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ABSTRACT

While a large literature on return predictability has shown a link between valuation
levels and expected rates of aggregate returns in-sample, we document a link between val-
uation levels and the shape of the distribution of cumulative (for example, over 12 and
24 months) total returns. Return distributions become more asymmetric and negatively
skewed when valuation levels are high. In contrast, they are roughly symmetric when
valuation levels are low. These results turn out to be very robust to alternative (a) mea-
sures of valuation levels, (b) model specifications and (c) equity markets (international and
industry-level). Importantly, these findings shed light on how equity prices regress back
to their means conditional on valuation levels, have important practical implications for
risk measurement and asset management, and refine the well-known finding of negative
skewness in aggregate returns. The model with conditional skewness also outperforms
benchmark models assuming a symmetric or constant-skewness distribution in an out-of-
sample setup. Our empirical results support theoretical asset pricing models that have
asymmetric responses to shocks, such as stochastic bubbles, liquidity spirals or models
with time-varying risk aversion.
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1 Introduction

A large literature has looked at the time-variation in expected rates of returns and
the link between prices, dividends and discount rates (see, for example, Cochrane
(2011) and Fama (2013) for recent discussions of that literature; Golez and Koudijs
(2016) evaluate this link using four centuries of data). The goal of this paper is to
provide a fresh view on this important question in empirical asset pricing. Specif-
ically, we look beyond the mean of the return distribution and focus on the shape
of the predictive return distribution. The key innovation of the paper is that we
model the shape to depend on a valuation ratio such as the cyclically-adjusted
price-earnings ratio or the book-to-market ratio.

Our research idea is illustrated by a quick look into the data. Figure 2 reports
histograms of observed cumulative 12-month log-returns conditional on valuation
ratios being HIGH (top quartile) and LOW (bottom quartile) and highlights a pro-
nounced shift in the shape of the distribution: while it looks symmetric in the case
of low valuation ratios, it becomes negatively skewed for higher valuation ratios.
This pattern suggests time-variation in market skewness conditional on valuation
levels. It extends the currently prevailing view in the literature that aggregate re-
turns exhibit, in general, negative skewness (see Campbell and Hentschel (1992)
and Duffee (1995) for early evidence and Oh and Wachter (2019) for a recent pa-
per building on this view). We are not aware of any academic study that has docu-
mented and carefully modeled this pattern. This represents one of the contributions
of our paper.

Such an asymmetry has important economic implications. While the existing
literature on return predictability helps us understand the dynamics of time-varying
expected rates of return, it does not explain how the reversion to that mean will
actually occur. For example, when valuations are high (low), how will prices adjust
reflecting the expected low (high) returns? Is this adjustment more likely to happen
smoothly or rather abruptly? Another central question in this literature is about
the interpretation of long-lasting deviations of market values from fundamentals:
do these patterns reflect (rational) bubbles? Put differently, why is the timing of
market reversals so difficult even at extremely high valuations? These are precisely
the questions we will address in this paper.

Specifically, we propose an econometric framework that is simple but flexible
enough to model the asymmetry of the return distribution as a function of a valu-
ation ratio and, at the same time, nests the standard, linear predictive regressions
as a special case. In more detail, we compare the model with conditional skew-
ness to two benchmark models; one that implies a symmetric distribution, and one
that implies a distribution with constant skewness. To reflect the well-known fact
that equity returns have fat tails and to avoid any confounding effects between ex-



cess kurtosis and skewness of the estimated return distributions, we use a (skew)
T-distribution to model returns instead of a (skew) normal distribution. For some
comparisons, however, we also refer back to the standard Gaussian model.

Relative to the standard, linear predictive regression, our main empirical model
with conditional skewness has similar implications for mean prediction. However,
the model is powerful enough to help us understand how regression to the mean
works. Using this framework and the standard US data, we find strong statistical
evidence that the shape of the return distribution varies conditional on the valuation
ratio and that the distribution becomes more negatively skewed when valuation
ratios are high. Put differently, our empirical evidence documents that if valuations
are high, regression to the mean is more likely to happen with strongly negative
returns; in contrast, if valuations are low it is more likely to happen smoothly.

The model with conditional skewness is well-supported by the data. Its log
likelihood exceeds those of the competing benchmark models; and the parameter
governing the link between valuation levels and the shape of the return distribu-
tion is statistically significant. These results are very robust across different sub-
samples (pre-1945 and post-1945 samples), returns horizons (12-month and 24-
month returns), proxies for valuation ratios (the cyclically-adjusted price-earnings
CAPE ratio, the margin-adjusted CAPE ratio, the book-to-market ratio and past 5-
year returns), model specifications (also allowing conditional dispersion to depend
on the valuation level), international equity markets (the UK and a global portfolio
of international equity indices) and industry portfolios.

Interestingly, when valuation ratios are very high the most likely value of the
future return (i.e., the mode of the predictive distribution) still remains positive (in
fact roughly unchanged) in our empirical analysis showing that timing the peak of
a bull market is made inherently more difficult as a consequence of time-varying
skewness. Conversely, since at low valuations our predictive distributions become
approximately symmetric, very low valuations have higher power to forecast mar-
ket direction.

The model with conditional skewness also shows promising out-of-sample per-
formance. The model significantly outperforms the competing benchmark models
with a symmetric or a constant-skewness distribution, both using standard statis-
tical as well as utility-based metrics. With respect to the no-predictability bench-
mark, we find no evidence of predictability, as one would expect given the simplic-
ity of the model. However, looking at prediction errors as well as utility gains over
time shows that the model with conditional skewness experiences long periods dur-
ing which it consistently outperforms the no-predictability benchmark. However,
during pronounced periods of high valuations (for example, the 90ties or the most
recent 10 years) it is punished for not being able to forecast the market downturns.

Our empirical results have important implications for investors, asset managers



and risk managers. Obviously, ignoring that the return distribution becomes very
negatively skewed when valuation levels are high leads to severe underestimation
of risk measures such as volatility, value-at-risk and expected-tail-loss. These is-
sues of underestimation of risk hold for the standard Gaussian model as well as the
two benchmark models that we evaluate empirically, a model assuming a symmet-
ric T-distribution and a model assuming a T-distribution with constant skewness.
For example, while a symmetric T-distribution, with parameters estimated from
the full sample, implies a 1% value-at-risk of -45% (-36% simple returns) for 12-
month cumulative total log returns when valuation levels are high, our model with
conditional skewness implies a 1% value-at-risk of -71% (-51% simple returns) in
this case.

Interestingly, we observe the mirror-image of this pattern, albeit to a less ex-
treme extent, when valuation levels are low. In this case, the Gaussian model and
our benchmark models overestimate risk for any risk measure that we look at.
For example, while a symmetric T-distribution estimates the 1% value-at-risk to
be -28% for 12-month cumulative total returns when valuation levels are low, our
model with conditional skewness implies a 1% value-at-risk of -23% in this case.
Thus, from an investor’s point of view ignoring the conditional skewness is a lose-
lose situation. For example, a mean-variance investor using a Gaussian model
would invest too aggressively in the market when valuation ratios are already high
but too conservatively when valuation ratios are low.!

The remainder of the paper is organized as follows. In Section 2 we summa-
rize the related literature focusing on theoretical models consistent with our em-
pirical results. In Section 3, we describe the empirical model and the predictive
framework. Section 4 describes the data used in our analysis and provides some
descriptive statistics. Section 5 summarizes the empirical results including robust-
ness tests. Section 6 concludes.

2 Related Literature

Several theories have been proposed to rationalize negative skewness in asset re-
turns. Among these the “leverage effect” (a drop in market valuations increases
leverage ratios and, as a consequence, increases volatility of subsequent returns)
and the “volatility feedback effect” (bad news lowers future expected cash-flows
and increases the risk premium; good news, in contrast, increases future expected
cash-flows but, again increases the risk premium resulting in a dampened overall

IRecently asset management strategies based on volatility, such as risk parity and volatility tar-
geting, have become increasingly popular (see, for example, Moreira and Muir (2017)). Obviously,
such strategies are very sensitive to accurate estimates of future volatilities.



effect) have been found to lack the quantitative importance to explain the data (see,
for example, Bekaert and Wu (2000) and Poterba and Summers (1986)). Chen,
Hong, and Stein (2001) propose and evaluate an alternative explanation based
on heterogeneous investors, differences in opinions and short-sale constraints for
some investors. Hueng and McDonald (2005), however, find no support for this
explanation in the case of aggregate stock market returns.

Importantly, however, the theories discussed in the previous paragraph fail to
rationalize that the shape of the return distribution varies with valuation ratios.
A theoretical motivation that overcomes this shortcoming is linked to stochastic
rational bubbles, as first developed by Blanchard and Watson (1982). In these
models, the stock price is the sum of a fundamental price and a bubble compo-
nent. The bubble is stochastic, as it continues with a given probability p and bursts
with probability (/-p). Importantly, the model explicitly links the shape of the
predictive distribution to the valuation ratio. If one, for example, assumes that
the fundamental price follows a symmetric distribution then the Blanchard-Watson
model implies a symmetric predictive distribution at low valuations (in this case,
the bubble component is zero); at high valuations, however, the predictive distri-
bution becomes increasingly left skewed as a mixture of two distributions. This
would be consistent with our empirical results.?

Another theoretical framework that fits our empirical results is the one on fund-
ing liquidity and liquidity spirals proposed in Brunnermeier and Pedersen (2009)
and evaluated for carry trades in Brunnermeier, Nagel, and Pedersen (2008). In
that framework, assets that speculators invest in feature negative skewness aris-
ing from an asymmetric response to fundamental shocks: losses of speculators are
amplified when they hit funding constraints (e.g., margin calls); as a consequence
they unwind their positions and further depress prices only deepening their funding
constraints and leading the asset market into a liquidity spiral; positive shocks to
the positions of speculators, in contrast, are not amplified. Importantly, Figure 7
in Brunnermeier and Pedersen (2009) shows that skewness becomes more negative
with initial funding levels. This model prediction fits our empirical patterns well,
as valuation levels of asset markets should be related to funding levels.?

A third stream in the theoretical asset pricing literature that features asymmet-

ZNote, however, that we do not view our empirical results as evidence in support of the existence
of price bubbles. Instead, we view them as being merely consistent with some, but not all, of these
models’ predictions. If rational bubbles existed, prices would change while expected returns would
not (see, for example, Cochrane (2011)). In our case, however, we find both, time-varying asymme-
try, consistent with the Blanchard-Watson model, and predictability in mean returns, consistent with
Campbell and Shiller (1988) and Cochrane (2008).

3Jorda, Schularick, and Taylor (2016) make a related argument showing that the business cycles
in countries with high leverage (proxied by private credit to GDP) tend to be more negatively skewed
featuring more pronounced crashes.



ric responses of returns to fundamental shocks is built around time-varying risk
aversion (e.g., habit-based models). A recent example of that literature that is in
line with our empirical results is Greenwald, Lettau, and Ludvigson (2016). They
propose a model to explain stock price fluctuations in which investors are close to
risk-neutral most of the time but subject to rare spikes in their risk aversion that
generate a “flight-to-safety”’and, as a consequence, a rapid drop in the price of the
risky asset. An important advantage of that framework is that in addition to the
shape predictability it also matches our results for expected rates of returns, which
are essentially zero when valuation levels are high and positive when valuations
are low. In contrast, stochastic bubble models — having a constant expected rate
of return — and the liquidity spiral framework — featuring an always positive ex-
pected rate of return to compensate for liquidity risk — seem to be at odds with
our empirical estimates of expected rates of returns.

Finally, David and Veronesi (2014) develop a dynamic equilibrium model of
learning that also provides a rationalization for the link between valuation ratios
and the shape of the return distribution. In their model investors learn about differ-
ent regimes in the fundamental value. During a boom period, positive news about
fundamentals has little impact on investors’ beliefs; negative news, however, may
lead to a large downward revision in beliefs; thus, in that situation investors per-
ceive greater downside risk than in bad times. As a consequence, stock returns will
be negatively skewed in good times.

Interestingly, David and Veronesi (2014) also provide evidence from option
markets that is consistent with our empirical results. They find that the ratio of the
implied volatilities of out-of-the-money puts over out-of-the-money calls, an indi-
cator of the market’s assessment of downside risk versus upside risk, raises during
expansions and drops during recessions (i.e., it is pro-cyclical). Their analyses
focuses on three-months options and the sample period of 1988 to 2011. Our anal-
ysis, instead, documents consistent patterns for long-term returns up to two years
and is based on a much longer sample period.

Similarly, Veldkamp (2005) develops a model of endogenous information flow
to study slow booms and sudden crashes in lending markets in emerging markets.
In the model, agents undertake more economic activity in good times than in bad
time. Thus, economic activity generates public information about the state of the
economy. If the economic state changes when times are good and information is
abundant, asset prices adjust quickly and a sudden crash occurs. When times are
bad, scarce information and high uncertainty slow agents’ reactions as the economy
improves; a gradual boom ensues.

In terms of empirical literature, the following two recent papers are closely
related to our work. Greenwood, Shleifer, and You (2019) study industry-returns
and use an ad-hoc definition of bubbles based on past returns. Looking exclusively



at those bubble periods, they document results that are consistent with the ones
we report; such as, for example, that a sharp price increase predicts a substantially
higher probability of a crash. They, however, do not study the predictive relation
between valuation levels and the shape of the return distribution in a comprehensive
econometric framework that also allows for predictability in other characteristics
of the return distribution.

Gormsen and Jensen (2017) study higher-order moments of monthly and quar-
terly returns using estimates extracted from option markets. The main advantage
of those estimates is that they are forward looking. Relying on option markets,
however, also comes at a cost, such as, for example, the lack of options with long-
horizon maturities and an overall relatively short sample size. While their empirical
setup is quite different from ours, some of their results are qualitatively consistent
with our analysis. For example, they also show that higher-order risks are time-
varying and tend to increase during good times.

Our paper also relates, more broadly speaking, to the literature on the non-
normality of asset returns. Looking at daily or even higher-frequency returns, this
literature finds excess kurtosis and negative skewness. It usually models condi-
tional skewness as following an autoregressive process and models it jointly with
conditional volatility (see, for example, Harvey and Siddique (1999) and Jondeau
and Rockinger (2003)). Our approach is very different as we look at longer hori-
zon returns (in particular, 12-month and 24-month cumulative returns) because we
share the view of Fama and French (2017) and Bessembinder (2017) that the liter-
ature has so far been focusing on the distributional characteristics of short-horizon
returns (daily and monthly) rather than on the characteristics of long-horizon re-
turns. Studying longer horizons, of course, comes with its own econometric chal-
lenges, such as fewer observations. We focus on 12-month and 24-month log re-
turns because the asymmetry in the predictive distribution typically peaks some-
where in this interval. It is also important to emphasize that skewness in daily
returns may have little or no connection to the skewness of cumulative returns (see
Appendix A for a detailed discussion of this issue).

Finally, our analysis is related to the extensive literature on the predictability
of expected returns; in particular, to studies applying regime-switching models.
Henkel, Martin, and Nardari (2011), for example, estimate a Markov switching
multivariate model for returns and four predictive variables. For the simplified case
of one predictive variable, namely a valuation ratio, it is possible to show that their
empirical model together with the result that predictability exists mostly during re-
cessions implies that the future return distribution is a mixture of two distributions,
one with fixed mean (no predictability regime) and one with a mean decreasing in
the valuation ratio. Under reasonable parameterizations, the future return distribu-
tion then exhibits time-varying skewness consistent with our evidence: skewness



is negative and large in absolute terms when valuation levels are high, and small
and potentially even positive when valuation levels are low.

3 Model Specification

A skew-T distribution with deterministically varying parameters. The
standard predictive regression is a linear projection of cumulative log returns on
a valuation (ratio), also in logs, so the implicit model is

Yeg+h = Bo+Bix: + &,

where y; ;15 = 10g((Pryn + Dig1:4+4)/P;) are cumulative total log returns over A
periods, x; is a log valuation ratio, and OLS estimation is optimal under the as-
sumption that €& is Gaussian.

The most parsimonious and interpretable way to extend this model to capture
the idea that valuation ratios may also affect the shape of the distribution is to move
from a symmetric to an asymmetric distribution, where the asymmetry is a func-
tion of valuation levels. A skew-normal distribution would be the most immediate
extension of the regression model, but we prefer to be slightly more general and
opt for a skew-T distribution. Allowing for fat tails is always good practice, partic-
ularly with financial data, and in our case it is particularly important to mitigate the
risk of interpreting one or a few outliers as asymmetry or time-varying asymmetry.
Forcing a Gaussian distribution on fat-tailed data results in extremely noisy esti-
mates of skewness in repeated samples, particularly if skewness is measured as the
centered third moment. In our sample the key results are little changed (t-statistics
are even higher) if we force a high value for the degrees of freedom. However,
since this restriction is strongly rejected by the data, we show results for the more
general and robust model, which is

yt,t+h ~ SkeWt(mt,G, v, Yt)

where skewt is the skew-T distribution of Fernandez and Steel (1998). Here my; is
the mode (location parameters), G is the dispersion parameter, v are the degrees of
freedom, 0 < 7y, < oo is the asymmetry (shape) parameter, and the model parameters
are deterministic functions of a constant and x; as follows:

my = Bom+Brmx
logo = Pos
logv = Boy
logy, = Boy+Biyx.



Notice that we work with logs of the dispersion and degrees-of-freedom pa-
rameters, ¢ and v, and also model logy, rather than ¥; as a linear function of log-
valuation x;. This makes the distribution p(y; ;1|x;) well-defined for any value of
Bl,m and Bl,y-

This model nests the standard predictive regression as a special case with 31 y =
Bo,y =0 and v fixed at a large number. If v is freely estimated, we have a regression
with T rather than Gaussian errors. We will refer to this model as the Symmetric-T
Model. An interesting comparison is with a model where the skew is fixed, so oy
is freely estimated but 3 y = 0. We will refer to this model as the Constant-Skew-
T model. The main model of interest, however, is one in which we also estimate
Bi.y to see whether valuation ratios affect the shape of the return distribution. We
will refer to this model as the Conditional-Skew-T model. In this paper we present
results for a simplified Conditional-Skew-T model by imposing B, = 0. In our
sample this restriction is never rejected using any standard selection criteria like
BIC or AIC, and when B, and B are estimated jointly B, is always small
with t-statistics much lower than one. What this implies is that the mode of the
distribution is fixed, and as the distribution becomes more left (right) skewed, its
mean is lower (higher). Of course this does not have to be the case for other assets
or samples, where m; could either move left or, as in the Blanchard-Watson rational
bubble model (Blanchard and Watson (1982)), shift right at higher valuations.

We also consider an even more general version of the model by estimating B s
— also allowing the variance to be a function of valuations. Details on this model
implementation can be found in the robustness section. This improves the fit to the
data but does not have important implications for the analysis of the shape of the
return distribution which represents the focus of this paper. Thus, we decided to
focus on the simpler model throughout the paper. If our goal was to maximize the
fit to the data we would indeed need to model the dispersion as time-varying, and
include more variables; see Li and Villani (2010) for an example of such a model
fitted to daily stock return data (without including any measure of valuation).

Skewness, asymmetry, and some features of the skew-T distribution. There
are several skew-T distributions available in the literature. Jones (2014), with a
univariate emphasis, and Lee and McLachlan (2013), with a multivariate empha-
sis, provide excellent reviews. Most proposals are fairly recent and there is still
very little applied work to guide a choice (Jones (2014)). We have opted for the
version of Fernandez and Steel (1998) because, in their model, the role of each
parameter is easy to interpret; in particular, our main hypothesis — that asymme-
try varies with valuations — is captured by just one parameter. It also nests the
standard regression equation and its likelihood is available in closed form, which



aids in the estimation.

The idea of Fernandez and Steel (1998) is to introduce an inverse scale factor
in the positive and negative orthants, so that if the distribution f(g&) is unimodal
and symmetric around zero, then we can create a skewed distribution p indexed by

Y

pledl) = {f@jqaw) (6 + F ) o) <s,>} |

Yty
In our case & = f(y;++n —m;) and f(g;) is a student 7 distribution with dispersion
¢ and degrees of freedom v. In Fernandez and Steel (1998) v is fixed, but the
extension is fairly straightforward. In our experience, this two-piece transformation
fits moderate skewness well and is very convenient and robust in estimation, but
may not be the best choice for severe skewness.

Each parameter has a fairly straightforward interpretation: m;, is the mode, ¢
is the dispersion, v controls the fatness of the tails, and ¥, determines the amount
of asymmetry. However, each statistical moment is in general a function of all
four parameters (see Fernandez and Steel (1998) for closed-form expressions). In
particular, m, is the mode, which differs from the mean unless y, = 1, the variance
is a function of &,v, and 7V;, and the most common measure of skewness as the
centered third moment divided by the cubed standard deviation is also a function
of v, and ;.

