
uncertainty states, and less differences in predictive accuracy within the normal state. We

use 10,000 Monte Carlo replications.

3.8.1. Size properties To examine the size properties of our test, we set u = 0 such
that both the unconditional and conditional null hypothesis are true. We consider two
implementations of the test. The first is unconditional and uses h; = 1 for all ¢, whereas a
conditional implementation uses h; = (1, h;)’. The results are reported in Table 3 for a
significance level of 5%. Conclusions are identical using a 1% and 10% significance level,
and relevant tables are available upon request.

It is clear that both the conditional and unconditional tests are well-sized, showing
negligible deviations from the nominal significance level. Those minor deviations generally
decrease in sample size and increase in number of models under comparison. It is comforting
to note that the tests maintain good size properties for the short sample size used in the
dynamic ranking rule. There is no notable difference when sampling from loss differentials
associated with the 2-year or 5-year bonds, except from in the short sample case where

the 5-year bond loss differentials lead to a slight undersizing.
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3.8.2. Power properties To examine the power properties of our test, we let the first
element of p deviate from zero, and set the remaining elements equal to zero in a similar
style to Mariano and Preve (2012). Denote this first element by p;. The deviation is
anchored in the empirical loss differentials, making it realistic in the context of the present
paper. Specifically, we compute the average absolute loss differentials across all models
within the low and high activity states defined in the empirical section below, denoting
it by ). We then set yu; = ¢f) where ¢ € [0,2.5]." Given the specification in (22) and
0 = 0.4, this allows py to deviate at most 1.5 times the empirical value of average absolute
loss differentials. We have also implemented a version that lets all elements of p deviate
from zero with a fraction c of each respective element’s average absolute loss differentials
within the low and high activity states. The power is uniformly stronger in this case, and
results are available upon request. Note also that, in both versions, the unconditional
null hypothesis remains true. We therefore set h; = (1, ;)" and examine the power of the
conditional version of our equal predictability test. The power curves for a 5% significance
level are depicted in Figure 3. Conclusions are identical using a 1% and 10% significance
level, and the results are available upon request.

In line with the theoretical power result in Theorem 1, the test is consistent under
the (local) alternative considered, as power increases to unity for stronger deviations
from the null. It correctly exhibits empirical rejections equal to the nominal size at
¢ = 0. Power is stronger for less model comparisons, as expected, but the difference is
not substantial. As was the case for the size properties, it is comforting that the test
exhibits good power properties even for the relatively short sample length. To put this
into context, for ¢ = 1/p = 1.67 we recover the empirical value of the mean absolute values
of loss differentials obtained in the empirical analysis when using (22). In this case, the
power exceeds 0.94 for the smallest sample size and p = 5, showing very desirable power
properties. There is no notable difference when sampling from loss differentials associated

with the 2-year or 5-year bonds.

16We also ran the simulation using U as state variable, yielding similar conclusions, yet somewhat
stronger power.
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4. State-dependencies in bond return predictability

This section discovers novel evidence on predictable state-dependencies in bond excess
return predictability. We first compute standard out-of-sample forecasts using a rolling
window and then conduct full sample tests for equal (un)conditional predictive ability
among a standard set of bond predictors using state variables capturing economic activity
and uncertainty. Last, we document substantial gains in forecast accuracy from using
a simple dynamic decision rule that exploits predictable differences in relative forecast

performance.

4.1. Out-of-sample predictability

We begin our empirical analysis by gauging the unconditional predictive ability of our
predictors individually using a rolling window estimation scheme in which predictors and
parameters are estimated recursively using information available at time ¢ only. We use
the period January 1962 to December 1989 as our initial estimation period, the period
from January 1990 to December 1999 as initial our testing period, and the period from
January 2000 to December 2018 as our evaluation period. We focus on U.S. Treasury
bonds with £ = {24, 36, 48,60} months to maturity and consider models based on the
predictor variables outlined in Section 2.2.'7 To evaluate the out-of-sample performance of
the predictive methods relative to the constant expected return benchmark implied by the
EH, we compute the out-of-sample R? statistic proposed in Fama and French (1989) and
Campbell and Thompson (2008)

RQOS,i,k =1- (23)

where ﬁ:((i)u and ﬁ:gi)l gy denote the forecast from the ith predictor model and the

EH benchmark, respectively, R = m + 17 denotes the end of the testing period, and N

denotes the total number of observations. The R% ¢ statistic in (23) is thus equivalent to

170ur choice of k is motivated by previous research that similar focuses on these maturities, e.g. Fama
and Bliss (1987), Cochrane and Piazzesi (2005), Ludvigson and Ng (2009), and Gargano et al. (2019).
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MsPE®
- -
MSPE),

R%¢ > 0 implies that the MSPE of the ith predictor model is lower than that of the EH

one minus the ratio of mean squared prediction errors, i.e. R3q,, = n
benchmark model, indicating higher predictive accuracy. We interpret the EH model as
a no-predictability benchmark and test the null of no predictability (RQOS < 0) against
the one-sided alternative of predictability by the ¢th predictor model (R?)S > O) Gsmg the

Diebold and Mariano (1995) (DM) test for equal predictive ability.'®
[Insert Table 4 About Here]

Table 4 reports R%g values and DM p-values for our predictor models across the
maturity spectrum. The key observation from this table is that no individual model is
able to convincingly outperform the EH benchmark unconditionally for all maturities.
Most models deliver negative R4 values and those that are positive are far from being
significant at any of the conventional levels.'” These results are in line with Gargano et al.
(2019), who similarly find few positive RZ ¢ values for linear predictive models. Like us,
they find forward spreads to consistently be among the best predictor of monthly bond
excess returns for short maturities and LN the best for longer maturities. However, we
find poorer performance for CP using rolling window regressions, indicating that bond
return predictability is sensitive to the forecasting setup.?’ Last, we consider a simple
equal-weighted forecast combination scheme (Bates and Granger, 1969, Timmermann,
2006, Rapach et al., 2010). We denote this combined forecast by EW. The combined
forecast generates positive RZ ¢ values from 6.08% for the two-year bond to 4.58% for the
five-year bond. These values are all significant according to the DM p-value at the five
percent level. That is, although no individual predictor is able to consistently outperform

the EH, a simple equal-weighted average of the individual forecasts is.

[Insert Figure 4 About Here]

8Note that this is the unconditional version of the test statistic in Giacomini and White (2006) which
is nested within our framework for p = 1.

19We provide in-sample predictive regression results in the Internet Appendix, where we show that our
set of predictors are reliably related to bond risk premia when using the full range of available information.

20In unreported results, we indeed find that most of your RQOS values improve when considering
a forecasting environment with an expanding window instead. However, the qualitative results and
conclusions are very similar.
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Figure 4 plots the cumulative difference in squared prediction errors (CDSPE) between

the EH and the ith predictor model

t 9 t )

CcosPEy = 3 (i)' - 3 (el -mg)
I=R+1 < =Rl <

Ek)lji and 7/’:765’6)17 gy denote the

where R + 1 denotes the time of the first forecast and 7z (

, respective(;. This graphical

device is suggested by Goyal and Welch (2008) as a way to assess relative performance

forecast from the ith predictor model and the EH benchmar

over time (and is thus indirectly a visual inspection of state-dependencies). Figure 4 plots
the CDSPEs against economic activity and uncertainty states identified using PMI and
U, respectively, to assess the relation between relative forecasting performance and our
state variables. The plots supports the use of conditioning variables that tracks salient
features of the business cycle and that these are related to relative predictive abilities. For
instance, CS and FB derive a sizable portion of their overall positive performance from
high (low) economic activity (uncertainty) period. This is consistent with Andreasen et al.
(2018). Moreover, CS and FB appears to provide valuable information over the 2008 to
2018 periods, which is consistent with the stronger relationship between the slope of the
yield curve and future excess bond returns documented in Andreasen et al. (2019). PC and
CP are consistently poor, and especially so in low (high) economic activity (uncertainty)
periods, whereas LN initially performs well, but particularly poorly at the end of the latest
financial crisis. Consistent with the positive R% ¢ values in Table 4, the equal-weighted

forecast combination (EW) performs well over the entire evaluation period.

4.2. Testing for equal conditional predictive ability

The previous section establishes that linear predictive methods are unable to reliably beat
the EH on average. However, this does not exclude the possibility that some methods
provide significantly better forecast in certain states of the world. To investigate this
hypothesis more formally, we consider our multivariate test for equal conditional predictive
ability introduced in Section 3. A rejection of the null of equal conditional predictive ability

implies that some methods are better than others and that relative forecasting performance
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is predictable by the state variable(s). If conditional forecast performance is predictable,
then it may be possible to exploit this information to generate more informative forecasts.
A natural way to do so, which we explore in more detail below, is to combine across
forecasts methods with indistinguishable conditional predictive ability. Throughout the
empirical analysis, we consider three specifications for the state regression. First, we
consider the information in PMI to examine if predictive ability is related to economic
activity and specify the state function as h, = (1, PMI,)". Second, we specify h;, = (1,U;)’
to study the effect of macroeconomic uncertainty. Last, we also consider an unconditional

version of the multivariate test in which we set h; = 1 for all . We denote this by NONE.
[Insert Table 5 About Here]

Table 5 reports test statistics and corresponding p-values for our multivariate test
for equal (un)conditional predictive ability over the evaluation period using the three
specifications for the state regression discussed above using: PMI, U, and NONE. The
implementation is based on a sample covariance matrix as dictated by theory (see Section 3
and the Internet Appendix).?’ We find strong rejections of the null hypothesis of equal
conditional predictive ability for both specifications of h; that uses conditioning information
representing salient features of the business cycle across all maturities, indicating that there
is substantial evidence favoring state-dependencies in bond excess return predictability.
The unconditional test, on the other hand, fails to reject equal predictive abilities across all
models and maturities. In other words, our choice of state variables enables the detection

of conditional differences.

