Momentum and the Cross-section of Stock Volatility

Abstract

Recent literature shows that momentum strategies exhibit significant downside risks over certain
periods, or called “momentum crashes”. We find that the high uncertainty of momentum strategies
is sourced from the cross-sectional volatility of individual stocks. Stocks with high realised volatility
over the formation period tend to lose momentum effect, while stocks with low realised volatility
show strong momentum. A new approach, generalised risk-adjusted momentum (GRJMOM), is
introduced to mitigate the negative impact of high momentum risks. GRJMOM is proven to be
more profitable and less risky than the existing momentum ranking approaches in multiple asset
classes, including the UK stock, commodity, global equity index, and fixed income markets.
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1. Introduction

Despite that momentum strategies exhibit persistent positive proﬁtabilityEI they are volatile

and face crash risks over specific periods. |Grundy and Martin| (2001)) found that momentum returns

experience negative market beta following bear markets. More recently, [Barroso and Santa-Clara

(2015) and Daniel and Moskowitz| (2016) showed that the momentum strategy in the stock market

suffers from infrequent and persistent strings of negative returns, called momentum crashes.

[and Moskowitz| (2016]) argued that momentum crashes are caused by the exceeding period returns

of losers over winners following panic states when markets rebound.

One commonality between [Barroso and Santa-Clara) (2015)) and [Daniel and Moskowitz| (2016])

is that both papers attributed momentum risks to time-varying volatility of the winner minus loser

1Evidence of momentum has been investigated in international stock markets, see, e.g., [Fama and French
(1998) ,emerging markets,see, e.g., [Rouwenhorst| (1999), commodity market, see,e.g., [Miffre and Rallis| (2007),
Narayan et al.| (2015)), Bianchi et al,| (2015), regional equity indices, see, e.g., |Asness et al| (1997), Balvers and)|
Wu| (2006)), [Bhojraj and Swaminathan| (2006), foreign exchange, see, e.g., Menkhoff et al.| (20120)), industries, see,
e.g.,|[Moskowitz and Grinblatt| (1999), size and B/M factors, see, e.g., Lewellen| (2002)), and global asset classes, see,
e.g., |Asness et al.| (2013). In the financial industry, momentum has been incorporated in sorting decisions by the
mutual fund manager, see, e.g., [Titman and Grinblatt| (1989)), |Grinblatt and Titman]| (1993).




(WML) series. According to |Barroso and Santa-Claral (2015]), this is called the momentum-specific
risk which cannot be diversified away, as “momentum is a well-diversified portfolio and all its risk is
systematic”. Therefore, both papers proposed different approaches to scale the position size of the
WML returns according and allow it to be time-varying. Since the WML series is not known until
the constituents of momentum strategy are determined, their work essentially adjusts momentum
returns after the portfolio is constructed.

We argue that the uncertainty of momentum strategies is not only determined by the time-
varying volatility of the WML series, but also the cross-sectional volatility of individual stocks. The
core mechanism of momentum is to allocate buy (sell) signals to assets with the highest (lowest)
formation period returns. Stocks with high returns are usually associated with high volatility over
the formation period. Therefore, the probability of an instrument to be selected into a momentum
portfolio is highly related to its realised volatility. In the UK market, the number of stocks with
the highest (top 10%) realised volatility over the formation period and later selected into the
momentum portfolio is 8.3 times as the number of stocks with the lowest (bottom 10%) realised
Volatilityﬂ This cluster of high volatility instruments leads to the high volatility of momentum
portfolios, or momentum-specific risks. Therefore, we conclude that the momentum risks are
sourced from the ranking procedure at the signalling stage before the portfolio is constructed.

More interestingly, we find that stocks with high realised volatility over the formation period
tend to lose momentum effect, while stocks with low realised volatility show strong momentum.
Based on our four samples consisting of the UK stock, commodity, equity index, and fixed income
markets, we decompose each of them into ten deciles according to instrument realised volatility
over the formation periocﬂ Panel regressions are performed to examine the momentum effect for
each of these ten deciles. We find that none of the momentum effect (reflected in t-statistics of the
coefficients) is statistically significant in the top three deciles with the highest realised volatility. By
contrast, most assets in the bottom three deciles with the lowest realised volatility show significant
positive momentum effect.

To measure the momentum risks, we calculate the spread between the volatility of a momentum
strategy and that of a randomly selected portfolio. The randomly selected portfolio is sampled

from the market and has the same number of assets as the momentum strategy. We call this

2This ratio is 5.2 times for winners and 11.9 times for losers. Consistent with [Daniel and Moskowitz| (2016) who
claimed that loser portfolio is the main cause of momentum crashes, we find that the problem of high volatility
stock clustering is more severe in losers.

3The idea of dividing the portfolio into ten deciles accroding to asset realised volailtity is similar to |Ang et al.
(2006).



measure the excess volatility of momentum strategieeﬂ We calculate this excess volatility based
on our sample consisting of four markets, namely the UK stock, commodity, equity index, and
fixed income markets. The results suggest that the excess volatility of momentum strategies is
statistically significant in all asset classes. Hence, confirming the existence of momentum-specific
risks.

An intuitive approach to reduce this excess volatility is to consider risk-adjusted returns at
the momentum ranking stage. [Pirrong (2005) and [Rachev et al.| (2007) formed their momentum
strategies by ranking the Sharpe ratios (SRMOM) instead of period returns in the commodity
futures market and U.S stock market, respectively. They have found that their risk-adjusted
momentum strategies tend to outperform the original XSMOM. However, neither paper focused
on economic rationales for why using a risk-adjusted ranking method. Our paper fills this gap by
providing evidence that using risk-adjusted momentum is related to the excess volatility specific
to momentum strategies. The idea is also consistent with the volatility timing theory in portfolio
management, see, e.g., Fleming et al.| (2001)), [Fleming et al.| (2003)), [Kirby and Ostdiek| (2012)) and
Moreira and Muir (2017)|ﬂ

Our empirical results suggest that simply using the Sharpe ratio ranking of [Pirrong) (2005) and
Rachev et al.[(2007) does eliminate part of the excess volatility of momentum strategies. However,
it is far from optimal. Consider, for instance, an asset that has high absolute returns but at the same
time is extremely volatile, simply adjusting its return by one standard deviation is not adequate.
Therefore, it is natural to ask a question, is there a generalisation of risk-adjusted momentum that
allows investors to change the degree of aggressiveness to adjust returns? Ideally, this generalised
method can remove those instruments that are less attractive in term of reward-to-risk trade-off,
while still keeping the high profitability of momentum strategies.

In this paper, we propose such a solution, called generalised risk-adjusted momentum (GR-
JMOM). GRJMOM sorts momentum winners and losers based on ranking asset risk-adjusted
returns in order to mitigate the clustering problem in high volatility stocks. GRJMOM trading
strategy leads to substantial statistical and economic profits compared to the momentum strat-
egy based on ranking the absolute returns (XSMOM). In the UK stock market, the GRIMOM
yields an annualised return of 22.4% compared to the XSMOM return of 17.9%, with the Sharpe
ratio improved from 0.67 (XSMOM) to 1.18 (GRIJIMOM). More importantly, the GRIMOM sig-

4The concept of excess volatility differs from the one that was first defined by |Shiller| (1981) and [LeRoy and
Porter| (1981). We use this term here as it measures risks of momentum strategies in excess of a benchmark (the
market portfolio).

5The core idea of volatility timing is to construct future portfolios based on the conditional/realised volatility or
the conditional covariance matrix of asset returns.



nificantly reduces momentum risks from an annualised standard deviation of 27% (XSMOM) to
19% (GRJMOM) and performs much better in periods of momentum crashes.

More specifically, the assets are ranked based on the ratio between period returns and the Nth
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where R216€712,t71 is the period returns of
asset k over the formation period; oF is the realised volatility over the same period; the parameter
N measures how aggressively the period return is adjusted by its realised volatility. GRJMOM
ranking scheme is structurally similar to a generalised volatility timing trading strategy proposed
by Kirby and Ostdiek| (2012)), who also assigned an exponential parameter to the realised volatility
in determining portfolio weights. GRJMOM provides a flexible ranking system allowing for risk-
focused adjustment during recessions and market crashes.

The tuning parameter N can be of any value great or equal zero. For example, if N = 0, then
we remove the risk-adjustment from returns. In such a case, the target GRJMOM is equivalent to
an original XSMOM. If N = 1, then the Sharpe ratios (return-to-standard deviation) are ranked,
which is similar to [Pirrong| (2005) and |[Rachev et al|(2007). If N = 2, then the return-to-variance
ratios are ranked where the risks are more aggressively adjusted.

The optimum N can be calculated using a grid search method based on different degrees of risk
aversions. A risk seeker focuses on the relationship between N and portfolio returns; a risk aversion
investor finds the optimum N when portfolio volatility is minimised; a risk-neutral investor looks
for the best N when Sharpe ratio is maximised. In each of the above three cases, we can find one
single optimum value for this parameter N using our entire sample. For instance, if we plot the NV
versus the Sharpe ratios of the corresponding risk-adjusted momentum strategies, we find that the
relationship looks like a parabola. This means that we can always find the peak point (or trough
point for minimising volatility problems) by changing the value of N.

Furthermore, we propose a cross-validation method to allow the parameter N to be timing-
varying, responding to the dynamic of market over period. During an expanding window, the N
that leads to the maximised portfolio Sharpe ratio is defined as the optimum. This method does
not require any additional assumptions, allowing all the parameters to be generated automatically.
Overall, we find that the optimal IV increases over time, for all four asset classes. This means that
the role of volatility is becoming more important in momentum strategies over the past decades.

Apart from the above-mentioned outperformance of GRJMOM in the UK stock market, it
works in our global asset classes sample as well. The outperformance is reflected in term of
higher portfolio returns and Sharpe ratios, and lower volatility and maximum drawdown. In the
commodity sample, the GRIMOM generates a Sharpe ratio that is 70% and 29% greater than
those from XSMOM and SRMOM, respectively. For the equity index, a Sharpe ratio is 64% and



22% greater than those from the two benchmarks, respectively. Finally, in the fixed income sample,
the GRJMOM yields to a positive Sharpe ratio, whereas those from the XSMOM and SRMOM
are negative.

We further evaluate the risk exposure of GRJMOM using the 4-factor model (Fama and French)
1992, |Carhartl, {1997) and value & momentum everywhere model (Asness et al., |2013]). According
to the regression results of the 4-factor model, the GRJMOM strategies report the outperformed
abnormal returns across multiple markets. In UK stocks, for example, the abnormal profit of
GRJMOM is 116% and 30% higher than those of XSMOM and SRMOM strategies, respectively.
In the global asset markets, the GRJMOM also show superior alphas compared to XSMOM and
SRMOM. Similar performance is observed in the results of value & momentum everywhere model.

One benefit of the GRJMOM is that it performs a cross-sectional adjustment to momentum
signals before the portfolio is constructed. Like the plain momentum strategy, it also has a sym-
metric structure, where the long and short side investments are equal. Hence, GRJMOM strategy
can be compared directly to XSMOM. By contrast, Barroso and Santa-Claral (2015) and Daniel
and Moskowitz (2016]) conducted the time series adjustment after the construction of momentum
portfolios. Their volatility scaling approaches lead to a time-varying position size of their strate-
giesﬂ According to|Goyal and Jegadeesh| (2017)), our GRJMOM strategy is a “zero net-investment
strategy with the total active position being 2$”. By applying the same scaling factor as in|Barroso
and Santa-Claral (2015)) to the GRIMOM strategy, we find that the GRJMOM shows substantial
outperformance to their constant target volatility scaled momentum strategy.

The remainder of this study is organised as follow. Section [J] details the data sources and
construction of momentum portfolios. In section |3] we present our main research motivation and
analyse the sources of momentum risks. Section [d] demonstrates how the generalised risk-adjusted
momentum strategy is constructed. In Section [5] we focus on the risk management properties of
GRJMOM in crash periods. In Section [6] we employ factor models to evaluate the risk exposure

of GRJIMOM. Finally, we conclude our findings in section [7}

2. Data and portfolio construction

2.1. Data

In this study, our dataset contains two major samples. First, we base our research on all the

stocks traded on the London Stock Exchange from January 1965 to July 2018. Second, we obtain a

6 Although these strategies are still zero net-investment strategies, they are exposed to more market risks over
certain periods when the past volatility is low.



global sample consisting of 70 investable instruments in three asset classes, including commodity,
equity indices and fixed income. Among them, 27 are commodity index futures; 24 are global
equity indices; 19 are sovereign bond or short-term deposit. The summary statistics of these three
asset classes are available in The detailed data sources are discussed in the following

sub-sections.