For unimodal distributions, Arnold and Groeneveld (2010) propose a measure
of skewness defined as one minus twice the probability mass left of the mode,
which in our case is 2ol

t

7+l

since in the skew-T distribution of Fernandez and Steel (1998), v alone controls the
allocation of mass to each side of the mode as

P(y; > m|V;) :'YZ
Py, <my|y) t'

Given our use of the Fernandez and Steel skew-T distribution, “asymmetry”
in this paper is a one-to-one function of the amount of probability mass on each
side of the mode. This definition is of course not free from shortcomings, but it
is intuitive and far more stable than the centered third moment, particularly for
fat-tailed distributions.

Estimation. Since the likelihood and all derivatives are available in closed
form, estimation by maximum likelihood is convenient and works well for the



small models considered in this paper. When using overlapping data,* the assump-
tion of conditionally independent observations is incorrect and results can be in-
terpreted as quasi-ML. A correction for autocorrelation should then be made to
compute standard errors and t-statistics.

A very effective Markov Chain Monte Carlo algorithm (Gamerman (1997))
exists for generalized linear models, of which ours is a special case. Our version
is taken from Li and Villani (2010). The problem is broken into sequential steps
of estimating the coefficients associated with each parameter in separate blocks,
with tailored proposal distributions obtained by maximizing the conditional likeli-
hood at each step. The computational cost is compensated by increased reliability:
in more complex problems and/or in less informative data, there can be multiple
modes that the MCMC is able to explore in our experience. The general version of
the model in which explanatory variables can affect both the mode and the asym-
metry is particularly prone to multimodality, requiring either MCMC or great care
in optimization.

For all results presented in this paper, the posterior means from MCMC (which
we report and which are obtained with very disperse priors) for the key parameters
of interest, namely oy and B y, are nearly identical to ML estimates. Maximum
likelihood estimation gives consistently lower estimates of the degrees-of-freedom
parameter than MCMC. This is not surprising: the data contain some very large
outliers, and ML can only accommodate them with a fairly low v. In contrast,
MCMC results in a posterior distribution for v. This distribution has a higher mean
and mode than the ML estimate, but also a tail of very low draws of v which induce
very fat tails in the distribution of returns. We view this as a highly desirable feature
of fully Bayesian MCMC inference, since it allows for very fat tails without forcing
the spikes in the center of the distribution that are associated with low degrees-of-
freedom in a student-t distribution.

We are not aware of any fully Bayesian approach to inference with overlap-
ping observations: the likelihood is technically misspecified. Common practice
is to either work with non-overlapping observations, which throws away a lot of
useful data, or work as if observations were independent, which gives incorrect
posteriors and over-confident results. We have employed an ad-hoc fix inspired by
autocorrelation-consistent standard errors computed in a frequentist approach: the
log-likelihood within each MCMC step is divided by 1+ 0.5(2 — 1) in an attempt
to account for overlapping observations. For the results reported in this paper, this
produces standard deviations extremely close to autocorrelation consistent standard

4Main results reported in the paper are based on overlapping data. In the robustness section, we
also present results from non-overlapping data that are qualitatively as well as quantitatively very
similar to our main results.
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errors when the posterior mean is close to the posterior mode (the ML estimate), as
in the case for the key coefficients of interest oy and ;. We report results from
these MCMC draws, but emphasize that the key findings are equally strong from
ML estimates. For the full sample, ¢ statistics for the main parameter of interest
B1,y are close to three even if non-overlapping observations are used.

4 Data and Descriptive Statistics

The key variables of interest are the cumulative, overlapping (i.e., all possible 12-
month and 24-month periods are considered) 12-month and 24-month total log
returns. The only predictive variable is the cyclically adjusted price-to-earnings
ratio (CAPE); as a robustness test, we replicate our main results using the market-
to-book (MB) ratio, the margin-adjusted CAPE (Hussman (2017)), or the 5-year
return (e.g., Asness, Moskowitz, and Pedersen (2013), Greenwood, Shleifer, and
You (2019)) as the only predictive variable. The sample period is from January
1881 (January 1921) to December 2014 in the case of CAPE (MB). All variables
are in logs. We also standardize the valuation ratios in the model such that the
mean is zero and the standard deviation is one, which makes parameters easier
to interpret. Data is at the monthly frequency and is taken from Amit Goyal’s
webpage.

Figure 1 shows the time-series graph of market-to-book and CAPE. As one
would expect, the two series are very closely related — noticeable differences can
be observed up to the 30ties and during the 60ties and 70ties. Negative values cor-
respond to periods of time during which book values exceed market prices while
large positive values correspond to market booms. One clearly observes the stock
market downturn before the great depression and the run-up and subsequent cor-
rection associated with the boom in technology stocks at the end of the last century.

Table 1 presents the summary statistics of 12-month (Panel A) and 24-month
(Panel B) total returns including means, standard deviations and skewness. We re-
port these statistics for the full sample period, and the pre-1945 and post-1945 sub-
periods separately. Furthermore, we report them separately for the first, the pooled
second and third, and the fourth valuation quartiles. There are several measures of
skewness available in the literature, each attempting to quantify the asymmetry in
a distribution. The most common measure is the centered and standardized third
moment. This statistic is known to suffer from large sampling errors in the case of
distribution with fat tails and is therefore very susceptible to outliers.

The expected 12-month return is 16.2% in the case of low (lowest quartile of
CAPE) and 3.9% in the case of high (highest quartile of CAPE) valuation ratios
(the unconditional mean is 8.7% with a standard deviation of 18.8%). The standard
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deviation of 12-month returns is 16.9% for the case of lowest valuation ratios and
only slightly higher at 19.4% for highest valuation ratios. In the case of 24-month
returns the full sample average is 17.3% with a standard deviation of 26.3%; ex-
pected 24-month returns amount to 31.7% for periods with lowest and 7.3% for
periods with highest valuation ratios; the corresponding standard deviations are
18.7% and 32.9%, respectively. Note the mild increase in standard deviation (be-
tween 12-month and 24-month returns) in the case of lowest valuation ratios and
the comparatively very stark increase in the case of highest valuation ratios. The
patterns in average realized returns observed across valuation quartiles are consis-
tent with the standard Campbell-Shiller argument that low (high) valuation ratios
predict high (low) expected rates of returns.

In terms of skewness, Table 1 shows that, as expected and consistent with ex-
isting literature, cumulative 12-month and 24-month returns are, in general, nega-
tively skewed. Most importantly, however, we find that they are more negatively
skewed when valuation ratios are high (top quartile) than when valuation ratios are
low (bottom quartile). In the case of bottom-quartile valuation ratios, we frequently
find even positive or close-to-zero skewness. Thus, these simple descriptive statis-
tics already suggest a link between valuation ratios and the shape of the return
distribution.

In some cases, however, skewness, as measured by the standardized third mo-
ment, does not monotonically decrease when valuation levels increase; i.e., in some
cases we find even lower skewness when valuation ratios are in the middle quar-
tiles. While this seems to be at odds with our story, it is most likely related to
the previously discussed shortcomings of the standard skewness measure that we
report in Table 1. To get a better idea of the shapes of the empirical return dis-
tributions, Figure 2 (12-month returns) and Figure 3 (24-month returns) show his-
tograms of realized returns for the full sample and conditional on valuation ratios
at the beginning of the return observation period. In both cases, we clearly see that
the shape of the distribution of observed returns changes substantially conditional
on the valuation ratio. While it looks slightly positively skewed in the case of
the lowest valuation quartile, it becomes increasingly asymmetric and negatively
skewed for higher valuation quartiles. These patterns also appear to be somewhat
more pronounced for realized 24-month than 12-month returns.

Finally, we explore the term-structure of skewness over various horizons. As
discussed before (and in detail in Appendix A), the skewness in daily returns might
have little to do with the skewness in cumulative returns. Figure 4 shows esti-
mates of the asymmetry in cumulative returns for horizons of one month up to
35 months. To address the issue of noisiness in standard skewness measures, we
plot the Arnold and Groeneveld measure of skewness (see Arnold and Groeneveld
(2010)) for skew-t distributions estimated on the data. Again, we do this separately
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for the entire sample as well as for observations in the lowest and highest valuation
quartiles.

Focusing on the entire sample, we see that skewness becomes more negative
when the horizon increases and then reverts back to zero, but the convergence is
slow. A similar pattern is observed when valuation levels are high but the initial
increase in negative skewness up to horizons of 20 months or so is even more pro-
nounced. The case of observations when valuation levels are low looks somewhat
different because skewness increases (i.e., becomes less negative or even positive)
up to horizons of 6 months, then drops (i.e., becomes increasingly more negative)
up to horizons of 19 months, and then reverts back to zero or even positive values
at a faster speed than in the case of all observations or high-valuation observations.
Importantly, these results show that the basic relation between valuation levels and
skewness of cumulative returns is not horizon-dependent. They also illustrate that
skewness does not converge to zero for those horizons that we consider in the paper
(see, for example, Neuberger (2012), Neuberger and Payne (2018) and Johansson
(2019)).

5 Empirical Results

In this section, we summarize our empirical results focusing on 12-month and 24-
month cumulative total log returns and the cyclically-adjusted-price-earnings ratio
(CAPE) as proxy for the valuation ratio.

5.1 Model Parameters

Table 2 summarizes parameter estimates for the three models of interest — the
Symmetric-T model, the Constant-Skew-T model and the Conditional-Skew-T model
— when 12-month returns are modeled. Panel A reports results based on the full
sample of data, Panel B focuses on the pre-1945 and Panel C on the post-1945
sub-period.

The Symmetric-T model represents the standard, simple linear regression model
with the only difference that we assume a T-distribution instead of a normal distri-
bution for the residuals. Consistent with the literature we find that valuation ratios
predict expected returns: a one-standard deviation increase in log(CAPE) results
in a, statistically and economically significant, drop in expected 12-month returns
of 4.226%. The corresponding full sample OLS estimates assuming a normal dis-
tribution for the errors are 8.667 for 3¢ ,, and -4.817 for B ,. Thus, the impact of
the valuation ratio is slightly smaller once residuals are modeled to follow a fat-
tailed distribution. Note also that parameters o, and B, predict the mode of the
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predictive distribution rather than the mean in our framework. However, as long as
the predictive distribution is symmetric the mode is, obviously, equal to the mean.

The Constant-Skew-T model extends the basic model by allowing the predic-
tive distribution to be skewed. This results in a substantial increase in fit as mea-
sured by the log-likelihood. The constant asymmetry parameter of -0.316 implies
a negatively skewed predictive distribution, as one would expect given available
empirical evidence. The coefficient of the valuation ratio in predicting the mode of
the distribution stays essentially unchanged. Interestingly, however, the skewness
parameter becomes insignificant and is cut in half, to -0.160, once we focus on the
pre-1945 sample period implying that returns were less negatively skewed early-on
according to that model specification.

Finally, Table 2 summarizes the parameter estimates for the Conditional-Skew-
T model which models the predictive distribution’s asymmetry as a function of the
valuation ratio. We find that conditioning on the valuation ratio in the shape equa-
tion improves the model fit (i.e., the log likelihood increases). We find a value
of -0.175 for B y indicating that the distribution becomes more negatively skewed
when valuation ratios increase. It also shows that the total estimate of the shape
parameter, including the constant term, becomes essentially zero, implying a sym-
metric distribution, for valuation ratios that are close to two standard deviation
below zero (i.e., low valuation ratios).

As discussed before, we observe substantial variation in [y across sub-periods.
Interestingly, however, estimates of 3y do not share this behavior. Thus, while the
overall asymmetry in the return distribution has changed somewhat over time, the
link between valuation levels and skewness appears to have been stable and sta-
tistically significant. Changes in the unconditional asymmetry (captured by Boy)
across sub-periods do not necessarily imply a break in the relation we are inter-
ested in, since P y is stable and valuation proxies also have different sample means
across sub-periods. The model then implies that periods of higher (lower) average
valuations should have more (less) pronounced average skewness. A formal test for
the null hypothesis that By is constant versus the alternative that it has changed
post-1945 has a borderline t-statistic of 1.9, with the AIC criterion picking the
extension and the more stringent BIC criterion choosing constant parameters.

Note that in the Conditional-Skew-T model we do not include the valuation
ratio in the mode equation (i.e., we set B ,, = 0). The main motivation to do so
is for simplicity. Allowing CAPE to appear in both the mode and the asymmetry
equation results in a lower t-statistic for our key parameter 3 y, even when its point
estimate is little affected or even increases in absolute terms. The reason for this
effect is that the correlation between {3 y and B ,,, whether measured from MCMC
draws or from the asymptotic covariance matrix of the maximum likelihood esti-
mator, is around 0.9. As a consequence, the t-statistics are much smaller when
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including CAPE in both equations, while any test rejects setting both parameters
to zero strongly.’

Nevertheless, these results do have some further noteworthy implications: while
the return distribution becomes much more negatively skewed when valuations are
high, the most likely return of the distribution (i.e, the mode) is essentially un-
affected by valuation levels. Given that By, > 0, this also means that the most
likely return is positive even at very high valuation ratios reflecting the difficulty of
timing market reversals.

Table 3 contains parameter estimates of the three models when 24-month re-
turns are used as dependent variable. Results look qualitatively very similar in this
case. It is noteworthy to point out that the estimates of unconditional skewness in
the Constant-Skew-T model, By, are in all sample periods statistically insignifi-
cant and smaller than in the case of 12-month returns. In contrast, however, the
coefficients capturing the conditional impact of valuation ratios on the shapes of
the predictive distributions, By, are always statistically significant and increase
relative to Table 2.

Bottom line, we find — across all return definitions and sample periods consid-
ered — that valuation ratios have a statistically significant impact on the shape of
the return distribution. Specifically, distributions become more negatively skewed
when valuation ratios increase. In the following sections, we analyze the resulting
shapes of the return distributions in more detail.

5.2 Predictive Distributions

The parameter estimates discussed in the previous section already document that
valuation ratios help predict the shape of the distributions of 12-month and 24-
month returns. Judging, however, how large this impact is in terms of the resulting
asymmetry of the distributions directly from the parameter estimates is difficult.
Thus, we take a detailed view at the predictive distributions implied by the various
models in this section.

Figures 5 and 6 represent the main results of the paper. They show the con-
ditional predictive distributions for 12-month (Figure 5) and 24-month (Figure 6)

5To further understand this behavior, it is useful to notice that Bi,m = 0 affects only the condi-
tional mean of the predictive distribution, while B y affects all moments, though mainly mean and
skewness. The impact of B y on the mean is almost perfectly linear; that is, as far as point predictions
are concerned, the two parameters are nearly unidentified. When two parameters are nearly uniden-
tified, their t-statistics approach zero even if they have very strong effects and very high t-statistics
when included individually. Since 1 y also has a strong impact on the asymmetry of the distribution,
both parameters end up being identified.
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returns implied by the Conditional-Skew-T model® using the full sample parameter
estimates. The top graph in each figure represents the case of high and the bottom
graph the case of low valuation ratios. While the modes of the two distributions
are identical by design, the model implies very different shapes of the distribution
depending on the level of the valuation ratios: while predictive distributions look
pretty much symmetric for low valuation ratios, they become asymmetric and neg-
atively skewed in the case of high valuation ratios. As discussed before, results are
slightly stronger for 24-month returns than for 12-month returns.

Table 4 provides some further information on the conditional distributions im-
plied by our models, namely the mean, the standard deviation, the normalized third
moment (skewness), the probability mass left to the mode (asymmetry), the 1%
Value-at-Risk and the 1% Expected Tail Loss. Most importantly, we are interested
in skewness and asymmetry. By construction, skewness is zero and asymmetry
is equal to 50% in the case of the Symmetric-T Model. When we allow the dis-
tribution to be skewed in the Constant-Skew-T Model, we find that the implied
distributions become asymmetric and that probability mass shifts to the left of the
mode; in the case of 12-month (24-month) returns 65% (61%) of the probability
mass end up being below the mode.

Finally in the Conditional-Skew-T Model, we observe that valuation levels
have a strong impact on the shape of the distributions. In the case of 12-month
returns, we find that, for low valuation levels, the distribution is nearly symmetric
with a skewness of zero and 47% of the probability mass being to the left of the
mode. In stark contrast, for high valuation levels, we find that nearly 80% of the
probability mass is below the mode and skewness is equal to -0.97. A similarly
pronounced pattern prevails in the case of 24-month returns with the only differ-
ence that, in the case of low valuation levels, the implied distribution seems to be
positively skewed with only 39% of the probability mass to the left of the mode.

These results illustrate, yet again, that the shape of the return distribution de-
pends strongly on valuation levels. An equally important question, however, is
whether this shape dependence also has implications for other characteristics of
the return distribution such as means or standard deviations. In general, across all
models, we find that expected returns are considerably lower when valuation lev-
els are high, as one would expect. Estimated conditional expected returns (as a
function of valuation levels) are very similar across models.

We also observe an interesting pattern for model-implied standard deviations.
Both, the Symmetric-T and the Constant-Skew-T Model, show a tendency to over-
estimate volatility when valuation levels are low and, at the same time, underesti-

6Note that the two benchmark models, by design, do not model conditional skewness and, thus,
it makes no sense to draw these graphs for the two benchmark models.
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mate volatility when valuation levels are high, relative to the standard deviations
implied by the Conditional-Skew-T Model. That means that the two benchmark
models are on the wrong side in both cases: when valuations are very low, a mean-
variance investor using those standard deviation estimates would invest too cau-
tiously while the same investor would invest too aggressively when valuation levels
are very high. Note that in our econometric setup these volatility patterns only arise
as a consequence of the change in the asymmetry of the distribution, as dispersion
and degrees of freedom are modeled identically across all three models.

Similar patterns are observed when we move to risk measures beyond volatil-
ity, such as value-at-risk and expected tail loss. In both cases, we find that the
two benchmark models overestimate risk in the case of low valuation levels but
underestimate risk in the case of high valuation levels. For example, in the case of
12-month returns the Constant-Skew-T Model implies a 1% value-at-risk of -37%
(-53%) when valuation levels are low (high) while the Conditional-Skew-T Model
implies values of -23% (-71%). While it is difficult to judge economic importance
of these differences without having a specific application or portfolio in mind, they
certainly look sizable and noteworthy to us.’

So far, we have focused on full sample evidence in the discussion of the predic-
tive distributions. Figures 7 and 8 illustrate the model-implied distributions sepa-
rately for the pre-1945 and post-1945 sample periods while Tables 5 and 6 provide
the corresponding characteristics. Most importantly, the patterns that we discussed
above based on the full sample also hold for each sub-sample separately. Thus, our
results are robust across different sample periods and do not seem to be driven by
individual years or particular events.

5.3 Out-of-sample Predictability

The results so far have focused on in-sample analyses and have shown that the
Conditional-Skew-T Model is supported in the data and outperforms the Symmetric-

T and the Constant-Skew Model. In this section, we evaluate how well the Conditional-
Skew-T Model performs in an out-of-sample framework. Monthly predictions of
12-month ahead expected returns are generated using an expanding window using
the period up to January 1945 as a burn-in phase.

Figure 9, in a first step, shows the maximum-likelihood point estimates of the
key parameters of the Conditional-Skew-T model, Boy (labeled b4(1) in the fig-
ure) and By (labeled b4(2) in the figure), together with +2/-2 standard deviation
bands. Given that we also demeaned the valuation ratio in the model, coefficient

In the case of the Conditional-Skew-T Model and 24-month returns, we find value-at-risk and
expected-tail-loss estimates of -103% and -126%, respectively. Note that throughout the paper we
use log-returns. Thus, these estimates correspond to -64% and -72% in terms of simple returns.
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Bo,y can be directly interpreted as the unconditional skewness. As expected, the un-
conditional skewness of the market is consistently negative throughout the period.
Interestingly, however, we find that there is a decreasing trend in unconditional
skewness over time.

In case of parameter 3  that captures the predictive relation between valuation
ratios and the shape of the return distribution, we find that the estimate is negative
throughout the entire period and that the two standard deviation confidence interval
never includes the zero line. Most importantly, the figure illustrates that the param-
eter estimate varies very little over time. Only during the 90ties leading into the
burst of the “tech-bubble”we observe a brief period with more pronounced changes
in the parameter.

Figure 10 shows the corresponding monthly predictions of 12-month returns
using the Conditional-Skew-T Model over time together with CAPE.® It shows, as
one would expect given our earlier discussions, that predicted returns vary consid-
erably over time and move against market valuations. For example, while valua-
tions increased consistently between the early 80ties and the early 2000s, predicted
expected returns consistently dropped reaching zero or even negative value when
valuation levels were at the peak.

5.3.1 Statistical Evaluation of Out-of-sample Predictability

To evaluate the out-of-sample predictive performance of the Conditional-Skew-T
model, we follow the predictability literature and perform standard statistical tests
in a first step. In the next subsection, we will then complement these results with
an economic analysis. We start with a statistical evaluation based on mean squared
prediction errors (MSPEs). The no-predictability benchmark is an expanding win-
dow estimate of the average 12-month return. It is well-known that the Symmetric-
Model does not yield statistically significant out-of-sample predictability on this
data — nevertheless we still include it in our analysis to facilitate the comparison
with the literature.’

In terms of MSPEs, the Conditional-Skew-T model performs surprisingly well.
It statistically outperforms the Symmetric-G model (with a p-value of 1%) and

8In this section, we focus on simple returns in the analysis while the model is estimated for
log-returns. Qualitatively results are very similar when doing the assessment of out-of-sample pre-
dictability in log-returns. Given that the idea here is to evaluate whether one could trade using the
model, discrete returns appear to be the more natural choice.

