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ABSTRACT 

We study out-of-sample returns on 153 anomalies in equities documented in academic literature. 

We show that machine learning techniques that aggregate all the anomalies into one mispricing 

signal are four times more proftable than a strategy based on individual anomalies and survive 

on a liquid universe of stocks. We next study value of international evidence for selection of 

quantitative strategies that outperform out-of-sample. Past performance of quantitative strategies 

in the regions other than the US does not help to pick out-of-sample winning strategies in the US. 

Past evidence from the US, however, captures most of the predictability outside the US. 
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Low interest rates environment after the Financial Crisis of 2008 has caused a surge in search 

for alternative ways of how to earn steady returns that are uncorrelated with the stocks market. 

One response of the fnancial industry was an explosion in a number of "smart beta" funds that 

provide exposure to various risk factors, which have been historically connected to risk premia. 

This larger interest should, however, in turn lead to their lower proftability. McLean and Ponti˙ 

(2016) document the decrease of 58% in post-publication returns relative to the in-sample returns 

of anomalies. Jacobs and Müller (2017b) however show that the United States is the only country 

with a reliable post-publication decline in returns of anomalies, emphasizing the importance of 

international evidence in asset pricing. Apart from the lack of the post-publication decline in the 

international setting, Jacobs and Müller (2017a) fnd that combining anomalies into one mispricing 

signal using least squares leads to superior out-of-sample risk-adjusted returns relative to focusing 

on individual anomalies. The beneft of combining individual anomalies through predictive regres-

sions is further emphasized by Gu, Kelly, and Xiu (2018) who conclude that sophisticated machine 

learning methods o˙er higher out-of-sample predictability in the US compared to the traditional 

methods in Jacobs and Müller (2017a). This study extends the use of machine learning methods 

to international sample and fnds internationally unprecedented out-of-sample proftability using 

anomalies as predictors in machine-learning-based predictive regressions. 

In order to benchmark machine learning based strategy (mispricing strategy hereafter) we look 

at out-of-sample proftability of a portfolio-level strategy that invests in the individual published 

anomalies (portfolio-mixing strategy hereafter). Having all the constructed anomalies at our dis-

posal, we examine degree of predictability of future proftability of the individual anomalies based 

on their past proftability in various regions. We also study the value of international evidence for 

the prediction of out-of-sample stock returns in the mispricing strategy. Next, we examine limits to 

arbitrage associated with our strategies. We are the frst to extensively estimate transaction costs 

associated with strategies leveraging predictive power of anomalies internationally and document 

that strategies remain proftable even after accounting for the transaction costs as well as short-

selling constraints. Since we only include anomalies as predictors after their publication we also 

examine the marginal value of the new anomalies for the out-of-sample predictions after accounting 

for the already published anomalies and show that it remains positive over time, confrming added 

value of recent anomalies literature. 

153 published anomalies are studied in the US, Japan, Europe, and Asia Pacifc. The anomalies 

in this study describe characteristics related to individual stocks that can predict their future 

returns. No distinction is being made between characteristics that are related to risk premia and 

characteristics that are related to mispricing due to frictions or other market imperfections. The 

studied anomalies are, for example, accruals of Sloan (1996), earnings over price of Basu (1977), 
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composite equity issuance of Daniel and Titman (2006), and R&D over Market Equity of Chan, 

Lakonishok, and Sougiannis (2001). The focus in this study is restricted to a liquid universe of 

stocks. The liquid stocks are defned as the largest stocks with capitalization in the top 90% of the 

overall market’s capitalization and dollar trading volume over the previous year in the top 90% of 

the overall market’s volume in the individual regions. Only about 500 most liquid stocks pass the 

criteria in 2010s in a given month in the US. Excluding small-capitalization stocks leads to results 

more relevant to investors and limits e˙ect of microstructure noise.1 

The portfolio-mixing strategy describing average return on the individual anomalies is frst 

considered. The portfolio-mixing strategy equally invests in portfolios created based on individual 

anomalies that are signifcant in the US at 5% level.2 Hou, Xue, and Zhang (2017) show that many 

of the published anomalies disappear on liquid universe of stocks. Our stock universe is far more 

liquid relative to Hou et al. (2017). The focus on signifcant anomalies in the strategy therefore 

guarantees that the conclusions are not driven by inclusion of these irrelevant strategies, as would 

be the case for the simplest strategy taking into account all the published anomalies in Hou et al. 

(2017). The weighting in the strategy is the simplest possible and the strategy’s average returns 

can be interpreted as average return on individual anomalies that were historically signifcant. The 

average returns are expected to be positive if there is any persistence in returns on the anomalies. 

The signifcant anomalies are selected once a year, at the end of June. Only anomalies that are 

published by the time of selection are considered. Green, Hand, and Zhang (2017) documented a 

signifcant drop in performance of all anomalies in the US after 2003. A similar drop is observed 

on the portfolio-mixing strategy and it’s average annualized return drops to less than 2% after 

accounting for transaction costs. 

The strategy that synthesizes information from all the anomalies into one mispricing signal 

is studied next. The strategy frst predicts next-month returns on individual stocks from their 

past characteristics (cross-sectional quantiles of the anomalies). Investment portfolios are then 

constructed by buying stocks in top decile of the predicted returns and short-selling stocks in 

the bottom decile of the predicted returns. Historical relation between the past characteristics 

and future returns is estimated on the past data. The next month returns on individual stocks 

are predicted from the latest characteristics. The historical relationships are typically linearly 

approximated using Fama and MacBeth (1973) least squares regressions in the academic literature, 

as in Lewellen et al. (2015). Gu et al. (2018) showed that machine learning methods can signifcantly 

outperform the linear approximation in the US. The use of machine learning methods is extended 

here from the US to international markets. The least squares regressions are compared to gradient 

boosting regression trees, random forest, and neural networks. The machine learning methods lead 
1See Asparouhova, Bessembinder, and Kalcheva (2010) for description of the e˙ect of microstructure noise. 
2It is later shown that the results do not depend on the 5% signifcance level. 
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to signifcant gains in performance of the mispricing strategy in all the regions. 

Value of international evidence for the prediction of out-of-sample returns on the anomalies 

is evaluated. Hou et al. (2017) and Harvey, Liu, and Zhu (2016) showed that many anomalies 

cannot be replicated and many others are signifcant only due to the in-sample data snooping. 

New anomalies are discovered using the same historical datasets in the US, which can lead to false 

positive discoveries. International data provides new information with respect to the US and it 

could therefore limit the number of false discoveries.3 International data also increases sample size 

which in turn leads to more powerful statistical tests. One problem could be that some anomalies 

are specifc to the US as they depend on the local institutional setting. For example, accruals 

depend on country-specifc accounting rules. The institutional uniqueness then limits the value of 

data outside the US for predictions in the US. 

Past performance of the individual anomalies from the US is the strongest predictor of their 

future performance in all the regions. There is also some evidence that past performance of the 

individual anomalies outside the US helps to predict their future performance in the respective 

regions but not elsewhere after accounting for the past performance in the US. Similar conclusions 

are also valid for the mispricing strategy. There is only a little gain in performance of the mispricing 

strategy in the US when the strategy’s estimation sample is extended from the US stocks to 

international stocks. The proftability of the mispricing strategy in the other regions, however, 

improves when the estimation sample is extended from the US stocks to stocks in the respective 

regions. Mispricing of stocks estimated on historical data in the US captures most of predictability 

of stock returns outside the US.4 

Marginal value of new anomalies for out-of-sample predictions after accounting for the already 

published anomalies is evaluated. Most of the widely accepted risk factors have been published 

before 1995. Examples include size and book-to-market ratio in Fama and French (1992) and 

momentum of Jegadeesh and Titman (1993). The new discoveries should therefore have lower 

marginal explanatory power over time as the strongest predictors of stock returns have been al-

ready revealed. It is also possible that the vetting procedure that authors have to undergo during 

the publishing process limits these decreasing returns to the new discoveries. The value of recent 

anomalies is examined by comparing out-of-sample returns of the mispricing strategy that synthe-

sizes anomalies published either before 1995, 2000, or 2005. There is a gradual increase in mean 
3Note that many anomalies have been individually studied in the international markets. For examples of studies 

investigating cross-sectional predictability of individual signals outside the US see Chui, Titman, and Wei (2010), 
Barber, De George, Lehavy, and Trueman (2013), McLean, Ponti˙, and Watanabe (2009), Rouwenhorst (1998), Lam 
and Wei (2011), Titman, Wei, and Xie (2013), and Watanabe, Xu, Yao, and Yu (2013). The goal here is not the 
study of performance of the anomalies outside of the US but rather the use of international historical performance 
of the anomalies to better select anomalies that are likely to outperform in the future. 

4The role of international evidence for the mispricing signal is broadly related to variety of factor structures 
outside the US. The international evidence is likely to add little value if there is no proximity of factor structures 
across the regions. For examples of papers investigating factor structure of international returns see Fama and 
French (2012), Fama and French (2017), Rouwenhorst (1999), Griÿn (2002), Griÿn, Kelly, and Nardari (2010), 
Hou, Karolyi, and Kho (2011), and Bartram and Grinblatt (2018). 
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returns and Sharpe ratio on the mispricing strategy over 2005 to 2016 period, when the more 

recently published anomalies are added. Investors can therefore beneft from following the recent 

academic anomalies research. 

Limits to arbitrage could explain the strategies’ proftability and it might not be possible to 

invest into the mispriced stocks. Several robustness checks are therefore conducted. The returns 

on the long-short portfolios are decomposed into long-only and short-only components. It is often 

impossible to short-sell certain stocks due to insuÿcient supply of borrowable shares. Both the 

long-only and short-only legs of the mispricing strategy, however, o˙er an investment opportunity 

with respect to returns on the market. Short-selling constraints cannot therefore fully explain 

the proftability. Transaction costs on the investment strategies are studied next. It is concluded 

that both the portfolio-mixing strategy and the mispricing strategy remain proftable after the 

transaction costs.5 

The focus of this study is the closest to Jacobs and Müller (2017c) and Jacobs and Müller 

(2017a) who analyzed returns on anomalies outside the US. This study is, however, di˙erent in 

many aspects. Firstly, it focuses on liquid universe of stocks which should make the results more 

relevant to any investor. Secondly, the role of international evidence in the strategies is investigated. 

Jacobs and Müller (2017c) and Jacobs and Müller (2017a) focused solely on strategies that were 

using data in the respective regions without evaluating the possible benefts of using the global data 

to predict future returns. Thirdly, the prediction methods di˙er. The introduction of advanced 

machine learning techniques signifcantly improves the out-of-sample ft of the predictions in this 

study. 

The study is the closest in methodology and application of machine learning techniques to Gu 

et al. (2018) who, however, focused solely on the US. Gu et al. (2018) in other respect, di˙er 

from this study with their focus on full universe of stocks, which has profound e˙ects on their 

conclusions. The most important anomalies in their estimation are liquidity, size, and return over 

the past month (short-term return reversal). Asparouhova et al. (2010) argue that these variables 

are connected to future returns mainly through microstructure biases and have nothing to do with 

true predictability of stock returns that is of interest to investors.6 The machine learning methods 

were built to fnd all patterns in the dependent variable and this leads to sub-optimal outcome 

when predicting stock returns on illiquid stocks. Focus on large cap universe helps to address these 

concerns. Secondly, a large di˙erence with respect to Gu et al. (2018) is that this study allows 
5Novy-Marx and Velikov (2015) studied transaction costs on a range of anomalies in the US and concluded 

that the transaction costs are important mainly for high-turnover anomalies whose returns net of transaction costs 
often turn negative. Frazzini, Israel, and Moskowitz (2012) demonstrated that real-life transaction costs for large 
portfolio managers are much lower than assumed by academics. In particular, returns on momentum and value style 
premia survive transaction costs and have large investment capacity. The transaction costs can be further lowered 
by appropriate optimized portfolio rebalancing. 

6See Roll (1984) for a simple model decomposing stock returns into microstructure noise and changes in true 
prices. 
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only already published anomalies to enter predictions in each year. That is, the information set of 

existing anomalies was available to investors by the time they would make a decision of where to 

invest their money. Ignoring this assumption can lead to illusory profts that cannot be obtained 

in practice. 

The contributions of this study are multiple. Firstly, the role of international evidence for pre-

dictions of future returns on individual stocks is evaluated. Most of academic anomalies research 

focuses solely on the US and benefts of international evidence have not been systematically stud-

ied before. It is shown that training sample outside the US does not largely improve forecasts of 

expected returns on the individual stocks in the US. Secondly, the marginal value of recent anoma-

lies, while controlling for the well established anomalies, is evaluated. It is shown that the recently 

published anomalies are providing new information about the cross-section of stock returns. 

I. Data and Methodology 

A. Data 

The source of accounting and market data for the US is Merged CRSP/Compustat database 

from Wharton Research Data Service (WRDS). The sample spans 1926 to 2016 period and contains 

all New York Stock Exchange (NYSE), Amex, and NASDAQ common stocks (CRSP share code 

10 or 11). The returns are adjusted for delisting following guidance in Hou et al. (2017).7 

The international data is sourced from Reuters Datastream. It is fltered following Ince and 

Porter (2006), Lee (2011), and Griÿn et al. (2010). The procedure comprises of manually checking 

names of the shares in the database for over 100 expressions describing their share class. Only 

the primary quotes of ordinary shares of the companies are retained, with few exceptions where 

fundamental data in Datastream is linked to other share classes.8 Real Estate Investment Trusts 

(REITs) are excluded from the sample. All the international returns and fnancial statements in 

this study are converted to US dollars. The daily returns are deleted for days when the stock 

market was closed in a given country. The quality of data is further improved with procedures 

described in Tobek and Hronec (2018) and covered in Appendix A. Tobek and Hronec (2018) study 

implications of the choice of fundamental database on the measurement of performance of individual 

fundamental anomalies. They show that statistical signifcance of the individual anomalies varies 

across Datastream and Compustat. The research inference can therefore change when a di˙erent 
7If the delisting is on the last day of the month, returns over the month are used. The relevant delisting 

return is then added as a return over the next month. Delisting return (DLRET) from monthly fle is used if it 
is not missing. (1 + retcum) ∗ (1 + DLRETd) − 1 is used if it is missing, where retcum is cumulative return in 
the given month of delisting and DLRETd is delisting return from the daily fle. Lastly, the gaps are flled with 
(1 + retcum) ∗ (1 + DLRETavg) − 1, where DLRETavg is average delisting return for stocks with the same frst 
digit of delisting code (DLSTCD). 

8The description in Griÿn et al. (2010) on classifcation of common shares is followed. 
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fundamental database is used. The di˙erences across the databases are mainly due to imperfect 

historical fundamental coverage. Studies of aggregated performance of anomalies, however, do not 

su˙er from these problems. Analysis in this study is therefore not impacted. 

The sample includes 23 developed countries. The countries are sorted into 4 regions: the 

USA; Europe (E) - Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, 

Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United 

Kingdom; Japan (J); and Asia Pacifc (AP) - Australia, New Zealand, Hong Kong, and Singapore. 

Another important source of data for the anomalies is Institutional Brokers’ Estimate System 

(I/B/E/S) which is obtained from WRDS. I/B/E/S is merged on Datastream directly as it is one 

of databases provided by Thompson Reuters and Datastream includes the respective tickers in its 

static fle. The merger with CRSP is done indirectly through CUSIPs. The databases are merged 

on 8 digit CUSIP and then on 6 digit CUSIP if unsuccessful. The success of the merger is checked 

manually by comparing quoted tickers on the exchanges and names of the companies. All the 

variables in I/B/E/S are transformed to US dollars with original Reuters exchange rates which are 

provided by WRDS. 

This study focuses mainly on the most liquid universe of stocks. The liquid universe category 

covers only stocks that are both (a) within the top 90% of the overall capitalization of all stocks 

in each region at the end of previous June and (b) within the top 90% of the overall dollar trading 

volume over the previous 12 months of all stocks in each region. The restriction on capitalization 

in the US roughly corresponds to 50% percentile of the largest stocks on NYSE. We also use milder 

all-but-micro-caps restriction in some parts of the analysis where the stocks are required to have 

capitalization larger than the bottom decile at NYSE at the end of previous June. This further 

capitalization constraint is also enforced for the liquid universe category to guarantee that the 

stocks outside the US are not only liquid with respect to other stocks in the region but also with 

respect to the stocks in the US. All the stocks are further required to have price larger than $1 

($.1 for Asia Pacifc) at the end of the previous June. 

Table I shows average, minimum, and maximum number of stocks in the cross-section of the 

individual regions. Full sample category includes all the available stocks without any restrictions. 

There are on average only about 500 stocks in the US that satisfy the criteria for the liquid universe. 

The average number of stocks satisfying the criteria in even smaller in the other regions. Average 

capitalization of stocks in the liquid universe after July 1995 is $24 billion in the US, $21 billion 

in Europe, $9 billion in Japan, and $11 billion in Asia Pacifc. Average size of the stocks in the 

sample is therefore balanced over the regions. 
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Table I 
Number of Stocks in the Cross-section 

Full sample All-but-micro-caps Liquid Universe 

mean min max mean min max mean min max 

Asia Pacifc 2430 1012 3706 551 321 896 132 71 238 
Europe 
Japan 
USA 

5194 
3141 
4768 

4440 
2074 
1993 

6121 
3678 
7525 

1976 
1541 
2340 

1410 
1030 
1234 

2945 
2313 
3852 

350 
331 
495 

208 
208 
263 

826 
744 
829 

B. Anomalies 

The sample includes 153 anomalies published in academic studies. The full list of the anomalies 

is provided in Appendix B and their detailed description in the online appendix. Anomalies that 

have been described in McLean and Ponti˙ (2016), Hou et al. (2017), or Harvey et al. (2016) are 

primarily selected. The study focuses only on anomalies that are valid in the cross-section of stocks 

so that long-short portfolios can be formed out of them. Any anomalies that are specifc to the US, 

and which cannot therefore be constructed outside the US, are excluded.9 Fundamental signals are 

updated annually at the end of every June using fnancial statements from fnancial years ending 

in the previous calendar year.10 

Some anomalies, such as Herfndahl Index of Hou and Robinson (2006), require classifcation 

of industries for individual frms. The choice in the original papers is mostly with respect to 

Standard Industrial Classifcation (SIC). Third level Datastream classifcation, sorting industries 

into 19 groups, is applied here instead. The larger industry groups should make the results more 

robust and consistent across the data vendors. The industry classifcation in Datastream is available 

only from the static fle, which means that only the latest values are available. Data vendors may 

slightly di˙er in the classifcation of individual frms over time because the di˙erences between 

individual SIC categories are often subtle. A translation table between SIC classifcation and the 

Datastream classifcation is provided in the online appendix. 