2.1.1. UK stock market

Our UK stock market sample consists of all the stocks traded on the London Stock Exchange
available on Datastream. The entire sample consists of 8195 stocks, whereas the number of available
assets dynamically ranges between 1231 and 2205 over the period spanning from January 1965 to
July 2018. We obtain the daily end price of the total return index of these stocks. This type of
indices take into account the corporate actions, e.g., dividend payment, merges and acquisitions,
stock buyback, and therefore, is less biased. Again, we first calculate the daily percentage returns.
Then, we convert these daily returns to the aggregated monthly raw returns. We calculate the
excess return by subtracting the UK risk-free rate from the raw returns. We use the interest rate

of the one-month UK treasuring bill downloaded from Datastream as the risk-free rate.

2.1.2. Global asset classes

We obtain the daily ended prices of 27 constituents of the Standard and Poor’s Goldman
Sachs Commodity Index (S&P GSCI) from Datastreanﬂ The S&P GSCI indices reflect investors’
realised revenues by considering the impacts of the term structure. Due to the number of indices
available, we set the sample period from January, 1984 to July, 2018.

Our equity index sample consists of global major stock indices from both developed and emerg-
ing economies. The entire universe includes 24 markets: Australia, Austria, Belgium, Canada,
Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Malaysia, Netherlands, Norway,
Portugal, Singapore, South Africa, Spain, Sweden, Switzerland, Taiwan, Thailand, the United
Kingdom (UK), the United States (U.S)ﬂ The daily ended prices of Morgan Stanley Capital Inter-
national (MSCI) are collected from Datastreanﬂ The sample ranges from January 1970 to July
2018.

Finally, we collect futures prices of 19 sovereign bonds or short-term deposits from 8 developed

economies with various maturities. They are Australian 3-year bond(AUS 3Y), Australian 10-year

“Bianchi et al|(2015) employ the same dataset to implement momentum and reversal strategies in commodity
markets, while Koijen et al.| (2018) employ a similar dataset to conduct carry trading.

8Similar datasets are used in the literature, see, e.g., Balvers and Wul (2006) and |[Asness et al| (2013).

9 All price series are measured in USD dollars.



bond(AUS 10Y), Canadian 10-year bond (CA 10Y), Euro 2-year bonds(EURO 2Y), Euro 5-year
bonds(EURO 5Y), Euro 10-year bonds(EURO 10Y), Euro 30-year bonds(EURO 30Y), Eurodollar
1-month time deposit (EuroDollar 1M), Eurodollar 3-month time deposit (EuroDollar 3M), Euro 3-
month internal bank deposit (EURIBOR 3M), Japan 5-year bond (JP 5Y), Japan 10-year bond(JP
10Y), Switzerland 10-year bonds (SWISS 10Y), United Kingdom 1 year bond (UK 1Y), United
Kingdom long gilt (UK 10Y), United States 2-year treasure (US 2Y), United States 5-year treasure
(US 5Y), United States 10-year treasure (US 10Y), and United States 30-year treasure (US 30Y).
These contracts are extensively investigated by previous studies, see, e.g., Moskowitz et al.| (2012,
Asness et al.| (2013)), [Koijen et al.| (2018, and are highly liquid. These futures prices are available
at Bloomberg, from January 1993 through July 2018.

Across these three markets, we first calculate the daily percentage returns. Then, the aggre-
gated monthly raw returns are converted through these daily returns. For commodities and fixed
incomes, the monthly raw returns are equal to the monthly excess returns as we employ the fu-
ture prices herﬂ For equity indices, we calculate the monthly excess returns by subtracting U.S
one-month T-bill yield from the raw returns. The monthly interest rate of U.S one-month T-bill

is collected from Kenneth French’s data library.

2.1.3. Other dataset

To perform the factor regressions, the monthly percentage returns of the S&P GSCI, MSCI
world index, Barclays Aggregate Bond Index, and the Financial Times Stock Exchange (FTSE) all
share index are collected as market factors. We also collect the returns series of [Fama and French
(1996) small market capitalisation minus big (smb), high book-to-market ratio minus low (hml),
and |Carhart| (1997) premium on winner minus loser (umd) from Kenneth French’s data library.
For the UK stock market, as these factors of Euro area are available from 1991, we splice the
FEuropean factors with the U.S based factors in January 1991 to cover the entire sample period.
Finally, we consider the value and momentum everywhere factors documented by [Asness et al.
(2013). The monthly percentage returns of these factors are obtained from the website of AQR
Capital Management.

2.2. Momentum portfolio construction

We use 12 months as the formation period in our momentum strategies for both the UK stock

market and the global assets. This is commonly used in the literature for both stock markets

1OPirrong| (2005) and Moskowitz et al.| (2012) clarified that the excess returns are equivalent to the raw returns
in futures markets



and different asset classes, see, e.g., |Jegadeesh and Titman| (1993) and |Asness et al| (2013). The
relative performance is measured based on their period return or risk-adjusted return, depending
on different strategies. The signals are renewed and portfolios are rebalanced at the end of each
month.

Given the difference in the size of the two samples, we sort winners and losers into different
quantiles. First, in our global samples, the instruments are sorted into quartiles to make sure
that the momentum portfolio is Well—diversiﬁedE For instance, in a momentum strategy in the
commodity market, we buy the top performed quartile and sell the bottom performed quartile.
Second, for the UK stock data, we divide the whole sample into deciles following literature such
as [Jegadeesh and Titman| (1993)). In line with the other momentum studies in equity markets, we
skip the most recent month in the formation period. To allow for real-world implementation, we
screen the firms that are continuously traded over the formation period and are also tradeable in

the following month.

3. The source of high uncertainty of momentum strategies

Barroso and Santa-Claral (2015 showed that the standard deviation of WML series is 45%
higher than that of the market. We argue that this phenomenon is naturally due to the asset
selection mechanism of momentum strategies. A momentum strategy invests in stocks with the
highest and the lowest relative returns over the formation period. While individual stocks with
large absolute period returns are often associated with high volatility, these volatile stocks lead
to the high uncertainty of the entire momentum portfolio. In this section, we perform analysis to

support our view and investigate the sources of the high volatility of momentum strategies.

3.1. Excess volatility of momentum strategies

We start by measuring the momentum risks caused by the cluster of high volatility stocks in
excess of a market portfolio with the same number of assets. Similar to the idea of abnormal
returns in asset pricing models, we define excess volatility as the spread between the volatility of
WML returns and that of a market benchmark strategyiE The benchmark is a equal-weighted
buy-and-hold strategy formed by stochastically investing in m stocks from the samples, where m

is equal to the number of assets in the corresponding momentum portfolio. Trading signals are

M Similar sorting methods are seen in, e.g., Miffre and Rallis| (2007)) and [Bianchi et al.| (2015).

12The excess volatility here differs from the concept introduced by [Shiller| (1981) and |LeRoy and Porter| (1981]).
In those papers, the excess volatility was the difference between the standard deviation of stock returns in the real
world and that predicted by the efficient market hypothesis of |[Fama (1965)).



renewed and portfolio is rebalanced on a monthly level. We repeat the above steps for ten thousand
times and take the mean of the volatility.

Table [T] summarises the excess volatility of XSMOM strategies across numerous asset classes.
The annualised standard deviations of WML returns are higher than those of the randomly selected
market portfolios. The excess volatilities are statistically significant at 1% level in the UK stocks,
commodity, and fixed income markets. In the global equity index market, the excess volatility is

slightly lower, at 0.012, which is still statistically significant at 10% leveﬂ

Table 1: Performance of original momentum strategies across different markets.

Mean Vol Skew Kurt MP.vol EX.vol Obs
UK stocks 0.17 0.26 -0.74 1.75 0.17 0.089*** 632
Commodity 0.094 0.23 0.052 0.23 0.17 0.055%** 391
Equity Index 0.080 0.19 -0.14 0.44 0.18 0.012%* 557
Fixed income -0.010 0.054 0.076 0.34 0.039 0.015%*** 247

Mean, Vol, Skew and Kurt denote the annualised XSMOM returns, standard deviation, skewness and kurtosis, respectively.
MP.vol is the volatility of the market portfolio. EX.vol represents the excess volatility of the XSMOM strategy over the
market portfolio. Obs is the degree of freedom for F-test. ‘¥’ <¥*’ <*¥**> ropregent that the excess volatilities are statistically
significant at 10%, 5% and 1% level.

To understand the causes of this excess volatility, we can assume that the probability of asset
k to be chosen as either a winner or loser at time ¢, Py, is expressed as a function of its period

return, Rf_127t_1, and realised volatility, 0 over the formation period, as:
k k k
VS f(Rt—IQ,t—laat)' (1)

Therefore, the return of an equal weighted momentum portfolio, Ry, is given by:

1 o, .
R, = — Z(szgnﬂPtk) * 7l (2)
i=1
where m is the number of stocks included in the portfolio. The above equation implies that the
total momentum portfolio return is the sum of momentum signals multiplied by their returns,

where these signals are dominated by a probability function of asset return and realised volatility.

13 Apart from above-mentioned asset classes, we also test the excess volatility of momentum strategies in foreign
exchange (FX) market, in which the excess volatility is insignificant. Hence, concluding that the FX market does
not require risk-managed momentum adjustment. For more detailed data description and strategy specification in

the FX market, see
14We assume that each month consists of 21 trading days. For the global asset classes, the realised volatility

254 ¢k )2
over formation period is estimated as: o} = %, where r g is the daily return of asset k on day d.
For UK stock market, in line with the literature, we skip the most recent month over the formation period, so the

252 k 2
Zj:2l(’rdt717 )

realised volatility is estimated as: o’f = TJ, where all parameters remain the same.



As return and volatility are positively related, the higher the mean and volatility, the higher the
probability of an asset ¢ being chosen as a constituent of the momentum portfolio. This cluster of

high volatility instruments generates excess volatility in a momentum portfolio.

3.2. Cluster of momentum signals in high volatility stocks

Next, we perform decile portfolios to validate our hypothesis that the cluster of momentum
signals are related to individual asset volatility. At the end of each month ¢, we sort all available
instruments into deciles according to their realised volatility over the formation period. Decile one
(D7) consists of the stocks with the lowest volatility, and decile ten (D1o) contains those with the
highest volatility. This method is also used by |Ang et al.| (2006), Bali and Cakici (2008)) and [Fu
(2009), who sort assets into deciles according to the idiosyncratic risks over a given period. Figure
[I] reports how many momentum signals are assigned to instruments in each decile. We observe
that the number of signals increases gradually from D; to Dlﬂ In the UK stock market, the
number of signals in Dq is 8.31 times as the number in D;. In commodity, equity index and fixed
income markets, the numbers of signals in Dg-D1q are 81.5%, 49.8%, and 49.2% percent higher
than those in D1-Ds3, respectively. These results suggest that stocks with high realised volatility
during the formation period are more likely to be selected by a momentum strategy.

When comparing the winners and the losers, we find that the cluster of momentum signals
in high volatility assets is much stronger in losers. As shown in the UK stock market panel in
Figure [I] the loser signals increase more dramatically from Dy to D¢ than the winner ones. This
means a large proportion of the loser signals are given to those high volatility stocks throughout
the investment horizon. Holding high volatility assets in losers might cause large drawdown in
portfolio returns in periods of unstable and crisis. Our result explains the finding of |Daniel and
Moskowitz (2016)), who suggested that momentum crashes are mainly caused by past losers. In
the commodity and equity index panels in Figure [1] the results still hold where the loser signals

increase more from D1-D3 to Dg-D1o than the winnerﬂ

15The results of global asset portfolios (commodity, equity index and fixed income) do not show monotone in-
creasing pattern. This is because their relative returns are ranked based on quartiles instead of deciles given the
number of instruments available in these samples. Therefore, Dg-D1¢ need be considered together and compared to
D1-Ds3. In this sense, consistent with the UK stock market sample, the instruments in the high volatility quartile
are more likely to appear in a momentum portfolio.

