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Abstract 

This paper explores the symmetric and asymmetric dependency structure of decomposed return 

series of Gold and eight cryptocurrencies to establish the hedging and diversification potentials 

of these asset classes. Daily data spanning 30 April 2013 to 18 April 2019 are employed within 

the Ensemble Empirical Mode Decomposition and Quantile-in-Quantile regression techniques. 

Our empirical results provide evidence that cryptocurrencies and Gold can both hedge and 

diversify for each other at different conditional distributions of their returns. We also find that 

cryptocurrencies are not purely speculative but can be driven by medium- and long-term 

fundamentals. In addition, both Gold and cryptocurrencies can be hedge and diversifiers for 

other traditional asset classes such as crude oil, fiat currencies, and other commodities.  
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1. Introduction 

Digital currencies which rely on cryptographic proofs for confirmation of transactions referred 

to as cryptocurrencies (cryptos) emerged in 1983 following the seminar paper of (Chaum, 

1983). These currencies differ from fiat currencies by its unique combination of three features: 

ensuring limited anonymity, independence from a central authority, and double-spending 

attack protection. The interest on cryptos heightened following achievement of these three 

features by Nakamoto (2008) in the paper “A Peer to Peer Electronic Cash System” and the 

subsequent introduction of Bitcoin on 3 January 2009 (Lansky, 2018). As of April 2019, over 

2000 cryptos were in existence compared to a little above 600 in January 2016 (Lansky, 2018) 

and 1622 as of May 2018 (Klein, Pham Thu, & Walther, 2018), with a total market 

capitalisation of over $240 billion. This signifies a rapid growth in a shor time span. According 

to Klein et al. (2018), cryptos have become attractive due to embodied innovative technology, 

high-security architecture, prosperity in functionalities, and investment opportunity as an asset. 

The emergence of cryptos has widened the investment and diversification platforms available 

to global investors. Cryptocurrencies have been likened to gold, which for years have been 

used as a hedge and safe-haven against assets like stocks, bonds, and other monetary assets 

(Baur & Lucey, 2010; Baur & McDermott, 2010, 2016; Klein et al., 2018). Research on the 

potential of some cryptos (usually Bitcoin) to act as a hedge and safe-haven similar to gold has 

emerged (Bouri, Gupta, Tiwari, & Roubaud, 2017; Bouri, Jalkh, Molnár, & Roubaud, 2017). 

They have become recognised as a new gold in digital form because of similarities in traits as 

highlighted in Dyhrberg (2016). These similarities between cryptos and gold include scarcity, 

the cost involved in the extraction, and non-interference or control by government. 

Cryptocurrencies, however, could differ from gold by exhibiting the characteristics of fiat 

currency, making them hybrid commodities. As a choice of alternative investment, Das & 

Kannadhasan (2018) posit that risk-averse investors may prefer gold, however, investors with 

speculative motive may opt for cryptocurrency, such as Bitcoin. Such dynamics occasion the 

need to explore further and generate better understanding of the dynamic interactions between 

cryptos and gold. 

 

This has generated a plethora of studies examining the interdependency structure of some 

cryptos (mostly, Bitcoin) and gold prices (Das & Kannadhasan, 2018; Dyhrberg, 2016; Klein 

et al., 2018; Zwick & Syed, 2019). However, the price generation process involves multiple 

factors that relate to economic characteristics of the structure of these markets which make it 

difficult to understand (Di Matteo, Aste, & Dacorogna, 2003). The complexity of the price 
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generation process interrogates the validity of natural law of scale-invariance or fractals of a 

self-similar process to reflect the behavioural market theory known as the heterogeneous 

market hypothesis (HMH) (Müller et al., 1993). The HMH sees market participants as 

heterogeneous with different information, objectives, and varying investment horizons. Such 

market participants react to the information at different times, which makes market data mixed 

and noisy. This causes the price series of cryptocurrency and gold to exhibit non-linearity, non-

stationarity, and long memory. 

 

It is clear that the potential of non-linearity in the data generating process of these prices render 

the use of classical linear models inappropriate. The complex nature of such time series has 

increased time-frequency representations such as Short-time Fourier transform (Yunhong, 

Guosui, Xi, & Yiding, 1998), Wavelet transform (Hu, Liu, & Deng, 2009), and adaptive 

optimum kernel time-frequency representation (Liao, Guo, Wang, Zuo, & Zhuang, 2015; Wang 

et al., 2011) in modelling the behaviour of the series by determining the frequencies present, 

the strength of the frequencies, and their patterns over time (Nava, Di Matteo, & Aste, 2018b, 

2018a). However, these methods have been found to be deficient in handling the complex 

dynamics of these types of time series. For example, Fourier analysis is effective in studying 

periodic and stationary time series whose properties do not change much over time while 

wavelet transform is inaccurate in detecting the event under noisy conditions (Xiao et al., 

2017). In addition, these methods require a priori-basis selection which confounds the 

economic interpretation or meaning of the analysis. 

