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agement, the forecasts based on frequency-domain information lead to better portfolio 

performances than when using the original time series of the predictors. It produces 
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1 Introduction 

Active portfolio management relies on good return forecasts of asset classes under manage-

ment. It is then of key interest for active asset managers to identify reliable predictors and 

good forecasting methods. 

There is an extensive literature on the out-of-sample predictability of the equity risk premium 

(see the reviews of Rapach and Zhou, 2013 and Harvey, Liu, and Zhu, 2016), but the literature 

on the predictability of the bond risk premium is limited (notable contributions include 

Ludvigson and Ng, 2009; Thornton and Valente, 2012; Sarno, Schneider, and Wagner, 2016; 

and Gargano, Pettenuzzo, and Timmermann, 2019). The literature is dominated by time 

series analysis. Frequency domain techniques, like Fourier transformations, are rather new 

tools in ˝nance applications (e.g. Dew-Becker and Giglio, 2016). In the context of forecasting 

equity returns, Faria and Verona (2018) and Bandi, Perron, Tamoni, and Tebaldi (2019) 

introduce models where equity returns and predictors are linear aggregates of components 

operating over di˙erent frequencies and predictability is frequency-speci˝c. 

The ˝rst contribution of this paper is to compare the performance of alternative predictive 

models of the bond risk premium (BRP) and the equity risk premium (ERP). We ˝rst use 

frequency-domain ˝ltering techniques to expand an initial dataset of predictors to obtain 

more predictors for BRP and ERP forecasting. In particular, from each original variable 

we extract several time series, each corresponding to a particular frequency of the original 

variable and each representing a new predictor. The enlarged dataset has the same amount of 

information as the original dataset (we start from the same number of variables), but allows 

forecasting the BRP and ERP with more granular information. This allows us i) to tease out 

those predictor frequencies with the highest predictive power from others that bring noise to 

the exercise, and ii) to infer the relevance of using the frequency-domain information of the 

original predictors. 
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For both the BRP and the ERP, we ˝nd that the use of frequency-domain information signif-

icantly improves the statistical performance of forecasts over forecasts that only use original 

variables. While this result is not new with regards to ERP forecasting (see Faria and Verona 

2017, 2019), it is, to the best of our knowledge, the ˝rst time frequency-domain information 

has been used in BRP forecasting. Furthermore, we ˝nd that the forecasting gains from using 

frequency-domain information are signi˝cantly higher when combining di˙erent frequencies 

from di˙erent original predictors than when combining di˙erent frequencies from the same 

original predictor. This ˝nding suggests that di˙erent frequencies of di˙erent variables are 

useful predictors of equity and bond returns as they track di˙erent frequency components 

of the equity and bond risk premium. This result is in line with Fama and French (1989), 

who ˝nd that di˙erent ˝nancial variables track di˙erent frequency components of the equity 

premium. 

The second contribution of this paper is an evaluation of the economic signi˝cance of frequency-

domain information for active portfolio management. We adopt the perspective of a power-

utility maximizing investor, whereby the BRP and ERP forecasts from the ˝rst step are 

treated as the investor's active views on stock and bond markets. We consider a mean-

variance optimization framework and, as benchmark, a conventional allocation of 60% to 

stocks and 40% to bonds. We ˝nd that using frequency-domain information leads to better 

portfolio performances than when using the original time series of the predictors. It pro-

duces higher information ratio (0.57 vs 0.45), higher CER gains (1.12% vs 0.81%), and lower 

maximum drawdown (19.1% vs 19.6%). This ˝nding is robust towards the consideration 

of an alternative portfolio optimization setting (Black-Litterman-type model), alternative 

benchmarks, and various portfolio constraint settings. 

The rest of the paper is organized as follows. Section 2 sets out the data and methodology. 

Section 3 presents the out-of-sample results and performance of the proposed active portfolio 

management strategy. Section 4 documents the robustness test results. Section 5 concludes. 
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2 Data and methodology 

Our focus is on out-of-sample (OOS) predictability of bond and equity risk premiums. The 

OOS exercise is relevant in evaluating e˙ective return predictability in real time, while avoid-

ing in-sample over-˝tting, distortions from small sample size, and look-ahead bias. 

Our monthly data extend from January 1973 to December 2018. BRP and ERP of month t 

are measured as the di˙erence between the return on the 10-year US Treasury bond and the 

return on the S&P500 index in month t, respectively, and the one-month T-bill known at the 

beginning of month t (lagged-risk free rate). We use twelve variables taken from Goyal and 

Welch (2008) as the predictors: log dividend-price ratio (DP), log dividend yield (DY), log 

earnings-price ratio (EP), excess stock return volatility (RVOL), book-to-market ratio (BM), 

net equity expansion (NTIS), long-term bond yield (LTY), long-term bond return (LTR), 

term spread (TMS), default yield spread (DFY), default return spread (DFR), and lagged 

in˛ation rate (INFL). These predictors are brie˛y described in Appendix 1. Table 1 reports 

the summary statistics for BRP, ERP and the predictors. Figure 1 provides their time series. 

The ˝rst step of our forecasting methodology is based on a wavelet multiresolution analysis 

as described in sub-section 2.1. The OOS procedure is explained in sub-section 2.2. The 

asset allocation framework in covered in sub-section 2.3. 

2.1 Wavelet multiresolution analysis 

Wavelet multiresolution analysis (MRA) allows decomposition of any time series into its 

frequency components in a way similar to bandpass ˝ltering (e.g. Baxter and King, 1999). 

Given a time series yt, its wavelet multiresolution representation can be written as 

PJ Dj SJyt = y + y , (1)j=1 t t 

4 



Dj SJwhere yt are the J wavelet detail components and yt is the wavelet smooth component. 

Equation (1) shows that the original series yt can be decomposed in several time series com-

ponents, each capturing the ˛uctuation of the original time series within a speci˝c frequency 

band. For small j, the j wavelet detail components represent the higher frequency components 

of the time series (the short-term dynamics). As j increases, the j wavelet detail compo-

nents represent lower frequencies ˛uctuations of the series. Finally, the smooth component 

captures the lowest frequency component (series trend). 

Here, we perform our wavelet decomposition analysis using the Haar wavelet ˝lter1 and 

the maximal overlap discrete wavelet transform (MODWT) MRA. This methodology is not 

restricted to a particular sample size and is not sensitive to the choice of starting point for the 

examined time series. Moreover, it does not introduce phase shifts in the wavelet coe°cients, 

i.e. peaks and troughs of the original time series are perfectly aligned with similar events in 

the MODWT MRA.2 

Given the length of the data series under analysis, we consider a J =6 level MRA for each 

of the original predictors, so that the decomposition delivers seven time-frequency series: six 

D1 D6 S6wavelet detail components (yt to yt ) and a wavelet smooth component (yt ).
3 As we use 

monthly data, the ˝rst detail component yt
D1 captures oscillations between 2 and 4 months, 

D2 D3 D4 D5 D6while detail components yt , yt , yt , yt and yt capture oscillations with a period of 

4-8, 8-16, 16-32, 32-64 and 64-128 months, respectively. Finally, the smooth component yt
S6 

1 Besides its simplicity and wide use, the Haar ˝lter makes a neat connection to temporal aggregation as 
the wavelet coe°cients are simply di˙erences of moving averages (see Bandi, Perron, Tamoni, and Tebaldi, 
2019 and Lubik, Matthes, and Verona, 2019). 

2 This section provides a brief description of the theory directly relevant to our empirical analysis. A more 
detailed analysis of wavelet methods is provided in Appendix 2 and in Percival and Walden (2000). Recent 
papers using the MODWT MRA decomposition are Bekiros and Marcellino (2013), Gallegati and Ramsey 
(2013), Barunik and Vacha (2015), Crowley and Hughes Hallett (2015), Berger (2016), and Faria and Verona 
(2018), among others. See Verona (2019) for a description of the advantages of wavelet ˝lters over other 
band-pass ˝ltering techniques. 

3 As regards the choice of J, the number of observations dictates the maximum number of frequency bands 
that can be used. In particular, if t0 is the number of observations in the in-sample period, then J has to 
satisfy the constraint J ≤ log2 t0. 
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(re-denoted as yt
D7 in our later discussion) captures oscillations with a period longer than 128 

months (10.6 years).4 

To illustrate the rich set of dynamics aggregated (and therefore hidden) in the original time 

series, Figure 2 plots the time series of one of the predictors used (term spread) and its seven 

time-frequency series components. As expected, the lower the frequency, the smoother the 

resulting ˝ltered time series. As can be seen, the time-frequency series components exhibit 

di˙erent time series properties and dynamics, so one can expect that only some are good ERP 

and BRP predictors. As Faria and Verona (2019) show, the lowest frequency component of 

the term spread (TMSD7 ) is a strong OOS predictor of the ERP, whereas the other frequency 

components of the term spread have much worse forecasting performances. 

2.2 Out-of-sample forecasts 

The OOS forecasts of the BRP and ERP are generated using a sequence of expanding 

windows. We use an initial sample (1973:01 to 1989:12) to make our ˝rst one-step-ahead 

OOS forecast. The sample is then increased by one observation and a new one-step-ahead 

OOS forecast is produced. We proceed this way until the end of the sample, ultimately 

obtaining a sequence of 348 one-step-ahead OOS forecasts. The full OOS period spans the 

period from 1990:01 to 2018:12. 

As the MODWT MRA is a two-sided ˝lter, we recompute the frequency components of 

the original predictors recursively at each iteration of the OOS forecasting process using 

data from the start of the sample through the month of forecast formation. This important 

step ensures that our method does not have a �look-ahead� bias, as the forecasts are made 

with current and past information only. The literature suggests several types of boundary 

4 In the MODWT, each wavelet ˝lter at frequency j approximates an ideal high-pass ˝lter with passband� � � � 
1/2j+1 0 , 1/2j+1f ∈ , 1/2j , while the smooth component is associated with frequencies f ∈ . The level � � 

2j , 2j+1j wavelet components are therefore associated to ˛uctuations with periodicity (months, in our 
case). 
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treatment rules to deal with boundary e˙ects (e.g. periodic rule, re˛ection rule, zero padding 

rule, and polynomial extension). Here, we use a re˛ection rule, whereby the original time 

series are extended symmetrically at the right boundary to twice the time series length before 

computing the MODWT MRA. 

2.2.1 Predictive regression model 

Let X be a vector of predictors. The ERP predictive regression model is 

ERPt+1 = α + βX t + εt+1 , (2) 

[and the one-step-ahead OOS forecast of the ERP, ERP t+1, is given by: 

[ = ˆ βtX t , (3)ERP t+1 αt + ˆ 

where α̂ and β̂ are the OLS estimates of parameter α and vector of parameters β, respectively. 

The same predictive regression model is used to forecast the BRP. 

2.2.2 Predictors used 

We consider four cases when running model (2)-(3): 

• X includes one original predictor, i.e. we run bi-variate regressions using one original 

predictor at a time. We denote this model as single_ts. 

• X includes all original predictors, i.e. we run multi-variate regressions using several 

original predictors. We denote this model as multi_ts. 

• X includes the frequencies (obtained with the MODWT MRA) of one original predictor, 
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i.e. we run multi-variate regressions using di˙erent frequencies of one original predictor 

at a time. This model is denoted as single_wav. 

• X includes the frequencies (obtained with the MODWT MRA) of the original predic-

tors, i.e. we run multi-variate regressions using several frequencies of di˙erent original 

predictors. We denote this model as multi_wav. 