161n the fixed income market, however, the winner and loser signals increase by a similar rate. We argue this is
because the volatility for different fixed income instruments does not vary a lot as in the other three markets. Data
summary can be seen in Appendix A.
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Figure 1: Momentum signals allocation across different asset volatility over formation periods
(XSMOM).
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This figure summarises the relationships between individual asset volatility and momentum signal alloca-
tion. At the end of each month ¢, we sort all available instruments into deciles according to their realised
volatility over the formation period. Decile one consists of the instruments with the lowest volatility over
the formation period, and decile ten contains the assets with the highest volatility. Each bar plots how
many momentum trading signals are assigned to a given volatility decile.
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3.3. Momentum and the cross-section of stock volatility

To take a step further, we investigate how the cross-section of stock volatility impact momentum
effect. We impliment XSMOM strategy for each volatility decile in the UK stock markeﬂ We
sort sub-portfolios into quintiles in order to construct well-diversified portfolioﬂ As seen from
the results in Table |2, the momentum mean return in Dig is negative and significantly different
from zero, whereas the returns in the remaining deciles are all positive. This indicates that stocks
with the high volatility exhibits reversal instead of return continuation. In Dy, the decile with the
second highest volatility, the annualised mean is at least 60% lower than those in other deciles. By
contrast, momentum profits are all significantly positive at 1% level from D; — Dg. The results

imply that momentum effect vanishes in high volatility stocks, but is strong in low volatility stocks.

Table 2: Performance of momentum strategies in each volatility decile (UK stock).

Dy Do D3 Dy Ds Dg D+ Ds Dy Dqo

Mean 0.130 0.136 0.133 0.138 0.155 0.182 0.184 0.201 0.058 -0.254
T-value  12.20%%*  12.82%** 9 75¥¥* g 0¥** g p2¥¥kkx  10.30%*%* 9. 17¥¥*k  R209%kx ] .092%*x 2 pHFkxX
Vol 0.078 0.077 0.100 0.111 0.119 0.130 0.147 0.177 0.223 0.732

SR 1.664 1.749 1.331 1.240 1.299 1.405 1.251 1.131 0.262 -0.348

‘D1’ to ‘D1o’ represent for the ten deciles by ranking the realised volatility over the formation periods. Decile one contains
instruments with the lowest realised volatility, and decile ten consists of instruments with the highest ones. Mean, T-
value, Vol, and SR denote the annualised momentum returns, t-values of returns, standard deviations, and Sharpe ratios,
respectively. ¥’ ¥*7 k*¥% represent that the t-values are statistically significant at 10%, 5% and 1% level.

For robustness check, we further examine the time series momentum effect in the above-
mentioned deciles sorted by realised volatility. In each decile, we regress one-month holding period
returns on the returns over the formation period using the pooled panel regressiorﬂ The equi-

tation is as follows:

rf=a+BRI_15, 1 +e, in Decile n. (3)

For asset k in D,,, we define Rf_12,t_1 as its return over the formation perio According to
Thompson| (2011]), we control both time-varying and cross-sectional fixed effects in our regression.
If B coefficient is positive and significantly different from zero, then holding trading positions

consistent with historical trends produces abnormal profits, and therefore, momentum effect exists

17We only implement XSMOM strategy in the UK stock market as the sample sizes of the other asset classes are
not large enough. A similar double sorted approach is also used by |Zhang| (2006) in U.S stock markets.

18For robustness check, we also sort stocks into deciles to form the XSMOM strategy. The results show consistent
patterns with our quintile approach and are available upon request.

19This approach is extensively used by time series momentum studies, e.g., Moskowitz et al.| (2012)), [Huang et al.
(2019).

ZUWIS skip the most recent month of the formation period in the UK stock market, so the period return of asset
kis Ry 1542
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in this decile.

Consistent with our findings Table |2 the regression results in Table [3| exhibit that the mo-
mentum effect ceases to hold in stocks with high volatility. Across all the four markets, the 3
coefficients are either significantly negative or insignificant from Dg to Dlﬂ We argue that
this is because the asset returns are mainly driven by other factors instead of momentum when
volatility is high, e.g., macroeconomic factors or sentiment in times of recession. For the UK stock
market, only those stocks with intermediate realised volatility (Ds-D7) show positive betas which
are statistically significant. This means that low volatility stocks also do not show return continu-
ation. One possible explanation is that stocks in D; and D5 are illiquid and do not draw enough
investors’ attention. Therefore, they do not exhibit the momentum effect, as momentum is based
on herding behaviour of under-reaction to the news.

For the commodity, equity index and fixed income markets, as shown in Table[3] the momentum
effect is strong in the low volatility deciles (D; -D3). This indicate that the XSMOM strategies do
not work well in these markets, as most of the signals are allocated in the high volatility deciles.
Given that the momentum effect behaves differently in different markets due to market size and
fundamental variation, there is no “one size fits all” solution by simply applying the XSMOM
strategies. A generalised approach is needed to improve the effectiveness of momentum strategies.

In the next section, we introduce such a type of generalisation.

Table 3: Coeflicients between formation period returns and holding period returns.

Dy Do D3 Dy Ds Dsg D7 Dsg Dy Do

UK stocks ~ -0.012  0.003  0.004*** 0.002 0.003*** 0.006*** 0.003*** -0.002* -0.003***  -0.004
(-1.36)  (1.48)  (3.03)  (1.19)  (2.61) (3.68) (2.89)  (-1.76)  (-3.32)  (-1.23)

Commodity — 0.024** 0.023** 0.035** 0.014  0.005 -0.007  0.014*  -0.004  -0.003 -0.011
(2.62)  (2.59)  (2.59)  (1.07)  (0.39) (-0.70)  (1.79)  (-0.46)  (-0.34)  (-1.23)

Equity Index  0.009  0.030%* 0.024** 0.016*  0.011 0.007  0.020%*  0.002 0.011 -0.003
(1.01)  (2.32)  (2.20) (1.78)  (1.24) (0.65) (2.81)  (0.30) (1.24) (-0.48)

Fixed income 0.038**  0.016  0.040%*  0.006  -0.005 0.006 -0.016  -0.027  -0.011  -0.031**
(3.73)  (1.17) (2.43)  (0.36)  (-0.23) (0.34) (-1.04)  (-1.52)  (-0.44) (-2.51)

‘D1’ to ‘D1o’ represent for the ten deciles by ranking the realised volatility over the formation periods. Decile one contains
instruments with the lowest realised volatility, and decile ten consists of instruments with the highest ones. Four sets of
pooled regressions are run, and the t-statistics are estimated based on robust standard error of [Thompson| (2011])). “*7 ¢**
“x¥% pepresent that the t-values are statistically significant at 10%, 5% and 1% level.

210ur finding is similar to |[Ang et al.| (2006) that the high ex-ante volatility reduces asset expect return. In
contrast, |Bali and Cakici| (2008]) and |Fu| (2009) argue that the pattern clarified by |Ang et al.| (2006) is determined
by low liquid stocks. the relationship between asset risks and expect returns differs after excluding the low liquid
stocks. However, for a momentum trading scheme, we rank all available stocks, so it is rational to see our results
are similar with |[Ang et al.| (2006).
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4. Generalised risk-adjusted momentum

Given that momentum signals are concentrated in high volatility assets which do not exhibit
momentum effect, we propose a new version of momentum strategy based on ranking risk-adjusted
return@ We call it as the generalised risk-adjusted momentum strategy (GRIJMOM). This trading
rule is better than XSMOM as it considers asset returns in relative to their volatility, and hence,
alleviate the negative impact of high volatility clustering. In this section, we show the difference
among GRJMOM, XSMOM and SRMOM.

GRJMOM provides a flexible framework to allow investors to weight volatility differently ac-
cording to market status over time. For example, in times of crisis, one might want to put more
weight on volatility and focus less on return. Consequently, a GRJIMOM strategy selects instru-
ments with lower volatility into winner/loser portfolios. Whereas in periods of a bullish market,
one can amplify the impact of return by reducing the weight of volatility. We also introduce a
cross-validation approach to find the best time-varying parameter for the GRJMOM strategy in

this section.

4.1. Ranking risk-adjusted returns

An intuitive way to form a risk-adjusted momentum strategy is to sort the winners and losers

based on relative Sharpe ratios. The Sharpe ratios over the formation period are calculated as:
Rf 154
SR? 12,6—1 — M’ (4)

where S Rfﬁm)ffl is the Sharpe ratio of asset k over formation period, Rffm,tq denotes the return
and oF is the realised volatility over the same period as defined in Footnote 11. Similar approaches
are also seen in [Pirrong| (2005)), where the daily standard deviations are calculated to scale returns.
Both realised volatility and standard deviations are calculated based on the sum of squared daily
returns. Therefore, they result in the same ranking for instruments to be selected as momentum
winners and losers.

We next consider an alternative risk-adjusted ranking approach based on return-to-variance

ratios, where returns are more aggressively scaled by realised volatility. As is suggested by its

221t is not the first time that such types of risk-adjusted momentum strategies are introduced. For instance,
Pirrong| (2005) and [Rachev et al.| (2007)) used Sharpe ratios to sort winners and losers (SRMOM), though neither
paper focused on economic meaning behind that.
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name, we simply calculate the return-to-variance (RV) ratio as follows:

RVk _ R?’?*IQ,tfl (5)
t—12,t—1 (0_1];;)2 i

where (0F)? is the realised variance. The momentum strategy based on ranking the return-to-

variance ratio shown in Equation [5]is called the return-to-variance momentum (RVMOM). Com-
pared to SRMOM, RVMOM weight volatility more aggressively in relative to returns. For instance,
Stock A has a return of 5% and realised volatility of 10%; Stock B has a return of 10% and realised
volatility of 20%. Under SRMOM, both stocks have Sharpe ratios of 0.5 and hence are ranked
as the same. However, under RVMOM, the return-to-variance ratios become 5 and 2.5 times for
Stock A and B, respectively. This is because the volatility of Stock B is higher than Stock A, and
its weight is amplified by the RVMOM ranking system. Hence, reducing its return-to-variance
ratio. Therefore, Stock A is considered to be superior and more likely to be selected as the winner
than Stock B.

Similar to the plot in Figure[I] we show momentum signal distribution across different volatility
deciles under the SRMOM and RVMOM schemes in Figure 2l In each panel, the left plot is the
momentum signal allocation using SRMOM ranking, while the right plot is the one based on
RVMOM ranking. The SRMOM ranking witnesses an improvement from the XSMOM shown in
Figure [I| where the signals are well-diversified across different deciles in all of the four markets.
More specifically, under an SRMOM scheme, in the UK stock and the fixed income markets, only
24% and 20% of the total signals are assigns to Dg — D1, respectively. Whereas in the commodity
and equity index markets, the proportions are slighter higher, both at around 30%.

Despite that the SRMOM mitigates the signal clustering problem in the XSMOM, we argue
that it is still not an optimal approach which works across different markets for two reasons.
First, we previously showed that the momentum effect vanishes in high volatility instruments,
while SRMOM still has a considerable weight in those deciles. Second, as shown in Table
in the three global asset markets, namely commodity, equity index and fixed income markets,
low volatility deciles exhibit strong momentum effect. Therefore, it is reasonable to assume that
an effective momentum strategy would put more weight in those instruments with low volatility.
For this reason, RVMOM is superior to SRMOM as it measures volatility more aggressively. As
shown in Figure [2] more RVMOM signals are allocated to low volatility deciles, i.e. D; — D3, than
SRMOM.

As shown in Equation (] and [5] both SRMOM and RVMOM employ constant numbers as the

exponents of realised volatility in order to scale returns. A generalised version of them can be
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expressed as:
k
Bk Ri 15, 1

Rt—12,t—1 = W’ (6)
where a parameter, IV, is introduced as the exponential term. N can be any value greater or equal
to zero. A momentum strategy formed based on this generalised risk-adjusted ranking approach is
called GRJIMOM. GRJMOM allows investors to change the degree of volatility exposure in relative
to return according to different market properties.