 

Ostensibly, these methods have been used by previous studies in analysing the relationships 

between cryptos and gold prices in spite of the weakness outlined. For example, Das and 

Kannadhasan (2018) employed wavelet-based approach, Zwick and Syed (2019) used 

threshold regression model while Klein et al. (2018) utilized BEKK-GARCH to examine the 

relationship between Bitcoin and gold. This leads to inaccurate identification of hidden 

structures embedded in the data, the validity of a conclusion drawn from the analysis, and its 

policy implications. 

 

Recently, the empirical mode decomposition (EMD) method (Huang, Shen, & Long, 1999; 

Huang, Masulis, & Stoll, 1996; Huang, 1998) for analysing the non-linear and non-stationary 

signal data is proposed. Unlike the previous methods, such as the wavelet analysis and 

spectrum analysis, EMD eliminates the need for an a-priori basis selection and addresses the 
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weakness of competing model to correctly identify the hidden structures embedded in the data. 

According to Huang (1998), the EMD technique assumes that the financial time series has 

many intrinsic mode functions (IMFs) of different oscillations which must satisfy two 

conditions: 1) it has the same number of extremum and zero crossing or differs by one at the 

most and 2) it is symmetric with the local zero mean. In spite of these strengths, the standard 

EMD suffers from mode-mixing making physical meaning of individual IMF unclear.  As a 

way of improvement, the ensemble empirical mode decomposition (EEMD) which corrects the 

issue of mode-mixing is introduced (Wu & Huang, 2009). The EEMD has been recently 

applied to financial time series decomposition (Li, Li, Wu, Zhu, & Yue, 2018; Wu & Huang, 

2009; Xu, Shang, & Lin, 2016; Zhang, Lin, & Shang, 2017). 

 

The current study follows Bouri, Gupta, et al. (2017) and Das & Kannadhasan (2018) to analyse 

the asymmetric and symmetric dependency structure of decomposed series by quantile-in-

quantile regression (QQR) but deviates from these studies by using EEMD instead of wavelets 

decomposition. The advantage of this method lies in the strength of EEMD to efficiently 

decomposed non-linear and non-stationary series which improve the quality of the decomposed 

series. The paper makes two contributions to literature. First, to our knowledge this the first 

paper to employ EEMD-based QQR to analyse the dependency structure of cryptos and gold. 

Second, although there are more than 2000 cryptos available, the extant literature concentrated 

on mostly Bitcoin, this study expands the discussion to seven other cryptos based on a longer 

span of data available.  

 

Our empirical results reveals that cryptos and gold can both hedge and diversify for each other 

at different conditional distributions of their returns. We also find that cryptos are not purely 

speculative but can be driven by medium- and long-term fundamentals. In addition, both gold 

and cryptos can be hedge and diversifiers for other traditional asset classes such as oil, 

currencies, and other commodities.  

 

2. Models and methodologies  

2.1 Ensemble empirical mode decomposition (EEMD) 

We employ the ensemble empirical mode decomposition (EEMD), QR, and QQR techniques 

for our analysis. This involves a two-step approach by which we extract intrinsic mode 

functions (IMFs) from gold and returns of the selected cryptos with EEMD. We then proceed 
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to estimate bi-directional regressions with QR the QQR methods at different frquencies. The 

IMFs, representing different time scales, are important in this study given the non-linearity and 

non-stationarity within our series (Ivanov, 2013).  

As a potential successor of empirical mode decomposition (EMD), the EEMD improves the 

former by an objective intermittence test on a white noise-added signal (data) which allows the 

mean to be treated as the final true results (Wu & Huang, 2009). The EEMD sifts through the 

original series with a sufficient number of iterations. With the added white noise, it provides a 

uniform reference in the time-frequency space essential in this study and in line with the 

EEMD. We provide a brief description of the EEMD methodology based on Wu & Huang 

(2009). 