Comparison of the ts and wav models shows the value of using more granular data from 

frequency decomposition of the original predictors. Comparison of the single and multi 

models helps identify the usefulness of information from di˙erent original predictors. 

2.2.3 Forecast evaluation 

The forecasting performance of the predictive models are evaluated using the Campbell and 

Thompson (2008) R2 statistic. As is standard in the literature, the benchmark model is the OS 

prevailing mean forecast rt, i.e. the average ERP or BRP up to time t. The R2 statisticOS 

measures the proportional reduction in the mean squared forecast error for the predictive 

model (MSF EP RED) relative to the historical mean (MSF EHM ) and is given by 

" #� � PT −1 
MSF EP RED (rt+1 − r̂t+1)

2 

R2 t=t0 = 100 1 − = 100 1 − ,OS PT −1 2MSF EHM t=t0 
(rt+1 − rt) 

where r̂t+1 is the ERP (BRP) forecast for t+1 from the predictive model under analysis, and 

rt+1 is the realized ERP (BRP) from t to t+1. A positive (negative) R2 indicates that theOS 

predictive model outperforms (underperforms) the historical mean (HM) in terms of MSFE. 

The statistical signi˝cance of the results is evaluated using the Clark and West (2007) statis-

tic, which tests the null hypothesis that the MSFE of the HM model is less than or equal to 

the MSFE of the predictive model under analysis against an alternative hypothesis that the 
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MSFE of the HM model is greater than the MSFE of the predictive model under analysis 

(H0 : R2 ≤ 0 against HA : R2 
OS > 0).OS 

2.3 Asset allocation 

The ultimate objective of our analysis is to evaluate the economic signi˝cance of frequency-

domain information for active portfolio management (APM ). The portfolio optimization 

framework used in this paper is described in sub-section 2.3.1. The performance measure-

ments of the proposed active strategy are described in section 2.3.2. 

2.3.1 The portfolio optimization framework 

As it is standard in the literature, we adopt the perspective of a mean-variance investor, 

who invests in bonds and equities. The corresponding portfolio weights are $b and $e, 

respectively, represented in the vector $ = ($b, $e) . Initial wealth is normalized to 1. The 

rebalancing decisions that underlie the APM are assumed to be made on a monthly basis, 

making use of the forecasts of bond and equity returns for the next month. The objective 

of the portfolio optimization framework is to optimize the trade-o˙ between risk and return. 

The optimization problem is 

h i 
min γΘP ($) − $0R̂ , (4)
$ 

ˆwhere γ is the relative risk aversion coe°cient (which we assume to be equal to 2), R = � � 
R̂ 

b,t+1, R̂ 
e,t+1 is the vector of one-step-ahead return forecasts of bonds (R̂ 

b,t+1) and equities 

(R̂ 
e,t+1), and ΘP ($) is the portfolio risk function. 

The one-step-ahead bond return forecast (R̂ 
b,t+1) corresponds to the one-step-ahead forecast 

ˆof the bond risk premium (BRP t+1) minus the risk-free rate (which is known at the beginning 
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of the period). The same procedure applies to the one-step-ahead equity return forecast 

(R̂ 
e,t+1). In the context of the mean-variance optimization framework, the portfolio risk p 

function ΘP ($) is set as ΘP ($) = $0Σ̂ $, where Σ̂ is the estimated monthly returns 

covariance matrix. We estimate Σ using an exponentially weighted moving average approach, 

setting the the decay parameter to 0.97. 

To place realistic limits on the possibilities of leveraging the APM portfolio, we introduce 

some constraints on the weight vector $. The ˝rst constraint sets an upper bound to the 

sum of the portfolio weights, $0I2 = h, where I2 is a 2-vector of ones and h denotes the 

maximum leverage. The second constraint sets a lower bound l to the weight of each asset, 

wi ≥ l , with i = b, e (b for bond and e for equity). We set h = 1.5, which means that the 

investor cannot borrow more than 50% of total wealth, and l = 0, which excludes short sales. 

The APM portfolio return at t+1, Rp, t+1, is then given by: 

� � 
ˆ ˆRp, t+1 = $0 

tRt+1 + 1 − $0 
tI2 rf , 

where R is the vector of realized returns of bonds (Rb) and equities (Re) and rf is the 

one-month risk-free rate. Note that if h = 1, the portfolio return is Rp, t+1 = $̂0 
tRt+1. 

2.3.2 Measuring the performance of the active strategy 

We consider the conventional allocation of 60% to stocks and 40% to bonds as the bench-

mark portfolio, using six performance measures: Sharpe ratio, composite annual growth rate 

of returns (CAGR), tracking error, information ratio, maximum drawdown, and certainty 

equivalent return (CER) gain. 

The reported Sharpe ratio is the one-year moving average of the portfolio's annualized Sharpe 

ratio. In the context of the mean-variance portfolio optimization framework, the Sharpe 

ratio is the traditionally reported performance metric. The tracking error is measured as the 
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annualized standard deviation of the APM monthly excess return towards the benchmark. 

The information ratio is measured as the annualized average APM monthly excess return 

(towards the benchmark) divided by the tracking error. Both the information ratio and 

the tracking error are relevant performance metrics for actively managed portfolios, as they 

directly inform about the merits of deviating actively from the benchmark. The maximum 

drawdown measures the downside risk of the strategy under analysis and gives the maximum 

percentage reduction in the portfolio's cumulative return. 

Power utility is given by U (x) = x 
1 

1 

− 

− 

γ 

γ 
, where x = 1 + Rp and Rp is the portfolio re-

turn. Let U j , j = AP M, benchmark denote the average utility of an investor with ac-

cess to the APM and benchmark portfolios, respectively. The CER is given by CERj = � �1/(1−γ)
(1 − γ) U j − 1 , j = AP M, benchmark. We report the annualized utility gain, com-

puted as 12 · (CERAP M − CERbenchmark). This can be interpreted as the annual portfolio 

management fee that an investor would be willing to pay for access to the APM portfolio 

instead of the benchmark portfolio. 

3 Results 

3.1 Out-of-sample forecasting statistical performance 

As described in sub-section 2.2.2, we run four predictive models: (i) regressions using one 

original predictor at a time (single_ts); (ii) regressions using several original predictors 

(multi_ts); (iii) regressions using di˙erent frequencies from one original predictor at a time 

(single_wav); and (iv) regressions using di˙erent frequencies from di˙erent original predic-

tors (multi_wav). For clarity, we only report the result of the best speci˝cation for each 

model (i)-(iv), i.e. the model speci˝cation that maximizes the R2 statistic. Results areOS 
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reported in Table 2.5 We highlight three main results. 

First, regardless of the forecasting model considered, predictability of the BRP is higher than 

that of the ERP. 

Second, there are common patterns across BRP and ERP forecasts. When using the infor-

mation from one original predictor only (single_ts versus single_wav), there are forecasting 

gains from using frequency-domain information. The maximum R2 using the original timeOS 

series of the predictors is 1.70% for the BRP, while it is negative for the ERP. When using 

frequency-decomposed predictors, the maximum R2 increases to 5.45% for the BRP, andOS 

is positive and statistically signi˝cant (1.77%) for the ERP. Likewise, there are forecasting 

gains when combining information from di˙erent original predictors (single versus multi), 

except when forecasting the ERP with the time series (single_ts versus multi_ts). In all 

other cases, there is an increase in the maximum R2 
OS . 

Third, when comparing the single_wav model with the multi_wav model, there are notice-

able forecast improvements by using di˙erent frequencies from di˙erent original predictors 

(multi_wav) instead of using di˙erent frequencies of one original predictor (single_wav). 

The best R2 for the BRP forecast is 7.20%, while the best R2 for the ERP forecast isOS OS 

3.97%. 

These results indicate that using frequency-domain information helps make better forecasts 

of bond and equity risk premiums. Next, we analyze if these statistical gains translate to 

better portfolio performances. 

5 Appendix 3 presents the results for the single_ts and the single_wav model for all original predictors. 
For computational reasons, we consider at most three frequencies from all possible predictors in model (iv). 
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3.2 Active portfolio management performance 

We use the BRP and ERP forecasts from the respective multi_wav model to feed the vector of � � 
ˆ ˆactive views R̂ = Rb,t+1, Re,t+1 driving the APM strategy. This is denoted as APM_WAV. 

As mentioned, the benchmark is the conventional allocation of 60% to stocks and 40% to 

bonds (denoted Benchmark60−40 ). For comparison purposes, we also report the performance 

of an APM strategy based on the BRP and ERP forecasts obtained with the original time 

series of the predictors (multi_ts). We denote this as APM_TS. 

Figure 3 presents the APM_WAV, APM_TS, and Benchmark60−40 portfolio weights (solid, 

dashed, and dotted lines, respectively). Both active strategies (APM_WAV and APM_TS ) 

strongly deviate from the 60-40 benchmark throughout the entire sample period. More-

over, the APM_WAV weights seem to oscillate around the trends de˝ned by the APM_TS 

weights. Interestingly, with the exception of the mid-nineties period, the di˙erences be-

tween APM_WAV and APM_TS weights are most evident around and during recessions. 

In particular, the APM_WAV has relatively lower exposure to equity immediately before 

and during recessions. This suggests an improved equity market timing of the APM_WAV 

strategy compared to that of the APM_TS strategy. 

In Panel A of Table 3, we report the performance measurements of the strategies. Both APM 

strategies outperform the Benchmark60−40, with the APM_WAV strategy outperforming the 

APM_TS. Compared with the Benchmark60−40 performance, both APM strategies improve 

the average annual return while decreasing the maximum drawdown. This translates to higher 

annualized Sharpe ratios. The fact that the active deviations from the 60-40 benchmark 

(as illustrated in Figure 3) add value to the active investor is re˛ected in the annualized 

information ratios of 0.57 (APM_WAV ) and 0.45 (APM_TS ). From an utility perspective, 

this also translates to annualized CER gains of 1.12% (APM_WAV ) and 0.81% (APM_TS ). 

The fact that the APM_WAV strategy outperforms the APM_TS strategy implies that 
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there are economic gains from using frequency-domain information in active portfolio man-

agement. To disentangle the distribution of those gains across the asset classes traded (bonds 

and equity), we report the performance metrics for two additional active portfolio manage-

ment strategies in Panel B of Table 3. APM_Equity_WAV is based on the forecast of 

the multi_wav (multi_ts) model for equity (bond) return. APM_Bond_WAV is based on 

the forecast of the multi_wav (multi_ts) model for bond (equity) return. By comparing 

APM_Equity_WAV (APM_Bond_WAV ) with APM_TS, we can assess the gains from 

using frequency-domain information in the forecast of equity (bond) return. 

We highlight two main results. First, there are gains for both asset classes when using 

frequency-domain information in the forecast of their returns. The gains are quite similar in 

magnitude. Second, the gains are more expressive when using frequency-domain information 

to forecast both the return of bonds and equities. 

Figure 4 shows the cumulative wealth of an investor who invests 1$ in January 1990 and 

reinvests all proceeds adopting the APM_WAV strategy (solid line), the APM_TS strategy 

(dashed line), and the Benchmark60−40 strategy (dotted line). From a cumulative return 

perspective, the active strategy APM_WAV clearly outperforms the others. By December 

2018, the investor has obtained $38.6 with the APM_WAV strategy, instead of $28.7 with 

the APM_TS strategy, or $12.4 with the Benchmark60−40. 