4.3. Full out-of-sample period ranking and elimination

Having established that bond return predictability is state-dependent and related to state
variables tracking economic activity and uncertainty, we now turn to a more detailed

analysis of this link. We first study the ranking and elimination of models over the full

21'We note that NONE should, in theory, by evaluated using a HAC estimator, but we use a sample
estimator here to ease comparison. However, results are both qualitative and quantitatively similar when
employing a Newey and West (1987) estimator with a bandwidth of 12 lags.
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out-of-sample period and, subsequently in Section 4.4, how to use the information in a

real-time forecasting exercise.
[Insert Figure 5 About Here]

Our state variables, PMI and U, are continuous variables. To facilitate interpretation
and later empirical analyses, we therefore classify our sample into low, normal, and high
economic activity (uncertainty) periods using the 20% and 80% quantiles of the time series
for PMI (U), similarly to Rapach et al. (2010). Figure 5 illustrates the full out-of-sample
elimination order of the predictive models when conditioning on the low, normal, and high
PMI and U states, respectively, using a 10% significance level. Specifically, whenever we
reject the null of equal predictive ability, we use the ranking rule discussed in Section 3,
which determines the order of elimination and the best set of models within each state. The
patterns that emerge are striking. First, the EH is always excluded in the high economic
activity state across the entire maturity spectrum. If we interpret EH as a no-predictability
benchmark, this implies that bond risk premia are predictable when economic activity is
high. Conversely, the EH is always included in the best set of models in the low economic
activity state, suggesting that bond risk premia are unpredictable when the economy is
doing poorly. This is consistent with the in-sample result in Andreasen et al. (2018) which
focus on yield curve slope risk only. LN, PC, FB, and CS are instead (mostly) included
in (excluded from) the best set of methods in periods with high (low) economic activity.
Using U as our state variable produces similar results. The EH is always included in
(excluded from) the best set of methods in high (low) uncertainty states. Last, the EH
is usually included in the best of methods in normal times, where LN, CP, and PC are
usually excluded.

Overall, we argue that our empirical results are consistent with, and clearly points
to, state-dependencies in bond excess return predictability linked to economic activity
and uncertainty. Bond excess returns are predictable in states with high (low) economic
activity (uncertainty), whereas the EH serves as a reliable anchor in the remaining states

of the world.
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4.4. Dynamic forecast combination

Bond excess return predictability displays state-dependencies over the full out-of-sample
period. As a natural next step, we investigate if they can be exploited to improve out-
of-sample forecasts in real-time. As detailed in Section 3.6.2, we consider a dynamic
rule that enables the identification at each point time of the best set of methods with
indistinguishable conditional predictive ability. If the set consists of a single method, then
we rely on the forecasts for that method. If the set consists of two or more models, we
perform forecast combination within the set using equal weights. Forecast combination
has since the seminal work of Bates and Granger (1969) been viewed as an elegant way
to improve forecast accuracy and combinations of individual forecasts often deliver more
accurate forecasts than using the single best model (Timmermann, 2006). However, as
pointed out in Aiolfi et al. (2011), little focus has been put on determining the optimal
set of models to combine given a potential pool of predictors. We view our procedure
as a way to do exactly that. It identifies the best set of forecasting methods whose
conditional predictive ability is indistinguishable.?> We denote this set by M} and note
that its composition may vary over time and is identical to the standard equal-weighted
combination forecasts when all models exhibit equal conditional predictability, whereas it
collapses to dynamic method selection if the set is a singleton. For cases in between, we
simply average across the selected forecasting methods in M.

Panel B of Table 4 presents the results for our dynamic forecast combination scheme
using PMI and U, respectively, as conditioning variables and using NONE as the uncondi-
tional alternative. This unconditional alternative is related to Samuels and Sekkel (2017)
who suggest trimming a given set of models using a recursive implementation of the MCS.
Our conditional alternative achieves trimming using a conditional MCS idea with the
elimination based on the predictability of bond excess return predictability. One can view
this as a dynamic extension of the trimming strategy considered in, among others, Rapach

et al. (2010). Strikingly, this strategy delivers positive R% ¢ values relative to the EH across

22Recent alternative suggestions include determining the optimal set based on past performance (Aiolfi
and Timmermann, 2006), the model confidence set (Samuels and Sekkel, 2017), and lasso-based procedures
(Diebold and Shin, 2018).
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all conditioning variables and bond maturities. R% g values are economically large with
values between 5.11% and 7.98% for PMI and between 4.98% and 9.86% for U. Moreover,
these values generally exceed even those of the EW strategy with some margin. All (most)
are significant relative to the EH (EW) at conventional levels when using either PMI or U,

whereas NONE does not deliver significant improvements against the EW.
[Insert Figure 6 About Here]

Figure 6 plots the CDSPE for our two dynamic forecast combination strategies and
the unconditional alternative NONE relative to the EH. Overall, we find that relative
forecasting gains are mostly uniformly distributed across the out-of-sample evaluation
period and that no particular event or period drive the positive results, although we
do observe a particularly forceful increase during the latest recession relative to the EH

benchmark for the five-year bond using PMI as the state variable.
[Insert Figure 7 About Here]

Figure 7 plots the CDSPE for our two dynamic forecast combination strategies and
NONE relative to EW. As above, we find that that our dynamic forecast combination strat-
egy always performs on par or better than EW. This is also reflected in Panel C of Table 4
in which we observe positive R ¢ values that are of economically meaningful magnitudes
and most are significant at conventional significance levels. These relative forecasting
gains are concentrated in periods with low (high) economic activity (uncertainty). That
is, our dynamic forecast combination scheme delivers improvements in forecast accuracy
in periods of turmoil, exactly when investors and forecasters arguably needs it the most.
Moreover, we see that trimming the set of candidate methods prior to combination using a
dynamic rule rooted in our multivariate test for equal conditional predictive ability delivers
sizable improvements.

In sum, our results establish that bond return predictability display predictable and
exploitable state-dependencies in an out-of-sample forecasting exercise. Our results are
further supportive of the notion that bond return predictability itself is linked to variables

capturing economic activity and uncertainty.
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5. Understanding the sources of conditional predictability

This section studies the underlying sources of conditional predictability and the sizable
improvements in predictive accuracy established above. We address this in several steps.
First, we compute inclusion frequencies for each forecasting method and conditioning
variable using the low, normal, and economic activity and uncertainty regimes, respectively,
identified earlier. We then study how the individual methods perform in each state and
relate it to the overall performance. Third, we inspect the methods selected by the decision

rule over time.

5.1. Inclusion frequencies

We compute inclusion frequencies for each forecasting method and state variable using the
low, normal, and high states for economic activity (PMI) and uncertainty (U), respectively,
defined in Section 4.2. Within each state s,, we then define the inclusion frequency of the
ith forecasting method as the fraction of months the model is included in the best set

relative to the total number of months in state a.
[Insert Table 6 About Here]

Table 6 reports the inclusion frequencies for bond return predictor models when
conditioning on PMI and U, respectively. These inclusion frequency largely mirror the
image from the full sample elimination order in Figure 5. The EH is almost always included
in the low activity state, whereas the inclusion frequencies are low for the high activity
state. That is, bond excess returns are predictable in high economic activity states, but
less so in other states. The EH, conversely, provides a reliable anchor in periods with
low and normal economic activity. A similar conclusion is reached when conditioning on
macroeconomic uncertainty. EH is almost always included in the high uncertainty state,
but rarely in the low uncertainty state. PC, CP, and LN, on the other hand, is mostly

included in high (low) economic activity (uncertainty) states.
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5.2. State-dependent predictability

The inclusion frequencies are indicative of when certain models are predicted to do well.
In this section, we ask whether the inclusion frequencies align with relative performance.
That is, we ask whether the procedure correctly identifies methods with good and bad

relative performance.
[Insert Table 7 About Here]

Table 7 reports state-specific R34 values for the individual predictors relative to the
EH. The results are supportive of the procedure correctly identifying methods that do
well. We find that individual predictors are generally performing poorly (R34 < 0) in low
(high) economic activity (uncertainty) states and well (R%g > 0) in high (low) economic
activity (uncertainty) states. This is consistent with the inclusion frequencies of the
EH. Specifically, the procedure appears to correctly anticipate periods in which the EH
provides a reasonable anchor for expected bond excess returns and period in which bond
risk premia are predictable. Moreover, there is also a close mapping between the inclusion
frequencies and the magnitudes of the R} ¢ values, where models are more likely to be
included (excluded) in a given state the higher (lower) its R%4. That is, the gains in

predictive accuracy are coming from the rule’s ability to correctly predict predictability.

5.3. Decision rule and model selection

Figure 8 illustrates the models selected for the best set of models using the decision rule
over time using PMI and U as conditioning variables, respectively. Green (yellow) shaded
aras indicate high (low) states identified using the 20% and 80% quantiles of the series. A

“4” indicates inclusion.
[Insert Figure 8 About Here]

[Insert Figure 9 About Here]

Figures 9 illustrates the size of the set of best models selected over time using the

decision rule using PMI and UNC as conditioning variables, respectively. We note that
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the best set of models varies considerably over time and includes situations in which the
set include all models, leading to forecasts equal to EW, and situations with a singleton.
That is, at times there is no need for trimming of the full set of models and at other
times we should only use the forecasts from a single model. Importantly, this tells us that

dynamically trimming leads to improvements over a simple, static trimming rule.

6. Links to the real economy

In this section, we examine the link between our out-of-sample bond risk premia fore-
casts and the real economy. Standard finance theory implies that investors demand a
compensation for risks associated with recessions (or macroeconomic activity in general)
due to heightened risk aversion, see, among many, Fama and French (1989), Campbell
and Cochrane (1999), Wachter (2006), Cochrane (2017), and Bekaert et al. (2019). That
is, bond risk premia ought to be countercyclical and spike in recessions (Ludvigson and

Ng, 2009, Joslin et al., 2015, Andreasen et al., 2018).
[Insert Table 8 About Here]

We employ PMI as our measure of economic activity (Berge and Jorda, 2011) and report
in Table 8 the contemporaneous correlation among PMI and the risk premia estimates from
the set of individual models, EW, and the dynamic forecast combinations generated by
PMI, U, and NONE. The results offer two main insights. First, yield-based variables such
as CP, FB, PC, and CP all deliver risk premia estimates that are significantly positively
correlated with real economic activity. That is, these models imply procyclical risk premia,
which sharply contrasts canonical theory. LN, on the other hand, obtains a significant
negative correlation of about -38% across the maturity spectrum, which is consistent with
countercyclical risk premia. Interestingly, the EW combination strategy produces risk
premia estimates with almost identically zero correlation with the real economy. That
is, even though the EW combination produces significantly more accurate forecasts, cf.
Table 4, they are acyclical and unrelated to the state of the economy. The acyclicality

is likely to be caused by the, apparently too crude, equal-weighting across counter and
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procyclical forecasts. Our dynamic combination strategy that selects individual methods
for subsequent combination, based on information in the state variables, produces markedly
negative and statistically significant correlations with the real economy. As such, our
conditional view and associated trimming rule provides both economically meaningful risk

premia estimates, through marked countercyclicality, and much stronger predictability.**
[Insert Figure 10 About Here]

Supporting this, Figure 10 depicts our dynamic combination forecast using PMI and U
as state variables, along with NBER-dated recessions. We see a clear tendency for the risk
premia estimates to increase during recessionary periods and decline during expansionary
periods, resembling a countercyclicality in business cycles. These findings altogether
demonstrate the importance of appropriately selecting among plausible models, as done in

the present paper.

