
Capital Allocation and the Market for Mutual Funds: 

Inspecting the Mechanism∗ 

Jules H. van Binsbergen Jeong Ho (John) Kim 

University of Pennsylvania and NBER Emory University 

Soohun Kim 

Georgia Institute of Technology 

October 1, 2019 

Abstract 

We analyze the effects of returns to scale on capital allocation decisions in the 

mutual fund market by exploiting individual heterogeneity in decreasing returns to 

scale across funds. We find strong evidence that steeper decreasing returns to scale 

attenuate flow sensitivity to performance and lead to smaller fund sizes. Our results 

are consistent with a rational model for active management. Using the model, we argue 

that a large fraction of capital allocation due to differences in decreasing returns to 

scale can be plausibly attributed to investors anticipating these effects of scale. 

∗We thank seminar participants at Emory University for their comments and suggestions. 



1 Introduction 

An important question in financial economics is whether investors effi ciently allocate capital 

across financial assets. Under the standard neoclassical assumptions, investors compete 

with each other for positive present value opportunities, and by doing so, remove them in 

equilibrium. In the case of mutual funds, the literature has argued that decreasing returns 

to scale (DRS) play a key role in equilibrating the mutual fund market (Berk and Green 

(2004)). Because the percentage fee that mutual funds charge changes infrequently, the bulk 

of the equilibration process operates through the size (or Assets Under Management (AUM)) 

of the fund. When good news about a mutual fund arrives, rational Bayesian updating will 

lead investors to view the fund as a positive Net Present Value (NPV) buying opportunity 

at its current size. In response, flows will go to that fund. As the fund grows, the manager 

of the fund finds it increasingly harder to put the new inflows to good use, leading to a 

deterioration of the performance of the fund. The flows into the fund will stop when the 

fund is no longer a positive NPV investment, and the fund’s abnormal return to investors 

has reverted back to zero. 

In this paper we investigate this equilibrating mechanism more closely. In particular, 

if the above-mentioned equilibration process is at work, we should expect to find that the 

degree of decreasing returns to scale (DRS) can have implications for the flow sensitivity to 

performance (FSP). While there is much evidence that an active fund’s ability to outperform 

its benchmark declines as its size increases,1 there is surprisingly little empirical work devoted 

to whether investors account for the adverse effects of fund scale in making their capital 

allocation decisions. 

We address this important question by formally deriving and empirically testing what a 

rational model for active management implies about the relation between returns to scale 

and flow sensitivity to performance. Using a theory model similar to that of Berk and 

Green (2004), we show that steeper decreasing returns to scale attenuates flow sensitivity 

to performance. In the model, investors rationally interpret high performance as evidence 

of the manager’s superior skill, so good performance results in an inflow of funds. More 

importantly, the magnitude of the capital response is primarily driven by the extent of 

decreasing returns to scale. As a fund’s returns decrease in scale more steeply, the positive 

net alpha is competed away with a smaller amount of capital inflows, making flows less 

sensitive to performance. 

To test this theoretical insight, one needs a source of heterogeneity in decreasing re-

1See, for example, Chen et al. (2004), Yan (2008), Ferreira et al. (2013), and Zhu (2018). 

1 



turns to scale. One also needs to observe investor reactions to this heterogeneity. Indeed, 

we demonstrate that there is a substantial amount of heterogeneity in DRS across individ-

ual funds, with correspondingly heterogeneous flow sensitivity to performance across funds. 

Our approach can be interpreted as inferring how the subjective size-performance relation, 

perceived by investors in real time, is incorporated into the flow-performance relation go-

ing forward. We find that a steeper decreasing returns to scale parameter predicts a lower 

sensitivity of flows to performance, consistent with the main prediction of our model. 

One of the challenges in estimating the effect of decreasing returns to scale on flow 

sensitivity to performance is the estimation error in fund-specific DRS. As a result, the point 

estimates of the DRS-FSP relation using DRS estimates from simple fund-by-fund regressions 

are likely to suffer from an errors-in-variables bias. We alleviate the errors-in-variables bias 

by relating the heterogeneity in decreasing returns to scale to a set of fund characteristics. In 

particular, by regressing the fund-specific DRS estimates on these characteristics, we obtain 

fitted values that we use as a more robust way of obtaining cross-sectional variation. We find 

the degree of DRS is stronger for higher-volatility funds, sole-managed funds, older funds, as 

well as funds that have experienced outflows in the past year. Next, we show that while the 

statistical significance of the DRS-FSP relation is unaffected by using characteristic-based 

DRS, the point estimates become substantially more negative, suggesting that the projection 

onto characteristics indeed has alleviated the errors-in-variables problem. 

Next we turn to the economic significance of our estimates. In particular, we assess how 

equilibrium fund size is affected by the cross-sectional variation in decreasing returns to scale 

parameters. This exercise does require model assumptions. We calibrate a rational model 

in the spirit of Berk and Green (2004) to compute counterfactual fund sizes. We find that 

at least 49% of the cross-sectional variance of fund sizes can be related to cross-sectional 

variation in decreasing returns to scale parameters. More importantly, the uncalibrated 

version of our model with heterogeneous returns to scale can quantitatively reproduce capital 

allocation in the version calibrated to the empirical DRS-FSP relationship. We also find 

that the DRS-FSP relation estimates in the uncalibrated version tend to be substantially 

more negative than those from the data. Thus, it appears that investors in the data face a 

substantially harder learning problem than in our simple model, though we leave identifying 

additional aspects of learning to explain this gap as a question to be explored by future 

research. 

Beyond implications for fund flows, steeper decreasing returns to scale has implications 

for fund size in equilibrium. In the model, fund size in equilibrium is proportional to the 

ratio of perceived skill over diseconomies of scale, which predicts that, all else equal, the 
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decreasing returns to scale parameter should be lower for larger funds. This prediction is 

confirmed in our empirical analysis. Moreover, if investors update their beliefs about skill 

as in the model, their perception of optimal size ought to converge to true optimal size as 

funds grow older. Consistent with this argument, we find that estimates for the optimal size 

largely explains capital allocation across older funds in the data. We measure (log) optimal 

size by the average ratio of the usual net alpha that is adjusted for returns to scale over 

the characteristic-based DRS. We show that older fund’s size continues to be significantly 

related to our measure of its optimal size even when we control for an alternative measure 

of optimal size that assumes fund scale has the same effect on performance for all funds. 

Again, investors seem to account not only for the presence of decreasing returns to scale, 

but also for the heterogeneity of decreasing returns to scale across funds. 

Taken together, our results demonstrate that investors do account for the adverse effects 

of fund scale in making their capital allocation decisions, and that the rational expectations 

equilibrium does a reasonable job of approximating the observed equilibrium in the mutual 

fund market. In contrast, mutual fund investors were generally deemed naive return chasers 

because fund flows respond to past performance even though performance is not persistent.2 

Furthermore, many papers in the mutual fund literature have documented that mutual fund 

returns show little evidence of outperformance.3 While these findings led many researchers 

to question the rationality of mutual fund investors, Berk and Green (2004) argue that they 

are consistent with a model of how competition between rational investors determines the 

net alpha in equilibrium. We contribute to this debate by presenting findings that are hard 

to reconcile with anything other than the existence of rational fund flows. 

2 Definitions and hypotheses 

To formally derive our hypothesis, we use the notation and setup presented in Berk and 

van Binsbergen (2016). Let qit denote assets under management (AUM) of fund i at time 

t and let θi denote a parameter that describes the skill of the manager of fund i. At time 

t, investors use the time t information set It to update their beliefs on θi resulting in the 

distribution function gt (θi) implying that the expectation of θi at time t is: Z 
θit ≡ E [θi |It ] = θigt (θi) dθi. (1) 

2See Chevalier and Ellison (1997) and Sirri and Tufano (1998), among others. 
3See Jensen (1968), Malkiel (1995), Gruber (1996), Fama and French (2010), and Del Guercio and Reuter 

(2013), among others. 
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We assume throughout that gt (·) is not a degenerate distribution function. Let Rnit denote 

the return in excess of the risk free rate earned by investors in fund i at time t. This return 

can be split up into the excess return of the manager’s benchmark, Rit
B , and a deviation from 

the benchmark εit: 

Rnit = RBit + εit. (2) 

Note that qit, Rn and RB are elements of It. Let αit (q) denote investors’subjective expec-it it 

tation of εi,t+1 when investing in fund i that has size q between time t and t + 1, and let it 

be equal to: 

αit (q) = θit − hi (q) , (3) 

where hi (q) is a strictly increasing function of q that captures the decreasing returns to scale 

the manager faces, which can vary by fund. In equilibrium, the size of the fund qit adjusts to 

ensure that there are no positive net present value investment opportunities so αit (qit) = 0 

and 

θit = hi (qit) . (4) 

At time t + 1, the investor observes the manager’s return outperformance, εit+1, which is a 

signal that is informative about θi. The conditional distribution function of εi,t+1 at time t, 

ft (εit+1), satisfies the following condition in equilibrium: Z 
E [εit+1 |It ] = εit+1ft (εit+1) dεit+1 = αit (qit) = 0. (5) 

In other words, the manager’s return outperformance can be expressed as follows: 

εit+1 = θi − hi (qit) + �it+1 

= sit+1 − hi (qit) , 

where sit+1 = θi +�it+1. Our hypothesis relies on the insight that good news, that is, high sit, 

implies good news about θi and bad news, low sit, implies bad news about θi. The following 

lemma shows that this condition holds generally. That is, θit is a strictly increasing function 

of sit. 

Lemma 1 If the likelihood ratio ft (sit+1 |θi ) /ft (sit+1 |θci ) is monotone in sit+1, increasing 

if θi > θ
c
i and decreasing otherwise, 

∂θit+1 
> 0. (6) 

∂sit+1 

Proof. See Milgrom (1981). 
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In addition, we assume that the costs that manager i faces in expanding the fund’s scale 

is given by: 

hi (q) = bih (q) , (7) 

where bi > 0 is a parameter that captures the cross sectional variation in the fund’s returns to 

scale technology and h (q) is a strictly increasing function of q, which essentially determines 

the form of decreasing returns to scale technology that is common across all funds. Using 

(7) to rewrite (4) now gives � � 
θit 

qit = h−1 . (8) 
bi 

The following lemma shows how the size of the fund qit depends on the information in sit or 

the parameter bi. 

