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Abstract

This paper explores the symmetric and asymmetric dependency structure of decomposed return
series of Gold and eight cryptocurrencies to establish the hedging and diversification potentials
of these asset classes. Daily data spanning 30 April 2013 to 18 April 2019 are employed within
the Ensemble Empirical Mode Decomposition and Quantile-in-Quantile regression techniques.
Our empirical results provide evidence that cryptocurrencies and Gold can both hedge and
diversify for each other at different conditional distributions of their returns. We also find that
cryptocurrencies are not purely speculative but can be driven by medium- and long-term
fundamentals. In addition, both Gold and cryptocurrencies can be hedge and diversifiers for

other traditional asset classes such as crude oil, fiat currencies, and other commodities.
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1. Introduction

Digital currencies which rely on cryptographic proofs for confirmation of transactions referred
to as cryptocurrencies (cryptos) emerged in 1983 following the seminar paper of (Chaum,
1983). These currencies differ from fiat currencies by its unique combination of three features:
ensuring limited anonymity, independence from a central authority, and double-spending
attack protection. The interest on cryptos heightened following achievement of these three
features by Nakamoto (2008) in the paper “A Peer to Peer Electronic Cash System” and the
subsequent introduction of Bitcoin on 3 January 2009 (Lansky, 2018). As of April 2019, over
2000 cryptos were in existence compared to a little above 600 in January 2016 (Lansky, 2018)
and 1622 as of May 2018 (Klein, Pham Thu, & Walther, 2018), with a total market
capitalisation of over $240 billion. This signifies a rapid growth in a shor time span. According
to Klein et al. (2018), cryptos have become attractive due to embodied innovative technology,
high-security architecture, prosperity in functionalities, and investment opportunity as an asset.
The emergence of cryptos has widened the investment and diversification platforms available
to global investors. Cryptocurrencies have been likened to gold, which for years have been
used as a hedge and safe-haven against assets like stocks, bonds, and other monetary assets
(Baur & Lucey, 2010; Baur & McDermott, 2010, 2016; Klein et al., 2018). Research on the
potential of some cryptos (usually Bitcoin) to act as a hedge and safe-haven similar to gold has
emerged (Bouri, Gupta, Tiwari, & Roubaud, 2017; Bouri, Jalkh, Molnar, & Roubaud, 2017).
They have become recognised as a new gold in digital form because of similarities in traits as
highlighted in Dyhrberg (2016). These similarities between cryptos and gold include scarcity,
the cost involved in the extraction, and non-interference or control by government.
Cryptocurrencies, however, could differ from gold by exhibiting the characteristics of fiat
currency, making them hybrid commodities. As a choice of alternative investment, Das &
Kannadhasan (2018) posit that risk-averse investors may prefer gold, however, investors with
speculative motive may opt for cryptocurrency, such as Bitcoin. Such dynamics occasion the
need to explore further and generate better understanding of the dynamic interactions between

cryptos and gold.

This has generated a plethora of studies examining the interdependency structure of some
cryptos (mostly, Bitcoin) and gold prices (Das & Kannadhasan, 2018; Dyhrberg, 2016; Klein
et al., 2018; Zwick & Syed, 2019). However, the price generation process involves multiple
factors that relate to economic characteristics of the structure of these markets which make it

difficult to understand (Di Matteo, Aste, & Dacorogna, 2003). The complexity of the price
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generation process interrogates the validity of natural law of scale-invariance or fractals of a
self-similar process to reflect the behavioural market theory known as the heterogeneous
market hypothesis (HMH) (Miiller et al., 1993). The HMH sees market participants as
heterogeneous with different information, objectives, and varying investment horizons. Such
market participants react to the information at different times, which makes market data mixed
and noisy. This causes the price series of cryptocurrency and gold to exhibit non-linearity, non-

stationarity, and long memory.