7. Economic value

This section measures the economic value of the strong predictive improvements established
above for our dynamic forecast combination strategy. Specifically, we consider the asset
allocation decision of an investor with mean-variance preferences and relative risk aversion

that chooses the weight w§k) to invest in a k-period bond and the weight (1 — wt(k)) to
invest in a one-period safe bond (Marquering and Verbeek, 2004).?* The resulting portfolio
return is then

k k k
r1(7,t)+1 = yt(l) + Wg )T$£+)1a (25)

23Other types of business cycle indicators can naturally be entertained. We report in the Internet
Appendix contemporaneous correlations among generated forecasts and each of the macroeconomic
uncertainty (U), recession probabilities of Chauvet and Piger (2008), the Chicago Fed National Activity
Index (CFNAI), and logarithmic growth rates to industrial production growth. It stands out that our
dynamic forecasting combination technique leads to much stronger countercyclical bond risk premia than
all yield-based variables and EW.

24 Assuming that investors have mean-variance preferences in asset allocation exercises has a long
tradition in predictability studies and similar approaches can be found in, among many, Campbell and
Thompson (2008), Goyal and Welch (2008), Wachter and Warusawitharana (2009), Thornton and Valente
(2012), Sarno et al. (2016), Eriksen (2017), Ghysels et al. (2018), and Gargano et al. (2019).
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where rxgi)l denotes monthly bond excess returns for a Treasury bond with k periods until

maturity. We assume that the investor has a utility function, U (rz(,’ft) +1), of the form

k k 1 k
U(T;g,t)ﬂ) = E, {T;;(J,t)—i-l} 6 B Var, [r;(),t)—i—l} ; (26)

where denotes the Pratt-Arrow measure of relative risk aversion. Solving the maximiza-
tion problem yields the optimal portfolio weights

(k)
1 Ei|rx
w,gk) _ t [ t—i—l] (27)

7Vart [V(x,@l} 7
where [E, [ngi)l} s estimated using the ith predictive method and Var, {r:cgi)l} is computed
using a rolling window of past bond excess return realizations.?” We winzorize weights
according to reasonable leverage and shorting constraints, similarly to Thornton and
Valente (2012) and Gargano et al. (2019), such that w® e [—1,2] for all maturities.
Using the sequence of portfolio weights, we can compute the average utility, or certainty
equivalent return (CER), for each forecast method using (26). We similarly compute the
CER for the EH benchmark prediction in lieu of the predictive models. The CER gain
is then the difference between the CER for the predictive models and the CER for the
EH benchmark. We annualize the CER gain so that it can be interpreted as the annual
portfolio management fee that an investor would be willing to pay to have access to the
information in the predictive forecast relative to the EH benchmark.?® In this way, we

measure directly the economic value of bond excess return predictability.

7.1. Certainty equivalent returns

Table 9 reports annualized CER gains for all individual bond predictors (for comparison)
relative to the EH in Panel A and for our dynamic forecast combination strategy relative
to the EH and the equal-weighted combination strategy in Panels B and C, respectively.

In our main results, we set = 10 as in Eriksen (2017), but show in the Internet Appendix

25We always use the same variance estimated over the same period as the forecasts for all models so
that the optimal portfolio weights only differ because of differences in the excess bond return forecast.
26Trading costs are generally small in U.S. Treasury bond markets (Adrian, Fleming, and Vogt, 2017).
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that our results are almost identical for lower values of relative risk aversion, e.g. = 5.
In order to evaluate the statistical significance of the CER gains, we follow Eriksen (2017)
and Gargano et al. (2019) and conduct a conventional ¢-test on the mean of the time series
of realized utility differences, evaluated using a Newey and West (1987) estimator for the

standard errors.
[Insert Table 9 About Here]

Overall, we find little evidence of individual predictive models reliably generating
economic value. The exception is LN that generally do remarkably well utility-wise,
something that starkly contrast the statistical results. CS and FB do poorly for the two-
and three-year maturities, but obtains positive CER gains for the four- and five-year
maturities, albeit not significantly so. PC and CP are overall unable to deliver any
economic value to an investor above that provided by the EH benchmark. LN, on the
other hand, delivers positive and significant CER gains across the full maturity spectrum.
Overall, we find little evidence that predictable deviations from the EH can be exploited
to generate economic value on average when considering individual methods. EW, on the
other hand, obtains positive CER gains for all maturities, indicating that combination
forecasts may improve the economic value.

Panel B considers the CER gains for our dynamic forecast combination scheme for
PMI, U, and NONE. Consistent with our statistical results, we obtain positive CER gains
in almost all instances and many are reliably different from zero. The PMI-based dynamic
forecast scheme delivers positive CER gains between 0.39 and 1.43, which are significantly
different from zero at the ten percent level for all maturities. The U-based dynamic forecast
scheme similarly delivers positive values that are significant for the longer maturity bonds.
NONE is mostly delivering less economic value than PMI and U. As such, the overall
message is clearly supportive of the notion that taking state-dependencies in bond return
predictability into account leads to substantial improvements in forecasting accuracy and
that these improvement translates into better investment performance for a mean-variance
investor that trades in the U.S. Treasury bond market.

Panel C mirrors this conclusion by documenting positive CER gains for the dynamic
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forecast combination strategies relative to EW. All PMI-based CER gains are statistically
significant at the ten percent level and the U-based CER gains are significant for the three-
and four-year bonds. We argue that this strongly supports the idea that dynamically trim-
ming the set of models prior to averaging can substantially improve forecast performance
and the resulting economic value. That is, eliminating forecasting methods predicting to
perform poorly and only maintaining methods with indistinguishable conditional predictive

ability delivers both statistical as well as economic value.

[Insert Figure 11 About Here]

[Insert Figure 12 About Here]

Figures 11 and 12 plots the cumulative realized utilities for our dynamic forecast
combination strategies relative to the EH and the EW, respectively. Overall, we note that
utility gains are enjoyed uniformly over the out-of-sample period relative to the EH. This

is remarkable as our approach is not designed to capture utility, but predictability.

7.2. State-dependent utility

Analogous to Section 5.2, we report in Table 10 the state-dependent CER gains for the

individual predictors relative to the EH.
[Insert Table 10 About Here]

We find that individual predictors are generally delivering negative CER gains in
low (high) economic activity (uncertainty) states and positive CER gains in high (low)
economic activity (uncertainty) states. This is fully consistent with the results from the
statistical evaluation and suggest that PMI and U predict not only statistical performance,
but economic value as well. The only difference is LN, which generally delivers positive
CER gains across all states and maturities. That is, although it looks poor overall from a

statistical point of view, it is superior from an economic point of view.
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8. Concluding remarks

We study predictable state-dependencies in bond return predictability and provide empirical
evidence consistent with bond return predictability being state-dependent and closely
related to economic activity and macroeconomic uncertainty. We show that bond risk
premia are predictable in times of high (low) economic activity (uncertainty) states
identified using the the Purchasing Managers’ Index (PMI) and the uncertainty index
proposed in Jurado et al. (2015), whereas the EH implication of constant risk premia (no-
predictability) provides a reasonable anchor in low (high) economic activity (uncertainty)
states. A dynamic forecast combination strategy that averages across forecasting methods
predicted to do well delivers forecasts that are substantially more informative than a
simple, static equal-weighted forecast combination scheme. This holds both across standard
statistical evaluation metrics and when considering the economic value to a mean-variance
investor that trades in the U.S. Treasury bond market. We provide evidence that the
improved forecast performance originates from the state variables ability to correctly
predict periods in which individual predictors are likely to perform well.

To facilitate our empirical analysis, and to explicitly take into account the fact that
we have more than two forecasting methods to distinguish between, we develop a new
multivariate statistical test for equal conditional and unconditional predictive ability.
The test is a multivariate generalization of the test presented in Giacomini and White
(2006) and therefore inherits the main properties of their test. Most importantly for our
application, it allows for a mixture of nested and non-nested models. Our dynamic forecast
combination strategy is rooted in this test and delivers a simple and intuitive way to trim
the pool of candidate forecasting methods prior to averaging.

We end by emphasizing that our multivariate test of conditional predictive ability is
not confined to studies of the Treasury bond market, but may find many and diverse
applications across the fields of economics and finance. For instance, it would be natural
to study the conditional predictive ability of, say, the Goyal and Welch (2008) set of

predictors in a multivariate setting as a complement to the large literature on their
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unconditional performance. Indeed, recent studies suggest that state-dependencies are
present in stock return predictability Henkel et al. (2011), Dangl and Halling (2012),
Farmer et al. (2019). Similarly, the approach is likely to be useful in evaluating inflation
predictability and identifying periods in which variables such as unemployment rates
provides useful information. Finally, we also envision its use in comparing professional
forecasters and, in particular, to determine if some forecasters are better than others

conditional on being in a certain state. We leave these considerations for future research.
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Table 1: Descriptive statistics

This table presents descriptive statistics for monthly excess bond returns. Panel A reports
mean, standard deviation, skewness, kurtosis, Sharpe ratios, and first-order autocorrelation
(AC(1)) of bond excess returns for two- to five-year bond maturities. Bond returns are in
excess of the implied yield on a one-month Treasury bill. Gross returns do not subtract
the one-month implied Treasury bill yield. Monthly bond excess returns are constructed
using end-of-month Treasury yield data from Giirkaynak et al. (2007). Panel B reports
contemporaneous correlations between the excess bond return series. The sample period
is January 1962 to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

Panel A: Descriptive statistics

Mean 1.29 1.60 1.85 2.06

Mean (Gross) 5.73 6.04 6.29 6.50

Std. dev. 2.80 3.92 4.95 5.93

Skewness 0.57 0.25 0.08 0.03

Kurtosis 16.68 11.76 8.58 7.05

Sharpe ratio. 0.46 0.41 0.37 0.35

AR(1) 0.17 0.15 0.13 0.12
Panel B: Correlations

2-year bond 1.00

3-year bond 0.99 1.00

4-year bond 0.96 0.99 1.00

5-year bond 0.93 0.97 0.99 1.00
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Table 3: Empirical size properties

This table reports the rejection frequency (empirical size) of the multivariate test for equal
predictive ability with a nominal size of 5%, data-generating process given by (22) with
pn =0, and 10,000 Monte Carlo replications. We implement an unconditional test that
sets hy = 1 for all ¢ and a conditional test that sets h; = (1, ﬁt)’ , and use three samples
sizes referred to as short (120 observations), medium (348 observations) and long (1,000
observations). Panel A (B) reports results where €, in (22) is sampled from the empirical
loss differentials when forecasting the 2-year (5-year) bond. The value of p indicates the
dimension of the test arising from the number of comparing models less one.