The strong performance of the APM_WAV strategy is not without its caveats. In the upper 

panel of Figure 5, we report the dynamics of the 3-year moving average information ratio of 

the APM_WAV strategy (solid line). The 3-year moving average information ratio is positive 

for most of the sample period, but there are periods when it is negative (i.e. generating 

utility losses). However, the ˝gure also shows that the APM_WAV strategy dominates the 

APM_TS strategy (dotted line), as its 3-year moving average information ratio is either 

higher (for most of the sample) or similar. From the utility perspective, similar conclusions 

can be drawn by looking at the dynamics of the 3-year moving average CER gains of the 
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APM_WAV and APM_TS strategies (reported in the lower panel of Figure 5). 

Overall, these results demonstrate the usefulness of frequency-domain information for active 

portfolio management. In the next section, we test the robustness of our ˝ndings by consid-

ering an alternative portfolio-optimization framework and other changes in the settings used 

so far. 

4 Robustness 

4.1 Alternative portfolio optimization framework 

We test the robustness of the results reported so far by using the Black-Litterman model 

(BLM ), which is a framework often considered in the context of APM. The objective of the 

BLM is to outperform the benchmark portfolio within a certain tracking error. 

We use the same BRP and ERP forecasts from previous sections as the active views on 

stock and bond markets, treat them as inputs in a version of the BLM (as proposed by 

Da Silva, Lee, and Pornrojnangkool, 2009 and Almadi, Rapach, and Suri, 2014 and described 

in Appendix 4) to obtain optimal weights across assets. 

We consider a power-utility maximizing investor with γ = 2 and Benchmark60−40 as the 

benchmark strategy. For simplicity, we assume the investor will neither leverage nor short-

sell available assets (h = 1 and l = 0). The target level of the annualized tracking error of the 

investor is assumed to be 5.80%, i.e. the same tracking error of the APM_WAV strategy for 

an investor with γ = 2, h = 1 and l = 0. APM_BLMWAV and APM_BLMTS denote the 

active portfolio management strategies based on asset return forecasts from multi_wav and 

multi_ts methodologies used in the context of a Black-Litterman optimization framework. 

The results, which are reported in Panel C of Table 3, are qualitatively similar to those 

in the mean-variance setting. Both APM strategies based on the BLM outperform the 
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Benchmark60−40, achieving positive information ratios and CER gains. Similarly, using 

frequency-domain information in the context of the BLM still improves the performance of 

the strategy over the scenario where only the original time series of the predictors are used 

(APM_BLMWAV versus APM_BLMTS ). Both the annualized information ratio and the 

annualized CER gain are higher (0.44 versus 0.11 and 0.68% versus 0.12%, respectively). 

Finally, the portfolio weights (reported in Figure 6) of the strategy using frequency-domain 

information are much more stable than those of the strategy using time-series information 

only. 

4.2 Other robustness tests 

In this sub-section, we brie˛y comment on additional robustness tests that were imple-

mented.6 

4.2.1 Alternative benchmarks 

Instead of Benchmark60−40, we consider two alternative benchmarks: a naive diversi˝cation 

rule 1/N (50% equity and 50% bonds) and an allocation of 40% equity and 60% bonds. 

In both cases, the information ratios and CER gains of the APM_WAV and APM_TS 

strategies are still positive, and the information ratios and CER gains of the APM_WAV 

strategy are higher than those of APM_TS strategy. Qualitatively, these results con˝rm 

that our ˝ndings are robust towards alternative benchmarks. 

4.2.2 Alternative set of portfolio constraints and investor risk aversion 

For a given level of risk aversion of the representative investor, the APM_WAV strategy 

outperforms the APM_TS strategy (and the Benchmark60−40) in alternative scenarios with 

6 The results are not reported here, but available upon request from the authors. 
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5 

(i) no leverage or short-selling possibilities (h = 1 and l = 0), (ii) no leverage possibilities, 

but short-selling allowed (h = 1 and l = −0.5) and (iii) both leverage and short-selling 

possibilities (h = 1.5 and l = −0.5). The higher is the level of leverage and short-selling 

allowed, the higher is the outperformance of the APM_WAV strategy versus the APM_TS 

strategy. Finally, the lower is the level of risk aversion of the representative investor, the 

higher is the outperformance of the APM_WAV strategy versus the APM_TS strategy 

(everything else constant). 

Concluding remarks 

Fama and French (1989) ˝nd that di˙erent ˝nancial variables can be useful in predicting 

equity returns as they track di˙erent frequency components of the equity premium. In this 

paper, we show that using information from di˙erent frequencies of di˙erent predictors helps 

improve forecasts of bond and equity returns. When used in the context of active portfolio 

management, these forecasts lead to superior portfolio performances. 

We envision several interesting research avenues related with the use of frequency-domain 

information for active portfolio management. Here, we only used twelve variables as possible 

predictors of bond and equity returns, but the same methodology can be readily applied to 

larger datasets, and even combined with large dimensional statistical models. It could also 

be worthwhile to explore the statistical and economic gains from the use of frequency-domain 

information in the context of forecasting models with time-varying parameters and stochastic 

volatility. 
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mean median min max std. dev. AR(1) 

BRP (%) 0.30 0.36 -11.2 14.4 3.10 0.05 

ERP (%) 0.51 0.85 -22.1 16.1 4.38 0.03 

DP -3.64 -3.65 -4.52 -2.75 0.43 0.99 

DY -3.64 -3.64 -4.53 -2.75 0.43 0.99 

EP -2.84 -2.88 -4.84 -1.90 0.48 0.99 

RVOL (ann.) 0.14 0.14 0.05 0.32 0.05 0.96 

BM 0.47 0.35 0.12 1.21 0.28 0.99 

NTIS 0.01 0.01 -0.06 0.05 0.02 0.98 

LTY (%, ann.) 6.77 6.76 1.75 14.8 2.91 0.99 

LTR (%) 0.69 0.72 -11.2 15.2 3.10 0.05 

TMS (%, ann.) 2.09 2.24 -3.65 4.55 1.46 0.95 

DFY (%, ann.) 1.09 0.95 0.55 3.38 0.46 0.96 

DFR (%) 0.01 0.05 -9.75 7.37 1.49 -0.04 

INFL (%) 0.32 0.30 -1.92 1.81 0.38 0.61 

Table 1: Summary statistics 

This table reports summary statistics for the bond risk premium (BRP), equity risk premium (ERP), 

and the set of predictors. BRP and ERP are measured as the di˙erence between the return on the 

10-year US Treasury bond and the return on the S&P500 index, respectively, and the return on 

a one-month T-bill. BRP, ERP, LTR, DFR, and INFL (LTY, TMS, and DFY) are measured in 

percent (annual percent). The set of predictors is described in Appendix 1. The sample period runs 

from 1973:01 to 2018:12. 
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single_ts multi_ts 

R2 
OS Predictor R2 

OS Predictors 

BRP 

ERP 

1.70** 

-0.29 

TMS 

LTR 

3.40*** 

-0.29 

DP, DY, TMS 

LTR 

single_wav multi_wav 

R2 
OS Predictor (frequency) R2 

OS Predictors (frequency) 

BRP 

ERP 

5.45*** 

1.77** 

BM (D1, D2, D5, D7) 

INFL (D2, D5) 

7.20*** 

3.97*** 

BM (D2), NTIS (D1), TMS (D5) 

EP (D3), RVOL (D5), TMS (D7) 

Table 2: Out-of-sample R-squares (R2 )OS 

This table reports the maximum out-of-sample R-squares (in percentage) for the bond risk premium 

(BRP) and equity risk premium (ERP) forecasts at monthly frequencies of four predictive models: 

regressions using one original predictor at a time (single_ts); regressions using di˙erent original 

predictors (multi_ts); regressions using the frequencies from one original predictor at a time (sin-

gle_wav); and regressions using frequencies from di˙erent original predictors (multi_wav). The� � 
predictor(s) and their frequency(ies) are reported. The out-of-sample R-squares R2 measuresOS 
the proportional reduction in the mean squared forecast error for the predictive model relative to 

the forecast based on the historical mean. The one-month-ahead out-of-sample forecast of the BRP 

and the ERP is generated using a sequence of expanding windows. The sample period runs from 

1973:01 to 2018:12. The out-of-sample forecasting period extends from 1990:01 to 2018:12 (monthly 

frequency). Asterisks denote signi˝cance of the out-of-sample MSFE-adjusted statistic of Clark and 

West (2007). *** and ** denote signi˝cance at the 1% and 5% levels, respectively. 
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Average CAGR Sharpe Maximum Tracking Information 

return ratio drawdown error ratio 

CER 

gain 

Panel A: baseline 

APM_WAV 

APM_TS 

Benchmark60−40 

14.2% 13.4% 1.28 19.1% 7.4% 0.57 

13.0% 12.3% 1.18 19.6% 7.2% 0.45 

9.5% 9.1% 1.13 29.1% - -

1.12% 

0.81% 

-

Panel B: di˙erent forecasting inputs 

APM_Equity_WAV 

APM_Bond_WAV 

13.7% 13.0% 1.24 19.3% 7.3% 0.52 

13.5% 12.7% 1.22 19.4% 7.3% 0.49 

0.99% 

0.94% 

Panel C: di˙erent portfolio optimization framework 

APM_BLMWAV 

APM_BLMTS 

12.4% 11.7% 1.23 24.2% 5.8% 0.44 

10.2% 9.6% 1.05 26.1% 5.8% 0.11 

0.68% 

0.12% 

Table 3: Portfolio performance statistics 

This table reports the performance statistics of di˙erent portfolio strategies. The performance statis-

tics are: average return, which is the annualized ˝rst moment of returns time series; CAGR, which is 

the composite annual growth rate of returns time series; Sharpe ratio, measured as the 1-year mov-

ing average of portfolio's annualized Sharpe ratio; maximum drawdown, measured as the maximum 

percentage reduction in the portfolio's cumulative return; tracking error, measured as the annualized 

standard deviation of the APM monthly excess return (towards the benchmark); the information 

ratio, measured as the annualized average APM monthly excess return (towards the benchmark) 

divided by the tracking error; CER gain, measured as the annualized increase in certainty equivalent 

return that a power-utility maximizing investor with relative risk aversion γ = 2 would have by 
having access to the APM portfolio instead of the benchmark portfolio. The benchmark portfolio 

is 60% allocation to stocks and 40% to bonds. In Panel A are presented the performance statistics 

for the strategies APM_WAV and APM_TS , which are the active portfolio management strategy 

based on asset return forecasts from multi_wav and multi_ts methodologies, respectively. In Panel 

B are presented the performance statistics for the strategy APM_Equity_WAV , which is an active 

portfolio management strategy based on equity (bond) return forecasts from multi_wav (multi_ts) 

methodology, and for the strategy APM_Bond_WAV , which is an active portfolio management 

strategy based on bond (equity) return forecasts from multi_wav (multi_ts) methodology. In Panel 

C are presented the performance statistics for the strategies APM_BLMWAV and APM_BLMTS , 

which are the active portfolio management strategy based on asset return forecasts from multi_wav 

and multi_ts methodologies used in the context of a Black-Litterman portfolio-optimization frame-

work, respectively. The sample period is from 1973:01 to 2018:12. The out-of-sample forecasting 

period is from 1990:01 to 2018:12, monthly frequency. 
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Figure 1: Monthly time series of the BRP, the ERP, and their predictors 
This ˝gure plots the time series of the bond risk premium (BRP), equity risk premium (ERP), and 

of each of the predictors. The BRP and ERP are measured as the di˙erence between the return on 

the 10-year US Treasury bond and the return on the S&P500 index, respectively, and the return on 

a one-month T-bill. The set of predictors is described in Appendix 1. The sample period extends 

from 1973:01 to 2018:12. 
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Figure 2: Term spread time series and wavelet decomposition 

This ˝gure plots the time series of the term spread (TMS ) and the seven frequency components 

into which the time series is decomposed. It is applied a J = 6 level wavelet decomposition, which 

produces six wavelet details (D1, D2, . . . , D6), each representing higher-frequency characteristics of 
the series, as well as a wavelet smooth (D7), which captures the low-frequency dynamics of the 

series. The sample period runs from 1973:01 to 2018:12 (monthly frequency). 
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Figure 3: APM_WAV, APM_TS, and balanced Benchmark60−40 portfolio weights 

This ˝gure plots the APM_WAV , APM_TS , and balanced Benchmark60−40 portfolio weights 

(solid, dashed and dotted lines, respectively), rebalanced on a monthly basis. APM_WAV and 

APM_TS stand for the active portfolio management strategy based on asset return forecasts from 

multi_wav and multi_ts methodologies, respectively. The sample period is from 1973:01 to 2018:12. 