9To further simplify the comparison with the literature in this section, we replace the Symmetric-
T benchmark model with a Symmetric-G(aussian) model. The reason why we do not also use that
Symmetric-G model in the earlier in-sample analysis is that a model with normally distributed returns
would not stand a fair chance in a likelihood comparison given that the distribution of log returns is
known to exhibit large excess kurtosis.
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the Constant-Skew-T model (with a p-value of 2%) during the out-of-sample pe-
riod.!” Interestingly, relative to these competing models the out-of-sample pre-
dictability comes mostly from expansionary observations while during recessions
the Symmetric-G and the Constant-Skew-T model seem to predict returns some-
what more accurately than the Conditional-Skew-T model.

With respect to the no-predictability benchmark, we find overall a positive
(i.e., the Conditional-Skew-T model predicts more accurately on average) but sta-
tistically not significant effect. In this case, a very pronounced result is that the
Conditional-Skew-T model predicts much more accurately than the no-predictability
benchmark during recessions. However, during expansions this pattern is reversed.

The above discussion of the predictive performance is based on point estimates
of average prediction quality, which can be driven by individual outliers. Thus,
to get a better idea of the extent of predictability and its consistency over time,
we plot the cumulative difference in squared prediction errors between models.
Panel A of 11 shows the corresponding results when we compare the Conditional-
Skew-T model to the Symmetric-G model (solid line) or to the Constant-Skew-T
model (dashed line). In both cases, we observe that the line is increasing consis-
tently across time indicating that the strong performance of the Conditional-Skew-
T model relative to these benchmark models is not driven by a few, individual
observations.

Panel B repeats this analysis looking at the difference in cumulative squared er-
rors between the Conditional-Skew-T and the no-predictability model. The graph
actually shows that the Conditional-Skew-T model outperforms the no-predictability
benchmark during extended periods of time but is punished very substantially dur-
ing periods of high valuations. This is just another representation of the earlier-
discussed challenge of timing stock market downturns.

5.3.2 Economic Evaluation of Out-of-sample Predictability

To corroborate the statistical evidence on out-of-sample predictability, we also per-
form an economic evaluation assuming an investor with power utility and risk aver-
sion coefficient equal to 3. Each month the investor calculates the optimal weight
of investing in the market and the risk-free asset by maximizing expected utility.
The investor rebalances monthly even though the predictions used in the optimiza-
tion are for the 12-month horizon. We calculate ex-post realized utility based on
monthly returns as well as the monthly volatility of the resulting strategy. We fo-
cus on power utility in the economic evaluation as an investor using power utility
is automatically averse to skewness because the disutility of a negative return —R is

10Reported p-values have to be taken with a grain of salt as they are not adjusted for the overlapping
nature of the returns.
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(much) larger than the utility of a similar-sized positive return +R for moderately
large return realizations.'!

In terms of realized utility gains, the Conditional-Skew-T model again clearly
outperforms the two considered benchmark models. For example, relative to the
Constant-Skew-T model it yields an average, annualized utility gain of 0.25%
which is small in economic terms but still statistically significantly (p-value of
2%) different from zero. Relative to the symmetric model, the average utility gain
is 0.43%. Relative to the no-predictability benchmark, the Conditional-Skew-T
model underperforms but the average utility loss is not statistically significant. In-
terestingly, the Conditional-Skew-T model yields a very substantial utility gain of
4.3% relative to the no- predictability benchmark during recessions.

Figure 12 plots cumulative utility gains over time to assess the consistency
of the average utility differences just discussed. Panel A, again, compares the
Conditional-Skew-T to the two competing benchmark models and shows that the
Conditional-Skew-T model outperforms the benchmark models consistently dur-
ing most time periods. In the most recent history, say the last twenty years, the
Constant-Skew-T model shows strong performance resulting in a noticeable de-
crease in cumulative utility gains relative to the Conditional-Skew-T model.

Panel B of Figure 12 shows the cumulative utility gains of the Conditional-
Skew-T relative to the no-predictability benchmark. The graph shows extended
periods, for example from the early 60ties to the early 90ties, during which the
Conditional-Skew-T model yields consistent utility gains. On the other side, there
are several, pronounced periods, especially the run-up in valuations during the
90ties but also the most recent 10 years, during which the utility gains collapse,
as an investor unaware of (or not responding to) high valuations would obviously
outperform a valuation-sensitive investor during prolonged periods of high and ris-
ing valuations.

5.4 Robustness

To make sure our results about the predictability of the shape of the return distri-
bution are not driven by discretionary choices we made along the way, we perform
an extensive set of robustness tests. First, we rerun our main analysis using non-
overlapping returns. Second, we repeat the empirical analysis for three alternative
proxies for valuation levels and also study the impact of margin debt on the shape
of the return distribution. Third, we extend the model to allow for a link between
the valuation level and return dispersion. Fourth, we provide international and,

" Qur results are robust to different choices of utility functions and look qualitatively as well as
quantitatively similar if we consider, for example, an investor with quadratic utility. Our results are
also robust to different choices of reasonable values of risk aversion.
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fifth, industry-level evidence. In all cases, the empirical analysis shows that our
results are very robust to these changes.

5.4.1 Non-overlapping Returns

The results discussed in the paper are based on overlapping returns. Using over-
lapping returns yields a gain in efficiency, as all available information is exploited
in the estimation, but comes at the cost of making the assumption of conditionally
independent observations incorrect. In this robustness section, we re-estimate our
models using non-overlapping data (specifically, returns from January to January)
to ensure that our results are not driven by the choice of using overlapping data.

Table 7 shows the corresponding parameter estimates for 12-month (Panel A)
and 24-month (Panel B) returns. Several interesting observations can be made.
First, point estimates of individual coefficients across models and horizons are
only marginally affected by using non-overlapping instead of overlapping returns.
Second, t-statistics drop, as one would have expected but remain above standard
thresholds for main coefficients of interest. Third, all results discussed before also
hold up when using non-overlapping data. Most importantly, we also find a sta-
tistically significant and negative relation between valuation levels and the shape
of the distribution of future returns. Thus, our results are robust to the use of non-
overlapping data.

5.4.2 Alternative Valuation Ratios and Margin Debt

As the first set of robustness tests, we replicate the main steps of our empirical
analysis using the market-to-book (MB) ratio, the margin-adjusted CAPE (Huss-
man (2017)), and the 5-year return (e.g., Asness, Moskowitz, and Pedersen (2013),
Greenwood, Shleifer, and You (2019)) instead of the CAPE ratio as our predictive
variable. While the market-to-book ratio and the 5-year return are straightforward
to construct (when using the market-to-book ratio the sample only starts in January
1921), the margin-adjusted CAPE needs some more explanation.

The simple but intuitive idea of the margin-adjusted CAPE is that margins are
embedded into every earnings-based valuation ratio, including CAPE. As margins
vary themselves over time and over the business cycle, it might be useful and im-
portant to explicitly account for them. Hussman (2017) argues that adjusting CAPE
for that embedded margin significantly improves the relationship between CAPE
and subsequent market returns. To construct margin-adjusted CAPE one would
ideally like to have information on aggregate sales of the firms in the S&P 500 to
relate them to S&P 500 earnings but, unfortunately, that data does not seem to be
available sufficiently long back in time. Thus, we use data on corporate profits for
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the entire economy divided by GDP using Federal Reserve Economic Data as a
proxy for S&P500 earnings divided by sales.

Specifically, we calculate margin-adjusted CAPE in the following way. We
first collect annual data on corporate profits after tax and on GDP (available from
1929) and then switch to quarterly data for these two data series in 1947. We then
compute profits-to-GDP for each quarter (or year), and set all months in that quarter
(year) equal to that value. Then, we use a 10-year sliding window to compute a
smoothed value of profits/GDP. To get the margin-adjusted CAPE, the standard
CAPE at each time t is multiplied by the ratio of this 10-year smoothed value of
profits-to-GDP to its full sample mean.

Table 8 shows the corresponding parameter estimates if we use 12-month (Panel
A) and 24-month (Panel B) returns as dependent variables. Note that for simplic-
ity and readability we focus on the Conditional-Skew-T model in the table. This
choice does not represent a limitation, as we also find for these alternative valu-
ation proxies, similar to the main results, that the the Conditional-Skew-T model
gets most support in the data compared to the Symmetric-T and Constant-Skew-T
model (as reflected by maximum log-likelihoods).

Most importantly, Table 8 shows that the coefficients of the alternative val-
uation proxies in the shape equation are all negative and statistically significant.
Thus, as valuation levels — proxied by any of these three alternative proxies —
increase, the shapes of the return distributions, for both 12-month and 24-month
returns, become more asymmetric and, in particular, more negatively skewed.

Table 9 reports detailed characteristics of the model-implied distributions: the
patterns described in the main result section also prevail when we use these alter-
native proxies for valuation levels. Most importantly, we observe a stark change in
the shape of the distributions conditional on valuation levels. For example, in the
case of 24-month returns and the market-to-book ratio the probability mass to the
left of the mode is 49% (83%) when valuation levels are low (high). Differences
between the implied distributions when valuation levels are low and high are some-
what less pronounced when we use the 5-year return as a proxy for valuation levels.
In this case, we also find that our empirical models fit the data considerably worse
in terms of likelihood. This might not be too surprising given that the 5-year return
is a very different and most-likely more noisy proxy for valuation levels compared
to the market-to-book ratio or CAPE-based measures. Overall, however, our main
results about the shape predictability of the return distribution are very robust to
different proxies for valuation levels.

In a recent paper, Asness, Frazzini, Gormsen, and Pedersen (2018) argue that
margin debt plays an important role in empirical asset pricing. Specifically, they
argue that high margin debt means low financial constraints and low margin debt
means tight financial constraints (i.e., the interpretation of margin debt is supply
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driven). The intuition is that at the end of an expansion margin debt is high and
financial constraints are low (non-binding). However, when negative economic
news or other signals of a turnaround arise, the supply of funding for intermediaries
dries up (e.g., margin requirements are adjusted) and financial constraints tighten
up. As Brunnermeier and Pedersen (2009) show such dynamics can result in lig-
uidity spirals where funding liquidity as well as asset liquidity jointly deteriorate
dramatically and quickly due to amplification effects.

To empirically evaluate this specific mechanism, we construct a time-series
of monthly margin debt, normalized by GDP, for NYSE-designated clearing firms
from Eikon. Figure 13 shows standardized CAPE and margin debt (MD) since Jan-
uary 1960. It highlights that there is a strong relation between the two time-series
(the correlation is 0.72) but that there are also periods when they actually differ
quite substantially. If we use margin debt to predict the shape of the future 12-
month return distribution we find qualitatively similar results to the ones discussed
above for CAPE and other valuation measures. MD negatively predicts the asym-
metry in the return distribution; i.e., periods of high MD predict future returns with
negative skewness. The coefficient, however, is smaller in magnitude than the one
we find for CAPE; it also has a smaller t-statistic and the fit of the model overall
becomes worse.

Thus, the empirical evidence suggests that margin debt, as a proxy for finan-
cial constraints of financial intermediaries, is associated with the time-variation in
the asymmetry of market return distributions. Given, however, that the empirical
support is weaker than for CAPE and other valuation ratios, it does not seem to be
the only channel.

5.4.3 Model with Conditional Dispersion

The third robustness test considers an extension of our econometric specification
that allows the return dispersion to depend on the valuation level. Specifically, we
will estimate the following set of equations (consistent with the Conditional-Skew-
T model we will also set the link between the mode of the return distribution and
the valuation level to zero, as this link does not receive support in the data):

my = BO,m
logo = BO@ + Bl,sxt
logv = Bo,
logy, = Boy+Biyx.

Table 10 summarizes the parameter estimates of this model for 12-month re-
turns (Panel A) and 24-month returns (Panel B). Similar to the main results, we
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distinguish three samples — the full sample, the pre-1945 sample and the post-
1945 sample. Across all specifications, we find that our main result still holds; i.e.,
B1,y is negative and statistically significant. Comparing the point estimates to those
reported in Table 2 and 3 shows very minor changes; basically the estimates of 3; 4
are unaffected by allowing B ¢ to be different from zero.

In contrast, estimates of B ; are not significantly different from zero across
all specifications. Thus, there does not seem to be a strong association between
current valuation levels and the return dispersion of future returns. Ignoring the
lack of significance for a second, it is interesting to point out that point estimates
are consistently negative for 12-month returns while being consistently positive for
24-month returns.

Table 11, finally, characterizes model-implied distributions for low and high
valuations. Not surprisingly, we do not observe any significant changes with re-
spect to our main empirical specification (refer to Table 4 for the details). Again,
we find that the implied distributions become much more negatively skewed when
valuation levels are high. In the case of 24-month returns, we do observe that the
positive but insignificant estimates of ;s have some noticeable negative impact
on the expected rate of return (decreases) and the standard deviation (increases)
when valuation levels are high. Bottom line, however, is that our main results are
unaffected by whether return dispersion is allowed to depend on valuation levels
or not.

5.4.4 International Evidence

As the fourth robustness test for our empirical results, we repeat our analysis on
a sample of international equity markets. We obtain data on total returns, divi-
dend yields, consumer price indices, price-earnings ratios and short-term interest
rates from Global Financial Data and construct Shiller’s CAPE for each market.!?
We use data at the monthly frequency but set monthly observations equal to the
last available PE-ratio when price-earnings ratios are only available at the annual
frequency (i.e., we do not perform any interpolation).

Table 12 lists the individual countries included in the international sample to-
gether with the dates when the data starts for each country. We end up with an
unbalanced panel of 29 countries.!> We leave out the US from this analysis to
avoid any confounding effects. While we model returns in the case of US, we

12Shiller’s CAPE is real price divided by the ten year moving average of real earnings. To construct
it, we build returns from total returns by subtracting the dividend yield from the total returns; then
we construct the real equity index and back-out real earnings using the price-earnings ratio.

13We started with a sample of 41 countries but had to drop countries which did not have sufficient
data to construct CAPE.
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focus on excess returns in the case of the international sample because inflation
and interest levels vary considerably across countries in our sample (some of the
countries included are emerging market countries).'#

Using the international data, we run several robustness tests. First, we replicate
our main results for the UK, which is the only country in the GFD data, for which
we are able to construct a data history that is comparable in length to the one we
used for the US. Second, we pool all countries and estimate a common model
(i.e., common model parameters) across countries. Third, we allow for country-
specific fixed effects. Fourth, we use trailing 5-year cumulative returns as proxies
for valuation levels. Fifth, we add US CAPE to the country-specific CAPE in the
model.

Figure 14 compares valuation levels for the US and the UK (top graph) and
the US and the equal-weighted global portfolio (bottom graph). In both cases,
one observes periods during which valuation levels seem to be closely related as
well as periods during which they evolve rather independently from each other.
Correlations are 0.64 (0.58) for the US and the UK (the US and the global portfolio)
series. Another interesting pattern is that neither valuation levels in the UK nor in
the global portfolio show positive spikes comparable to the ones we have seen in
the US.

Our main results all hold up in these robustness tests. First, the Conditional-
Skew-T model is most supported by the data (i.e., shows largest log-likelihoods)
outperforming the Symmetric-T and Constant-Skew-T model in terms of fitting the
data, both for 12-month and 24-month future returns.

Second, estimates of By are highly significant and negative confirming that
valuation levels and skewness are robustly negatively related. In the case of the
UK and the 12-month horizon, the coefficient estimate is -0.27 — compared to an
estimate of -0.18 for the US (see Table 2) — with a t-statistic of -4.8 implying a
substantially more pronounced effect of valuation levels on the shape of the re-
turn distribution. For the pooled international data, the coefficient estimate is very
similar to the one we found for the US and amounts, for example, to -0.17 with a
t-statistic of -8.6 in the case of 12-month returns'>.

When we allow for country-specific fixed effects, the same coefficient drops
even further to -0.19 (with a t-statistic of -10.9). Panel A of Table 13, as an ex-
ample, shows the detailed parameter estimates in this particular case. Adding then

14Note that results for the US are basically unchanged when modeling excess returns. In the case
of the international sample, results are also the same qualitatively but the fit of the models deteriorates
noticeable when we model returns instead of excess returns.

I15The t-statistics that we report for the estimates of the pooled international sample have to be
interpreted with a grain of salt, as they assume that countries are independent from each other, which
is obviously not the case.
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also US Cape leads to an increase of the coefficient associated with domestic CAPE
to -0.16 with a t-statistic of -7.9. The coefficient on US CAPE itself is small and
insignificant suggesting that US valuation levels do not add information beyond
domestic CAPE.'6

5.4.5 Industry-Level Evidence

In a similar spirit to the robustness tests using international data, we also repeat
our main analysis using the 30 US industry portfolios from Ken French’s data
library as the final robustness test. This industry-level data is available since July
1926. When we estimate our models using pooled data as well as pooled data
with industry fixed effects, we confirm our earlier results at the market-level and
find results that suggest an even more pronounced negative association between
valuation levels and the skewness of future returns.

Panel B of Table 13 summarizes the results when controlling for industry fixed
effects. It shows that the Conditional-Skew-T model outperforms the Symmetric-T
and the Constant-Skew-T models in terms of likelihood. The coefficient of inter-
est, By, is estimated to equal -0.117, with a t-statistic of -5.5., suggesting a pro-
nounced and statistically significant negative association between valuation levels
and skewness even in the case of industry-based portfolios.

6 Conclusion

In this paper, we document a robust link between valuation levels and the shape of
the distribution of cumulative (up to 24 months) total log returns in the SP500 and
in international equity indices. Our key result is that return distributions become
considerably more asymmetric and negatively skewed when valuation levels are
high; in contrast they tend to be symmetric, sometimes even slightly positively
skewed, when valuation levels are low. These patterns are very robust across return
horizons, proxies for valuation levels and sample periods.

While the emphasis of the literature is usually on predicting expected rates
of return (point prediction), we focus on the novel and important question of how
asset prices actually revert back to these time-varying means. Our empirical results
indicate that this reversion is rather smooth and gradual when valuation levels are
low and potentially abrupt when valuation levels are high.

The dependence of the shape of the return distribution on valuation levels has
several further interesting practical implications. Most importantly, it implies that

16We abstain from reporting all those results to avoid overwhelming the reader with similar, and
thus somewhat repetitive, results. Detailed results are available from the authors upon request.
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measures of risk (e.g., standard deviation, value-at-risk, expected-tail-loss), derived
from symmetric distributions or distributions with constant skewness, are underes-
timated when valuation levels are high and overestimated when valuation levels
are low relative to a model with conditional skewness. This indicates a lose-lose
situation for risk managers and asset managers relying on these risk measures. Im-
portantly, magnitudes of these deviations are sizable.

Another noteworthy result of our empirical analysis is that we find the mode
of the return distribution to be consistently positive and essentially unaffected by
valuation levels. This implies that even when valuation levels are extremely high,
the most likely return over the next 12 to 24 months remains positive reflecting the
well-known difficulty of predicting turning points and market downturns. Overall,
our empirical evidence on how valuations affect the asymmetry of the predictive
distribution of returns is qualitatively consistent with stochastic rational bubbles in
the spirit of Blanchard and Watson (1982). However, expected returns are constant
in models of rational bubbles, whereas the introduction of time varying skewness
does nothing to change the relation between valuations and expected returns that
has been the focus of so much attention in the literature. The finding that the
mode of the predictive distribution (the most likely outcome) does not change and
remains positive even at extremely high valuations may however provide useful
insights into why such valuations can be reached at all.
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Appendix A Skewness in Cumulative Returns versus Skew-
ness in Daily Returns

The approach taken in our paper is to model the asymmetry (or skewness) in the
distribution of cumulative log returns directly. A more common approach is to
build rolling measures of skewness using one or two quarters of daily data. We
now show that the connection between the two measures of skewness may be weak
or even non-existent, and argue that the better approach is to measure skewness in
cumulative returns at the horizon of interest.

Chen, Hong, and Stein (2001) build in-sample measures of skewness in a cross
section of daily returns (six-months periods), and then regress these on trading
volume, recent returns, and valuation ratios. The skew at time ¢ is estimated from
the last six months of daily returns as

Zrt{i
(X7 3%

Brunnermeier, Nagel and Pedersen (2009) compute a similar measure for curren-
cies, and regress it on interest rate differentials. Both papers find some relation
between this measure of skewness and explanatory variables. However, we see
two shortcomings of this approach. The first problem is that this estimate of the
the Pearson’s moment skewness has (at best) a very high variance for financial
market returns, which are strongly leptokurtic. The second problem is that the dis-
tribution of cumulative returns one month or one year ahead is empirically far more
asymmetric than the distribution of daily returns, at least for an equity index like
the SP500. In fact, the vast majority of GARCH and stochastic volatility models
with leverage (stronger effect on future variance of negative shocks compared to
positive shocks) produce symmetric daily log returns but asymmetric cumulative
returns at longer horizons, so that a measure of skew built from daily return has an
expected value of zero.