There are 93 fundamental, 11 I/B/E/S, and 49 market friction anomalies in the sample. The 

anomalies come almost exclusively from the top fnance and accounting journals. Figure 1 graphs 

number of the published anomalies over time. The second line is capturing number of anomalies 

whose in-sample period in their respective studies has ended. The number of anomalies has been 

gradually increasing over time without any apparent jumps. 
9This includes anomalies: based on quarterly fundamental data since there is only short coverage internationally; 

connected to hand collected data in the US such as IPOs, SPOs, and mergers; requiring segment information and 
NBER data; and that are institutionally specifc, such as, share turnover or e˙ective tax rate. Some fundamental 
anomalies could not be implemented in Datastream as the required items are missing there. 

10Section A documents that the annual refreshing of fundamental signals provides very similar results to monthly 
refreshing. 
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Figure 1. Number of the Published Anomalies Over Time. 

C. Portfolio-mixing Strategy 

This section describes the portfolio-mixing strategy that equally weights returns from the port-

folios on individual anomalies. It serves as a benchmark for the more complicated mispricing 

strategy described in the next section. The strategy is especially useful when studying the role of 

international evidence in the selection of quantitative strategies that outperform out-of-sample as 

it can be understood as a combination rule of multiple quantitative strategies based on the past 

evidence. Portfolio construction for the individual anomalies is frst described and the logic for 

how the individual portfolios are combined is discussed next. 

C.1. Portfolio Construction for the Individual Anomalies 

The portfolios are constructed on the liquid universe of stocks. The focus on liquid universe 

should make the fndings more realistic to someone trying to trade the anomalies. The stocks with 

small capitalization (micro-cap) account for only a small fraction of the overall capitalization of the 

market and often cannot be traded at signifcant volumes due to their high illiquidity. Tobek and 

Hronec (2018) document that the fundamental coverage of micro-cap stocks outside the US is very 

problematic in Datastream and the imperfect coverage can introduce huge biases into the analysis. 

Both equal-weighted and value-weighted returns are always provided. The preference should be 

given to interpretation of the value-weighted returns since they do not su˙er from the market 

microstructure biases documented in Asparouhova et al. (2010). These biases can be substantial 

and can heavily infuence the analysis. 

The portfolios on individual anomalies start in July 1963 in the US and July 1990 in Europe, 
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Japan, and Asia Pacifc.11 The period before 1963 in the US is omitted due to the quality of 

returns and number of available stocks in CRSP is very low during that time. The fundamental 

coverage of stocks in Compustat is also very low which makes the construction of majority of 

the anomalies impossible. Further restrictions of the sample of stocks, based on industries, age 

of the frms, and the length of history of the frms’ fundamental data, follow the original studies 

when constructing portfolios on the individual anomalies. The original studies are also followed 

regarding rebalancing period of the portfolios so that most of anomalies in I/B/E/S and market 

friction categories are rebalanced monthly, whereas, fundamental anomalies are mostly rebalanced 

annually at the beginning of every July. The zero-cost long-short portfolios on the individual 

anomalies are constructed by buying stocks in the top decile of the signals and shorting stocks in 

the bottom decile of the signals.12 

Table II 
Average Time-series Correlations of Returns on Portfolios Created for the Individual 

Anomalies Across the Regions. 

USA E J AP 

USA 
E 
J 
AP 

1.000 
0.239 
0.105 
0.120 

0.239 
1.000 
0.126 
0.122 

0.105 
0.126 
1.000 
0.094 

0.120 
0.122 
0.094 
1.000 

Table II presents average of time-series correlations of returns on the long-short portfolios cre-

ated from identical anomalies across the di˙erent regions. The anomalies are not closely correlated 

across the regions. The international evidence should therefore be very useful as it can serve as an 

independent source of information for stock return predictability. 

C.2. Combining Individual Portfolios into One Strategy 

The portfolios on individual anomalies are combined into one meta-portfolio through a simple 

strategy. The portfolio-mixing strategy selects all the anomalies whose portfolio returns are signif-

icant at 5% level and equally weights them into a single portfolio. The selection is repeated at the 

end of every June from 1995 to 2016. Many of the published anomalies cannot be replicated on 

the liquid universe of stocks and the selection based on historical signifcance guarantees that only 

robust strategies are used. Signifcance of the anomalies is determined based on returns available 

up to the given June. Only anomalies published by the given June are considered. The signifcance 

is determined based on p-values that are adjusted for heteroskedasticity and auto-correlation for 
11International studies using fundamental data, such as Fama and French (2017), usually start in 1990. The 

reason for this is that there is an insuÿcient fundamental coverage before that. 
12The zero-cost portfolios are preferred since some annually rebalanced anomalies experience lower than -100% 

return during some years which creates problems with the defnition of return in terms of relative change in value 
of the invested money with respect to the previous month. It would be necessary to introduce leverage constraints 
which would unnecessarily complicate the analysis. 
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up to 12 lags. 

The equal-weighting of portfolios on individual anomalies adds robustness to the strategy. It 

could be benefcial to use information of historical covariance structure between the strategies. 

DeMiguel, Garlappi, and Uppal (2007), however, show that 1/N weighting provides a very robust 

performance out-of-sample and no other simple weighting strategy is able to beat it. 

D. Mispricing Strategy 

The focus has so far been on portfolio level analysis of the individual anomalies. The rest 

of this section covers the strategy that shrink all the anomalies into a single mispricing signal 

("mispricing strategy"). Lewellen et al. (2015) defned the prediction problem as follows: the goal 

is to devise a forecasting method that predicts which stocks are likely to have the highest returns in 

the next month and which the lowest based on stock characteristics (the cross-sectional anomalies). 

To do this, monthly returns on individual stocks are regressed on their past characteristics. The 

future returns are then predicted from the latest available characteristics. The regressions are 

estimated by pooling all the available stock returns up to the date of portfolio formation. The 

past characteristics have to be available before the start of measurement period of the returns. 

The characteristics are normalized to their cross-sectional quantiles within each region to reduce 

problems with outliers. 

To summarize, the following equation is estimated 

rit = f(xi,t−1,1, xi,t−1,2, ..., xi,t−1,M ) + �it (1) 

where rit is return on stock i in month t and xi,t−1,1 is cross-sectional quantile of a given anomaly 

(characteristic) for the stock i available before the start of month t. The returns are demeaned 

by subtracting average cross-sectional returns in every region-month. A simpler case with linear 

f() is frst covered. It is then extended to a more general structure using machine learning. The 

machine learning exercise follows Gu et al. (2018) who applied a suite of standard machine learning 

algorithms and showed that they outperform the linear models in the US. Readers are referred to 

Gu et al. (2018) or any advanced machine learning textbook for a detailed theoretical description 

of the machine learning methods and only basic defnitions are covered here.13 

The more complicated machine learning methods require a large training sample to work prop-

erly. The liquid universe of stocks as defned in Section I.A can be too small for the estimation 

purposes. All the mispricing strategies are therefore estimated on the more numerous all-but-

14micro-caps sample of stocks, which is also defned in Section I.A. 
13See, for example, Friedman, Hastie, and Tibshirani (2001) for the textbook treatment. 
14Table IA2 in the Online Appendix documents that the impact of this choice is only tiny for all the estimation 
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The machine learning methods have both some benefts and some negatives. They provide 

better out-of-sample forecasts through limitation of in-sample over-ftting. They also allow for a 

very general interaction between the explanatory variables. This general form, however, makes the 

ftted models hard to estimate and the estimates hard to interpret due to the black-box approach. 

The intractability of the estimates is not a large concern in this study since even the linear method 

becomes intractable given the number of exogenous variables. The main metric of this study is 

out-of-sample performance and not the interpretation of the estimated parameters, which is in line 

with the optimization objective of the machine learning methods. 

The machine learning methods usually depend on some pre-specifed meta-parameters. This 

study follows the common approach in machine learning literature to choose the meta-parameters in 

data-dependent way through three-fold cross-validation (CV). The CV splits the historical sample 

into pairs of mutually exclusive validation samples and training samples. The model is estimated on 

the training sample with various meta-parameters and its performance is captured on the validation 

samples. The meta-parameters, maximizing the performance over all the validation samples, are 

then selected for the estimation. The CV splits divide the historical sample into three consecutive 

parts with similar length.15 

D.1. Weighted Least Squares 

The benchmark model uses weighted least square estimation for linear approximation of the 

relationship in equation (1). That is, a weighted least square regressions of the stock returns on 

the rescaled characteristics is estimated, 

rit = β0 + β1xi,t−1,1 + β2xi,t−1,2 + ... + βM xi,t−1,M + �it (2) 

where the weight on individual observation is the inverse of number of stocks in the each time 

period and region. The weights are introduced to give equal importance to the each time period. 

The weighting makes the moment conditions equivalent to Fama and MacBeth (1973) regressions in 

Lewellen et al. (2015). The linear specifcation has already been applied in international context in 

Jacobs and Müller (2017c) and Jacobs and Müller (2017a). It is therefore selected as a benchmark 

for the more complicated machine learning methods.16 

methods apart for neural networks which beneft from the larger sample. 
15The sample splits for the initial historical sample period 1963 - 1995 are, for example, 1973 and 1984. The pairs 

of training and validation samples are then [1963 - 1984, 1985 - 1995], [1963 - 1973 plus 1985 - 1995, 1974 - 1984], 
and [1974 - 1995, 1963 - 1973]. 

16Capitalization-weighted regressions as in Green et al. (2017) have been also tried. The capitalization-weighting 
puts lower weight on small cap stocks and is more suited for value-weighted portfolios. The weighting did not 
outperform the selected method and the results are therefore not reported here. 
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Figure 2. Decision Tree. 

D.2. Penalized Weighted Least Squares 

The linear regression model with many explanatory variables can overft the realization of past 

data since it has many degrees of freedom. One way how to reduce the overftting is to introduce 

L1 and L2 penalties on the coeÿcients during the estimation. The penalties are chosen by the 

three-fold cross-validation. The cross validation mostly selects only L1 penalty. The case with just 

L1 penalty is denoted least absolute shrinkage and selection operator (LASSO) and was introduced 

in Tibshirani (1996). 

D.3. Random Forest 

The regression tree family of methods is easy to estimate and requires a few specifed meta-

parameters. One such tree is depicted in Figure 2. The decision tree consists of nodes (the 

round-edged boxes) and outcomes (sharp-edged boxes). The outcomes are in percent return per 

month.17 The tree starts with a decision whether a given stock is within the smallest 40% of stocks 

in the cross-section. The decision can then continue to the split based on the book to market ratio. 

The depicted tree is of depth 3, which is the maximum number of nodes in the longest branch. The 

tree allows for arbitrary cross-e˙ects between the variables up to the (depth - 1) degree. This study 

deals mainly with relatively shallow trees. The shallow trees are nonetheless able to capture various 

important interactions between the explanatory variables. Random Forest and Gradient Boosting 

Regression Trees are based on a combination of the individual trees. These methods cannot be 

easily visualized but they lead to a better out-of-sample forecasting performance relative to simpler 

regression trees. 

Random forest is one of the most widely used ensemble tree method. It combines forecasts 

from the individual decision trees that are based on subsamples of the training data. Explanatory 

variables are also subsampled in the individual trees to increase variety among the individual 

forecasts. Random forest is frequently among the top 10% of best performing machine learning 
17The numbers are arbitrary and do not refect real data. 
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methods in various competitions and it is therefore a very robust method that is powerful in 

most of the settings. It requires only few specifed meta-parameters. The specifcation of the 

meta-parameters is furthermore not very important for its performance. It can therefore be used 

almost out-of-box. This is a large beneft with respect to neural networks where performance 

heavily depends on specifcation of the model. The largest downside is that its estimates is time 

consuming. 

The results in this study are based on a combination of 500 trees. The trees use randomly 

selected 50% of the overall training observations and square root of the overall available explanatory 

variables. Minimum node size is chosen to be 0.1% of all the training observation to leave the 

method completely meta-parameter free. The 0.1% is large enough to limit over-ftting but small 

enough to allow the method to approximate the true expected returns on stocks.18 

D.4. Gradient Boosting Regression Trees 

Gradient boosting regression trees (GBRT) of Friedman (2001) rely on a di˙erent way of com-

bining the regression trees than random forest. All the trees in random forest are chosen inde-

pendently, whereas, they are selected in a dependent fashion in GBRT. The idea is to estimate a 

tree and use only a fraction of its ft for forecasts. The next iterations then proceed on residuals 

of the dependent variable after removing the fraction of the ftted values in the previous iteration. 

Shrinkage of the individual predictions guarantees that the learning can correct itself if the ftted 

values are selected suboptimally in some iterations. The fraction of individual predictions that 

is retained for the forecast is called a learning rate. Number of the learning iterations, given the 

learning rate, then determines how closely the particular realization of the sample from the whole 

population (the training sample) is over-ftted. A selection of fewer iterations reduces the risk of 

over-ftting (estimation error) but decreases the overall ft of the estimation (i.e. introduces an 

approximation error). It is therefore important to select the number of iterations with optimal 

estimation and approximation error trade-o˙. One way to do this is to rely on a cross-validation. 

The method requires a specifcation of learning rate, number of iterations (trees), and maximum 

depth of the trees. 

The analysis in this study is conducted with a fast version of the gradient boosting - extreme 

gradient boosting (XGBOOST) of Chen and He (2017). The reason for this is that it is ten times 

faster to estimate and thus requires far less computational power. Gu et al. (2018) benchmarked 

the di˙erent machine learning methods and only neural networks provided signifcantly better 

forecasts than GBRT. GBRT is therefore a good candidate for the empirical application and it 

captures most of the gains from the machine learning methods over the standard fnance methods. 
18Ignoring this this parameter completely, and leaving unlimited note size, leads to almost identical results. It is 

thus not an important assumption. 
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Figure 3. Neural Network. 

That is why GBRT is used to examine the benefts of international training sample in section III 

and the benefts of recent anomalies in section IV. 

The specifcation of the GBRT is set as follows: the maximum depth of the trees is determined 

by a cross-validation. Depth of up to 9 nodes is considered. Gu et al. (2018) showed that cross-

validation selects similar values in their analysis. The learning rate is set to 10%.19 Number of 

iterations is again determined via the three-fold cross-validation. 

D.5. Neural Networks 

Arguably the most powerful machine learning method of today is (deep) neural networks. Gu 

et al. (2018) show that they outperform any other method if they are optimally specifed. The 

neural networks are a very fexible tool that encompasses many specifcations.20 The fexibility is 

also their largest disadvantage as it requires a long experimentation and possible over-ftting of the 

sample.21 

Sequential neural networks consist of layers of neurons with information fowing between the 

layers in only one direction, from input layer to output layer. The information is fed in batches 

consisting of n sample points. Processing of the full training sample is called an epoch. The speed 

of change in estimated parameters with new processed batches is determined through the learning 

rate. It is often an advantage to slow the learning rate over time to allow for fner details to 

be captured. The neural networks are estimated with back-propagation and stochastic gradient 

descent. 

Figure 3 plots specifcation of the neural network in this study. It is based on three layers. The 

initial layer has 150 neurons. The second hidden layer also has 150 neurons. The last output layer 

only has one neuron. The frst two layers use a rectifed linear unit (ReLU) activation function 

while the last layer uses a linear activation. Input into each layer is batch normalized. The network 
19Experimenting with the learning rate did not lead to any increase in the predictive power. There is an extreme 

amount of noise in the fnancial data and slower learning is thus not necessary. 
20A linear regression is the simplest specifcation. 
21The over-ftting should be a large cause of worry and all results based on neural networks should be taken with 

a grain of salt. The tree-based methods work well out of box even with default setting but neural networks require 
a long fne tuning. The fne tuning will translate into problematic performance out-of-sample of this study. 
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is regularized with dropout layers where output of ffteen randomly selected neurons is dropped 

in the frst and the second layer in each epoch. Early stopping callbacks then provide further 

regularization and stop the learning process once the mean squared loss stops improving in the 

validation sample in four consecutive epochs. Another callback reduces the learning rate when the 

mean squared loss stops improving from one epoch to another. 

The fnal forecast is produced from a combination of three estimated neural networks with 

di˙erent initial random seeds. Each run also uses di˙erent validation-training sample splits to 

further increase variety over the forecasts. The combination forecast leads to a great improvement 

in the performance of the mispricing strategy based on the neural networks. 

D.6. Portfolio Construction 

The mispricing portfolios start in July 1995, unless stated otherwise. They are again long-short 

self-fnancing and are rebalanced every month. The long leg of the strategy buys stocks in the 

upper decile of the predicted next month’s returns. The short leg of the strategy short-sells stocks 

in the bottom decile of the predicted next month’s returns. 

The portfolios are constructed based on sorts of the predicted returns in the individual regions. 

Global strategy invests into stocks from all the four regions. The global strategy is again based on 

stocks in the extreme deciles of the predicted returns in the individual regions. 

The portfolio returns now also correspond to an investable strategy that holds $1 in cash, 

invests $1 in the stocks that are likely to have the largest return in the next month, and shorts $1 

worth of stocks that are likely to have the smallest return in the next month. The portfolios are 

rebalanced to have an equal position in cash, long, and short leg of investment in the stocks at the 

beginning of each month. 

E. Liquidity Measures 

Liquidity costs on the strategies are studies with several liquidity proxies. The proxies are: 

VoV(% Spread) of Fong, Holden, and Tobek (2017), Gibbs proxy of Hasbrouck (2009), and closing 

quoted spread proxy of Chung and Zhang (2014). They are defned in detail in Appendix C. 

The proxies were selected to capture a fxed component of transaction costs and ignore variable 

component that measures price impact of larger orders. The variable component is very volatile and 

depends on the precise trade execution algorithm of each asset manager. The large capitalization 

universe of stocks reduces concerns about the variable component and it should be possible to 

avoid any execution costs altogether through the use of limit orders. 

All of the proxies have some missing observations. The missing observations are backflled from 

the other proxies. Quoted spread is used frst for the backflling, followed by VoV(% Spread), 
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and the remaining missing observations are backflled with Gibbs proxy. Less than 0.02% of the 

observations is missing in all the three proxies and these observations are flled by 5% costs. 

II. Proftability 

A. Portfolio-mixing Strategy 

The portfolio level analysis of the individual anomalies is a good starting point as it provides a 

simple indication of out-of-sample proftability of the anomalies. The more complicated method, 

that synthesizes information embedded in the individual anomalies to one mispricing signal, is just 

a refnement of this simple strategy. 

Table III presents returns on the portfolio-mixing strategy that invests equally in all the port-

folios on anomalies that have signifcantly positive returns at 5% signifcance level as described in 

Section I.C.2. That is, it corresponds to a setting where someone is following anomalies research, 

replicates the published fndings, and equally invests into all published anomalies that he was able 

to replicate on the liquid universe of stocks. The performance of the portfolio-mixing strategy is 

followed in all the regions. The out-of-sample forecasts begin in July 1995. Global strategy equally 

invests in the portfolio-mixing strategy in the four developed regions. 