Lemma 2 
∂qit 1 ∂θit 

= (9) 
∂sit bih0 (qit) ∂sit 

and 
∂qit h (qit) 

= − . (10) 
∂bi bih0 (qit) 

Proof. First, note that εit does not contain information about managerial ability that is 

not already contained in sit. Because rescaling the fund’s returns to scale technology (i.e., 

changing the parameter bi) does not change the signal sit, we can conclude that 

∂θit 
= 0. (11) 

∂bi 

Now differentiating (8) with respect to sit, and using the fact that these signals are inde-

pendent of bi (i.e., ∂bi/∂sit = 0), gives � � 
∂qit 1 ∂ θit/bi 1 ∂θit 1 ∂θit 

= � � = � � = ,
∂sit h0 θit/bi ∂sit bih0 θit/bi ∂sit bih0 (qit) ∂sit 

where the last equality follows from (8). Similarly, differentiate (8) with respect to bi, and 

use (11) to substitute for ∂θit/∂bi in this expression. Appealing, again, to (8), gives (10). 

Next, let the flow of capital into mutual fund i at time t be denoted by Fit, that is, 

Fit+1 ≡ log (qit+1/qit) . 
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Differentiating this expression with respect to sit+1, 

∂Fit+1 1 dqit+1 1 1 ∂θit+1 
= = > 0,

∂sit+1 qit+1 dsit+1 qit+1 bih0 (qit+1) ∂sit+1 

where the second equality follows from (9) and the inequality follows from Lemma 1, so good 

(bad) performance results in an inflow (outflow) of funds. This result is one of the important 

insights from Berk and Green (2004). 

Given the importance of returns to scale technology in determining the size of a fund, a 

natural question to ask is, what is the implication of steeper decreasing returns to scale for 

the flow-performance relation? We answer this question by computing the derivative of the 

flow-performance sensitivity with respect to bi: � � � � 
∂ ∂Fit+1 ∂ 1 1 ∂θit+1 

= 
∂bi ∂sit+1 ∂bi qit+1 bih0 (qit+1) ∂sit+1 

∂qit+1qit+1h
0 (qit+1) + (bih

0 (qit+1) + qit+1bih00 (qit+1))∂bi ∂θit+1 
= − 22qit+1 (bih

0 (qit+1)) ∂sit+1� � 
qit+1h

0 (qit+1) − h (qit+1) 1 + qit+1h
00(qit+1) 

h0(qit+1) ∂θit+1 
= − 2 , (12) 

q2 ∂sit+1it+1 (bih
0 (qit+1)) 

where the first equality follows from (11) because when θit+1 is solely a function of the history � � 
∂ ∂θit+1of realized signals and is not a function of bi then = 0 and the last equality follows 
∂bi ∂sit+1 

from (10). What (12) combined with Lemma 1 tells us is that steeper decreasing returns to 

scale must lead to a smaller flow of funds response to performance if and only if � � 
qit+1h

00 (qit+1) 
qit+1h

0 (qit+1) − h (qit+1) 1 + > 0. (13) 
h0 (qit+1) 

Unfortunately, the left hand side of Equation 13 is not easy to sign without further assump-

tions. To assess whether this condition holds, we rely on the second-order approximation to 

the decreasing returns to scale technology: 

h (q) ' h0 + h1 log (q) + h2 log (q)
2 , (14) 

where hi for i = {0, 1, 2} are the coeffi cients in the second-order approximation. This approx-

imation nests exactly specifying the technology as logarithmic, most commonly considered 

in empirical studies, if we set h1 > 0 and h0 = h2 = 0. Going forward, we set h0 = 0. 

This assumption is without loss of generality, because we can rewrite the skill parameter as 
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θ0 i = θi − bih0, which, in turn, renders h0 0 = 0. The following proposition shows that, under 

approximation (14), condition (13) holds generally. That is, steeper decreasing returns to 

scale leads to a weaker flow response to performance. We take this as our main hypothesis 

that we will take to the data. 

Proposition 3 Under approximation (14), the derivative of the flow-performance sensitivity 

with respect to the decreasing returns to scale parameter is negative, that is, � � 
∂ ∂Fit+1 

< 0. 
∂bi ∂sit+1 

Proof. Under approximation (14), the left-hand side of (13) is then given by: !2h2−(h1+2h2 log(qit+1))� 2� qit+1h1 + 2h2 log (qit+1) − h1 log (qit+1) + h2 log (qit+1) 1 + 
h1+2h2 log(qit+1) 

qit+1 � 2� 2h2 
= h1 + 2h2 log (qit+1) − h1 log (qit+1) + h2 log (qit+1) 

h1 + 2h2 log (qit+1)� � 
(h1 + 2h2 log (qit+1))

2 − 2 h1 log (qit+1) + h2 log (qit+1)
2 h2 

= 
h1 + 2h2 log (qit+1) 

(h1 + h2 log (qit+1))
2 + h22 log (qit+1)

2 

= . 
h1 + 2h2 log (qit+1) 

The numerator of this expression is the sum of two squares, so it is positive. Note that the 

denominator can be rewritten as the product of qit+1 and h0 (qit+1) under the given approx-

imation. Recall that h (q) is a strictly increasing function of q, reflecting the fact that all 

mutual funds must face decreasing returns to scale in equilibrium. Requiring that, under the 

approximation, h0 (qit+1) > 0 is also ensured, this means that the denominator is positive as 

well. It then follows immediately that condition (13) holds, which completes the proof. 

3 Data 

Our data come from CRSP and Morningstar. We require that funds appear in both CRSP 

and Morningstar, which allows us to validate data accuracy across the two databases. We 

merge CRSP and Morningstar based on funds’tickers, CUSIPs, and names. We then com-

pare assets and returns across the two sources in an effort to check the accuracy of each 

match following Berk and van Binsbergen (2015). We refer the readers to the data appen-

dices of that paper for the details. Our mutual fund data set contains 3,066 actively managed 

domestic equity-only mutual funds in the United States between 1979 and 2014. 

7 



We use Morningstar Category to categorize funds into nine groups corresponding to 

Morningstar’s 3×3 stylebox (large value, mid-cap growth, etc.). We also use keywords in the 

Primary Prospectus Benchmark variable in Morningstar to exclude bond funds, international 

funds, target funds, real estate funds, sector funds, and other non-equity funds. We drop 

funds identified by CRSP or Morningstar as index funds, in addition to funds whose name 

contains “index.”We also drop any fund observations before the fund’s (inflation-adjusted) 

AUM reaches $5 million. 

We now define the key variables used in our empirical analysis: fund performance, fund 

size, and fund flows. Summary statistics are in Table 1. 

3.1 Fund Performance 

We take two approaches to measuring fund performance. First, we use the standard risk-

based approach. The recent literature finds that investors use the CAPM in making their 

capital allocation decisions (Berk and van Binsbergen (2016)), and hence we adopt the 

CAPM. In this case the risk adjustment Rit 
CAPM is given by: 

RCAPM MKTt,it = βit 

where MKTt is the realized excess return on the market portfolio and βit is the market beta 

of fund i. We estimate βit by regressing the fund’s excess return to investors onto the market 

portfolio over the sixty months prior to month t. Because we need historical data of suffi cient 

length to produce reliable beta estimates, we require a fund to have at least two years of 

track record to estimate the fund’s betas from the rolling window regressions. 

Second, we follow Berk and van Binsbergen (2015) by taking the set of passively managed 

index funds offered by Vanguard as the alternative investment opportunity set.4 We then 

define the Vanguard benchmark as the closest portfolio in that set to the mutual fund. Let 

Rj t denote the excess return earned by investors in the j’th Vanguard index fund at time t. 

Then the Vanguard benchmark return for fund i is given by: 

n(t)X 
Vanguard βj RjR = t ,it i 

j=1 

where n (t) is the total number of index funds offered by Vanguard at time t and βji is obtained 

from the appropriate linear projection of active mutual fund i onto the set of Vanguard index 

4See Table 1 of that paper for the list of Vanguard Index Funds used to calculate the Vanguard benchmark. 
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funds. As pointed out by Berk and van Binsbergen (2015), by using Vanguard funds as the 

benchmark, we ensure that this alternative investment opportunity set was marketed and 

tradable at the time. Again, we require a minimum of 24 months of data to estimate βji ’s 

necessary for defining the Vanguard benchmark for fund i. 

αCAPM Vanguard Our measures of fund performance are then b and αb , the realized return for it it 
Vanguard αCAPM the fund in month t less RCAPM and R . The average of b is +1.5 bp per month, it it it 

Vanguard whereas the average αbit is −1.4 bp per month. 

3.2 Fund Size and Flows 

We adjust all AUM numbers by inflation by expressing all numbers in January 1, 2000 

dollars. Adjusting AUM by inflation reflects the notion that the fund’s real (rather than 

nominal) size is relevant for capturing decreasing returns to scale in active management. 

That is, lagged real AUM corresponds to qit−1 in the previous section. There is considerable 

dispersion in real AUM: the inner-quartile range is from $45 million to $618 million. 

We calculate flows for fund i in month t as: 

AUMit − AUMit−1 (1 + Rit)
Fit = ,

AUMit−1 (1 + Rit) 

where AUMit is the (nominal) AUM of fund i at the end of month t, and Rit is the total 

return of fund i in month t.5 So flows represent the change in the fund’s net assets not 

attributable to its return gains or losses. The flow of fund data contains some implausible 

outliers, so we winsorize flows at its 1st and 99th percentiles. Median Fit is −0.2% per 

month. 

4 Methodology 

Our analysis relies on a theoretical link between decreasing returns to scale and flow sensi-

tivity to returns. We discuss how we estimate each part in the following sections. 