To illustrate, let’s consider a plain-vanilla stochastic volatility model with lever-
age,

SKEW, =

0.5x,
Iy Be tgt,

Xt41 = (I)x, +p0€[ +0Ov 1— pzut
& ~ N(O,l), utNN(O,l),

where p < 0 implies a leverage effect. By setting p appropriately it is possible to

obtain strongly skewed distribution of cumulative returns (see Figure A1l for an ex-
ample with an horizon of & = 60), yet the distribution of daily returns is leptokurtik
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but always symmetric, and a measure of skew builtas Y > , /(X1_, r2 )% has
an expected value of zero (with high variance).

Figure A.1: Skewness of daily returns versus 60-day cumulative returns
The figure shows the distributions of daily log returns and 60-day cumulative re-
turns generated from a simple stochastic volatility model.
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Figure 1: Market-to-book and Cyclically-Adjusted-Price-Earnings (CAPE)
Ratios

The figure shows the standardized — mean equal to zero, standard deviation equal
to 1 — log market-to-book (dashed line) and log cyclically-adjusted-price-earnings
ratio (solid line).
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Table 2: Model Parameters when Predicting 12-month Returns

This table provides parameter estimates of three different models — the
Symmetric-T Model, the Constant-Skew-T Model and the Conditional-Skew-T
Model — when 12-month returns are used as dependent variable. All variables are
in logs. The table reports mean parameter estimates and corresponding t-values.

Panel A: Full Sample
Symmetric-T  Constant-Skew-T Conditional-Skew-T

Mean t-stat Mean t-stat Mean t-stat

Bo.m 9.686 8.707 16.825 7.122 16.233 6.480
Bim -4.226 -3.721 -4.185 -4.007

Bo.c 2.724  38.296 2.668 34.686 2.680 35.343
Bo.» 2.025 4.666 2.163 4.384 2.407 4.058
Bo.y -0.316 -3.195 -0.297 -2.900
Biy -0.175 -4.254
Log-Likeli. -6790.7 -6756.7 -6752.6

Panel B: Pre-1945
Symmetric-T  Constant-Skew-T Conditional-Skew-T

Mean t-stat Mean t-stat Mean t-stat

Bo,m 7.081 3.795 11.356 2.708 10.256 2.180
Bim -6.029 -3.117 -6.081 -3.159

Bo.c 2.849 25523 2.846 26.119 2.853 27.924
Bo.v 2.062  3.059 2229 2.981 2.476 3.122
Bo.y -0.160 -1.124 -0.124 -0.790
Biy -0.197 -3.345
Log-Likeli. -3230.6 -3227.5 -3225.8

Panel C: Post-1945
Symmetric-T  Constant-Skew-T Conditional-Skew-T

Mean t-stat Mean t-stat Mean t-stat
Bo,m 11.081 8.078 19.543 6.452 18.420 6.344
Bim -4.083 -3.007 -3.903 -3.343
Bo.c 2.617 27417 2.506 23.661 2.516 25.639
Bo.v 2649 3216 2984 3.493 3.048 3.576
Bo.y -0.433 -2.833 -0.378 -2.632
Biy -0.190 -3.368
Log-Likeli. -3357.4 -3328.3 -3326.8

35



Table 3: Model Parameters when Predicting 24-month Returns

This table provides parameter estimates of three different models — the
Symmetric-T Model, the Constant-Skew-T Model and the Conditional-Skew-T
Model — when 24-month returns are used as dependent variable. All variables are
in logs. The table reports mean parameter estimates and corresponding t-values.

Panel A: Full sample
Symmetric-T  Constant-Skew-T Conditional-Skew-T

Mean t-stat Mean t-stat Mean t-stat

Bo.m 18.395 8.874  25.350 5.328  27.230 5.756
Bim -8.623  -4.030 -8.032 -3.765

Bo.o 3.020 29.884  3.006 29.644  2.994 31.445
Bo.v 2.059 3.307 2.281 3.154 2.658 3.276
Bo,y -0.219 -1.583  -0.263 -1.895
Biy -0.240 -4.191
Log-Likeli. -7201.8 -7188.8 -7174.5

Panel B: Pre-1945
Symmetric-T  Constant-Skew-T Conditional-Skew-T

Mean t-stat Mean t-stat Mean t-stat
Bo,m 13.137  3.796  16.208 1.920 18.675 2.072
Bim -11.276  -3.142 -11.080 -3.004
Bo.c 3.116  20.491  3.098 20.313 3.094 22.220
Bo.v 2.081 2.502 2.121 2.373 2.602 2.751
Bo.y -0.079 -0.359  -0.133 -0.565
Biy -0.299 -3.314
Log-Likeli. -3366.8 -3366.5 -3362.2

Panel C: Post-1945
Symmetric-T Constant-Skew-T Conditional-Skew-T

Mean t-stat Mean t-stat Mean t-stat

Bo,m 21.364 8.603  24.906 4482  28.090 4.707
Bim -8.369 -3.210 -7.927 -2.932

Bo.c 2907 21366 2.892 22477 2851 22.012
Bo.v 2.694 2.662 2.728 2.767 2.966 2.994
Bo.y -0.129  -0.719  -0.209 -1.025
Biy -0.255 -3.247
Log-Likeli. -3540.5 -3536.9 -3524.3
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Table 7: Robustness Test: Non-overlapping Data

This table provides parameter estimates of three different models — the
Symmetric-T Model, the Constant-Skew-T Model and the Conditional-Skew-T
Model — when 12-month (Panel A) or 24-month (Panel B) non-overlapping re-
turns are used as dependent variables. The results are based on returns from Jan-
uary to January. All variables are in logs. The table reports mean parameter esti-
mates and corresponding t-values.

Panel A: 12-Month Returns
Symmetric-T  Constant-Skew-T Conditional-Skew-T

Mean t-stat Mean t-stat Mean t-stat

Bo.m 9.332 6416 17.697 5.143 18.172 5.399
Bim -3.994 -2.820 -3.761 -2.778

Bo.c 2.727 30.045 2.659 28.523 2.639 27.470
Bo.v 2.638 3250 3.096 3.658 3.132 3.758
Bo.y -0.374 -2.527 -0.400 -2.702
Biy -0.163 -2.823
Log-Likeli. -575.2 -571.5 -571.4

Panel B: 24-Month Returns
Symmetric-T  Constant-Skew-T Conditional-Skew-T

Mean t-stat Mean t-stat Mean t-stat

Bo,m 17.932 5.838 26.055 4418 27.795 4.467
Bim -8.906 -2.846 -7.196 -2.520

Bo.c 3.119 26.152 3.053 23.033 3.024 23.195
Bo.v 2.743 3.085 2.694 2.964 2.812 3.123
Bo.y -0.254 -1.512 -0.287 -1.616
Biy -0.231 -2.751
Log-Likeli. -308.5 -307.147 -306.9
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Table 8: Robustness Test: Model Parameters when using Alternative Valua-
tion Ratios

This table provides parameter estimates of the Conditional-Skew-T Model when
12-month returns and 24-month returns are used as dependent variable. We con-
sider three alternative valuation ratios: (i) the market-to-book ratio, (ii) the margin-
adjusted CAPE, and (iii) the past 5-years of returns. All variables are in logs. All
results summarized in the table are based on the full sample of data. The table
reports mean parameter estimates and corresponding t-values.

Panel A: 12-Month Returns
Market-to-Book Margin-adjusted CAPE Past 5-Year Return

Mean t-stat Mean t-stat Mean t-stat
Bom 19.602  7.177  18.282 7.292 17.753 6.779
Boo 2.639 26396 2.643 27.202 2.686 36.323
Boy 1924 3.732 2.533 3.346 2.595 4.143
Boy -0376 -3.134 -0.391 -3.491 -0.351 -3.223
Biy -0.166 -3.111 -0.267 -4.826 -0.142 -3.697

Panel B: 24-Month Returns
Market-to-Book Margin-adjusted CAPE Past 5-Year Return

Mean t-stat Mean t-stat Mean t-stat
Bom 34757 5.880  32.064 5.879 27.826 5.485
Boo 2999 22768 2933 23.015 3.022 31.221
Bo,  2.362 2.691 2.883 2.897 2.602 3.190
Boy -0393 -2207 -0.398 -2.251 -0.274 -1.885
Biy -0208 -2.857 -0.313 -4.362 -0.170 -2.965
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Table 10: Robustness Test: Model with Predictability in Dispersion

This table provides parameter estimates of a model that allows for a link between
return dispersion and valuation levels. We call that model the Conditional-Skew-T-
Vola Model. All variables are in logs. Details on the estimation of these parameters
are available from the authors upon request. The table reports mean parameter
estimates and corresponding t-values.

Panel A: 12-Month Returns

Full Sample Pre-1945 Post-1945
Mean t-stat Mean t-stat Mean t-stat

Bo.m 16.983 6.537 10472 2.029 18.501 6.034
Bo.c 2.669 34.104 2.854 28374 2514 24.159
Bio -0.053 -0965 -0.013 -0.175 -0.016 -0.221
Bo.» 2.384 3988 2416 3.153 3.004 3.456
Bo.y -0.332  -3.051 -0.135 -0.780 -0.383 -2.474
Biy -0.188 -4.244 -0.203 -3.329 -0.197 -3.405
Log-Likeli. -6749.7 -3225.8 -3326.8

Panel B: 24-Month Returns

Full Sample Pre-1945 Post-1945
Mean t-stat Mean t-stat Mean t-stat

Bo.m 25.729 5550 14529 1.451 25.052 4.129
Bo.c 3.005 31.000 3.076 20.140 2.856 23.043
Bio 0.080 1.064 0.108 0.844 0.152 1.420
Bo.v 2.618 3.171 2372 2574 2893  3.054
Bo.y -0.211  -1.568 -0.007 -0.024 -0.087 -0.418
Biy -0.233  -4.057 -0.302 -2.890 -0.261 -3.055
Log-Likeli. -7166.2 -3359.3 -3509.5
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Table 12: Robustness Test: Sample of international countries

This table lists all countries included in our international sample including the start
date of the observations, the end date and the number of months using in the esti-
mation.

Country Start Date End Date Months

aus 197906 201103 382
aut 199109 201103 235
bel 197906 201103 382
bra 199801 200401 69

can 196512 201103 544
che 197906 201103 382
dnk 198001 201103 375
esp 198911 201103 257
gbr 193711 201103 881
ger 197906 201103 382
grc 198701 201103 291
hkg 198212 201103 340
ind 199801 201103 159
isr 200905 201103 23

jap 196512 201103 544
kor 198402 201103 326
mys 198212 201103 340
nld 197907 201103 381
nor 198001 200009 249
nzl 199712 201103 160
pak 199801 200709 117
phl 199201 201103 231
rsa 197002 201103 494
sgp 198212 201103 340
swe 197906 201104 383
tai 199801 201103 159
tha 199712 201103 160
tur 199602 201103 182
ven 199801 200403 75
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Table 13: Robustness Test: Model Parameters for an International Sample
and Industry-Level Portfolios in the US

This table provides parameter estimates of three different models — the
Symmetric-T Model, the Constant-Skew-T Model and the Conditional-Skew-T
Model — for a sample of international stock market indices (Panel A) and a sample
of industry-level portfolios in the US (Panel B). Overlapping 12-month returns are
used as dependent variables (excess returns in the case of the international data).
All variables are in logs. The table reports mean parameter estimates and corre-
sponding t-values.

Panel A: International Sample
Symmetric-T Constant-Skew-T Conditional-Skew-T

Mean t-stat Mean t-stat Mean t-stat
Bo.m 0.742 1.097 6.751 4.494 6.897 5.119
Bim -6.751 -10.986 -6.606 -9.764
Bo.s 3.086 107.694 3.058 90.631 3.031 95.162
Bo.v 2.067 11.613  2.054 11.394 2.034 10.869
Bo.y -0.180 -4.302 -0.187 -4.880
Biy -0.194 -10.869
Log-Likeli. -40982 -40914 -40853

Panel B: Industry-Level Analysis
Symmetric-T Constant-Skew-T Conditional-Skew-T

Mean t-stat Mean t-stat Mean t-stat

Bo.m 11.262 14343 17.108 11.132 16.561 10.878
Bim -3.358 4502  -3.665 -5.117

Bo.s 2906 62453  2.890 61.090 2.882 61.291
Bo.v 1.332 8.770 1.404 8.479 1.396 8.537
Bo.y -0.218 -4.298 -0.206 -4.032
Biy -0.117 -5.487
Log-Likeli. -23515 -23453 -23444
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Figure 2: Histograms of Realized 12-month Returns

The figure shows four histograms of realized 12-month returns. All returns are in
logs. The left graph in the top row shows the full sample unconditional distribution
of realized 12-month returns. The remaining graphs show, in clock-wise direc-
tion, the full sample distributions conditional on being in the (i) lowest valuation
quartile, (ii) the top valuation quartile, and (iii) the two middle valuation quartiles.
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Figure 3: Histograms of Realized 24-month Returns

The figure shows four histograms of realized 24-month returns. All returns are in
logs. The left graph in the top row shows the full sample unconditional distribution
of realized 24-month returns. The remaining graphs show, in clock-wise direc-
tion, the full sample distributions conditional on being in the (i) lowest valuation
quartile, (ii) the top valuation quartile, and (iii) the two middle valuation quartiles.
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Figure 4: Term-Structure of Skewness

The figure shows the term-structure of skewness for cumulative returns up to 35
months. The skewness measure is the Arnold and Groeneveld measure of skewness
(see Arnold and Groeneveld (2010)) from skew-t distributions calibrated to the
empirical data. The graph shows results for the full unconditional sample as well
as for samples conditional on being in the bottom or the top valuation quartile.
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Figure 5: Model-implied Conditional 12-month Return Distribution

The figure shows the model-implied return distributions of 12-month returns for
low (two standard deviations below the mean) and high (two standard deviations
above the mean) valuation levels. All returns are in logs. The parameters governing
the distributions are summarized in Table 2.
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Figure 6: Model-implied Conditional 24-month Return Distribution

The figure shows the model-implied return distributions of 24-month returns for
low (two standard deviations below the mean) and high (two standard deviations
above the mean) valuation levels. All returns are in logs. The parameters governing
the distributions are summarized in Table 3.
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Figure 7: Sub-sample Results: Model-implied Conditional 12-month Return
Distribution

The figure shows the model-implied return distributions of 12-month returns for
low (two standard deviations below the mean) and high (two standard deviations
above the mean) valuation levels separately for the pre-1945 and the post-1945
sample periods. All returns are in logs. The parameters governing the distributions
are summarized in Table 2.
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Figure 8: Sub-sample results: model-implied, conditional 24-month return dis-
tribution

The figure shows the model-implied return distributions of 24-month returns for
low (two standard deviations below the mean) and high (two standard deviations
above the mean) valuation levels separately for the pre-1945 and the post-1945
sample periods. All returns are in logs. The parameters governing the distributions
are summarized in Table 3.
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Figure 9: Recursive Estimates of Core Model Parameters

The figure shows recursive estimates of oy (labeled b4(1) in the figure) and By
(labelled b4(2) in the figure) together with +2 standard deviation and -2 standard
deviation bands for the Conditional-Skew-T model. The model is reestimated
monthly using an expanding window. The period 1881 to 1945m1 is used as burn-
in phase.
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Figure 10: Monthly Predictions of 12-Month Expected Returns

The figure shows monthly predictions of 12-month returns using the Conditional-
Skew-T Model over time. While the model is estimated using log-returns, the

graph shows predicted simple returns.

forecast mean of yearly returns

T

forecast yearly returns

log CAPE

0.02 0.06 0.10 0.14 0.18 0.22 0.26

Il

-0.06

1950 1960

1970

55

1980

1990

2000

2010

2020



Figure 11: Cumulative Differences in Squared Prediction Errors

The figure shows cumulative differences in squared prediction errors. Panel A
compares predictions from the Conditional-Skew-T model to predictions from the
Symmetric-G model (dashed line) or from the Constant-Skew-T model (solid line).
Panel B shows cumulative squared errors between the Conditional-Skew-T and the
no-predictability model.
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Figure 12: Cumulative Utility Gains

The figure shows cumulative utility gains. Panel A compares utility gains from the
Conditional-Skew-T model to utility gains from the Symmetric-G model (dashed
line) or from the Constant-Skew-T model (solid line). Panel B shows cumulative
utility gains between the Conditional-Skew-T and the no-predictability model.
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Figure 13: Margin Debt and Cyclically-Adjusted-Price-Earnings (CAPE) Ra-
tios

The figure shows the standardized — mean equal to zero, standard deviation equal
to 1 — margin debt and log cyclically-adjusted-price-earnings ratio.
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Figure 14: Cyclically-Adjusted-Price-Earnings (CAPE) Ratios
The figure shows the CAPE for the US and the UK (top panel) and for the US and
the equal-weighted global portfolio (bottom panel).
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	ABSTRACT 
	While a large literature on return predictability has shown a link between valuation levels and expected rates of aggregate returns in-sample, we document a link between valuation levels and the shape of the distribution of cumulative (for example, over 12 and 24 months) total returns. Return distributions become more asymmetric and negatively skewed when valuation levels are high. In contrast, they are roughly symmetric when valuation levels are low. These results turn out to be very robust to alternative 
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	1 Introduction 
	1 Introduction 
	A large literature has looked at the time-variation in expected rates of returns and the link between prices, dividends and discount rates (see, for example, Cochrane (2011) and Fama (2013) for recent discussions of that literature; Golez and Koudijs (2016) evaluate this link using four centuries of data). The goal of this paper is to provide a fresh view on this important question in empirical asset pricing. Specifically, we look beyond the mean of the return distribution and focus on the shape of the pred
	-

	Our research idea is illustrated by a quick look into the data. Figure 2 reports histograms of observed cumulative 12-month log-returns conditional on valuation ratios being HIGH (top quartile) and LOW (bottom quartile) and highlights a pronounced shift in the shape of the distribution: while it looks symmetric in the case of low valuation ratios, it becomes negatively skewed for higher valuation ratios. This pattern suggests time-variation in market skewness conditional on valuation levels. It extends the 
	-
	-
	-
	-

	Such an asymmetry has important economic implications. While the existing literature on return predictability helps us understand the dynamics of time-varying expected rates of return, it does not explain how the reversion to that mean will actually occur. For example, when valuations are high (low), how will prices adjust refecting the expected low (high) returns? Is this adjustment more likely to happen smoothly or rather abruptly? Another central question in this literature is about the interpretation of
	Specifcally, we propose an econometric framework that is simple but fexible enough to model the asymmetry of the return distribution as a function of a valuation ratio and, at the same time, nests the standard, linear predictive regressions as a special case. In more detail, we compare the model with conditional skewness to two benchmark models; one that implies a symmetric distribution, and one that implies a distribution with constant skewness. To refect the well-known fact that equity returns have fat ta
	Specifcally, we propose an econometric framework that is simple but fexible enough to model the asymmetry of the return distribution as a function of a valuation ratio and, at the same time, nests the standard, linear predictive regressions as a special case. In more detail, we compare the model with conditional skewness to two benchmark models; one that implies a symmetric distribution, and one that implies a distribution with constant skewness. To refect the well-known fact that equity returns have fat ta
	-
	-
	-

	cess kurtosis and skewness of the estimated return distributions, we use a (skew) T-distribution to model returns instead of a (skew) normal distribution. For some comparisons, however, we also refer back to the standard Gaussian model. 