Unconditional test (hy = 1) Conditional test (hy = (1,h¢))
Short Medium Long Short Medium Long
Panel A: 2-year bond
p=1 5.22 5.08 4.84 5.48 4.82 5.08
p=2 4.65 4.99 5.09 4.85 5.27 4.98
p=3 4.82 5.34 4.88 5.33 5.38 5.17
p=4 4.91 5.12 5.03 4.84 5.27 5.14
p=2>5 5.22 4.61 4.76 4.62 5.10 5.29
Panel B: 5-year bond
p=1 4.73 4.87 5.26 3.96 4.53 4.99
p=2 4.36 4.56 4.99 4.07 4.48 4.92
p=3 4.05 4.47 4.99 3.79 4.56 4.78
p=4 4.38 4.24 4.96 3.69 4.34 5.11
p=2> 4.30 4.59 5.02 3.22 4.50 4.89
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Table 4: Out-of-sample results
This table reports out-of-sample RZ ¢ values for various linear predictive models for bond
excess return. We consider five different predictors: yield spreads (Campbell and Shiller,
1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman
and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the
Ludvigson and Ng (2009) macroeconomic factor. For each model, we report the out-
of-sample R? from Campbell and Thompson (2008) and the associated Diebold and
Mariano (1995) p-value in parenthesis for the null of no predictability implied by the EH
(Panels A and B) and a static forecast combination strategy (Panel C). PMI denotes the
Purchasing Managers Index published by the Institute for Supply Management and U
is the macroeconomic uncertainty index from Jurado et al. (2015). The out-of-sample
evaluation period runs from January 2000 to December 2018.

2-year 3-year 4-year 5-year

Panel A: Individual bond predictors against EH

CS -2.73 -0.53 0.67 1.38
(0.70) (0.56) (0.40) (0.27)
FB -0.02 1.31 1.72 1.78
(0.50) (0.29) (0.22) (0.23)
PC -9.86 -7.64 -5.91 -4.83
(0.92) (0.93) (0.92) (0.90)
CPp -6.63 -5.29 -4.27 -3.43
(0.96) (0.96) (0.94) (0.90)
LN -7.61 -0.48 1.93 2.43
(0.73) (0.52) (0.42) (0.39)
EW 6.08 5.28 4.89 4.58
(0.03) (0.02) (0.02) (0.02)
Panel B: Dynamic forecast combination against EH
PMI 7.98 5.64 5.11 6.16
(0.01) (0.02) (0.02) (0.01)
u 9.86 6.77 6.09 4.98
(0.01) (0.00) (0.00) (0.01)
NONE 6.66 5.31 5.25 4.81
(0.02) (0.02) (0.01) (0.02)
Panel C: Dynamic forecast combination against EW
PMI 2.02 0.39 0.23 1.66
(0.01) (0.24) (0.33) (0.06)
u 4.02 1.58 1.26 0.42
(0.02) (0.00) (0.00) (0.22)
NONE 0.62 0.04 0.38 0.24
(0.21) (0.47) (0.16) (0.32)
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Table 5: Testing for equal (un)conditional predictive ability

This table reports full sample multivariate test statistics for equal (un)conditional predictive
ability using three different conditioning variables. PMI refers to the case of h, = (1, PMIL,)’
that is designed to capture business cycle fluctuations. U refers to the case of h;, = (1,U;)’
that is chosen to study the effect of macroeconomic uncertainty. NONE refers to an
unconditional version of the tests in which h, = 1 for all . PMI is the Purchasing
Managers’ Index and UNC is the macroeconomic uncertainty index of Jurado et al. (2015).
p-values are presented in parenthesis. The full sample test period runs from January 1990

to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond
PMI 31.36 34.65 29.76 26.73
(0.00) (0.00) (0.00) (0.00)
u 27.03 27.95 26.16 26.22
(0.00) (0.00) (0.00) (0.00)
NONE 8.07 5.68 5.10 5.77
(0.15) (0.34) (0.40) (0.33)
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Table 6: Inclusion frequencies across states

This table reports the inclusion frequencies of the predictor models in three different states
of the world identified using the 20% and 80% quantiles of the Purchasing Managers’
Index (PMI). We consider five different predictors: yield spreads (Campbell and Shiller,
1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman
and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the
Ludvigson and Ng (2009) macroeconomic factor. EH denotes the benchmark expectations
hypothesis model. The out-of-sample evaluation periods runs from January 2000 to
December 2018.

2-year 3-year 4-year 5-year 2-year 3-year 4-year 5-year
Panel A: Low activity Panel D: Low uncertainty
CS 1.00 1.00 1.00 1.00 0.25 0.64 0.64 0.57
FB 0.94 1.00 0.88 0.76 0.25 0.64 0.64 0.57
PC 0.45 0.36 0.42 0.42 1.00 1.00 0.93 1.00
CPp 0.88 0.91 1.00 1.00 0.25 0.57 0.54 0.46
LN 0.73 0.67 0.70 0.64 0.96 1.00 1.00 1.00
EH 0.97 1.00 1.00 1.00 0.18 0.50 0.57 0.46
Panel B: Normal activity Panel E: Normal uncertainty
CS 0.86 0.90 0.94 0.98 0.69 0.88 0.86 0.84
FB 0.90 0.98 0.98 0.95 0.79 0.93 0.88 0.76
PC 0.51 0.41 0.47 0.50 0.43 0.53 0.54 0.58
CP 0.65 0.68 0.68 0.62 0.62 0.71 0.63 0.51
LN 0.71 0.79 0.87 0.86 0.83 0.85 0.90 0.92
EH 0.70 0.84 0.85 0.82 0.63 0.83 0.85 0.75
Panel C: High activity Panel F: High uncertainty
CS 0.58 0.75 0.85 0.93 0.95 1.00 1.00 0.98
FB 0.65 0.80 0.88 0.83 0.95 1.00 0.98 0.95
PC 0.83 0.74 0.78 0.88 0.49 0.51 0.44 0.28
CPp 0.53 0.53 0.45 0.08 0.95 1.00 0.98 0.98
LN 1.00 1.00 1.00 0.95 0.72 0.98 0.95 1.00
EH 0.33 0.45 0.45 0.48 1.00 1.00 1.00 0.98
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Table 7: Out-of-sample R? across states

This table reports out-of-sample R% 4 values for various linear predictive models for bond
excess return conditional on states identified by the Purchasing Manager’s Index (PMI)
and the the macroeconomic uncertainty index (U) proposed in Jurado et al. (2015). We
consider five different predictors: yield spreads (Campbell and Shiller, 1991), forward
spreads (Fama and Bliss, 1987), principal components of yields (Litterman and Scheinkman,
1991), the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson and Ng
(2009) macroeconomic factor. For each model, we report the out-of-sample R? from
Campbell and Thompson (2008) relative to the expectations hypothesis. High (low)
states are identified using the 80% (20%) quantiles of the time series of PMI and U. The
out-of-sample evaluation period runs from January 2000 to December 2018.

2-year 3-year 4-year o-year 2-year 3-year 4-year 5-year
Panel A: Low activity Panel D: Low uncertainty
CS -19.73 -10.56 -6.41 -3.85 14.33 9.87 7.79 6.40
FB -13.17 -6.09 -3.43 -2.22 15.19 8.57 5.00 3.03
PC -37.08 -26.84 -20.98 -17.02 24.53 16.39 12.09 10.05
CP -13.30 -7.27 -3.54 -0.83 -83.09 -42.16 -23.01 -12.28
LN -23.94 -15.44 -12.03 -11.24 14.05 10.04 7.52 5.73
Panel B: Normal activity Panel E: Normal uncertainty
CS 2.16 1.68 1.95 2.20 -2.64 -0.51 0.61 1.28
FB 4.26 3.25 2.90 2.62 1.09 1.78 2.00 2.00
PC -5.04 -5.29 -4.19 -3.26 -4.86 -4.46 -3.44 -2.74
CPp -6.09 -6.42 6.06 -5.61 -1.03 -2.14 -2.56 -2.90
LN -2.58 3.8 5.78 6.25 -2.15 4.31 6.44 7.16
Panel C: High activity Panel F: High uncertainty
CS 6.86 5.32 5.38 5.78 -4.29 -2.03 -0.67 0.30
FB 4.44 3.79 3.83 4.02 -2.82 -0.55 0.50 0.98
PC 20.26 12.96 9.43 7.36 -19.49 -16.08 -13.96 -12.51
CPp 9.32 7.30 6.43 6.00 -7.19 -4.90 -3.26 -1.81
LN -8.41 -2.57 0.26 2.18 -18.80 -11.59 -8.99 -8.73
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Table 8: Correlations between forecasts and economic activity
This table reports correlation coefficients between out-of-sample generated forecasts from
individual bond predictors (Panel A) and the dynamic forecast strategy (Panel B) and
economic activity as measured by the Purchasing Managers’ Index (PMI). We report
p-values for the null of no correlation in parenthesis. The out-of-sample evaluation period
runs from January 2000 to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

Panel A: Individual bond predictors

CS 0.36 0.31 0.27 0.23
(0.00) (0.00) (0.00) (0.00)
FB 0.27 0.19 0.14 0.09
(0.00) (0.00) (0.01) (0.08)
PC 0.33 0.36 0.36 0.35
(0.00) (0.00) (0.00) (0.00)
CP 0.15 0.16 0.16 0.16
(0.01) (0.00) (0.00) (0.00)
LN -0.38 -0.38 -0.38 -0.38
(0.00) (0.00) (0.00) (0.00)
EH 0.07 0.14 0.16 0.17
(0.17) (0.01) (0.00) (0.00)
EW 0.01 0.01 0.00 -0.01
(0.88) (0.87) (0.98) (0.90)
Panel B: Dynamic forecast combination
PMI -0.39 -0.40 -0.39 -0.35
(0.00) (0.00) (0.00) (0.00)
u -0.40 -0.36 -0.37 -0.39
(0.00) (0.00) (0.00) (0.00)
NONE -0.29 -0.26 -0.27 -0.28
(0.00) (0.00) (0.00) (0.00)

28



Table 9: Economic Value

This table reports certainty equivalent return (CER) gains for various linear predictive
models for bond excess return. We consider five different predictors: yield spreads
(Campbell and Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal components
of yields (Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward
rate factor, and the Ludvigson and Ng (2009) macroeconomic factor. For each model, we
report the CER gains relative to the expectations hypothesis (Panels A and B) and a
static forecast combination strategy (Panel C). PMI denotes the Purchasing Managers
Index published by the Institute for Supply Management and U is the macroeconomic
uncertainty index from Jurado et al. (2015). CER gains are based on an investor with
mean-variance preferences and a relative risk aversion of = 10. The out-of-sample
evaluation period runs from January 2000 to December 2018.