5Note that we use AUMit−1 (1 + Rit) in the denominator rather than AUMit−1, which is typically used 
in much of the existing literature on fund flows. Unfortunately, this definition distorts the flow for very 
large negative returns. For example, liquidition of a fund, i.e., AUMit = 0, implies a flow of − (1 + Rit). 
Our measure of the flow of funds is equal to, and correctly so, −1 in this case. Regardless, our findings are 
unaffected by using the more common definition of the flow. 
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4.1 Fund-Specific Decreasing Returns to Scale (DRS) 

Empirically, we assume that the net alpha that manager i generates by actively managing 

money is given by: 

αit = ai − bi log (qit−1) + �it, (15) 

where ai is the fund fixed effect, bi captures the size effect, which can vary by fund, and qit−1 

is the dollar size of the fund. 

The simple regression model in equation (15) corresponds to the model in Section 2. 

This model further assumes the form of the fund’s decreasing returns to scale technology is 

logarithmic, which is often used to empirically analyze the nature of returns to scale due to 

severe skewness in dollar fund size. 

We depart from much of the literature describing the size-performance relation by taking 

the size-performance relation to vary across funds. Indeed, the effect of scale on a fund’s 

performance is unlikely to be constant across funds. For example, a fund’s returns should 

be decreasing in scale more steeply for those that have to invest in small and illiquid stocks, 

which are likely to face lower liquidity. 

Given that it is not clear a priori why and how the size-performance relation depends 

on which fund characteristics, we prefer to estimate fund-specific a and b parameters in our 

main analysis. For each fund i at time t, we run the time-series regression of αiτ on log (qiτ −1) 

using sixty months of its data before time t. Estimating b fund by fund leads to imprecise 

estimates especially for funds with short track records, so we require at least three years of 

data to estimate fund-specific returns to scale of a mutual fund. dThe estimate of bi, DRSit
m 
, is obtained from (15) using sixty months of the data for fund 

i prior to time t, where the alpha can be estimated under model m ∈ {CAPM, Vanguard}. 
Intuitively, these estimates represent, for investors who use model m in making capital 

allocation decisions, their perception of the effect of size on performance for fund i at time 

t based on information prior to time t. dPanel A of Figure 1 shows how the cross-sectional distribution of DRSit using the CAPM 

alpha varies over time. For each month in 1991 through 2014, the figure plots the average as 

well as the percentiles of the estimated fund-specific b parameters across all funds operating 

in that month. The plot shows considerable heterogeneity in decreasing returns to scale 

across funds. For example, the interquartile range is more than 3 times larger than the 

estimates’ cross-sectional median in a typical month; in fact, this ratio can be almost as 

large as 22 in some months. We find that, for the average fund, one percent increase in fund 

size is typically associated with a sizeable decrease in fund performance of about 0.9 basis 
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points (bp) per month. This evidence suggests that the subjective size-performance relation, 

perceived by investors in real time, provides an ideal identifying variation in the extent of 

decreasing returns to scale. dPanel B of Figure 1 shows the time evolution of DRSit when we take Vanguard index 

funds as the alternative investment opportunity set. Similar to our main measure in Panel A, 

the alternative measure exhibits a clear heterogeneity in diseconomies of scale across funds, 

though these estimates typically indicate milder decreasing returns to scale. 

4.2 Fund-Specific Flow Sensitivity to Performance (FSP) 

We estimate the fund-specific flow sensitivities to past performance by estimating the fol-

lowing regression fund by fund: 

Fit = ci + γiPit−1 + υit, (16) 

where Pit−1 is annual alpha for the year leading to month t − 1, computed by compounding 

the monthly alphas as follows: 

t−1Y � � 
Pit−1 = 1 + Ris

n − RB − 1.is 
s=t−12 

This regression is consistent with empirical evidence that investors do not respond immedi-

ately. For example, Berk and van Binsbergen (2016) and Barber, Huang, and Odean (2016) 

show that flows respond to recent returns, as well as distant returns. Parameter γi > 0 

captures the positive time-series relation between performance and fund flows, which can 

vary by fund. Again, this is where we depart from much of the literature describing the 

flow-performance relation. 

At time t, we calculate the fund’s flow sensitivity to performance by estimating (16) d m 
using its data over the subsequent 5 years. For fund i, let F SP it be the estimated flow-

performance regression coeffi cient of that model, where the performance can be estimated 

under model m ∈ {CAPM, Vanguard}. To avoid using imprecise estimates, we require these 

coeffi cient estimates to be obtained from at least three years of data. For the average fund, 

we observe that an increase of 1% in the monthly CAPM alpha is associated with an increase 

of 1.3% in monthly flows next month. dFigure 2 displays the evolution of the distribution of F SP it by plotting the average as 

well as the percentiles of the estimated flow sensitivities to performance at each point of 

time. Panel A shows the results using the CAPM alpha, and Panel B shows the results when 
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net alpha is computed using Vanguard index funds as benchmark portfolios. Note that the 

results are very similar across the two panels, manifesting considerable heterogeneity in the 

flow-performance relation across funds. More importantly, Figure 2 shows that while both dthe mean and median F SP it do not exhibit any obvious trend, these are certainly time 

varying. As the red dashed lines in the figure make clear, the distribution has remained 

roughly the same over our sample period, conditional on the median. 

5 Results 

5.1 DRS and Flow Sensitivity to Performance 

To investigate whether investors pay attention to the fund’s decreasing returns to scale 

technology in making their capital allocation decisions, we run panel regressions of fund i’s dflow sensitivity to performance going forward in month t, F SP it, on the fund’s returns to dscale estimated as of the previous month-end, DRSit. We test the null hypothesis that the d 6slope on DRSit is zero. We consider two approaches: plain OLS and OLS with fixed effects 

(OLS FE), as detailed below. We report the results in Table 2.7 In Panel A, we report the 

results using the CAPM as the benchmark; in Panel B, we use Vanguard index funds as the 

benchmark. 

We show results based on raw estimates in the first three columns. Across these three 

columns, we gradually saturate with month and fund fixed effects to focus on variation com-

ing from the market equilibrating mechanism beyond differences in sensitivity across funds 

and over time. The fund fixed effects absorb the cross-sectional variation in flow/performance 

sensitivity that is due to differences in investor clientele across funds, while the time fixed 

effects soak up any variation in flow/performance sensitivity due to investor attention alloca-

tion over time. Indeed, there is evidence of clientele differences because some investors tend 

to update faster than others,8 and Figure 2 shows how the average as well as the median of 

flow-performance dynamics vary considerably over time. 

In the first column, we include no fixed effects to include all variation in flow sensitivities. dConsistent with the main prediction of our model, the estimated coeffi cient on DRSit is 

6Surely, not only the independent variable, but the dependent variable are measured imprecisely. The 
measurement error in DRSit will bias the OLS estimator toward zero. While the measurement error in 
F SPit will not induce bias in the OLS coeffi cients, it will render their variance larger. For now, we do not 
worry, as the errors-in-variables problem will work against us from finding a statistically significant relation 
that the model predicts. 

7Table 2 reports the double clustered (by fund and time) t-statistics. 
8See Berk and Tonks (2007). 
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significantly negative using the CAPM benchmark. This finding is unaffected by controlling 

for month and/or fund fixed effects. In the second column, we include month fixed effects. dThe third column further adds fixed effects for funds. The negative coeffi cients on DRSit 
in the CAPM-adjusted result are highly statistically significant, with t-statistic that are dsmaller than −3. While the estimated coeffi cient on DRSit using the Vanguard benchmark 

in column 1 is marginally insignificant (with t-statistic of −1.6), including month and/or 

fund fixed effects in this case causes the t-statistics to grow substantially in magnitude. 

Thus, the estimates in the next two columns of Panel B are significantly negative at the 10% 

and 5% confidence levels, respectively. 

The last two columns in Table 2 repeat this exercise with percentile ranks in each month d dbased on DRSit and F SP it. In this case, we do not use month fixed effects, as percentile 

ranks already soak up any time variation in the flow-performance relation. In column 4 of deach panel, the estimated plain OLS coeffi cient on DRSit is significantly negative at the 1% 

confidence level. We then allow for differences in clientele across funds by adding fund fixed 

effects (see column 5 of Table 2). Again, the evidence for our main prediction becomes only dstronger: the estimated coeffi cients on DRSit roughly double, while the t-statistic more than 

double to −7.8 in Panel A and to −6.9 in Panel B. 

To summarize, we find a strong negative relation between decreasing returns to scale and 

flow sensitivity to performance. This relation, which is statistically significant, is consistent 

with the presence of investors rationally accounting for the adverse effects of fund scale in 

making their capital allocation decisions. Unfortunately, these coeffi cient values are not easily 

interpretable in economic terms, as they represent the effect of one regression coeffi cient on 

another regression coeffi cient. In Section 5.4.1, we propose a way of assessing the economic 

magnitude of such relation by computing counterfactual fund sizes. 

5.2 DRS and Fund Size in Equilibrium 

While the main implication of our model is that steeper decreasing returns to scale attenu-

ate flow sensitivity to performance, another immediate implication is that steeper decreasing 

returns to scale shrink fund size. Recall that fund size in equilibrium is proportional to the 

ratio of perceived skill over diseconomies of scale (see equation (8)). Are large funds char-

acterized by relatively flat decreasing returns to scale technology? To address this question, 

we run panel regressions of fund i’s log real AUM in month t on the fund’s returns to scale destimated as of the previous month-end, DRSit. We test the null hypothesis that the slope 

13 



d 9on DRSit is zero. We consider two approaches: plain OLS and OLS with fixed effects 

(OLS FE), as detailed below. We report the results in Table 4.10 In Panel A, we report the 

results using the CAPM as the benchmark; in Panel B, we use Vanguard index funds as the 

benchmark. 

Across the first three columns, we gradually saturate with month and fund fixed effects 

to focus on variation coming from the market equilibrating mechanism beyond differences in 

size across funds and over time. The fund fixed effects absorb the cross-sectional variation 

in fund size due to differences in investors’perception of skill across funds, while the time 

fixed effects soak up any variation in fund size due to the arrival of news that commonly 

affect fund performance. 