	Relative to the standard, linear predictive regression, our main empirical model with conditional skewness has similar implications for mean prediction. However, the model is powerful enough to help us understand how regression to the mean works. Using this framework and the standard US data, we fnd strong statistical evidence that the shape of the return distribution varies conditional on the valuation ratio and that the distribution becomes more negatively skewed when valuation ratios are high. Put differ
	The model with conditional skewness is well-supported by the data. Its log likelihood exceeds those of the competing benchmark models; and the parameter governing the link between valuation levels and the shape of the return distribution is statistically signifcant. These results are very robust across different subsamples (pre-1945 and post-1945 samples), returns horizons (12-month and 24month returns), proxies for valuation ratios (the cyclically-adjusted price-earnings CAPE ratio, the margin-adjusted CAP
	-
	-
	-
	-

	Interestingly, when valuation ratios are very high the most likely value of the future return (i.e., the mode of the predictive distribution) still remains positive (in fact roughly unchanged) in our empirical analysis showing that timing the peak of a bull market is made inherently more diffcult as a consequence of time-varying skewness. Conversely, since at low valuations our predictive distributions become approximately symmetric, very low valuations have higher power to forecast market direction. 
	-

	The model with conditional skewness also shows promising out-of-sample performance. The model signifcantly outperforms the competing benchmark models with a symmetric or a constant-skewness distribution, both using standard statistical as well as utility-based metrics. With respect to the no-predictability benchmark, we fnd no evidence of predictability, as one would expect given the simplicity of the model. However, looking at prediction errors as well as utility gains over time shows that the model with c
	-
	-
	-
	-
	-

	Our empirical results have important implications for investors, asset managers 
	Our empirical results have important implications for investors, asset managers 
	and risk managers. Obviously, ignoring that the return distribution becomes very negatively skewed when valuation levels are high leads to severe underestimation of risk measures such as volatility, value-at-risk and expected-tail-loss. These issues of underestimation of risk hold for the standard Gaussian model as well as the two benchmark models that we evaluate empirically, a model assuming a symmetric T-distribution and a model assuming a T-distribution with constant skewness. For example, while a symme
	-
	-
	-


	Interestingly, we observe the mirror-image of this pattern, albeit to a less extreme extent, when valuation levels are low. In this case, the Gaussian model and our benchmark models overestimate risk for any risk measure that we look at. For example, while a symmetric T-distribution estimates the 1% value-at-risk to be -28% for 12-month cumulative total returns when valuation levels are low, our model with conditional skewness implies a 1% value-at-risk of -23% in this case. Thus, from an investor’s point o
	-
	1 

	The remainder of the paper is organized as follows. In Section 2 we summarize the related literature focusing on theoretical models consistent with our empirical results. In Section 3, we describe the empirical model and the predictive framework. Section 4 describes the data used in our analysis and provides some descriptive statistics. Section 5 summarizes the empirical results including robustness tests. Section 6 concludes. 
	-
	-
	-


	2 Related Literature 
	2 Related Literature 
	Several theories have been proposed to rationalize negative skewness in asset returns. Among these the “leverage effect” (a drop in market valuations increases leverage ratios and, as a consequence, increases volatility of subsequent returns) and the “volatility feedback effect” (bad news lowers future expected cash-fows and increases the risk premium; good news, in contrast, increases future expected cash-fows but, again increases the risk premium resulting in a dampened overall 
	-

	Recently asset management strategies based on volatility, such as risk parity and volatility targeting, have become increasingly popular (see, for example, Moreira and Muir (2017)). Obviously, such strategies are very sensitive to accurate estimates of future volatilities. 
	1
	-

	effect) have been found to lack the quantitative importance to explain the data (see, for example, Bekaert and Wu (2000) and Poterba and Summers (1986)). Chen, Hong, and Stein (2001) propose and evaluate an alternative explanation based on heterogeneous investors, differences in opinions and short-sale constraints for some investors. Hueng and McDonald (2005), however, fnd no support for this explanation in the case of aggregate stock market returns. 
	Importantly, however, the theories discussed in the previous paragraph fail to rationalize that the shape of the return distribution varies with valuation ratios. A theoretical motivation that overcomes this shortcoming is linked to stochastic rational bubbles, as frst developed by Blanchard and Watson (1982). In these models, the stock price is the sum of a fundamental price and a bubble component. The bubble is stochastic, as it continues with a given probability p and bursts with probability (1-p). Impor
	-
	-
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	Another theoretical framework that fts our empirical results is the one on funding liquidity and liquidity spirals proposed in Brunnermeier and Pedersen (2009) and evaluated for carry trades in Brunnermeier, Nagel, and Pedersen (2008). In that framework, assets that speculators invest in feature negative skewness arising from an asymmetric response to fundamental shocks: losses of speculators are amplifed when they hit funding constraints (e.g., margin calls); as a consequence they unwind their positions an
	-
	-
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	A third stream in the theoretical asset pricing literature that features asymmet
	-

	Note, however, that we do not view our empirical results as evidence in support of the existence of price bubbles. Instead, we view them as being merely consistent with some, but not all, of these models’ predictions. If rational bubbles existed, prices would change while expected returns would not (see, for example, Cochrane (2011)). In our case, however, we fnd both, time-varying asymmetry, consistent with the Blanchard-Watson model, and predictability in mean returns, consistent with Campbell and Shiller
	2
	-

	Jorda, Schularick, and Taylor (2016) make a related argument showing that the business cycles in countries with high leverage (proxied by private credit to GDP) tend to be more negatively skewed featuring more pronounced crashes. 
	3

	ric responses of returns to fundamental shocks is built around time-varying risk aversion (e.g., habit-based models). A recent example of that literature that is in line with our empirical results is Greenwald, Lettau, and Ludvigson (2016). They propose a model to explain stock price fuctuations in which investors are close to risk-neutral most of the time but subject to rare spikes in their risk aversion that generate a “fight-to-safety”and, as a consequence, a rapid drop in the price of the risky asset. A
	-

	Finally, David and Veronesi (2014) develop a dynamic equilibrium model of learning that also provides a rationalization for the link between valuation ratios and the shape of the return distribution. In their model investors learn about different regimes in the fundamental value. During a boom period, positive news about fundamentals has little impact on investors’ beliefs; negative news, however, may lead to a large downward revision in beliefs; thus, in that situation investors perceive greater downside r
	-
	-

	Interestingly, David and Veronesi (2014) also provide evidence from option markets that is consistent with our empirical results. They fnd that the ratio of the implied volatilities of out-of-the-money puts over out-of-the-money calls, an indicator of the market’s assessment of downside risk versus upside risk, raises during expansions and drops during recessions (i.e., it is pro-cyclical). Their analyses focuses on three-months options and the sample period of 1988 to 2011. Our analysis, instead, documents
	-
	-

	Similarly, Veldkamp (2005) develops a model of endogenous information fow to study slow booms and sudden crashes in lending markets in emerging markets. In the model, agents undertake more economic activity in good times than in bad time. Thus, economic activity generates public information about the state of the economy. If the economic state changes when times are good and information is abundant, asset prices adjust quickly and a sudden crash occurs. When times are bad, scarce information and high uncert
	In terms of empirical literature, the following two recent papers are closely related to our work. Greenwood, Shleifer, and You (2019) study industry-returns and use an ad-hoc defnition of bubbles based on past returns. Looking exclusively 
	In terms of empirical literature, the following two recent papers are closely related to our work. Greenwood, Shleifer, and You (2019) study industry-returns and use an ad-hoc defnition of bubbles based on past returns. Looking exclusively 
	at those bubble periods, they document results that are consistent with the ones we report; such as, for example, that a sharp price increase predicts a substantially higher probability of a crash. They, however, do not study the predictive relation between valuation levels and the shape of the return distribution in a comprehensive econometric framework that also allows for predictability in other characteristics of the return distribution. 

	Gormsen and Jensen (2017) study higher-order moments of monthly and quarterly returns using estimates extracted from option markets. The main advantage of those estimates is that they are forward looking. Relying on option markets, however, also comes at a cost, such as, for example, the lack of options with long-horizon maturities and an overall relatively short sample size. While their empirical setup is quite different from ours, some of their results are qualitatively consistent with our analysis. For e
	-

	Our paper also relates, more broadly speaking, to the literature on the non-normality of asset returns. Looking at daily or even higher-frequency returns, this literature fnds excess kurtosis and negative skewness. It usually models conditional skewness as following an autoregressive process and models it jointly with conditional volatility (see, for example, Harvey and Siddique (1999) and Jondeau and Rockinger (2003)). Our approach is very different as we look at longer horizon returns (in particular, 12-m
	-
	-
	-
	-
	-
	-
	-

	Finally, our analysis is related to the extensive literature on the predictability of expected returns; in particular, to studies applying regime-switching models. Henkel, Martin, and Nardari (2011), for example, estimate a Markov switching multivariate model for returns and four predictive variables. For the simplifed case of one predictive variable, namely a valuation ratio, it is possible to show that their empirical model together with the result that predictability exists mostly during recessions impli
	Finally, our analysis is related to the extensive literature on the predictability of expected returns; in particular, to studies applying regime-switching models. Henkel, Martin, and Nardari (2011), for example, estimate a Markov switching multivariate model for returns and four predictive variables. For the simplifed case of one predictive variable, namely a valuation ratio, it is possible to show that their empirical model together with the result that predictability exists mostly during recessions impli
	-
	-

	is negative and large in absolute terms when valuation levels are high, and small and potentially even positive when valuation levels are low. 


	3 Model Specifcation 
	3 Model Specifcation 
	A skew-T distribution with deterministically varying parameters. The standard predictive regression is a linear projection of cumulative log returns on a valuation (ratio), also in logs, so the implicit model is 
	yt,t+h = β+ βxt + εt , 
	0 
	1

	where yt,t+h = log((Pt+h + Dt+1:t+h)/Pt ) are cumulative total log returns over h periods, xt is a log valuation ratio, and OLS estimation is optimal under the assumption that εt is Gaussian. 
	-

	The most parsimonious and interpretable way to extend this model to capture the idea that valuation ratios may also affect the shape of the distribution is to move from a symmetric to an asymmetric distribution, where the asymmetry is a function of valuation levels. A skew-normal distribution would be the most immediate extension of the regression model, but we prefer to be slightly more general and opt for a skew-T distribution. Allowing for fat tails is always good practice, particularly with fnancial dat
	-
	-
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	yt,t+h ∼ skewt(mt ,σ,v,γt ) 
	where skewt is the skew-T distribution of Fernandez and Steel (1998). Here mt is the mode (location parameters), σ is the dispersion parameter, v are the degrees of freedom, 0 < γt < ∞ is the asymmetry (shape) parameter, and the model parameters are deterministic functions of a constant and xt as follows: 
	mt = β,m + β,mxt logσ = β,σ logv = β,v logγt = β,γ + β,γxt . 
	0
	1
	0
	0
	0
	1

	Notice that we work with logs of the dispersion and degrees-of-freedom parameters, σ and v, and also model logγt rather than γt as a linear function of log-valuation xt . This makes the distribution p(yt,t+h|xt ) well-defned for any value of β,m and β,γ. 
	-
	1
	1

	This model nests the standard predictive regression as a special case with β,γ = β,γ = 0 and v fxed at a large number. If v is freely estimated, we have a regression with T rather than Gaussian errors. We will refer to this model as the Symmetric-T Model. An interesting comparison is with a model where the skew is fxed, so β,γ is freely estimated but β,γ = 0. We will refer to this model as the Constant-Skew-T model. The main model of interest, however, is one in which we also estimate β,γ to see whether val
	1
	0
	0
	1
	1
	1
	1
	1
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	We also consider an even more general version of the model by estimating β,σ 
	1

	— also allowing the variance to be a function of valuations. Details on this model implementation can be found in the robustness section. This improves the ft to the data but does not have important implications for the analysis of the shape of the return distribution which represents the focus of this paper. Thus, we decided to focus on the simpler model throughout the paper. If our goal was to maximize the ft to the data we would indeed need to model the dispersion as time-varying, and include more variab
	Skewness, asymmetry, and some features of the skew-T distribution. There are several skew-T distributions available in the literature. Jones (2014), with a univariate emphasis, and Lee and McLachlan (2013), with a multivariate emphasis, provide excellent reviews. Most proposals are fairly recent and there is still very little applied work to guide a choice (Jones (2014)). We have opted for the version of Fernandez and Steel (1998) because, in their model, the role of each parameter is easy to interpret; in 
	Skewness, asymmetry, and some features of the skew-T distribution. There are several skew-T distributions available in the literature. Jones (2014), with a univariate emphasis, and Lee and McLachlan (2013), with a multivariate emphasis, provide excellent reviews. Most proposals are fairly recent and there is still very little applied work to guide a choice (Jones (2014)). We have opted for the version of Fernandez and Steel (1998) because, in their model, the role of each parameter is easy to interpret; in 
	-
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	aids in the estimation. 

	The idea of Fernandez and Steel (1998) is to introduce an inverse scale factor in the positive and negative orthants, so that if the distribution f (εt ) is unimodal and symmetric around zero, then we can create a skewed distribution p indexed by γt 
	.. 
	2 
	p(εt |γt )= f ( I(εt )+ f (γt εt )I(εt ) .
	ε
	t
	[0,∞)
	(−∞,0)

	γ
	γ
	t 
	+ 
	1 
	γ
	t

	γt 
	γt 

	In our case εt = f (yt,t+h − mt ) and f (εt ) is a student T distribution with dispersion σ and degrees of freedom v. In Fernandez and Steel (1998) γ is fxed, but the extension is fairly straightforward. In our experience, this two-piece transformation fts moderate skewness well and is very convenient and robust in estimation, but may not be the best choice for severe skewness. 
	Each parameter has a fairly straightforward interpretation: mt is the mode, σ is the dispersion, v controls the fatness of the tails, and γt determines the amount of asymmetry. However, each statistical moment is in general a function of all four parameters (see Fernandez and Steel (1998) for closed-form expressions). In particular, mt is the mode, which differs from the mean unless γt = 1, the variance is a function of σ,v, and γt , and the most common measure of skewness as the centered third moment divid
	For unimodal distributions, Arnold and Groeneveld (2010) propose a measure of skewness defned as one minus twice the probability mass left of the mode, which in our case is 
	γ
	2 

	t − 1 
	,
	γ
	γ
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	since in the skew-T distribution of Fernandez and Steel (1998), γ alone controls the allocation of mass to each side of the mode as 
	t + 1 

	P(yt ≥ mt |γt ) 
	= γ.
	t 
	2 

	P(yt < mt |γt ) 
	Given our use of the Fernandez and Steel skew-T distribution, ”asymmetry” in this paper is a one-to-one function of the amount of probability mass on each side of the mode. This defnition is of course not free from shortcomings, but it is intuitive and far more stable than the centered third moment, particularly for fat-tailed distributions. 
	Estimation. Since the likelihood and all derivatives are available in closed form, estimation by maximum likelihood is convenient and works well for the 
	small models considered in this paper. When using overlapping data,the assumption of conditionally independent observations is incorrect and results can be interpreted as quasi-ML. A correction for autocorrelation should then be made to compute standard errors and t-statistics. 
	4 
	-
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	A very effective Markov Chain Monte Carlo algorithm (Gamerman (1997)) exists for generalized linear models, of which ours is a special case. Our version is taken from Li and Villani (2010). The problem is broken into sequential steps of estimating the coeffcients associated with each parameter in separate blocks, with tailored proposal distributions obtained by maximizing the conditional likelihood at each step. The computational cost is compensated by increased reliability: in more complex problems and/or 
	-
	-

	For all results presented in this paper, the posterior means from MCMC (which we report and which are obtained with very disperse priors) for the key parameters of interest, namely β,γ and β,γ, are nearly identical to ML estimates. Maximum likelihood estimation gives consistently lower estimates of the degrees-of-freedom parameter than MCMC. This is not surprising: the data contain some very large outliers, and ML can only accommodate them with a fairly low v. In contrast, MCMC results in a posterior distri
	0
	1
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	We are not aware of any fully Bayesian approach to inference with overlapping observations: the likelihood is technically misspecifed. Common practice is to either work with non-overlapping observations, which throws away a lot of useful data, or work as if observations were independent, which gives incorrect posteriors and over-confdent results. We have employed an ad-hoc fx inspired by autocorrelation-consistent standard errors computed in a frequentist approach: the log-likelihood within each MCMC step i
	-

	Main results reported in the paper are based on overlapping data. In the robustness section, we also present results from non-overlapping data that are qualitatively as well as quantitatively very similar to our main results. 
	4

	errors when the posterior mean is close to the posterior mode (the ML estimate), as in the case for the key coeffcients of interest β,γ and β,γ. We report results from these MCMC draws, but emphasize that the key fndings are equally strong from ML estimates. For the full sample, t statistics for the main parameter of interest β,γ are close to three even if non-overlapping observations are used. 
	0
	1
	1


	4 Data and Descriptive Statistics 
	4 Data and Descriptive Statistics 
	The key variables of interest are the cumulative, overlapping (i.e., all possible 12month and 24-month periods are considered) 12-month and 24-month total log returns. The only predictive variable is the cyclically adjusted price-to-earnings ratio (CAPE); as a robustness test, we replicate our main results using the marketto-book (MB) ratio, the margin-adjusted CAPE (Hussman (2017)), or the 5-year return (e.g., Asness, Moskowitz, and Pedersen (2013), Greenwood, Shleifer, and You (2019)) as the only predicti
	-
	-

	Figure 1 shows the time-series graph of market-to-book and CAPE. As one would expect, the two series are very closely related — noticeable differences can be observed up to the 30ties and during the 60ties and 70ties. Negative values correspond to periods of time during which book values exceed market prices while large positive values correspond to market booms. One clearly observes the stock market downturn before the great depression and the run-up and subsequent correction associated with the boom in te
	-
	-

	Table 1 presents the summary statistics of 12-month (Panel A) and 24-month (Panel B) total returns including means, standard deviations and skewness. We report these statistics for the full sample period, and the pre-1945 and post-1945 sub-periods separately. Furthermore, we report them separately for the frst, the pooled second and third, and the fourth valuation quartiles. There are several measures of skewness available in the literature, each attempting to quantify the asymmetry in a distribution. The m
	-

	The expected 12-month return is 16.2% in the case of low (lowest quartile of CAPE) and 3.9% in the case of high (highest quartile of CAPE) valuation ratios (the unconditional mean is 8.7% with a standard deviation of 18.8%). The standard 
	The expected 12-month return is 16.2% in the case of low (lowest quartile of CAPE) and 3.9% in the case of high (highest quartile of CAPE) valuation ratios (the unconditional mean is 8.7% with a standard deviation of 18.8%). The standard 
	deviation of 12-month returns is 16.9% for the case of lowest valuation ratios and only slightly higher at 19.4% for highest valuation ratios. In the case of 24-month returns the full sample average is 17.3% with a standard deviation of 26.3%; expected 24-month returns amount to 31.7% for periods with lowest and 7.3% for periods with highest valuation ratios; the corresponding standard deviations are 18.7% and 32.9%, respectively. Note the mild increase in standard deviation (between 12-month and 24-month r
	-
	-
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	In terms of skewness, Table 1 shows that, as expected and consistent with existing literature, cumulative 12-month and 24-month returns are, in general, negatively skewed. Most importantly, however, we fnd that they are more negatively skewed when valuation ratios are high (top quartile) than when valuation ratios are low (bottom quartile). In the case of bottom-quartile valuation ratios, we frequently fnd even positive or close-to-zero skewness. Thus, these simple descriptive statistics already suggest a l
	-
	-
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	In some cases, however, skewness, as measured by the standardized third moment, does not monotonically decrease when valuation levels increase; i.e., in some cases we fnd even lower skewness when valuation ratios are in the middle quartiles. While this seems to be at odds with our story, it is most likely related to the previously discussed shortcomings of the standard skewness measure that we report in Table 1. To get a better idea of the shapes of the empirical return distributions, Figure 2 (12-month ret
	-
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	Finally, we explore the term-structure of skewness over various horizons. As discussed before (and in detail in Appendix A), the skewness in daily returns might have little to do with the skewness in cumulative returns. Figure 4 shows estimates of the asymmetry in cumulative returns for horizons of one month up to 35 months. To address the issue of noisiness in standard skewness measures, we plot the Arnold and Groeneveld measure of skewness (see Arnold and Groeneveld (2010)) for skew-t distributions estima
	Finally, we explore the term-structure of skewness over various horizons. As discussed before (and in detail in Appendix A), the skewness in daily returns might have little to do with the skewness in cumulative returns. Figure 4 shows estimates of the asymmetry in cumulative returns for horizons of one month up to 35 months. To address the issue of noisiness in standard skewness measures, we plot the Arnold and Groeneveld measure of skewness (see Arnold and Groeneveld (2010)) for skew-t distributions estima
	-

	for the entire sample as well as for observations in the lowest and highest valuation quartiles. 

	Focusing on the entire sample, we see that skewness becomes more negative when the horizon increases and then reverts back to zero, but the convergence is slow. A similar pattern is observed when valuation levels are high but the initial increase in negative skewness up to horizons of 20 months or so is even more pronounced. The case of observations when valuation levels are low looks somewhat different because skewness increases (i.e., becomes less negative or even positive) up to horizons of 6 months, the
	-


	5 Empirical Results 
	5 Empirical Results 
	In this section, we summarize our empirical results focusing on 12-month and 24month cumulative total log returns and the cyclically-adjusted-price-earnings ratio (CAPE) as proxy for the valuation ratio. 
	-

	5.1 Model Parameters 
	5.1 Model Parameters 
	Table 2 summarizes parameter estimates for the three models of interest — the Symmetric-T model, the Constant-Skew-T model and the Conditional-Skew-T model 
	— when 12-month returns are modeled. Panel A reports results based on the full sample of data, Panel B focuses on the pre-1945 and Panel C on the post-1945 sub-period. 
	The Symmetric-T model represents the standard, simple linear regression model with the only difference that we assume a T-distribution instead of a normal distribution for the residuals. Consistent with the literature we fnd that valuation ratios predict expected returns: a one-standard deviation increase in log(CAPE) results in a, statistically and economically signifcant, drop in expected 12-month returns of 4.226%. The corresponding full sample OLS estimates assuming a normal distribution for the errors 
	The Symmetric-T model represents the standard, simple linear regression model with the only difference that we assume a T-distribution instead of a normal distribution for the residuals. Consistent with the literature we fnd that valuation ratios predict expected returns: a one-standard deviation increase in log(CAPE) results in a, statistically and economically signifcant, drop in expected 12-month returns of 4.226%. The corresponding full sample OLS estimates assuming a normal distribution for the errors 
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	predictive distribution rather than the mean in our framework. However, as long as the predictive distribution is symmetric the mode is, obviously, equal to the mean. 