Table III 
Out-of-sample Performance of the Portfolio-mixing Strategy 

The table shows returns of the strategy that equally invests in all the anomalies that are signifcant 
in the US at 5% signifcance level as described in Section I.C.2. The signifcant anomalies are 
selected once a year, at the end of June. Only anomalies that are published by the time of 
selection are considered. The reported returns are for July 1995 to December 2016 period and are 
in percentage points. 

Equal-weighted Value-weighted 

USA Europe Japan AP Global USA Europe Japan AP Global 

Mean 0.174 0.297 0.001 0.663 0.284 0.301 0.180 0.253 0.882 0.404 
Sharpe Ratio 0.227 0.484 0.002 0.695 0.566 0.387 0.270 0.198 0.816 0.598 
Skewness 0.083 -0.085 -1.885 -1.087 -0.436 0.356 0.197 -0.046 1.871 1.358 
Kurtosis 9.963 9.230 14.68 13.16 6.920 6.481 9.243 25.09 16.59 22.41 
Max Drawdown -29.40 -17.96 -27.63 -27.43 -12.95 -18.12 -26.33 -61.07 -17.35 -20.79 

The portfolio-mixing strategy is not statistically signifcant in the US for both equal-weighted 

and value-weighted returns over 1995-2016 period and Sharpe ratio is also low there. The proftabil-

ity is sometimes higher in the other regions. The strategy is the most proftable in Asia Pacifc. 

The returns are higher outside the US despite the fact that the anomalies have been chosen in 

the US without any regard for evidence from the other countries. The anomalies documented in 

academic literature in the US are therefore successful in capturing risk premia outside the US. 

Diversifcation among the regions also provides some benefts. The global strategy has Sharpe 
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Figure 4. Cumulative returns on the Portfolio-mixing Strategy. 

ratio close to 0.6. 

Maximum drawdown (DD) is defned as 

min 100 ∗ (Ps/Pt − 1) (3)
s>t 

where Pt is market value of all assets held in the strategy at time t. That is, DD is the largest 

relative drop in value of the invested money over the 1995 to 2016 period. DD is the smallest in 

Asia Pacifc regions for value-weighted returns, which is in line with the highest returns and Sharpe 

ratio there. It is, nonetheless, also small in other regions, except for Japan. 

Green et al. (2017) showed that the proftability of all anomalies has decreased signifcantly after 

2003. The same decline in proftability is documented in Figure 4. The fgure presents evolution 

of cumulative returns on the portfolio mixing strategy since June 2002. The proftability of the 

individual anomalies in the US has dropped to the point that they yielded only about 20% in this 

whole period. The strategy was more proftable in other regions. 

The portfolio-mixing strategy relies on a specifc threshold for the decision whether to include 

a given anomaly in the mix. Figure 5 documents that the results are robust to the choice of this 

threshold. The fgure shows annualized mean returns and Sharpe ratios for the portfolio-mixing 

strategy that equally invests into all anomalies whose historical returns have t-statistic larger than 

threshold specifed at x-axis. Mean returns are increasing with the threshold in all the region. 

The mean return on the anomalies are therefore larger the more signifcant they were historically. 

Sharpe ratio of the portfolio-mixing strategy does not depend that strongly on the signifcance 

threshold.22 

22Note that there are only few anomalies with t-statistic larger than 2.5 and the results become unstable after 
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Figure 5. Annualized Mean Returns and Sharpe Ratios on the Portfolio-mixing Strat-
egy Depending on Signifcance Threshold for Individual Anomalies. 

To conclude, returns on the anomalies in all the regions are positive, which suggests that it is 

proftable to invest in the anomalies before transaction costs. 

B. Mispricing Strategy 

Performance of the mispricing strategy is examined next. Jacobs and Müller (2017a) showed 

that the mispricing strategy estimated with least squares leads to higher returns in both absolute 

term and on risk adjusted basis relative to mixing of portfolios on individual anomalies. Gu et al. 

(2018) then documented that the more sophisticated machine learning methods provide higher 

out-of-sample predictability relative to least squares. The machine learning methods are extended 

to the international sample to determine whether their benefts persist outside the US. 

Table IV presents mean returns on portfolios created based on the mispricing strategy. The 

regressions of stock returns on their characteristics are ft on data available up to June every year 

and the future stock returns are then predicted with the latest available characteristics for each 

of the next 12 months. The regressions are estimated with least squares, penalized least squares, 

random forests, gradient boosting regression trees, and neural networks. The estimates in table IV 

are based on the US data from July 1963. The long-short decile portfolios, that invest into stocks 

in the top decile of the predicted future returns and short-sell stocks in the bottom decile of the 

predicted returns, are then created. The reported returns on portfolios are in percent per month 

and are from July 1995 to December 2016.23 

that. 
23Table IA2 in the Online Appendix provides comparison between estimation of the mispricing strategies on 

the all-but-micro-caps sample and the liquid universe of stocks. Equal-weighted portfolios estimated on the liquid 
universe slightly underperform those estimated on all-but-micro-caps. The underperformance is the largest for the 
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Table IV 
Performance of the Mispricing Strategy Estimated in the US 

The table shows out-of-sample performance of the mispricing strategy as defned in Section I.D. It 
is based on long-short decile portfolios from the strategy that combines all the available anomalies 
through predictive regressions of individual stock returns on transformed characteristics. The 
estimation methods are least squares, penalized least squares, random forests, gradient boosting 
regression trees, or neural networks. That is, pooled regressions of monthly stock returns on cross-
sectional quantiles of their characteristics observable before each month start are estimated and 
future returns from the latest available characteristics are predicted. The value-weighted or equal-
weighted long-short portfolios are constructed by buying stocks in the top decile of the predicted 
next month returns and shorting stocks in the bottom decile of the predicted next month returns. 
The regressions are rerun at the end of each June with only those anomalies that have been 
published by that time. The out-of-sample performance is observed in the US, Europe, Japan, and 
Asia Pacifc. The training sample spans July 1963 to December 2016 in the US and July 1990 to 
December 2016 in other regions. The regressions are estimated only on the past US data and the 
future returns are predicted in all the regions. The reported returns are for July 1995 to December 
2016 period and are in percentage points. 

Equal-weighted Value-weighted 

USA Europe Japan AP Global USA Europe Japan AP Global 

Weighted Least Squares 
Mean 0.801 0.680 0.922 0.782 0.810 0.575 0.647 0.648 0.633 0.639 
Sharpe Ratio 0.479 0.541 0.701 0.497 0.763 0.348 0.472 0.410 0.318 0.550 
Skewness -0.340 0.239 -0.425 -0.356 0.025 -0.121 -0.017 -0.688 -0.238 -0.041 
Kurtosis 8.521 5.673 4.167 3.713 8.488 7.214 6.483 5.544 4.824 7.880 
Max Drawdown -64.70 -37.10 -43.36 -47.61 -43.51 -69.75 -34.16 -44.52 -49.86 -50.85 

Penalized Weighted Least Squares 
Mean 0.756 0.728 0.886 0.854 0.800 0.644 0.794 0.596 0.754 0.683 
Sharpe Ratio 0.443 0.557 0.665 0.526 0.724 0.381 0.554 0.372 0.365 0.568 
Skewness -0.487 0.067 -0.620 -0.365 -0.263 -0.316 0.123 -0.692 -0.409 0.023 
Kurtosis 8.703 6.662 4.540 3.834 9.301 7.297 7.579 5.715 5.080 9.111 
Max Drawdown -65.36 -35.46 -42.32 -48.50 -45.10 -68.02 -37.51 -49.44 -57.38 -49.59 

Gradient Boosting Regression Trees 
Mean 1.165 0.870 1.173 1.650 1.163 1.391 0.591 1.011 1.415 1.033 
Sharpe Ratio 0.720 0.644 0.766 1.005 1.146 0.831 0.412 0.525 0.800 0.870 
Skewness 0.319 -1.160 0.682 -0.437 -0.449 0.561 -1.314 0.800 -0.112 -0.433 
Kurtosis 6.653 10.17 8.274 5.575 6.812 9.287 12.03 8.611 4.718 7.797 
Max Drawdown -38.31 -48.25 -34.37 -36.65 -27.45 -43.93 -42.31 -41.79 -39.58 -35.62 

Random Forest 
Mean 1.050 1.037 1.107 0.943 1.074 0.977 0.339 1.028 1.183 0.798 
Sharpe Ratio 0.703 0.782 0.781 0.520 1.080 0.691 0.222 0.591 0.612 0.726 
Skewness -0.328 -1.132 -0.283 -0.789 -0.939 -0.594 -1.149 0.675 -0.062 -0.974 
Kurtosis 5.989 9.399 5.558 7.201 7.191 4.951 12.27 8.613 5.855 7.549 
Max Drawdown -30.69 -48.18 -40.16 -46.87 -27.76 -30.59 -54.54 -42.12 -39.57 -31.17 

Neural Networks 
Mean 1.416 1.097 1.295 1.752 1.346 1.420 0.826 1.100 1.177 1.093 
Sharpe Ratio 0.905 0.880 1.130 1.086 1.582 0.905 0.649 0.693 0.697 1.042 
Skewness -0.083 -0.082 -0.149 0.244 -0.310 -0.167 -0.470 0.629 0.638 -0.255 
Kurtosis 7.316 4.827 4.446 5.091 5.304 6.432 7.050 10.37 5.075 6.806 
Max Drawdown -44.60 -33.93 -24.70 -38.10 -18.90 -48.11 -31.93 -37.09 -54.45 -33.25 

Both, the tree based methods and neural networks, outperform simple least squares. In par-

ticular, gradient boosting regression trees and neural networks outperform least squares in all the 

regions for both mean returns and risk adjusted Sharpe ratios. The machine learning methods 

most complex method - neural networks. Value-weighted portfolios are, however, more proftable when estimated 
on the liquid universe with the exception of neural networks. The estimation on the liquid universe leads to more 
homogeneous return predictions over the liquid stocks as equal-weighting leads to almost identical performance as 
value-weighting. 
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Figure 6. Cumulative Returns on the Gradient Boosting Regression Trees Mispricing 
Strategy. The fgure shows cumulative returns for the mispricing strategy as described in Table IV 
that is estimated on the individual stocks from the US. 

are therefore more powerful for stock return predictions outside the US as well as inside the US. 

The superior performance outside the US provides robustness to fndings in Gu et al. (2018), who 

focused solely on the US. The average returns on the mispricing strategies are about 4 times higher 

than for the portfolio level strategy in the previous section. 

Gradient boosting regression trees and neural networks also have the smallest maximum draw-

downs and investing in them is therefore the least risky. Diversifcation over the four regions (in 

the global columns) further reduces the maximum drawdowns and increases the Sharpe ratios. 

Figure 6 plots cumulative returns on the gradient boosting regression tree mispricing strategy 

in Table IV. The returns are presented in decimal logarithms and 1 on the left scale therefore 

corresponds to 1000% return on the initial investment. There is a small drop in proftability around 

2003 in the US, which is in line with the evidence from portfolio-mixing strategy in Figure 4. The 

mispricing strategy is the least proftable in the European region. 

B.1. Long-only and Short-only Components of the Strategy 

Short-selling can be connected to large costs and sometimes even outright impossible. That is 

why it might not be possible to replicate the returns on the mispricing strategy in practice.24 The 

long-short strategy in Table IV will now be decomposed into long-only and short-only components 

to determine the role of short-selling for the strategy’s proftability. Table V decomposes the long-

short returns separately for the individual machine learning methods. The long-only component 
24Short-selling constrains should not be a large issue on our liquid universe of stocks. Andrikopoulos, Clunie, and 

Siganos (2013) showed that although some stocks cannot be short-sold in practice, focusing only on those that can 
be short-sold does not statistically diminish returns on 8 quantitative strategies in the UK. They also showed that 
short-selling costs are small at about 1% annually in the UK. 
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can be compared to equal-weighted and value-weighted returns on the whole market as defned by 

the liquid universe of stocks in Panel A. 

Table V 
Decomposition of the Returns on the Mispricing Strategy to Long-only and 

Short-only Components 

The table shows returns of the mispricing strategy described in Table IV that is estimated on 
the individual stocks from the US. The returns on the long-short portfolios are decomposed to 
long-only and short-only components. Equal-weighted and value-weighted returns on the whole 
stock markets in the individual regions estimated on the liquid sample of stocks are also provided. 

Equal-weighted Value-weighted 

USA Europe Japan AP Global USA Europe Japan AP Global 

Panel A: Long-only Component of the Mispricing Strategy 

Whole Market 
Mean 0.829 0.739 0.300 0.737 0.655 0.786 0.668 0.222 0.806 0.617 
Sharpe Ratio 0.507 0.445 0.184 0.376 0.439 0.609 0.442 0.145 0.471 0.477 
Skewness -0.656 -0.540 0.075 -0.565 -0.684 -0.651 -0.539 0.052 -0.492 -0.738 
Kurtosis 4.391 5.215 3.260 5.405 5.447 3.883 4.249 3.103 4.707 4.384 
Max Drawdown -60.81 -63.61 -58.18 -64.72 -56.68 -51.41 -59.46 -65.98 -59.07 -54.54 

Weighted Least Squares 
Mean 1.099 1.066 0.700 0.786 0.946 0.889 0.990 0.689 0.923 0.812 
Sharpe Ratio 0.626 0.585 0.380 0.323 0.605 0.570 0.534 0.382 0.420 0.549 
Skewness -0.703 -0.611 0.072 -1.103 -0.811 -0.654 -0.535 -0.012 -0.814 -0.513 
Kurtosis 5.328 5.045 3.908 8.174 5.229 5.225 5.024 3.970 8.804 4.554 
Max Drawdown -56.12 -62.66 -60.40 -76.62 -59.38 -48.56 -59.94 -63.29 -65.16 -52.87 
Information Ratio 0.339 0.505 0.525 0.052 0.342 0.120 0.390 0.465 0.093 0.289 

Penalized Weighted Least Squares 
Mean 1.036 1.063 0.643 0.848 0.913 0.867 1.064 0.614 1.057 0.794 
Sharpe Ratio 0.595 0.594 0.352 0.343 0.592 0.563 0.582 0.347 0.480 0.552 
Skewness -0.837 -0.608 0.060 -1.094 -0.843 -0.749 -0.532 -0.063 -0.700 -0.606 
Kurtosis 5.750 5.178 3.707 8.003 5.271 5.159 5.153 3.555 9.061 4.542 
Max Drawdown -56.87 -63.39 -59.58 -75.79 -59.31 -49.53 -58.57 -59.86 -67.70 -53.04 
Information Ratio 0.251 0.480 0.466 0.108 0.300 0.093 0.471 0.405 0.201 0.265 

Gradient Boosting Regression Trees 
Mean 1.235 1.154 0.676 1.414 1.078 1.367 0.986 0.653 1.396 1.084 
Sharpe Ratio 0.569 0.654 0.357 0.600 0.629 0.684 0.586 0.360 0.625 0.650 
Skewness -0.338 -0.717 0.191 -0.530 -0.602 -0.020 -0.444 0.399 -0.485 -0.347 
Kurtosis 6.051 5.357 3.818 5.681 4.314 6.596 4.746 5.293 5.455 4.035 
Max Drawdown -71.09 -63.32 -61.80 -63.02 -57.61 -65.67 -61.14 -73.43 -61.49 -62.35 
Information Ratio 0.456 0.718 0.472 0.725 0.468 0.500 0.487 0.448 0.498 0.624 

Random Forest 
Mean 1.127 1.275 0.577 0.971 0.994 0.951 0.968 0.620 1.003 0.868 
Sharpe Ratio 0.527 0.709 0.315 0.396 0.585 0.523 0.553 0.327 0.446 0.547 
Skewness -0.985 -0.688 0.143 -0.501 -0.788 -0.975 -0.603 0.380 -0.316 -0.576 
Kurtosis 6.545 5.300 3.468 5.211 4.452 6.248 5.125 4.849 4.467 3.825 
Max Drawdown -76.51 -62.27 -64.61 -75.60 -62.19 -69.23 -61.92 -74.02 -70.31 -63.97 
Information Ratio 0.356 0.941 0.388 0.243 0.382 0.185 0.394 0.438 0.153 0.402 

Neural Networks 
Mean 1.295 1.262 0.756 1.381 1.140 1.260 1.160 0.696 1.351 1.081 
Sharpe Ratio 0.576 0.650 0.404 0.555 0.649 0.625 0.638 0.368 0.613 0.632 
Skewness -0.354 -0.081 0.151 -0.464 -0.431 -0.752 -0.313 0.301 -0.167 -0.505 
Kurtosis 5.683 5.340 3.336 5.736 3.969 6.118 4.639 4.678 5.748 4.296 
Max Drawdown -74.67 -61.71 -58.40 -71.28 -57.78 -74.06 -60.45 -69.03 -60.95 -68.26 
Information Ratio 0.480 0.734 0.694 0.611 0.500 0.418 0.593 0.493 0.450 0.577 

The panel A in the table documents that the mispricing strategy is more proftable than the 

whole market in all the regions. The long-only component is responsible for most of returns on 

the mispricing strategy. The short-only component then mainly serves as a hedge that increases 

Sharpe ratio and lowers maximum drawdown. The returns on long-only component of gradient 
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Table V Continued 

Equal-weighted Value-weighted 

USA Europe Japan AP Global USA Europe Japan AP Global 

Panel B: Short-only Component of the Mispricing Strategy 

Weighted Least Squares 
Mean 0.297 0.386 -0.223 0.004 0.136 0.313 0.342 0.041 0.290 0.173 
Sharpe Ratio 0.131 0.206 -0.112 0.002 0.077 0.166 0.198 0.021 0.118 0.109 
Skewness 0.119 -0.557 0.376 -0.204 -0.234 -0.142 -0.744 0.565 0.045 -0.492 
Kurtosis 5.883 4.473 3.564 4.335 4.644 5.892 4.741 3.966 5.797 5.035 
Max Drawdown -83.94 -85.78 -71.55 -85.03 -72.04 -78.71 -79.76 -81.47 -86.74 -67.48 

Penalized Weighted Least Squares 
Mean 0.280 0.335 -0.243 -0.006 0.114 0.222 0.270 0.017 0.303 0.111 
Sharpe Ratio 0.123 0.172 -0.121 -0.003 0.063 0.116 0.149 0.009 0.123 0.068 
Skewness 0.123 -0.414 0.349 -0.070 -0.166 -0.024 -0.781 0.518 0.156 -0.510 
Kurtosis 5.582 5.149 3.510 4.296 4.659 5.650 5.428 3.824 5.814 5.204 
Max Drawdown -83.56 -86.54 -70.06 -85.41 -72.34 -72.79 -78.49 -79.48 -86.34 -66.80 

Gradient Boosting Regression Trees 
Mean 0.069 0.284 -0.497 -0.236 -0.085 -0.023 0.395 -0.358 -0.019 0.051 
Sharpe Ratio 0.029 0.117 -0.219 -0.087 -0.042 -0.012 0.174 -0.162 -0.007 0.028 
Skewness -0.296 0.008 0.182 0.474 -0.224 -0.395 0.177 0.087 0.019 -0.353 
Kurtosis 4.847 6.517 3.632 6.785 5.078 5.682 6.697 3.818 5.182 6.167 
Max Drawdown -79.96 -88.78 -66.42 -79.12 -68.60 -79.31 -87.79 -68.29 -78.39 -68.80 

Random Forest 
Mean 0.077 0.237 -0.529 0.028 -0.080 -0.026 0.628 -0.408 -0.180 0.070 
Sharpe Ratio 0.031 0.098 -0.237 0.010 -0.039 -0.012 0.274 -0.186 -0.067 0.037 
Skewness -0.263 0.185 0.288 0.723 -0.185 -0.294 0.404 0.173 0.755 -0.275 
Kurtosis 4.697 7.201 3.800 8.629 4.968 5.249 9.564 3.687 9.069 6.330 
Max Drawdown -80.78 -90.00 -62.61 -90.70 -71.49 -79.21 -93.16 -65.70 -83.39 -73.58 

Neural Networks 
Mean -0.121 0.165 -0.539 -0.371 -0.206 -0.159 0.333 -0.404 0.175 -0.012 
Sharpe Ratio -0.054 0.075 -0.254 -0.142 -0.109 -0.084 0.164 -0.198 0.073 -0.007 
Skewness -0.353 -0.134 0.218 0.031 -0.210 -0.416 -0.184 0.226 -0.079 -0.370 
Kurtosis 5.104 6.669 3.433 4.608 4.942 5.608 6.763 3.867 4.007 5.798 
Max Drawdown -80.06 -83.69 -67.02 -80.60 -67.65 -77.82 -80.68 -68.21 -86.50 -64.90 
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boosting regression tree mispricing strategy are about 5% a year larger than returns on the market. 