It is clear that the potential of non-linearity in the data generating process of these prices render
the use of classical linear models inappropriate. The complex nature of such time series has
increased time-frequency representations such as Short-time Fourier transform (Yunhong,
Guosui, Xi, & Yiding, 1998), Wavelet transform (Hu, Liu, & Deng, 2009), and adaptive
optimum kernel time-frequency representation (Liao, Guo, Wang, Zuo, & Zhuang, 2015; Wang
et al., 2011) in modelling the behaviour of the series by determining the frequencies present,
the strength of the frequencies, and their patterns over time (Nava, Di Matteo, & Aste, 2018b,
2018a). However, these methods have been found to be deficient in handling the complex
dynamics of these types of time series. For example, Fourier analysis is effective in studying
periodic and stationary time series whose properties do not change much over time while
wavelet transform is inaccurate in detecting the event under noisy conditions (Xiao et al.,
2017). In addition, these methods require a priori-basis selection which confounds the

economic interpretation or meaning of the analysis.

Ostensibly, these methods have been used by previous studies in analysing the relationships
between cryptos and gold prices in spite of the weakness outlined. For example, Das and
Kannadhasan (2018) employed wavelet-based approach, Zwick and Syed (2019) used
threshold regression model while Klein et al. (2018) utilized BEKK-GARCH to examine the
relationship between Bitcoin and gold. This leads to inaccurate identification of hidden
structures embedded in the data, the validity of a conclusion drawn from the analysis, and its

policy implications.

Recently, the empirical mode decomposition (EMD) method (Huang, Shen, & Long, 1999;
Huang, Masulis, & Stoll, 1996; Huang, 1998) for analysing the non-linear and non-stationary
signal data is proposed. Unlike the previous methods, such as the wavelet analysis and

spectrum analysis, EMD eliminates the need for an a-priori basis selection and addresses the
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weakness of competing model to correctly identify the hidden structures embedded in the data.
According to Huang (1998), the EMD technique assumes that the financial time series has
many intrinsic mode functions (IMFs) of different oscillations which must satisfy two
conditions: 1) it has the same number of extremum and zero crossing or differs by one at the
most and 2) it is symmetric with the local zero mean. In spite of these strengths, the standard
EMD suffers from mode-mixing making physical meaning of individual IMF unclear. As a
way of improvement, the ensemble empirical mode decomposition (EEMD) which corrects the
issue of mode-mixing is introduced (Wu & Huang, 2009). The EEMD has been recently
applied to financial time series decomposition (Li, Li, Wu, Zhu, & Yue, 2018; Wu & Huang,
2009; Xu, Shang, & Lin, 2016; Zhang, Lin, & Shang, 2017).

The current study follows Bouri, Gupta, et al. (2017) and Das & Kannadhasan (2018) to analyse
the asymmetric and symmetric dependency structure of decomposed series by quantile-in-
quantile regression (QQR) but deviates from these studies by using EEMD instead of wavelets
decomposition. The advantage of this method lies in the strength of EEMD to efficiently
decomposed non-linear and non-stationary series which improve the quality of the decomposed
series. The paper makes two contributions to literature. First, to our knowledge this the first
paper to employ EEMD-based QQR to analyse the dependency structure of cryptos and gold.
Second, although there are more than 2000 cryptos available, the extant literature concentrated
on mostly Bitcoin, this study expands the discussion to seven other cryptos based on a longer

span of data available.

Our empirical results reveals that cryptos and gold can both hedge and diversify for each other
at different conditional distributions of their returns. We also find that cryptos are not purely
speculative but can be driven by medium- and long-term fundamentals. In addition, both gold
and cryptos can be hedge and diversifiers for other traditional asset classes such as oil,

currencies, and other commodities.

2. Models and methodologies
2.1 Ensemble empirical mode decomposition (EEMD)

We employ the ensemble empirical mode decomposition (EEMD), QR, and QQR techniques
for our analysis. This involves a two-step approach by which we extract intrinsic mode

functions (IMFs) from gold and returns of the selected cryptos with EEMD. We then proceed
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to estimate bi-directional regressions with QR the QQR methods at different frquencies. The
IMFs, representing different time scales, are important in this study given the non-linearity and

non-stationarity within our series (Ivanov, 2013).

As a potential successor of empirical mode decomposition (EMD), the EEMD improves the
former by an objective intermittence test on a white noise-added signal (data) which allows the
mean to be treated as the final true results (Wu & Huang, 2009). The EEMD sifts through the
original series with a sufficient number of iterations. With the added white noise, it provides a
uniform reference in the time-frequency space essential in this study and in line with the
EEMD. We provide a brief description of the EEMD methodology based on Wu & Huang
(2009).