The EEMD defines the IMF components as the mean of an ensemble of trials, where each is 

made of the signal (data) and a white noise of finite amplitude. In generic terms, all data 𝑥(𝑡) 

are a sum of signal (that is actual data, 𝑠(𝑡)) and noise 𝑛(𝑡) so that    

 𝑥(𝑡) = 𝑠(𝑡) + 𝑛(𝑡). (1) 

While many data analysis techniques have failed to remove this noise component, the EEMD 

adds white noise in order to remove weak signals (to keep the true signal). This is based on 

inspirations from Flandrin, Rilling, & Goncalves (2004) and Gledhill (2003). Wu & Huang's 

(2009) EEMD improves upon EMD and the works of the above authors by using the 

cancellation (effects) principle1 associated with an ensemble of noise-added cases to improve 

results. This improvement stems from overcoming the problems of scale separation and mode 

mixing2 associated with the EMD without a subjective test (known as noise-assisted data 

analysis (NADA)) on the original data. Scale separation is a problem linked to the intermittency 

test aimed at fixing mode mixing problem based on a subjective election of scales (Wu & 

Huang, 2009). 

From Eq. (1) an 𝑖௧௛ artificial observation,  

 𝑥௜(𝑡) = 𝑥(𝑡) + 𝜔௜(𝑡) (2) 

                                                             
1 See de Cheveigné (2005) for further details. 
2 Any IMF consisting of oscillations of dramatically disparate scales caused by intermittency of the driving 
mechanism (Wu & Huang, 2009).   
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is realised by adding a white noise of different realisations, 𝜔௜(𝑡) which avoids mode mixing 

which provides a relatively uniform reference scale distribution to facilitate EMD. 

The development of EEMD relies on the properties of EMD of Huang et al. (1998) and Huang, 

Shen, & Long (1999) as follows: 

1. add a white noise to the targeted data to arrive at 𝑥௜(𝑡) 

2. decompose 𝑥௜(𝑡) into IMFs 

3. iterate 1 and 2 with varying white noise series and 

4. obtain the (ensemble) means of corresponding IMFs of the decomposition as the final 

result. 

The desirable features of the EEMD are that the randomly added white noise series will cancel 

out each other in the final rendition of the respective IMFs. Hence, mean IMFs reside within 

the natural dyadic filter windows which sidesteps the mode mixing problem. The largest 

number of IMFs 𝑠௜ (and one residual 𝑟) of a data set is approximately 𝑙𝑜𝑔ଶ𝑁 where 𝑁 denoted 

the total number of data points. Thus, 𝑟 can be represented as 𝑠௜ − (𝑠௜ − 1).  

 

2.2 The QR and QQR approaches 

The QQR technique is the non-parametric version of quantile regression that empirically 

justifies the conditional quantile relationship between two or more variables. The QQR 

technique is assumed to combine one of quantile regression and non-parametric estimators. In 

order to study bearish and/or bullish relationship between gold and cryptocurrencies, the QQR 

technique seems appropriate. In terms of price patterns, quantiles can describe asymmetry 

between high and low returns as well as capturing possible non-stationarity in the series. In this 

study we look at this nexus starting with 

𝐺𝑅௧ = 𝛽ఏ(𝐶𝑅௧) + 𝑢௧
ఏ      (3) 

 

where 𝐺𝑅௧   and 𝐶𝑅௧ denote the gold and cryptocurrency returns at period t, θ is the θth quantile 

of the conditional distribution of 𝐺𝑅௧  and 𝑢௧
ఏ is the error quantile whose θth conditional 

quantile is made-up to be zero, and 𝛽ఏ(∙) represents slope of this relationship. One can view 

Eq. (3) as the quantile regression, from which QQR can be derived.  
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The Eq. (3) can be extended by a first order Taylor expansion of a quantile of 𝐶𝑅ఛ  as follows:    

𝛽ఏ(𝐶𝑅௧) ≈ 𝛽ఏ(𝐶𝑅ఛ) + 𝛽ఏᇲ
(𝐶𝑅ఛ)(𝐶𝑅௧ − 𝐶𝑅ఛ)  (4) 

where 𝛽ఏᇲ
explains the partial derivative of 𝛽ఏ(𝐶𝑅௧), indicative of a marginal effect as the 

slope. We see that θ is the functional form of 𝛽ఏ(𝐶𝑅ఛ) and 𝛽ఏᇲ
(𝐶𝑅ఛ) while τ is the functional 

form of  𝐸𝑋 and 𝐸𝑋ఛ, hence  θ and τ are the functional forms of  𝛽ఏ(𝐶𝑅ఛ) and 𝛽ఏᇲ
(𝐶𝑅ఛ). If we 

represent  𝛽ఏ(𝐶𝑅ఛ) and 𝛽ఏᇲ
(𝐶𝑅ఛ) by 𝛽଴(𝜃, 𝜏) and 𝛽ଵ(𝜃, 𝜏), respectively, then  

𝛽ఏ(𝐶𝑅௧) ≈ 𝛽଴(𝜃, 𝜏) + 𝛽ଵ(𝜃, 𝜏)(𝐶𝑅௧ − 𝐸𝑋ఛ)         (5) 

can suffice. By substituting Eq. (5) into Eq. (3), we arrive at the Eq. (6) as follows: 