The other machine learning methods also outperform the market. 

The more advanced machine learning methods outperform simple least squares both on the 

short side and long side. To conclude, the out-perfromance of the mispricing strategy is robust 

to short-selling constrains. Even short-selling-constrained investors can therefore beneft from the 

strategy. 

B.2. Risk-adjusted Performance of the Strategy 

Table VI 
Performance of the Mispricing Strategy on Risk-adjusted Basis 

The table shows returns of the mispricing strategy described in Table IV that is estimated on the 
individual stocks from the US adjusted for capital asset pricing model (CAPM) model and fve 
Fama-French factors (FF5). The standard errors in t-statistics are adjusted for heterockedasticity 
and autocorrelation with Newey-West adjustment for up to 12 lags. 

Equal-weighted Value-weighted 

USA Europe Japan AP Global USA Europe Japan AP Global 

Weighted Least Squares 
Mean Return 0.801 0.680 0.922 0.782 0.810 0.575 0.647 0.648 0.633 0.639 

2.043 2.125 2.597 2.533 2.942 1.495 2.051 1.832 1.817 2.203 
CAPM Alpha 0.951 0.672 0.930 0.744 0.851 0.688 0.588 0.657 0.707 0.666 

2.604 2.392 2.997 1.927 3.482 1.974 1.967 1.936 1.695 2.710 
FF5 Alpha 0.328 0.133 0.672 0.232 0.263 0.080 0.134 0.402 -0.158 0.173 

1.114 0.543 2.189 0.562 1.336 0.262 0.486 1.121 -0.343 0.732 
Penalized Weighted Least Squares 

Mean Return 0.756 0.728 0.886 0.854 0.800 0.644 0.794 0.596 0.754 0.683 
1.960 2.191 2.538 2.451 2.800 1.599 2.632 1.645 1.810 2.294 

CAPM Alpha 0.922 0.760 0.894 0.839 0.864 0.767 0.776 0.606 0.832 0.737 
2.505 2.629 2.844 2.032 3.391 2.132 2.513 1.750 1.825 2.869 

FF5 Alpha 0.332 0.179 0.604 0.283 0.252 0.128 0.299 0.320 -0.079 0.192 
1.093 0.750 1.998 0.639 1.187 0.412 1.105 0.898 -0.160 0.836 

Gradient Boosting Regression Trees 
Mean Return 1.165 0.870 1.173 1.650 1.163 1.391 0.591 1.011 1.415 1.033 

4.266 2.978 4.021 5.470 6.641 4.465 2.198 2.662 5.236 4.998 
CAPM Alpha 1.221 1.047 1.184 1.737 1.242 1.406 0.733 1.028 1.511 1.095 

3.630 3.589 3.643 4.883 5.999 3.726 2.539 2.408 4.109 4.283 
FF5 Alpha 1.143 0.338 1.073 1.580 1.057 1.600 0.212 0.936 1.160 1.164 

3.680 1.116 3.222 3.841 4.377 4.834 0.730 2.211 2.595 4.535 
Random Forest 

Mean Return 1.050 1.037 1.107 0.943 1.074 0.977 0.339 1.028 1.183 0.798 
4.103 4.108 4.038 3.269 5.894 3.932 1.270 2.386 3.222 4.391 

CAPM Alpha 1.157 1.200 1.118 1.035 1.172 1.050 0.475 1.039 1.318 0.887 
3.614 4.407 3.469 3.064 5.526 3.253 1.564 2.430 3.566 3.762 

FF5 Alpha 0.782 0.433 0.919 0.871 0.727 0.740 -0.092 0.836 0.971 0.626 
2.748 1.502 2.787 2.258 3.124 2.626 -0.275 1.974 2.304 2.343 

Neural Networks 
Mean Return 1.416 1.097 1.295 1.752 1.346 1.420 0.826 1.100 1.177 1.093 

4.336 3.734 5.759 4.917 7.829 4.442 3.352 3.240 3.342 5.627 
CAPM Alpha 1.402 1.179 1.301 1.788 1.383 1.354 0.903 1.108 1.247 1.103 

3.928 4.057 5.257 4.575 7.853 3.471 3.413 3.285 3.540 4.586 
FF5 Alpha 1.482 1.038 1.185 1.435 1.334 1.584 0.758 1.008 0.749 1.323 

5.018 3.885 4.581 3.527 7.754 5.009 2.985 2.941 2.257 5.895 

We have so far focused only on raw returns on the mispricing strategy without accounting 
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for any risk factors. Table VI presents performance of the strategy after accounting for market 

returns and fve Fama-French factors. Accounting for market return should have little impact 

on the performance of the strategy since it is long-short, and thus close to market neutral, by 

construction. Table VI confrms that it is indeed the case and capital asset pricing model (CAPM) 

alpha is close to the mean returns for all the estimation methods. The results are, however, 

very di˙erent when adjusting for fve Fama-French factors. There is again almost no di˙erence 

between the mean returns and alphas for more complicated estimation methods but there is a 

visible deterioration in risk-adjusted performance for the linear estimation methods. The linear 

estimation methods therefore lead to mispricing signal that is close to the traditional risk factors. 

To conclude, the proftability of the mispricing strategy is signifcant even at risk-adjusted 

basis. The more complicated estimation methods then lead to returns that are unrelated to the 

traditional risk factors. 

B.3. Variable Importance 

One of the disadvantages of more complex machine learning methods is the diÿculty in in-

terpreting the resulting models because of potentially high-dimensional and nonlinear interactions 

among variables. The main goal of our study is superior out-of-sample performance even at the 

cost of inability to fully interpret all the interactions of variables in the resulting models. Limited 

interpretation of the ftted models will now follow. 

That being said, inspired by Chen, Pelger, and Zhu (2019), Sirignano, Sadhwani, and Giesecke 

(2016), and Horel and Giesecke (2019) we now examine importance of individual variables. Variable 

importance V Ij for variable j is defned in equation 4 as an elasticity of predicted (region-wise 

demeaned) returns to changes in the individual characteristics used as predictors. 

X X ∂r̂it(xi,t−1,1, xi,t−1,2, ..., xi,t−1,M )
V Ij = (4)

∂xj
t∈T i∈Nt 

The variable importance is calculated for each characteristic in various settings. Figures 7 

and 8 show the variable importance across regions for the ffty most important variables around 

the Globe on all-but-micro-caps and liquid-only universes of stocks for the mispricing strategy as 

described in Table IV. We document substantial di˙erences in the rank of variable importance 

between liquid and all-but-micro-caps stocks in all regions, where for example “Bid-Ask Spread“ 

falls from being the most important global variable on all-but-micro-caps stocks to the second 

least important global variable on the liquid stocks.25 The Spearman’s rank correlation coeÿcient 

between variable importance ranks for all-but-micro-caps and liquid universe of stocks is only 0.479. 

Table VII shows the Spearman’s rank correlation of variable importance scores across the 
25The least important variables are not visible in the Figure 8. 
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Figure 7. Variable Importance on All-but-micro-caps Universe of Stocks. The fgure 
shows variable importance as defned in Equation 4 for the 50 globally most important variables 
for the mispricing strategy as described in Table IV that is estimated on the individual stocks from 
the US. 
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Figure 8. Variable Importance on Liquid Universe of Stock. The fgure shows variable 
importance as defned in Equation 4 for the 50 globally most important variables for the mispricing 
strategy as described in Table IV that is estimated on the individual stocks from the US. 

regions under various forecasting methods. There is a great heterogeneity in the ranks of variable 

importance across the regions. This sheds some light on the limited value of international evidence 
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as will be documented in Section III. More importantly, the predictions from the US perform as 

well as predictions from the individual respective regions despite having only loosely connected 

variable importance. 

Table VII 
Spearman’s Correlation Matrices for Region-specifc Variable Importance 

The table shows Spearman correlation matrices between region-specifc ranks of variable impor-
tance for mispricing strategy using OLS, gradient boosting regression trees and neural networks as 
described in Section I.D. 

OLS GBRT NN 

Global USA Europe Japan AP Global USA Europe Japan AP Global USA Europe Japan AP 

Global 1.000 0.552 0.610 0.564 0.576 1.000 0.745 0.772 0.586 0.754 1.000 0.739 0.672 0.605 0.325 
USA 0.552 1.000 0.406 0.363 0.397 0.745 1.000 0.706 0.541 0.591 0.739 1.000 0.531 0.460 0.341 
Europe 
Japan 
AP 

0.610 
0.564 
0.576 

0.406 
0.363 
0.397 

1.000 
0.482 
0.443 

0.482 
1.000 
0.541 

0.443 
0.541 
1.000 

0.772 
0.586 
0.754 

0.706 
0.541 
0.591 

1.000 
0.606 
0.631 

0.606 
1.000 
0.507 

0.631 
0.507 
1.000 

0.672 
0.605 
0.352 

0.531 
0.460 
0.341 

1.000 
0.478 
0.318 

0.478 
1.000 
0.404 

0.318 
0.404 
1.000 

Table VIII shows di˙erences in the ranks of variable importance for mispricing strategy under 

di˙erent forecasting methods. The Spearman’s rank correlation coeÿcient between neural networks 

and gradient boosting regression trees is only 0.417 while both methods deliver signifcant out-of-

sample proftability when used as forecasting methods in the mispricing strategy. 

Table VIII 
Spearman’s Correlation for Method-specifc Variable Importance 

OLS GBRT NN 

OLS 
GBRT 
NN 

1.000 
0.384 
0.454 

0.384 
1.000 
0.417 

0.454 
0.417 
1.000 

III. The Role of International Evidence 

The evidence so far documented that the anomalies identifed, based on the past data in the 

US, are proftable out-of-sample in all the regions. Can international data outside the US be used 

to better select the winning strategies? 

There are some arguments for the usefulness of the international data. The international data 

increases sample size and therefore limits the possibility for data-mining and in-sample overftting. 

The larger sample size also generally provides larger power to statistical tests which should lead 

to more precise selection of truly signifcant strategies. One crucial requirement for the tangible 

beneft of the new observations is that they are independent from the original observations. Table II 

has documented that portfolio returns on the individual anomalies are only mildly correlated over 

time across the regions, which suggests that the international observations are independent to a 

large extent. The international evidence extends the sample size mainly in the most recent period. 
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The most recent data is also the most useful as the fnancial markets are changing rapidly and the 

older data may not be relevant anymore. 

There are, however, also some problems with suitability of the international evidence. The 

individual global regions have very di˙erent institutional settings. Bankruptcy laws, tax laws, 

investor protection, and accounting standards vary widely across the regions. The institutional 

di˙erences can lower the usefulness of historical data outside the respective regions. The larger 

estimation sample improves forecasts through consistency. The consistency, however, works only 

if the underlying true drivers of stock returns are uniform over the regions, which is in no way 

guaranteed. 

A. Proftability of the Individual Anomalies 

The role of international evidence is frst studied on the individual anomalies. The individual 

anomalies are suitable to assess the beneft of observing past performance of individual quantitative 

strategies outside the US for selection of strategies that are the most proftable out-of-sample. 

Table IX provides regressions of future Sharpe ratios of portfolio returns from the individual 

anomalies regressed on their past Sharpe ratios in Europe (E), the USA, and Japan (J). The 

analysis is restricted to these three regions as there are historically only few liquid stocks in the 

Asia Pacifc region. The liquid universe of stocks used elsewhere in this study is too restrictive 

here and many implications could remain hidden. We therefore also present results for a more 

liquid sample of stocks. The long-short portfolios are created from sample of stocks restricted to 

those with market cap larger than the lowest decile on NYSE (All-but-micro-caps) or from a more 

liquid sample with stricter requirement on both capitalization and dollar traded volume (Liquid 

Universe).26 

Panel A of the table uses ordinary least squares regressions of Sharpe ratios from the original 

estimation sample period in anomalies’ publications regressed on post-publication fve-year Sharpe 

ratios in the three regions. The post-publication Sharpe ratios are used because the returns are 

very noisy and do not lead to any signifcant fnding. The methodology is suited to answer the 

question whether adding international evidence to the original papers could have decreased the 

data-mining and post-publication decay. 

It is apparent that evidence from Japan and Europe is not useful for predictions of post-

publication performance in the US. The past performance in the US is, however, signifcantly 

useful for predictions of performance inside and outside of the US at 5% level for equal-weighted 

portfolios on all-but-micro-caps sample of stocks. The estimated coeÿcients imply that about 30% 

of the in-sample Sharpe ratio in the US persists in all the regions for fve years after the anomalies 
26See Section I.A for more precise defnitions of the samples. 
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Table IX 
Predictive Power of the Past Performance of Anomalies in Di˙erent Regions 

Panel A presents results from regressions of 5-year post-publication Sharpe ratios of the individual 
anomalies on in-sample Sharpe ratios from Japan (J), Europe (E), and the USA. The in-sample 
period is the same as in the studies where the individual anomalies were published. Panel B then 
shows regressions of future three-year (out-of-sample) Sharpe ratios on past (in-sample) Sharpe 
ratios of the individual anomalies. The regressions are based on a panel of Sharpe ratios where 
the future ratios are estimated over non-overlapping three-year intervals. The frst three-year 
interval starts at the end of June 1995 and the last interval ends in June 2016. The in-sample 
Sharpe ratios are based on the longest possible estimation sample preceding the three-year out-of-
sample period. Only anomalies that have been published by the start of the given out-of-sample 
period are included in the panel. The portfolios are created from sample of stocks restricted to 
those with market cap larger than the lowest decile on NYSE (All-but-micro-caps) or from a more 
liquid sample with stricter requirement on both capitalization and dollar traded volume (Liquid 
Universe). The standard errors are adjusted for heteroskedasticity as in Driscoll and Kraay (1998). 

Dependent Variables (Sharpe Ratios) are From 

USA Europe Japan 

I II III IV V VI VII VIII IX X XI XII 

Panel A: 5-year Post-publication Sharpe Ratios Regressed on In-sample Sharpe Ratios 

Equal-weighted Portfolios from the All-but-micro-caps 

Intercept 0.07 0.17 0.15 0.08 0.22 0.42 0.43 0.25 0.05 0.17 0.20 0.03 
(1.29) (3.86) (4.01) (1.39) (3.20) (6.69) (7.99) (2.90) (0.85) (3.05) (4.29) (0.43) 

In-sample SR USA 0.21 0.32 0.37 0.56 0.32 0.48 
(2.24) (2.53) (3.33) (3.44) (3.18) (3.78) 

In-sample SR E -0.07 -0.18 0.05 -0.12 0.08 -0.09 
(-1.12) (-2.68) (0.64) (-1.57) (1.23) (-1.28) 

In-sample SR J 0.06 0.07 0.10 0.07 0.18 0.14 
(0.90) (1.15) (1.22) (0.81) (2.92) (2.19) 

Sample Size 139 109 108 108 139 109 108 108 139 109 108 108 
R-Squared 0.04 0.01 0.01 0.08 0.06 0.00 0.01 0.09 0.06 0.01 0.04 0.12 

Value-weighted Portfolios from the All-but-micro-caps 

Intercept 0.10 0.14 0.11 0.14 0.14 0.24 0.23 0.19 0.07 0.12 0.14 0.05 
(1.77) (2.90) (3.01) (2.03) (2.58) (5.22) (5.53) (2.79) (1.35) (2.81) (3.39) (0.73) 

In-sample SR USA 0.02 0.01 0.20 0.22 0.20 0.32 
(0.16) (0.05) (1.45) (1.30) (1.48) (1.72) 

In-sample SR E -0.11 -0.12 -0.06 -0.10 0.05 0.00 
(-1.53) (-1.66) (-0.84) (-1.43) (0.70) (0.01) 

In-sample SR J -0.03 0.01 0.04 0.06 0.04 0.03 
(-0.39) (0.12) (0.35) (0.57) (0.59) (0.45) 

Sample Size 139 109 108 108 139 109 108 108 139 109 108 108 
R-Squared 0.00 0.02 0.00 0.02 0.02 0.00 0.00 0.03 0.02 0.00 0.00 0.04 

Equal-weighted Portfolios from the Liquid Universe 

Intercept 0.04 0.08 0.08 0.06 0.13 0.19 0.20 0.17 0.01 0.07 0.10 0.00 
(0.98) (1.85) (2.32) (0.80) (3.27) (4.73) (5.37) (2.83) (0.23) (1.46) (2.27) (0.05) 

In-sample SR USA 0.05 0.15 0.15 0.17 0.22 0.35 
(0.49) (0.80) (1.16) (0.71) (1.53) (1.62) 

In-sample SR E -0.05 -0.06 0.02 -0.00 0.08 0.03 
(-0.75) (-0.96) (0.55) (-0.08) (1.21) (0.49) 

In-sample SR J -0.01 -0.01 0.08 0.07 0.12 0.09 
(-0.21) (-0.12) (1.27) (1.09) (1.94) (1.27) 

Sample Size 139 109 107 107 139 109 107 107 137 107 105 105 
R-Squared 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.02 0.02 0.01 0.02 0.05 