2-year 3-year 4-year 5-year

Panel A: Individual bond predictors against EH

CS -0.64 -0.35 0.10 0.45
(0.90) (0.75) (0.43) (0.20)
FB -0.43 -0.12 0.32 0.58
(0.84) (0.62) (0.24) (0.17)
PC -1.65 -1.78 -1.65 -1.44
(0.98) (0.96) (0.93) (0.89)
CPp -0.66 -0.83 -0.76 -0.48
(0.96) (0.95) (0.87) (0.73)
LN 0.85 1.75 2.32 2.74
(0.00) (0.00) (0.00) (0.00)
EW 0.10 0.34 0.86 1.07
(0.36) (0.16) (0.03) (0.02)
Panel B: Dynamic forecast combination against EH
PMI 0.39 0.59 1.05 1.43
(0.08) (0.06) (0.02) (0.00)
u 0.26 0.60 1.17 1.18
(0.16) (0.05) (0.01) (0.02)
NONE 0.17 0.33 0.92 1.16
(0.26) (0.19) (0.03) (0.02)
Panel C: Dynamic forecast combination against EW
PMI 0.28 0.25 0.19 0.37
(0.01) (0.04) (0.09) (0.03)
u 0.16 0.25 0.31 0.12
(0.06) (0.02) (0.01) (0.27)
NONE 0.06 -0.02 0.06 0.09
(0.13) (0.56) (0.24) (0.26)
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Table 10: CER gains across states

This table reports certainty equivalent return (CER) gains for various linear predictive
models for bond excess return conditional on states identified by the Purchasing Manager’s
Index (PMI) and the the macroeconomic uncertainty index (U) proposed in Jurado
et al. (2015). We consider five different predictors: yield spreads (Campbell and Shiller,
1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman
and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the
Ludvigson and Ng (2009) macroeconomic factor. For each model, we report the CER gain
relative to the expectations hypothesis. High (low) states are identified using the 80%
(20%) quantiles of the time series of PMI and U. CER gains are based on an investor
with mean-variance preferences and a relative risk aversion of = 10. The out-of-sample
evaluation period runs from January 2000 to December 2018.

2-year 3-year 4-year 5-year 2-year 3-year 4-year 5-year
Panel A: Low activity Panel D: Low uncertainty
CS -3.22 -2.41 -2.04 -2.05 0.02 0.08 1.29 1.68
FB -2.44 -1.82 -1.83 -2.70 0.01 0.16 0.98 0.86
PC -7.17 -7.06 -6.92 -6.77 0.02 0.94 2.28 2.76
CP -2.42 -1.85 -0.91 -0.05 0.08 0.78 2.13 2.70
LN 1.22 2.47 2.05 0.25 0.02 0.41 1.30 1.55
Panel B: Normal activity Panel E: Normal uncertainty
CS -0.19 0.01 0.32 0.48 -0.36 -0.21 0.03 0.24
FB -0.10 0.04 0.13 -0.01 -0.32 -0.21 0.01 0.07
PC -1.00 -1.20 -0.96 -0.72 -0.66 -0.72 -0.58 -0.49
CP -0.35 -0.78 -1.03 -1.02 -0.58 -0.80 -0.68 -0.69
LN 0.82 1.32 1.50 1.78 0.90 1.47 1.72 1.94
Panel C: High activity Panel F: High uncertainty
CS 0.51 0.57 1.43 1.82 -1.41 -0.57 -0.06 -0.18
FB 0.25 0.23 1.17 1.38 -0.82 -0.38 -0.55 -1.69
PC 1.75 2.44 2.84 2.56 -5.19 -5.62 -5.67 -5.60
Ccp 0.34 0.80 1.61 1.86 -0.74 -1.14 -1.98 -1.42
LN 0.59 1.34 1.99 1.88 1.16 2.30 1.71 0.29
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Figure 1: Bond excess returns
This figure plots times series of monthly bond excess returns (in percentage) for Treasury
bonds with maturities ranging from two to five years. Shaded areas represent NBER
recession dates. Monthly bond returns are in excess of the implied yield on a one-month
Treasury bill rate. Yield data are end-of-month and have been obtained from Giirkaynak
et al. (2007) over the period January 1962 to December 2018.
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Figure 2: Conditioning variables
This figure shows times series of the Purchasing managers’ index (PMI) published by the
Institute for Supply Management and the macroeconomic uncertainty (U) index from
Jurado et al. (2015). Green (yellow) shaded ares represent periods of (high) low activity
and uncertainty, respectively, where high (low) episodes are identified using the 80% (20%)
quantiles of their time series. The sample period covers January 1962 to December 2018.
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Figure 3: Empirical power curves

This figure shows the rejection frequency (empirical power) of the multivariate test for
equal predictive ability with a nominal size of 5% and data-generating process given by
(22) with the first element in p deviating and the remaining elements are set to zero. The
first element of p is set to ¢ where 7 is the average absolute loss differentials across all
models within the low and high economic activity states defined in the empirical section
and ¢ € [0,2.5]. We use 10,000 Monte Carlo replications. We implement a conditional test
that sets h;, = (1,h,)’, and use three samples sizes referred to as short (120 observations),
medium (348 observations) and long (1,000 observations). The left (right) panel depicts
results where g, in (22) is sampled from the empirical loss differentials when forecasting
the 2-year (5-year) bond. The value of p indicates the dimension of the test arising from
the number of comparing models less one.
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Figure 4: Relative forecasting performance

This figure plots the recursively updated cumulative difference in the squared prediction
errors from the EH benchmark model and the ith predictor model over the out-of-sample
evaluation period. We consider five different predictors: yield spreads (Campbell and
Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal components of yields
(Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor,
and the Ludvigson and Ng (2009) macroeconomic factor. We also consider a simple equal-
weighted combination of the individual forecasts. A positive (negative) slope indicates that
the predictive model delivers more (less) accurate forecasts than the EH benchmark. Green
(yellow) shaded ares represent periods of high (low) activity and uncertainty, respectively,
where activity is measured using the Purchasing Managers’ Index (PMI) and uncertainty
in the index developed by Jurado et al. (2015). High (low) episodes are identified using the
80% (20%) quantiles of their time series. White areas are normal times. The out-of-sample
evaluation periods runs from January 2000 to December 2018.
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Figure 5: Full sample elimination order

This figure displays the full sample elimination order of predictive model in high, normal,
and low states separately for the Purchasing Managers’ Index (PMI) (left graphs) and the
macroeconomic uncertainty index (U) of Jurado et al. (2015) (right graphs) using the 20%
and 80% quantiles of their time series. White squares denote models included in the best
set of models and numbered tiles denotes eliminated models and their elimination order.
We consider five different predictors: yield spreads (Campbell and Shiller, 1991), forward
spreads (Fama and Bliss, 1987), principal components of yields (Litterman and Scheinkman,
1991), the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson and Ng
(2009) macroeconomic factor. The out-of-sample evaluation periods runs from January
2000 to December 2018.
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Figure 6: Dynamic forecast combinations

This figure plots the recursively updated cumulative difference in the squared prediction
errors from the EH benchmark model and the dynamic forecast combination forecast for
each of the tree conditioning cases. We consider the Purchasing Managers’ Index (PMI)
and the macroeconomic uncertainty index (U) from Jurado et al. (2015) as our conditioning
variables along with an unconditional version labeled NONE. A positive (negative) slope
indicates that the dynamic forecast combination delivers more (less) accurate forecasts
than the EH benchmark. Green (yellow) shaded ares represent periods of high (low)
activity and uncertainty, respectively, where high (low) episodes are identified using the
80% (20%) quantiles of their time series. White areas are normal times. The out-of-sample
evaluation periods runs from January 2000 to December 2018.
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Figure 7: Dynamic versus static forecast combination

This figure plots the recursively updated cumulative difference in the squared prediction
errors from a static equal-weighted forecast combination benchmark and the dynamic
forecast combination forecast for each of the tree conditioning cases. We consider the
Purchasing Managers’ Index (PMI) and the macroeconomic uncertainty index (U) from
Jurado et al. (2015) as our conditioning variables along with an unconditional version
labeled NONE. A positive (negative) slope indicates that the dynamic forecast combination
delivers more (less) accurate forecasts than the static equal-weighted forecast combination
benchmark. Green (yellow) shaded ares represent periods of high (low) activity and
uncertainty, respectively, where high (low) episodes are identified using the 80% (20%)
quantiles of their time series. White areas are normal times. The out-of-sample evaluation
periods runs from January 2000 to December 2018.
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Figure 8: Inclusion plots across states

This figure displays the inclusion of each predictive model into the best set of models.
Green (yellow) shaded ares represent periods of high (low) states of the Purchasing
Managers’ Index (PMI) (left) and the Jurado et al. (2015) macroeconomic uncertainty
index (U) (right) identified using the 20% and 80% quantiles of the series. White areas are
normal times. We consider five different predictors: yield spreads (Campbell and Shiller,
1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman
and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the
Ludvigson and Ng (2009) macroeconomic factor. EH denotes the benchmark expectations
hypothesis model. Inclusion of a predictive model is marked with +. The out-of-sample
evaluation periods runs from January 2000 to December 2018.
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Figure 9: Size of the set of best models

This figure illustrates the size of the set of best predictive models for each of the four bond
maturities and conditioning variables. Green (yellow) shaded ares represent periods of
high (low) activity and uncertainty, respectively, where activity is measured using the
Purchasing Manager’s Index (PMI) published by the Institute for Supply Management
and uncertainty is the macroeconomic uncertainty index (U) proposed in Jurado et al.
(2015). High (low) episodes are identified using the 80% (20%) quantiles of their time
series. White areas are normal times. The out-of-sample evaluation periods runs from
January 2000 to December 2018.
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Figure 10: Bond risk premia forecasts for dynamic combination strategy
This figure illustrates the time series behavior of bond risk premia forecasts originating
from our dynamic forecast combination strategy. PMI is the Purchasing Managers’ Index
published by the Institute for Supply Management and U is the macroeconomic uncertainty
index proposed in Jurado et al. (2015). The out-of-sample forecasting periods runs from

January 2000 to December 2018.
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Figure 11: Dynamic forecast combinations: CER gains