	The Constant-Skew-T model extends the basic model by allowing the predictive distribution to be skewed. This results in a substantial increase in ft as measured by the log-likelihood. The constant asymmetry parameter of -0.316 implies a negatively skewed predictive distribution, as one would expect given available empirical evidence. The coeffcient of the valuation ratio in predicting the mode of the distribution stays essentially unchanged. Interestingly, however, the skewness parameter becomes insignifcan
	-
	-

	Finally, Table 2 summarizes the parameter estimates for the Conditional-Skew-T model which models the predictive distribution’s asymmetry as a function of the valuation ratio. We fnd that conditioning on the valuation ratio in the shape equation improves the model ft (i.e., the log likelihood increases). We fnd a value of -0.175 for β,γ indicating that the distribution becomes more negatively skewed when valuation ratios increase. It also shows that the total estimate of the shape parameter, including the c
	-
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	As discussed before, we observe substantial variation in β,γ across sub-periods. Interestingly, however, estimates of β,γ do not share this behavior. Thus, while the overall asymmetry in the return distribution has changed somewhat over time, the link between valuation levels and skewness appears to have been stable and statistically signifcant. Changes in the unconditional asymmetry (captured by β,γ) across sub-periods do not necessarily imply a break in the relation we are interested in, since β,γ is stab
	0
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	Note that in the Conditional-Skew-T model we do not include the valuation ratio in the mode equation (i.e., we set β,m = 0). The main motivation to do so is for simplicity. Allowing CAPE to appear in both the mode and the asymmetry equation results in a lower t-statistic for our key parameter β,γ, even when its point estimate is little affected or even increases in absolute terms. The reason for this effect is that the correlation between β,γ and β,m, whether measured from MCMC draws or from the asymptotic 
	Note that in the Conditional-Skew-T model we do not include the valuation ratio in the mode equation (i.e., we set β,m = 0). The main motivation to do so is for simplicity. Allowing CAPE to appear in both the mode and the asymmetry equation results in a lower t-statistic for our key parameter β,γ, even when its point estimate is little affected or even increases in absolute terms. The reason for this effect is that the correlation between β,γ and β,m, whether measured from MCMC draws or from the asymptotic 
	1
	1
	1
	1
	-

	including CAPE in both equations, while any test rejects setting both parameters to zero strongly.
	5 


	Nevertheless, these results do have some further noteworthy implications: while the return distribution becomes much more negatively skewed when valuations are high, the most likely return of the distribution (i.e, the mode) is essentially unaffected by valuation levels. Given that β,m > 0, this also means that the most likely return is positive even at very high valuation ratios refecting the diffculty of timing market reversals. 
	-
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	Table 3 contains parameter estimates of the three models when 24-month returns are used as dependent variable. Results look qualitatively very similar in this case. It is noteworthy to point out that the estimates of unconditional skewness in the Constant-Skew-T model, β,γ, are in all sample periods statistically insignifcant and smaller than in the case of 12-month returns. In contrast, however, the coeffcients capturing the conditional impact of valuation ratios on the shapes of the predictive distributio
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	Bottom line, we fnd — across all return defnitions and sample periods considered — that valuation ratios have a statistically signifcant impact on the shape of the return distribution. Specifcally, distributions become more negatively skewed when valuation ratios increase. In the following sections, we analyze the resulting shapes of the return distributions in more detail. 
	-


	5.2 Predictive Distributions 
	5.2 Predictive Distributions 
	The parameter estimates discussed in the previous section already document that valuation ratios help predict the shape of the distributions of 12-month and 24month returns. Judging, however, how large this impact is in terms of the resulting asymmetry of the distributions directly from the parameter estimates is diffcult. Thus, we take a detailed view at the predictive distributions implied by the various models in this section. 
	-

	Figures 5 and 6 represent the main results of the paper. They show the conditional predictive distributions for 12-month (Figure 5) and 24-month (Figure 6) 
	-

	To further understand this behavior, it is useful to notice that β,m = 0 affects only the conditional mean of the predictive distribution, while β,γ affects all moments, though mainly mean and skewness. The impact of β,γ on the mean is almost perfectly linear; that is, as far as point predictions are concerned, the two parameters are nearly unidentifed. When two parameters are nearly unidentifed, their t-statistics approach zero even if they have very strong effects and very high t-statistics when included 
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	returns implied by the Conditional-Skew-T modelusing the full sample parameter estimates. The top graph in each fgure represents the case of high and the bottom graph the case of low valuation ratios. While the modes of the two distributions are identical by design, the model implies very different shapes of the distribution depending on the level of the valuation ratios: while predictive distributions look pretty much symmetric for low valuation ratios, they become asymmetric and negatively skewed in the c
	6 
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	Table 4 provides some further information on the conditional distributions implied by our models, namely the mean, the standard deviation, the normalized third moment (skewness), the probability mass left to the mode (asymmetry), the 1% Value-at-Risk and the 1% Expected Tail Loss. Most importantly, we are interested in skewness and asymmetry. By construction, skewness is zero and asymmetry is equal to 50% in the case of the Symmetric-T Model. When we allow the distribution to be skewed in the Constant-Skew-
	-
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	Finally in the Conditional-Skew-T Model, we observe that valuation levels have a strong impact on the shape of the distributions. In the case of 12-month returns, we fnd that, for low valuation levels, the distribution is nearly symmetric with a skewness of zero and 47% of the probability mass being to the left of the mode. In stark contrast, for high valuation levels, we fnd that nearly 80% of the probability mass is below the mode and skewness is equal to -0.97. A similarly pronounced pattern prevails in 
	-

	These results illustrate, yet again, that the shape of the return distribution depends strongly on valuation levels. An equally important question, however, is whether this shape dependence also has implications for other characteristics of the return distribution such as means or standard deviations. In general, across all models, we fnd that expected returns are considerably lower when valuation levels are high, as one would expect. Estimated conditional expected returns (as a function of valuation levels
	-
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	We also observe an interesting pattern for model-implied standard deviations. Both, the Symmetric-T and the Constant-Skew-T Model, show a tendency to overestimate volatility when valuation levels are low and, at the same time, underesti
	-
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	Note that the two benchmark models, by design, do not model conditional skewness and, thus, it makes no sense to draw these graphs for the two benchmark models. 
	6

	mate volatility when valuation levels are high, relative to the standard deviations implied by the Conditional-Skew-T Model. That means that the two benchmark models are on the wrong side in both cases: when valuations are very low, a mean-variance investor using those standard deviation estimates would invest too cautiously while the same investor would invest too aggressively when valuation levels are very high. Note that in our econometric setup these volatility patterns only arise as a consequence of th
	-

	Similar patterns are observed when we move to risk measures beyond volatility, such as value-at-risk and expected tail loss. In both cases, we fnd that the two benchmark models overestimate risk in the case of low valuation levels but underestimate risk in the case of high valuation levels. For example, in the case of 12-month returns the Constant-Skew-T Model implies a 1% value-at-risk of -37% (-53%) when valuation levels are low (high) while the Conditional-Skew-T Model implies values of -23% (-71%). Whil
	-
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	So far, we have focused on full sample evidence in the discussion of the predictive distributions. Figures 7 and 8 illustrate the model-implied distributions separately for the pre-1945 and post-1945 sample periods while Tables 5 and 6 provide the corresponding characteristics. Most importantly, the patterns that we discussed above based on the full sample also hold for each sub-sample separately. Thus, our results are robust across different sample periods and do not seem to be driven by individual years o
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	5.3 Out-of-sample Predictability 
	5.3 Out-of-sample Predictability 
	The results so far have focused on in-sample analyses and have shown that the Conditional-Skew-T Model is supported in the data and outperforms the Symmetric-T and the Constant-Skew Model. In this section, we evaluate how well the ConditionalSkew-T Model performs in an out-of-sample framework. Monthly predictions of 12-month ahead expected returns are generated using an expanding window using the period up to January 1945 as a burn-in phase. 
	-

	Figure 9, in a frst step, shows the maximum-likelihood point estimates of the key parameters of the Conditional-Skew-T model, β,γ (labeled b4(1) in the fgure) and β,γ (labeled b4(2) in the fgure), together with +2/-2 standard deviation bands. Given that we also demeaned the valuation ratio in the model, coeffcient 
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	In the case of the Conditional-Skew-T Model and 24-month returns, we fnd value-at-risk and expected-tail-loss estimates of -103% and -126%, respectively. Note that throughout the paper we use log-returns. Thus, these estimates correspond to -64% and -72% in terms of simple returns. 
	7

	β,γ can be directly interpreted as the unconditional skewness. As expected, the unconditional skewness of the market is consistently negative throughout the period. Interestingly, however, we fnd that there is a decreasing trend in unconditional skewness over time. 
	0
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	In case of parameter β,γ that captures the predictive relation between valuation ratios and the shape of the return distribution, we fnd that the estimate is negative throughout the entire period and that the two standard deviation confdence interval never includes the zero line. Most importantly, the fgure illustrates that the parameter estimate varies very little over time. Only during the 90ties leading into the burst of the “tech-bubble”we observe a brief period with more pronounced changes in the param
	1
	-

	Figure 10 shows the corresponding monthly predictions of 12-month returns using the Conditional-Skew-T Model over time together with CAPE.It shows, as one would expect given our earlier discussions, that predicted returns vary considerably over time and move against market valuations. For example, while valuations increased consistently between the early 80ties and the early 2000s, predicted expected returns consistently dropped reaching zero or even negative value when valuation levels were at the peak. 
	8 
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	5.3.1 Statistical Evaluation of Out-of-sample Predictability 
	5.3.1 Statistical Evaluation of Out-of-sample Predictability 
	To evaluate the out-of-sample predictive performance of the Conditional-Skew-T model, we follow the predictability literature and perform standard statistical tests in a frst step. In the next subsection, we will then complement these results with an economic analysis. We start with a statistical evaluation based on mean squared prediction errors (MSPEs). The no-predictability benchmark is an expanding window estimate of the average 12-month return. It is well-known that the Symmetric-Model does not yield s
	-
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	In terms of MSPEs, the Conditional-Skew-T model performs surprisingly well. It statistically outperforms the Symmetric-G model (with a p-value of 1%) and 
	In this section, we focus on simple returns in the analysis while the model is estimated for log-returns. Qualitatively results are very similar when doing the assessment of out-of-sample predictability in log-returns. Given that the idea here is to evaluate whether one could trade using the model, discrete returns appear to be the more natural choice. 
	8
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	To further simplify the comparison with the literature in this section, we replace the Symmetric-T benchmark model with a Symmetric-G(aussian) model. The reason why we do not also use that Symmetric-G model in the earlier in-sample analysis is that a model with normally distributed returns would not stand a fair chance in a likelihood comparison given that the distribution of log returns is known to exhibit large excess kurtosis. 
	9

	the Constant-Skew-T model (with a p-value of 2%) during the out-of-sample period.Interestingly, relative to these competing models the out-of-sample predictability comes mostly from expansionary observations while during recessions the Symmetric-G and the Constant-Skew-T model seem to predict returns somewhat more accurately than the Conditional-Skew-T model. 
	-
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	With respect to the no-predictability benchmark, we fnd overall a positive (i.e., the Conditional-Skew-T model predicts more accurately on average) but statistically not signifcant effect. In this case, a very pronounced result is that the Conditional-Skew-T model predicts much more accurately than the no-predictability benchmark during recessions. However, during expansions this pattern is reversed. 
	-

	The above discussion of the predictive performance is based on point estimates of average prediction quality, which can be driven by individual outliers. Thus, to get a better idea of the extent of predictability and its consistency over time, we plot the cumulative difference in squared prediction errors between models. Panel A of 11 shows the corresponding results when we compare the ConditionalSkew-T model to the Symmetric-G model (solid line) or to the Constant-Skew-T model (dashed line). In both cases,
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	Panel B repeats this analysis looking at the difference in cumulative squared errors between the Conditional-Skew-T and the no-predictability model. The graph actually shows that the Conditional-Skew-T model outperforms the no-predictability benchmark during extended periods of time but is punished very substantially during periods of high valuations. This is just another representation of the earlier-discussed challenge of timing stock market downturns. 
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	5.3.2 Economic Evaluation of Out-of-sample Predictability 
	5.3.2 Economic Evaluation of Out-of-sample Predictability 
	To corroborate the statistical evidence on out-of-sample predictability, we also perform an economic evaluation assuming an investor with power utility and risk aversion coeffcient equal to 3. Each month the investor calculates the optimal weight of investing in the market and the risk-free asset by maximizing expected utility. The investor rebalances monthly even though the predictions used in the optimization are for the 12-month horizon. We calculate ex-post realized utility based on monthly returns as w
	-
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	with a grain of salt as they are not adjusted for the overlapping nature of the returns. 
	10
	Reported p-values have to be taken 

	(much) larger than the utility of a similar-sized positive return +R for moderately 
	large return realizations.
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	In terms of realized utility gains, the Conditional-Skew-T model again clearly outperforms the two considered benchmark models. For example, relative to the Constant-Skew-T model it yields an average, annualized utility gain of 0.25% which is small in economic terms but still statistically signifcantly (p-value of 2%) different from zero. Relative to the symmetric model, the average utility gain is 0.43%. Relative to the no-predictability benchmark, the Conditional-Skew-T model underperforms but the average
	-

	Figure 12 plots cumulative utility gains over time to assess the consistency of the average utility differences just discussed. Panel A, again, compares the Conditional-Skew-T to the two competing benchmark models and shows that the Conditional-Skew-T model outperforms the benchmark models consistently during most time periods. In the most recent history, say the last twenty years, the Constant-Skew-T model shows strong performance resulting in a noticeable decrease in cumulative utility gains relative to t
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	Panel B of Figure 12 shows the cumulative utility gains of the ConditionalSkew-T relative to the no-predictability benchmark. The graph shows extended periods, for example from the early 60ties to the early 90ties, during which the Conditional-Skew-T model yields consistent utility gains. On the other side, there are several, pronounced periods, especially the run-up in valuations during the 90ties but also the most recent 10 years, during which the utility gains collapse, as an investor unaware of (or not 
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	5.4 Robustness 
	5.4 Robustness 
	To make sure our results about the predictability of the shape of the return distribution are not driven by discretionary choices we made along the way, we perform an extensive set of robustness tests. First, we rerun our main analysis using non-overlapping returns. Second, we repeat the empirical analysis for three alternative proxies for valuation levels and also study the impact of margin debt on the shape of the return distribution. Third, we extend the model to allow for a link between the valuation le
	-

	hoices of utility functions and look qualitatively as well as quantitatively similar if we consider, for example, an investor with quadratic utility. Our results are also robust to different choices of reasonable values of risk aversion. 
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	Our results are robust to different c

	ffth, industry-level evidence. In all cases, the empirical analysis shows that our results are very robust to these changes. 
	5.4.1 Non-overlapping Returns 
	5.4.1 Non-overlapping Returns 
	The results discussed in the paper are based on overlapping returns. Using overlapping returns yields a gain in effciency, as all available information is exploited in the estimation, but comes at the cost of making the assumption of conditionally independent observations incorrect. In this robustness section, we re-estimate our models using non-overlapping data (specifcally, returns from January to January) to ensure that our results are not driven by the choice of using overlapping data. 
	-

	Table 7 shows the corresponding parameter estimates for 12-month (Panel A) and 24-month (Panel B) returns. Several interesting observations can be made. First, point estimates of individual coeffcients across models and horizons are only marginally affected by using non-overlapping instead of overlapping returns. Second, t-statistics drop, as one would have expected but remain above standard thresholds for main coeffcients of interest. Third, all results discussed before also hold up when using non-overlapp
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	5.4.2 Alternative Valuation Ratios and Margin Debt 
	5.4.2 Alternative Valuation Ratios and Margin Debt 
	As the frst set of robustness tests, we replicate the main steps of our empirical analysis using the market-to-book (MB) ratio, the margin-adjusted CAPE (Hussman (2017)), and the 5-year return (e.g., Asness, Moskowitz, and Pedersen (2013), Greenwood, Shleifer, and You (2019)) instead of the CAPE ratio as our predictive variable. While the market-to-book ratio and the 5-year return are straightforward to construct (when using the market-to-book ratio the sample only starts in January 1921), the margin-adjust
	-

	The simple but intuitive idea of the margin-adjusted CAPE is that margins are embedded into every earnings-based valuation ratio, including CAPE. As margins vary themselves over time and over the business cycle, it might be useful and important to explicitly account for them. Hussman (2017) argues that adjusting CAPE for that embedded margin signifcantly improves the relationship between CAPE and subsequent market returns. To construct margin-adjusted CAPE one would ideally like to have information on aggre
	The simple but intuitive idea of the margin-adjusted CAPE is that margins are embedded into every earnings-based valuation ratio, including CAPE. As margins vary themselves over time and over the business cycle, it might be useful and important to explicitly account for them. Hussman (2017) argues that adjusting CAPE for that embedded margin signifcantly improves the relationship between CAPE and subsequent market returns. To construct margin-adjusted CAPE one would ideally like to have information on aggre
	-

	the entire economy divided by GDP using Federal Reserve Economic Data as a proxy for S&P500 earnings divided by sales. 

	Specifcally, we calculate margin-adjusted CAPE in the following way. We frst collect annual data on corporate profts after tax and on GDP (available from 1929) and then switch to quarterly data for these two data series in 1947. We then compute profts-to-GDP for each quarter (or year), and set all months in that quarter (year) equal to that value. Then, we use a 10-year sliding window to compute a smoothed value of profts/GDP. To get the margin-adjusted CAPE, the standard CAPE at each time t is multiplied b
	Table 8 shows the corresponding parameter estimates if we use 12-month (Panel 
	A) and 24-month (Panel B) returns as dependent variables. Note that for simplicity and readability we focus on the Conditional-Skew-T model in the table. This choice does not represent a limitation, as we also fnd for these alternative valuation proxies, similar to the main results, that the the Conditional-Skew-T model gets most support in the data compared to the Symmetric-T and Constant-Skew-T model (as refected by maximum log-likelihoods). 
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	-

	Most importantly, Table 8 shows that the coeffcients of the alternative valuation proxies in the shape equation are all negative and statistically signifcant. Thus, as valuation levels — proxied by any of these three alternative proxies — increase, the shapes of the return distributions, for both 12-month and 24-month returns, become more asymmetric and, in particular, more negatively skewed. 
	-

	Table 9 reports detailed characteristics of the model-implied distributions: the patterns described in the main result section also prevail when we use these alternative proxies for valuation levels. Most importantly, we observe a stark change in the shape of the distributions conditional on valuation levels. For example, in the case of 24-month returns and the market-to-book ratio the probability mass to the left of the mode is 49% (83%) when valuation levels are low (high). Differences between the implied
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	In a recent paper, Asness, Frazzini, Gormsen, and Pedersen (2018) argue that margin debt plays an important role in empirical asset pricing. Specifcally, they argue that high margin debt means low fnancial constraints and low margin debt means tight fnancial constraints (i.e., the interpretation of margin debt is supply 
	In a recent paper, Asness, Frazzini, Gormsen, and Pedersen (2018) argue that margin debt plays an important role in empirical asset pricing. Specifcally, they argue that high margin debt means low fnancial constraints and low margin debt means tight fnancial constraints (i.e., the interpretation of margin debt is supply 
	driven). The intuition is that at the end of an expansion margin debt is high and fnancial constraints are low (non-binding). However, when negative economic news or other signals of a turnaround arise, the supply of funding for intermediaries dries up (e.g., margin requirements are adjusted) and fnancial constraints tighten up. As Brunnermeier and Pedersen (2009) show such dynamics can result in liquidity spirals where funding liquidity as well as asset liquidity jointly deteriorate dramatically and quickl
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	To empirically evaluate this specifc mechanism, we construct a time-series of monthly margin debt, normalized by GDP, for NYSE-designated clearing frms from Eikon. Figure 13 shows standardized CAPE and margin debt (MD) since January 1960. It highlights that there is a strong relation between the two time-series (the correlation is 0.72) but that there are also periods when they actually differ quite substantially. If we use margin debt to predict the shape of the future 12month return distribution we fnd qu
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	Thus, the empirical evidence suggests that margin debt, as a proxy for fnancial constraints of fnancial intermediaries, is associated with the time-variation in the asymmetry of market return distributions. Given, however, that the empirical support is weaker than for CAPE and other valuation ratios, it does not seem to be the only channel. 
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	5.4.3 Model with Conditional Dispersion 
	5.4.3 Model with Conditional Dispersion 
	The third robustness test considers an extension of our econometric specifcation that allows the return dispersion to depend on the valuation level. Specifcally, we will estimate the following set of equations (consistent with the Conditional-Skew-T model we will also set the link between the mode of the return distribution and the valuation level to zero, as this link does not receive support in the data): 
	mt = β,m logσ = β,σ + β,σxt logv = β,v logγt = β,γ + β,γxt . 
	0
	0
	1
	0
	0
	1