Value-weighted Portfolios from the Liquid Universe 

Intercept 0.03 0.05 0.05 0.05 0.13 0.15 0.14 0.16 0.02 0.08 0.09 -0.01 
(0.81) (1.29) (1.23) (0.92) (3.76) (4.61) (4.68) (3.74) (0.38) (2.06) (2.38) (-0.11) 

In-sample SR USA 0.03 0.04 -0.03 -0.02 0.24 0.45 
(0.30) (0.23) (-0.27) (-0.15) (1.54) (2.19) 

In-sample SR E -0.09 -0.09 -0.06 -0.07 0.02 -0.01 
(-1.55) (-1.49) (-1.04) (-1.26) (0.33) (-0.14) 

In-sample SR J -0.03 -0.01 0.05 0.06 0.12 0.09 
(-0.54) (-0.18) (0.60) (0.82) (1.25) (1.06) 

Sample Size 139 109 107 107 139 109 107 107 137 107 105 105 
R-Squared 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.02 0.00 0.01 0.07 

are published. The predictability of the regressions is much higher for equal-weighted portfolios on 

all-but-micro-caps sample of stocks relative to value-weighting or liquid universe of stocks where 
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Table IX Continued 

Dependent Variables (Sharpe Ratios) are From 

USA Europe Japan 

I II III IV V VI VII VIII IX X XI XII 

Panel B: Future 3-year Sharpe Ratios Regressed on Past Sharpe Ratios 

Value-weighted Portfolios from the All-but-micro-caps 

Intercept -0.02 0.14 0.21 -0.02 0.16 0.33 0.56 0.16 0.11 0.24 0.24 0.11 
(-0.34) (3.05) (5.40) (-0.31) (2.31) (5.85) (11.10) (2.32) (1.77) (4.69) (5.54) (1.71) 

In-sample SR USA 0.74 0.80 1.24 0.93 0.52 0.56 
(3.96) (4.36) (10.20) (4.32) (4.55) (2.94) 

In-sample SR E 0.23 -0.04 0.66 0.36 0.12 -0.11 
(2.89) (-0.44) (4.44) (2.33) (1.79) (-0.73) 

In-sample SR J 0.08 -0.05 0.06 -0.17 0.28 0.21 
(0.88) (-0.57) (0.29) (-1.37) (2.17) (1.68) 

Time Fixed E˙ects YES YES YES YES YES YES YES YES YES YES YES YES 
Sample Size 530 530 530 530 530 530 530 530 527 527 527 527 
R-Squared 0.06 0.02 0.00 0.06 0.10 0.08 0.00 0.12 0.02 0.00 0.02 0.03 

Value-weighted Portfolios from the All-but-micro-cap 

Intercept 0.02 0.09 0.15 0.01 0.17 0.27 0.32 0.17 0.11 0.18 0.20 0.11 
(0.33) (2.19) (4.12) (0.20) (3.19) (6.24) (8.40) (3.10) (1.94) (4.04) (5.02) (1.95) 

In-sample SR USA 0.58 0.48 0.63 0.57 0.37 0.39 
(2.42) (2.00) (2.77) (3.86) (3.75) (5.19) 

In-sample SR E 0.26 0.17 0.21 0.09 0.07 -0.02 
(2.31) (1.60) (1.11) (0.53) (0.76) (-0.17) 

In-sample SR J -0.03 -0.12 0.00 -0.07 0.01 -0.02 
(-0.67) (-2.22) (0.03) (-1.06) (0.09) (-0.27) 

Time Fixed E˙ects YES YES YES YES YES YES YES YES YES YES YES YES 
Sample Size 530 530 530 530 530 530 530 530 527 527 527 527 
R-Squared 0.02 0.01 0.00 0.03 0.02 0.01 0.00 0.02 0.01 0.00 0.00 0.01 

Equal-weighted Portfolios from the Liquid Universe 

Intercept 0.01 0.08 0.11 -0.00 0.14 0.18 0.22 0.13 0.01 0.04 0.09 0.00 
(0.17) (5.67) (3.52) (-0.20) (3.79) (6.97) (5.59) (3.87) (0.74) (3.45) (2.88) (0.09) 

In-sample SR USA 0.64 0.60 0.48 0.40 0.53 0.38 
(3.65) (2.70) (2.19) (1.57) (6.26) (4.11) 

In-sample SR E 0.16 0.09 0.19 0.10 0.28 0.13 
(2.15) (0.62) (1.47) (0.74) (4.41) (1.29) 

In-sample SR J 0.04 -0.03 0.16 0.09 0.30 0.22 
(1.18) (-0.42) (1.27) (0.96) (2.99) (1.94) 

Time Fixed E˙ects YES YES YES YES YES YES YES YES YES YES YES YES 
Sample Size 523 523 523 523 522 522 522 522 515 515 515 515 
R-Squared 0.03 0.01 0.00 0.03 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.03 

Value-weighted Portfolios from the Liquid Universe 

Intercept 0.01 0.05 0.07 0.00 0.16 0.16 0.18 0.15 0.05 0.09 0.13 0.03 
(0.21) (2.57) (3.11) (0.03) (3.81) (5.18) (3.55) (3.27) (2.22) (7.65) (8.12) (0.99) 

In-sample SR USA 0.37 0.35 0.11 0.06 0.53 0.42 
(1.55) (1.20) (0.38) (0.21) (3.77) (3.21) 

In-sample SR E 0.10 0.09 0.13 0.10 0.32 0.30 
(0.68) (0.43) (0.61) (0.49) (3.84) (2.82) 

In-sample SR J -0.03 -0.07 0.09 0.06 0.02 -0.09 
(-1.10) (-1.54) (0.82) (1.04) (0.23) (-1.05) 

Time Fixed E˙ects YES YES YES YES YES YES YES YES YES YES YES YES 
Sample Size 523 523 523 523 522 522 522 522 515 515 515 515 
R-Squared 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.02 
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almost none of the coeÿcients are signifcant at 5% level. 

Panel B studies the predictability of future Sharpe ratios in panel setting. Past Sharpe ratios 

in the three regions and future three-year Sharpe ratios are estimated at the end of June every 

three years starting in 1995.27 Only anomalies that were published by the given June are retained 

in the sample. All the regressions use fxed e˙ects for time periods to control for time variability 

of proftability of the anomalies. The panel setting is suitable to answer the question whether past 

international performance is useful in estimation of future performance of the already published 

anomalies and thus to help to pick winning strategies at any point in time. 

The table shows some predictability of the future performance using past performance in the 

respective regions. The past performance in the US is, however, a dominant predictor when the 

past performance from all the regions is included together. The predictability is generally higher for 

equal-weighted portfolios and all-but-micro-caps sample of stocks than for value-weighted portfolios 

and liquid universe of stocks. 

The puzzling result that past performance of the anomalies outside the US is not useful for 

predictions of their future returns in the US can be explained by the fact that strategies that work 

everywhere should attract the largest attention from investors. The investors should in turn drive 

their future returns down. 

B. Portfolio-mixing Strategy 

Table X studies the benefts of past international evidence for selection of anomalies with better 

out-of-sample performance in the portfolio-mixing strategy. It shows performance of portfolios 

created by equally combining individual portfolios for all the signals signifcant with 5% false 

discovery rate. The performance metrics are based on returns on portfolios over the July 1995 to 

December 2016 period. The signifcance is determined by the past p-values on intercept in panel 

regressions of portfolio returns on just intercept. The p-values are based on heteroskedasticity and 

autocorrelation robust standard errors as in Driscoll and Kraay (1998). The portfolio returns are 

from the US, the US & Japan, the US & Europe, or the US & Japan & Europe. The standard 

errors used for computation of p-values are HAC robust. The signifcant signals are chosen at the 

end of each June and the past p-values are taken for the period from July 1963 (1990) for the US 

(Japan and Europe) up to the time of portfolio formation. 

The table X supports the evidence from table IX. The addition of international evidence does 

not lead to any signifcant improvement in out-of-sample performance of the strategy that mixes 

the signifcant anomalies. 
27The year 1995 was chosen so that there is enough evidence in Europe and Japan. The choice of starting point 

does not a˙ect the conclusions. 
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Table X 
Does International Evidence Improve the Performance of the Portfolio-mixing 

Strategy? 

The table shows returns on the portfolio-mixing strategy that equally invests in portfolios of the 
individual signifcant anomalies as described in Section I.C.2. The signifcance of anomalies is 
based on mean portfolio returns in the US, the US with Japan; the US with Europe; or the US 
with Japan plus Europe. 

Equal-weighted Value-weighted 

USA Europe Japan AP Global USA Europe Japan AP Global 

Evidence from the US 
Mean 0.174 0.297 0.001 0.663 0.284 0.301 0.180 0.253 0.882 0.404 
Sharpe Ratio 0.227 0.484 0.002 0.695 0.566 0.387 0.270 0.198 0.816 0.598 
Skewness 0.083 -0.085 -1.885 -1.087 -0.436 0.356 0.197 -0.046 1.871 1.358 
Kurtosis 9.963 9.230 14.68 13.16 6.920 6.481 9.243 25.09 16.59 22.41 
Max Drawdown -29.40 -17.96 -27.63 -27.43 -12.95 -18.12 -26.33 -61.07 -17.35 -20.79 

Evidence from the US & Japan 
Mean 0.144 0.277 0.071 0.476 0.242 0.192 0.181 0.245 0.949 0.392 
Sharpe Ratio 0.212 0.475 0.100 0.594 0.542 0.250 0.271 0.162 0.796 0.501 
Skewness 0.672 0.026 -3.252 -0.929 0.282 0.458 0.624 0.198 0.885 1.681 
Kurtosis 12.56 10.73 31.12 9.678 8.659 9.811 8.543 27.68 17.66 29.47 
Max Drawdown -28.32 -17.73 -37.96 -21.17 -15.93 -20.70 -25.12 -69.75 -23.55 -25.91 
Information Ratio -0.088 -0.080 0.191 -0.389 -0.174 -0.325 0.002 -0.018 0.118 -0.052 

Evidence from the US & Europe 
Mean 0.150 0.334 0.191 0.502 0.294 -0.091 0.023 0.234 0.445 0.153 
Sharpe Ratio 0.203 0.545 0.332 0.547 0.624 -0.124 0.037 0.197 0.269 0.245 
Skewness 1.195 1.953 -0.842 -1.111 1.278 -0.325 0.491 0.497 1.991 1.275 
Kurtosis 19.90 15.37 10.28 17.66 15.70 7.029 6.516 21.84 20.58 11.89 
Max Drawdown -33.19 -14.39 -20.88 -30.54 -18.08 -38.86 -37.71 -52.86 -45.93 -21.51 
Information Ratio -0.052 0.100 0.450 -0.327 0.038 -0.439 -0.232 -0.019 -0.270 -0.378 

Evidence from the US & Japan & Europe 
Mean -0.001 0.182 0.098 0.346 0.156 -0.088 0.067 0.154 0.440 0.143 
Sharpe Ratio -0.002 0.440 0.145 0.455 0.422 -0.144 0.113 0.136 0.342 0.282 
Skewness -1.760 0.337 -2.962 -1.259 -0.877 -0.223 0.198 -0.270 -0.202 0.150 
Kurtosis 12.25 5.283 29.25 16.60 7.187 8.267 7.281 20.28 13.43 8.314 
Max Drawdown -33.36 -13.59 -35.17 -23.61 -15.07 -33.05 -30.14 -62.00 -48.76 -12.54 
Information Ratio -0.238 -0.236 0.192 -0.456 -0.289 -0.460 -0.202 -0.113 -0.326 -0.461 

C. Mispricing Strategy 

The portfolio level analysis of individual anomalies found little value for the international 

evidence. The question is revisited here with the machine learning methods combining anomalies 

into one mispricing signal. 

The previous machine learning evidence was based on predictive regressions estimated solely 

on data from the US. This section frst investigates whether estimating the predictive regressions 

in the respective regions is more suitable than estimating them only on data from the US. It 

then explores whether combining estimation samples from the individual regions can improve the 

proftability to the mispricing strategy. 

There is surprisingly only a small di˙erence between returns on strategies that are estimated 

on data from the US in table IV and those that are estimated on data in the respective regions 

in table XI. One explanation for the similarity is that the sample size in the US is already large 

enough to capture the true drivers of stock returns that are globally valid. One exception is Asia 
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Pacifc region where there are only a few liquid stocks historically, which makes the predictive 

regressions imprecise. The performance of the mispricing strategy in Japan is also notably worse 

than when estimated on the US data. The explanation is again simple. Japan has undergone a 

slow eruption of an asset price bubble at the beginning of the estimation sample in early 1990s. 

The estimated relationships that are valid for this specifc period fare badly out-of-sample where 

the stock market dynamics go back to their normal state. 

Table XI 
Performance of the Mispricing Strategy Estimated in the Individual Regions 

The table shows out-of-sample performance of the mispricing strategy as described in Table IV. 
The predictive regressions for individual stock returns are estimated in each respective region. 

Equal-weighted Value-weighted 

USA Europe Japan AP Global USA Europe Japan AP Global 

Weighted Least Squares 
Mean 0.801 0.682 0.750 1.117 0.811 0.575 0.483 0.348 0.876 0.596 
Sharpe Ratio 0.479 0.450 0.396 0.507 0.786 0.348 0.338 0.157 0.375 0.541 
Skewness -0.340 -1.280 0.353 -1.957 -0.200 -0.121 -0.995 -0.255 -1.500 -0.349 
Kurtosis 8.521 10.03 7.663 20.65 6.543 7.214 7.863 7.841 18.58 6.483 
Max Drawdown -64.70 -50.52 -66.56 -61.71 -36.44 -69.75 -42.84 -72.33 -63.57 -44.58 

Penalized Weighted Least Squares 
Mean 0.756 0.753 0.701 1.333 0.823 0.644 0.616 0.423 1.359 0.656 
Sharpe Ratio 0.443 0.458 0.363 0.535 0.749 0.381 0.393 0.197 0.534 0.577 
Skewness -0.487 -1.026 0.360 -1.665 -0.278 -0.316 -1.033 0.329 -1.072 -0.376 
Kurtosis 8.703 8.700 7.280 21.06 6.723 7.297 8.447 6.321 15.03 7.534 
Max Drawdown -65.36 -46.61 -66.88 -69.25 -39.84 -68.02 -43.74 -58.29 -63.68 -39.76 

Gradient Boosting Regression Trees 
Mean 1.165 0.725 0.951 1.766 1.107 1.391 0.319 0.678 1.522 0.915 
Sharpe Ratio 0.720 0.596 0.636 0.761 1.183 0.831 0.238 0.400 0.581 0.850 
Skewness 0.319 -0.884 0.445 -0.346 -0.012 0.561 -1.250 0.071 0.026 -0.450 
Kurtosis 6.653 7.508 5.686 19.50 5.987 9.287 7.699 4.559 13.42 7.646 
Max Drawdown -38.31 -45.14 -34.11 -56.04 -22.56 -43.93 -58.13 -55.73 -55.96 -31.15 

Random Forest 
Mean 1.050 0.353 1.022 0.960 0.892 0.977 0.140 0.792 1.112 0.711 
Sharpe Ratio 0.703 0.265 0.779 0.544 1.007 0.691 0.094 0.503 0.516 0.688 
Skewness -0.328 -1.281 -0.201 0.591 -0.408 -0.594 -1.111 0.201 0.768 -0.953 
Kurtosis 5.989 9.421 4.537 6.862 6.323 4.951 6.857 4.150 9.382 6.801 
Max Drawdown -30.69 -51.84 -32.79 -52.27 -22.31 -30.59 -60.13 -47.42 -51.77 -29.88 

Neural Networks 
Mean 1.416 0.748 0.958 1.192 1.133 1.420 0.561 0.616 0.986 0.988 
Sharpe Ratio 0.905 0.544 0.572 0.592 1.308 0.905 0.383 0.305 0.423 1.025 
Skewness -0.083 -0.637 0.464 -0.435 0.026 -0.167 -0.696 0.054 -0.151 -0.465 
Kurtosis 7.316 6.991 7.300 5.796 4.891 6.432 7.182 8.016 5.195 6.920 
Max Drawdown -44.60 -50.30 -48.09 -55.31 -18.16 -48.11 -37.60 -72.91 -68.84 -21.88 

Table XII shows mean returns and other performance statistics for gradient boosting regression 

trees mispricing strategy as in table IV. The only di˙erence with respect to table IV is that the 

future individual stock returns are predicted from regressions estimated on historical data that 

are not solely from the US. Predictive regressions with training sample from the US, the US & 

Japan, the US & Europe, or the US & Japan & Europe & Asia Pacifc are compared. These three 

regions cover most of the developed markets and global stock market capitalization. Corresponding 

evidence for least square mispricing strategy is provided in the online appendix.28 

28It is omitted here for the sake of space as all the fndings are very similar to gradient boosting regression trees. 
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Table XII 
Performance of the Mispricing Strategy Estimated on the International Data 

The table shows returns of the mispricing strategy based on gradient boosting regression trees 
described in Table IV. The historical predictive regressions are estimated on individual stocks 
from combinations of the four covered regions: the US, Japan, Europe, Europe, Asia Pacifc. 