This figure plots the recursively updated cumulative difference in realized utility from
the dynamic forecast combination forecast for each of the tree conditioning cases and
the EH benchmark model. We consider the Purchasing Managers’ Index (PMI) and
the macroeconomic uncertainty index (U) from Jurado et al. (2015) as our conditioning
variables along with an unconditional version labeled NONE. A positive (negative) slope
indicates that the dynamic forecast combination delivers more (less) accurate forecasts
than the EH benchmark. Green (yellow) shaded ares represent periods of high (low)
activity and uncertainty, respectively, where high (low) episodes are identified using the
80% (20%) quantiles of their time series. White areas are normal times. The out-of-sample
evaluation periods runs from January 2000 to December 2018.
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Figure 12: Dynamic versus static forecast combination: CER gains

This figure plots the recursively updated cumulative difference in the squared prediction
errors from the dynamic forecast combination forecast for each of the tree conditioning
cases and a static equal-weighted forecast combination benchmark. We consider the
Purchasing Managers’ Index (PMI) and the macroeconomic uncertainty index (U) from
Jurado et al. (2015) as our conditioning variables along with an unconditional version
labeled NONE. A positive (negative) slope indicates that the dynamic forecast combination
delivers more (less) accurate forecasts than the static equal-weighted forecast combination
benchmark. Green (yellow) shaded ares represent periods of high (low) activity and
uncertainty, respectively, where high (low) episodes are identified using the 80% (20%)
quantiles of their time series. White areas are normal times. The out-of-sample evaluation
periods runs from January 2000 to December 2018.
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IA.A. Theoretical results, assumptions, and proofs

This section explains the Giacomini and White (2006) assumptions used in Theorem 1
along with its proof. The outline of several of the proofs follow Giacomini and White
(2006), making the necessary adjustments to account for the multivariate nature of our
tests. We also provide theoretical results with associated proofs for the case of multi-step

ahead forecasting, 7 > 1, and the unconditional case, §; = {0, }.

IA.A.1. One-step ahead forecasting and Giacomini and White (2006) assumptions

In the one-step ahead case, 7 = 1, we impose the following assumptions that are adopted

from Giacomini and White (2006).

Assumption 1. {h;} and {w;} are ¢-mizing with ¢(t) = O (t‘T/(z”_l)_L)C r>1, or

-mizing with (t) = O (tiﬁﬂ) <7“ > 1, for some ¢ > 0.

Assumption 1 imposes relatively mild restrictions on the dependence structure and het-
erogeneity of data. We do not impose the stricter and common (covariance) stationarity
assumption as used in for instance Diebold and Mariano (1995) and Mariano and Preve
(2012). Specifically, data may exhibit arbitrary structural changes, which is a common
feature found in many empirical studies within e.g. macroeconomic prediction (see e.g.
Stock and Watson (2003) and Schrimpf and Wang (2010)), stock return prediction (see
e.g. Fama and French (1997) and Paye and Timmermann (2006)), and exchange rate

prediction (see e.g. Giacomini and Rossi (2010)) to name a few.

Assumption 2. E[|d;1,|*"9] < co for some § >0, i=1,...,qp, and for all t, where

subscript © indicate the i 'th element of dy1.
Assumption 3. £ =T Y7 E[d;1d,,,] is uniformly positive definite.

Assumptions 2-3 are mainly technical assumptions ensuring (uniformly) bounded moments
of data and positive definiteness of the asymptotic variance. Both of these assumptions

are common in the forecast evaluation literature.
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IA.A.1.1. Proof of Theorem 1 The proof of part A. and B. adopts the necessary steps
in Giacomini and White (2006). We start by proving part A. Let d;;1 = h; AL,; and

write
dt+1d:t+l = g(ht, Wiy, - -- ,wt,m) (IAAl)

for some measurable function g. Since m < oo, and {h;} and {w,;} are mixing of the
same size according to Assumption 1, it follows from Theorem 3.49 in White (2001) that
{di11d;,} is mixing of the same size as {h;} and {w,}.

By Assumption 2 there exists a C' € R, and 6 > 0 such that E[\dm,t+17i|2(r+5)] <C <
for i =1,...,¢qp and for all ¢, where subscript ¢ indicates the i’th element in d;,;. Hence,

by the Cauchy-Schwartz inequality, one obtains
El|di1idi ] < Bl )Pl )2 < O (TA.A.2)

for i,7 = 1,...,qp and for all t. By Corollary 3.48 in White (2001), it then follows
that 37 — 37 = 0. Furthermore, by Assumption 2 it follows that ¥ is finite and by
Assumption 3 it is uniformly positive definite.

Next, let XA € R?% with A’\ = 1 and consider

B T-1
N PNVTdy o =TS N2 d . (IA.A.3)

t=1

Let A; denote the i’th element of the product X'S% such that XS5 %dy 1 = 5%, Aidyy1..

Hence, under the null hypothesis

ap ap
EINS; |5 — E [2 Aidm,irsat] (— ZCiE[dm,i\fﬁt] o, (1A.A4)
i=1 =1

by measurability of A;, such that the sequence {A’E;l/ 2dt+1, G:} is an MDS. The asymp-
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totic variance is

o2 = Var]N'Z,;'*VTd|
= N2 P Var[VTd)S, A
_ A/Z;l/Qsz;l/Q)\

=1 (IA.A.5)

for sufficiently large T. Furthermore, since 37 — 3r 2 0 it follows by the Continuous

Mapping Theorem that

T
1

> (&’E?/zdéﬂdmz;” A -0

N[ =

t=

SO IMEES S5 YLD WD U S/ Y98 sl WV} (IA.A.6)

Lastly, we need to check that \’ E;l/ 2dt+1 has absolute 2 + § moment. By Minkowski’s

inequality and Assumption 2 we obtain

12 b ap 244
E[INZ; dtﬂr*]:E[z i ](

qp 246
< 3 AE [l 2] (2”))

i=1

< 00. (IA.A.7)

Consequently, we can apply the CLT for MDS and deduce that XE;UQ\/T& 4, N(0,1).

By the Cramér-Wold device it then follows that
»-12/Td % N(0,1,,). (IA.A.8)
Since fJT — X7 L 0, we deduce that
VTSP AVTE:Pd = Td S, d = S, % ), (IA.A.9)

as T — oo. OJ
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We now prove part B. By the same arguments as in the proof for part B., it follows that the
sequence {d; 1} is mixing of the same size as {w;} and {h;}. Furthermore, Assumption 2

ensures that each element of d;, is bounded uniformly in ¢, such that
d—E[d] —0 (IA.A.10)

by Corollary 3.48 in White (2001). Under the alternative hypothesis there exists n > 0

such that E[c_l’m]E[c_im] > 29 for T sufficiently large. It follows that

Pldd

- = — —

d—E[d|E[d]| < n] — 1, (IA.A.11)

— m

where the convergence to unity is due to (IA.A.10). By identical arguments as the proof
of part B., d;,,d;+1 is mixing with the same size as {w;} and each element is uniformly
bounded in ¢. Corollary 3.48 in White (2001) can then be applied, and it follows that S
is a consistent estimator of Xr. By Assumption 3, 37 is uniformly positive definite. Let

c € Ry. It then follows from Theorem 8.13 in White (1994) that

PS, >c] =1, asT — oc. (TA.A.12)

Lastly, we prove part C. Let L;,; be an arbitrary permutation of the forecasting losses,
ie. L;,, = PLy, where P is a (p+ 1) x (p + 1) permutation matrix and L, =

(Litq,- - ,Lfill)’. Define the p x (p + 1) matrix D by




such that ALy, = DL; , = DPL,,. In total, the number of permutations of the
forecast losses at each point of time ¢ is (p+1)!. Mariano and Preve (2012) show that there
always exists a nonsingular matrix B of dimension p x p such that BAL, ; = AL; .
Consequently, define the gp x gp matrix A = (I, B), where I, is the ¢ x ¢ identity
matrix. By standard properties of the Kronecker product A is nonsingular, and we have

that

:—i‘l - ht AL:—}—I - (Iqht) (BALt+1) = (Iq B)(ht ALt+1) - Adt+1.
(IA.A.13)

Since the null hypothesis implies that the asymptotic variance can be estimated consistently

by the sample variance, it follows that
&N 1 4 * « 1 4 ! / C /
ET = f Z €t+1dt+1 - f Z Adt+1dt+1A == AETA .
t=1 t=1

Due to the nonsingularity of A and 37, it follows that

— ~ %

d.,(85) 7Ny, = dy,, A'(ASA) 7 Ady,

A —1
!
= dt+1ET dii1,

which shows that the test is invariant to a permutation of the ordering of the forecast

losses. O

IA.A.2. Unconditional and multi-step predictive ability tests

In both the unconditional, G; = {(), }, and multistep conditional case the loss series are
no longer martingale difference sequences under the null hypothesis. Thus, the sequence
{hy AL, ,} may be serially autocorrelated.”’” In the conditional setting, the null
hypothesis imposes a particular structure on the serial correlation, namely that it can
be at most order 7 — 1. However, in the unconditional case no such restriction exists.

Consequently, we can no longer rely on the sample variance under the null for estimating

2"Note that that in the unconditional case h; = 1 for all ¢.
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the covariance matrix as was the case in the one-step conditional setting considered in the
previous section. Instead, we consider a HAC-type estimator (see e.g. Newey and West
(1987) and Andrews (1991)) with a bandwidth choice guided by the implications of the

null hypothesis. The estimator is given by

- 114 )
Y=~ {g“ €t+7dt+7
=1

b T
+Z§(j’ br) > ({t+7d2+r—j+ dy iy,
7=1

~

, (IA.A.14)

t=1+4j

where {br} is an integer-valued truncation point sequence satisfying by — oo as T'— oo
and by = o(T") (Newey and West, 1987) in the unconditional case, and by = 7 — 1 in the
conditional case. Furthermore, k(-,-) is a real-valued kernel weight function satisfying
the condition that x(j,br) — 1 as T'— oo for each j = 1,...,br (Andrews, 1991), and
k(J,br) = 0 for j > by. For a review of data driven bandwidth selection methods see Clark
and McCracken (2013).

Along the lines of the construction of the conditional test with 7 = 1, we construct the
following Wald statistic which can be used in testing either unconditional or multi-step

conditional equal predictive ability. The test statistic is given by
S, =TdX; d, (IA.A.15)

where d = 7! ZT,i‘l d,. .. Before turning the properties of the proposed test statistic, we

will need a slight modification of the assumptions from the previous section on one-step

ahead forecasting.