The EEMD defines the IMF components as the mean of an ensemble of trials, where each is

made of the signal (data) and a white noise of finite amplitude. In generic terms, all data x(t)

are a sum of signal (that is actual data, s(t)) and noise n(t) so that
x(t) = s(t) + n(t). (1)

While many data analysis techniques have failed to remove this noise component, the EEMD
adds white noise in order to remove weak signals (to keep the true signal). This is based on
inspirations from Flandrin, Rilling, & Goncalves (2004) and Gledhill (2003). Wu & Huang's
(2009) EEMD improves upon EMD and the works of the above authors by using the
cancellation (effects) principle’ associated with an ensemble of noise-added cases to improve
results. This improvement stems from overcoming the problems of scale separation and mode
mixing? associated with the EMD without a subjective test (known as noise-assisted data
analysis (NADA)) on the original data. Scale separation is a problem linked to the intermittency
test aimed at fixing mode mixing problem based on a subjective election of scales (Wu &

Huang, 2009).

From Eq. (1) an i** artificial observation,

x;(t) = x(t) + w;(t) (2

! See de Cheveigné (2005) for further details.
2 Any IMF consisting of oscillations of dramatically disparate scales caused by intermittency of the driving
mechanism (Wu & Huang, 2009).



is realised by adding a white noise of different realisations, w;(t) which avoids mode mixing

which provides a relatively uniform reference scale distribution to facilitate EMD.

The development of EEMD relies on the properties of EMD of Huang et al. (1998) and Huang,
Shen, & Long (1999) as follows:

1. add a white noise to the targeted data to arrive at x;(t)

2. decompose x;(t) into IMFs

3. iterate 1 and 2 with varying white noise series and

4. obtain the (ensemble) means of corresponding IMFs of the decomposition as the final

result.

The desirable features of the EEMD are that the randomly added white noise series will cancel
out each other in the final rendition of the respective IMFs. Hence, mean IMFs reside within
the natural dyadic filter windows which sidesteps the mode mixing problem. The largest
number of IMFs s; (and one residual 7) of a data set is approximately log, N where N denoted

the total number of data points. Thus, r can be represented as s; — (s; — 1).

2.2 The QR and QQR approaches

The QQR technique is the non-parametric version of quantile regression that empirically
justifies the conditional quantile relationship between two or more variables. The QQR
technique is assumed to combine one of quantile regression and non-parametric estimators. In
order to study bearish and/or bullish relationship between gold and cryptocurrencies, the QQR
technique seems appropriate. In terms of price patterns, quantiles can describe asymmetry
between high and low returns as well as capturing possible non-stationarity in the series. In this

study we look at this nexus starting with

GR, = BO(CR,) + uf 3)

where GR; and CR, denote the gold and cryptocurrency returns at period ¢, 6 is the 6th quantile
of the conditional distribution of GR, and uf is the error quantile whose Otk conditional
quantile is made-up to be zero, and 89 () represents slope of this relationship. One can view

Eq. (3) as the quantile regression, from which QQR can be derived.



The Eq. (3) can be extended by a first order Taylor expansion of a quantile of CR* as follows:
B°(CR,) = B°(CR™) + B% (CR"(CR, — CR) @)

where ﬁelexplains the partial derivative of S%(CR,), indicative of a marginal effect as the

slope. We see that 6 is the functional form of 8¢ (CR?) and Be’ (CR") while 7 is the functional

form of EX and EX®, hence 6 and 7 are the functional forms of ¢ (CR?) and ,89’ (CRY). If we

represent B%(CR?) and BY (CR™) by By (6, 7) and B, (6, ), respectively, then

BP(CRy) = Bo(6,7) + B1(6,7)(CR, — EXT) (5
can suffice. By substituting Eq. (5) into Eq. (3), we arrive at the Eq. (6) as follows:
GR; = By(6,7) + B1 (8, D (CR, — CR) +u? (6)