Our GRJMOM is consistent with the idea of volatility timing in portfolio theory, where asset
weights are determined by their volatility, see, e.g., Fleming et al.| (2001)), [Fleming et al.| (2003)
and |Moreira and Muir| (2017)). Specifically, our approach is similar to a generalised volatility
timing approach proposed byKirby and Ostdiek (2012). They suggested that portfolio weights
are determined by the conditional variance of risky-asset returns. They further added a tuning
parameter to measure how aggressively the weights are adjusted in response to the change of
conditional variance. The parameter N in GRJMOM framework is qualitatively equivalent to
their tuning parameter. We discuss the properties of the tuning parameter N and its relation with

GRJMOM performance in the next subsection.

4.2. The tuning parameter N

4.2.1. How does N work?

In the GRIMOM framework, the tuning parameter N plays an important role in adjusting
the returns in response to changing volatility. Similar to [Kirby and Ostdiek| (2012)), we define the
tuning parameter N as the degree of aggressiveness about how investors value volatility in risk-
adjust returns. Kirby and Ostdiek| (2012) set the tuning parameter to be an integer n = {1, 2, 3,4}.
In our case, we let the GRIJIMOM tuning parameter be any value satisfying N > 0, as we assume
asset volatility has a continuous impact on return adjustments. The larger the parameter N, the
greater the impact volatility has on returns.

Next, we formally show the impact of tuning parameter N on risk-adjusted returns and mo-
mentum portfolio selection. We first assume that there are two risky assets a and b in the market,
of which the past returns and standard deviations are R, and o,, and R and oy, respectively. We
also assume that the past returns for asset a and b are of the same sign@ When comparing the

risk-adjusted return, ]/%; and R\b, we simply examine whether the ratio, I/%; / R\b, is greater than one

23We do not consider the situation that the return of one asset is positive and another is negative. In this case,
it does not cause a problem in comparing risk-adjusted returns, as one is likely to be selected as the winner and
another as the loser.
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or not. According to Equation [6] the relationship can be calculated as follows:

E . Ra/(oa)N R, @)N (7)

7 R R,

Given two assets with positive past returns, we list all the four possible relationships between
return and volatility in Table [l Scenario 2 & 3 illustrate the case when one asset has a higher
return and lower volatility compared to the other. Under the GRJMOM system, the asset with
the higher return is considered to be superior to the other, and hence, selected into the momentum
winner portfolio. According to Equation [], GRJMOM signals are not affected by the change of N
in Scenario 2 & 3. Therefore, the GRJMOM and XSMOM yield exactly the same signals.

In Table [4] Scenario 1 & 4, when one asset has higher return and higher volatility than its rival,
the tuning parameter N affects momentum signals. For example, in Scenario 1, both the return
and standard deviation of Asset a are lower than those of Asset b. Following Equation (7} R,/R;
)N

is a constant number smaller than one, while (0,/0,)" is a variable greater than one. The term

(0p/04)" increases when N gets larger. Asset a becomes superior to Asset b, when Equation [7]is
greater than one, so that (o3/0,)Y > Rp/R,. Otherwise, Asset b is more likely to be selected into
the winner portfolio. We can get to a similar conclusion when both assets have negative returns
and produce a similar table to Table

Table 4: Return, volatility and momentum investment decisions when both assets have positive
past returns.

Scenario Return SD Signalling decision
1 R, < Ry 04 < Op Depending on N
2 Rs < Ry Oq > Op Asset b
3 R, > Ry 04 < Op Asset a
4 Re > Ry Tq > Op Depending on N

Return means the relationship between the returns of two assets; SD represents the relationship between
the standard deviations of assets; Decision means the decisions made by investors.

There are a few special cases when N takes certain values. If N = 0 and the denominator of
Equation |§|, (oF)N = 1, the risk-adjusted return R’Lu,tq is equal the period return R115€712,t71'
Hence, the GRJIMOM ranking scheme is the same as the XSMOM; if N = 1, the risk-adjusted re-
turn Ei]&C—lQ,t—l is the Sharpe ratio of each instrument over the formation period, which is equivalent
to SRMOM; if N = 2, then ﬁffu,tq becomes the return-to-variance ratio, forming the RVMOM
strategy.

Knowing how the tuning parameter N works in the GRJMOM system, we next empirically

18



investigate the relationship between N and momentum performance. Using a grid search method,
we investigate how IV affects momentum portfolio return, volatility and Sharpe ratio by increasing
N at intervals of 0.1. Consistent with |[Kirby and Ostdiek (2012), we set the range of N between
zero, and four@

Figure[3|plots the above-mentioned relationship with different markets shown in different panels.
It can be seen that, across all the four markets, both momentum return and Sharpe ratio are
monotonically increased by the growth of N till a threshold. After the threshold, the further
increase of N decreases the momentum profits. The trend fitted curve looks like a quadratic
parabola, where we can always find an optimal point. We pay particular attention to the Sharpe
ratio as it is the choice for rational risk-neutral investors. The optimal N returning the highest
Sharpe ratio in the UK stock, commodity, equity index and fixed income markets, are 2.8, 2.3, 2.6
and 2.3, respectively. This result suggests that the existing ranking systems, e.g., the XSMOM
ranking (N = 0) or SRMOM ranking (N = 1), are not optimal. By contrast, the relationship
between N and momentum portfolio volatility looks like a parabola which opens upward, where
the optimum is when the volatility is lowes@ Volatility optimisation is preferred by those investors

who want to minimise their portfolio risks.

4.2.2. Time-varying optimal N

Benefiting from its flexible framework, GRJMOM allows the tuning parameter N to vary across
different markets and over time. Distinct from XSMOM and SRMOM, one is free to determine the
value of NV based on his own risk preferences in a GRJIMOM system. Risk lovers are more likely
to set the parameter N producing the highest portfolio return; risk-averse investors choose N that
generates minimised portfolio volatility; risk-neutral investors prefer to set N when Sharpe ratio
of the portfolio reaches the peak. As mentioned above, we focus on the Sharpe ratio in this paper
and use it as our parameter selection criteria.

In this sub-section, we investigate how the best parameter N evolve over time. Initiating from
month 60, we calculate the optimal N generating the highest Sharpe ratio for each month, using
an expanding window approach. The expanding window prediction (EWP) approach refers to an
estimation or modelling method that uses all the observations from the first month to the most

recent month, ¢ for each period. This approach is extensively implemented in portfolio studies to

240ne can certainly explore more by setting a larger range for N with smaller intervals, e.g., 0.01. However,
increasing the amount of calculation does not add marginal value to this study, as the current setting is adequate
to show the pattern.

25In commodity market as shown in FigurePanel B, we do not observe an inflexion point as the optimal N = 7.4
is greater than four.
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Figure 3: Trader-off between N and the performances of momentum portfolios.
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Plots in the first column exhibit the trade-off between the tuning parameter N and the annualised mo-
mentum portfolio returns across samples. Plots in the second and third columns display this relationship
in terms of volatility and Sharpe ratios. A locally estimated scatter-plot smoothing (LOESS) curve is
employed as the trend fitted line in each plot. Different panels show results in different markets.
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estimate expected returns, variance and covariance matrix, see, e.g., [DeMiguel et al.| (2015) and
Barroso and Saxenal (2018). We employ the expanding estimation window as it considers the long-
term market patterns. Rational investors make investment decisions depending on the information
in both short-term and entire historical performance of financial assets (Gulen and Petkovay, [2018)).

In Figure [4 we plot the path of optimal N in different markets. Overall, we observe that the
optimal N increases over time across all the four markets, indicating that volatility becomes an
indispensable element to be considered in changing global environment. The paths of N in the
UK stock and the commodity markets are both volatile at the beginning of the investment horizon
and then increase to above two after the 2008 financial crisis. For example, the optimal N in the
UK stock market is around 0.8 before 2008 and increases to over 2.1 after the crisis. This makes
sense that investors intend to alleviate the cluster of high volatility instruments over crash periods,
and hence, consider a more aggressive adjustment by increasing the value of V. By contrast, the
N in equity index and fixed incomes markets are more stable but still reaches 2.6 and 2 after
2000. Our results show that none of these optimal N reaches zero across different markets or over
time, implying the inefficiency of XSMOM which does not consider asset volatility at all. The
out-of-sample GRJMOM strategy based on the time-varying optimal N is discussed in the next

sub-section.

4.3. GRIMOM trading strategy

After introducing the idea of risk-adjusted ranking and the time-varying N, we are able to form
the GRJMOM strategy. In it, the winners and losers are sorted by ranking the risk-adjusted return
based on Equation [} To estimate the optimal N, we simply employ a cross-validation method
which finds the best IV using an expanding window approach. As is mentioned in Section 4.2.2, the
outperformed N in the month ¢ is selected when the corresponding GRJMOM portfolio generates
the highest Sharpe ratio over the expanding Windowm Then, we plug this N into Equation @ in
order to sort the winners and losers for the coming month, ¢ + 1.

The GRJMOM strategy holds symmetric long and short legs in terms of winners and losers.
Hence, it is a zero net-investment strategy and can be compared directly to XSMOM and SRMOM
strategies. Unlike the time-series momentum strategy (Moskowitz et al., [2012) or the constant
volatility scaled momentum (Barroso and Santa-Claral 2015), the GRJMOM does not use any

leverage or time-varying position size over the investment horizon. The long side and the short

26One can use different indicators to determine the value of N such as the market volatility or the sentiment. We
choose to use the cross-validation method as it automatically determines which past information are relevant and
which are not (Hall et al.} |2004). Moreover, the cross-validation method requires less information and is tractable.
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Figure 4: Time-varying optimum N.
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The figure reports the time-varying optimal N over the investment horizon for different markets. The first
value of N is available from the 61st month for different samples, as an initial window of 60 months is

used to calculate the outperformed Sharpe ratio of the momentum portfolio. Parameter N is constrained
between 0 and 4 with intervals of 0.1.

22



side of the GRJMOM investment are always equal to 18. Therefore, the GRIMOM strategy is a
“zero net-investment strategy with the total active position being 2$”, as is defined by
|Jegadeesh! (2017)).

We first examine whether the GRJMOM strategy mitigates the excess volatility specific to the
original momentum strategied>’} and compare the results to those shown in Table [} In Table
we measure the excess volatility of the GRJIMOM returns across different market{™] In all the
four markets, the excess volatility of GRJMOM returns becomes insignificantly different from zero.
It even yields to negative excess volatility compared to the market portfolio in the equity index
market. Therefore, we conclude that GRJMOM successfully eliminates the momentum-specific

risks caused by the cluster of high volatility instruments.

Table 5: Excess volatility of GRIJIMOM strategies across multiple markets.

Mean Vol Skew Kurt MP.vol EX.vol Obs
UK stocks 0.22 0.19 -0.12 0.19 0.17 0.02 585
Commodity 0.10 0.19 0.006 0.45 0.17 0.013 343
Equity Index 0.096 0.15 -0.034 0.20 0.17 -0.026 510
Fixed income 0.006 0.040 0.021 0.23 0.039 0.001 236

Mean, Vol, Skew and Kurt denote the annualised GRJMOM returns, standard deviation, skewness and kurtosis, respec-
tively. MP.vol is the volatility of the market portfolio. EX.vol represents the excess volatility of the GRIJMOM strategy
over the market portfolio. Obs is the degree of freedom for F-test. None of these excess volatilities reported is significantly
different from zero.

For robustness check, we further measure an alternative risk exposure after controlling for asset

pricing factors. We capture the standard error of the residuals from two factor models, i.e., the

capital asset pricing model (CAPM) of (1966) and 3-factor model (FF-3) of [Fama and|
(1993) E The model equations are shown as:

R, = a+ B(mkt —r¢) + €, @)
8
R; = a+ pi(mkt — ry) + Basmb + Bshml + Baumb + ¢,

where R; is the return series of a single leg (winner/loser) or the entire momentum portfolio for
strategy i; mkt is the market factor; ry is the interest rate of U.S one-month T-bills; smb and
hml are the size and value factors; ¢; denotes the error term following a normal distribution that

€ ~ (0,02). The market factor (mkt) varies across markets: FTSE all share index is used in

27 According to |Barroso and Santa-Claral 42015[)7 this is also known as momentum-specific risk.

28Gince the GRIJMOM strategy requests a 60-month initial estimation window to determine the first optimal N,
the results here are slightly different from what is shown in

29We also implement Fama-French-Carhart 4-factor model, by |[Fama and French| (1996) and |Carhart| (1997), and
find the results are similar with those of the 3-factor model.
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UK stock market; S&P GSCI, MSCI World and Barclays Aggregate Bond indices are employed in
commodity, equity index, and fixed income markets, respectively.