The out-of-sample forecasting period runs from 1990:01 to 2018:12 (monthly frequency). Gray bars 

denote NBER-dated recessions. 
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Figure 4: Cumulative wealth for APM_WAV, APM_TS, and Benchmark60−40 investors 

This ˝gure represents the cumulative wealth of an investor who begins with $1 and reinvests all 

proceeds on a monthly basis, adopting an APM_WAV , APM_TS, and Benchmark60−40 strategy 

(solid, dashed, and dotted lines, respectively). The APM_WAV and APM_TS active portfolio man-

agement strategies are based on asset return forecasts from multi_wav and multi_ts methodologies, 

respectively. The sample period extends from 1973:01 to 2018:12. The out-of-sample forecasting 

period runs from 1990:01 to 2018:12 (monthly frequency). Gray bars denote NBER-dated recessions. 
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Figure 5: 3-year moving average information ratios and CER gains 

The upper ˝gure plots the 3-year moving average information ratio for the APM_WAV and 

APM_TS strategies relative to the Benchmark60−40. The lower ˝gure plots the 3-year moving 

average annualized CER gain for the APM_WAV and the APM_TS strategies. The sample pe-

riod is from 1973:01 to 2018:12. The out-of-sample forecasting period runs from 1990:01 to 2018:12 

(monthly frequency). Gray bars denote NBER-dated recessions. 
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Figure 6: APM_BLMWAV, APM_BLMTS, and balanced Benchmark60−40 portfolio weights 

This ˝gure plots the APM_BLMWAV , APM_BLMTS , and balanced Benchmark60−40 portfo-

lio weights (solid, dashed, and dotted lines, respectively), rebalanced on a monthly basis. The 

APM_BLMWAV and APM_BLMTS active portfolio management strategies are based on asset re-

turn forecasts from multi_wav and multi_ts methodologies used in the context of a Black-Litterman 

portfolio-optimization framework. The sample period extends from 1973:01 to 2018:12. The out-

of-sample forecasting period runs from 1990:01 to 2018:12 (monthly frequency). Gray bars denote 

NBER-dated recessions. 
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Appendix 1. Predictors of equity and bond risk premiums 

• Log dividend-price ratio (DP): di˙erence between the log of dividends (12-month mov-

ing sums of dividends paid on S&P 500) and the log of prices (S&P 500 index). 

• Log dividend yield (DY): di˙erence between the log of dividends (12-month moving 

sums of dividends paid on S&P 500) and the log of lagged prices (S&P 500 index). 

• Log earnings-price ratio (EP): di˙erence between the log of earnings (12-month moving 

sums of earnings on S&P 500) and the log of prices (S&P 500 index price). 

• Excess stock return volatility (RVOL): calculated using a 12-month moving standard 

deviation estimator. 

• Book-to-market ratio (BM): ratio of book value to market value for the DJIA. 

• Net equity expansion (NTIS): ratio of 12-month moving sums of net equity issues by 

NYSE-listed stocks to the total end-of-year NYSE market capitalization. 

• Long-term yield (LTY): long-term government bond yield. 

• Long-term return (LTR): long-term government bond return. 

• Term spread (TMS): di˙erence between the long-term government bond yield and the 

T-bill. 

• Default yield spread (DFY): di˙erence between Moody's BAA- and AAA-rated corpo-

rate bond yields. 

• Default return spread (DFR): di˙erence between long-term corporate bond and long-

term government bond returns. 

• In˛ation rate (INFL): calculated from the Consumer Price Index (CPI) for all urban 

consumers. 
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Appendix 2. Maximal overlap discrete wavelet transform 

Discrete wavelet transform (DWT) multiresolution analysis (MRA) allows the decomposition 

of a time series into its constituent multiresolution (frequency) components. There are two 

types of wavelets: father wavelets (φ), which capture the smooth and low frequency part of 

the series, and mother wavelets (ψ), which capture the high frequency components of the R R 
series, where φ (t) dt = 1 and ψ (t) dt = 0. 

Given a time series yt with a certain number of observations N, its wavelet multiresolution 

representation is given by 

X X X X 
yt = s φ (t) + d ψ (t) + d ψ (t) + · · · + d ψ (t) , (5)

J,k J,k J,k J,k J−1,k J−1,k 1,k 1,k 

k k k k 

where J represents the number of multiresolution levels (or frequencies), k de˝nes the length 

of the ˝lter, φ (t) and ψ (t) are the wavelet functions, and s , d , d , . . . , d are
J,k j,k J,k J,k J−1,k 1,k 

the wavelet coe°cients. 

The wavelet functions are generated from the father and mother wavelets through scaling 

and translation as follows 

� � 
2−J/2φ 2−Jφ

J,k (t) = t − k � � 
2−j/2ψ 2−jψ

j,k (t) = t − k , 

while the wavelet coe°cients are given by 

Z 
s = ytφ (t) dt
J,k J,k Z 
d = (t) dt ,

j,k ytψj,k 

where j = 1, 2, ..., J . 
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Due to the practical limitations of DWT in empirical applications, we perform wavelet 

decomposition analysis here by applying the maximal overlap discrete wavelet transform 

(MODWT). 
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Appendix 3. Out-of-sample R-squares for all predictors 

Predictor 
ERP BRP 

single_ts single_wav Frequency single_ts single_wav Frequency 

DP -1.87 -0.59 D6 -0.75 2.89** D1 

DY -1.96 -0.24 D1 -0.42 -0.01 D1 

EP -1.05 0.77** D3 -0.60 -0.50 D7 

RVOL -0.73 -0.30 D1 -0.26 -0.09 D4 

BM -0.53 0.50** D5, D6 -0.15 5.45*** D1, D2, D5, D7 

NTIS -3.05 0.15 D1 -3.19 0.53 D1 

LTY -0.32 0.08 D6 -1.81 0.76** D4 

LTR -0.29 0.85** D7 -0.36 -4.16 D7 

TMS -0.76 1.70*** D7 1.70** 1.35** D5 

DFY -2.82 -0.86 D6 -1.14 -0.25 D7 

DFR -1.84 0.07 D1 -1.13 -0.82 D6 

INFL -0.61 1.77** D2, D5 -0.77 -0.44 D1 

Table 4: Out-of-sample R-squares (R2 )OS 

This table reports the out-of-sample R-squares as percentages for bond risk premium (BRP) and eq-

uity risk premium (ERP) forecasts at monthly frequencies of regressions using one original predictor 

at a time (single_ts) and regressions using the frequencies of one original predictor at a time (sin-� � 
R2gle_wav). The list of predictors is described in Appendix 1. The out-of-sample R-squares OS 

measures the proportional reduction in the mean squared forecast error for the predictive model 

relative to the forecast based on the historical mean (HM). The one-month-ahead out-of-sample 

forecast of the BRP and the ERP is generated using a sequence of expanding windows. The sample 

period is from 1973:01 to 2018:12. The out-of-sample forecasting period is from 1990:01 to 2018:12, 

monthly frequency. Asterisks denote the signi˝cance of the out-of-sample MSFE-adjusted statistic 

of Clark and West (2007). *** and ** denote signi˝cance at the 1% and 5% levels, respectively. 
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Appendix 4. Implemented version of the Black-Litterman model 

There are N assets and K active investment views (N = K = 2: bonds and stocks). µ is 

an N× vector of expected excess returns: BRP and ERP forecasts for bonds and stocks, 

respectively. τ is a scaling parameter (which we set to unity as in Almadi, Rapach, and 

Suri, 2014), Σ is an N × N covariance matrix, P is a K × N matrix whose elements in 

each row represent the weight of each asset in each of the K−view portfolios, Ω is a matrix 

representing the con˝dence in each view, Q is a K × 1 vector of expected excess returns of 

the K−view portfolios, and Π is a N× vector of the equilibrium excess returns of the assets. 

The original Black-Litterman model (BLM) of expected excess returns in Black and Litterman 

(1992) is given by: 

� �−1 � �−1 −1 µ = (τΣ) + P 0Ω−1P (τΣ) Π+ P 0Ω−1Q , 

which by applying the Matrix Inversion Lemma can be rewritten as follows (Da Silva, Lee, 

and Pornrojnangkool, 2009): 

� �−1 

µ = Π+ ΣP 0 
Ω
+ P ΣP 0 (Q − P Π) = Π+ G , (6)

τ 

where G is the term that captures the deviations of expected excess returns from the equi-

librium due to active investment views. Equation (6) summarizes the key idea behind the 

BLM model: the expected excess return will be di˙erent from the equilibrium excess return 

if and only if investor views di˙er from equilibrium views. 

The construction of the actively managed portfolios consists in two steps. First, we compute 

the posterior expected excess return vector, µt+1, and posterior return covariance matrix, 

Σt+1. We start from the selected vector of excess return forecasts ( [ and [BRP t+1 ERP t+1) 

obtained from predictive regression models explained in section 2.2. We generate an exponen-
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ˆtially weighted moving average estimate of the monthly return covariance matrix V = Σt+1. 

We set the decay parameter to 0.97, which is frequently used for monthly series. 

To set matrix Ω, we follow the suggestion of Da Silva, Lee, and Pornrojnangkool (2009) and 

use: 

Ω
= diag(diag(PV P 0)) . 

τ 

Adopting the approach of Idzorek (2004), the posterior return covariance matrix is given by: 

� � ��−1−1 P 0Ω−1PΣt+1 = (τV ) + . 

From expression (6) for the expected returns, by setting (i) the vector of the equilibrium 

excess returns of assets as Π = 0, as in Da Silva, Lee, and Pornrojnangkool (2009), (ii) 

using the vector of BRP and ERP forecasts as matrix Q and (iii) using the posterior return 

covariance matrix Σt+1, it is obtained the posterior expected excess return vector, µt+1. 