	Table 10 summarizes the parameter estimates of this model for 12-month returns (Panel A) and 24-month returns (Panel B). Similar to the main results, we 
	-

	distinguish three samples — the full sample, the pre-1945 sample and the post1945 sample. Across all specifcations, we fnd that our main result still holds; i.e., β,γ is negative and statistically signifcant. Comparing the point estimates to those reported in Table 2 and 3 shows very minor changes; basically the estimates of β,γ are unaffected by allowing β,σ to be different from zero. 
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	In contrast, estimates of β,σ are not signifcantly different from zero across all specifcations. Thus, there does not seem to be a strong association between current valuation levels and the return dispersion of future returns. Ignoring the lack of signifcance for a second, it is interesting to point out that point estimates are consistently negative for 12-month returns while being consistently positive for 24-month returns. 
	1

	Table 11, fnally, characterizes model-implied distributions for low and high valuations. Not surprisingly, we do not observe any signifcant changes with respect to our main empirical specifcation (refer to Table 4 for the details). Again, we fnd that the implied distributions become much more negatively skewed when valuation levels are high. In the case of 24-month returns, we do observe that the positive but insignifcant estimates of β,σ have some noticeable negative impact on the expected rate of return (
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	5.4.4 International Evidence 
	5.4.4 International Evidence 
	As the fourth robustness test for our empirical results, we repeat our analysis on a sample of international equity markets. We obtain data on total returns, dividend yields, consumer price indices, price-earnings ratios and short-term interest rates from Global Financial Data and construct Shiller’s We use data at the monthly frequency but set monthly observations equal to the last available PE-ratio when price-earnings ratios are only available at the annual frequency (i.e., we do not perform any interpol
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	CAPE for each market.
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	Table 12 lists the individual countries included in the international sample together with the dates when the data starts for each country. We end up with an unbalanced panel of 29 We leave out the US from this analysis to avoid any confounding effects. While we model returns in the case of US, we 
	-
	countries.
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	by the ten year moving average of real earnings. To construct it, we build returns from total returns by subtracting the dividend yield from the total returns; then we construct the real equity index and back-out real earnings using the price-earnings ratio. 
	12
	Shiller’s CAPE is real price divided 

	We started with a sample of 41 countries but had to drop countries which did not have suffcient data to construct CAPE. 
	13

	focus on excess returns in the case of the international sample because infation and interest levels vary considerably across countries in our sample (some of the countries included are 
	emerging market countries).
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	Using the international data, we run several robustness tests. First, we replicate our main results for the UK, which is the only country in the GFD data, for which we are able to construct a data history that is comparable in length to the one we used for the US. Second, we pool all countries and estimate a common model (i.e., common model parameters) across countries. Third, we allow for country-specifc fxed effects. Fourth, we use trailing 5-year cumulative returns as proxies for valuation levels. Fifth,
	Figure 14 compares valuation levels for the US and the UK (top graph) and the US and the equal-weighted global portfolio (bottom graph). In both cases, one observes periods during which valuation levels seem to be closely related as well as periods during which they evolve rather independently from each other. Correlations are 0.64 (0.58) for the US and the UK (the US and the global portfolio) series. Another interesting pattern is that neither valuation levels in the UK nor in the global portfolio show pos
	Our main results all hold up in these robustness tests. First, the ConditionalSkew-T model is most supported by the data (i.e., shows largest log-likelihoods) outperforming the Symmetric-T and Constant-Skew-T model in terms of ftting the data, both for 12-month and 24-month future returns. 
	-

	Second, estimates of β,γ are highly signifcant and negative confrming that valuation levels and skewness are robustly negatively related. In the case of the UK and the 12-month horizon, the coeffcient estimate is -0.27 — compared to an estimate of -0.18 for the US (see Table 2) — with a t-statistic of -4.8 implying a substantially more pronounced effect of valuation levels on the shape of the return distribution. For the pooled international data, the coeffcient estimate is very similar to the one we found 
	1
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	When we allow for country-specifc fxed effects, the same coeffcient drops even further to -0.19 (with a t-statistic of -10.9). Panel A of Table 13, as an example, shows the detailed parameter estimates in this particular case. Adding then 
	-

	ically unchanged when modeling excess returns. In the case of the international sample, results are also the same qualitatively but the ft of the models deteriorates noticeable when we model returns instead of excess returns. 
	14
	Note that results for the US are bas

	The t-statistics that we report for the estimates of the pooled international sample have to be interpreted with a grain of salt, as they assume that countries are independent from each other, which is obviously not the case. 
	15

	also US Cape leads to an increase of the coeffcient associated with domestic CAPE to -0.16 with a t-statistic of -7.9. The coeffcient on US CAPE itself is small and insignifcant suggesting that US valuation levels do not add information beyond domestic CAPE.
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	5.4.5 Industry-Level Evidence 
	5.4.5 Industry-Level Evidence 
	In a similar spirit to the robustness tests using international data, we also repeat our main analysis using the 30 US industry portfolios from Ken French’s data library as the fnal robustness test. This industry-level data is available since July 1926. When we estimate our models using pooled data as well as pooled data with industry fxed effects, we confrm our earlier results at the market-level and fnd results that suggest an even more pronounced negative association between valuation levels and the skew
	Panel B of Table 13 summarizes the results when controlling for industry fxed effects. It shows that the Conditional-Skew-T model outperforms the Symmetric-T and the Constant-Skew-T models in terms of likelihood. The coeffcient of interest, β,γ, is estimated to equal -0.117, with a t-statistic of -5.5., suggesting a pronounced and statistically signifcant negative association between valuation levels and skewness even in the case of industry-based portfolios. 
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	6 Conclusion 
	6 Conclusion 
	In this paper, we document a robust link between valuation levels and the shape of the distribution of cumulative (up to 24 months) total log returns in the SP500 and in international equity indices. Our key result is that return distributions become considerably more asymmetric and negatively skewed when valuation levels are high; in contrast they tend to be symmetric, sometimes even slightly positively skewed, when valuation levels are low. These patterns are very robust across return horizons, proxies fo
	While the emphasis of the literature is usually on predicting expected rates of return (point prediction), we focus on the novel and important question of how asset prices actually revert back to these time-varying means. Our empirical results indicate that this reversion is rather smooth and gradual when valuation levels are low and potentially abrupt when valuation levels are high. 
	The dependence of the shape of the return distribution on valuation levels has several further interesting practical implications. Most importantly, it implies that 
	results to avoid overwhelming the reader with similar, and thus somewhat repetitive, results. Detailed results are available from the authors upon request. 
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	measures of risk (e.g., standard deviation, value-at-risk, expected-tail-loss), derived from symmetric distributions or distributions with constant skewness, are underestimated when valuation levels are high and overestimated when valuation levels are low relative to a model with conditional skewness. This indicates a lose-lose situation for risk managers and asset managers relying on these risk measures. Importantly, magnitudes of these deviations are sizable. 
	-
	-

	Another noteworthy result of our empirical analysis is that we fnd the mode of the return distribution to be consistently positive and essentially unaffected by valuation levels. This implies that even when valuation levels are extremely high, the most likely return over the next 12 to 24 months remains positive refecting the well-known diffculty of predicting turning points and market downturns. Overall, our empirical evidence on how valuations affect the asymmetry of the predictive distribution of returns
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	Appendix A Skewness in Cumulative Returns versus Skewness in Daily Returns 
	Appendix A Skewness in Cumulative Returns versus Skewness in Daily Returns 
	-

	The approach taken in our paper is to model the asymmetry (or skewness) in the distribution of cumulative log returns directly. A more common approach is to build rolling measures of skewness using one or two quarters of daily data. We now show that the connection between the two measures of skewness may be weak or even non-existent, and argue that the better approach is to measure skewness in cumulative returns at the horizon of interest. 
	Chen, Hong, and Stein (2001) build in-sample measures of skewness in a cross section of daily returns (six-months periods), and then regress these on trading volume, recent returns, and valuation ratios. The skew at time t is estimated from the last six months of daily returns as 
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	Brunnermeier, Nagel and Pedersen (2009) compute a similar measure for currencies, and regress it on interest rate differentials. Both papers fnd some relation between this measure of skewness and explanatory variables. However, we see two shortcomings of this approach. The frst problem is that this estimate of the the Pearson’s moment skewness has (at best) a very high variance for fnancial market returns, which are strongly leptokurtic. The second problem is that the distribution of cumulative returns one 
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	To illustrate, let’s consider a plain-vanilla stochastic volatility model with leverage, 
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	εt ∼ N(0,1), ut ∼ N(0,1), 
	where ρ < 0 implies a leverage effect. By setting ρ appropriately it is possible to obtain strongly skewed distribution of cumulative returns (see Figure A1 for an example with an horizon of h = 60), yet the distribution of daily returns is leptokurtik 
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	but always symmetric, and a measure of skew built as ∑r/(∑r)has an expected value of zero (with high variance). 
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	Figure A.1: Skewness of daily returns versus 60-day cumulative returns The fgure shows the distributions of daily log returns and 60-day cumulative returns generated from a simple stochastic volatility model. 
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	Figure
	Figure 1: Market-to-book and Cyclically-Adjusted-Price-Earnings (CAPE) Ratios 
	The fgure shows the standardized — mean equal to zero, standard deviation equal to 1 — log market-to-book (dashed line) and log cyclically-adjusted-price-earnings ratio (solid line). 
	Figure
	Table 1: Summary Statistics This table provides summary statistics — means, standard deviations and skewness (the normalized third moment) — of 12-month and 24-month total equity returns. All variables are in logs. In addition to unconditional estimates, we also report those statistics conditional on valuation quartiles. We further report those statistics separately for the pre-1945 and post-1945 periods. Means and standard deviations are reported in percentage terms. 
	Panel A: 12-month returns 
	Full Sample Pre-1945 Post-1945 
	Mean (%) Std. Dev. (%) Skew. Mean (%) Std. Dev. (%) Skew. Mean (%) Std. Dev. (%) Skew. 
	All Returns 8.67 18.75 -0.83 6.34 21.65 -0.66 10.40 15.65 -0.82 
	1st Valuation Quartile 16.21 16.85 0.30 16.80 20.65 0.35 15.47 13.03 -0.15 2nd & 3rd Valuation Quartile 7.30 18.21 -1.25 5.05 18.86 -1.56 10.46 14.59 -0.56 4th Valuation Quartile 3.88 19.43 -0.95 -1.47 23.85 -0.50 5.24 18.29 -1.02 
	Panel B: 24-month returns 
	Full Sample Pre-1945 Post-1945 
	Mean (%) Std. Dev. (%) Skew. Mean (%) Std. Dev. (%) Skew. Mean (%) Std. Dev. (%) Skew. 
	All Returns 17.33 26.28 -1.13 12.31 29.95 -1.09 20.92 21.89 -0.74 
	1st Valuation Quartile 31.70 18.60 -0.13 30.93 21.42 -0.03 30.86 17.29 0.13 2nd & 3rd Valuation Quartile 15.17 22.58 -0.37 12.27 22.52 0.23 21.61 17.76 -0.69 4th Valuation Quartile 7.30 32.90 -1.41 -6.15 37.88 -1.26 9.66 27.64 -0.38 
	Table 2: Model Parameters when Predicting 12-month Returns This table provides parameter estimates of three different models — the Symmetric-T Model, the Constant-Skew-T Model and the Conditional-Skew-T Model — when 12-month returns are used as dependent variable. All variables are in logs. The table reports mean parameter estimates and corresponding t-values. 
	Panel A: Full Sample 
	Panel A: Full Sample 
	Panel A: Full Sample 

	TR
	SymmMean 
	etric-T t-stat 
	ConstanMean 
	t-Skew-T t-stat 
	ConditioMean 
	nal-Skew-T t-stat 

	β0,m 
	β0,m 
	9.686 
	8.707 
	16.825 
	7.122 
	16.233 
	6.480 

	β1,m 
	β1,m 
	-4.226 
	-3.721 
	-4.185 
	-4.007 

	β0,σ 
	β0,σ 
	2.724 
	38.296 
	2.668 
	34.686 
	2.680 
	35.343 

	β0,v 
	β0,v 
	2.025 
	4.666 
	2.163 
	4.384 
	2.407 
	4.058 

	β0,γ 
	β0,γ 
	-0.316 
	-3.195 
	-0.297 
	-2.900 

	β1,γ 
	β1,γ 
	-0.175 
	-4.254 

	Log-Likeli. 
	Log-Likeli. 
	-6790.7 
	-6756.7 
	-6752.6 


	Panel B: Pre-1945 
	Table
	TR
	SymmMean 
	etric-T t-stat 
	ConstanMean 
	t-Skew-T t-stat 
	ConditioMean 
	nal-Skew-T t-stat 

	β0,m 
	β0,m 
	7.081 
	3.795 
	11.356 
	2.708 
	10.256 
	2.180 

	β1,m 
	β1,m 
	-6.029 
	-3.117 
	-6.081 
	-3.159 

	β0,σ 
	β0,σ 
	2.849 
	25.523 
	2.846 
	26.119 
	2.853 
	27.924 

	β0,v 
	β0,v 
	2.062 
	3.059 
	2.229 
	2.981 
	2.476 
	3.122 

	β0,γ 
	β0,γ 
	-0.160 
	-1.124 
	-0.124 
	-0.790 

	β1,γ 
	β1,γ 
	-0.197 
	-3.345 

	Log-Likeli. 
	Log-Likeli. 
	-3230.6 
	-3227.5 
	-3225.8 

	Panel C: Post-1945 
	Panel C: Post-1945 


	Table
	TR
	SymmMean 
	etric-T t-stat 
	ConstanMean 
	t-Skew-T t-stat 
	ConditioMean 
	nal-Skew-T t-stat 

	β0,m 
	β0,m 
	11.081 
	8.078 
	19.543 
	6.452 
	18.420 
	6.344 

	β1,m 
	β1,m 
	-4.083 
	-3.007 
	-3.903 
	-3.343 

	β0,σ 
	β0,σ 
	2.617 
	27.417 
	2.506 
	23.661 
	2.516 
	25.639 

	β0,v 
	β0,v 
	2.649 
	3.216 
	2.984 
	3.493 
	3.048 
	3.576 

	β0,γ 
	β0,γ 
	-0.433 
	-2.833 
	-0.378 
	-2.632 

	β1,γ 
	β1,γ 
	-0.190 
	-3.368 

	Log-Likeli. 
	Log-Likeli. 
	-3357.4 
	-3328.3 
	-3326.8 


	Table 3: Model Parameters when Predicting 24-month Returns This table provides parameter estimates of three different models — the Symmetric-T Model, the Constant-Skew-T Model and the Conditional-Skew-T Model — when 24-month returns are used as dependent variable. All variables are in logs. The table reports mean parameter estimates and corresponding t-values. 
	Panel A: Full sample 
	Panel A: Full sample 
	Panel A: Full sample 

	TR
	SymmMean 
	etric-T t-stat 
	ConstanMean 
	t-Skew-T t-stat 
	ConditioMean 
	nal-Skew-T t-stat 

	β0,m 
	β0,m 
	18.395 
	8.874 
	25.350 
	5.328 
	27.230 
	5.756 

	β1,m 
	β1,m 
	-8.623 
	-4.030 
	-8.032 
	-3.765 

	β0,σ 
	β0,σ 
	3.020 
	29.884 
	3.006 
	29.644 
	2.994 
	31.445 

	β0,v 
	β0,v 
	2.059 
	3.307 
	2.281 
	3.154 
	2.658 
	3.276 

	β0,γ 
	β0,γ 
	-0.219 
	-1.583 
	-0.263 
	-1.895 

	β1,γ 
	β1,γ 
	-0.240 
	-4.191 

	Log-Likeli. 
	Log-Likeli. 
	-7201.8 
	-7188.8 
	-7174.5 


	Panel B: Pre-1945 
	Table
	TR
	SymmeMean 
	tric-T t-stat 
	ConstantMean 
	-Skew-T t-stat 
	ConditioMean 
	nal-Skew-T t-stat 

	β0,m 
	β0,m 
	13.137 
	3.796 
	16.208 
	1.920 
	18.675 
	2.072 

	β1,m 
	β1,m 
	-11.276 
	-3.142 
	-11.080 
	-3.004 

	β0,σ 
	β0,σ 
	3.116 
	20.491 
	3.098 
	20.313 
	3.094 
	22.220 

	β0,v 
	β0,v 
	2.081 
	2.502 
	2.121 
	2.373 
	2.602 
	2.751 

	β0,γ 
	β0,γ 
	-0.079 
	-0.359 
	-0.133 
	-0.565 

	β1,γ 
	β1,γ 
	-0.299 
	-3.314 

	Log-Likeli. 
	Log-Likeli. 
	-3366.8 
	-3366.5 
	-3362.2 

	Panel C: Post-1945 
	Panel C: Post-1945 


	Table
	TR
	SymmMean 
	etric-T t-stat 
	ConstanMean 
	t-Skew-T t-stat 
	ConditioMean 
	nal-Skew-T t-stat 

	β0,m 
	β0,m 
	21.364 
	8.603 
	24.906 
	4.482 
	28.090 
	4.707 

	β1,m 
	β1,m 
	-8.369 
	-3.210 
	-7.927 
	-2.932 

	β0,σ 
	β0,σ 
	2.907 
	21.366 
	2.892 
	22.477 
	2.851 
	22.012 

	β0,v 
	β0,v 
	2.694 
	2.662 
	2.728 
	2.767 
	2.966 
	2.994 

	β0,γ 
	β0,γ 
	-0.129 
	-0.719 
	-0.209 
	-1.025 

	β1,γ 
	β1,γ 
	-0.255 
	-3.247 

	Log-Likeli. 
	Log-Likeli. 
	-3540.5 
	-3536.9 
	-3524.3 


	Table 4: Predictive Distributions (Full Sample) This table provides means, standard deviations (SD), the normalized third moment (skewness, SKEW), the probability mass below the mode (asymmetry, ASY), the 1% Value-at-Risk and the 1% Expected Tail Loss of predictive distributions of 12-month and 24-month total equity returns implied by our models. Parameter estimates are based on the full sample. All variables are in logs. All values reported are in percentage terms except for skewness. Specifcally, we repor
	Panel A: Symmetric-T Model 
	12-Month Returns 24-Month Returns 
	Mean SD SKEW ASY 1%-VaR 1%-ETL Mean SD SKEW ASY 1%-VaR 1%-ETL 
	Low valuation 18.13 18.31 0.00 50.00 -28.26 -40.76 35.46 25.01 0.00 50.00 -28.30 -46.68 High valuation 1.28 18.31 0.00 50.00 -45.09 -57.22 1.23 25.01 0.00 50.00 -62.53 -80.02 
	Panel B: Constant-Skew-T Model 
	12-Month Returns 24-Month Returns 
	Mean SD SKEW ASY 1%-VaR 1%-ETL Mean SD SKEW ASY 1%-VaR 1%-ETL 
	Low valuation 17.06 18.43 -0.75 65.29 -36.83 -51.83 33.57 25.32 -0.56 60.78 -37.59 -58.27 High valuation 0.29 18.43 -0.75 65.29 -53.35 -67.74 1.40 25.32 -0.56 60.78 -69.21 -88.69 
	Panel C: Conditional-Skew-T Model 
	12-Month Returns 24-Month Returns 
	Mean SD SKEW ASY 1%-VaR 1%-ETL Mean SD SKEW ASY 1%-VaR 1%-ETL 
	Low valuation 17.47 16.60 0.00 47.35 -23.04 -32.74 34.14 22.74 0.16 39.32 -17.47 -28.99 High valuation -1.13 21.68 -0.97 78.48 -70.76 -86.44 -0.64 32.09 -1.05 81.55 -103.37 -125.70 
	Table 5: Predictive Distributions (Pre-1945) This table provides means, standard deviations (SD), the normalized third moment (skewness, SKEW), the probability mass below the mode (asymmetry, ASY), the 1% Value-at-Risk and the 1% Expected Tail Loss of predictive distributions of 12-month and 24-month total equity returns implied by our models. Parameter estimates are based on the pre-1945 sample. All variables are in logs. All values reported are in percentage terms except for skewness. Specifcally, we repo
	Panel A: Symmetric-T Model 
	12-Month Returns 24-Month Returns 
	Mean SD SKEW ASY 1%-VaR 1%-ETL Mean SD SKEW ASY 1%-VaR 1%-ETL 
	Low valuation 19.12 21.29 0.00 50.00 -35.08 -50.32 35.54 28.80 0.00 50.00 -38.96 -62.25 High valuation -4.98 21.29 0.00 50.00 -59.10 -73.12 -9.63 28.80 0.00 50.00 -83.97 -104.37 
	Panel B: Constant-Skew-T Model 
	12-Month Returns 24-Month Returns 
	Mean SD SKEW ASY 1%-VaR 1%-ETL Mean SD SKEW ASY 1%-VaR 1%-ETL 
	Low valuation 18.46 21.48 -0.37 57.93 -40.66 -57.22 34.58 29.40 -0.31 53.94 -45.32 -69.26 High valuation -5.51 21.48 -0.37 57.93 -64.24 -79.22 -9.20 29.40 -0.31 53.94 -88.53 -109.58 
	Panel C: Conditional-Skew-T Model 
	12-Month Returns 24-Month Returns 
	Mean SD SKEW ASY 1%-VaR 1%-ETL Mean SD SKEW ASY 1%-VaR 1%-ETL 
	Low valuation 18.34 21.33 0.46 36.82 -27.65 -38.50 36.76 30.65 0.66 28.29 -22.38 -35.88 High valuation -5.93 24.18 -0.83 73.81 -81.73 -97.47 -11.82 36.89 -1.06 81.18 -130.87 -150.72 
	Table 6: Predictive Distributions (Post-1945) This table provides means, standard deviations (SD), the normalized third moment (skewness, SKEW), the probability mass below the mode (asymmetry, ASY), the 1% Value-at-Risk and the 1% Expected Tail Loss of predictive distributions of 12month and 24-month total equity returns implied by our models. Parameter estimates are based on the post-1945 sample. All variables are in logs. All values reported are in percentage terms except for skewness. Specifcally, we rep
	-