In the first column, we include no fixed effects to include all variation in fund sizes. dConsistent with the above prediction of our model, the estimated coeffi cients on DRSit are 

significantly negative. This finding is unaffected by using the CAPM or the Vanguard bench-

mark, as well as controlling for month and/or fund fixed effects. In the second column, we 

include month fixed effects. The third column further adds fixed effects for funds. The neg-dative coeffi cients on DRSit in the CAPM-adjusted result are highly statistically significant, dwith t-statistic that are smaller than −2.33. The estimated coeffi cient on DRSit using the 

Vanguard benchmark in column 1 is marginally significant, with t-statistic of −1.8. However, 
including month and/or fund fixed effects in this case cause the t-statistics to grow substan-

tially in magnitude, so the estimate in column 2 (3) of Panel B are significantly negative at 

the 5% (1%) confidence level. Finally, the last column in Table 4 shows that these findings 

are unaffected by further including controls that are plausibly correlated with the fund size: 

family size, fund age, and turnover. 

5.3 Determinants of Returns to Scale 

In this subsection, we investigate what drives heterogeneity in returns to scale by analyzing 

how it depends on fund characteristics. We explore a number of characteristics that seem 

relevant a priori for heterogeneity in returns to scale: volatility, a multi-manager indicator, 

a redemption indicator, fund age, and risk exposures.11 

9Again, the independent variable is measured imprecisely. The measurement error in DRSit will bias the 
OLS estimator toward zero. We will address the estimation error in scale effects in Section 5.4. 
10 Table 4 reports the double clustered (by fund and time) t-statistics. 
11 We also explore whether high-turnover funds exhibit steeper decreasing returns to scale and whether there 

is a weaker negative size-performance relation for funds with a significant degree of international exposure in 
unreported results. We find a negative relation between returns to scale and international exposure, although 
the relation is mostly statistically insignificant. The relation between returns to scale and turnover is usually 
insignificant and flips to negative when we add other fund characteristics. More importantly, our results in 
Tables 5 and 6 are unaffected by including these characteristics as controls. All of these results are available 
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The first characteristic, Std (Alpha), is the standard deviation of a fund’s alphas, which 

we calculate over the prior 1 year. The second characteristic, 1 (MultiMgr), is a dummy 

variable that is equal to one if the fund is managed by many managers. About 56% of our 

funds are multi-manager funds. The third characteristic, 1 (Outflows), is an indicator for 

whether the fund experienced outflows over the prior 1 year. The fourth characteristic we 

examine is fund age, measured by the natural logarithm of years since the fund’s first offer 

date (from CRSP) or, if missing, since the fund’s inception date (from Morningstar). As is 

common in the mutual fund literature, we measure the riskiness of the mutual fund using 

its risk exposures to the factors identified by Fama and French (1995) and Carhart (1997).12 

Why do we expect these characteristics to affect how scale impacts performance? The-

oretically, a fund’s portfolio can be interpreted as a combination of investing in the passive 

benchmark and investing in the actively managed portfolio that is independent of the bench-

mark returns. Since the cost of managing benchmark exposure is relatively small, the costs 

of operating the fund are primarily determined by the amount of funds under active man-

agement. A reasonable hypothesis is funds that manage a greater proportion of their assets 

actively are likely to face larger trading costs and, thus, steeper decreasing returns to scale. 

These behaviors manifest themselves as higher volatility of benchmark-adjusted returns. 

Funds experiencing investor outflows might also exhibit steeper decreasing returns to 

scale. The reason is that funds experiencing redemptions are forced to decrease existing 

positions, which creates price pressure against these mutual funds.13 On the other hand, 

younger funds might exhibit milder decreasing returns to scale. This hypothesis is motivated 

by Chevalier and Ellison (1999), who find that younger managers hold less risky and more 

conventional portfolios because they are more likely to be fired for bad performance. In 

turn, it suggests that younger funds tend to be less aggressive in their trading, perhaps 

due to fund managers’ career concerns. Such incentives, if present, would mitigate the 

performance erosion associated with fund size. In addition, the division of labor within a 

fund might alleviate the negative impact of size on performance, so it is the fund’s assets 

under management on a per-manager basis that matters for capturing decreasing returns 

to scale. If so, a multi-manager fund would be able to deploy capital more easily and, 

consequently, exhibit milder decreasing returns to scale. 

Surely, the extent of decreasing returns to scale is likely to be affected by the stock 

characteristics chosen by the funds. For example, Carhart (1997) finds that funds with high 

upon request. 
12 We estimate these risk exposures by regressing the fund’s return on the factors over the prior sixty 

months. 
13 See Coval and Stafford (2007). 
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past performance repeat their abnormal performance not because fund managers successfully 

follow momentum strategies, but probably because some mutual funds accidentally end up 

holding last year’s winners. In turn, these funds capture short-term momentum effect in 

stock returns virtually without transaction costs. This logic suggests that momentum funds 

are likely to exhibit steeper decreasing returns to scale. In analyzing the dependence of 

returns to scale on fund characteristics, we thus control for the contribution of fund style 

and risk using the loadings on the four Fama-French-Carhart factors. 

We examine these hypotheses by running panel regressions of the scale effect computed dusing only fund i’s observations prior to month t − 1, DRSit, on the fund’s characteristics 

at the end of the previous month. Table 5 shows the estimation results.14 Panel A reports 

the results using the CAPM as the benchmark; Panel B uses Vanguard index funds as the dbenchmark. In both panels, we find significant relations between DRS and three character-

istics: volatility (column 1), the multi-manager indicator (column 2), and the redemption 

indicator (column 3). We also find that the slope on fund age is positive (column 4). This 

result is marginally significant for the CAPM (with t-statistic of 1.63 in Panel A of Table 5), 

but it is statistically significant using the Vanguard benchmark. These results lend strong 

support to the narrative from the previous paragraphs. 

When all four fund characteristics are added at the same time (column 5), the estimated 

slopes on volatility, multi-manager indicator, and redemption indicator are robust, indicating 

steeper decreasing returns to scale for higher-volatility funds, sole-manager funds, and funds 

experiencing outflows. Finally, fund age continues to enter with a positive slope, as in column 

4, and it now does so significantly regardless of how one defines the benchmark, indicating 

that decreasing returns to scale are more pronounced for old funds. To summarize, the same 

conclusions continue to hold when we jointly assess the dependence of returns to scale on 

fund characteristics. 

5.4 Characteristic-Based DRS 

We have estimated fund-specific b parameter based on a rolling estimation window. As noted 

earlier, estimating b fund by fund leads to imprecise estimates especially for funds with short dtrack records. Instead of using the coeffi cient estimates DRS as before, we use the estimates dfrom column 5 of Table 6 to obtain an economically interpretable component of DRS based 

on fund characteristics. This implementation choice assumes that all the funds with the 

same fund characteristics share the same b value. While ignoring variation might potentially 

lead to inaccuracy in quantifying fund-specific b, this method actually seems to increase the 

14 Standard errors of these regressions are two-way clustered by fund and time. 
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accuracy of the b estimate by dramatically reducing estimation errors. While 27% (30%) of dthe funds in our sample end up with negative DRS using the CAPM (Vanguard benchmark), 

less than 1% and 2% of their predicted values based on fund characteristics, denoted by gDRS, are negative using the CAPM and Vanguard benchmark, respectively. These results 

seem sensible since, theoretically, all mutual funds must face decreasing returns to scale in 

equilibrium. gFigure 3 shows how the cross-sectional distributions of DRSit varies over time. Panel A 

shows the results using the CAPM alpha, and Panel B shows the results when net alpha is 

computed using the Vanguard benchmark. While these distributions are naturally tighter dthan those of DRSit, they remain quite disperse, confirming the presence of considerable 

heterogeneity in DRS. Interestingly, the cross-sectional distributions over our sample period dare stable, net of time-series variation in median DRS, which themselves are similar to those 

in Figure 1. 

To assess the robustness of our results regarding the effect of returns to scale on capital dflows and sizes, we replace DRS and rerun the regressions in Tables 2 and 3, whose DRS by g 
results are tabulated in Tables 5 and 6, respectively. When we rerun our analysis in Table 2 

with characteristic-based DRS, we obtain similar and even stronger results indicating that gsteeper decreasing returns to scale attenuates flow sensitivity. Table 5 shows that DRS 

has significantly negative slopes throughout, but the coeffi cients’estimated values become 

substantially more negative than in Table 2: the estimated coeffi cients based on raw estimates 

are more than 7 times larger (compare the first three columns of Tables 2 and 5). 

The results from Table 3 are also very similar when capital flows are replaced with log real gsize: the slopes on DRS are significantly negative in Table 6, except for the first two columns 

in Panel B before controlling for fund fixed effects. These estimates of the size-DRS relation 

are likely to suffer from an omitted-variable bias; in equilibrium, the size of a fund is driven 

not only by its decreasing returns to scale technology, but also by its raw skill. Consistent gwith this argument, we find that the slopes on DRS turn significant (in the last two columns 

in Panel B) after controlling for fund fixed effects. Again, the coeffi cients’estimates values 

become substantially more negative than in Table 3: the estimated coeffi cients in regressions 

with fund fixed effects are typically more than 30 times larger. 

To summarize, when we conduct the analysis using cleaner measures of decreasing returns 

to scale, our conclusions on the effects of decreasing returns to scale on capital allocation donly become stronger. These results suggest that the attenuation bias due to using DRS to 

conduct the analysis is quite severe, so we assess the economic magnitude of the DRS-FSP grelation estimated using DRS in the following subsection. 
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5.4.1 Simulation Exercise 

In this section, we use our model to ask how much capital is allocated the way it is because 

of these differences in decreasing returns to scale. Specifically, we compute counterfactual 

fund sizes by assuming the investors believe a priori that returns are decreasing in scale at 

the same (average) rate for all funds. 

Two factors fully determine the magnitude of capital response to performance in a rational 

model – the degree of decreasing returns to scale, and the prior and posterior beliefs about 

managerial skill. This means that, for a given value of b in equation (15), the prior uncertainty 

about a, σ0, can be inferred from the flow-performance relation, as long as investors update 

their posteriors with the history of returns as Bayesians. 