Table [f] summarises the risk exposure of GRJIMOM and XSMOM portfolios after controlling
for market factors. Panel A reports the standard error of residuals by regressing GRJMOM and
XSMOM returns on CAPM and Fama-French three-factor models. Panel B shows the difference in
the standard error of residuals (XSMOM minus GRJMOM). We also employ the F-test to examine
whether the difference in volatility is statistically significant or not. We observe that the GRJMOM
significantly reduces the risk after controlling for market factors across different markets. As shown
in Panel B, this difference is mainly due to the low volatility of residuals in losers portfolio. In the
UK stock market, for example, the GRJMOM winner has slightly higher volatility of residual than
the XSMOM winner, while its loser’s standard error is only 0.053, which is 58% lower than the
XSMOM loser. Given the fact that momentum crashes are mainly caused by the losers portfolio

(Daniel and Moskowitz, [2016)), the GRJMOM tends to control the risks of the losers efficiently.

Table 6: Conditional risks of original and GRJMOM strategies.

Portfolios UK stock Commodity Equity index Fixed income
CAPM FF-3 CAPM FF-3 CAPM FF-3 CAPM FF-3
Panel A: Standard error of residuals
XSMOM winner 0.056 0.054 0.043 0.043 0.038 0.037 0.014 0.014
XSMOM loser 0.091 0.088 0.043 0.044 0.041 0.040 0.011 0.011
XSMOM WML 0.075 0.073 0.066 0.066 0.054 0.054 0.015 0.015
GRJMOM winner 0.059 0.058 0.040 0.039 0.034 0.034 0.008 0.008
GRJMOM loser 0.053 0.051 0.037 0.037 0.035 0.034 0.009 0.009
GRJMOM WML 0.055 0.055 0.054 0.054 0.046 0.046 0.011 0.011
Panel B: Differences between XSMOM and GRIJIMOM (XSMOM minus GRIMOM)
Winner -0.003 -0.004* 0.003 0.004* 0.004** 0.003* 0.006*** 0.006***
(0.90) (0.87) (1.16) (1.22) (1.25) (1.18) (3.06) (3.06)
Loser 0.038*** 0.037*** 0.006*** 0.007*** 0.006*** 0.006*** 0.002*** 0.002***
(2.95) (2.98) (1.35) (1.41) (1.37) (1.38) (1.49) (1.49)
WML 0.020%** 0.018%*** 0.012%** 0.012%** 0.008*** 0.008*** 0.004*** 0.004***
(1.86) (1.76) (1.49) (1.49) (1.38) (1.38) (1.56) (1.56)

This table summarises the risk exposure of GRJMOM and XSMOM portfolios after controlling for market factors. Panel
A reports the standard error of residuals by regressing GRJMOM and XSMOM returns on CAPM and Fama-French three
factor models. Panel B shows the difference in standard error of residuals (XSMOM minus GRIJIMOM). The degrees of
freedom for F-test here are consistent with those in Table SR exko L kEK represent that the f-values are statistically
significant at 10%, 5% and 1% level.

Next, we examine the profitability of GRJMOM strategies. Table [7| summaries the perfor-
mance metrics of GRIJIMOM strategies, in which the existing momentum strategies, XSMOM and
SRMOM, are added as benchmarks. Each panel shows the strategy performance in a different
market. We first focus on the performance of GRJMOM strategies in UK stock, commodity and

equity index markets, since the annualised portfolio returns are positive and significantly differ-
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ent from zero across these samples. In UK stocks, the annualised return of GRIJMOM is 22.4%,
significantly outperforming XSMOM and SRMOM with annualised returns of 17.9% and 17.7%,
respectively. The Sharpe ratio of GRJMOM strategy is 1.18 per annual, whereas those of the
XSMOM and SRMOM are 0.67 and 0.92. Similar patterns are observed in commodity and equity
index markets, where the returns and Sharp ratios of GRJMOM strategies are significantly higher
than those of the other two benchmarks.

When looking at winner and loser portfolios separately, GRIJIMOM outperforms the benchmarks
mainly because of the significant improvement of the losers. Ideally, a loser portfolio should
create negative returns as it is a short position. However, we find the losers of XSMOM are
SRMOM strategies generate positive returns across UK stock and equity index markets, reducing
the momentum profits. After the GRJMOM ranking, the positive returns are reduced to 3% in the
UK stock market, -3.5% in the commodity market and -0.9% in equity index market. Moreover,
the GRJMOM strategy significantly decreases the maximum drawdown. As shown in Panel A, the
maximum drawdown of GRJIMOM in the UK stock market is 0.47, while those of the XSMOM
and SRMOM are 0.9 and 0.71, respectively.

In the fixed income market, as shown in Table [7] Panel D, the annualised returns of all three
momentum strategies are insignificantly different from zero. This pattern is consistent with the
finding of the literature, see, e.g., |Asness et al. (2013), that the momentum effect fails to create
abnormal profits in fixed income asset class. However, the GRJMOM still generates a positive
annualised return of 0.06%, whereas the other two benchmarks produce negative returns. We
further investigate the performance of momentum winner and loser portfolios. Different from
other markets where GRJMOM winner does not show significant outperformance, it yields to a
statistically significant return (t=2.4) in the fixed income market.

For robustness check, we conduct a regression test to examine the outperformance of GRJ-
MOM with respect to other existing momentum strategies, i.e. XSMOM and SRMOM. Following
Daniel and Moskowitz| (2016), we regress the monthly returns of GRJMOM on a variety of factors
containing the market, Fama and French| (1993) size and value factors (FF factors), and the XS-
MOM/SRMOM returns. Table 8| reports the alphas and their t-statistics of GRIMOM compared
to other benchmarks and factors.

Panel A of Table [8] reports the results based on the regressions of our GRJMOM portfolio
on the market plus XSMOM and FF factors plus XSM. For the market plus XSMOM model,
the alphas of GRIMOM are at 1.1%, 0.5%, 0.3% per month (t=7.4, 2.87, 2.39) in UK stock,
commodity and equity index markets, respectively. After adding the size and value factors of

Fama and French| (1993) as control variables, the intercepts are still statistically significant at
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Table 7: Performance of momentum strategies across different asset types.

Strategies Portfolios Mean T-value SD SR MaxzDD Skew Kurt
Panel A: UK stock
winner 0.26%** 9.08 0.20 1.31 0.48 -0.12 0.35
XSMOM loser 0.079%* 1.66 0.33 0.24 0.97 0.49 1.04
WML 0.179*%* 4.61 0.27 0.67 0.90 -0.73 1.63
winner 0.23%** 9.82 0.16 1.42 0.47 -0.14 0.35
SRMOM loser 0.048 1.36 0.24 0.20 0.96 0.076 0.26
WML 0.177*** 6.32 0.19 0.92 0.71 -0.16 0.22
winner 0.25%** 9.86 0.18 1.43 0.45 -0.19 0.38
GRIJMOM loser 0.03 0.79 0.25 0.11 0.97 0.025 0.19
WML 0.224%** 8.16 0.19 1.18 0.47 -0.14 0.22
Panel B: Commodity
winner 0.060 1.57 0.20 0.29 0.62 -0.011 0.53
XSMOM loser -0.014 -0.41 0.19 -0.076 0.76 0.19 0.57
WML 0.074* 1.72 0.23 0.32 0.55 0.006 0.45
winner 0.073%* 2.01 0.19 0.38 0.53 -0.046 0.49
SRMOM loser -0.013 -0.45 0.16 -0.084 0.66 0.041 0.35
WML 0.086*** 2.26 0.20 0.42 0.45 0.073 0.31
winner 0.069** 2.05 0.18 0.38 0.52 -0.028 0.55
GRIJMOM loser -0.035 -1.30 0.15 -0.24 0.78 -0.035 0.40
WML 0.10%** 2.99 0.19 0.56 0.37 0.038 0.30
Panel C: Equity index
winner 0.079%** 2.70 0.19 0.41 0.62 -0.35 0.50
XSMOM loser 0.009 0.28 0.21 0.04 0.83 -0.074 0.22
WML 0.070*** 2.59 0.18 0.40 0.64 -0.027 0.20
winner 0.091*** 3.15 0.19 0.48 0.65 -0.37 0.58
SRMOM loser 0.004 0.14 0.19 0.021 0.82 -0.13 0.20
WML 0.087*** 3.49 0.16 0.53 0.38 -0.013 0.18
winner 0.088*** 3.11 0.18 0.48 0.66 -0.29 0.46
GRJMOM loser -0.009 -0.31 0.18 -0.048 0.87 -0.10 0.13
WML 0.096*** 4.25 0.15 0.65 0.42 -0.034 0.18
Panel D: Fixed income
winner 0.002 0.13 0.054 0.029 0.16 0.070 0.17
XSMOM loser 0.015 1.63 0.042 0.37 0.11 -0.25 0.97
WML -0.014 -1.09 0.056 -0.25 0.30 0.13 0.35
winner -0.002 -0.32 0.030 -0.071 0.12 0.021 0.23
SRMOM loser 0.005 0.58 0.037 0.13 0.12 -0.32 1.67
WML -0.007 -0.73 0.042 -0.16 0.22 0.39 1.07
winner 0.011%*** 2.40 0.020 0.54 0.041 0.23 0.30
GRIJMOM loser 0.005 0.56 0.038 0.13 0.077 0.29 1.03
WML 0.006 0.65 0.040 0.15 0.15 -0.17 0.66

Mean denotes the annualised portfolios returns. The portfolio returns are calculated by longing the selected assets. Vol,
Skew and Kurt are the annualised standard deviation, skewness, kurtosis of portfolio returns. MazDD denotes the annu-

alised maximised drawdown. T-value is measured as t = “2Y"/°2 ‘:/12, where p is annualised portfolio return; n is sample size
which is at monthly level; o is annualised stander deviation of portfolio returns. ‘¥’ “**’ <*¥** prepresent that the t-values
are statistically significant at 10%, 5% and 1% level.
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0.7%, 0.5%, 0.3% per month (t=4.78, 2.95, 2.45) in U.K stocks, commodities and equity indices,
respectively. However, the alphas of GRIMOM are insignificant at 0.1% per month in the fixed
income market. In Panel B of Table [B] we repeat the regressions by examining the alphas of
GRJMOM with respect to SRMOM. The alphas are statistically significant at least at 10% level
in all the four markets. These results suggest that the abnormal performance of GRJMOM is not
captured by the XSMOM, SRMOM or other market factors.

To conclude, across all asset classes, our results indicate that the GRJMOM strategies pro-
duce higher profits and alphas, lower volatility and maximum drawdown than the XSMOM and
SRMOM. Therefore, we consider GRIJMOM as an effective and implementable investment strategy.

Table 8: Alphas of the GRJIMOM with respect to XSMOM and SRMOM.

UK stock Cmodity Equity index Fixed ince
Panel A: GRJMOM and XSMOM
mkt+XSM  FF4+XSM mkt+XSM  FF+XSM  mkt+XSM FF4+XSM mkt+XSM  FF+XSM
alpha 0.011%** 0.007*** 0.005*** 0.005%*** 0.003** 0.003** 0.001 0.001
t (7.40) (4.78) (2.87) (2.95) (2.39) (2.45) (1.13) (1.05)
Panel B: GRJMOM and SRMOM
mkt+SRM  FF4+SRM  mkt+SRM  FF+SRM  mkt+SRM FF4+SRM  mkt+SRM  FF+SRM
alpha 0.011%%* 0.007*** 0.003** 0.003** 0.002* 0.002* 0.001* 0.001*
t (7.68) (4.78) (2.23) (2.26) (1.72) (1.92) (1.84) (1.72)

This table presents the regression results of the GRJMOM returns with respect to the the market (mkt), Fama-French size
and value factors (FF) and XSMOM/SRMOM (XSM/SRM) portfolios captured in each asset class. ‘¥’ ¥ <¥*% represent
that the t-values are statistically significant at 10%, 5% and 1% level.