)
where, (*) gives the conditional quantile of 6z of gold returns. Further, it reveals the actual
association between the quantile of cryptocurrency returns (6¢4) and the quantile of gold returns
(tth) of parameters 8, and ; with indices of § and 7. As in ordinary least squares (OLS), a

similar minimisation is applied to arrive at Eq. (7)
. = = Fn(CRY)—
min X7, pp[GR, — by — by (CR, — CRY)| K (252=)  (7)
0,71

where pg(u) is the quantile loss function representing as pg(u) = u(@ —1(u < 0)),iis the
function of indicator, K(-) is the kernel density function and % denotes kernel density function

bandwidth parameter. The kernel function weights the observations of EX® where the minimal
weights are negatively related to distribution function of CR, as Fn(C/'I\?t) = %22:1 I(CR, <

CR.). In line with Sim and Zhou (2015) we use h = [0.05 to 0.95] for empirical QQ analysis
which is the bandwidth for the quantiles. The bandwidth is the partition of the quantiles and
determines the smoothness of the estimation results. Smaller bandwidths are preferred to larger
ones as the latter may induce bias in the estimated coefficients. We note that in the case where

gold is the independent variable the equations can be modified accordingly.

By using QR and QQR to quantify the relationship between gold and cryptos with IMFs as
inputs, not only are we able to capture the time-varying non-linear non-stationary link, we are
also able to infer the nexus during both bear and bull return episodes at short-, medium-, and
long-terms. As the first of a few studies of this nature, our paper provides fresh insights for

different types of gold investors to satisfy their profit-maximising or risk-minimising goals.

3. Data and preliminary analysis



We present the sampled cryptos in Table 1. Selection is based on a large span of available data
for which the same number of IMFs are obtained. We also consider the market capitalisation
in the selection of crytos. For example, Bitcoin (64%), Ethereum (22%), Ripple (5%), Litecoin
(2%), and others (8%) (Zhang, Chan, Chu, & Nadarajah, 2019). All cryptos data are gleaned
from CoinMarketCap? but gold data is taken from the Bloomberg Terminal; and are quoted in
USD. For the purposes of this study, gold is matched with each cryptocurrency according to
time span and trading days. The return series are decomposed into a number of IMFs depending
on the length of series and they represent short-term, medium-term, and long-term dynamics.
We select IMF 1, IMF 5, and IMF Residual to represent short-, medium-, and long-term

dynamics, respectively, in line with the extant literature.

We present the summary statistics of gold and returns of the selected cryptos and the number
of IMFs in Table 2. We find both left and right skewness and excess kurtosis are corroborated
by the Shapiro-Wilk test of normality. These confirm asymmetries in the distributions of the
series. We also find similar patterns for the IMFs across the time-scales. Further, IMFs seem
to be useful as inputs for the regression techniques in the light of frequency-variations in the
time series. These provide further motivation to employ quantile-based regressions to analyse
the gold-cryptos nexus. The times series plots presented in Figure 1 (in the Appendices) also

show volatility clusters and thus an indication of time-varying risk emanating from the series.

Table 1: Summary of sample data

Cryptocurrency Period No. of IMFs
Bitcoin (BTC)  30/04/2013 — 18/04/2019 10
Dash (DASH) 17/02/2014 — 18/04/2019 10

Ethereum (ETH) 10/08/2015 — 18/04/2019 10
Litecoin (LTC)  30/02/2014 — 18/04/2019 10

Monero (XMR)  22/05/2014 — 18/04/2019 10
NEM (XEM) 02/04/2015 — 18/04/2019 10
Ripple (XRP) 05/08/2013 — 18/04/2019 10
Stellar (XLM) 06/08/2014 —18/04/2019 10

Note: Cryptocurrencies are arranged in alphabetical order.

4. Empirical results: asymmetric regression results

3 https://coinmarketcap.com/




4.1 OR results

In this study we surmise a bi-directional nexus between gold and cryptocucurries and we
perform regressions accordingly. For clarity of presentation and want of space we elect to plot
the regression coefficients, rather than present the actual coefficients in tables*. These are
presented in Figure 2. We note that both QR (lines in wine colour) and QQR (lines in blue
colour) estimates are in the same plots. Apart from Figure 2 providing a pictorial
representations of the gold-cryptos link in terms of magnitude and direction, it also engenders
a basis to validate estimates from the QQR technique — this is further explained in Section 4.2.
In the plots we note that the pair with Gold as the first variable and a crypto as the second
variable (e.g. Gold-Bitcoin) implies Gold is the dependent variable and Bitcoin is the
independent variable (hereafter referred to as from). The reverse is true (hereafter referred to
as t0). Thus, in the QR Gold-Bitcoin implies the quantile returns of Gold are regressed on the
returns of Bitcoin. But for QQR, the quantile returns of Gold are regressed on the corresponding

quantile returns of Bitcoin. The same analogy applies for Bitcoin-Gold, for instance.