We simulate benchmark-adjusted fund returns from equation (15). It is straightforward 

to show that the mean of investors’posteriors will satisfy the following recursion: 

σ2 

θit = θit−1 + i0 rit,
σ2 + tσ2 

i0 

where θi0 is the mean of the initial prior. Using (8), we compute fund size as follows: � � 
θit 

qit = exp . 
bi 

We begin by tying down the model parameters that can be set directly. Following Berk 

and Green (2004), we set Std(ε) = 20% per year, or 5.77% per month. Investors’prior on 

a fund’s ability is that θi is normally distributed with mean θ0 and standard deviation σ0
2 . 

Since investors are assumed to have rational expectations, this is also the distribution from 

which we draw each fund’s skill. We shall also assume that funds shut down the first time 

θit < θ, where we set θ = 0.15 These parameter values are summarized in the top panel of 

Table 3. It is straightforward to see that the only remaining parameters that we need to set 

for simulating data are b, θ0 and σ0. 

The empirical distribution of b is generally well approximated by a geometric distribution, 

from which we draw b randomly. In that case, assuming that θ0 is independent of b gives 

rise to distributions of fund size considerably more disperse than in our actual sample. 

Specifically, the simulated fund sizes tend to be too big for funds whose returns decrease in 

15 Intuitively, managers incur fixed costs of operation each period. These costs can be, for example, 
overhead, back-offi ce expenses, and the opportunity cost of the manager’s time. Managers will optimally 
choose to exit when they cannot cover their fixed costs. 
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scale more gradually, while the simulated fund sizes tend to be too small for those that exhibit 

steeper decreasing returns to scale. In turn, we model prior mean as a quadratic function 

of b. Our approach is to fit the parameters governing this function such that the simulated 

mean and standard deviation of log fund size essentially match the empirical benchmark 

values of 5.12 and 1.89, respectively.16 The prior mean as a function of b that we use in our 

simulation analysis is plotted in Panel A of Figure 4. 

Recall from Table 5 that steeper decreasing returns to scale imply less flow sensitivity to 

performance. For example, as shown in column 3 of Panel A, 

dF SP = 0.117 − 2.40 × DRS. (17) 

We consider five plausible values of b: 0.00357, 0.00531, 0.00770, 0.0106, and 0.0140. These 

values correspond to the 10th, 25th, 50th, 75th, and 90th percentiles of fund-specific b 

estimates, respectively. For each value of b, we construct 2,500 samples of simulated panel 

data for 100 funds over 100 months. In each sample, we estimate the flow-performance 

sensitivity by running the following regression: 

log (qit/qit−1) = c + γrit + υit. 

Given b, we set σ0 so that the median of the γ estimates across simulated samples matches 

the flow-performance relation implied by (17). Panel B of Table 7 contains the values of σ0 

for all five values of b that resulted from this process. Panel B of Figure 4 also plots the 

prior uncertainty as a function of b that we use in our simulation analysis. Column 3 shows 

the target flow-performance sensitivities computed using (17), while the resulting median of 

the γ estimates across simulated samples are reported in the last column of Panel B. Note 

that the relation between flow and performance in the model is a close match to the target 

relation. 

Matching the flow-performance sensitivities for funds at different levels of decreasing 

returns to scale requires the distribution of skills across these funds to be quite different 

than the skill distribution for funds whose returns decrease with fund size at a median rate. 

Panel C of Table 7 shows the median of the γ estimates across simulated samples for each b, 

but using the counterfactual value of σ0 = 0.162% per month instead of its calibrated value. 

16 Note that there generally exist multiple ways prior mean as a function of b for which the simulated 
mean and standard deviation of log fund size can match the empirical benchmark values. To pick a single 
function, we impose the additional constraint that the simulated mean of log fund size is decreasing in b. This 
constraint is motivated by empirical evidence presented earlier in Section 5.2: steeper decreasing returns to 
scale shrink fund size. 
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If we assume that prior uncertainty is constant across different levels of decreasing returns to 

scale, the model produces much smaller (larger) flow sensitivities to performance for funds 

that exhibit relatively steeper (flatter) decreasing returns to scale than those implied by (17). 

To quantitatively assess the role of heterogeneity in returns to scale in capital allocation, 

and to assess the economic magnitude of equation (17), we must construct a counterfac-

tual. We construct two counterfactuals. We construct the first counterfactual by assuming 

investors who learn about skill based on distorted beliefs that the fund exhibits median 

decreasing returns to scale and its skill is drawn from a normal distribution with the corre-

spondingly calibrated standard deviation. Specifically, the first set of counterfactual investors 

assume that b = 0.00770 and σ0 = 0.162% per month. We then construct the other counter-

factual by assuming investors who learn about skill based on distorted beliefs that the fund’s 

skill is drawn from a distribution corresponding to those facing median decreasing returns 

to scale, i.e., they assume that σ0 = 0.162% per month. The second set of counterfactual 

investors differ from the first set in that they know the true b. Then, updating investors’ 

beliefs with the history of its returns under the counterfactual assumptions, we compute 

what the size of the fund would have been. 

We construct 2,500 samples of simulated panel data for 10, 000 funds over 100 months. 

To simulate a given sample, we first draw each fund’s DRS bi randomly from a geometric 

distribution consistent with the distribution of fund-specific b estimates, while we draw the 

fund’s skill θi from a normal distribution with mean θ0 (bi) and standard deviation σ0 (bi). 

Next, we draw the random values of εit, building up the panel data of rit and qit. For 

every i and t, we compute the fund’s size under the counterfactual, qit
C , as detailed above. 

Finally, for each sample, we calculate the R-squared from a regression of log (qit) on log(qit
C ) 

to check the goodness of fit by counterfactuals. Under the first counterfactual, 1 minus the 

R-squared can be interpreted as the fraction of capital allocation explained by individual 

heterogeneity in decreasing returns to scale, coupled with difference between the empirical 

and model DRS-FSP relations. On the other hand, 1 minus the R-squared under the second 

counterfactual can be interpreted as the fraction of capital allocation explained solely by this 

difference between the empirical and model DRS-FSP relations. 

We report the results in Table 8. Panel A reports the results from our first counterfac-

tual; Panel B focuses on the second counterfactual. The first two rows in each panel show� � 
summary statistics of the coeffi cient estimates from the regression of log (qit) on log qit

C 

across simulated samples; the last row shows summary statistics of the R-squared from this 

regression across simulated samples. 

Even under the first counterfactual where investors believe that all funds are subject to 
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the same decreasing returns to scale technology and their skills are drawn from the same 

distribution, the counterfactually computed fund sizes explain about 51% of the variation 

of simulated fund sizes. Perhaps surprisingly, counterfactual sizes are negatively related to 

actual sizes. This is because a fund whose returns decrease in scale more steeply (gradually) 

is typically small (big) in equilibrium, but its counterfactual size tend to be bigger (smaller), 

as investors underestimate (overestimate) the effects of scale on performance under the first 

counterfactual. Thus, the counterfactuals ignoring heterogeneity in DRS are very different 

than the actual size. In this sense, we can interpret 1 minus the R-squared as a lower bound 

on the role of heterogeneity in returns to scale on capital allocation: at least 49% of the 

cross-sectional variance of fund sizes can be related to cross-sectional variation in decreasing 

returns to scale parameters, which is economically significant. 

Under the second counterfactual, investors account for heterogeneity in returns to scale. 

These counterfactual investors differ from the actual investors in that they ignore how the 

distribution of skill changes across different levels of b. Not only do the counterfactually 

computed fund sizes explain almost completely the variation in simulated fund sizes, they 

are quantitatively very similar to the actual sizes, i.e., log (dqit) = 0.0006 + 0.9999 log 
� 
qit
C 
� 
≈� � 

log qit
C . Thus, the uncalibrated version of our model with heterogeneous returns to scale 

does a great job at explaining capital allocation in the fully calibrated version. On the other 

hand, recall that conditional on higher (lower) b, the uncalibrated model produces much 

smaller (larger) flow sensitivities to performance (see Panel C of Table 7), indicating a much 

stronger DRS-FSP relation than in the data. In this sense, the DRS-FSP relation estimated 

in the uncalibrated model puts a theoretical upper bound on its magnitude to be found in 

the data, which allows us assess the economic magnitude of equation (17). Panel C of Table 

8 shows summary statistics of the DRS-FSP relations in both the fully calibrated model and 

the uncalibrated model. 

As expected, the DRS-FSP relation estimates in the fully calibrated model tend to be 

closely related to those in the data: −2.6, compared to −2.4 in the data (column 3 of Panel 

A of Table 5). On the other hand, the DRS-FSP relation estimates in the uncalibrated 

version tend to be substantially more negative, about −11.2. Thus, it appears that the 
magnitude of the DRS-FSP relation estimates from the data is much smaller than what the 

model predicts. While this confirms how severe the errors-in-variables problem, it might also 

suggest that our simple model does not fully capture how investors react to the effects of 

scale. For example, investors in our simple model know precisely the fund-specific effects of 

scale, but investors in the data might be learning about returns to scale, which would help 
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explain the small magnitude of empirical DRS-FSP relation estimates.17 We leave bridging 

this gap to future research. 

To summarize, Table 8 shows that a significant fraction of how capital is allocated in 

equilibrium is explained because of investor response to differences in decreasing returns to 

scale. While fund sizes in the data are quantitatively consistent with what our simple model 

predicts they should be, the magnitude of empirical DRS-FSP relation estimates are much 

smaller than were our simple model to hold perfectly in the data. 

5.5 DRS and Optimal Fund Size 

Thus far, we have used heterogeneity in decreasing returns to scale across funds and over 

time to test whether investors respond to the adverse effects of fund scale in making their 

capital allocation decisions. If investors update their beliefs about skill as in the model, their 

perception of optimal size ought to converge to true optimal size over a fund’s lifetime. This 

idea predicts that the sizes of older funds should be more closely related to their optimal sizes 

based on the model than those of younger funds are. In this section, we test this prediction 

and find empirical support for it. 