	Panel A: Symmetric-T Model 
	12-Month Returns 24-Month Returns 
	Mean SD SKEW ASY 1%-VaR 1%-ETL Mean SD SKEW ASY 1%-VaR 1%-ETL 
	Low valuation 19.27 15.52 0.00 50.00 -19.05 -27.62 38.13 21.39 0.00 50.00 -15.11 -27.54 High valuation 2.90 15.52 0.00 50.00 -35.45 -43.23 4.54 21.39 0.00 50.00 -48.35 -57.92 
	Panel B: Constant-Skew-T Model 
	12-Month Returns 24-Month Returns 
	Mean SD SKEW ASY 1%-VaR 1%-ETL Mean SD SKEW ASY 1%-VaR 1%-ETL 
	Low valuation 18.22 15.62 -0.71 70.39 -26.74 -36.66 36.61 21.76 -0.28 56.41 -22.05 -35.87 High valuation 2.58 15.62 -0.71 70.39 -41.85 -50.40 5.23 21.76 -0.28 56.41 -51.43 -61.31 
	Panel C: Conditional-Skew-T Model 
	12-Month Returns 24-Month Returns 
	Mean SD SKEW ASY 1%-VaR 1%-ETL Mean SD SKEW ASY 1%-VaR 1%-ETL 
	Low valuation 18.22 13.44 -0.19 49.90 -15.69 -23.19 37.08 21.41 0.44 35.39 -8.14 -18.11 High valuation 1.93 18.11 -0.72 81.99 -55.14 -62.05 5.91 25.86 -0.75 80.81 -68.11 -74.42 
	Table 7: Robustness Test: Non-overlapping Data This table provides parameter estimates of three different models — the Symmetric-T Model, the Constant-Skew-T Model and the Conditional-Skew-T Model — when 12-month (Panel A) or 24-month (Panel B) non-overlapping returns are used as dependent variables. The results are based on returns from January to January. All variables are in logs. The table reports mean parameter estimates and corresponding t-values. 
	-
	-
	-

	Panel A: 12-Month Returns 
	Panel A: 12-Month Returns 
	Panel A: 12-Month Returns 

	TR
	SymmMean 
	etric-T t-stat 
	ConstanMean 
	t-Skew-T t-stat 
	ConditMean 
	ional-Skew-T t-stat 

	β0,m 
	β0,m 
	9.332 
	6.416 
	17.697 
	5.143 
	18.172 
	5.399 

	β1,m 
	β1,m 
	-3.994 
	-2.820 
	-3.761 
	-2.778 

	β0,σ 
	β0,σ 
	2.727 
	30.045 
	2.659 
	28.523 
	2.639 
	27.470 

	β0,v 
	β0,v 
	2.638 
	3.250 
	3.096 
	3.658 
	3.132 
	3.758 

	β0,γ 
	β0,γ 
	-0.374 
	-2.527 
	-0.400 
	-2.702 

	β1,γ 
	β1,γ 
	-0.163 
	-2.823 

	Log-Likeli. 
	Log-Likeli. 
	-575.2 
	-571.5 
	-571.4 


	Panel B: 24-Month Returns 
	Table
	TR
	SymmMean 
	etric-T t-stat 
	ConstanMean 
	t-Skew-T t-stat 
	ConditMean 
	ional-Skew-T t-stat 

	β0,m 
	β0,m 
	17.932 
	5.838 
	26.055 
	4.418 
	27.795 
	4.467 

	β1,m 
	β1,m 
	-8.906 
	-2.846 
	-7.196 
	-2.520 

	β0,σ 
	β0,σ 
	3.119 
	26.152 
	3.053 
	23.033 
	3.024 
	23.195 

	β0,v 
	β0,v 
	2.743 
	3.085 
	2.694 
	2.964 
	2.812 
	3.123 

	β0,γ 
	β0,γ 
	-0.254 
	-1.512 
	-0.287 
	-1.616 

	β1,γ 
	β1,γ 
	-0.231 
	-2.751 

	Log-Likeli. 
	Log-Likeli. 
	-308.5 
	-307.147 
	-306.9 


	Table 8: Robustness Test: Model Parameters when using Alternative Valuation Ratios 
	-

	This table provides parameter estimates of the Conditional-Skew-T Model when 12-month returns and 24-month returns are used as dependent variable. We consider three alternative valuation ratios: (i) the market-to-book ratio, (ii) the margin-adjusted CAPE, and (iii) the past 5-years of returns. All variables are in logs. All results summarized in the table are based on the full sample of data. The table reports mean parameter estimates and corresponding t-values. 
	-

	Panel A: 12-Month Returns 
	Panel A: 12-Month Returns 
	Panel A: 12-Month Returns 

	Market-to-Book Mean t-stat 
	Market-to-Book Mean t-stat 
	Margin-adjusted CAPE Mean t-stat 
	Past 5-Year Return Mean t-stat 

	β0,m β0,σ β0,v β0,γ β1,γ 
	β0,m β0,σ β0,v β0,γ β1,γ 
	19.602 2.639 1.924 -0.376 -0.166 
	7.177 26.396 3.732 -3.134 -3.111 
	18.282 2.643 2.533 -0.391 -0.267 
	7.292 27.202 3.346 -3.491 -4.826 
	17.753 2.686 2.595 -0.351 -0.142 
	6.779 36.323 4.143 -3.223 -3.697 

	Panel B: 24-Month Returns 
	Panel B: 24-Month Returns 


	Market-to-Book 
	Market-to-Book 
	Market-to-Book 
	Margin-adjusted CAPE 
	Past 5-Year Return 

	Mean 
	Mean 
	t-stat 
	Mean 
	t-stat 
	Mean 
	t-stat 

	β0,m 
	β0,m 
	34.757 
	5.880 
	32.064 
	5.879 
	27.826 
	5.485 

	β0,σ 
	β0,σ 
	2.999 
	22.768 
	2.933 
	23.015 
	3.022 
	31.221 

	β0,v 
	β0,v 
	2.362 
	2.691 
	2.883 
	2.897 
	2.602 
	3.190 

	β0,γ 
	β0,γ 
	-0.393 
	-2.207 
	-0.398 
	-2.251 
	-0.274 
	-1.885 

	β1,γ 
	β1,γ 
	-0.208 
	-2.857 
	-0.313 
	-4.362 
	-0.170 
	-2.965 


	Table 9: Robustness Test: Predictive Distributions using Alternative Valuation Ratios as Predictive Variable (Full Sample)
	This table provides means, standard deviations (SD), the normalized third moment (skewness, SKEW), the probability mass below the mode (asymmetry, ASY), the 1% Value-at-Risk and the 1% Expected Tail Loss of predictive distributions of 12month and 24-month total equity returns implied by the Conditional-Skew-T Model using three alternative valuation ratios (the market-to-book ratio, the margin-adjusted CAPE, and the past 5-year return) as predictive variable. Parameter estimates are based on the full sample.
	-

	Panel A: Market-to-Book Ratio 
	12-Month Returns 24-Month Returns 
	Mean SD SKEW ASY 1%-VaR 1%-ETL Mean SD SKEW ASY 1%-VaR 1%-ETL 
	Low valuation 18.51 17.77 -0.17 52.20 -28.75 -43.18 34.32 23.13 -0.48 48.85 -27.95 -46.29 High valuation 0.12 24.07 -1.25 80.47 -79.47 -96.50 3.04 35.61 -1.11 83.45 -110.67 -127.72 
	Panel B: Margin-adjusted CAPE 
	12-Month Returns 24-Month Returns 
	Mean SD SKEW ASY 1%-VaR 1%-ETL Mean SD SKEW ASY 1%-VaR 1%-ETL 
	Low valuation 21.75 16.36 0.19 42.90 -16.03 -25.16 37.45 20.07 -0.16 38.79 -10.68 -22.76 High valuation -10.35 28.30 -1.14 86.41 -100.37 -114.41 -11.74 41.69 -1.14 88.57 -144.35 -163.36 
	Panel C: Past 5-Year Return 
	12-Month Returns 24-Month Returns 
	Mean SD SKEW ASY 1%-VaR 1%-ETL Mean SD SKEW ASY 1%-VaR 1%-ETL 
	Low valuation 3.21 20.34 -0.99 53.34 -58.16 -73.04 8.80 28.40 -1.01 45.36 -77.42 -99.70 High valuation -0.69 22.43 -1.08 78.07 -70.17 -86.12 2.29 32.01 -1.13 76.39 -98.58 -122.24 
	Table 10: Robustness Test: Model with Predictability in Dispersion This table provides parameter estimates of a model that allows for a link between return dispersion and valuation levels. We call that model the Conditional-Skew-T-Vola Model. All variables are in logs. Details on the estimation of these parameters are available from the authors upon request. The table reports mean parameter estimates and corresponding t-values. 
	Panel A: 12-Month Returns 
	Panel A: 12-Month Returns 
	Panel A: 12-Month Returns 

	Full Sample 
	Full Sample 
	Pre-1945 
	Post-1945 

	Mean 
	Mean 
	t-stat 
	Mean 
	t-stat 
	Mean 
	t-stat 


	β0,m 
	β0,m 
	β0,m 
	16.983 
	6.537 
	10.472 
	2.029 
	18.501 
	6.034 

	β0,σ 
	β0,σ 
	2.669 
	34.104 
	2.854 
	28.374 
	2.514 
	24.159 

	β1,σ 
	β1,σ 
	-0.053 
	-0.965 
	-0.013 
	-0.175 
	-0.016 
	-0.221 

	β0,v 
	β0,v 
	2.384 
	3.988 
	2.416 
	3.153 
	3.004 
	3.456 

	β0,γ 
	β0,γ 
	-0.332 
	-3.051 
	-0.135 
	-0.780 
	-0.383 
	-2.474 

	β1,γ 
	β1,γ 
	-0.188 
	-4.244 
	-0.203 
	-3.329 
	-0.197 
	-3.405 

	Log-Likeli. 
	Log-Likeli. 
	-6749.7 
	-3225.8 
	-3326.8 

	Panel B: 24-Month Returns 
	Panel B: 24-Month Returns 


	Full Sample Pre-1945 Post-1945 
	Mean t-stat Mean t-stat Mean t-stat 
	β0,m 
	β0,m 
	β0,m 
	25.729 
	5.550 
	14.529 
	1.451 
	25.052 
	4.129 

	β0,σ 
	β0,σ 
	3.005 
	31.000 
	3.076 
	20.140 
	2.856 
	23.043 

	β1,σ 
	β1,σ 
	0.080 
	1.064 
	0.108 
	0.844 
	0.152 
	1.420 

	β0,v 
	β0,v 
	2.618 
	3.171 
	2.372 
	2.574 
	2.893 
	3.054 

	β0,γ 
	β0,γ 
	-0.211 
	-1.568 
	-0.007 
	-0.024 
	-0.087 
	-0.418 

	β1,γ 
	β1,γ 
	-0.233 
	-4.057 
	-0.302 
	-2.890 
	-0.261 
	-3.055 

	Log-Likeli. 
	Log-Likeli. 
	-7166.2 
	-3359.3 
	-3509.5 


	Table 11: Robustness Test: Predictive Distributions implied by the Conditional-Skew-T-Vola Model This table provides means, standard deviations (SD), the normalized third moment (skewness, SKEW), the probability mass below the mode (asymmetry, ASY), the 1% Value-at-Risk and the 1% Expected Tail Loss of predictive distributions of 12-month and 24-month total equity returns implied by our models. Parameter estimates are based on the full sample. All variables are in logs. All values reported are in percentage
	12-Month Returns 24-Month Returns 
	Mean SD SKEW ASY 1%-VaR 1%-ETL Mean SD SKEW ASY 1%-VaR 1%-ETL 
	Low valuation 18.23 18.65 0.03 47.80 -27.59 -39.05 32.48 19.82 0.15 37.52 -12.40 -23.20 High valuation -1.80 21.82 -1.27 80.47 -71.84 -89.79 -8.62 40.38 -1.14 79.48 -138.06 -162.45 
	Table 12: Robustness Test: Sample of international countries This table lists all countries included in our international sample including the start date of the observations, the end date and the number of months using in the estimation. 
	-

	Country Start Date End Date Months 
	aus 197906 201103 382 aut 199109 201103 235 bel 197906 201103 382 bra 199801 200401 69 can 196512 201103 544 che 197906 201103 382 dnk 198001 201103 375 esp 198911 201103 257 gbr 193711 201103 881 ger 197906 201103 382 grc 198701 201103 291 hkg 198212 201103 340 ind 199801 201103 159 isr 200905 201103 23 jap 196512 201103 544 kor 198402 201103 326 mys 198212 201103 340 nld 197907 201103 381 nor 198001 200009 249 nzl 199712 201103 160 pak 199801 200709 117 phl 199201 201103 231 rsa 197002 201103 494 sgp 1982
	Table 13: Robustness Test: Model Parameters for an International Sample and Industry-Level Portfolios in the US 
	This table provides parameter estimates of three different models — the Symmetric-T Model, the Constant-Skew-T Model and the Conditional-Skew-T Model — for a sample of international stock market indices (Panel A) and a sample of industry-level portfolios in the US (Panel B). Overlapping 12-month returns are used as dependent variables (excess returns in the case of the international data). All variables are in logs. The table reports mean parameter estimates and corresponding t-values. 
	-

	Panel A: International Sample 
	Panel A: International Sample 
	Panel A: International Sample 

	TR
	SymmMean 
	etric-T t-stat 
	ConstanMean 
	t-Skew-T t-stat 
	CondiMean 
	tional-Skew-T t-stat 

	β0,m 
	β0,m 
	0.742 
	1.097 
	6.751 
	4.494 
	6.897 
	5.119 

	β1,m 
	β1,m 
	-6.751 
	-10.986 
	-6.606 
	-9.764 

	β0,σ 
	β0,σ 
	3.086 
	107.694 
	3.058 
	90.631 
	3.031 
	95.162 

	β0,v 
	β0,v 
	2.067 
	11.613 
	2.054 
	11.394 
	2.034 
	10.869 

	β0,γ 
	β0,γ 
	-0.180 
	-4.302 
	-0.187 
	-4.880 

	β1,γ 
	β1,γ 
	-0.194 
	-10.869 

	Log-Likeli. 
	Log-Likeli. 
	-40982 
	-40914 
	-40853 


	Panel B: Industry-Level Analysis 
	Table
	TR
	SymmMean 
	etric-T t-stat 
	ConstanMean 
	t-Skew-T t-stat 
	ConditMean 
	ional-Skew-T t-stat 

	β0,m 
	β0,m 
	11.262 
	14.343 
	17.108 
	11.132 
	16.561 
	10.878 

	β1,m 
	β1,m 
	-3.358 
	-4.502 
	-3.665 
	-5.117 

	β0,σ 
	β0,σ 
	2.906 
	62.453 
	2.890 
	61.090 
	2.882 
	61.291 

	β0,v 
	β0,v 
	1.332 
	8.770 
	1.404 
	8.479 
	1.396 
	8.537 

	β0,γ 
	β0,γ 
	-0.218 
	-4.298 
	-0.206 
	-4.032 

	β1,γ 
	β1,γ 
	-0.117 
	-5.487 

	Log-Likeli. 
	Log-Likeli. 
	-23515 
	-23453 
	-23444 


	Figure 2: Histograms of Realized 12-month Returns The fgure shows four histograms of realized 12-month returns. All returns are in logs. The left graph in the top row shows the full sample unconditional distribution of realized 12-month returns. The remaining graphs show, in clock-wise direction, the full sample distributions conditional on being in the (i) lowest valuation quartile, (ii) the top valuation quartile, and (iii) the two middle valuation quartiles. 
	-

	Figure
	Figure 3: Histograms of Realized 24-month Returns The fgure shows four histograms of realized 24-month returns. All returns are in logs. The left graph in the top row shows the full sample unconditional distribution of realized 24-month returns. The remaining graphs show, in clock-wise direction, the full sample distributions conditional on being in the (i) lowest valuation quartile, (ii) the top valuation quartile, and (iii) the two middle valuation quartiles. 
	-

	Figure
	Figure 4: Term-Structure of Skewness The fgure shows the term-structure of skewness for cumulative returns up to 35 months. The skewness measure is the Arnold and Groeneveld measure of skewness (see Arnold and Groeneveld (2010)) from skew-t distributions calibrated to the empirical data. The graph shows results for the full unconditional sample as well as for samples conditional on being in the bottom or the top valuation quartile. 
	Figure
	Figure 5: Model-implied Conditional 12-month Return Distribution The fgure shows the model-implied return distributions of 12-month returns for low (two standard deviations below the mean) and high (two standard deviations above the mean) valuation levels. All returns are in logs. The parameters governing the distributions are summarized in Table 2. 
	Figure
	Figure 6: Model-implied Conditional 24-month Return Distribution The fgure shows the model-implied return distributions of 24-month returns for low (two standard deviations below the mean) and high (two standard deviations above the mean) valuation levels. All returns are in logs. The parameters governing the distributions are summarized in Table 3. 
	Figure
	Figure 7: Sub-sample Results: Model-implied Conditional 12-month Return Distribution 
	The fgure shows the model-implied return distributions of 12-month returns for low (two standard deviations below the mean) and high (two standard deviations above the mean) valuation levels separately for the pre-1945 and the post-1945 sample periods. All returns are in logs. The parameters governing the distributions are summarized in Table 2. 
	Figure
	Panel A. Pre-1945 
	Panel A. Pre-1945 


	Panel B. Post-1945 
	Figure
	Figure 8: Sub-sample results: model-implied, conditional 24-month return distribution 
	-

	The fgure shows the model-implied return distributions of 24-month returns for low (two standard deviations below the mean) and high (two standard deviations above the mean) valuation levels separately for the pre-1945 and the post-1945 sample periods. All returns are in logs. The parameters governing the distributions are summarized in Table 3. 
	Figure
	Panel A. Pre-1945 
	Panel A. Pre-1945 


	Panel B. Post-1945 
	Figure
	Figure 9: Recursive Estimates of Core Model Parameters The fgure shows recursive estimates of β,γ (labeled b4(1) in the fgure) and β,γ (labelled b4(2) in the fgure) together with +2 standard deviation and -2 standard deviation bands for the Conditional-Skew-T model. The model is reestimated monthly using an expanding window. The period 1881 to 1945m1 is used as burn-in phase. 
	0
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	Figure
	Figure
	Figure 10: Monthly Predictions of 12-Month Expected Returns The fgure shows monthly predictions of 12-month returns using the ConditionalSkew-T Model over time. While the model is estimated using log-returns, the graph shows predicted simple returns. 
	Figure 10: Monthly Predictions of 12-Month Expected Returns The fgure shows monthly predictions of 12-month returns using the ConditionalSkew-T Model over time. While the model is estimated using log-returns, the graph shows predicted simple returns. 
	-



	Figure 11: Cumulative Differences in Squared Prediction Errors The fgure shows cumulative differences in squared prediction errors. Panel A compares predictions from the Conditional-Skew-T model to predictions from the Symmetric-G model (dashed line) or from the Constant-Skew-T model (solid line). Panel B shows cumulative squared errors between the Conditional-Skew-T and the no-predictability model. 
	Figure
	Figure
	Figure 12: Cumulative Utility Gains The fgure shows cumulative utility gains. Panel A compares utility gains from the Conditional-Skew-T model to utility gains from the Symmetric-G model (dashed line) or from the Constant-Skew-T model (solid line). Panel B shows cumulative utility gains between the Conditional-Skew-T and the no-predictability model. 
	Figure 12: Cumulative Utility Gains The fgure shows cumulative utility gains. Panel A compares utility gains from the Conditional-Skew-T model to utility gains from the Symmetric-G model (dashed line) or from the Constant-Skew-T model (solid line). Panel B shows cumulative utility gains between the Conditional-Skew-T and the no-predictability model. 


	The fgure shows the standardized — mean equal to zero, standard deviation equal to 1 — margin debt and log cyclically-adjusted-price-earnings ratio. 
	Figure
	Figure 13: Margin Debt and Cyclically-Adjusted-Price-Earnings (CAPE) Ratios 
	Figure 13: Margin Debt and Cyclically-Adjusted-Price-Earnings (CAPE) Ratios 
	-



	Figure 14: Cyclically-Adjusted-Price-Earnings (CAPE) Ratios The fgure shows the CAPE for the US and the UK (top panel) and for the US and the equal-weighted global portfolio (bottom panel). 
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	Panel A. US versus UK CAPE 
	Panel A. US versus UK CAPE 


	Panel B. US versus Global Portfolio CAPE 
	Figure