The second step for the construction of the portfolio consists in using µt+1 and Σt+1 to 

obtain the portfolio weights. Recall that the objective function of an active asset manager is 

to maximize the return of the portfolio with a penalty on the square of tracking error towards 

the relevant benchmark: 

0 0 
max ($A + $B) µ − λ$AΣ$A (7) 

0 
s.t. $A1 = 0 

where $A and $B are the vectors of active positions and benchmark portfolio weights, 
√ 

1respectively. The parameter λ is given by λ = 
2TE Θ

0ΣΘ, with TE representing the tracking 

error (set to a constant annualized value of 5.80% as explained in section 4.1) and matrix Θ 
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is: � � 
10Σ−1 

Θ = Σ−1 I − 1 µ . 
10Σ−11 

The active weights $A are given by $A = 
2
Θ 
λ . Thus, total weights are $ = $A + $B. We 

assume the investor will neither leverage nor short-sell available assets (following the notation 

in the paper, h = 1 and l = 0). We further assume that the investor rebalances the portfolio 

at the same monthly frequency as the forecast horizon. 
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	Active portfolio management relies on good return forecasts of asset classes under management. It is then of key interest for active asset managers to identify reliable predictors and good forecasting methods. 
	-

	There is an extensive literature on the out-of-sample predictability of the equity risk premium (see the reviews of Rapach and Zhou, 2013 and Harvey, Liu, and Zhu, 2016), but the literature on the predictability of the bond risk premium is limited (notable contributions include Ludvigson and Ng, 2009; Thornton and Valente, 2012; Sarno, Schneider, and Wagner, 2016; and Gargano, Pettenuzzo, and Timmermann, 2019). The literature is dominated by time series analysis. Frequency domain techniques, like Fourier tr
	The ˝rst contribution of this paper is to compare the performance of alternative predictive models of the bond risk premium (BRP) and the equity risk premium (ERP). We ˝rst use frequency-domain ˝ltering techniques to expand an initial dataset of predictors to obtain more predictors for BRP and ERP forecasting. In particular, from each original variable we extract several time series, each corresponding to a particular frequency of the original variable and each representing a new predictor. The enlarged dat
	For both the BRP and the ERP, we ˝nd that the use of frequency-domain information signif
	-

	icantly improves the statistical performance of forecasts over forecasts that only use original variables. While this result is not new with regards to ERP forecasting (see Faria and Verona 2017, 2019), it is, to the best of our knowledge, the ˝rst time frequency-domain information has been used in BRP forecasting. Furthermore, we ˝nd that the forecasting gains from using frequency-domain information are signi˝cantly higher when combining di˙erent frequencies from di˙erent original predictors than when combin
	The second contribution of this paper is an evaluation of the economic signi˝cance of frequency-domain information for active portfolio management. We adopt the perspective of a power-utility maximizing investor, whereby the BRP and ERP forecasts from the ˝rst step are treated as the investor's active views on stock and bond markets. We consider a mean-variance optimization framework and, as benchmark, a conventional allocation of 60% to stocks and 40% to bonds. We ˝nd that using frequency-domain informatio
	-

	The rest of the paper is organized as follows. Section 2 sets out the data and methodology. Section 3 presents the out-of-sample results and performance of the proposed active portfolio management strategy. Section 4 documents the robustness test results. Section 5 concludes. 
	2 Data and methodology 
	2 Data and methodology 
	Our focus is on out-of-sample (OOS) predictability of bond and equity risk premiums. The OOS exercise is relevant in evaluating e˙ective return predictability in real time, while avoiding in-sample over-˝tting, distortions from small sample size, and look-ahead bias. 
	-

	Our monthly data extend from January 1973 to December 2018. BRP and ERP of month t are measured as the di˙erence between the return on the 10-year US Treasury bond and the return on the S&P500 index in month t, respectively, and the one-month T-bill known at the beginning of month t (lagged-risk free rate). We use twelve variables taken from Goyal and Welch (2008) as the predictors: log dividend-price ratio (DP), log dividend yield (DY), log earnings-price ratio (EP), excess stock return volatility (RVOL), b
	The ˝rst step of our forecasting methodology is based on a wavelet multiresolution analysis as described in sub-section 2.1. The OOS procedure is explained in sub-section 2.2. The asset allocation framework in covered in sub-section 2.3. 



	2.1 Wavelet multiresolution analysis 
	2.1 Wavelet multiresolution analysis 
	Wavelet multiresolution analysis (MRA) allows decomposition of any time series into its frequency components in a way similar to bandpass ˝ltering (e.g. Baxter and King, 1999). Given a time series yt, its wavelet multiresolution representation can be written as 
	PJDS
	j 
	J

	yt = y + y, (1)
	j=1 tt 
	Dj SJ
	where yare the J wavelet detail components and yis the wavelet smooth component. Equation (1) shows that the original series yt can be decomposed in several time series components, each capturing the ˛uctuation of the original time series within a speci˝c frequency band. For small j, the j wavelet detail components represent the higher frequency components of the time series (the short-term dynamics). As j increases, the j wavelet detail components represent lower frequencies ˛uctuations of the series. Finall
	t 
	t 
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	and the maximal overlap discrete wavelet transform (MODWT) MRA. This methodology is not restricted to a particular sample size and is not sensitive to the choice of starting point for the examined time series. Moreover, it does not introduce phase shifts in the wavelet coe°cients, 
	Here, we perform our wavelet decomposition analysis using the Haar wavelet ˝lter
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	i.e. peaks and troughs of the original time series are perfectly aligned with similar events in 
	the MODWT MRA.
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	Given the length of the data series under analysis, we consider a J =6 level MRA for each of the original predictors, so that the decomposition delivers seven time-frequency series: six 
	DDS
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	wavelet detail components (yto y) and a wavelet smooth component (y).As we use monthly data, the ˝rst detail component ycaptures oscillations between 2 and 4 months, 
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	while detail components y, y, y, yand ycapture oscillations with a period of 4-8, 8-16, 16-32, 32-64 and 64-128 months, respectively. Finally, the smooth component y
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	t 
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	t 
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	(re-denoted as yin our later discussion) captures oscillations with a period longer than 128 
	t
	D
	7 
	months (10.6 years).
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	To illustrate the rich set of dynamics aggregated (and therefore hidden) in the original time series, Figure 2 plots the time series of one of the predictors used (term spread) and its seven time-frequency series components. As expected, the lower the frequency, the smoother the resulting ˝ltered time series. As can be seen, the time-frequency series components exhibit di˙erent time series properties and dynamics, so one can expect that only some are good ERP and BRP predictors. As Faria and Verona (2019) sh
	D
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	This section provides a brief description of the theory directly relevant to our empirical analysis. A more detailed analysis of wavelet methods is provided in Appendix 2 and in Percival and Walden (2000). Recent papers using the MODWT MRA decomposition are Bekiros and Marcellino (2013), Gallegati and Ramsey (2013), Barunik and Vacha (2015), Crowley and Hughes Hallett (2015), Berger (2016), and Faria and Verona (2018), among others. See Verona (2019) for a description of the advantages of wavelet ˝lters ove
	This section provides a brief description of the theory directly relevant to our empirical analysis. A more detailed analysis of wavelet methods is provided in Appendix 2 and in Percival and Walden (2000). Recent papers using the MODWT MRA decomposition are Bekiros and Marcellino (2013), Gallegati and Ramsey (2013), Barunik and Vacha (2015), Crowley and Hughes Hallett (2015), Berger (2016), and Faria and Verona (2018), among others. See Verona (2019) for a description of the advantages of wavelet ˝lters ove
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	As regards the choice of J, the number of observations dictates the maximum number of frequency bands that can be used. In particular, if tis the number of observations in the in-sample period, then J has to satisfy the constraint J ≤ logt. 
	As regards the choice of J, the number of observations dictates the maximum number of frequency bands that can be used. In particular, if tis the number of observations in the in-sample period, then J has to satisfy the constraint J ≤ logt. 
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	Besides its simplicity and wide use, the Haar ˝lter makes a neat connection to temporal aggregation as the wavelet coe°cients are simply di˙erences of moving averages (see Bandi, Perron, Tamoni, and Tebaldi, 2019 and Lubik, Matthes, and Verona, 2019). 
	Besides its simplicity and wide use, the Haar ˝lter makes a neat connection to temporal aggregation as the wavelet coe°cients are simply di˙erences of moving averages (see Bandi, Perron, Tamoni, and Tebaldi, 2019 and Lubik, Matthes, and Verona, 2019). 
	1 


	In the MODWT, each wavelet ˝lter at frequency j approximates an ideal high-pass ˝lter with passband
	In the MODWT, each wavelet ˝lter at frequency j approximates an ideal high-pass ˝lter with passband
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	2.2 Out-of-sample forecasts 
	2.2 Out-of-sample forecasts 
	The OOS forecasts of the BRP and ERP are generated using a sequence of expanding windows. We use an initial sample (1973:01 to 1989:12) to make our ˝rst one-step-ahead OOS forecast. The sample is then increased by one observation and a new one-step-ahead OOS forecast is produced. We proceed this way until the end of the sample, ultimately obtaining a sequence of 348 one-step-ahead OOS forecasts. The full OOS period spans the period from 1990:01 to 2018:12. 
	As the MODWT MRA is a two-sided ˝lter, we recompute the frequency components of the original predictors recursively at each iteration of the OOS forecasting process using data from the start of the sample through the month of forecast formation. This important step ensures that our method does not have a .look-ahead. bias, as the forecasts are made with current and past information only. The literature suggests several types of boundary 
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	f ∈ , 1/2, while the smooth component is associated with frequencies f ∈ . The level 
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	j wavelet components are therefore associated to ˛uctuations with periodicity (months, in our case). 
	treatment rules to deal with boundary e˙ects (e.g. periodic rule, re˛ection rule, zero padding 
	rule, and polynomial extension). Here, we use a re˛ection rule, whereby the original time series are extended symmetrically at the right boundary to twice the time series length before computing the MODWT MRA. 
	2.2.1 Predictive regression model 
	2.2.1 Predictive regression model 
	Let X be a vector of predictors. The ERP predictive regression model is 
	ERPt+1 = α + βXt + εt+1 , (2) 
	[
	and the one-step-ahead OOS forecast of the ERP, ERP t+1, is given by: =ˆ βtXt , (3)
	[ 

	ERP t+1 αt +
	ˆ 

	where αˆ and βare the OLS estimates of parameter α and vector of parameters β, respectively. The same predictive regression model is used to forecast the BRP. 
	ˆ 


	2.2.2 Predictors used 
	2.2.2 Predictors used 
	We consider four cases when running model (2)-(3): 
	• 
	• 
	• 
	• 
	X includes one original predictor, i.e. we run bi-variate regressions using one original predictor at a time. We denote this model as single_ts. 

	• 
	• 
	X includes all original predictors, i.e. we run multi-variate regressions using several original predictors. We denote this model as multi_ts. 


	• 
	• 
	X includes the frequencies (obtained with the MODWT MRA) of one original predictor, 


	i.e. we run multi-variate regressions using di˙erent frequencies of one original predictor 
	at a time. This model is denoted as single_wav. 
	• X includes the frequencies (obtained with the MODWT MRA) of the original predictors, i.e. we run multi-variate regressions using several frequencies of di˙erent original predictors. We denote this model as multi_wav. 
	-

	Comparison of the ts and wav models shows the value of using more granular data from frequency decomposition of the original predictors. Comparison of the single and multi models helps identify the usefulness of information from di˙erent original predictors. 