𝐺𝑅௧ = 𝛽଴(𝜃, 𝜏) + 𝛽ଵ(𝜃, 𝜏)(𝐶𝑅௧ − 𝐶𝑅ఛ)ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
(∗)

+ 𝑢௧
ఏ         (6) 

where, (*) gives the conditional quantile of θth of gold returns. Further, it reveals the actual 

association between the quantile of cryptocurrency returns (θth) and the quantile of gold returns 

(τth) of parameters 𝛽଴ and 𝛽ଵ  with indices of θ and τ.  As in ordinary least squares (OLS), a 

similar minimisation is applied to arrive at Eq. (7)  

min
௕బ ,௕భ

∑ 𝜌ఏൣ𝐺𝑅௧ − 𝑏଴ − 𝑏ଵ൫𝐶𝑅෢
௧ − 𝐶𝑅෢ ఛ൯൧௡

௜ୀଵ 𝐾 ቀ
ி೙(஼ோ෢ ೟)ିఛ

௛
ቁ (7) 

where 𝜌ఏ(𝑢) is the quantile loss function representing as 𝜌ఏ(𝑢) = 𝑢൫𝜃 − 𝐼(𝑢 < 0)൯, i is the 

function of indicator,  𝐾(∙) is the kernel density function and h denotes kernel density function 

bandwidth parameter. The kernel function weights the observations of 𝐸𝑋ఛ where the minimal 

weights are negatively related to distribution function of  𝐶𝑅෢
௧ as 𝐹௡൫𝐶𝑅෢

௧൯ =
ଵ

௡
∑ 𝐼(𝐶𝑅෢

௞ <௡
௞ୀଵ

𝐶𝑅෢
௧). In line with Sim and Zhou (2015) we use ℎ = [0.05 𝑡𝑜 0.95] for empirical QQ analysis 

which is the bandwidth for the quantiles. The bandwidth is the partition of the quantiles and 

determines the smoothness of the estimation results. Smaller bandwidths are preferred to larger 

ones as the latter may induce bias in the estimated coefficients. We note that in the case where 

gold is the independent variable the equations can be modified accordingly. 

 

By using QR and QQR to quantify the relationship between gold and cryptos with IMFs as 

inputs, not only are we able to capture the time-varying non-linear non-stationary link, we are 

also able to infer the nexus during both bear and bull return episodes at short-, medium-, and 

long-terms. As the first of a few studies of this nature, our paper provides fresh insights for 

different types of gold investors to satisfy their profit-maximising or risk-minimising goals.  

 

3. Data and preliminary analysis 
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We present the sampled cryptos in Table 1. Selection is based on a large span of available data 

for which the same number of IMFs are obtained. We also consider the market capitalisation 

in the selection of crytos. For example, Bitcoin (64%), Ethereum (22%), Ripple (5%), Litecoin 

(2%), and others (8%) (Zhang, Chan, Chu, & Nadarajah, 2019). All cryptos data are gleaned 

from CoinMarketCap3 but gold data is taken from the Bloomberg Terminal; and are quoted in 

USD. For the purposes of this study, gold is matched with each cryptocurrency according to 

time span and trading days. The return series are decomposed into a number of IMFs depending 

on the length of series and they represent short-term, medium-term, and long-term dynamics. 

We select IMF 1, IMF 5, and IMF Residual to represent short-, medium-, and long-term 

dynamics, respectively, in line with the extant literature.  

 

We present the summary statistics of gold and returns of the selected cryptos and the number 

of IMFs in Table 2. We find both left and right skewness and excess kurtosis are corroborated 

by the Shapiro-Wilk test of normality. These confirm asymmetries in the distributions of the 

series. We also find similar patterns for the IMFs across the time-scales. Further, IMFs seem 

to be useful as inputs for the regression techniques in the light of frequency-variations in the 

time series. These provide further motivation to employ quantile-based regressions to analyse 

the gold-cryptos nexus. The times series plots presented in Figure 1 (in the Appendices) also 

show volatility clusters and thus an indication of time-varying risk emanating from the series.  

 

Table 1: Summary of sample data 
Cryptocurrency Period No. of IMFs 

Bitcoin (BTC) 30/04/2013 – 18/04/2019 10 

Dash (DASH) 17/02/2014 – 18/04/2019 10 

Ethereum (ETH) 10/08/2015 – 18/04/2019 10 

Litecoin (LTC) 30/02/2014 – 18/04/2019 10 

Monero (XMR) 22/05/2014 – 18/04/2019 10 

NEM (XEM) 02/04/2015 – 18/04/2019 10 

Ripple (XRP) 05/08/2013 – 18/04/2019 10 

Stellar (XLM) 06/08/2014 –18/04/2019 10 

 Note: Cryptocurrencies are arranged in alphabetical order. 