5. GRIJMOM and crash risks

In this section, we investigate the relationship between GRJMOM and momentum the crash.
First, we identify crash periods by calculating the worst month of momentum strategies for each
asset class. Then, we present the results of GRJMOM performance over these crash periods. Last,
we compare the GRJMOM strategy to the risk-managed WML portfolio, i.e. constant volatility
scaling approach (CVS) of |Barroso and Santa-Clara, (2015) to identify the outperformed risks
management method. Our innovation show statistically significant alphas, lower volatility and

maximum drawdown, compared to the CVS approach.

5.1. Performance of GRIMOM over crash periods

Figure [5] plots the cumulative performance of different momentum strategies over the entire
investment horizon in each market. We highlight that the GRJMOM strategy (solid black line)

produces the highest cumulative performance in all asset classes. We observe that the dollar
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investment of GRJMOM is more stable than XSMOM and SRMOM with the smallest maximum
drawdown, as is confirmed in the results of Table[7] We also add shaded areas in Figure [f]indicating
the worst periods of the plain momentum strategy in each asset class, or momentum crashes. Our
GRJMOM exhibits substantial improvements compared to XSMOM and SRMOM during these
periods.

In the UK stock market, the GRIJIMOM strategy mitigates the crash of XSMOM after the 2007-
2008 financial crisis. Without risk management, the momentum investors suffered from a loss of
84.6% over a six months period between 2009-2010 as shaded in Panel A of Figure 5| By contrast,
our GRJMOM reduces this drawdown to 19.7%. In 1971, a dollar invested in the GRIJIMOM
strategy would be worth over $10000 by July 2018, whereas the same investment in XSMOM and
SRMOM strategies would be worth only $557 and $1877, respectively.

The GRIJMOM strategies also show dominating performance in the global asset classes, followed
by the SRMOM and XSMOM. In the commodity market (Figure [5| Panel B), we identify a similar
crash period during 2009-2010 after the global financial crisis. Although our GRJMOM faces
a small crash at the beginning of the shaded period, it later makes a strong rebound, leading
to a gain during the crash period. In the equity index market (Figure [5| Panel C), we observe
a similar pattern where GRJMOM gain profits during the crash periods. Finally, in the fixed
income sample (Figure |5 Panel D), neither the XSMOM and SRMOM strategies generate positive
cumulative profits. In this case, our GRJMOM still realises a profit and mitigates the momentum
crashes.

For a more in-depth analysis of the performance of GRJIMOM over crash periods, we select
the periods when momentum performs the worst over the entire investment horizon. We first
find the ten worst single month returns of XSMOM strategy in the UK market. Among them,
the worst momentum crash occurred in April 2009, leading to a single months return of -75.9%.
Then, following |Gulen and Petkoval (2018]), we compared the GRIMOM returns to the XSMOM
and SRMOM over these months in Panel A of Table[0] The GRJIMOM outperforms XSMOM in
nine out of the ten months, with the rest one month return being virtually the same. In April
2009, GRIMOM generated a return of -17.9%, which is 58% higher than that of XSMOM. We also
conduct the same analysis in the global asset classes samples and arrive at the same conclusion.
These results are presented in

For robustness check, we also report the six-month cumulative returns of different momentum
strategies over the three worst crash periods. As shown in Panel B of Table [} the results remain
unchanged with the single month return analysis. GRJMOM shows its superiority in mitigat-
ing crash risks. In the 2009 crash, the GRIMOM only lose 11.1% over the six months, while
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Figure 5: Cumulative performance of risk-adjusted momentum strategies across markets.
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SRMOM and XSMOM lose 20.5% and 86.6%, respectively. These results are consistent with
above-mentioned findings based on Figure |5 indicating GRJMOM is an effective risk-managed
approach and profitable strategy.

According to |Grundy and Martin| (2001), Barroso and Santa-Clara) (2015) and [Daniel and
Moskowitz (2016]), the momentum crash appears after market panics when the momentum losers
reverse from the trough faster than the winners. In this case, the profits generated by winners
are not enough to cover the losses caused by the losers. Without considering these reversals of
losers, the plain momentum ranking system fails to allocate the ‘real losers’ into the portfolio after
market panics. Our GRJMOM incorporates asset realised volatility over the formation periods at
the ranking stage so that these ‘false losers’ are excluded from the portfolio as they exhibit high
volatility. This explains why the GRJMOM builds profitable short legs, avoiding the reversals in

losers during the crash periods.

Table 9: Performance of GRJMOM and momentum crashes (UK stock market).

Order Date Strategy Difference
XSMOM SRMOM GRIJMOM GRJ-XS GRJ-SR

Panel A: Single month return
1 2009-04 -0.759 -0.244 -0.179 0.580 0.065
2 1975-01 -0.437 -0.253 0.010 0.447 0.263
3 2013-08 -0.246 -0.173 -0.063 0.184 0.110
4 2009-01 -0.241 0.075 0.076 0.317 0.001
5 2000-04 -0.221 -0.199 -0.213 0.008 -0.013
6 2018-04 -0.219 -0.028 -0.028 0.191 0.000
7 2009-08 -0.213 -0.098 -0.058 0.155 0.040
8 1994-01 -0.210 -0.157 -0.214 -0.004 -0.057
9 2001-10 -0.209 0.039 -0.038 0.172 -0.076
10 2009-03 -0.202 0.008 0.019 0.221 0.012

Panel B: Six months cumulative return
1 2009-06 -0.866 -0.205 -0.111 0.755 0.094
2 1975-03 -0.538 -0.328 -0.001 0.537 0.327
3 2003-09 -0.390 -0.173 -0.286 0.104 -0.112

Panel A reports the ten worst single month returns of XSMOM strategy in the UK stock market. Panel B reports the
six-month cumulative returns over three worst crash periods, where the date indicates the last month. GRJ-XS (GRJ-SR)
denotes the difference between GRIMOM and XSMOM (SRMOM), which is calculated by subtracting one from another.

5.2. GRJMOM versus volatility scaling approach

Barroso and Santa-Claral (2015) argued that the momentum-specific risk is the main cause of
momentum crashes. In order to mitigate momentum-specific risks, they proposed a simple but
effective scaling approach based on past realised volatility of the WML series, called the constant
volatility scaling (CVS) approach. In this study, we compare our GRJIMOM performance to the

CVS approach to check which one is better in managing momentum risks.
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As is mentioned in the introduction, GRJMOM is structurally the same as a plain momentum
strategy which invests 1$ in both the long and short leg. The position size of GRJIMOM strategy is
constant over time. By contrast, the CVS approach creates a time-dynamic momentum portfolio
size, where the momentum return is inversely scaled by its six months ex-ante volatility. The CVS
WML returns are calculated as:

Otarget (9)

E3
"WMLt = 7O'WML tTWML,t,

where rw e is the WML return; T{‘;VML’t is the scaled WML return; ow g, is the realised
volatility of rw s+ over the past six months; oi4rge is a constant target volatility. In order to
make the two strategies comparable to each other, we apply the same scaling factor oiorget/owarr,¢
to our GRJMOM, so that both strategies have the same risk exposurﬂ

Barroso and Santa-Claral (2015) defined the target volatility o¢qrge as the annualised volatility
of the market index in the long-run. Following their approach, we obtain the target volatility by
calculating the annualised volatility of each market index at, 15.93% (FTSE all share), 18.56%
(S&P GSCI), 13.11% (MSCI world) and 6.21% (Barclays Aggregate Bond).

Table presents the performance metrics of GRJMOM and CVS strategies across the four
markets. The scaled GRJMOM exhibits higher mean and Sharpe ratio in each market, indicating
strong profitability. In terms of risk management, the scaled GRJMOM shows a lower standard
deviation than the CVS in three of the four markets, with the exception in fixed incomes where
the two are virtually the same. We also regress the return of scaled GRJIMOM on the market
risk premium and the CVS return. Alphas are at least statistically significant at 5% level in
the UK stocks, commodities and equity indexes, while in the bond market the difference is rela-
tively smal]ﬂ These improvements imply that GRJMOM ranking is a more efficient risk-adjusted

approach than the CVS in momentum investing.

6. Factor analysis

To understand the superiority and risk exposure of the GRJIMOM strategy, we now focus on
examining the abnormal performances of GRJMOM by running different asset pricing models.

We employ two extensively used multi-factor regressions: i) the four factors model documented

30Tt is unfair to directly compare GRIMOM and CVS approach as the average position size of the latter is greater
than 1$. In the UK stock market, for example, for each one dollar invested in the GRIMOM strategy, the average
investment in CVS is 1.38$ over time.

31We also estimate the alphas through FF-3 model, and the results are indifferent from those of the CAPM.
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Table 10: Scaled GRIJMOM versus CVS.

Mean T-value SD SR MaxDD Skew Kurt
Panel A: CVS
UK stock 0.271 6.816 0.274 0.986 0.676 -0.298 0.327
Commodity 0.087 2.167 0.212 0.409 0.428 -0.021 0.155
Equity index 0.111 3.188 0.227 0.492 0.620 -0.012 0.197
Fixed income -0.003 -0.267 0.045 -0.061 0.181 0.279 0.367
Panel B: Scaled GRJIMOM
UK stock 0.303 9.122 0.230 1.320 0.500 -0.086 0.147
Commodity 0.101 3.064 0.174 0.578 0.377 -0.029 0.029
Equity index 0.127 4.143 0.199 0.639 0.536 -0.079 0.226
Fixed income 0.004 0.327 0.047 0.075 0.211 -0.107 0.373
Panel C: Alphas of scaled GRJIMOM (benchmark: CVS)
UK stock Commodity Equity index Fixed income
alpha 0.010%*** 0.004** 0.003** 0.000
t (6.22) (2.57) (2.16) (0.46)

The reported statistics contain annualised mean (Mean), T-value of mean (t), stander deviation (SD), Sharpe ratio(SR),
maximize drawdown (Mazdd), skewness (Skew), and kurtosis (Kurt). Panel A and B summarise the performance matrices
of the CVS and GRJMOM portfolios. Panel C reports the alphas and t-statistics of the regression: Rscaled. GRIMOM =
o+ B1(Rmikt — Rrf) + B2Rcovs. ¥, %7, “¥*% represent that the t-statistics are statistically significant at 10%, 5% and
1% level.

by [Fama and French| (1996) and |Carhart| (1997), and ii) the Value and Momentum Everywhere
factors of |Asness et al.| (2013]).

Table [11|shows the factor loading of GRJMOM returns by running Fama-French-Carhart four-
factor models. In it, mkt, smb, hml, and umb denote the market, size, value, and momentum
factors, respectively. The GRIMOM strategy exhibits alphas of 1.7%, 0.8%, 0.7%, 0.09% per month
in the UK stock, commodity, equity index and fixed income markets. The alphas are statistically
significant at 1% level for the UK stock, commodity and equity index markets, insignificant but
positive in the fixed income markets. As discussed previously, this makes sense because the fixed
income markets do not exhibit strong momentum effect. Across the four markets, the alphas of
GRJMOM are at least 14% higher than those of other momentum trading schemes. The largest
spread appears in the UK stock market, where the alpha of GRJMOM is 0.7% higher than that
of the XSMOM.

We next examine the risk exposures of these strategies against risk factors. We find that the
GRJMOM, in most cases, is significantly positively related to the movement of the market factors,
except for the fixed income market where the relationship is negative. GRJMOM has no relation
to the size effect but negatively related to the value effect. More importantly, we show that the
GRJMOM greatly reduces its exposure to the momentum factor, umd. By contrast, the XSMOM
and SRMOM have beta coefficients of 0.88 and 0.47 respectively in the UK stock market, indicating

that these strategies are highly exposed to the momentum factor.
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Table 11: Factors loading of GRJMOM versus XSMOM and SRMOM strategies (FF-4).