Equal-weighted Value-weighted 

USA Europe Japan AP Global USA Europe Japan AP Global 

Estimated in the US 
Mean 1.165 0.870 1.173 1.650 1.163 1.391 0.591 1.011 1.415 1.033 
Sharpe Ratio 0.720 0.644 0.766 1.005 1.146 0.831 0.412 0.525 0.800 0.870 
Skewness 0.319 -1.160 0.682 -0.437 -0.449 0.561 -1.314 0.800 -0.112 -0.433 
Kurtosis 6.653 10.17 8.274 5.575 6.812 9.287 12.03 8.611 4.718 7.797 
Max Drawdown -38.31 -48.25 -34.37 -36.65 -27.45 -43.93 -42.31 -41.79 -39.58 -35.62 
Estimated in the US and Cross-validated on the International Data 
Mean 1.114 1.012 1.021 1.192 1.085 1.318 0.665 0.675 0.846 0.968 
Sharpe Ratio 0.704 0.747 0.686 0.655 1.057 0.776 0.473 0.355 0.410 0.785 
Skewness 0.215 -0.422 0.313 -1.584 -0.558 0.270 -0.673 0.474 -1.266 -0.146 
Kurtosis 6.706 11.44 8.626 12.11 7.354 7.886 13.89 8.906 12.23 9.259 
Max Drawdown -36.49 -44.69 -39.01 -49.81 -30.07 -39.70 -43.57 -44.37 -61.01 -35.13 
Information Ratio -0.108 0.235 -0.285 -0.415 -0.265 -0.108 0.084 -0.399 -0.379 -0.115 
Estimated in the US & Japan 
Mean 1.317 1.015 1.353 1.537 1.289 1.616 0.812 1.001 1.722 1.262 
Sharpe Ratio 0.809 0.911 1.030 1.016 1.413 0.907 0.647 0.550 1.008 1.093 
Skewness 0.602 0.715 0.150 0.176 0.380 0.876 0.088 0.837 0.362 0.828 
Kurtosis 7.612 8.349 6.909 3.599 8.273 10.26 9.448 10.76 3.516 9.092 
Max Drawdown -34.18 -25.91 -25.82 -29.65 -19.15 -42.98 -30.11 -45.32 -29.95 -31.87 
Information Ratio 0.186 0.153 0.172 -0.083 0.224 0.208 0.203 -0.007 0.191 0.295 
Estimated in the US & Europe 
Mean 1.361 1.016 1.173 1.555 1.268 1.513 0.716 0.786 1.397 1.111 
Sharpe Ratio 0.854 0.812 0.763 0.892 1.241 0.875 0.501 0.431 0.654 0.944 
Skewness 0.049 0.159 0.251 -1.266 -0.313 0.537 -0.463 -0.063 -1.763 -0.055 
Kurtosis 6.672 6.745 6.599 11.62 6.270 8.410 7.574 5.445 17.04 6.332 
Max Drawdown -38.16 -40.92 -34.41 -45.58 -27.77 -38.96 -47.54 -49.58 -56.36 -30.43 
Information Ratio 0.281 0.197 -0.000 -0.085 0.248 0.150 0.129 -0.214 -0.010 0.130 
Estimated in the US & Japan & Europe & Asia Pacifc 
Mean 1.325 1.009 1.281 2.295 1.373 1.432 0.955 1.066 2.317 1.225 
Sharpe Ratio 0.808 0.870 0.960 1.486 1.394 0.803 0.680 0.615 1.056 1.048 
Skewness 0.257 0.262 0.114 0.624 -0.034 0.991 0.745 -0.013 0.750 0.451 
Kurtosis 7.133 5.071 5.931 5.360 7.274 11.46 7.285 4.745 8.252 7.276 
Max Drawdown -37.15 -33.19 -24.69 -20.31 -26.01 -38.84 -26.46 -44.00 -53.48 -30.43 
Information Ratio 0.191 0.131 0.114 0.530 0.404 0.036 0.295 0.045 0.483 0.251 

The table provides mixed results on the value of international evidence. There is a small 

gain from adding the international stocks to local training sample in the US for equal-weighted 

portfolios. Historical data in the US is therefore completely suÿcient for the future predictions 

in the US. Proftability of the mispricing strategy in Europe improves with predictions based on 

the estimation sample from the US and Europe relative to from the US only. The proftability in 

Japan also improves with training sample from both the US and Japan instead of from the US only. 

The largest gains in proftability are in Asia Pacifc region where training samples from Japan and 

Europe are jointly benefcial. 

The table also shows the gradient boosting regression tree mispricing strategy estimated in 

the US using parameters cross-validated in the other three regions. The cross-validation on data 

outside the US could add some predictive power as the validation sample is coming from more 
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recent period than when the training sample is from the US only. The table, however, documents 

that there is no gain from cross-validating outside the US. 

To conclude, the regional institutional setting is indeed an important determinant of stock 

return drivers. There is no gain for the US investor to seek international evidence for quantitative 

strategies. The larger statistical power, caused by a larger sample, seems to be completely o˙set 

by the di˙erences in institutional setting. 

IV. Importance of New Anomalies for Proftability of the 

Strategies 

Figure 1 documented that the number of published anomalies is increasing roughly linearly 

over time. Harvey et al. (2016) found even sharper increase for published as well as unpublished 

anomalies. Researchers are looking at the same data again and again to fnd the new anomalies 

which should lead to a large proportion of false positive discoveries. The proportion of false dis-

coveries is expected to increase over time as the strongest anomalies are likely already published. 

Harvey et al. (2016) therefore concluded that most of the recently published studies can be ex-

plained by data-mining and the standard critical values for statistical signifcance no longer apply. 

The data-mining should also lead to a lower predictive power of the new anomalies. Individual 

studies introducing new anomalies almost never properly control for all anomalies published previ-

ously. Many of the new anomalies are therefore subsumed by existing anomalies in proper multiple 

hypothesis setting as documented by Green et al. (2017). 

Most of the widely accepted anomalies have been published before 1995.29 It is therefore 

worth studying whether the more recently published drivers of stock returns are also important. 

This section investigates the marginal value of recently published anomalies for proftability of the 

mispricing strategy after accounting for anomalies published earlier. 

Table XIII presents mean returns and Sharpe ratios on the mispricing strategy as specifed in 

table IV but with further restrictions on the universe of anomalies. The mispricing strategy is 

estimated using anomalies that were published before 1995, 2000, or 2005. Its performance is then 

tracked over the 2005-2016 period.30 The di˙erent sets of anomalies provide a good indication for 

marginal value of the new signals published after 1995, while accounting for anomalies published 

before 1995. 

There are improvements in mean returns and Sharpe ratios for both the equal-weighted and 

value-weighted portfolios in the US with addition of the new anomalies. The new anomalies 
29For example heavily cited size and book-to-value factor in Fama and French (1992) were introduced before 1990. 
30Adding another set of anomalies published before 2010 and focusing on 2010-2016 out-of-sample period leads 

to identical fndings. The corresponding results are available in table IA4 in the online appendix. 
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Table XIII 
Are the More Recent Anomalies Improving Proftability of the Mispricing Strategy? 

The table shows returns of the mispricing strategy described in Table IV that is estimated on 
the individual stocks from the US. Anomalies in the estimation are restricted to those that were 
published before 1995, 2000, or 2005. The returns are reported in percentage points per month 
over the 2005-2016 period. 

Equal-weighted Value-weighted 

USA Europe Japan AP Global USA Europe Japan AP Global 

Weighted Least Squares 

Published by 1995 
Mean 0.044 0.082 0.361 0.294 0.169 0.268 0.297 0.914 0.284 0.256 
Sharpe Ratio 0.034 0.068 0.266 0.194 0.171 0.210 0.226 0.615 0.155 0.234 
Published by 2000 
Mean 0.055 0.278 0.341 -0.106 0.164 0.119 0.306 0.595 -0.238 0.232 
Sharpe Ratio 0.047 0.237 0.234 -0.072 0.177 0.093 0.241 0.363 -0.140 0.234 
Information Ratio 0.016 0.275 -0.025 -0.374 -0.010 -0.180 0.011 -0.326 -0.394 -0.038 
Published by 2005 
Mean 0.612 0.078 0.854 0.270 0.506 0.685 0.105 1.087 -0.004 0.556 
Sharpe Ratio 0.564 0.074 0.646 0.189 0.624 0.644 0.087 0.787 -0.002 0.684 
Information Ratio 0.856 -0.265 0.702 0.291 0.724 0.545 -0.173 0.482 0.134 0.444 

Gradient Boosting Regression Trees 

Published by 1995 
Mean 0.364 0.276 0.868 0.816 0.531 0.411 0.192 0.917 0.197 0.289 
Sharpe Ratio 0.369 0.216 0.772 0.521 0.692 0.377 0.133 0.766 0.114 0.322 
Published by 2000 
Mean 0.435 0.647 0.979 1.058 0.722 0.250 0.476 0.951 0.943 0.430 
Sharpe Ratio 0.408 0.483 0.873 0.727 0.901 0.234 0.313 0.720 0.602 0.461 
Information Ratio 0.091 0.453 0.122 0.226 0.430 -0.181 0.267 0.026 0.477 0.227 
Published by 2005 
Mean 0.824 0.602 1.212 1.043 0.904 0.948 0.381 1.138 0.414 0.777 
Sharpe Ratio 0.842 0.537 1.121 0.864 1.309 1.012 0.332 0.980 0.314 1.135 
Information Ratio 0.585 -0.054 0.276 -0.012 0.403 0.819 -0.090 0.169 -0.349 0.515 

therefore have signifcant incremental value for out-of-sample forecasts. This beneft is smaller in 

Japan and Europe. The results are similar for both least squares and gradient boosting regression 

trees methods but the returns from least squares are much more volatile. One explanation for 

the larger incremental value of the new anomalies in the US with respect to Europe and Japan is 

that there are more low-cost exchange traded funds in the US that arbitrage away the well-known 

strategies. It is therefore necessary to fnd new strategies to get the same predictability of stock 

returns over time. 

To conclude, the marginal value of the new anomalies remains positive over time. It is therefore 

valuable to follow recent academic research as it can increase returns to investors. The positive value 

of new anomalies is in line with the purpouse of academic publishing process where new fndings 

are put under scrutiny and the authors have to prove that their fndings provide incremental value 

with respect to the existing body of knowledge. The academic review process therefore fulflls its 

purpouse. 
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V. Transaction Costs 

This section studies the out-of-sample performance of the strategies after the transaction costs. 

It is possible that the profts on the strategies are only virtual and transaction costs are larger 

than the returns. It is therefore important to examine the costs related to the strategies. 

A. Transaction Costs on the Strategies 

Panel A: Portfolio-mixing Strategy. 

Panel B: Gradient Boosting Regression Trees Mispricing Strategy. 

Figure 9. Monthly Transaction Costs. Panel A shows transaction costs for the portfolio 
mixing strategy that equally invests in all the signifcant anomalies as described in Table III. Panel 
B shows transaction costs for the mispricing strategy described in Table IV that is estimated on 
individual stock returns from the US. The transaction costs are estimated with VoV(% Spread) 
proxy of Fong et al. (2017). 

Panel A in Figure 9 describes transaction costs on the portfolio-mixing strategy introduced in 
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Section II.A. The transaction costs are measured by VoV(% Spread) proxy introduced in Fong 

et al. (2017). It is evident that the trading costs are similar across the regions for the liquid sample 

of stocks. The highest transaction costs tend to be in Asia Pacifc region. The peaks in the fgure 

appear every July because of the annual rebalancing of the fundamental strategies. The graph also 

documents that there are periods with signifcant spillover of illiquidity. Two such major episodes 

are Global Financial Crisis of 2008 and Dot-com bubble of early 2000s. The transaction costs have 

decreased signifcantly over time with the increase in market share of electronic trading in 2000s. 

The transaction costs on the mispricing strategy are covered next. Panel B in Figure 9 maps 

transaction costs on the gradient boosting regression trees strategy estimated in the US. It is 

apparent that the transaction costs are larger than in case of portfolio-mixing strategy. The costs 

are larger because a large portion of the individual anomalies are fundamental anomalies that 

are rebalanced annually, whereas, the mispricing strategy is rebalanced monthly. The transaction 

costs have decreased signifcantly over time and there are again several historical episodes where 

they were heavily elevated, one being the Global Financial Crisis of 2008. The costs are smaller on 

value-weighted portfolios relative to equal-weighting which is expected because the value-weighting 

puts larger weight on more liquid stocks. 

Table XIV 
Transaction Costs on the Mispricing Strategy 

The table shows transaction costs and turnover on the gradient boosting regression trees mispricing 
strategy described in Table IV that is estimated on the individual stocks from the US. The trans-
action costs are estimated either with VoV(% Spread) proxy of Fong et al. (2017), average daily 
closing quoted spread, or Gibbs proxy of Hasbrouck (2009). The transaction costs and turnover 
are in percentage points per month. 

Equal-weighted Value-weighted 

USA Europe Japan AP Global USA Europe Japan AP Global 

VoV 0.203 0.343 0.388 0.493 0.357 0.151 0.232 0.288 0.386 0.264 
Gibbs 0.819 0.651 0.816 0.784 0.767 0.712 0.567 0.733 0.714 0.681 
Quoted Spread 0.111 0.511 0.482 0.791 0.473 0.101 0.384 0.418 0.645 0.387 
Turnover 120.0 119.2 118.9 123.6 120.4 130.5 127.1 127.7 139.4 131.2 

Table XIV presents average transaction costs on the gradient boosting regression trees mis-

pricing strategy. The transaction costs are estimated with three liquidity proxies introduced in 

section I.E. All the proxies provide very similar estimates of the transaction costs outside the US. 

Estimates from Gibbs proxy are signifcantly higher in the US than for the two other proxies. 

Gibbs proxy is, however, also the most noisy proxy since it is constructed at an annual frequency. 

It is furthermore not very suitable to measure transaction costs for the most liquid stocks due to 

its construction. 
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Table XIV also shows turnover of the mispricing strategy. The turnover is defned as 

X 
T urnovert = abs(wi,t − wi,t−1ri,t−1)/2 (5) 

i 

where wi,t is weight of stock i in the investment portfolio at the start of period t − 1 and ri,t−1 is 

stock return over period t − 1 to t. Sum of all absolute weights wi,t is equal to 2 since the portfolio 

is long-short. The turnover is close to 125% monthly in all the regions, which means that over 

60% of all the held stocks have to be sold and new bought for both the short and long leg of the 

strategy. The turnover can be easily reduced by staggered portfolio rebalancing but it is not a 

source of serious worries here due to the small average transaction costs on the liquid universe of 

stocks. 

The sample of stocks has been selected to be liquid ex ante. Only about 500 most liquid US 

stocks fulfll this criterion. These stocks should be with virtually no fxed transaction costs. The 

depicted costs therefore correspond to unfavorable trade executions through aggressive marketable 

orders. Sophisticated trade execution systems using limit orders are able to execute the strategies 

without any transaction costs. 

B. Performance of the Strategies after Transaction Costs 

B.1. Portfolio-mixing Strategy 

Panel A in Table XV presents returns on the portfolio-mixing strategy introduced in Table III 

adjusted for the trading costs. The set of selected signifcant strategies is di˙erent from Table III 

as the strategies are selected on after cost basis here. The selection after adjusting for transaction 

costs leads to a more proftable meta-strategy as the anomalies with the largest proftability are 

also often those with the largest transaction costs. 

Returns on the strategy remain positive outside Japan but they are generally smaller than 

without the transaction costs. The Sharpe ratios are also smaller. The global portfolio-mixing 

strategy, however, remains signifcantly proftable with Sharpe ratio close to 0.5 for value-weighted 

returns. 

B.2. Mispricing Strategy 

Panel B in Table XV presents performance of the mispricing strategy after transaction costs. 

The mean returns on the strategy remain signifcantly positive at 5% level. The net mean annu-

alized returns in the US are above 10% for the machine learning strategies. Sharpe ratios remain 

high, especially for the global strategy using neural networks where they are larger than one. 

The mean returns after transaction costs for weighted least square method are again smaller 
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Table XV 
Performance of the Strategies after Transaction Costs 

Panel A shows returns minus transaction costs of the portfolio-mixing strategy described in Ta-
ble III. Panel B shows returns after transaction costs of the mispricing strategy described in Ta-
ble IV that is estimated on the individual stocks from the US. The transaction costs are estimated 
with VoV(% Spread) proxy of Fong et al. (2017). The returns are reported in percentage points 
per month. 

Equal-weighted Value-weighted 

USA Europe Japan AP Global USA Europe Japan AP Global 

Panel A: Portfolio-mixing Strategy 

Mean 0.151 0.225 -0.119 0.612 0.217 0.109 0.066 0.185 0.589 0.237 
Sharpe Ratio 0.186 0.340 -0.165 0.609 0.399 0.184 0.104 0.202 0.630 0.488 
Skewness 0.272 0.024 -2.562 -1.255 -0.630 -0.044 0.202 0.260 1.264 0.643 
Kurtosis 8.958 7.277 20.36 13.26 6.979 5.907 9.065 23.91 13.59 16.12 
Max Drawdown -29.47 -23.33 -42.78 -28.47 -15.07 -22.87 -34.18 -48.59 -20.75 -11.80 

Panel B: Mispricing Strategy 

Weighted Least Squares 
Mean 0.583 0.336 0.514 0.269 0.439 0.583 0.336 0.514 0.269 0.439 
Sharpe Ratio 0.348 0.267 0.390 0.170 0.412 0.249 0.294 0.217 0.124 0.313 
Max Drawdown -66.74 -44.12 -49.35 -58.25 -49.63 -71.40 -39.33 -59.36 -58.92 -55.91 

Penalized Weighted Least Squares 
Mean 0.537 0.379 0.471 0.344 0.426 0.480 0.547 0.284 0.358 0.403 
Sharpe Ratio 0.315 0.290 0.353 0.211 0.385 0.284 0.381 0.177 0.173 0.335 
Max Drawdown -67.37 -43.85 -48.82 -54.35 -51.57 -69.77 -38.97 -58.36 -65.62 -54.72 

Gradient Boosting Regression Trees 
Mean 0.962 0.527 0.785 1.157 0.806 1.240 0.359 0.723 1.029 0.769 
Sharpe Ratio 0.594 0.390 0.513 0.704 0.793 0.741 0.250 0.376 0.581 0.648 
Max Drawdown -39.92 -49.42 -36.00 -41.48 -29.34 -44.94 -45.90 -48.05 -41.42 -37.52 

Random Forest 
Mean 0.844 0.681 0.714 0.414 0.703 0.825 0.089 0.751 0.770 0.525 
Sharpe Ratio 0.565 0.513 0.504 0.228 0.706 0.584 0.058 0.431 0.398 0.477 
Max Drawdown -34.62 -49.52 -41.89 -63.52 -29.97 -31.22 -61.80 -44.32 -46.17 -32.73 

Neural Networks 
Mean 1.222 0.785 0.934 1.296 1.016 1.282 0.610 0.834 0.829 0.851 
Sharpe Ratio 0.782 0.630 0.815 0.804 1.195 0.818 0.479 0.526 0.492 0.812 
Max Drawdown -46.21 -35.29 -25.93 -41.99 -20.70 -49.19 -39.00 -38.28 -58.37 -35.83 

than for the more advanced machine learning methods. The di˙erence is even larger on risk 

adjusted basis. This di˙erence in performance documents that the choice of appropriate forecasting 

method is very important for success of investing into the anomalies. 

To conclude, the strategies remain proftable even after accounting for the transaction costs. 

The proftability of the strategies is therefore not illusory and can be capitalized by the investors. 

VI. Conclusion 

This study has examined proftability of the quantitative strategies based on published anoma-

lies around the globe. It has been shown that investing into individual anomalies is proftable after 

accounting for transaction costs even on liquid universe of stocks. The performance of the strategy 

combining individual portfolios on anomalies can be improved by creating a single mispricing signal 

instead. Machine learning approach for construction of the mispricing signal was advocated and 
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its benefts documented. 

The machine learning methods lead to higher (risk adjusted) returns relative to standard meth-

ods applied in the academic fnance literature. The quantitative strategy using machine learning 

is highly proftable even on liquid universe of stocks. Value of the more recent anomalies was then 

studied. The recently published anomalies improve average returns on the investment strategy 

even after accounting for the previously published anomalies. The recent anomaly studies are 

therefore successful in fnding new sources of priced risk and investors’ behavioural biases. 

The role of international evidence on precision of predictions of future stock returns was studied. 