 

4. Empirical results: asymmetric regression results 

                                                             
3 https://coinmarketcap.com/  
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4.1 QR results 

In this study we surmise a bi-directional nexus between gold and cryptocucurries and we 

perform regressions accordingly. For clarity of presentation and want of space we elect to plot 

the regression coefficients, rather than present the actual coefficients in tables4. These are 

presented in Figure 2. We note that both QR (lines in wine colour) and QQR (lines in blue 

colour) estimates are in the same plots. Apart from Figure 2 providing a pictorial 

representations of the gold-cryptos link in terms of magnitude and direction, it also engenders 

a basis to validate estimates from the QQR technique – this is further explained in Section 4.2. 

In the plots we note that the pair with Gold as the first variable and a crypto as the second 

variable (e.g. Gold-Bitcoin) implies Gold is the dependent variable and Bitcoin is the 

independent variable (hereafter referred to as from). The reverse is true (hereafter referred to 

as to). Thus, in the QR Gold-Bitcoin implies the quantile returns of Gold are regressed on the 

returns of Bitcoin. But for QQR, the quantile returns of Gold are regressed on the corresponding 

quantile returns of Bitcoin. The same analogy applies for Bitcoin-Gold, for instance. 

 

We advise the reader that the plots in Figure 2 are constructed with the background that the bi-

directional gold-cryptos link at the composite level (returns without decomposition) and in the 

short-term (IMF1) are mostly insignificant at the conventional5 levels of significance. 

Significance is attained in the medium-term (IMF5) and long-term (IMFR). We further observe 

that, in the case of Ethereum, there is no significant link with gold throughout. This may be 

quite surprising given the place of Ethereum in the cryptos space. For instance, it has attracted 

a great deal of attention and rivaled Bitcoin as the second ranking crypto in their early years 

(Mensi, Al-Yahyaee, & Kang, 2018). Therefore, we present the results for all gold-cryptos 

pairs in the medium- and long-terms except for Ethereum.  