	2.2.3 Forecast evaluation 
	2.2.3 Forecast evaluation 
	The forecasting performance of the predictive models are evaluated using the Campbell and Thompson (2008) Rstatistic. As is standard in the literature, the benchmark model is the 
	2 

	OS 
	prevailing mean forecast t, i.e. the average ERP or BRP up to time t. The Rstatistic
	r
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	measures the proportional reduction in the mean squared forecast error for the predictive model (MSF EP RED) relative to the historical mean (MSF EHM ) and is given by 
	"#
	. .PT −1 MSF EP RED (rt+1 − rˆt+1)
	2 

	R
	R
	2 
	t=t
	0 

	= 100 1 − = 100 1 − ,
	OS T −12
	P

	MSF EHM 
	t=t(rt+1 − t) 
	0 
	r

	where rˆt+1 is the ERP (BRP) forecast for t+1 from the predictive model under analysis, and rt+1 is the realized ERP (BRP) from t to t+1. A positive (negative) Rindicates that the
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	predictive model outperforms (underperforms) the historical mean (HM) in terms of MSFE. 
	The statistical signi˝cance of the results is evaluated using the Clark and West (2007) statistic, which tests the null hypothesis that the MSFE of the HM model is less than or equal to the MSFE of the predictive model under analysis against an alternative hypothesis that the 
	-

	MSFE of the HM model is greater than the MSFE of the predictive model under analysis 
	(H: R≤ 0 against HA : R
	0 
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	OS > 0).
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	2.3 Asset allocation 
	2.3 Asset allocation 
	The ultimate objective of our analysis is to evaluate the economic signi˝cance of frequency-domain information for active portfolio management (APM ). The portfolio optimization framework used in this paper is described in sub-section 2.3.1. The performance measurements of the proposed active strategy are described in section 2.3.2. 
	-

	2.3.1 The portfolio optimization framework 
	2.3.1 The portfolio optimization framework 
	As it is standard in the literature, we adopt the perspective of a mean-variance investor, who invests in bonds and equities. The corresponding portfolio weights are $b and $e, respectively, represented in the vector $ =($b,$e) . Initial wealth is normalized to 1. The rebalancing decisions that underlie the APM are assumed to be made on a monthly basis, making use of the forecasts of bond and equity returns for the next month. The objective of the portfolio optimization framework is to optimize the trade-o˙ 
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	min γΘP ($) − $R, (4)
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	$ 
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	where γ is the relative risk aversion coe°cient (which we assume to be equal to 2), R = 
	.. 
	Rb,t+1,Re,t+1 is the vector of one-step-ahead return forecasts of bonds (Rb,t+1) and equities (Re,t+1), and ΘP ($) is the portfolio risk function. 
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	ˆ 
	ˆ 
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	The one-step-ahead bond return forecast (Rb,t+1) corresponds to the one-step-ahead forecast 
	ˆ 

	ˆ
	of the bond risk premium (BRP t+1) minus the risk-free rate (which is known at the beginning 
	of the period). The same procedure applies to the one-step-ahead equity return forecast (Re,t+1). In the context of the mean-variance optimization framework, the portfolio risk 
	ˆ 
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	function ΘP ($) is set as ΘP ($)= , where Σis the estimated monthly returns covariance matrix. We estimate Σ using an exponentially weighted moving average approach, setting the the decay parameter to 0.97. 
	$
	0
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	To place realistic limits on the possibilities of leveraging the APM portfolio, we introduce some constraints on the weight vector $. The ˝rst constraint sets an upper bound to the sum of the portfolio weights, $I= h, where Iis a 2-vector of ones and h denotes the maximum leverage. The second constraint sets a lower bound l to the weight of each asset, wi ≥ l, with i = b, e (b for bond and e for equity). We set h =1.5, which means that the investor cannot borrow more than 50% of total wealth, and l =0, whic
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	The APM portfolio return at t+1, Rp, t+1, is then given by: 
	.. 
	ˆˆ
	Rp, t+1 = $tRt+1 + 1 − $tIrf , 
	0 
	0 
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	where R is the vector of realized returns of bonds (Rb) and equities (Re) and rf is the one-month risk-free rate. Note that if h =1, the portfolio return is Rp, t+1 = $tRt+1. 
	ˆ
	0 


	2.3.2 Measuring the performance of the active strategy 
	2.3.2 Measuring the performance of the active strategy 
	We consider the conventional allocation of 60% to stocks and 40% to bonds as the benchmark portfolio, using six performance measures: Sharpe ratio, composite annual growth rate of returns (CAGR), tracking error, information ratio, maximum drawdown, and certainty equivalent return (CER) gain. 
	-

	The reported Sharpe ratio is the one-year moving average of the portfolio's annualized Sharpe ratio. In the context of the mean-variance portfolio optimization framework, the Sharpe ratio is the traditionally reported performance metric. The tracking error is measured as the 
	annualized standard deviation of the APM monthly excess return towards the benchmark. 
	The information ratio is measured as the annualized average APM monthly excess return (towards the benchmark) divided by the tracking error. Both the information ratio and the tracking error are relevant performance metrics for actively managed portfolios, as they directly inform about the merits of deviating actively from the benchmark. The maximum drawdown measures the downside risk of the strategy under analysis and gives the maximum percentage reduction in the portfolio's cumulative return. 
	Power utility is given by U (x)= , where x = 1+ Rp and Rp is the portfolio return. Let j ,j = AP M, benchmark denote the average utility of an investor with access to the APM and benchmark portfolios, respectively. The CER is given by CERj = 
	x 
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	/(1−γ)
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	(1 γ) j − 1 ,j = AP M, benchmark. We report the annualized utility gain, computed as 12 · (CERAP M − CERbenchmark). This can be interpreted as the annual portfolio management fee that an investor would be willing to pay for access to the APM portfolio instead of the benchmark portfolio. 
	− 
	U
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	3 Results 
	3 Results 


	3.1 Out-of-sample forecasting statistical performance 
	3.1 Out-of-sample forecasting statistical performance 
	As described in sub-section 2.2.2, we run four predictive models: (i) regressions using one original predictor at a time (single_ts); (ii) regressions using several original predictors (multi_ts); (iii) regressions using di˙erent frequencies from one original predictor at a time (single_wav); and (iv) regressions using di˙erent frequencies from di˙erent original predictors (multi_wav). For clarity, we only report the result of the best speci˝cation for each model (i)-(iv), i.e. the model speci˝cation that maxi
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	We highlight three main results. 
	reported in Table 2.
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	First, regardless of the forecasting model considered, predictability of the BRP is higher than that of the ERP. 
	Second, there are common patterns across BRP and ERP forecasts. When using the information from one original predictor only (single_ts versus single_wav), there are forecasting gains from using frequency-domain information. The maximum Rusing the original time
	-
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	series of the predictors is 1.70% for the BRP, while it is negative for the ERP. When using frequency-decomposed predictors, the maximum Rincreases to 5.45% for the BRP, and
	2 
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	is positive and statistically signi˝cant (1.77%) for the ERP. Likewise, there are forecasting gains when combining information from di˙erent original predictors (single versus multi), except when forecasting the ERP with the time series (single_ts versus multi_ts). In all other cases, there is an increase in the maximum R
	2 

	OS Third, when comparing the single_wav model with the multi_wav model, there are noticeable forecast improvements by using di˙erent frequencies from di˙erent original predictors (multi_wav) instead of using di˙erent frequencies of one original predictor (single_wav). The best Rfor the BRP forecast is 7.20%, while the best Rfor the ERP forecast is
	. 
	-
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	3.97%. 
	These results indicate that using frequency-domain information helps make better forecasts of bond and equity risk premiums. Next, we analyze if these statistical gains translate to better portfolio performances. 
	Appendix 3 presents the results for the single_ts and the single_wav model for all original predictors. For computational reasons, we consider at most three frequencies from all possible predictors in model (iv). 
	Appendix 3 presents the results for the single_ts and the single_wav model for all original predictors. For computational reasons, we consider at most three frequencies from all possible predictors in model (iv). 
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	3.2 Active portfolio management performance 
	3.2 Active portfolio management performance 
	We use the BRP and ERP forecasts from the respective multi_wav model to feed the vector of 
	.. 
	ˆˆ
	active views R= Rb,t+1,Re,t+1 driving the APM strategy. This is denoted as APM_WAV. As mentioned, the benchmark is the conventional allocation of 60% to stocks and 40% to bonds (denoted Benchmark−40 ). For comparison purposes, we also report the performance of an APM strategy based on the BRP and ERP forecasts obtained with the original time series of the predictors (multi_ts). We denote this as APM_TS. 
	ˆ 
	60

	Figure 3 presents the APM_WAV, APM_TS, and Benchmark−40 portfolio weights (solid, dashed, and dotted lines, respectively). Both active strategies (APM_WAV and APM_TS ) strongly deviate from the 60-40 benchmark throughout the entire sample period. Moreover, the APM_WAV weights seem to oscillate around the trends de˝ned by the APM_TS weights. Interestingly, with the exception of the mid-nineties period, the di˙erences between APM_WAV and APM_TS weights are most evident around and during recessions. In particul
	60
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	In Panel A of Table 3, we report the performance measurements of the strategies. Both APM strategies outperform the Benchmark−40, with the APM_WAV strategy outperforming the APM_TS. Compared with the Benchmark−40 performance, both APM strategies improve the average annual return while decreasing the maximum drawdown. This translates to higher annualized Sharpe ratios. The fact that the active deviations from the 60-40 benchmark (as illustrated in Figure 3) add value to the active investor is re˛ected in the 
	60
	60

	The fact that the APM_WAV strategy outperforms the APM_TS strategy implies that 
	there are economic gains from using frequency-domain information in active portfolio man
	-

	agement. To disentangle the distribution of those gains across the asset classes traded (bonds and equity), we report the performance metrics for two additional active portfolio management strategies in Panel B of Table 3. APM_Equity_WAV is based on the forecast of the multi_wav (multi_ts) model for equity (bond) return. APM_Bond_WAV is based on the forecast of the multi_wav (multi_ts) model for bond (equity) return. By comparing APM_Equity_WAV (APM_Bond_WAV ) with APM_TS, we can assess the gains from using
	-

	We highlight two main results. First, there are gains for both asset classes when using frequency-domain information in the forecast of their returns. The gains are quite similar in magnitude. Second, the gains are more expressive when using frequency-domain information to forecast both the return of bonds and equities. 
	Figure 4 shows the cumulative wealth of an investor who invests 1$ in January 1990 and reinvests all proceeds adopting the APM_WAV strategy (solid line), the APM_TS strategy (dashed line), and the Benchmark−40 strategy (dotted line). From a cumulative return perspective, the active strategy APM_WAV clearly outperforms the others. By December 2018, the investor has obtained $38.6 with the APM_WAV strategy, instead of $28.7 with the APM_TS strategy, or $12.4 with the Benchmark−40. 
	60
	60

	The strong performance of the APM_WAV strategy is not without its caveats. In the upper panel of Figure 5, we report the dynamics of the 3-year moving average information ratio of the APM_WAV strategy (solid line). The 3-year moving average information ratio is positive for most of the sample period, but there are periods when it is negative (i.e. generating utility losses). However, the ˝gure also shows that the APM_WAV strategy dominates the APM_TS strategy (dotted line), as its 3-year moving average info
	APM_WAV and APM_TS strategies (reported in the lower panel of Figure 5). 
	Overall, these results demonstrate the usefulness of frequency-domain information for active portfolio management. In the next section, we test the robustness of our ˝ndings by considering an alternative portfolio-optimization framework and other changes in the settings used so far. 
	-