Out-of-sample performance in the US is not improved with international evidence in the training 

sample for the mispricing strategy. Most of the predictability of expected stock returns in all the 

global regions under study can be captured solely with the US training sample. 

Appendix A. Adjustments of Returns in Datastream 

A series of adjustments is applied on the raw returns to improve their quality. Return index 

(RI) is required to be larger than 0.001 on the frst day of the month for precision reasons. RI is set 

to missing if daily return is larger than 500% or if price on the frst day of the month is larger than 

$1 million. Any monthly return larger than 2000% is also set to missing. Datastream provides 

stale prices when there is no trade during the day or when the stock is no longer traded so that the 

price of the last trade is repeated until new information arrives. The latest observations of price 

with no trading are therefore deleted. Daily returns are fxed following Tobek and Hronec (2018) 

when there are stale price quotes around corporate events. Monthly returns larger than 300% that 

revert back over the next month are set to missing following Ince and Porter (2006).31 0.01% of 

returns is winsorized in each region and year before 2000 to limit role of outliers in returns. 

Appendix B. List of the Anomalies 

Table XVI 
List of Anomalies 

Fundamental 

Accruals 

Accruals Sloan (1996) 

Change in Common Equity Richardson, Sloan, Soliman, and Tuna (2006) 

Change in Current Operating Assets Richardson et al. (2006) 

Change in Current Operating Liabilities Richardson et al. (2006) 

31Specifcally, returns in two consecutive months are set as missing if the return in the frst month is larger than 
300% and the overall return over the two months is lower than 50%. 
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Change in Financial Liabilities 

Change in Long-Term Investments 

Change in Net Financial Assets 

Change in Net Non-Cash Working Capital 

Change in Net Non-Current Operating Assets 

Change in Non-Current Operating Assets 

Change in Non-Current Operating Liabilities 

Change in Short-Term Investments 

Discretionary Accruals 

Growth in Inventory 

Inventory Change 

Inventory Growth 

M/B and Accruals 

Net Working Capital Changes 

Percent Operating Accrual 

Percent Total Accrual 

Total Accruals 

Intangibles 

4 Gross Margin - 4 Sales 

4 Sales - 4 Accounts Receivable 

4 Sales - 4 Inventory 

4 Sales - 4 SG and A 

Asset Liquidity 

Asset Liquidity II 

Cash-to-assets 

Earnings Conservatism 

Earnings Persistence 

Earnings Predictability 

Earnings Smoothness 

Earnings Timeliness 

Herfndahl Index 

Hiring rate 

Industry Concentration Assets 

Industry Concentration Book Equity 

Industry-adjusted Organizational Capital-to-Assets 

Industry-adjusted Real Estate Ratio 

Org. Capital 

RD / Market Equity 

RD Capital-to-assets 

RD Expenses-to-sales 

Tangibility 

Unexpected RD Increases 

Whited-Wu Index 

Investment 

Richardson et al. (2006) 

Richardson et al. (2006) 

Richardson et al. (2006) 

Richardson et al. (2006) 

Richardson et al. (2006) 

Richardson et al. (2006) 

Richardson et al. (2006) 

Richardson et al. (2006) 

Dechow, Sloan, and Sweeney (1995) 

Thomas and Zhang (2002) 

Thomas and Zhang (2002) 

Belo and Lin (2011) 

Bartov and Kim (2004) 

Soliman (2008) 

Hafzalla, Lundholm, and Matthew Van Winkle (2011) 

Hafzalla et al. (2011) 

Richardson et al. (2006) 

Abarbanell and Bushee (1998) 

Abarbanell and Bushee (1998) 

Abarbanell and Bushee (1998) 

Abarbanell and Bushee (1998) 

Ortiz-Molina and Phillips (2014) 

Ortiz-Molina and Phillips (2014) 

Palazzo (2012) 

Francis, LaFond, Olsson, and Schipper (2004) 

Francis et al. (2004) 

Francis et al. (2004) 

Francis et al. (2004) 

Francis et al. (2004) 

Hou and Robinson (2006) 

Belo, Lin, and Bazdresch (2014) 

Hou and Robinson (2006) 

Hou and Robinson (2006) 

Eisfeldt and Papanikolaou (2013) 

Tuzel (2010) 

Eisfeldt and Papanikolaou (2013) 

Chan et al. (2001) 

Li (2011) 

Chan et al. (2001) 

Hahn and Lee (2009) 

Eberhart, Maxwell, and Siddique (2004) 

Whited and Wu (2006) 

43 



4 CAPEX - 4 Industry CAPEX 

Asset Growth 

Change Net Operating Assets 

Changes in PPE and Inventory-to-Assets 

Composite Debt Issuance 

Composite Equity Issuance (5-Year) 

Debt Issuance 

Growth in LTNOA 

Investment 

Net Debt Finance 

Net Equity Finance 

Net Operating Assets 

Noncurrent Operating Assets Changes 

Share Repurchases 

Total XFIN 

Proftability 

Asset Turnover 

Capital Turnover 

Cash-based Operating Proftability 

Change in Asset Turnover 

Change in Proft Margin 

Earnings / Price 

Earnings Consistency 

F-Score 

Gross Proftability 

Labor Force Eÿciency 

Leverage 

O-Score (More Financial Distress) 

Operating Profts to Assets 

Operating Profts to Equity 

Proft Margin 

Return on Net Operating Assets 

Return-on-Equity 

Z-Score (Less Financial Distress) 

Value 

Assets-to-Market 

Book Equity / Market Equity 

Cash Flow / Market Equity 

Duration of Equity 

Enterprise Component of Book/Price 

Enterprise Multiple 

Intangible Return 

Leverage Component of Book/Price 

Net Payout Yield 

Abarbanell and Bushee (1998) 

Cooper, Gulen, and Schill (2008) 

Hirshleifer, Hou, Teoh, and Zhang (2004) 

Lyandres, Sun, and Zhang (2007) 

Lyandres et al. (2007) 

Daniel and Titman (2006) 

Spiess and A˜eck-Graves (1995) 

Fairfeld, Whisenant, and Yohn (2003) 

Titman, Wei, and Xie (2004) 

Bradshaw, Richardson, and Sloan (2006) 

Bradshaw et al. (2006) 

Hirshleifer et al. (2004) 

Soliman (2008) 

Ikenberry, Lakonishok, and Vermaelen (1995) 

Bradshaw et al. (2006) 

Soliman (2008) 

Haugen and Baker (1996) 

Ball, Gerakos, Linnainmaa, and Nikolaev (2016) 

Soliman (2008) 

Soliman (2008) 

Basu (1977) 

Alwathainani (2009) 

Piotroski (2000) 

Novy-Marx (2013) 

Abarbanell and Bushee (1998) 

Bhandari (1988) 

Dichev (1998) 

Ball et al. (2016) 

Fama and French (2015) 

Soliman (2008) 

Soliman (2008) 

Haugen and Baker (1996) 

Dichev (1998) 

Fama and French (1992) 

Fama and French (1992) 

Lakonishok, Shleifer, and Vishny (1994) 

Dechow, Sloan, and Soliman (2004) 

Penman, Richardson, and Tuna (2007) 

Loughran and Wellman (2011) 

Daniel and Titman (2006) 

Penman et al. (2007) 

Boudoukh, Michaely, Richardson, and Roberts (2007) 
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Operating Leverage Novy-Marx (2010) 

Payout Yield Boudoukh et al. (2007) 

Sales Growth Lakonishok et al. (1994) 

Sales/Price Barbee Jr, Mukherji, and Raines (1996) 

Sustainable Growth Lockwood and Prombutr (2010) 

Market Friction 

11-Month Residual Momentum Blitz, Huij, and Martens (2011) 

52-Week High George and Hwang (2004) 

Amihud’s Measure (Illiquidity) Amihud (2002) 

Beta Fama and MacBeth (1973) 

Betting against Beta Frazzini and Pedersen (2014) 

Bid-Ask Spread Amihud and Mendelson (1986) 

Cash Flow Variance Haugen and Baker (1996) 

Coeÿcient of Variation of Share Turnover Chordia, Subrahmanyam, and Anshuman (2001) 

Coskewness Harvey and Siddique (2000) 

Downside Beta Ang, Chen, and Xing (2006a) 

Earnings Forecast-to-Price Elgers, Lo, and Pfei˙er Jr (2001) 

Firm Age Barry and Brown (1984) 

Firm Age-Momentum Zhang (2006) 

Idiosyncratic Risk Ang, Hodrick, Xing, and Zhang (2006b) 

Industry Momentum Moskowitz and Grinblatt (1999) 

Lagged Momentum Novy-Marx (2012) 

Liquidity Beta 1 Acharya and Pedersen (2005) 

Liquidity Beta 2 Acharya and Pedersen (2005) 

Liquidity Beta 3 Acharya and Pedersen (2005) 

Liquidity Beta 4 Acharya and Pedersen (2005) 

Liquidity Beta 5 Acharya and Pedersen (2005) 

Liquidity Shocks Bali, Peng, Shen, and Tang (2013) 

Long-Term Reversal Bondt and Thaler (1985) 

Max Bali, Cakici, and Whitelaw (2011) 

Momentum Jegadeesh and Titman (1993) 

Momentum and LT Reversal Kot and Chan (2006) 

Momentum-Reversal Jegadeesh and Titman (1993) 

Momentum-Volume Lee and Swaminathan (2000) 

Price Blume and Husic (1973) 

Seasonality Heston and Sadka (2008) 

Seasonality 1 A Heston and Sadka (2008) 

Seasonality 1 N Heston and Sadka (2008) 

Seasonality 11-15 A Heston and Sadka (2008) 

Seasonality 11-15 N Heston and Sadka (2008) 

Seasonality 16-20 A Heston and Sadka (2008) 

Seasonality 16-20 N Heston and Sadka (2008) 

Seasonality 2-5 A Heston and Sadka (2008) 

Seasonality 2-5 N Heston and Sadka (2008) 
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Seasonality 6-10 A Heston and Sadka (2008) 

Seasonality 6-10 N Heston and Sadka (2008) 

Share Issuance (1-Year) Ponti˙ and Woodgate (2008) 

Share Turnover Datar, Naik, and Radcli˙e (1998) 

Short-Term Reversal Jegadeesh (1990) 

Size Banz (1981) 

Tail Risk Kelly and Jiang (2014) 

Total Volatility Ang et al. (2006b) 

Volume / Market Value of Equity Haugen and Baker (1996) 

Volume Trend Haugen and Baker (1996) 

Volume Variance Chordia et al. (2001) 

I/B/E/S 

Analyst Value Frankel and Lee (1998) 

Analysts Coverage Elgers et al. (2001) 

Change in Forecast + Accrual Barth and Hutton (2004) 

Change in Recommendation Jegadeesh, Kim, Krische, and Lee (2004) 

Changes in Analyst Earnings Forecasts Hawkins, Chamberlin, and Daniel (1984) 

Disparity between LT and ST Earnings Growth Forecasts Da and Warachka (2011) 

Dispersion in Analyst LT Growth Forecasts Anderson, Ghysels, and Juergens (2005) 

Down Forecast Barber, Lehavy, McNichols, and Trueman (2001) 

Forecast Dispersion Diether, Malloy, and Scherbina (2002) 

Long-Term Growth Forecasts La Porta (1996) 

Up Forecast Barber et al. (2001) 
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Appendix C. Defnition of Liquidity Proxies 

Appendix A. VoV(% Spread) Proxy 

The fxed transaction costs are approximated with VoV(% Spread) proxy introduced in Fong 

et al. (2017). It is defned as 
σ2/3 

8 (C1) 
avg vol1/3 

where σ is standard deviation of daily returns and avg vol is average daily trading volume in 

USD within a given month. The trading volume is in USD and defated to 2000 prices. The 

proxy roughly measures fxed component of trading costs and excludes price impact. Including 

the price impact would further increase the transaction costs. Fong et al. (2017) show that the 

price impact component is very hard to measure. It is volatile over regions, and therefore, very 

dependent on execution strategy of individual asset managers. The focus is therefore solely on the 

fxed component of transaction costs (e˙ective spread). 

Kyle and Obizhaeva (2016) estimated a relationship between transaction costs and size of large 

institutional portfolio transfers depending on average daily trading volume and volatility of the 

stocks. The analysis was conducted on a proprietary dataset covering the 2002-2005 period. VoV(% 

Spread) roughly corresponds to the fxed component of their estimated transaction cost function. 

Fong et al. (2017) benchmarked the proxy to other existing proxies and found that it can be 

outperformed only by closing quoted spread. The quoted spread is, however, not available for all 

the regions over the whole sample period. 

Appendix B. Closing Quoted Spread 

Closing quoted spread for a given month is defned as 

TX1 2(ask − bid)
QS = (C2)

T ask + bid 
t=1 

where ask and bid are observed at the end of trading day on each stock exchange and T is number 

of days in the given month. Observations with missing or negative daily value of QS are excluded 

from the average. CRSP lists the best quote of bid and ask for NASDAQ stocks and the last 

representative quotes before the market close for NYSE and Amex stocks. Precise defnition of QS 

can therefore vary over the exchanges. 

Chung and Zhang (2014) frst benchmarked the QS by comparing it to high frequency e˙ective 

spread estimates from Trade and Quote (TAQ) database. They showed that QS has about 95% 

average cross sectional correlation with TAQ e˙ective spread over the 1998 to 2009 period. Fong 

et al. (2017) document that it is also the best spread proxy in international setting. One problem 
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with QS is that it is often missing in earlier periods and therefore has to be backflled with other 

proxies. 

Appendix C. Gibbs Proxy 

Roll (1984) introduced one of the frst spread proxies in the academic literature. He assumed 

that the true price of stock follows a random walk with bid-ask jumps. That is, 

Pt
A = Pt

A 
−1 + ut, Pt

O = Pt
A + sqt (C3) 

4 P o = s 4 qt + ut, ut ∼ N(0, σ2 ) (C4)t u 

where P o is observed log price, P A is price of the underlying Brownian motion, and s is a halft t 

spread. Indicator qt is equal to one if the last trade in the day is buy, minus one if it is sell, and 

zero if no prices are available during the day. Serial correlation of the price changes 4P o shouldt 

be negative and related to the spread through the following relationship 

q 
Sroll = 2 −cov(4Pt

o , 4P o ). (C5)t+1 

This can be contributed to the fact that 

2 2 2 cov(4Pt
o , 4Pt

o 
+1) = cov(s(qt − qt−1) + ut, s(qt+1 − qt) + ut+1) = E[−s q ] = −s . (C6)t 

The covariance can be positive in practice. In which case the estimate of spread is set equal to 

zero. 

Hasbrouck (2009) proposed to extend the Roll model by estimating it with Gibbs sampler. The 

idea is to estimate the equation (C4) augmented with another dependent variable (market return) 

via Bayesian regression. The variables qt are generated from the data by Gibbs sampler.32 

The proxy is estimated at annual frequency for each stock and calendar year. Lower frequency 

than annual leads to severe deterioration of the proxy’s performance. 

32Note that there is an error in the original paper in Journal of Finance. The correct posterior distribution forP 2 u
σ2 n t
u is IG(αprior + , βprior + ).

2 2 
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Table IA1 
Industries in Datastream Level 3 Classifcation and Corresponding Four Digit SIC 

Datastream lvl 3 industry SIC codes 

Automobiles & Parts 3011, 3510, 3714, 3751, 5013 
Basic Resources 800, 1000, 1040, 1090, 1220, 1221, 2421, 2600, 2611, 2621, 2631, 3310, 3312, 3317, 3330, 3334, 3350, 3360, 3444, 

3460, 3720, 5050, 5051 
Chemicals 2810, 2820, 2821, 2833, 2851, 2860, 2870, 2890, 2891, 2990, 3080, 3081, 3341, 5160 
Construct. & Material 1400, 1540, 1600, 1623, 1731, 2400, 2430, 2950, 3211, 3231, 3241, 3250, 3270, 3272, 3281, 3290, 3430, 3440, 3442, 

3448, 5031, 5070, 5072 
Financial Services(3) 6111, 6141, 6153, 6159, 6162, 6163, 6172, 6189, 6200, 6211, 6221, 6282, 6361, 6500, 6510, 6770, 6795, 6798, 6799, 

8880, 8888, 9995 
Food & Beverage 100, 200, 900, 2000, 2011, 2013, 2015, 2020, 2024, 2030, 2033, 2040, 2050, 2052, 2060, 2070, 2080, 2082, 2086, 

2090, 2092 
Healthcare 2590, 2800, 2834, 2835, 2836, 3060, 3821, 3826, 3841, 3842, 3843, 3844, 3845, 3851, 4100, 5047, 6324, 8000, 8011, 

8050, 8051, 8060, 8062, 8071, 8082, 8090, 8093, 8300, 8731 
Ind. Goods & Services 1700, 2390, 2650, 2670, 2673, 2750, 2761, 3050, 3086, 3089, 3221, 3320, 3357, 3390, 3411, 3412, 3443, 3451, 3452, 

3470, 3480, 3490, 3523, 3524, 3530, 3531, 3532, 3537, 3540, 3541, 3550, 3555, 3560, 3561, 3562, 3564, 3567, 3569, 
3575, 3580, 3585, 3590, 3600, 3612, 3613, 3620, 3621, 3634, 3640, 3669, 3670, 3672, 3677, 3678, 3679, 3690, 3711, 
3713, 3715, 3721, 3724, 3728, 3730, 3743, 3760, 3812, 3822, 3823, 3824, 3825, 3827, 3829, 3861, 3910, 4011, 4013, 
4210, 4213, 4231, 4400, 4412, 4513, 4700, 4731, 4950, 4953, 4955, 4961, 5000, 5063, 5065, 5080, 5082, 5084, 5090, 
5099, 6099, 6794, 7320, 7350, 7359, 7361, 7363, 7374, 7377, 7380, 7381, 7384, 7385, 7389, 7829, 8111, 8200, 8351, 
8600, 8700, 8711, 8734, 8741, 8742, 8744, 9721 

Insurance 6311, 6321, 6331, 6351, 6411 
Media 2711, 2721, 2731, 2732, 2741, 2780, 4832, 4833, 4841, 7310, 7311, 7330, 7331, 7819, 7822, 8900 
Oil & Gas 1311, 1381, 1382, 1389, 2911, 3533, 4522, 4610, 4900, 5171, 5172, 6792 
Pers & Househld Goods 1531, 2100, 2111, 2200, 2211, 2221, 2250, 2253, 2273, 2300, 2320, 2330, 2340, 2451, 2452, 2510, 2511, 2520, 2522, 

2531, 2540, 2771, 2840, 2842, 2844, 3021, 3100, 3220, 3260, 3420, 3433, 3630, 3651, 3716, 3790, 3873, 3911, 3931, 
3942, 3944, 3949, 3950, 3960, 5020, 5030, 5064, 5130, 5150, 5190, 6552 

Real Estate 6519, 6531 
Retail 700, 2790, 3140, 4220, 5094, 5010, 5110, 5122, 5140, 5141, 5180, 5200, 5211, 5271, 5311, 5331, 5399, 5400, 5411, 

5412, 5500, 5531, 5600, 5621, 5651, 5661, 5700, 5712, 5731, 5734, 5735, 5912, 5940, 5944, 5945, 5960, 5961, 5990, 
6399, 7200, 7340, 7500, 7600, 7841 

Technology 3559, 3570, 3571, 3572, 3576, 3577, 3578, 3579, 3661, 3663, 3674, 3695, 4899, 5040, 5045, 7370, 7371, 7372, 7373 
Telecommunications 4812, 4813, 4822 
Travel & Leisure 1520, 3652, 3990, 4512, 4581, 5810, 5812, 6512, 6513, 6532, 7000, 7011, 7510, 7812, 7830, 7900, 7948, 7990, 7997 
Utilities 4911, 4922, 4923, 4924, 4931, 4932, 4941, 4991, 5900 
Banks 6021, 6022, 6029, 6035, 6036, 6199 
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Table IA2 
Performance of the Mispricing Strategy Estimated on the Liquid Sample 

The table shows returns of the mispricing strategy described in Table IV that is estimated on 
the individual stocks from the US. The results labelled "Estimated on All-but-micro-caps" are 
taken from Table IV where the predictive regressions were estimated on all-but-micro-caps sample 
of stocks while the predictive regressions for results labelled "Estimated on Liquid Universe of 
Stock" were estimated on a more liquid universe of stocks. See Section I.A for defnition of the 
two samples. Panel A describes results from weighted least squares estimation method, Panel B 
from gradient boosting regression trees method, and Panel C from neural networks. The returns 
are reported in percentage points per month. 