We advise the reader that the plots in Figure 2 are constructed with the background that the bi-
directional gold-cryptos link at the composite level (returns without decomposition) and in the
short-term (IMF1) are mostly insignificant at the conventional® levels of significance.
Significance is attained in the medium-term (IMF5) and long-term (IMFR). We further observe
that, in the case of Ethereum, there is no significant link with gold throughout. This may be
quite surprising given the place of Ethereum in the cryptos space. For instance, it has attracted
a great deal of attention and rivaled Bitcoin as the second ranking crypto in their early years
(Mensi, Al-Yahyaee, & Kang, 2018). Therefore, we present the results for all gold-cryptos

pairs in the medium- and long-terms except for Ethereum.

4 All regression tables are available upon request to the corresponding author.
® That is 1%, 5%, and 10% significance levels.



Table 2: Summary statistics of Gold and cryptocurrencies returns and their IMFs

Statistic Gold BTC Gold_ IMF1  Gold IMF5 Gold IMFR BTC _IMF1 BTC_IMF5 BTC_IMFR
Obs. 1500 1500 1500 1500 1500 1500 1500 1500
Mean -0.0001 0.0016 0 -0.0001 -0.0002 0.0003 0.001 0.001
Std. Dev. 0.01 0.05 0.01 0.00 0.00 0.04 0.01 0.00
Skewness 0.03 -0.14 -0.05 0.07 -1.16 0.02 0.53 -0.91
Kurtosis 3.95 7.99 0.75 0.31 0.28 5.32 2.67 -0.47
Normtest. W* 0.96 0.88 0.99 1.00 0.84 0.94 0.91 0.84
Gold DASH Gold_IMF1 Gold _IMF5 Gold _IMFR DASH_IMF1 DASH_IMF5 DASH_IMFR
Obs. 1299 1299 1299 1299 1299 1299 1299 1299
Mean 0 0.0031 0 0 0 -0.0004 -0.0009 0.0038
Std. Dev. 0.01 0.08 0.01 0.00 0.00 0.06 0.01 0.01
Skewness 0.20 3.32 -0.04 0.08 -0.94 0.39 -1.53 0.54
Kurtosis 2.47 49.06 0.45 0.43 -0.42 14.90 10.43 -0.96
Normtest. W* 0.97 0.77 0.99 1.00 0.83 0.88 0.81 0.91
Gold ETH Gold_IMF1 Gold _IMF5 Gold _IMFR ETH_IMF1 ETH_IMF5 ETH_IMFR
Obs. 928 928 928 928 928 928 928 928
Mean 0.0002 0.0036 0.0001 0 0 -0.0002 -0.0007 0.0047
Std. Dev. 0.008 0.0708 0.0063 0.001 3.00E-04 0.052 0.0124 0.0074
Skewness 0.366 0.635 -0.074 0.086 0.516 0.081 -0.196 0.595
Kurtosis 2.939 4.173 0.575 0.270 -1.027 1.039 1.661 -0.900
Normtest. W* 0.965 0.930 0.995 0.996 0.908 0.991 0.975 0.905
Gold LTC Gold_IMF1  Gold _IMF5 Gold _IMFR LTC_IMF1 LTC_IMF5 LTC_IMFR
Obs. 1500 1500 1500 1500 1500 1500 1500 1500
Mean -0.0001 0.0006 0 -0.0001 -0.0002 0.0007 0.0002 0.0002
Std. Dev. 0.01 0.07 0.01 0.00 0.00 0.05 0.01 0.00
Skewness 0.03 1.84 -0.05 0.07 -1.16 -0.02 0.05 0.03
Kurtosis 3.95 24.58 0.75 0.31 0.28 8.16 5.38 -1.24
Normtest. W* 0.96 0.77 0.99 1.00 0.84 0.89 0.88 0.95
Gold XMR Gold_IMF1 Gold _IMF5 Gold _IMFR XMR _IMF1 XMR _IMF5 XMR _IMFR
Obs. 1233 1233 1233 1233 1233 1233 1233 1233
Mean 0 -0.0001 0.0001 -0.0001 -0.0001 -0.0003 0 -0.0022
Std. Dev. 0.01 0.08 0.01 0.00 0.00 0.06 0.01 0.01
Skewness 0.21 0.36 -0.06 0.09 -0.96 0.05 0.09 -0.59
Kurtosis 2.60 4.85 0.55 0.51 0.00 1.50 0.37 -0.92
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Normtest. W* 0.97 0.93 0.99 0.99 0.88 0.98 0.99 0.91