We estimate fund-specific a and b parameters to compute the optimal fund size qi 
∗ . Using 

the b estimates based on fund characteristics, the parameter a for fund i can be estimated 

as: 
Ti1 X� � bai = αbit + bbit log (qit−1) ,

Ti t=1 

where αbit is the risk-adjusted net return, and Ti is the number of observations for fund 

i. We exponentiate the average value of the ratios bai/bbit over a fund’s lifetime to get an 

estimate for qi 
∗ , qbi ∗ . Of course, if investors ignore heterogeneity in decreasing returns to scale, 

our measure of optimal fund size might be irrelevant. To allow for investor learning about 

optimal fund size based on a simple return model, we construct an alternative measure of 

optimal log fund size, assuming that fund size has the same effect on performance for all 

funds. Using a recursive demeaning procedure of Zhu (2018), we estimate the average fund-
18 level decreasing returns to scale parameter in our sample, denoted by bbRD2. Measuring 

performance using the CAPM, the estimated coeffi cient is statistically significant, indicating 

17 For formal models that relate capital allocation to learning about returns to scale, see Pastor and 
Stambaugh (2012) and Kim (2017). 
18 Pástor, Stambaugh, and Taylor (2015) analyze the nature of returns to scale by developing a recursive 

demeaning procedure. They find coeffi cients indicative of decreasing returns to scale both at the fund level 
and at the industry level, though only the latter is statistically significant. Zhu (2018) improves upon the 
empirical strategy in PST (by using more recent fund sizes as the instrument) and establishes strong evidence 
of fund-level diseconomies of scale. 
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that an 1% increase in fund size is associated with a decrease in the fund’s CAPM alpha of 

0.0042% per month, or 5.1 bp per year.19 We can then estimate the parameter a for fund i 

as: 
1 XTi � � baiRD2 = αbit + bbRD2 log (qit−1) . 
Ti t=1 � � 

∗ 20 The alternative measure of optimal fund size qbiRD2 is calculated as exp baiRD2/bbRD2 . 

To test the above prediction, we examine how the relation between log real AUM and our 

measures of optimal fund size depends on fund age. Specifically, we assign funds to one of 

three samples based on fund age: [0, 5], (5, 10], and > 10 years. In each age-sorted sample, 

we run panel regressions of fund i’s log real AUM in month t on the fund’s log optimal fund 
∗size estimate, log (qbi ). We report the results in the first three columns of Table 9.21 In Panel 

A, we report the results using the CAPM as the benchmark; in Panel B, we use Vanguard 

index funds as the benchmark. 

Across all age-sorted samples, the estimated coeffi cients on log (qbi ∗) are positive, with t-

statistics of more than 13 using the CAPM as the benchmark and t-statistics around 8 using 

the Vanguard benchmark. More importantly, the coeffi cient values increases over a typical 

fund’s lifetime, indicating that this positive relation between the fund’s size and its optimal 

size is stronger for older funds. As the fund ages, investors learn about its optimal size, so 

a fund’s optimal size has a larger effect that that fund’s equilibrium size if it is older. In 

addition, the R2 of the regressions are consistent. The R2 in the > 10 sample is the highest 

and is monotonically declining in samples of younger funds, which is not surprising since a 

reasonable measure of optimal size ought to explain more of the variation in fund size in 

samples of older funds. 

In columns 4 through 6, we run the multiple regression of log (qit) on both log (qbi ∗) and 

log (qb∗ ) in all three age-sorted samples. We consider two null hypotheses: that the slope iRD2 
∗ ∗coeffi cient on log (qbi ) is zero, and that the slope on log (qbiRD2). We find that the slope on 

our main measure of optimal fund size is positive and significant in the > 10 sample, but its 

significance disappears in samples of younger funds. The slope on the alternative measure is 

positive and significant across all age-sorted samples. 

The significantly positive coeffi cient on log (qbi ∗) in the multiple regression reveals in-

vestors do recognize that there is heterogeneity in decreasing returns to scale, conditional on 

19 Using Vanguard index funds as benchmarks, the coeffi cient estimate is again statistically significant, 
indicating that an 1% increase in fund size is associated with a decrease in fund performance of 0.0013%, or 
1.5 bp per year. 
20 To remove some implausible outliers, we winsorize these estimates at their 1st and 99th percentiles. 
21 Table 9 reports the double clustered (by fund and time) standard errors. 
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log (qb∗ ). On the other hand, a significantly larger coeffi cient on log (qb∗ ), and the much iRD2 iRD2 

larger R2 from the multiple regressions, suggests that this simpler version of optimal size 

better explains sizes in equilibrium. Our results offer the following narrative. Investors want 

to account for heterogeneity in decreasing returns to scale, but estimating b fund by fund 

leads to imprecise estimates especially for young funds, which renders the estimation error 

in qi 
∗ severe. To reduce the estimation error, investors seem to ignore fund-level variation 

in b for young funds, which allows them to use cross-sectional information in quantifying 
∗ ∗ ∗fund-specific qi . In particular, the investors only use the qbi estimate (together with qbiRD2) 

in making their capital allocation decisions when a fund grows old enough such that the 

estimation error in its optimal size based on fund-specific b is relatively modest. 

∗ ∗Consistent with this idea, we find that the log (qbiRD2) estimates are informative of log (qbi ). 
Figure 5 plots the main measure of optimal fund size log (qbi ∗) versus the alternative measure 

∗ ∗ ∗of optimal fund size log (qbiRD2). The circles represent pairs of (log (qbiRD2) , log (qbi )). The 
red line depicts the identity line. If the two measures of optimal fund size coincide, the 

red line would fit the data perfectly. We see that log (qbi ∗) tends to move nearly one-for-
∗ one with log (qbiRD2), so this estimator is a reasonable way to measure a fund’s optimal 

size that also circumvents the need to address the estimation error in decreasing returns to 

scale. However, the two quantities generally do differ: the R-squared from a cross-sectional 

regression of log (qbi ∗) on log (qb∗ ) is 0.55 using the CAPM and only 0.14 if we use the iRD2 

Vanguard benchmark. Therefore, qb∗ alone does not suffi ce in capturing optimal size, iRD2 

which leads investors to directly estimate qbi ∗ for funds with suffi ciently long track records. 

In short, the estimates of optimal size largely explains capital allocation to older funds. 

Both measures of optimal fund size matter, which is consistent with our narrative that in-

vestors account for not only the presence of decreasing returns to scale, but the heterogeneity 

of decreasing returns to scale. 

6 Conclusion 

The main contribution of this paper is to provide and verify predictions unique to a rational 

model for active management: the role of decreasing returns to scale in equilibrating the 

market for mutual funds. Not only do we find that steeper decreasing returns to scale 

attenuate flow sensitivity to performance, we also find that differences in decreasing returns to 

scale across funds are quantitatively important for explaining capital allocation in the market 

for mutual funds. Interestingly, the magnitude of empirical DRS-FSP relation estimates are 

much smaller than were our simple model to hold perfectly in the data. Bridging this gap 
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by using more accurate measurements of a fund’s returns to scale or flow sensitivity, or 

by considering new aspects of learning about the parameters governing fund returns, is an 

important area for future research. Overall, our results strongly support that, as a group, 

investors in the mutual fund market are sophisticated. 
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Table 1: Summary Statistics 

This table shows summary statistics for our sample of active equity mutual funds from 1979— 
2014. The unit of observation is the fund/month. All returns are in units of fraction per 
month. Net return is the return received by investors. Net alpha equals net return minus 
the return on benchmark portfolio, calculated using the CAPM or using a set of Vanguard 
index funds. Fund size is the fund’s total AUM aggregated across share classes, adjusted by 
inflation. The numbers are reported in Y2000 $ millions per month. Flow is the monthly 
change in the fund’s net assets not attributable to its return gains or losses. Turnover is in 
units of fraction per year. Volatility is the standard deviation of a fund’s alphas, calculated 
over the prior 1 year. Fund age is the number of years since the fund’s first offer date (from 
CRSP) or, if missing, since the fund’s inception date (from Morningstar). # of managers is dthe number of managers managing the fund in a given month. DRSit is the fund’s returns gto scale estimated as of the previous month-end; DRSit is the economically interpretable d dcomponent of DRSit based on fund characteristics. F SP it is the fund’s flow sensitivity to 
performance going forward. 

Panel A: Fund-Level Variables 
Percentiles 

# of obs. Mean Stdev. 25% 50% 75% 
Net return 424, 793 0.0079 0.0497 −0.0193 0.0123 0.0387 
Net alpha (CAPM Risk Adj.) 354, 427 0.0001 0.0209 −0.0105 −0.0002 0.0104 
Net alpha (Vanguard Benchmark) 420, 163 −0.0001 0.0155 −0.0083 −0.0001 0.0080 
Fund size (in 2000 $millions) 421, 701 995 4008 45 163 616 
Flows 421, 697 0.0049 0.0529 −0.0143 −0.0021 0.0145 
Turnover 402, 907 0.8317 0.7027 0.34 0.64 1.1 
Volatility (CAPM Risk Adj.) 322, 939 0.0188 0.0115 0.0106 0.0158 0.0239 
Volatility (Vanguard Benchmark) 387, 197 0.0142 0.0082 0.0086 0.0122 0.0177 
Fund age (years) 423, 871 13.44 13.38 4.58 9.28 16.77 
# of managers 404, 551 2.36 2.12 1 2 3 

Panel B: Estimated DRS and FSP 
Percentiles 

# of obs. Mean Stdev. 25% 50% 75% dDRS (CAPM Risk Adj.) 252, 434 0.0084 0.0165 −0.0002 0.0052 0.0137 gDRS (CAPM Risk Adj.) 247, 989 0.0084 0.0044 0.0053 0.0077 0.0106 dDRS (Vanguard Benchmark) 300, 963 0.0044 0.0109 −0.0008 0.0028 0.0081 gDRS (Vanguard Benchmark) 294, 815 0.0044 0.0024 0.0028 0.0043 0.0059 dF SP (CAPM Risk Adj.) 266, 376 0.1045 0.1910 0.0140 0.0756 0.1694 dF SP (Vanguard Benchmark) 293, 895 0.1487 0.2898 0.0171 0.1094 0.2499 
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Table 2: Relation Between DRS and FSP dThe dependent variable in each regression model is F SP it, the fund’s flow sensitivity to dperformance going forward. DRSit is the fund’s returns to scale estimated as of the previous 
month-end. The first three columns report the results using the raw estimates. The last two 
columns repeat the same analysis using percentile ranks for each variable across funds. In 
each version, from left to right, we gradually saturate with month and fund fixed effects to 
focus on variation coming from the market equilibrating mechanism beyond differences in 
sensitivity across funds and over time. Standard errors, two-way clustered by fund and by 
month, are in parentheses. 