Assumption 1*. {h;} and {w,;} are p—mizing with ¢(t) = O (tr/(2’”2)‘)<, r>2, or

—mizing with (t) = O (t_ﬁ_‘) (r > 2, for some 1 > 0.

Assumption 2*. E[|d;,;|""%] < co for some § > 0, i =1,...,qp, and for all t, where

subscript © indicate the i ’th element of dy 1.

Assumption 3*. $p =T 'S Eldyd; ]+ T S50 Sy ( desrdyy ;]

+ E[dt+T_jd;+T]> (Z’S uniformly positive definite, where by = ™— 1 in the conditional case
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and by =T — 1 in the unconditional case.

Analogue to Theorem 1 Sy, is asymptotically chi-squared distributed with gp degrees of
freedom under the null hypothesis, has power under the alternative hypothesis, and is

permutation invariant. We summarize these results in Theorem 2 below.

Theorem 2 (Multistep multivariate predictive ability tests). Suppose Assumptions

1*-3% hold.

A. Asymptotic distribution under the null. Suppose that either G, = {0, } and

7>10rF, CG, and 7 > 1. For any test function sequence {h;}, m < 0o, and under Hy

Sh.r 4, ’(qp), as T — oc. (TA.A.16)

B. Consistency under the alternative. For any ¢ € Ry and under Hyy, in (12),

PShr>c] =1, as T — oc. (IA.A.17)

C. Permutation invariance. Let Ly __ be an arbitrary permutation of the forecast
losses, and define ALy, = DL;, _, d =T7T" Z%: d;, withd;  =h, AL}, andX;

be the associated covariance estimator defined in‘equation (IA.A.14). Then,
S;, =Td(3;)"'d" = S, (IA.A.18)

for all T.

Consequently, a multivariate test for equal conditional multistep predictive ability or
(multistep) unconditional predictive ability can be conducted by rejecting the null hy-
pothesis whenever Sy, ; > 21_4,4,. The permutation invariance result in Theorem 2 for the
unconditional case is similar to Proposition 2 in Mariano and Preve (2012), but holds under
the milder Assumptions 1*-3*, and hence also applies in a setting with non-stationary

data, inclusion of nested models and explicit account of estimation uncertainty.
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IA.A.2.1. Proof of Theorem 2 We start by proving part A. We proceed by a similar
procedure as in the proof of Theorem 1, however with modifications due to the dependency
in d;,, under the null hypothesis. First, by Assumptions 2* and 3*, X1 is finite and
uniformly positive definite. Let A € R%? with A’A = 1 and consider )\’E;l/ *VTd =
T2yt XZ;I/ *d,, .. Furthermore, identical arguments as in Theorem 1 imply that
{)\’E}l/ *d,..} being mixing of the same size as {h;} and {w,}. Moreover, the asymptotic
variance satisfies 02 = Var[]N'S7/*VTd] = NS7*2:577%A = 1 for all T sufficiently
large. By Minkowski’s inequality and computations as in (IA.A.7), )\'2;1/ ’d,,. has
absolute 2 + ¢ moment for some § > 0. Then, by Corollary 3.1 in Wooldridge and White
(1988) we deduce that A'S7"*vTd % N(0,1). Hence, by the Cramér-Wold device it
follows that $,"*vTd % N(0,1,,).
It remains to be shown that X7 — 3p L 0. Consider
1T

z~]T —Yr=x Z (dt-l—Td;—l-T - E[dt-f-Td:f-l-T])

t=1

~

t=1+j

1 bz . T
+T26<m> > (fw iy — Eldindy,, ]
j=1

t+diyr e, —E[dmjd;m)( (TA.A.19)

By Theorem 3.49 in White (2001), {d;.d;,, ;} is mixing of the same size as {h;} and
{w,} for each j =0,...,by. Moreover, each of its elements are bounded uniformly in ¢
by Assumption 2*. Hence, since k(j,br) — 1 as T'— oo and (0, br) = 1 it follows via

Corollary 3.48 in White (2001) that

t=1+

| P
f"f(]ﬂ') Z((dtJrT :H-T—j - E[dm,tJer:H-T—j]) - 0,

for each j = 0,...,bpr. Combined with equation IA.A.19, this implies that X7 — 3 L)
(see also Andrews (1991)). Hence, we can deduce via similar steps as in (IA.A.9) that

Sh.r L 2(qp) as T — <. O

We now prove part B. The result follows by arguments similar to those in the proof of
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Theorem 1. Hence, {d;,} is mixing with the same size as {h;} and {w;} and each element
in d;, is bounded uniformly in ¢ by Assumption 2*. Then it follows by Corollary 3.48 in
White (2001) that d — E[d] = 0, and consequently similar computations as in (IA.A.11)
applies. By arguments identical to those in the proof of part A., X7 — Xp 5 0, where X7
is positive definite by Assumption 3*. Theorem 8.13 in White (1994) then implies that

under Hy, j, in (12) and for any constant ¢ € Ry, P[Sy, > ¢] = 1 as T — oc. O

Lastly, we prove part C. Due the arguments in the proof of Theorem 1 it suffices to show

that X% = AX7 A’ where A =1, B. Thus, let

. 1 EZ
ZT(b) = T Z(dt"ﬂ' ;_,'_T_b,
t=1+
for b=0,1,2.... It then follows that
- 1 & : 1 & -
Sr0) =5 O (dz;T L= Y Adidl, A = A (5)A"
t=1+ t=1+b
Consequently, it follows that f]; = A¥;A’, which completes the proof. O



IA.B. Bond data

We use the Giirkaynak et al. (2007) dataset from 1962:M1 to 2018:M12. The time ¢ log
yield on a k-period bond is computed using the methods developed in Nelson and Siegel
(1987) and Svensson (1994) as

1 —exp(—"
k K
?Jg = ot 1t n( M) + o2

[~ exp (Z)(exp _n>] | (IA.B.20)

n
- Y
( - 2

where we use parentheses in the superscript to distinguish maturity from exponentiation

+ 34

and n = % and m denotes, respectively, the bond maturity in years and the number of
periods per year.
Let pgk) == (%) yt(k) be the log price of a k-period bond at time t. The log forward

rate at time ¢ for loans between ¢ + k — 1 and ¢ + k is defined as
F = pit ™ = pf = iy 4 ) (IA.B.21)

The excess return to purchasing a k-period bond today and selling it as a k — 1 period
bond after one month is

k k— k _ k— k
ral = pii ) — pP) —piV = kel D k) L) (IA.B.22)

m

where ygl) denotes the risk-free one-period rate that we proxy using the implied yield on a
one-month Treasury bill obtained from the Center for Research in Security Prices (CRSP)

as in Gargano et al. (2019).%8

28For k = 1, we have that ft(l) = ygl) and that yt(k_l) = y§°) = 0 due to pgo) being zero (log of terminal

payoff of one is zero).
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TA.C. Additional empirical results

IA.C.1. Descriptive statistics for state variables

Table TA.1 presents full sample descriptive statistics for our two state variables that
captures economic activity and uncertainty, respectively: the Purchasing Managers’ Index

(PMI) and the macroeconomic uncertainty index of Jurado et al. (2015).
[Insert Table IA.1 About Here]

The series are both highly persistent with autocorrelation coefficients well above 0.9.
Most importantly, we note that the series obtains a negative contemporaneous correlation
of —0.48 in the data, suggesting that they capture part of the some features, but are not

perfect substitutes.

IA.C.2. In-sample predictive regressions

Table TA.2 presents full sample least squares estimation results to facilitate comparison
with the extant literature. Specifically, we estimate predictive regressions of the form
presented in (1) with the risk premium on a Treasury bond with k-periods to maturity
rxg?l as the dependent variable. We focus on bonds with k& = {24, 36,48, 60} months to
maturity and consider models based on the predictor variables outlined in Section 2.2. We
stress that these results are not available to a real-time investor, but they are useful for

gauging the mechanisms of the predictive models.
[Insert Table IA.2 About Here]

The slope coefficients for CS and FB are all positive and increasing with maturity and
are all statistically significant at conventional levels.?” We note that these positive slope
coefficients imply negative slopes for the companion regression of yield or forward spreads

on future yield changes as documented in Campbell and Shiller (1991). Thus, both yield

29Bauer and Hamilton (2018) show that statistical test of predictive regression in full sample analyses
are subject to serious small sample distortions when using 12-month overlapping returns. However, we
use one-month non-overlapping returns here and are therefore not affected by their results. See also the
discussion in Gargano et al. (2019).
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and forward spreads contain useful information about future bond excess returns over
the full range of available observations. Turning to the principal components, we find
that PC1 has a constant slope coefficient across maturities, PC2 increased monotonically,
and PC3 displays an inverse U-shape. P1 and PC3 are mostly insignificant, whereas PC2
is significant for the longer maturities. This mirrors the results for CS, but shows that
maturity-specific spreads are more informative than the common slope factor. Last, CP
and LN both display monotonically increasing slope coefficients that are highly significant.
Of all the models, LN appears to explain the largest fraction of bond risk premia, closely
followed by CP and yield spreads. Overall, in-sample results points to predictive relation

between all our candidate predictors.

IA.C.3. Links to uncertainty

Table TA.4 presents contemporaneous correlations among U and the risk premia estimates
from the set of individual models, EW, and the dynamic forecast combinations generated

by PMI, U, and NONE.
[Insert Table TA.4 About Here]

We find that most forecasts are positively correlated with uncertainty, implying that
investors higher risk premia in periods with heightened uncertainty. The exception is CS
and FB for the shorter maturities, where we observe negative correlations. As for our
main results concerning the relation to economic activity (see Table 8), we find that LN
displays the highest correlation with U among the individual predictors and EW. Turning
to the dynamic forecast combination estimates in Panel B, we find that both PMI and U
trimming delivers forecasts that are tightly linked to uncertainty. That is, not only do
they produce countercyclical risk premia estimates, they only procedure forecasts closely

linked to uncertainty.

IA.C.4. Additional results for economic value

Figure [A.1 plots the cumulative CER gains for the individual predictor variables along

with the equal-weighted forecast (EW). The results largely mirrors those in Table 9 in the
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main paper and illustrate that most individual predictors fail to deliver economic value on

a consistent basis. The exception being LN.

[Insert Figure TA.1 About Here]

[Insert Table TA.5 About Here]

Table TA.5 reconstructs the results from Table 9 in the main paper using instead a
coefficient of relative risk aversion of =5 to verify that our results are robust to other,

and lower, values of risk aversion. The table clearly demonstrates that this is the case.
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Table IA.1: Conditioning variables
This table presents descriptive statistics for the state variables used in the empirical analysis.
PMI is the Purchasing Managers’ Index published by the Institute for Supply Managers
and U is the macroeconomic uncertainty index developed in Jurado et al. (2015). The
table reports mean, standard deviation, skewness, kurtosis, and first-order autocorrelation
(AC(1)) of each state variable. We also report the contemporaneous correlation between
the variables. The sample period is January 1962 to December 2018.