                                                             
4 All regression tables are available upon request to the corresponding author. 
5 That is 1%, 5%, and 10% significance levels. 
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Table 2: Summary statistics of Gold and cryptocurrencies returns and their IMFs 
Statistic Gold BTC Gold_IMF1 Gold _IMF5 Gold _IMFR BTC_IMF1 BTC_IMF5 BTC_IMFR 
Obs. 1500 1500 1500 1500 1500 1500 1500 1500 
Mean -0.0001 0.0016 0 -0.0001 -0.0002 0.0003 0.001 0.001 
Std. Dev. 0.01 0.05 0.01 0.00 0.00 0.04 0.01 0.00 
Skewness 0.03 -0.14 -0.05 0.07 -1.16 0.02 0.53 -0.91 
Kurtosis 3.95 7.99 0.75 0.31 0.28 5.32 2.67 -0.47 
Normtest.W* 0.96 0.88 0.99 1.00 0.84 0.94 0.91 0.84 
 Gold DASH Gold_IMF1 Gold _IMF5 Gold _IMFR DASH_IMF1 DASH_IMF5 DASH_IMFR 
Obs. 1299 1299 1299 1299 1299 1299 1299 1299 
Mean 0 0.0031 0 0 0 -0.0004 -0.0009 0.0038 
Std. Dev. 0.01 0.08 0.01 0.00 0.00 0.06 0.01 0.01 
Skewness 0.20 3.32 -0.04 0.08 -0.94 0.39 -1.53 0.54 
Kurtosis 2.47 49.06 0.45 0.43 -0.42 14.90 10.43 -0.96 
Normtest.W* 0.97 0.77 0.99 1.00 0.83 0.88 0.81 0.91 
 Gold ETH Gold_IMF1 Gold _IMF5 Gold _IMFR ETH_IMF1 ETH_IMF5 ETH_IMFR 
Obs. 928 928 928 928 928 928 928 928 
Mean 0.0002 0.0036 0.0001 0 0 -0.0002 -0.0007 0.0047 
Std. Dev. 0.008 0.0708 0.0063 0.001 3.00E-04 0.052 0.0124 0.0074 
Skewness 0.366 0.635 -0.074 0.086 0.516 0.081 -0.196 0.595 
Kurtosis 2.939 4.173 0.575 0.270 -1.027 1.039 1.661 -0.900 
Normtest.W* 0.965 0.930 0.995 0.996 0.908 0.991 0.975 0.905 
 Gold LTC Gold_IMF1 Gold _IMF5 Gold _IMFR LTC_IMF1 LTC_IMF5 LTC_IMFR 
Obs. 1500 1500 1500 1500 1500 1500 1500 1500 
Mean -0.0001 0.0006 0 -0.0001 -0.0002 0.0007 0.0002 0.0002 
Std. Dev. 0.01 0.07 0.01 0.00 0.00 0.05 0.01 0.00 
Skewness 0.03 1.84 -0.05 0.07 -1.16 -0.02 0.05 0.03 
Kurtosis 3.95 24.58 0.75 0.31 0.28 8.16 5.38 -1.24 
Normtest.W* 0.96 0.77 0.99 1.00 0.84 0.89 0.88 0.95 
 Gold XMR Gold_IMF1 Gold _IMF5 Gold _IMFR XMR _IMF1 XMR _IMF5 XMR _IMFR 
Obs. 1233 1233 1233 1233 1233 1233 1233 1233 
Mean 0 -0.0001 0.0001 -0.0001 -0.0001 -0.0003 0 -0.0022 
Std. Dev. 0.01 0.08 0.01 0.00 0.00 0.06 0.01 0.01 
Skewness 0.21 0.36 -0.06 0.09 -0.96 0.05 0.09 -0.59 
Kurtosis 2.60 4.85 0.55 0.51 0.00 1.50 0.37 -0.92 
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Normtest.W* 0.97 0.93 0.99 0.99 0.88 0.98 0.99 0.91 
 Gold XEM Gold_IMF1 Gold _IMF5 Gold _IMFR XEM_IMF1 XEM_IMF5 XEM_IMFR 
Obs. 1016 1016 1016 1016 1016 1016 1016 1016 
Mean 0.0001 0.0053 0 0 0 -0.0005 0 0.0077 
Std. Dev. 0.01 0.09 0.01 0.00 0.00 0.07 0.02 0.01 
Skewness 0.33 2.05 -0.05 0.05 -0.47 -0.09 0.10 -1.03 
Kurtosis 2.76 18.10 0.43 -0.22 -1.24 3.81 1.82 -0.13 
Normtest.W* 0.97 0.86 1.00 1.00 0.88 0.96 0.96 0.85 
 Gold XLM Gold_IMF1 Gold _IMF5 Gold _IMFR XLM_IMF1 XLM_IMF5 XLM_IMFR 
Obs. 1181 1181 1181 1181 1181 1181 1181 1181 
Mean 0 0.0017 0.0001 -0.0001 0 -0.0005 0.0003 0.0028 
Std. Dev. 0.008 0.080 0.006 0.001 0.000 0.062 0.014 0.003 
Skewness 0.220 1.345 -0.050 0.012 -0.815 -0.132 0.224 -0.893 
Kurtosis 2.612 10.710 0.518 0.540 -0.626 3.490 2.652 -0.501 
Normtest.W* 0.969 0.868 0.995 0.993 0.857 0.954 0.947 0.841 
 Gold XRP Gold_IMF1 Gold _IMF5 Gold _IMFR XRP_IMF1 XRP_IMF5 XRP_IMFR 
Obs. 1433 1433 1433 1433 1433 1433 1433 1433 
Mean 0 0.0026 0 0 0 -0.0006 0.0004 0.0032 
Std. Dev. 0.009 0.077 0.007 0.001 0.000 0.061 0.014 0.004 
Skewness 0.249 2.124 -0.048 -0.013 -1.106 -0.047 0.426 1.181 
Kurtosis 2.781 32.901 0.669 0.296 0.283 19.051 3.271 0.249 
Normtest.W* 0.967 0.733 0.993 0.996 0.859 0.801 0.915 0.824 

Note: Normtest.W* indicates Shapiro-Wilk test of normality which is rejected at all conventional levels of significance. 
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It is clear from the coefficient estimates that composite and short-term gold-cryptos links can 

be spurious. Investors may be caught in the frenzy about cryptos (especially Bitcoin) as the 

new gold (Dyhrberg, 2016) in the short-term. Further, from an econometric perspective, a claim 

by Klein et al. (2018) that Bitcoin does not bear a resemblance to any other conventional asset, 

may be supported. Nonetheless, if we follow definition of a hedge by Baur & Lucey (2010), 

we can deem these insignificant coefficients to imply that gold and crytocurrrencies are 

uncorrelated, which  suggests that gold and cryptos can hedge each other at the compotite level 

and in the short-term. Further, we may see the unconditional connectedness between cryptos 

and gold as negligible as found by (Kurka, 2019). However, with the passage of time investors 

may rebalance their portfolios with after a careful assessment of the market. This may serve as 

reminder that Weber's (2016) Bitcoin standard may be far-fetched. But this could support the 

assertion that cryptos may not be adopted by states by reason of their risks (Lansky, 2018). 