Strategies alpha mkt smb hml umb
Panel A: UK stock
XSMOM 0.010%*** 0.082 -0.059 -0.136 0.88%**
(3.51) (1.61) (-0.63) (-1.36) (13.24)
SRMOM 0.014%%* 0.160*** 0.030 -0.26%** 0.47***
(6.26) (4.16) (0.42) (-3.48) (9.52)
GRIJMOM 0.017*** 0.11%** 0.090 -0.22%** 0.46%**
(7.87) (2.83) (1.28) (-2.90) (9.23)
Panel B: Commodity
XSMOM 0.005 0.184%*** 0.032 -0.008 0.32%**
(1.60) (3.25) (0.31) (-0.074) (4.65)
SRMOM 0.007** 0.26%** 0.086 -0.067 0.26%**
(2.33) (5.18) (0.94) (-0.70) (4.19)
GRIJMOM 0.008*** 0.23%** 0.12 -0.084 0.21%**
(3.12) (4.87) (1.37) (-0.92) (3.63)
Panel C: Equity index
XSMOM 0.005%* 0.005 -0.002 0.091 0.35%**
(1.96) (0.097) (-0.025) (1.20) (6.80)
SRMOM 0.005** 0.067 0.045 0.08 0.25%**
(2.55) (1.31) (0.68) (1.15) (5.19)
GRJMOM 0.007*** 0.086* 0.064 -0.007 0.11%**
(3.51) (1.78) (1.02) (-0.11) (2.56)
Panel D: Fixed income
XSMOM -0.002* 0.14%* -0.014 -0.003 0.048***
(-1.86) (2.46) (-0.49) (-0.10) (2.70)
SRMOM -0.0003 -0.040 0.006 -0.008 0.012
(-0.44) (-0.86) (0.25) (-0.34) (0.81)
GRJMOM 0.0009 -0.15%** 0.008 0.019 -0.013
(1.31) (-3.50) (0.37) (0.86) (-0.95)

Panels in this table display the results of OLS regressions based on Fama-French-Carhart four-factor model in different
markets. The dependent variables are the monthly returns of XSMOM, SRMOM and GRJMOM strategies, respectively.
The independent variables include: the market (mkt), size (smb), value (hml), momentum (umd) factors. Each panel
exhibits the regression results of a given asset class. The alpha represents the monthly abnormal returns after controlling
for risk factors. ‘¥’ “¥*’ ©¥¥¥ represent that the t-values are statistically significant at 10%, 5% and 1% level.
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In addition, we run the similar regressions using the Value and Momentum Everywhere factors
of |Asness et al.| (2013]). These factors provide a common global generalisation of return premia
which works in both stock markets and multiple asset classes. Table [I2] presents the results of this

regression shown as follows:
Rwair, = a+ Bi(mkt — ry) + Boval + Bzmom + ¢, (10)

where mkt is the market factor that is consistent with above-mentioned market factor in Equation
val and mom denote the value and momentum factor constructed by the corresponding asset
class as provided in |[Asness et al| (2013]). As shown in Table GRJMOM strategies produce
the highest abnormal returns across all asset classes. Consistent with the results in Table the
alphas of GRIJIMOM are significantly different from zero at 1% level, except for the fixed income
market. In the UK stock market, the alpha of GRJMOM is 0.7% and 0.2% per month higher than
those of the XSMOM and SRMOM.

Consistent with the results in FF-4 factor regressions, the GRJMOM exposes more of its risk
to the movement of the market but less to the momentum factors. In the UK stock market,
SRMOM and GRJMOM returns are significantly negatively related to the value effect, while the
XSMOM does not show a statistically significant coefficient. In commodities, the SRMOM strategy
deliveries insignificant intercept in the value and momentum everywhere model (Panel B of Table
112]), where it generates a significantly positive alpha in the FF-4 model (Panel B of Table [11)).
The insignificant alpha implies that the SRMOM strategy is not an efficient risk-adjusted ranking
approach at least for commodities.

To sum up, according to the results from two multi-factor regressions, the abnormal return of
our innovation is at least 40% higher than that of XSMOM strategy, and at least 14% better than
that of the SRMOM strategy. The results of factor loadings strongly support the superiority of
GRJMOM across asset classes. Hence, we conclude that our innovation is an appropriate risk-
adjusted momentum ranking approach in managing the risk exposures and returning significant

alpha.

7. Conclusion

In this study, we found that the high uncertainty of momentum strategies is driven by the
cross-sectional realised volatility of individual assets. Instruments with high volatility over the
formation period are more likely to be selected into a momentum portfolio. Therefore, momentum

portfolios usually display high excess volatility compared to a randomly selected portfolio with the
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Table 12: Factors loading of GRIMOM versus XSMOM and SRMOM strategies (Val and Mom
Everywhere).

Strategies alpha mkt val mom
Panel A: UK stock
XSMOM 0.011%** 0.16** -0.095 1.03%**
(3.60) (2.38) (-0.98) (12.02)
SRMOM 0.016*** 0.20%** -0.18%* 0.65%**
(7.01) (4.18) (-2.53) (10.46)
GRIJMOM 0.018*** 0.15%** -0.15%* 0.68%**
(7.84) (3.01) (-2.16) (10.94)
Panel B: Commodity
XSMOM 0.0003 0.019 -0.034 1.05%**
(0.15) (0.62) (-0.98) (29.32)
SRMOM 0.003 0.12%** -0.076** 0.81%**
(1.61) (3.56) (-2.08) (21.41)
GRIJMOM 0.005*** 0.11%** -0.066* 0.67***
(2.64) (3.15) (-1.67) (16.38)
Panel C: Equity index
XSMOM 0.003* -0.007 -0.37*** 0.82%**
(1.70) (-0.15) (-4.93) (13.14)
SRMOM 0.005%* 0.055 -0.34%** 0.68%**
(2.49) (1.29) (-4.76) (11.34)
GRIJMOM 0.006*** 0.12%** -0.31%** 0.49%**
(3.25) (3.00) (-4.41) (8.45)
Panel D : Fixed income
XSMOM -0.001 0.074 -0.080 0.52%**
(-1.41) (1.34) (-0.81) (5.58)
SRMOM -0.0002 -0.070 0.010 0.26%**
(-0.25) (-1.53) (0.12) (3.43)
GRJMOM 0.0009 -0.14%** -0.033 -0.080
(1.31) (-3.27) (-0.42) (-1.10)

Panels in this table display the results of OLS regressions based on Value and Momentum Everywhere factors in different
markets. The dependent variables are the monthly returns of XSMOM, SRMOM and GRJMOM strategies, respectively.
The factors include: the market factor (mkt); value everywhere factor (smb); momentum everywhere factor (mom). *’,
SRk KFE represent that the t-values are statistically significant at 10%, 5% and 1% level.
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same number of assets. The empirical results in the paper strongly support our argument based
on a dataset consisting of commodity, equity index, fixed income, and UK stock.

We show that stocks with high realised volatility over the formation period tend to lose momen-
tum effect, while stocks with low realised volatility show strong momentum. The plain momentum
strategy which focuses on high volatility stocks, does not perform well when market is in high
uncertainty. Our results indicate that a risk-adjusted momentum strategy is needed to reduce the
risks of momentum strategies, and hence improve the performance.

We develop a generalised risk-adjusted ranking procedure to alleviate the excess risks momen-
tum strategies, called the GRJMOM. It provides a flexible and generalised framework to rank
risk-adjusted returns when sorting momentum winners and losers. Distinct from the existing risk-
adjusted ranking method, the GRIJIMOM allows investors to switch the aggressiveness of return
scaled by its realised volatility in responding to different market conditions.

Strong evidence shows that our innovation can diversify the cluster of high volatility instru-
ments in the original momentum portfolios, and alleviate both the conditional and unconditional
risks of WML returns. This diversification further improves the performance of momentum strate-
gies across all asset classes. The GRJMOM strategies show higher returns and Sharpe ratios,
and lower volatilities and maximised drawdown compared to the other momentum trading rules.
This outperformance is further supported by the high abnormal profits when running multi-factor
regressions.

The study contributes to the literature in risk-managed momentum and momentum crashes, as
seen in [Barroso and Santa-Claral (2015) and |Daniel and Moskowitz (2016)). It provides a different
view on the mitigations of momentum risk, which is sourced from cross-sectional ranking instead
of time-series scaling. As is suggested by our results, the GRJMOM is a better approach than
the existing CVS approach of [Barroso and Santa-Claral (2015), as it generates alphas that are

statistically significant.
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Appendix A. Summary statistics

Table A.1: Summary statistics of global asset classes.

Instrument Mean SD SR Start. Date

Panel A: Commodity

Brent 0.1770 0.3862 0.4583 1999-01-11
WTI.Crude.oil 0.1143 0.4040 0.2830 1987-01-08
Gas.oil 0.1619 0.3577 0.4525 1999-01-07
Heating.oil 0.1010 0.3815 0.2648 1984-01-31
Natural.gas -0.2297 0.5641 -0.4073 1994-01-10
RBOB.gas 0.1869 0.3956 0.4724 1988-01-08
Gold 0.0150 0.1901 0.0786 1984-01-31
Platinum 0.0568 0.2614 0.2175 1984-01-31
Silver 0.0211 0.3331 0.0634 1984-01-31
Lean.hogs -0.0619 0.2697 -0.2296 1984-01-31
Live.cattle 0.0240 0.1704 0.1406 1984-01-31
Feeder.cattle 0.0296 0.1847 0.1603 2002-01-08
Aluminum -0.0349 0.2344 -0.1489 1991-01-08
Copper 0.1431 0.2960 0.4835 1984-01-31
Lead 0.1023 0.3522 0.2904 1995-01-09
Nickel 0.1135 0.4000 0.2838 1993-01-11
Tin 0.1467 0.4366 0.3360 2007-03-16
Zinc 0.0237 0.3100 0.0764 1991-01-09
Cocoa -0.0468 0.3380 -0.1385 1984-01-31
Coffee -0.0357 0.4122 -0.0867 1984-01-31
Corn -0.0793 0.2790 -0.2844 1984-01-31
Cotton 0.0259 0.2801 0.0926 1984-01-31
Soybean 0.0405 0.2600 0.1558 1984-01-31
Soybean.oil -0.0068 0.2743 -0.0248 2005-01-10
Sugar 0.0257 0.4034 0.0637 1984-01-31
Wheat.Chicago -0.0591 0.3096 -0.1910 1984-01-31
Wheat.Kansas -0.0651 0.3219 -0.2023 1999-01-07

Panel B: Equity index

Australia 0.0944 0.2510 0.3760 1970-01-01
Austria 0.1073 0.2527 0.4247 1970-01-01
Belgium 0.1066 0.2266 0.4704 1970-01-01
Canada 0.1026 0.2106 0.4874 1970-01-01
Denmark 0.1567 0.2252 0.6959 1970-01-01
France 0.1167 0.2537 0.4601 1970-01-01
Germany 0.1231 0.2548 0.4832 1970-01-01
Hong Kong 0.1888 0.3306 0.5711 1970-01-01
Italy 0.0704 0.2867 0.2457 1970-01-01
Japan 0.1303 0.2445 0.5330 1970-01-01
Netherlands 0.1293 0.2392 0.5407 1970-01-01
Norway 0.1404 0.3067 0.4577 1970-01-01
Portugal 0.0182 0.2498 0.0727 1988-01-01
Spain 0.0770 0.2647 0.2908 1970-01-01
Sweden 0.1668 0.2821 0.5914 1970-01-01

Continued on next page
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Table A.1 — continued from previous page

Instrument Mean SD SR Start.Date
Switzerland 0.1374 0.2129 0.6452 1970-01-01
United Kingdom 0.1030 0.2451 0.4201 1970-01-01
United States 0.1143 0.1981 0.5769 1970-01-01
Korea 0.1503 0.3978 0.3777 1988-01-01
Malaysia 0.1030 0.2918 0.3528 1988-01-01
Singapore 0.1381 0.2582 0.5348 1970-01-01
South Africa 0.1435 0.3266 0.4393 1993-01-01
Taiwan 0.1178 0.3384 0.3481 1988-01-01
Thailand 0.1330 0.3577 0.3719 1988-01-01

Panel C: Fixed income futures

AUS 3Y 0.0062 0.0152 0.4057 1989-12-19
AUS 10Y 0.0048 0.0149 0.3206 1987-09-21
CA 10Y 0.0195 0.0847 0.2298 1989-09-18
EURO 2Y 0.0050 0.0157 0.3200 1997-03-10
EURO 5Y 0.0198 0.0420 0.4713 1991-10-07
EURO 10Y 0.0353 0.0658 0.5359 1990-11-26
EURO 30Y 0.0396 0.1500 0.2637 1998-10-05
EuroDollar 1M 0.0033 0.0102 0.3276 1990-04-06
EuroDollar 3M 0.0022 0.0115 0.1909 1986-04-02
EUIBOR 3M 0.0025 0.0067 0.3734 1998-12-09
JP 5Y 0.0009 0.0228 0.0385 1996-02-19
JP 10Y 0.0181 0.0577 0.3138 1985-10-22
UK 1Y 0.0042 0.0171 0.2472 1988-02-29
UK 10Y 0.0120 0.1052 0.1143 1982-11-19
Us 2Y 0.0034 0.0215 0.1573 1990-06-26
US 5Y 0.0084 0.0513 0.1635 1988-05-23
US 10Y 0.0230 0.0825 0.2795 1982-05-04
US 30Y 0.0296 0.1391 0.2124 1980-01-02
SWISS 10Y 0.0300 0.0632 0.4757 1992-06-17

Column 2 to 4 illustrate annualised statistics: average return (Mean), standard deviation (SD) and Sharpe ratio (SR)

captured by daily returns over the entire sample period. The start dates of instruments are presented in the fifth column.