PMI u
Mean 52.61 0.66
Std. dev. 6.37 0.09
Skewness -0.61 1.63
Kurtosis 4.37 5.79
AR(1) 0.94 0.99
Correlation -0.48
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Table IA.2: In-sample regressions
This table reports full sample least squares estimates of the slope coefficients for various
linear predictive models for bond excess return. We consider five different predictors: yield
spreads (Campbell and Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal
components of yields (Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005)
forward rate factor computed from a projection of average excess bond returns on two-,
three-, four-, and five-year forward rates, and the Ludvigson and Ng (2009) macroeconomic
factor computed as a projection of average excess bond returns on factors obtained from
a large panel of macroeconomic variables. For each model, we report slope coefficients,
Newey and West (1987) t-statistics using a bandwidth of twelve lags in parenthesis, and
the adjusted R? in square brackets. The sample period is January 1962 to December 2018.

2-year 3-year 4-year 5-year
Panel A: Campbell-Shiller

CS 2.02 2.36 2.75 3.15
(2.67) (2.64) (2.85) (3.17)
[2.55] [2.32] [2.42] [2.61]

Panel B: Fama-Bliss

FB 1.20 1.41 1.69 1.99
(2.20) (2.30) (2.79) (3.38)
[1.80] [1.68] [1.90] [2.14]

Panel C: Principal components

PC1 0.01 0.01 0.01 0.01
(1.43) (1.04) (0.76) (0.56)

PC2 0.13 0.21 0.29 0.37
(1.72) (2.10) (2.46) (2.77)

PC3 0.23 0.31 0.24 0.09
(0.66) (0.63) (0.39) (0.13)
[1.05] [1.09] [1.19] [1.30]

Panel D: Cochrane-Piazzesi

CP 0.65 0.88 1.11 1.36
(4.60) (4.30) (4.12) (4.08)
[2.37] [2.16] [2.17] [2.30]

Panel E: Ludvigson-Ng

LN 0.65 0.90 1.12 1.33
(3.68) (3.96) (4.25) (4.46)
[6.62] [6.47] [6.33] [6.15]
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Table IA.3: Correlations between forecasts and macroeconomic uncertainty
This table reports correlation coefficients between out-of-sample generated forecasts from
individual bond predictors (Panel A) and the dynamic forecast strategy (Panel B) and
economic uncertainty as measured by the the macroeconomic uncertainty index (U) from
Jurado et al. (2015). We report p-values for the null of no correlation in parenthesis. The
out-of-sample evaluation period runs from January 2000 to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

Panel A: Individual bond predictors

CS -0.09 -0.04 0.01 0.05
(0.10) (0.41) (0.92) (0.39)
FB -0.04 0.07 0.12 0.15
(0.49) (0.21) (0.02) (0.00)
PC 0.03 0.04 0.05 0.06
(0.57) (0.5) (0.34) (0.23)
CPp 0.12 0.11 0.10 0.10
(0.02) (0.04) (0.06) (0.07)
LN 0.44 0.46 0.47 0.48
(0.00) (0.00) (0.00) (0.00)
EH 0.43 0.38 0.34 0.32
(0.00) (0.00) (0.00) (0.00)
EW 0.31 0.34 0.35 0.35
(0.00) (0.00) (0.00) (0.00)
Panel B: Dynamic forecast combination
PMI 0.54 0.53 0.50 0.50
(0.00) (0.00) (0.00) (0.00)
u 0.59 0.56 0.54 0.55
(0.00) (0.00) (0.00) (0.00)
NONE 0.54 0.47 0.46 0.47
(0.00) (0.00) (0.00) (0.00)
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Table TA.4: Alternative proxies for economic activity
This table reports correlation coefficients between forecasts and alternative proxies for
economic activity. We use the Chicago Fed National Activity Index (Panel A), recession
probabilities from Chauvet and Piger (2008) (Panel B), and log growth rates to industrial
production (Panel C). We report p-values for the null of no correlation in parenthesis. The
out-of-sample evaluation period runs from January 2000 to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

Panel A: Chicago Fed National Activity Index (CFNAI)

CS 0.10 0.04 -0.01 -0.05
(0.07) (0.40) (0.89) (0.35)
FB 0.04 -0.06 -0.13 -0.16
(0.46) (0.25) (0.02) (0.00)
PC 0.19 0.18 0.15 0.12
(0.00) (0.00) (0.01) (0.03)
CP -0.10 -0.09 -0.08 -0.07
(0.05) (0.10) (0.15) (0.17)
LN -0.48 -0.49 -0.50 -0.51
(0.00) (0.00) (0.00) (0.00)
EH -0.20 -0.17 -0.16 -0.15
(0.00) (0.00) (0.00) (0.01)
EW -0.26 -0.29 -0.30 -0.32
(0.00) (0.00) (0.00) (0.00)
PMI -0.51 -0.55 -0.54 -0.51
(0.00) (0.00) (0.00) (0.00)
u -0.56 -0.54 -0.54 -0.57
(0.00) (0.00) (0.00) (0.00)
NONE -0.53 -0.49 -0.49 -0.50
(0.00) (0.00) (0.00) (0.00)
Panel B: Recession probabilities (Chauvet and Piger, 2008)
CS -0.01 0.02 0.05 0.08
(0.89) (0.72) (0.33) (0.13)
FB 0.03 0.09 0.14 0.16
(0.64) (0.09) (0.01) (0.00)
PC -0.05 -0.05 -0.03 -0.01
(0.37) (0.35) (0.57) (0.86)
Cp 0.10 0.08 0.06 0.05
(0.08) (0.16) (0.26) (0.32)
LN 0.56 0.57 0.58 0.59
(0.00) (0.00) (0.00) (0.00)
EH 0.18 0.13 0.11 0.09
(0.00) (0.01) (0.05) (0.09)
EW 0.37 0.38 0.38 0.38
(0.00) (0.00) (0.00) (0.00)
PMI 0.51 0.54 0.53 0.53
(0.00) (0.00) (0.00) (0.00)
u 0.55 0.56 0.54 0.55
(0.00) (0.00) (0.00) (0.00)
NONE 0.58 0.53 0.51 0.52
(0.00) (0.00) (0.00) (0.00)
Panel C: Log industrial production growth
CS 0.07 0.06 0.03 0.01
(0.16) (0.28) (0.55) (0.86)
FB 0.07 0.01 -0.03 -0.05
(0.16) (0.79) (0.61) (0.33)
PC 0.16 0.15 0.14 0.13
(0.00) (0.00) (0.01) (0.02)
CP -0.08 -0.07 -0.07 -0.07
(0.16) (0.17) (0.18) (0.18)
LN -0.26 -0.27 -0.28 -0.28
(0.00) (0.00) (0.00) (0.00)
EH -0.09 -0.10 -0.10 -0.10
(0.11) (0.08) (0.07) (0.06)
EW -0.12 -0.14 -0.15 -0.16
(0.03) (0.01) (0.01) (0.00)
PMI -0.23 -0.25 -0.27 -0.23
(0.00) (0.00) (0.00) (0.00)
u -0.28 -0.25 -0.25 -0.27
(0.00) (0.00) (0.00) (0.00)
NONE -0.25 -0.22 -0.21 -0.21

(0.00) (0.00) (0.01) (0.01)




Table TA.5: Economic Value: =5

This table reports certainty equivalent return (CER) gains for various linear predictive
models for bond excess return. We consider five different predictors: yield spreads
(Campbell and Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal components
of yields (Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward
rate factor, and the Ludvigson and Ng (2009) macroeconomic factor. For each model, we
report the CER gains relative to the expectations hypothesis (Panels A and B) and a static
forecast combination strategy (Panel C). PMI denotes the Purchasing Managers Index
published by the Institute for Supply Management and U is the macroeconomic uncertainty
index from Jurado et al. (2015). CER gains are based on an investor with mean-variance
preferences and a relative risk aversion of = 5. The out-of-sample evaluation period runs
from January 2000 to December 2018.

2-year 3-year 4-year 5-year

Panel A: Individual bond predictors against EH

CS -0.91 -0.88 -0.52 -0.25
(0.94) (0.87) (0.74) (0.62)
FB -0.62 -0.68 -0.55 -0.34
(0.88) (0.86) (0.80) (0.67)
PC -2.06 -2.46 -2.41 -2.36
(0.99) (0.96) (0.93) (0.9)
CP -0.80 -1.20 -1.31 -1.36
(0.96) (0.94) (0.91) (0.87)
LN 0.61 1.39 2.41 3.24
(0.01) (0.01) (0.00) (0.00)
EW 0.03 0.25 0.70 1.08
(0.46) (0.32) (0.13) (0.07)
Panel B: Dynamic forecast combination against EH
PMI 0.28 0.59 1.07 1.47
(0.19) (0.14) (0.05) (0.02)
u 0.19 0.53 1.22 1.60
(0.27) (0.14) (0.02) (0.01)
NONE 0.12 0.30 0.76 1.07
(0.34) (0.28) (0.10) (0.07)
Panel C: Dynamic forecast combination against EW
PMI 0.25 0.34 0.37 0.39
(0.02) (0.04) (0.05) (0.03)
u 0.16 0.28 0.52 0.52
(0.08) (0.02) (0.00) (0.02)
NONE 0.09 0.04 0.06 -0.01
(0.15) (0.35) (0.28) (0.52)
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Figure TA.1: Relative certainty equivalent returns

This figure plots the recursively updated cumulative difference in realized utility from the
EH benchmark model and the ith predictor model over the out-of-sample evaluation period.
We consider five different predictors: yield spreads (Campbell and Shiller, 1991), forward
spreads (Fama and Bliss, 1987), principal components of yields (Litterman and Scheinkman,
1991), the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson and Ng
(2009) macroeconomic factor. We also consider a simple equal-weighted combination of
the individual forecasts. A positive (negative) slope indicates that the predictive model
delivers more (less) accurate forecasts than the EH benchmark. Green (yellow) shaded
ares represent periods of high (low) activity and uncertainty, respectively, where activity
is measured using the Purchasing Managers’ Index (PMI) and uncertainty in the index
developed by Jurado et al. (2015). High (low) episodes are identified using the 80% (20%)
quantiles of their time series. White areas are normal times. The out-of-sample evaluation
periods runs from January 2000 to December 2018.
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