Panel A: CAPM Risk Measure 

dDependent Variable: F SP it 

dDRSit −0.375 
(0.0938) 

−0.296 
(0.0941) 

−0.279 
(0.0898) 

−0.0424 
(0.0119) 

−0.0769 
(0.00984) 

Month FE 
Fund FE 

No 
No 

Yes 
No 

Yes 
Yes 

No 
No 

No 
Yes 

Observations 
Scale 

182691 
Raw est. 

182691 
Raw est. 

182676 
Raw est. 

182691 
Pctl. rank 

182676 
Pctl. rank 

Panel B: Vanguard Benchmark 

dDependent Variable: F SP it 

dDRSit −0.355 
(0.219) 

−0.414 
(0.223) 

−0.375 
(0.167) 

−0.0264 
(0.0102) 

−0.0597 
(0.00863) 

Month FE 
Fund FE 

No 
No 

Yes 
No 

Yes 
Yes 

No 
No 

No 
Yes 

Observations 
Scale 

221749 
Raw est. 

221749 
Raw est. 

221743 
Raw est. 

221749 
Pctl. rank 

221743 
Pctl. rank 
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Table 3: Relation Between DRS and Size 
The dependent variable in each regression model is the fund’s log real AUM in $ millions d(base year is 2000). DRSit is the fund’s returns to scale estimated as of the previous month-
end. Across the first three columns, we gradually saturate with month and fund fixed effects 
to focus on variation coming from the market equilibrating mechanism beyond differences 
in size across funds and over time. The last column repeats the same analysis by further 
including controls that are plausibly correlated with the fund size: family size, fund age, and 
turnover. Standard errors, two-way clustered by fund and by month, are in parentheses. 

Panel A: CAPM Risk Measure 

Dependent Variable: Log Real AUM 

dDRSit −3.86 
(1.65) 

−5.23 
(1.68) 

−1.30 
(0.558) 

−1.12 
(0.447) 

Month FE 
Fund FE 
Controls 

No 
No 
No 

Yes 
No 
No 

Yes 
Yes 
No 

Yes 
Yes 
Yes 

Observations 252420 252420 252411 247054 

Panel B: Vanguard Benchmark 

Dependent Variable: Log Real AUM 

dDRSit −3.97 
(2.20) 

−5.36 
(2.22) 

−2.34 
(0.755) 

−2.66 
(0.611) 

Month FE 
Fund FE 
Controls 

No 
No 
No 

Yes 
No 
No 

Yes 
Yes 
No 

Yes 
Yes 
Yes 

Observations 300947 300947 300936 294412 
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Table 4: Determinants of Returns to Scale dThe dependent variable in each regression model is DRSit, the fund’s scale effect computed 
using only its observations prior to the month. Std (Alpha) is the standard deviation of the 
fund’s alphas, which we calculate over the prior 1 year. 1 (MultiMgr) is a dummy variable 
that is equal to one if the fund is managed by many managers. 1 (Outflows) is an indicator 
for whether the fund experienced outflows over the prior 1 year. LogF undAge is the natural 
logarithm of years since the fund’s first offer date (from CRSP) or, if missing, since the fund’s 
inception date (from Morningstar). All models are estimated by OLS. Standard errors, two-
way clustered by fund and time, are in parentheses. 

Panel A: CAPM Risk Measure 

dDependent Variable: DRSit 

Std (Alpha) 

1 (MultiMgr) 

1 (Outflows) 

LogF undAge 

0.267 
(0.0239) 

−0.00164 
(0.000364) 

0.00217 
(0.000398) 

0.000602 
(0.000369) 

0.265 
(0.0244) 
−0.000998 
(0.000354) 
0.00214 
(0.000388) 
0.000785 
(0.000349) 

Controls Yes Yes Yes Yes Yes 

Observations 252362 248077 252434 252200 247989 

Panel B: Vanguard Benchmark 

dDependent Variable: DRSit 

Std (Alpha) 

1 (MultiMgr) 

1 (Outflows) 

LogF undAge 

0.154 
(0.0185) 

−0.00102 
(0.000234) 

0.00179 
(0.000242) 

0.00146 
(0.000225) 

0.147 
(0.0185) 
−0.000717 
(0.000225) 
0.00152 
(0.000225) 
0.00136 
(0.000210) 

Controls Yes Yes Yes Yes Yes 

Observations 300883 294922 
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Table 5: Relation Between DRS and FSP dThis table is the same as Table 2 but replaces DRSit by their predicted values based on fund gcharacteristics, DRSit. 

Panel A: CAPM Risk Measure 

dDependent Variable: F SP it 

gDRSit −2.95 
(0.568) 

−2.28 
(0.657) 

−2.37 
(0.596) 

−0.0536 
(0.0152) 

−0.0854 
(0.0148) 

Month FE 
Fund FE 

No 
No 

Yes 
No 

Yes 
Yes 

No 
No 

No 
Yes 

Observations 
Scale 

178624 
Raw est. 

178624 
Raw est. 

178612 
Raw est. 

178624 
Pctl. rank 

178612 
Pctl. rank 

Panel B: Vanguard Benchmark 

dDependent Variable: F SP it 

gDRSit −7.83 
(1.84) 

−6.88 
(1.89) 

−3.39 
(1.99) 

−0.0546 
(0.0133) 

−0.0404 
(0.0134) 

Month FE 
Fund FE 

No 
No 

Yes 
No 

Yes 
Yes 

No 
No 

No 
Yes 

Observations 
Scale 

216044 
Raw est. 

216044 
Raw est. 

216040 
Raw est. 

216044 
Pctl. rank 

216040 
Pctl. rank 
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Table 6: Relation Between DRS and Size dThis table is the same as Table 3 but replaces DRSit by their predicted values based on fund gcharacteristics, DRSit. 

Panel A: CAPM Risk Measure 

Dependent Variable: Log Real AUM 

dDRSit −44.1 
(8.10) 

−63.3 
(9.08) 

−49.0 
(3.83) 

−36.4 
(3.29) 

Month FE 
Fund FE 
Controls 

No 
No 
No 

Yes 
No 
No 

Yes 
Yes 
No 

Yes 
Yes 
Yes 

Observations 247975 247975 247965 243079 

Panel B: Vanguard Benchmark 

Dependent Variable: Log Real AUM 

dDRSit −16.7 
(14.9) 

−16.1 
(15.7) 

−88.7 
(7.10) 

−75.5 
(5.91) 

Month FE 
Fund FE 
Controls 

No 
No 
No 

Yes 
No 
No 

Yes 
Yes 
No 

Yes 
Yes 
Yes 

Observations 294,799 294,799 294,790 288,867 
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Table 7: Calibration 
The top panel summarizes the model parameters that we set directly and their parameter 
values. Then, for each value of b, we construct 2,500 samples of simulated panel data for 
100 funds over 100 months. In each sample, we estimate the flow-performance sensitivity γ. 
Given b, we set σ0 so that the median of the γ estimates across simulated samples matches 
the flow-performance relation implied by the regression model in column 3 of Panel A of dTable 5 (i.e., F SP = 0.117 − 2.40 × DRS). Panel B contains the values of σ0 that resulted 
from this process for five plausible values of b: 0.00357, 0.00531, 0.00770, 0.0106, and 0.0140. 
These values correspond to the 10th, 25th, 50th, 75th, and 90th percentiles of fund-specific b 
estimates, respectively. Column 3 shows the target flow-performance sensitivities computed dusing F SP = 0.117 − 2.40 × DRS, while the resulting median of the γ estimates across 
simulated samples are reported in the last column. Panel C repeats the same analysis for 
each b, but using the counterfactual value of σ0 = 0.162% per month. 

Panel A: Parameter Values 
Variable Symbol Value 
Return standard deviation σ 5.77% 
Exit mean θ 0% 

Panel B: Calibration 
Parameter set Calibrated parameter F SP 
Decreasing returns to scale (b) Prior standard deviation (σ0) Target Model 
0.00357 0.00116 0.109 0.110 
0.00531 0.00139 0.105 0.107 
0.00770 0.00162 0.099 0.099 
0.01065 0.00186 0.092 0.093 
0.01396 0.00204 0.084 0.084 

Panel C: Counterfactual 
Parameter set Counterfactual parameter F SP 
Decreasing returns to scale (b) Prior standard deviation (σ0) Target Model 
0.00357 0.00162 0.109 0.213 
0.00531 0.00162 0.105 0.143 
0.00770 0.00162 0.099 0.099 
0.01065 0.00162 0.092 0.071 
0.01396 0.00162 0.084 0.054 
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Table 8: Simulation 
We construct 2,500 samples of simulated panel data for 10,000 funds over 100 months. 
To simulate a given sample, we first draw each fund’s DRS bi randomly from a geometric 
distribution consistent with the distribution of fund-specific b estimates, while we draw the 
fund’s skill θi from a normal distribution with mean θ0 (bi) and standard deviation σ0 (bi). 
Next, we draw the random values of εit, building up the panel data of rit and qit. For every 
i and t, we compute the fund’s size under the counterfactual, qit

C , as detailed in Section 
5.4.1. Finally, for each sample, we calculate the R-squared from a regression of log (qit) on � � 
log qit

C to check the goodness of fit by counterfactuals. Panel A reports the results from our 
first counterfactual; Panel B focuses on the second counterfactual. Panel C shows summary 
statistics of the DRS-FSP relations in both the fully calibrated model and the uncalibrated 
model (i.e., using the counterfactual value of σ0 = 0.162% per month). 