Gold XEM Gold_IMF1 Gold _IMF5 Gold _IMFR XEM_IMF1 XEM_IMF5 XEM_IMFR
Obs. 1016 1016 1016 1016 1016 1016 1016 1016
Mean 0.0001 0.0053 0 0 0 -0.0005 0 0.0077
Std. Dev. 0.01 0.09 0.01 0.00 0.00 0.07 0.02 0.01
Skewness 0.33 2.05 -0.05 0.05 -0.47 -0.09 0.10 -1.03
Kurtosis 2.76 18.10 0.43 -0.22 -1.24 3.81 1.82 -0.13
Normtest. W* 0.97 0.86 1.00 1.00 0.88 0.96 0.96 0.85
Gold XLM  Gold_IMF1 Gold _IMF5 Gold IMFR XLM_IMF1 XLM_IMFS5 XLM_IMFR
Obs. 1181 1181 1181 1181 1181 1181 1181 1181
Mean 0 0.0017 0.0001 -0.0001 0 -0.0005 0.0003 0.0028
Std. Dev. 0.008 0.080 0.006 0.001 0.000 0.062 0.014 0.003
Skewness 0.220 1.345 -0.050 0.012 -0.815 -0.132 0.224 -0.893
Kurtosis 2.612 10.710 0.518 0.540 -0.626 3.490 2.652 -0.501
Normtest. W* 0.969 0.868 0.995 0.993 0.857 0.954 0.947 0.841
Gold XRP Gold_IMF1 Gold _IMF5 Gold IMFR XRP_IMF1 XRP_IMFS5S XRP_IMFR
Obs. 1433 1433 1433 1433 1433 1433 1433 1433
Mean 0 0.0026 0 0 0 -0.0006 0.0004 0.0032
Std. Dev. 0.009 0.077 0.007 0.001 0.000 0.061 0.014 0.004
Skewness 0.249 2.124 -0.048 -0.013 -1.106 -0.047 0.426 1.181
Kurtosis 2.781 32.901 0.669 0.296 0.283 19.051 3.271 0.249
Normtest. W* 0.967 0.733 0.993 0.996 0.859 0.801 0.915 0.824
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It is clear from the coefficient estimates that composite and short-term gold-cryptos links can
be spurious. Investors may be caught in the frenzy about cryptos (especially Bitcoin) as the
new gold (Dyhrberg, 2016) in the short-term. Further, from an econometric perspective, a claim
by Klein et al. (2018) that Bitcoin does not bear a resemblance to any other conventional asset,
may be supported. Nonetheless, if we follow definition of a hedge by Baur & Lucey (2010),
we can deem these insignificant coefficients to imply that gold and crytocurrrencies are
uncorrelated, which suggests that gold and cryptos can hedge each other at the compotite level
and in the short-term. Further, we may see the unconditional connectedness between cryptos
and gold as negligible as found by (Kurka, 2019). However, with the passage of time investors
may rebalance their portfolios with after a careful assessment of the market. This may serve as
reminder that Weber's (2016) Bitcoin standard may be far-fetched. But this could support the
assertion that cryptos may not be adopted by states by reason of their risks (Lansky, 2018).
Notwithstanding, this scenario corroborates the findings of Bouoiyour, Selmi, Tiwari, &
Olayeni (2016), using EMD that Bitcoin, for instance, is driven by long-term fundamentals as
opposed to being labelled as a purely speculative asset class. Further, Kristoufek (2015) find
Bitcoin to possess both speculative and standard financial asset properties (see also, Zwick &
Syed, 2019). Thus, we surmise that it takes some time and detailed analysis for noteworthy

relationships between gold and cryptos to be revealed; as we have done in this study.