Equal-weighted Value-weighted 

USA Europe Japan AP Global USA Europe Japan AP Global 

Panel A: Weighted Least Squares 

Estimated on All-but-micro-caps 
Mean 0.801 0.680 0.922 0.782 0.810 0.575 0.647 0.648 0.633 0.639 
Sharpe Ratio 0.479 0.541 0.701 0.497 0.763 0.348 0.472 0.410 0.318 0.550 
Skewness -0.340 0.239 -0.425 -0.356 0.025 -0.121 -0.017 -0.688 -0.238 -0.041 
Kurtosis 8.521 5.673 4.167 3.713 8.488 7.214 6.483 5.544 4.824 7.880 
Max Drawdown -64.70 -37.10 -43.36 -47.61 -43.51 -69.75 -34.16 -44.52 -49.86 -50.85 

Estimated on Liquid Universe of Stocks 
Mean 0.751 0.751 0.909 0.854 0.797 0.776 0.745 0.903 0.798 0.844 
Sharpe Ratio 0.435 0.572 0.706 0.500 0.732 0.469 0.577 0.595 0.424 0.747 
Skewness -0.459 -0.190 -0.157 -0.600 -0.359 0.123 -0.237 -0.005 -0.968 0.042 
Kurtosis 7.245 6.560 4.840 6.997 7.957 6.983 5.575 3.734 10.38 6.720 
Max Drawdown -48.76 -47.03 -33.82 -40.37 -32.49 -56.85 -30.22 -39.31 -47.27 -30.62 
Information Ratio -0.045 0.064 -0.013 0.053 -0.017 0.153 0.082 0.206 0.101 0.219 

Panel B: Gradient Boosting Regression Trees 

Estimated on All-but-micro-caps 
Mean 1.165 0.870 1.173 1.650 1.163 1.391 0.591 1.011 1.415 1.033 
Sharpe Ratio 0.720 0.644 0.766 1.005 1.146 0.831 0.412 0.525 0.800 0.870 
Skewness 0.319 -1.160 0.682 -0.437 -0.449 0.561 -1.314 0.800 -0.112 -0.433 
Kurtosis 6.653 10.17 8.274 5.575 6.812 9.287 12.03 8.611 4.718 7.797 
Max Drawdown -38.31 -48.25 -34.37 -36.65 -27.45 -43.93 -42.31 -41.79 -39.58 -35.62 

Estimated on Liquid Universe of Stocks 
Mean 1.110 0.808 0.907 1.179 1.010 1.219 0.979 0.906 1.295 1.111 
Sharpe Ratio 0.757 0.692 0.835 0.719 1.103 0.786 0.745 0.564 0.566 1.047 
Skewness -0.548 -0.235 -0.822 0.731 -0.720 -0.116 0.630 1.380 2.613 0.001 
Kurtosis 9.152 7.028 6.618 8.156 9.068 5.293 7.189 19.79 31.79 5.125 
Max Drawdown -34.33 -37.94 -25.85 -37.13 -23.71 -33.44 -26.73 -43.35 -52.74 -24.79 
Information Ratio -0.042 -0.066 -0.207 -0.289 -0.217 -0.111 0.320 -0.066 -0.052 0.087 

Panel C: Neural Networks 

Estimated on All-but-micro-caps 
Mean 1.416 1.097 1.295 1.752 1.346 1.420 0.826 1.100 1.177 1.093 
Sharpe Ratio 0.905 0.880 1.130 1.086 1.582 0.905 0.649 0.693 0.697 1.042 
Skewness -0.083 -0.082 -0.149 0.244 -0.310 -0.167 -0.470 0.629 0.638 -0.255 
Kurtosis 7.316 4.827 4.446 5.091 5.304 6.432 7.050 10.37 5.075 6.806 
Max Drawdown -44.60 -33.93 -24.70 -38.10 -18.90 -48.11 -31.93 -37.09 -54.45 -33.25 

Estimated on Liquid Universe of Stocks 
Mean 1.248 0.835 1.001 1.196 1.103 1.454 0.670 0.810 1.095 1.102 
Sharpe Ratio 0.674 0.617 0.812 0.700 0.939 0.843 0.491 0.519 0.557 0.981 
Skewness -0.069 0.032 -0.506 -0.306 -0.150 0.174 -0.272 -0.612 -0.159 -0.283 
Kurtosis 6.244 5.382 4.654 4.115 6.338 5.088 6.069 4.077 8.655 5.986 
Max Drawdown -51.51 -41.31 -32.50 -56.63 -33.54 -35.68 -38.76 -52.72 -66.17 -27.51 
Information Ratio -0.083 -0.209 -0.261 -0.345 -0.224 0.017 -0.124 -0.185 -0.044 0.007 

IA3 



Table IA3 
Performance of the Mispricing Strategy Estimated on Stocks Outside the US: 

Weighted Least Squares Regressions 

The table shows returns of the mispricing strategy as described in Table IV that is estimated on 
individual stocks from the US, US & Japan, US & Europe, or US & Japan & Europe. The returns 
are in percentage points per month. 

Equal-weighted Value-weighted 

USA Europe Japan AP Global USA Europe Japan AP Global 

Evidence from the US 
Mean 0.801 0.680 0.922 0.782 0.810 0.575 0.647 0.648 0.633 0.639 
Sharpe Ratio 0.479 0.541 0.701 0.497 0.763 0.348 0.472 0.410 0.318 0.550 
Skewness -0.340 0.239 -0.425 -0.356 0.025 -0.121 -0.017 -0.688 -0.238 -0.041 
Kurtosis 8.521 5.673 4.167 3.713 8.488 7.214 6.483 5.544 4.824 7.880 
Max Drawdown -64.70 -37.10 -43.36 -47.61 -43.51 -69.75 -34.16 -44.52 -49.86 -50.85 

Evidence from the US & Japan 
Mean 0.694 0.648 0.796 0.748 0.722 0.607 0.703 0.602 0.569 0.639 
Sharpe Ratio 0.404 0.485 0.543 0.450 0.642 0.337 0.485 0.339 0.302 0.498 
Skewness -0.215 0.296 -0.407 -0.373 0.055 -0.167 0.296 0.590 0.105 0.362 
Kurtosis 7.929 5.619 5.593 4.571 7.920 7.716 5.202 11.16 3.816 9.129 
Max Drawdown -69.18 -42.84 -55.39 -48.93 -49.92 -73.56 -36.78 -53.55 -51.64 -54.34 
Information Ratio -0.181 -0.056 -0.189 -0.035 -0.218 0.042 0.098 -0.044 -0.045 0.000 

Evidence from the US & Europe 
Mean 0.780 0.700 0.854 1.140 0.842 0.708 0.638 0.569 0.897 0.715 
Sharpe Ratio 0.435 0.546 0.646 0.697 0.736 0.418 0.477 0.340 0.487 0.603 
Skewness -0.581 0.082 -0.590 -0.356 -0.397 -0.308 0.141 -0.617 -0.255 -0.221 
Kurtosis 10.31 5.844 4.491 3.826 8.745 8.525 5.838 4.677 3.726 7.486 
Max Drawdown -63.84 -41.66 -41.74 -48.17 -41.68 -63.39 -36.58 -58.68 -49.51 -44.83 
Information Ratio -0.037 0.031 -0.116 0.442 0.082 0.173 -0.014 -0.098 0.274 0.142 

Evidence from the US & Japan & Europe 
Mean 0.808 0.699 0.884 1.112 0.853 0.765 0.626 0.469 1.020 0.730 
Sharpe Ratio 0.444 0.516 0.645 0.691 0.736 0.422 0.426 0.267 0.530 0.580 
Skewness -0.359 0.304 -0.267 -0.321 -0.096 -0.303 -0.038 0.134 -0.466 0.034 
Kurtosis 8.281 5.359 4.212 4.241 7.407 7.961 5.712 7.329 5.093 7.344 
Max Drawdown -70.99 -45.05 -39.66 -42.05 -45.60 -72.31 -37.82 -63.48 -45.19 -50.12 
Information Ratio 0.009 0.028 -0.057 0.346 0.096 0.221 -0.030 -0.167 0.320 0.155 
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Table IA4 
Is Marginal Return to Following New Anomalies Decreasing over Time? 

The table shows returns of the mispricing strategy described in Table IV that is estimated on the 
individual stocks from the US. The set of anomalies in the estimation is restricted to those that 
were published before 1995, 2000, 2005, or 2010. Returns are reported in percentage points per 
month over the 2010-2016 period. 

Equal-weighted Value-weighted 

USA Europe Japan AP Global USA Europe Japan AP Global 

Weighted Least Squares 

Published by 1995 
Mean 0.189 0.408 0.324 0.343 0.301 0.190 0.300 1.028 0.424 0.337 
Sharpe Ratio 0.210 0.408 0.306 0.255 0.440 0.208 0.263 0.926 0.295 0.442 
Published by 2000 
Mean 0.193 0.777 0.577 0.055 0.409 0.129 0.588 1.063 -0.121 0.415 
Sharpe Ratio 0.213 0.811 0.475 0.042 0.592 0.138 0.506 0.816 -0.090 0.540 
Information Ratio 0.006 0.556 0.333 -0.306 0.253 -0.086 0.354 0.040 -0.421 0.150 
Published by 2005 
Mean 0.896 0.780 0.873 0.517 0.793 0.807 0.476 1.376 0.010 0.860 
Sharpe Ratio 1.031 0.812 0.760 0.386 1.181 1.001 0.392 1.091 0.006 1.189 
Information Ratio 1.233 0.004 0.476 0.380 0.974 0.858 -0.107 0.376 0.081 0.686 
Published by 2010 
Mean 0.997 0.868 0.978 1.283 0.994 0.797 0.569 0.934 1.247 0.892 
Sharpe Ratio 1.240 0.997 0.978 0.937 1.589 0.907 0.561 0.830 0.863 1.262 
Information Ratio 0.198 0.156 0.153 0.796 0.595 -0.015 0.130 -0.539 0.792 0.069 

Gradient Boosting Regression Trees 

Published by 1995 
Mean 0.514 0.446 0.634 1.034 0.609 0.446 0.695 0.706 0.817 0.617 
Sharpe Ratio 0.638 0.480 0.637 0.723 1.115 0.483 0.739 0.661 0.528 1.006 
Published by 2000 
Mean 0.517 0.906 1.090 1.595 0.918 0.134 0.652 1.172 1.399 0.561 
Sharpe Ratio 0.655 1.015 1.167 1.246 1.765 0.150 0.728 1.001 1.049 0.947 
Information Ratio 0.006 0.658 0.487 0.546 0.752 -0.389 -0.054 0.348 0.432 -0.096 
Published by 2005 
Mean 0.830 0.948 1.169 1.583 1.045 0.822 0.792 1.182 1.161 0.941 
Sharpe Ratio 1.223 1.080 1.286 1.483 2.324 1.054 1.082 1.241 1.028 1.978 
Information Ratio 0.483 0.057 0.095 -0.009 0.294 0.827 0.154 0.009 -0.152 0.645 
Published by 2010 
Mean 1.011 1.140 0.817 1.943 1.121 0.509 1.085 0.911 1.765 0.898 
Sharpe Ratio 1.443 1.264 0.803 1.562 2.039 0.585 1.221 0.733 1.435 1.530 
Information Ratio 0.348 0.289 -0.447 0.369 0.216 -0.405 0.382 -0.277 0.485 -0.094 
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Appendix A. Monthly Updated Fundamental Anomalies 

Anomalies based on annual fnancial statements have so far been updated annually every June. 
June was chosen so that frms with fnancial year ending in December have 6 months to publish 
their statements. The explicit assumption was that all the frms publish their statements within 6 
months after their fnancial year has ended. The rule was originally devised on the US data where 
great majority of frms have their fnancial year ending in December. The usual fnancial year end 
is, however, di˙erent in the other regions. 78% of frms in Japan have fnancial year ending in 
March. The most frequent choice of fnancial year end in Asia Pacifc region is either December 
or June both being about equally likely. Financial year end date outside December leads to the 
fnancial statements being older than 6 months in June and thus being less relevant. Bartram and 
Grinblatt (2018) and Jacobs and Müller (2017c) circumvented this problem when working with 
international data by relying on point-in-time Reuters database that presents fnancial statements 
as they were published by a given date and creating the fundamental signals monthly. We do not 
have access to the point-in-time database but we will here create a pseudo point-in-time database 
and will also refresh the fundamental signals monthly rather than annually. 

Table IA5 presents results from Table IV based on the annual construction of fundamental 
signals along with their monthly construction. Everything remains the same as in Table IV with 
the only di˙erence being that the fundamental signals are updated every month with fnancial 
statement information from fnancial years ending at least 6 months prior. The explicit assumption 
again is that all the frms publish their statements within the 6 months after their fnancial year 
has ended. All the trade data information such as market cap is also updated monthly and taken 
the most recent. Market cap was previously taken from the previous calendar year end as in Fama 
and French (1992) and was therefore outdated by 6 months by June. Asness and Frazzini (2013) 
showed that market cap from June leads to better performance of value factor. There can therefore 
also be some beneft from shifting the trade data information. 

Table IA5 documents that the lag in availability of the fnancial statements leads to some 
loss in performance in almost all the regions. Both mean returns and Sharpe ratios with the 
monthly updating of the fundamental signals are about 10% higher relative to when they are 
updated annually. To conclude, the monthly updating can slightly improve the performance of the 
mispricing strategy but it does not a˙ect the main conclusions of this study. 
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Table IA5 
Performance of the Mispricing Strategy with Monthly Updated Fundamental Signals 

The table shows returns of the mispricing strategy described in Table IV that is estimated on 
the individual stocks from the US. The results labelled "Annually Updated Fundamental Signals" 
directly correspond to Table IV where the fundamental signals are updated every June while the 
results labelled "Monthly Updated Fundamental Signals" are created using fundamental signals 
that are updated every month based on fnancial statements released more than six months prior. 
Panel A describes results from weighted least squares estimation method while Panel B reports 
results from gradient boosting regression trees method. The returns are reported in percentage 
points per month. 

Equal-weighted Value-weighted 

USA Europe Japan AP Global USA Europe Japan AP Global 

Panel A: Weighted Least Squares 

Annually Updated Fundamental Signals 
Mean 0.801 0.680 0.922 0.782 0.810 0.575 0.647 0.648 0.633 0.639 
Sharpe Ratio 0.479 0.541 0.701 0.497 0.763 0.348 0.472 0.410 0.318 0.550 
Skewness -0.340 0.239 -0.425 -0.356 0.025 -0.121 -0.017 -0.688 -0.238 -0.041 
Kurtosis 8.521 5.673 4.167 3.713 8.488 7.214 6.483 5.544 4.824 7.880 
Max Drawdown -64.70 -37.10 -43.36 -47.61 -43.51 -69.75 -34.16 -44.52 -49.86 -50.85 

Monthly Updated Fundamental Signals 
Mean 0.889 0.750 0.869 1.078 0.883 0.736 0.585 0.640 0.676 0.696 
Sharpe Ratio 0.537 0.644 0.690 0.663 0.867 0.447 0.440 0.386 0.360 0.634 
Skewness -0.203 0.246 -0.479 -0.307 0.008 -0.046 0.075 -0.139 -0.209 -0.063 
Kurtosis 8.039 4.970 4.987 3.822 7.683 6.466 6.056 5.155 4.145 6.239 
Max Drawdown -63.40 -38.59 -39.29 -42.31 -37.78 -65.32 -26.37 -62.52 -41.22 -41.57 
Information Ratio 0.173 0.133 -0.074 0.272 0.219 0.218 -0.105 -0.008 0.029 0.114 

Panel B: Gradient Boosting Regression Trees 

Annually Updated Fundamental Signals 
Mean 1.165 0.870 1.173 1.650 1.163 1.391 0.591 1.011 1.415 1.033 
Sharpe Ratio 0.720 0.644 0.766 1.005 1.146 0.831 0.412 0.525 0.800 0.870 
Skewness 0.319 -1.160 0.682 -0.437 -0.449 0.561 -1.314 0.800 -0.112 -0.433 
Kurtosis 6.653 10.17 8.274 5.575 6.812 9.287 12.03 8.611 4.718 7.797 
Max Drawdown -38.31 -48.25 -34.37 -36.65 -27.45 -43.93 -42.31 -41.79 -39.58 -35.62 

Monthly Updated Fundamental Signals 
Mean 1.264 1.039 1.242 1.597 1.254 1.492 0.771 1.207 1.314 1.125 
Sharpe Ratio 0.786 0.840 0.858 0.965 1.241 0.900 0.538 0.645 0.770 0.902 
Skewness 0.260 -0.848 0.438 -0.099 -0.337 1.041 -1.332 1.057 0.203 0.518 
Kurtosis 7.663 10.95 8.076 5.330 6.896 8.525 16.78 10.60 5.307 7.435 
Max Drawdown -47.13 -43.82 -30.79 -37.49 -27.12 -43.11 -43.00 -36.56 -35.74 -31.02 
Information Ratio 0.142 0.270 0.091 -0.042 0.237 0.110 0.179 0.191 -0.065 0.141 
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