Notwithstanding, this scenario corroborates the findings of Bouoiyour, Selmi, Tiwari, & 

Olayeni (2016), using EMD that Bitcoin, for instance, is driven by long-term fundamentals as 

opposed to being labelled as a purely speculative asset class. Further, Kristoufek (2015) find 

Bitcoin to possess both speculative and standard financial asset properties (see also, Zwick & 

Syed, 2019). Thus, we surmise that it takes some time and detailed analysis for noteworthy 

relationships between gold and cryptos to be revealed; as we have done in this study.  

 

At this juncture, we analyse the QR estimates. We refer to blue colour plots in Figure 2. We 

observe that from and to share similar pattern in the medium- and long-terms. The coefficients 

of the former are smaller and the plots are smoother than those of the former. However, to 

estimates are somewhat smooth until the 75th quantile and take jumps afterwards. In the 

extreme upper tails we realise the links are strongest. In general, we find that the magnitude of 

both from estimates rise from lower quantiles through to upper quantiles, except for Dash, 

Litecoin, and Ripples (which exhibit a reverse pattern). But for to estimates, links fall from 

lower quantile to upper quantiles; and are steeper after the 75th. Exceptions are noted for Dash, 

Litecoin, NEM (rise steadily), Stellar (in the long-term), Monero (fall, rise, and fall again), and 

Ripple (fall steadily and rise in the medium-term). These patterns show us how the two asset 

classes are linked as per trends in the market. So we see the asymmetric nature of the nexus 

which should be instructive, in generic terms, for investment strategies involving these asset 

classes. 
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Figure 2: Bi-directional gold and cryptos QR and QQR  
 

Having established hedging potential between gold and cryptos (uncorrelated) in the short-term 

and at composite level, we now analyse the direction of the nexus to provide insight into 

diversification possibilities. In this regards, we consider a negative coefficient or inverse 

relationship as one that provides diversification potential but positive coefficient does not. 

However, Baur & Lucey (2010, p. 219) distinguish between hedge and diversifier as follows: 

“A hedge … uncorrelated or negatively correlated …” and “A diversifier … positively (but not 

perfectly correlated) …” These two do not possess the specific property risk reduction market 

turmoils and so cannot be safe haven. Therefore, we follow the definitions of Baur & Lucey 

(2010) to identify specific quantiles where gold and cryptos can hedge or diversify for each 

other.  
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In the from context, we observe hedging possibilities mostly in the medium-term except for 

NEM which shows only diversifier prospects in both medium-and long-terms. In the long-term 

gold and cryptos mostly have positive relationships and thus may diversify each other. But 

Monero can hedge in the long-term up to the 75th quantile. The specific quantiles where inverse 

relationships are observed (hedging) are as follows: Bitcoin (lower half of distribution), Dash 

and Stellar (across all quantiles but small in magnitude as compared to the others), Monero (up 

to 15th quantile and after the 85th), and Ripple (only after the 65th quantile). It follows that the 

other quantiles offer diversifications instead. 

 

The to link is comparable with from nexus in the sense that gold and cryptos are hedgers of 

each other mostly in the medium-term but diversifies in the long-term. There are, however, a 

few exceptions. For instance, Ripple cannot hedge at the tails of the distribution in the medium-

term but it can diversify in the long-term. Monero can also hedge in the long-term in the upper 

third of the distribution. Lastly, NEM can also hedge only at the extreme tails of the 

distribution, but can otherwise diversify.  

 

Our findings corroborate other studies that find cryptos to act as a hedge under different 

circumstances. For instance, Bouri et al. (2017) support the view under global uncertainty at 

higher quantiles and in the short-term. Bouri et al. (2017) also reveal hedge and diversifier 

properties for Bitcoin against commodities in a time-varying manner. For gold, in particular, 

Zwick & Syed (2019) find both hedge and diversifier features of Bitcoin.  

 

Further, our findings reveal that gold and cryptos, on the hand can hedge or be safe haven under 

market uncertainties. For instance, Selmi, Mensi, Hammoudeh, & Bouoiyour (2018) find 

Bitcoin and gold, rather than oil, as safe haven under global uncertainty. Once more, Al-

Yahyaee, Mensi, Al-Jarrah, Hamdi, & Kang (2019) document the diversification benefits of 

Bitcoin and gold for oil and Standard & Poor Goldman Sachs Commodity Index (S&P GSCI). 

Furthermore, given that our variables are denominated in US dollars, we can relate our findings 

to Kliber, Marszałek, Musiałkowska, & Świerczyńska (2019) who find Bitcoin as a weak hedge 

in all US dollar-denominated investment markets. 