	4 Robustness 
	4 Robustness 


	4.1 Alternative portfolio optimization framework 
	4.1 Alternative portfolio optimization framework 
	We test the robustness of the results reported so far by using the Black-Litterman model (BLM ), which is a framework often considered in the context of APM. The objective of the BLM is to outperform the benchmark portfolio within a certain tracking error. 
	We use the same BRP and ERP forecasts from previous sections as the active views on stock and bond markets, treat them as inputs in a version of the BLM (as proposed by Da Silva, Lee, and Pornrojnangkool, 2009 and Almadi, Rapach, and Suri, 2014 and described in Appendix 4) to obtain optimal weights across assets. 
	We consider a power-utility maximizing investor with γ =2 and Benchmark−40 as the benchmark strategy. For simplicity, we assume the investor will neither leverage nor short-sell available assets (h =1 and l =0). The target level of the annualized tracking error of the investor is assumed to be 5.80%, i.e. the same tracking error of the APM_WAV strategy for an investor with γ =2, h =1 and l =0. APM_BLMWAV and APM_BLMTS denote the active portfolio management strategies based on asset return forecasts from mul
	60

	The results, which are reported in Panel C of Table 3, are qualitatively similar to those in the mean-variance setting. Both APM strategies based on the BLM outperform the 
	Benchmark−40, achieving positive information ratios and CER gains. Similarly, using 
	60

	frequency-domain information in the context of the BLM still improves the performance of the strategy over the scenario where only the original time series of the predictors are used (APM_BLMWAV versus APM_BLMTS). Both the annualized information ratio and the annualized CER gain are higher (0.44 versus 0.11 and 0.68% versus 0.12%, respectively). Finally, the portfolio weights (reported in Figure 6) of the strategy using frequency-domain information are much more stable than those of the strategy using time-

	4.2 Other robustness tests 
	4.2 Other robustness tests 
	In this sub-section, we brie˛y comment on additional robustness tests that were imple
	-
	mented.
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	The results are not reported here, but available upon request from the authors. 
	The results are not reported here, but available upon request from the authors. 
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	4.2.1 Alternative benchmarks 
	4.2.1 Alternative benchmarks 
	Instead of Benchmark−40, we consider two alternative benchmarks: a naive diversi˝cation rule 1/N (50% equity and 50% bonds) and an allocation of 40% equity and 60% bonds. In both cases, the information ratios and CER gains of the APM_WAV and APM_TS strategies are still positive, and the information ratios and CER gains of the APM_WAV strategy are higher than those of APM_TS strategy. Qualitatively, these results con˝rm that our ˝ndings are robust towards alternative benchmarks. 
	60


	4.2.2 Alternative set of portfolio constraints and investor risk aversion 
	4.2.2 Alternative set of portfolio constraints and investor risk aversion 
	For a given level of risk aversion of the representative investor, the APM_WAV strategy outperforms the APM_TS strategy (and the Benchmark−40) in alternative scenarios with 
	60

	(i) no leverage or short-selling possibilities (h =1 and l =0), (ii) no leverage possibilities, 
	but short-selling allowed (h =1 and l = −0.5) and (iii) both leverage and short-selling possibilities (h =1.5 and l = −0.5). The higher is the level of leverage and short-selling allowed, the higher is the outperformance of the APM_WAV strategy versus the APM_TS strategy. Finally, the lower is the level of risk aversion of the representative investor, the higher is the outperformance of the APM_WAV strategy versus the APM_TS strategy (everything else constant). 

	Concluding remarks 
	Concluding remarks 
	Fama and French (1989) ˝nd that di˙erent ˝nancial variables can be useful in predicting equity returns as they track di˙erent frequency components of the equity premium. In this paper, we show that using information from di˙erent frequencies of di˙erent predictors helps improve forecasts of bond and equity returns. When used in the context of active portfolio management, these forecasts lead to superior portfolio performances. 
	We envision several interesting research avenues related with the use of frequency-domain information for active portfolio management. Here, we only used twelve variables as possible predictors of bond and equity returns, but the same methodology can be readily applied to larger datasets, and even combined with large dimensional statistical models. It could also be worthwhile to explore the statistical and economic gains from the use of frequency-domain information in the context of forecasting models with 
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	Table
	TR
	mean 
	median 
	min 
	max 
	std. dev. 
	AR(1) 

	BRP (%) 
	BRP (%) 
	0.30 
	0.36 
	-11.2 
	14.4 
	3.10 
	0.05 

	ERP (%) 
	ERP (%) 
	0.51 
	0.85 
	-22.1 
	16.1 
	4.38 
	0.03 

	DP 
	DP 
	-3.64 
	-3.65 
	-4.52 
	-2.75 
	0.43 
	0.99 

	DY 
	DY 
	-3.64 
	-3.64 
	-4.53 
	-2.75 
	0.43 
	0.99 

	EP 
	EP 
	-2.84 
	-2.88 
	-4.84 
	-1.90 
	0.48 
	0.99 

	RVOL (ann.) 
	RVOL (ann.) 
	0.14 
	0.14 
	0.05 
	0.32 
	0.05 
	0.96 

	BM 
	BM 
	0.47 
	0.35 
	0.12 
	1.21 
	0.28 
	0.99 

	NTIS 
	NTIS 
	0.01 
	0.01 
	-0.06 
	0.05 
	0.02 
	0.98 

	LTY (%, ann.) 
	LTY (%, ann.) 
	6.77 
	6.76 
	1.75 
	14.8 
	2.91 
	0.99 

	LTR (%) 
	LTR (%) 
	0.69 
	0.72 
	-11.2 
	15.2 
	3.10 
	0.05 

	TMS (%, ann.) 
	TMS (%, ann.) 
	2.09 
	2.24 
	-3.65 
	4.55 
	1.46 
	0.95 

	DFY (%, ann.) 
	DFY (%, ann.) 
	1.09 
	0.95 
	0.55 
	3.38 
	0.46 
	0.96 

	DFR (%) 
	DFR (%) 
	0.01 
	0.05 
	-9.75 
	7.37 
	1.49 
	-0.04 

	INFL (%) 
	INFL (%) 
	0.32 
	0.30 
	-1.92 
	1.81 
	0.38 
	0.61 


	Table 1: Summary statistics 
	This table reports summary statistics for the bond risk premium (BRP), equity risk premium (ERP), and the set of predictors. BRP and ERP are measured as the di˙erence between the return on the 10-year US Treasury bond and the return on the S&P500 index, respectively, and the return on a one-month T-bill. BRP, ERP, LTR, DFR, and INFL (LTY, TMS, and DFY) are measured in percent (annual percent). The set of predictors is described in Appendix 1. The sample period runs from 1973:01 to 2018:12. 
	Table
	TR
	single_ts 
	multi_ts 

	R2 OS 
	R2 OS 
	Predictor 
	R2 OS 
	Predictors 

	BRP ERP 
	BRP ERP 
	1.70** -0.29 
	TMS LTR 
	3.40*** -0.29 
	DP, DY, TMS LTR 

	TR
	single_wav 
	multi_wav 

	TR
	R2 OS 
	Predictor (frequency) 
	R2 OS 
	Predictors (frequency) 

	BRP ERP 
	BRP ERP 
	5.45*** 1.77** 
	BM (D1, D2, D5, D7) INFL (D2, D5) 
	7.20*** 3.97*** 
	BM (D2), NTIS (D1), TMS (D5) EP (D3), RVOL (D5), TMS (D7) 


	Table 2: Out-of-sample R-squares (R)
	2 

	OS This table reports the maximum out-of-sample R-squares (in percentage) for the bond risk premium (BRP) and equity risk premium (ERP) forecasts at monthly frequencies of four predictive models: regressions using one original predictor at a time (single_ts); regressions using di˙erent original predictors (multi_ts); regressions using the frequencies from one original predictor at a time (single_wav); and regressions using frequencies from di˙erent original predictors (multi_wav). The
	-

	Ł. 
	predictor(s) and their frequency(ies) are reported. The out-of-sample R-squares Rmeasures
	2 

	OS 
	the proportional reduction in the mean squared forecast error for the predictive model relative to the forecast based on the historical mean. The one-month-ahead out-of-sample forecast of the BRP and the ERP is generated using a sequence of expanding windows. The sample period runs from 1973:01 to 2018:12. The out-of-sample forecasting period extends from 1990:01 to 2018:12 (monthly frequency). Asterisks denote signi˝cance of the out-of-sample MSFE-adjusted statistic of Clark and West (2007). *** and ** den
	Table
	TR
	Average CAGR Sharpe Maximum Tracking Information return ratio drawdown error ratio 
	CER gain 

	Panel A: baseline 
	Panel A: baseline 

	APM_WAV APM_TS Benchmark60−40 
	APM_WAV APM_TS Benchmark60−40 
	14.2% 13.4% 1.28 19.1% 7.4% 0.57 13.0% 12.3% 1.18 19.6% 7.2% 0.45 9.5% 9.1% 1.13 29.1% --
	1.12% 0.81% -

	Panel B: di˙erent forecasting inputs 
	Panel B: di˙erent forecasting inputs 

	APM_Equity_WAV APM_Bond_WAV 
	APM_Equity_WAV APM_Bond_WAV 
	13.7% 13.0% 1.24 19.3% 7.3% 0.52 13.5% 12.7% 1.22 19.4% 7.3% 0.49 
	0.99% 0.94% 

	Panel C: di˙erent portfolio optimization framework 
	Panel C: di˙erent portfolio optimization framework 

	APM_BLMWAV APM_BLMTS 
	APM_BLMWAV APM_BLMTS 
	12.4% 11.7% 1.23 24.2% 5.8% 0.44 10.2% 9.6% 1.05 26.1% 5.8% 0.11 
	0.68% 0.12% 


	Table 3: Portfolio performance statistics 
	This table reports the performance statistics of di˙erent portfolio strategies. The performance statistics are: average return, which is the annualized ˝rst moment of returns time series; CAGR, which is the composite annual growth rate of returns time series; Sharpe ratio, measured as the 1-year moving average of portfolio's annualized Sharpe ratio; maximum drawdown, measured as the maximum percentage reduction in the portfolio's cumulative return; tracking error, measured as the annualized standard deviatio
	-
	-
	-

	Figure
	Figure 1: Monthly time series of the BRP, the ERP, and their predictors This ˝gure plots the time series of the bond risk premium (BRP), equity risk premium (ERP), and of each of the predictors. The BRP and ERP are measured as the di˙erence between the return on the 10-year US Treasury bond and the return on the S&P500 index, respectively, and the return on a one-month T-bill. The set of predictors is described in Appendix 1. The sample period extends from 1973:01 to 2018:12. 
	Figure
	Figure 2: Term spread time series and wavelet decomposition 
	This ˝gure plots the time series of the term spread (TMS) and the seven frequency components into which the time series is decomposed. It is applied a J =6 level wavelet decomposition, which produces six wavelet details (D,D,..., D), each representing higher-frequency characteristics of the series, as well as a wavelet smooth (D), which captures the low-frequency dynamics of the series. The sample period runs from 1973:01 to 2018:12 (monthly frequency). 
	1
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	Figure
	Figure 3: APM_WAV, APM_TS, and balanced Benchmark−40 portfolio weights 
	60

	This ˝gure plots the APM_WAV , APM_TS, and balanced Benchmark−40 portfolio weights (solid, dashed and dotted lines, respectively), rebalanced on a monthly basis. APM_WAV and APM_TS stand for the active portfolio management strategy based on asset return forecasts from multi_wav and multi_ts methodologies, respectively. The sample period is from 1973:01 to 2018:12. The out-of-sample forecasting period runs from 1990:01 to 2018:12 (monthly frequency). Gray bars denote NBER-dated recessions. 
	60

	Figure
	Figure 4: Cumulative wealth for APM_WAV, APM_TS, and Benchmark−40 investors 
	60