At this juncture, we analyse the QR estimates. We refer to blue colour plots in Figure 2. We
observe that from and to share similar pattern in the medium- and long-terms. The coefficients
of the former are smaller and the plots are smoother than those of the former. However, to
estimates are somewhat smooth until the 75" quantile and take jumps afterwards. In the
extreme upper tails we realise the links are strongest. In general, we find that the magnitude of
both from estimates rise from lower quantiles through to upper quantiles, except for Dash,
Litecoin, and Ripples (which exhibit a reverse pattern). But for o estimates, links fall from
lower quantile to upper quantiles; and are steeper after the 75™. Exceptions are noted for Dash,
Litecoin, NEM (rise steadily), Stellar (in the long-term), Monero (fall, rise, and fall again), and
Ripple (fall steadily and rise in the medium-term). These patterns show us how the two asset
classes are linked as per trends in the market. So we see the asymmetric nature of the nexus
which should be instructive, in generic terms, for investment strategies involving these asset

classes.
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Figure 2: Bi-directional gold and cryptos QR and QQR

Having established hedging potential between gold and cryptos (uncorrelated) in the short-term
and at composite level, we now analyse the direction of the nexus to provide insight into
diversification possibilities. In this regards, we consider a negative coefficient or inverse
relationship as one that provides diversification potential but positive coefficient does not.
However, Baur & Lucey (2010, p. 219) distinguish between hedge and diversifier as follows:
“A hedge ... uncorrelated or negatively correlated ... ” and “A diversifier ... positively (but not
perfectly correlated) ...” These two do not possess the specific property risk reduction market
turmoils and so cannot be safe haven. Therefore, we follow the definitions of Baur & Lucey

(2010) to identify specific quantiles where gold and cryptos can hedge or diversify for each

other.
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In the from context, we observe hedging possibilities mostly in the medium-term except for
NEM which shows only diversifier prospects in both medium-and long-terms. In the long-term
gold and cryptos mostly have positive relationships and thus may diversify each other. But
Monero can hedge in the long-term up to the 75" quantile. The specific quantiles where inverse
relationships are observed (hedging) are as follows: Bitcoin (lower half of distribution), Dash
and Stellar (across all quantiles but small in magnitude as compared to the others), Monero (up
to 15" quantile and after the 85"), and Ripple (only after the 65 quantile). It follows that the

other quantiles offer diversifications instead.

The to link is comparable with from nexus in the sense that gold and cryptos are hedgers of
each other mostly in the medium-term but diversifies in the long-term. There are, however, a
few exceptions. For instance, Ripple cannot hedge at the tails of the distribution in the medium-
term but it can diversify in the long-term. Monero can also hedge in the long-term in the upper
third of the distribution. Lastly, NEM can also hedge only at the extreme tails of the

distribution, but can otherwise diversify.

Our findings corroborate other studies that find cryptos to act as a hedge under different
circumstances. For instance, Bouri et al. (2017) support the view under global uncertainty at
higher quantiles and in the short-term. Bouri et al. (2017) also reveal hedge and diversifier
properties for Bitcoin against commodities in a time-varying manner. For gold, in particular,

Zwick & Syed (2019) find both hedge and diversifier features of Bitcoin.

Further, our findings reveal that gold and cryptos, on the hand can hedge or be safe haven under
market uncertainties. For instance, Selmi, Mensi, Hammoudeh, & Bouoiyour (2018) find
Bitcoin and gold, rather than oil, as safe haven under global uncertainty. Once more, Al-
Yahyaee, Mensi, Al-Jarrah, Hamdi, & Kang (2019) document the diversification benefits of
Bitcoin and gold for oil and Standard & Poor Goldman Sachs Commodity Index (S&P GSCI).
Furthermore, given that our variables are denominated in US dollars, we can relate our findings
to Kliber, Marszalek, Musiatkowska, & Swierczyﬁska (2019) who find Bitcoin as a weak hedge

in all US dollar-denominated investment markets.

We further observe from Figure 2 that, the 7o (i.e. crypto-gold) links are stronger than from (i.e.
gold- crypto) links. In other words, when cryptos are the dependent variables they hedge or
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diversify better than when gold is the dependent variable, both in the medium- and long-terms.
This implies that the conditional quantiles of gold provide stronger hedging and diversification
potentials on cryptos than the conditional quantiles of cryptos have on gold. We suggest that
bearish and bullish gold prices are better indicators for hedging and diversification strategies

than rising and plummetting prices of cryptocurrencies.