 

 

We further observe from Figure 2 that, the to (i.e. crypto-gold) links are stronger than from (i.e. 

gold- crypto) links. In other words, when cryptos are the dependent variables they hedge or 
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diversify better than when gold is the dependent variable, both in the medium- and long-terms. 

This implies that the conditional quantiles of gold provide stronger hedging and diversification 

potentials on cryptos than the conditional quantiles of cryptos have on gold. We suggest that 

bearish and bullish gold prices are better indicators for hedging and diversification strategies 

than rising and plummetting prices of cryptocurrencies. 

 

We have established the importance of asymmetric dependence connection between gold and 

cryptos for investment strategies. Our finding, however, contravenes that of Charles & Darné 

(2019) who find GARCH-type models to be inappropriate for modelling dynamic asymmetric 

Bitcoin returns. In terms of the hedging ability of cryptos, Kurka (2019) holds a different 

opinion, that market disruptions may be transmitted from Bitcoin to the traditional economy. 

 

 

4.2 QQR results 

The QQR is a non-parametric technique which provides us with no significance of the 

regression coefficients. However, it is possible to infer the validity of the QQR from the QR. 

Bouri et al. (2017) suggest the QQR approach “decomposes” the QR estimates into the specific 

quantiles of the explanatory variables. In Figure 2 we observe that while the QQR and QR 

estimates are not the same, they show similar patterns for the most part. For the gold-crypto 

link we find much more resemblance, but QQR estimates are subsumed under the QR estimates 

in the crypto-gold link. From these we can reinforce the validity of the QQR technique in the 

context of this study. That means the analysis pertaining to QR in terms of hedging and 

diversification apply to the QQR estimates as well, only differing in magnitudes.  

 

Specifically, we observe that in the long-term QQR estimates are essentially zeros as compared 

to QR estimates. Further, in the lower half of the distribution, QR lies above QQR but in the 

upper half the reverse is true. This holds for the gold-crypto links, except for Ripple. The QR 

and QQR plots diverge after the 15th quantile with QQR rising and QR falling, in the long-

term. 

 

5. Conclusions and recommendations  

In this study we examined the asymmetric frequency-varying connection between gold and 

major cryptocurrencies to identify hedging and diversification possibilities between the two 
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asset classes. With daily return series we decomposed the series into short-, medium- and, long-

term frequencies using EEMD and employed the QR and QQR techniques. The EEMD does 

not only delineate the series into time horizons, but also reduces the noise that may be present 

in the series. The QR and QQR also capture the asymmetries in the relationship at different 

portions of the return distributing over the time scales (see also Troster, Tiwari, Shahbaz, & 

Macedo, 2018). Our sampled period spanned 30/04/2013 to 18/04/2019.  

 

We found both QR and QQR as valid models to examine the relationship between gold and 

cryptos at different time-frequency scales. In one sense, our study is unique among many that 

use noise reduction in the context of frequency-dependent asymmetric analysis. Thus, we make 

improvement upon several studies whose important patterns may be shrouded noise in the data 

or proffer inaccurate results. Among other things, we confirm the HMH in the context of 

dynamic asymmetric, hedge, diversifier as opposed to the efficient market hypothesis (EMH). 

This partially corroborates Nadarajah & Chu (2017) who find only a weak form of efficiency 

in Bitcoin after an odd integer power transformation of the returns. Without this transformation 

Bitcoin was starkly inefficient. 

 

Following Baur & Lucey’s (2010) definitions of hedge and diversification, we find that both 

gold and cryptos can hedge and diversify for each other within the medium- and long-terms. 

However, we do not find any significant link between gold and Ethereum at all time scales and 

in the unconditional and conditional distributions of the returns. Our findings corroborate the 

notion of cryptos and gold possessing hedge and diversifier properties under different scenarios 

(see Bouri, Gupta, et al., 2017, 2017; Kliber et al., 2019; Zwick & Syed, 2019; etc.). 

Notwithstanding, Klein et al. (2018) and Kurka (2019) discount these properties for Bitcoin, 

among others. 

 

Further, we support Liu's (2019) assertion that portfolio diversification across different cryptos 

can improve investment outcomes. Our results indicate that cryptos and gold (together), on the 

one hand can hedge and diversify for other traditional assets, on the other hand. This assertion 

is corroborated by Selmi et al. (2018) and Al-Yahyaee et al. (2019), among others. In the 

nutshell, we find that there are possibilities of increased reward or risk-reduction in portfolios 

constructed with gold different cryptos. It should, however, be noted that these phenomena are 
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asymmetric and occur at different time horizons. Hence, investment decisions should be wary 

of these dynamics. 
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Figure 1: Return and IMF plots of gold and cryptocurrencies 

 

 

 

 

 

 

  