	This ˝gure represents the cumulative wealth of an investor who begins with $1 and reinvests all proceeds on a monthly basis, adopting an APM_WAV , APM_TS, and Benchmark−40 strategy (solid, dashed, and dotted lines, respectively). The APM_WAV and APM_TS active portfolio management strategies are based on asset return forecasts from multi_wav and multi_ts methodologies, respectively. The sample period extends from 1973:01 to 2018:12. The out-of-sample forecasting period runs from 1990:01 to 2018:12 (monthly f
	60
	-

	Figure
	Figure 5: 3-year moving average information ratios and CER gains 
	The upper ˝gure plots the 3-year moving average information ratio for the APM_WAV and APM_TS strategies relative to the Benchmark−40. The lower ˝gure plots the 3-year moving average annualized CER gain for the APM_WAV and the APM_TS strategies. The sample period is from 1973:01 to 2018:12. The out-of-sample forecasting period runs from 1990:01 to 2018:12 (monthly frequency). Gray bars denote NBER-dated recessions. 
	60
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	Figure
	Figure 6: APM_BLMWAV, APM_BLMTS, and balanced Benchmark−40 portfolio weights 
	60

	This ˝gure plots the APM_BLMWAV , APM_BLMTS, and balanced Benchmark−40 portfolio weights (solid, dashed, and dotted lines, respectively), rebalanced on a monthly basis. The APM_BLMWAV and APM_BLMTS active portfolio management strategies are based on asset return forecasts from multi_wav and multi_ts methodologies used in the context of a Black-Litterman portfolio-optimization framework. The sample period extends from 1973:01 to 2018:12. The outof-sample forecasting period runs from 1990:01 to 2018:12 (month
	60
	-
	-
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	Appendix 1. Predictors of equity and bond risk premiums 
	Appendix 1. Predictors of equity and bond risk premiums 
	• 
	• 
	• 
	Log dividend-price ratio (DP): di˙erence between the log of dividends (12-month moving sums of dividends paid on S&P 500) and the log of prices (S&P 500 index). 
	-


	• 
	• 
	Log dividend yield (DY): di˙erence between the log of dividends (12-month moving sums of dividends paid on S&P 500) and the log of lagged prices (S&P 500 index). 

	• 
	• 
	Log earnings-price ratio (EP): di˙erence between the log of earnings (12-month moving sums of earnings on S&P 500) and the log of prices (S&P 500 index price). 

	• 
	• 
	Excess stock return volatility (RVOL): calculated using a 12-month moving standard deviation estimator. 

	• 
	• 
	Book-to-market ratio (BM): ratio of book value to market value for the DJIA. 

	• 
	• 
	Net equity expansion (NTIS): ratio of 12-month moving sums of net equity issues by NYSE-listed stocks to the total end-of-year NYSE market capitalization. 

	• 
	• 
	Long-term yield (LTY): long-term government bond yield. 

	• 
	• 
	Long-term return (LTR): long-term government bond return. 

	• 
	• 
	Term spread (TMS): di˙erence between the long-term government bond yield and the T-bill. 

	• 
	• 
	Default yield spread (DFY): di˙erence between Moody's BAA-and AAA-rated corporate bond yields. 
	-


	• 
	• 
	Default return spread (DFR): di˙erence between long-term corporate bond and longterm government bond returns. 
	-


	• 
	• 
	In˛ation rate (INFL): calculated from the Consumer Price Index (CPI) for all urban consumers. 


	Appendix 2. Maximal overlap discrete wavelet transform 
	Discrete wavelet transform (DWT) multiresolution analysis (MRA) allows the decomposition of a time series into its constituent multiresolution (frequency) components. There are two types of wavelets: father wavelets (φ), which capture the smooth and low frequency part of the series, and mother wavelets (ψ), which capture the high frequency components of the 
	RR 
	series, where φ (t) dt =1 and ψ (t) dt =0. 
	Given a time series yt with a certain number of observations N, its wavelet multiresolution representation is given by 
	XXX X 
	yt = sφ (t)+ dψ (t)+ dψ (t)+ ··· + dψ (t) , (5)
	J,k J,k J,k J,k J−1,k J−1,k 1,k 1,k 
	kkk k 
	where J represents the number of multiresolution levels (or frequencies), k de˝nes the length of the ˝lter, φ (t) and ψ (t) are the wavelet functions, and s ,d ,d ,...,d are
	J,k j,k J,k J,k J−1,k 1,k 
	the wavelet coe°cients. 
	The wavelet functions are generated from the father and mother wavelets through scaling and translation as follows 
	Ł. 
	−J/2−J
	2
	φ 2

	φ(t)= t − k 
	J,k 

	Ł. 
	−j/2−j
	2
	ψ 2

	ψ(t)= t − k, 
	j,k 

	while the wavelet coe°cients are given by 
	Z 
	s = ytφ (t) dt
	J,k J,k 
	Z 
	d =(t) dt ,
	j,k tj,k 
	y
	ψ

	where j =1, 2, ..., J. 
	Due to the practical limitations of DWT in empirical applications, we perform wavelet decomposition analysis here by applying the maximal overlap discrete wavelet transform (MODWT). 
	Appendix 3. Out-of-sample R-squares for all predictors 
	Predictor 
	Predictor 
	Predictor 
	ERP 
	BRP 

	single_ts 
	single_ts 
	single_wav Frequency 
	single_ts 
	single_wav Frequency 

	DP 
	DP 
	-1.87 
	-0.59 D6 
	-0.75 
	2.89** D1 

	DY 
	DY 
	-1.96 
	-0.24 D1 
	-0.42 
	-0.01 D1 

	EP 
	EP 
	-1.05 
	0.77** D3 
	-0.60 
	-0.50 D7 

	RVOL 
	RVOL 
	-0.73 
	-0.30 D1 
	-0.26 
	-0.09 D4 

	BM 
	BM 
	-0.53 
	0.50** D5, D6 
	-0.15 
	5.45*** D1, D2, D5, D7 

	NTIS 
	NTIS 
	-3.05 
	0.15 D1 
	-3.19 
	0.53 D1 

	LTY 
	LTY 
	-0.32 
	0.08 D6 
	-1.81 
	0.76** D4 

	LTR 
	LTR 
	-0.29 
	0.85** D7 
	-0.36 
	-4.16 D7 

	TMS 
	TMS 
	-0.76 
	1.70*** D7 
	1.70** 
	1.35** D5 

	DFY 
	DFY 
	-2.82 
	-0.86 D6 
	-1.14 
	-0.25 D7 

	DFR 
	DFR 
	-1.84 
	0.07 D1 
	-1.13 
	-0.82 D6 

	INFL 
	INFL 
	-0.61 
	1.77** D2, D5 
	-0.77 
	-0.44 D1 


	Table 4: Out-of-sample R-squares (R)
	2 

	OS This table reports the out-of-sample R-squares as percentages for bond risk premium (BRP) and equity risk premium (ERP) forecasts at monthly frequencies of regressions using one original predictor at a time (single_ts) and regressions using the frequencies of one original predictor at a time (sin
	-
	-

	Ł. 
	R
	2

	gle_wav). The list of predictors is described in Appendix 1. The out-of-sample R-squares 
	OS 
	measures the proportional reduction in the mean squared forecast error for the predictive model relative to the forecast based on the historical mean (HM). The one-month-ahead out-of-sample forecast of the BRP and the ERP is generated using a sequence of expanding windows. The sample period is from 1973:01 to 2018:12. The out-of-sample forecasting period is from 1990:01 to 2018:12, monthly frequency. Asterisks denote the signi˝cance of the out-of-sample MSFE-adjusted statistic of Clark and West (2007). *** 
	Appendix 4. Implemented version of the Black-Litterman model 
	There are N assets and K active investment views (N = K =2: bonds and stocks). µ is an N× vector of expected excess returns: BRP and ERP forecasts for bonds and stocks, respectively. τ is a scaling parameter (which we set to unity as in Almadi, Rapach, and Suri, 2014), Σ is an N × N covariance matrix, P is a K × N matrix whose elements in each row represent the weight of each asset in each of the K−view portfolios, Ω is a matrix representing the con˝dence in each view, Q is a K × 1 vector of expected excess
	The original Black-Litterman model (BLM) of expected excess returns in Black and Litterman (1992) is given by: 
	..−1 ..
	−1 −1 
	µ =(τΣ) + P ΩP (τΣ) Π+ P ΩQ, 
	0
	−1
	0
	−1

	which by applying the Matrix Inversion Lemma can be rewritten as follows (Da Silva, Lee, and Pornrojnangkool, 2009): 
	..
	−1 

	µ =Π+ΣP + P ΣP (Q − P Π) = Π+ G, (6)
	0 
	Ω
	0 

	τ 
	where G is the term that captures the deviations of expected excess returns from the equilibrium due to active investment views. Equation (6) summarizes the key idea behind the BLM model: the expected excess return will be di˙erent from the equilibrium excess return if and only if investor views di˙er from equilibrium views. 
	-

	The construction of the actively managed portfolios consists in two steps. First, we compute the posterior expected excess return vector, µt+1, and posterior return covariance matrix, Σt+1. We start from the selected vector of excess return forecasts ( and 
	[ 
	[

	BRP t+1 ERP t+1) 
	obtained from predictive regression models explained in section 2.2. We generate an exponen
	-

	ˆ
	tially weighted moving average estimate of the monthly return covariance matrix V =Σt+1. We set the decay parameter to 0.97, which is frequently used for monthly series. 
	To set matrix Ω, we follow the suggestion of Da Silva, Lee, and Pornrojnangkool (2009) and use: 
	= diag(diag(PVP )) . 
	Ω
	0

	τ 
	Adopting the approach of Idzorek (2004), the posterior return covariance matrix is given by: 
	. Ł..−1
	−1 −1
	P 
	0
	Ω
	P

	Σt+1 =(τV )+ . 
	From expression (6) for the expected returns, by setting (i) the vector of the equilibrium excess returns of assets as Π=0, as in Da Silva, Lee, and Pornrojnangkool (2009), (ii) using the vector of BRP and ERP forecasts as matrix Q and (iii) using the posterior return covariance matrix Σt+1, it is obtained the posterior expected excess return vector, µt+1. 
	The second step for the construction of the portfolio consists in using µt+1 and Σt+1 to obtain the portfolio weights. Recall that the objective function of an active asset manager is to maximize the return of the portfolio with a penalty on the square of tracking error towards the relevant benchmark: 
	0 0 
	0 0 

	max ($A + $B) µ − λ$Σ$A (7) 
	A

	0 
	0 

	s.t. $1=0 
	A

	where $A and $B are the vectors of active positions and benchmark portfolio weights, 
	√ 
	1
	1
	1


	respectively. The parameter λ is given by λ = , with TE representing the tracking error (set to a constant annualized value of 5.80% as explained in section 4.1) and matrix Θ 
	respectively. The parameter λ is given by λ = , with TE representing the tracking error (set to a constant annualized value of 5.80% as explained in section 4.1) and matrix Θ 
	2
	TE 
	Θ
	0
	ΣΘ

	is: 

	.. 
	Θ= ΣI − 1 µ . 
	1
	0
	Σ
	−1 
	−1 

	1
	1
	0
	Σ
	−1
	1 

	The active weights $A are given by $A = . Thus, total weights are $ = $A + $B. We assume the investor will neither leverage nor short-sell available assets (following the notation in the paper, h =1 and l =0). We further assume that the investor rebalances the portfolio at the same monthly frequency as the forecast horizon. 
	2
	Θ 
	λ 