We have established the importance of asymmetric dependence connection between gold and
cryptos for investment strategies. Our finding, however, contravenes that of Charles & Darné
(2019) who find GARCH-type models to be inappropriate for modelling dynamic asymmetric
Bitcoin returns. In terms of the hedging ability of cryptos, Kurka (2019) holds a different

opinion, that market disruptions may be transmitted from Bitcoin to the traditional economy.

4.2 OOR results

The QQR is a non-parametric technique which provides us with no significance of the
regression coefficients. However, it is possible to infer the validity of the QQR from the QR.
Bouri et al. (2017) suggest the QQR approach “decomposes” the QR estimates into the specific
quantiles of the explanatory variables. In Figure 2 we observe that while the QQR and QR
estimates are not the same, they show similar patterns for the most part. For the gold-crypto
link we find much more resemblance, but QQR estimates are subsumed under the QR estimates
in the crypto-gold link. From these we can reinforce the validity of the QQR technique in the
context of this study. That means the analysis pertaining to QR in terms of hedging and

diversification apply to the QQR estimates as well, only differing in magnitudes.

Specifically, we observe that in the long-term QQR estimates are essentially zeros as compared
to QR estimates. Further, in the lower half of the distribution, QR lies above QQR but in the
upper half the reverse is true. This holds for the gold-crypto links, except for Ripple. The QR
and QQR plots diverge after the 15" quantile with QQR rising and QR falling, in the long-

term.

5. Conclusions and recommendations
In this study we examined the asymmetric frequency-varying connection between gold and

major cryptocurrencies to identify hedging and diversification possibilities between the two
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asset classes. With daily return series we decomposed the series into short-, medium- and, long-
term frequencies using EEMD and employed the QR and QQR techniques. The EEMD does
not only delineate the series into time horizons, but also reduces the noise that may be present
in the series. The QR and QQR also capture the asymmetries in the relationship at different
portions of the return distributing over the time scales (see also Troster, Tiwari, Shahbaz, &

Macedo, 2018). Our sampled period spanned 30/04/2013 to 18/04/2019.

We found both QR and QQR as valid models to examine the relationship between gold and
cryptos at different time-frequency scales. In one sense, our study is unique among many that
use noise reduction in the context of frequency-dependent asymmetric analysis. Thus, we make
improvement upon several studies whose important patterns may be shrouded noise in the data
or proffer inaccurate results. Among other things, we confirm the HMH in the context of
dynamic asymmetric, hedge, diversifier as opposed to the efficient market hypothesis (EMH).
This partially corroborates Nadarajah & Chu (2017) who find only a weak form of efficiency
in Bitcoin after an odd integer power transformation of the returns. Without this transformation

Bitcoin was starkly inefficient.

Following Baur & Lucey’s (2010) definitions of hedge and diversification, we find that both
gold and cryptos can hedge and diversify for each other within the medium- and long-terms.
However, we do not find any significant link between gold and Ethereum at all time scales and
in the unconditional and conditional distributions of the returns. Our findings corroborate the
notion of cryptos and gold possessing hedge and diversifier properties under different scenarios
(see Bouri, Gupta, et al., 2017, 2017; Kliber et al., 2019; Zwick & Syed, 2019; etc.).
Notwithstanding, Klein et al. (2018) and Kurka (2019) discount these properties for Bitcoin,

among others.

Further, we support Liu's (2019) assertion that portfolio diversification across different cryptos
can improve investment outcomes. Our results indicate that cryptos and gold (together), on the
one hand can hedge and diversify for other traditional assets, on the other hand. This assertion
is corroborated by Selmi et al. (2018) and Al-Yahyaee et al. (2019), among others. In the
nutshell, we find that there are possibilities of increased reward or risk-reduction in portfolios

constructed with gold different cryptos. It should, however, be noted that these phenomena are
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asymmetric and occur at different time horizons. Hence, investment decisions should be wary

of these dynamics.
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Appendices

Time series of Gold and Dash
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Time series of Gold and Monero
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Figure 1: Return and IMF plots of gold and cryptocurrencies