Overall, the annualised average returns of commodity futures are more volatile than others;
equity indices are all with positive averaged returns and slightly lower volatility than commodities;

fixed income futures report the smallest annualised returns and standard deviations.
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Appendix B. Excess volatility in foreign exchange market

Following |Lustig et al.| (2011)) and Menkhoff et al| (2012a), our FX universe contains 48 cur-

rencies: Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Croatia,Cyprus, Czech Republic,
Denmark, Egypt, Euro area, Finland, France, Germany, Greece, Hong Kong, Hungary, Iceland, In-
dia, Indonesia, Ireland, Israel, Italy, Japan, Kuwait, Malaysia, Mexico, Netherlands, New Zealand,
Norway, Philippines, Poland, Portugal, Russia, Saudi Arabia, Singapore, Slovakia, Slovenia, South
Africa, South Korea, Spain, Sweden, Switzerland, Taiwan, Thailand, Ukraine, and the United
Kingdom. Due to the introduction of Euro and data restriction, the number of available curren-

cies are dynamic over time horizon and never achieve 4@ The minimised sample size is 21 and

maximised one is 38, which is consistent with Menkhoff et al.| (20124).

Different from other asset classes, excess returns here is composed by the return of spot price

and interest differentials. According to Menkhoff et al| (2012d) and Menkhoff et al.| (]2()121)[)|§|7

monthly percentage excess return on month ¢ 4+ 1 of currency k is shown as:

k k
st . —s
,,,xf?+1zl'k_ii_ ( t+1k t>7 (Bl)

St
where z,’f is the foreign interest rate; i; is the domestic interest rate, which is short-term interest
in U.S; s¥ is month ended spot exchange rate. We rationally assume that forward discount rate

is equivalent to interest rate differentials as uncovered interest parity (UIP) strongly holds in this

sample (Akram et al., 2008, Menkhoff et al.| 2012a)). Thus, the excess monthly percentage returns
ple ; yp g

are approximate to:

k ~ (ftk_sf) (Sf-i-l_s?) _ (.ftk_sf-i-l) (B 2)
Tl = Sf — 51];7 = 5]];7 s .

where fF is month ended one-month forward exchange rate in month ¢. The data of both spot
and one-month forward exchange rates versus to U.S dollar are obtained from Barclays Bank
International and WMR/Reuters via Datastream.

Table[B-I]exhibits a summary statistic of our foreign exchange universe. Particularly, Indonesia

reports the highest annualised return , 48.93%; Ukraine displays the poorest averaged return, -

32Thirteen currencies are omitted due to the introduction of Euro: Austria, Belgium, Finland, France, Germany,
Ireland, Italy, Portugal and Spain omit in 1999; Greece is omitted in 2000; Slovenia is omitted in 2006; Cyprus is
omitted in 2007; Slovak is omitted in 2008.

33Menkhoff et al.| (2012d) and [Menkhoff et al|(20125) capture excess log returns of different currencies, but we
measure percentage returns as documneted by |Koijen et al.| (2018)) to consistent with return calculations in other
asset classes.
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Table B.1: Summary statistics of foreign exchange sample.

Economics Mean SD SR Start date
Australia 0.0541 0.1392 0.3884 1985-01-31
Austria -0.0587 0.1311 -0.4480 1985-01-31
Belgium -0.0419 0.1285 -0.3256 1985-01-31
Brazil 0.1644 0.1833 0.8973 2004-03-30
Bulgaria 0.0128 0.1139 0.1119 2004-03-30
Canada 0.0126 0.0893 0.1415 1985-01-31
Croatia 0.0280 0.1180 0.2372 2004-03-30
Cyprus -0.0626 0.0948 -0.6605 2004-03-30
Czech 0.0048 0.1422 0.0339 1997-01-01
Denmark -0.0074 0.1203 -0.0619 1985-01-31
Egypt 0.3682 0.1970 1.8691 2004-03-30
EURO 0.0005 0.1158 0.0040 1999-01-01
Finland 0.0389 0.1059 0.3677 1997-01-01
France -0.0255 0.1269 -0.2008 1985-01-31
Germany -0.0619 0.1296 -0.4779 1985-01-31
Greece 0.2124 0.1258 1.6879 1997-01-01
Hongkong -0.0035 0.0070 -0.5033 1985-01-31
Hungary 0.1019 0.1601 0.6365 1997-10-28
India 0.1092 0.0696 1.5677 1997-10-28
Indonesia 0.4893 0.2694 1.8161 1997-01-01
Ireland -0.0018 0.0957 -0.0188 1993-11-01
Israel -0.0118 0.0929 -0.1266 2004-03-30
Ttaly 0.0522 0.1266 0.4124 1985-01-31
Iceland 0.1281 0.1763 0.7270 2004-03-30
Japan -0.0575 0.1264 -0.4547 1985-01-31
Kuwait 0.0090 0.0287 0.3139 1997-01-01
Malaysia 0.0951 0.1318 0.7220 1985-01-31
Mexcio 0.1587 0.1283 1.2367 1997-01-01
Netherlands -0.3179 0.1064 -2.9886 1985-01-31
New Zealand 0.0496 0.1465 0.3388 1985-01-31
Norway 0.0316 0.1326 0.2380 1985-01-31
Philippines 0.1024 0.0978 1.0466 1997-01-01
Poland 0.0340 0.1631 0.2083 2002-02-12
Portugal 0.1039 0.1279 0.8125 1985-01-31
Russia 0.1757 0.1659 1.0594 2004-03-30
Saudi Arabia 0.0020 0.0042 0.4600 1997-01-01
Singapore -0.0323 0.0640 -0.5040 1985-01-31
Slovak -0.1299 0.1290 -1.0069 2002-02-12
Slovenia -0.0295 0.1011 -0.2917 2004-03-30
South Africa 0.1909 0.1819 1.0493 1985-01-31
Korea 0.0068 0.1280 0.0533 2002-02-12
Spain 0.0554 0.1295 0.4283 1985-01-31
Sweden 0.0252 0.1297 0.1942 1985-01-31
Switzerland -0.0537 0.1348 -0.3987 1985-01-31
Taiwan -0.0036 0.0524 -0.0696 1997-01-01
Thailand 0.0504 0.1050 0.4805 1997-01-01
Ukraine -0.3187 0.2745 -1.1610 2004-03-30
United Kingdom 0.0233 0.1169 0.1990 1985-01-31

Column 2 to 4 illustrate annualised statistics: average return (Mean), standard deviation (SD) and Sharpe ratio (SR)
captured by daily returns over entire sample period. The start dates of instruments are presented in the fifth column.
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37.87% per annual. Meanwhile, Ukraine shows the highest annualised standard deviation, 27.45%;
Saudi Arabia reports the lowest one, 0.42%. Furthermore, Egypt illustrates the highest Sharpe
ratio, 1.8691; Netherlands shows the lowest value, -2.9886.

Following the portfolio construction method mentioned in Section we conduct the XSMOM
strategy in the FX market. We find that the excess volatility of XSMOM strategy is 0.005, which
is not statistically significant. We argue that the high reward to risk ratio in FX market causes
this pattern. The mean of absolute Sharpe ratio is greater that one in this asset class, whereas
this statistic is no more than 0.5 across other markets. This represents the asset returns, instead
of volatilities, over the formation period dominate the momentum ranking in this asset class.
Since GRJMOM aims to alleviate the excess volatility caused by the impacts of high volatility
instruments, a market without excess momentum volatility does not need such an adjustment.

Hence, we exclude the FX market from our sample.

Appendix C. GRIJIMOM and momentum crashes (global asset classes)

Table [CI]reports the monthly performance of GRJMOM over the crash periods in commodity,
equity index, and fixed income markets. For most parts, we find that our innovation successfully
mitigates momentum crashes. In the commodity market, the largest downward of XSMOM -32.9%
in March 1998, is reduced to -9.9% after GRJMOM ranking. In nine of these ten worst months,
the GRJMOM reduce the loss of XSMOM or even creates profits in two cases, i.e., May 2009
and March 2002. Even comparing to the SRMOM, our innovation also performs better in each of
the involved months. The similar patterns are also observable in equity index and fixed income
markets. Thus, we conclude that the GRIMOM successfully alleviates the momentum crash in

each asset class, which is consistent with our previous findings in UK stocks shown in Table [0]
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Table C.1: Performance of GRJIMOM and momentum crashes (global asset classes).

Order Date Strategy Difference
XSMOM SRMOM GRJMOM GRJ-XS GRJ-SR

Panel A: commodity
1 1999-03 -0.329 -0.099 -0.099 0.230 0.000
2 1985-07 -0.168 -0.106 -0.106 0.062 0.000
3 2010-07 -0.148 -0.140 -0.131 0.017 0.010
4 2015-02 -0.146 -0.177 -0.167 -0.021 0.010
5 2003-03 -0.143 -0.124 -0.074 0.069 0.050
6 2008-07 -0.141 -0.147 -0.132 0.009 0.015
7 2009-05 -0.140 0.004 0.131 0.272 0.128
8 2012-09 -0.133 -0.130 -0.071 0.062 0.059
9 2002-03 -0.128 -0.022 0.009 0.137 0.031
10 1990-02 -0.128 -0.102 -0.037 0.091 0.065

Panel B: equity index

1 1975-01 -0.316 -0.208 -0.208 0.108 0.000
2 1987-10 -0.233 -0.233 -0.213 0.021 0.021
3 1998-09 -0.177 -0.112 -0.101 0.076 0.011
4 1973-04 -0.166 -0.103 -0.103 0.063 0.000
5 1998-10 -0.161 -0.065 -0.042 0.118 0.023
6 1999-04 -0.146 -0.033 -0.002 0.144 0.030
7 1986-10 -0.144 -0.141 -0.133 0.011 0.008
8 1998-02 -0.140 -0.140 -0.099 0.041 0.041
9 1974-05 -0.136 -0.130 -0.130 0.006 0.000
10 1986-05 -0.129 -0.106 -0.071 0.058 0.035
Panel C: fixed income
1 2003-09 -0.064 -0.020 -0.022 0.042 -0.001
2 2003-07 -0.047 0.007 0.054 0.101 0.047
3 2009-01 -0.042 0.017 0.033 0.075 0.016
4 2015-06 -0.039 -0.026 0.000 0.039 0.025
5 2014-01 -0.037 -0.031 0.018 0.055 0.049
6 2010-12 -0.035 -0.022 -0.008 0.028 0.014
7 2016-10 -0.034 -0.017 0.006 0.040 0.023
8 1996-02 -0.033 -0.012 -0.012 0.021 0.000
9 1994-02 -0.033 -0.022 -0.022 0.011 0.000
10 2011-07 -0.031 -0.023 0.000 0.031 0.023

This table reports the ten worst single month returns of XSMOM strategy in UK stocks. Order one means the poorest
one. GRJ-XS (GRJ-SR) is the difference between GRIMOM returns and XSMOM (SRMOM) returns, which is calculated
by using the returns of GRMOM subtract those of XSMOM (SRMOM).
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