Panel A: First Counterfactual� � 
log (qit) = κ + λ log qC 

it + ξit 
Percentiles 

Mean Stdev. 1% 25% 50% 75% 99% b 10.175 0.0023 10.169 10.173 10.175 10.176 10.180κ bλ −1.033 0.0005 −1.034 −1.033 −1.033 −1.033 −1.032 
R2 0.5067 0.0006 0.5053 0.5063 0.5068 0.5072 0.5081 

Panel B: Second Counterfactual� � 
log (qit) = κ + λ log qC 

it + ξit 
Percentiles 

Mean Stdev. 1% 25% 50% 75% 99% b 0.0006 −0.012 0.0005 0.0138κ 0.0055 −0.003 0.0042 bλ 0.9999 0.0011 0.9973 0.9992 0.9999 1.0006 1.0024 
R2 0.9999 0.0000 0.9998 0.9998 0.9999 0.9999 0.9999 

Panel C: Estimated DRS-FSP Relation 
Data −2.367 

Percentiles 
Mean Stdev. 25% 50% 75% 

Calibrated Model −2.643 0.0001 −2.644 −2.643 −2.643 
Uncalibrated Model −11.17 0.0001 −11.17 −11.17 −11.17 
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Table 9: Relation Between Optimal Size and Fund Size 

The dependent variable in each regression model is the fund’s log real AUM in $ millions 
(base year is 2000). qb∗ is an estimate for the optimal fund size; qb∗ is an alternative i iRD2 

measure of optimal fund size, assuming that fund size has the same effect on performance 
for all funds. We assign funds to one of three samples based on fund age: [0, 5], (5, 10], and 
> 10 years. Columns 1—3 show the results from running panel regressions of log real AUM on 
the fund’s log optimal fund size estimate in each age-sorted sample. The last three columns 

∗ ∗show the results from running multiple regressions of log (qit) on both log (qbi ) and log (qbiRD2) 
in all three age-sorted samples. The double clustered (by fund and time) standard errors are 
in parentheses. 

Panel A: CAPM Risk Measure 

Dependent Variable: Log Real AUM 

log (qbi ∗) 0.218 0.364 0.430 −0.0189 0.00599 0.0474 
(0.0158) (0.0208) (0.0330) (0.0148) (0.0110) (0.00942) 

log (qb∗ ) 0.497 0.762 0.916iRD2 

(0.0230) (0.0166) (0.0143) 

R2 0.146 0.354 0.428 0.308 0.665 0.824 

Observations 64718 105288 196233 64718 105288 196233 
Fund ages [0, 5] yr. (5, 10] yr. > 10 yr. [0, 5] yr. (5, 10] yr. > 10 yr. 

Panel B: Vanguard Benchmark 

Dependent Variable: Log Real AUM 

∗log (bq )i 
∗log (bq )iRD2

0.0546 
(0.00655) 

0.0745 
(0.00906) 

0.132 
(0.0166) 

0.0147 
(0.00472) 
0.273 
(0.0111) 

0.0126 
(0.00423) 
0.484 
(0.0113) 

0.0251 
(0.00514) 
0.692 
(0.0128) 

R2 0.0497 0.0721 0.134 0.248 0.510 0.699 

Observations 
Fund ages 

75870 
[0, 5] yr. 

110319 
(5, 10] yr. 

196467 
> 10 yr. 

75870 
[0, 5] yr. 

110319 
(5, 10] yr. 

196467 
> 10 yr. 
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Figure 1: Distribution of fund-specific decreasing returns to scale over time: The 
figure plots each month’s mean and percentiles of estimated size effect on performance across 
all funds operating during that month. Panel A estimates DRS using the CAPM alpha to 
measure fund performance. Panel B estimates DRS when we take Vanguard index funds as 
the alternative investment opportunity set. 
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Figure 2: Distribution of fund-specific flow sensitivity to performance over time: 
The figure plots each month’s mean and percentiles of estimated flow sensitivity to per-
formance across all funds operating during that month. Panel A estimates FSP using the 
CAPM alpha to measure fund performance. Panel B estimates FSP when net alpha is 
computed using Vanguard index funds as benchmark portfolios. 
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Figure 3: Cross-sectional distribution of characteristic-based DRS over time: This dfigure is the same as Figure 1 but measures size effect on performance not by DRSit, but by gtheir predicted values based on fund characteristics, DRSit. 
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Figure 4: Priors, conditional on the fund’s decreasing returns to scale parameter 
b: Panel A plots the prior mean (θ0) as a function of b that we use in our simulation 
analysis. Panel B plots the prior uncertainty (σ0) as a function of b that we use in our 
simulation analysis. Given b, σ0 is calibrated so that the median of the FSP (flow sensitivity 
to performance) estimates across simulated samples matches the flow-performance relation 
implied by the regression model in column 3 of Panel A of Table 5. Our approach is to 
calibrate the prior uncertainty for 100 disperse values of b, fitting a quadratic polynomial 
to the data, (b, σ0), that resulted from this process to extrapolate the prior uncertainty, 
conditional on other values of b, that we use in our simulation analysis. 
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Figure 5: Relation between two measures of optimal fund size: The figure plots the 
main measure of optimal fund size, log (qbi ∗), versus the alternative measure of optimal fund 

∗ ∗size, log (qbiRD2). We compute the optimal fund size, qbi , by estimating fund-specific a and b 
parameters. We construct an alternative measure of optimal log fund size, ignoring the fact 
that there is individual heterogeneity in decreasing returns to scale. The circles represent 
pairs of (log (qb∗ ) , log (qb∗)). The red line depicts the identity line. iRD2 i 
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	Abstract 
	We analyze the eﬀects of returns to scale on capital allocation decisions in the mutual fund market by exploiting individual heterogeneity in decreasing returns to scale across funds. We ﬁnd strong evidence that steeper decreasing returns to scale attenuate ﬂow sensitivity to performance and lead to smaller fund sizes. Our results are consistent with a rational model for active management. Using the model, we argue that a large fraction of capital allocation due to diﬀerences in decreasing returns to scale 
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	1 Introduction 
	1 Introduction 
	An important question in ﬁnancial economics is whether investors eﬃ ciently allocate capital across ﬁnancial assets. Under the standard neoclassical assumptions, investors compete with each other for positive present value opportunities, and by doing so, remove them in equilibrium. In the case of mutual funds, the literature has argued that decreasing returns to scale (DRS) play a key role in equilibrating the mutual fund market (Berk and Green (2004)). Because the percentage fee that mutual funds charge ch
	In this paper we investigate this equilibrating mechanism more closely. In particular, if the above-mentioned equilibration process is at work, we should expect to ﬁnd that the degree of decreasing returns to scale (DRS) can have implications for the ﬂow sensitivity to performance (FSP). While there is much evidence that an active fund’s ability to outperform its benchmark declines as its size increases,there is surprisingly little empirical work devoted to whether investors account for the adverse eﬀects o
	1 

	We address this important question by formally deriving and empirically testing what a rational model for active management implies about the relation between returns to scale and ﬂow sensitivity to performance. Using a theory model similar to that of Berk and Green (2004), we show that steeper decreasing returns to scale attenuates ﬂow sensitivity to performance. In the model, investors rationally interpret high performance as evidence of the manager’s superior skill, so good performance results in an inﬂo
	To test this theoretical insight, one needs a source of heterogeneity in decreasing re
	-

	See, for example, Chen et al. (2004), Yan (2008), Ferreira et al. (2013), and Zhu (2018). 
	1

	turns to scale. One also needs to observe investor reactions to this heterogeneity. Indeed, we demonstrate that there is a substantial amount of heterogeneity in DRS across individual funds, with correspondingly heterogeneous ﬂow sensitivity to performance across funds. Our approach can be interpreted as inferring how the subjective size-performance relation, perceived by investors in real time, is incorporated into the ﬂow-performance relation going forward. We ﬁnd that a steeper decreasing returns to scal
	-
	-

	One of the challenges in estimating the eﬀect of decreasing returns to scale on ﬂow sensitivity to performance is the estimation error in fund-speciﬁc DRS. As a result, the point estimates of the DRS-FSP relation using DRS estimates from simple fund-by-fund regressions are likely to suﬀer from an errors-in-variables bias. We alleviate the errors-in-variables bias by relating the heterogeneity in decreasing returns to scale to a set of fund characteristics. In particular, by regressing the fund-speciﬁc DRS e
	Next we turn to the economic signiﬁcance of our estimates. In particular, we assess how equilibrium fund size is aﬀected by the cross-sectional variation in decreasing returns to scale parameters. This exercise does require model assumptions. We calibrate a rational model in the spirit of Berk and Green (2004) to compute counterfactual fund sizes. We ﬁnd that at least 49% of the cross-sectional variance of fund sizes can be related to cross-sectional variation in decreasing returns to scale parameters. More
	Beyond implications for fund ﬂows, steeper decreasing returns to scale has implications for fund size in equilibrium. In the model, fund size in equilibrium is proportional to the ratio of perceived skill over diseconomies of scale, which predicts that, all else equal, the 
	Beyond implications for fund ﬂows, steeper decreasing returns to scale has implications for fund size in equilibrium. In the model, fund size in equilibrium is proportional to the ratio of perceived skill over diseconomies of scale, which predicts that, all else equal, the 
	decreasing returns to scale parameter should be lower for larger funds. This prediction is conﬁrmed in our empirical analysis. Moreover, if investors update their beliefs about skill as in the model, their perception of optimal size ought to converge to true optimal size as funds grow older. Consistent with this argument, we ﬁnd that estimates for the optimal size largely explains capital allocation across older funds in the data. We measure (log) optimal size by the average ratio of the usual net alpha tha

	Taken together, our results demonstrate that investors do account for the adverse eﬀects of fund scale in making their capital allocation decisions, and that the rational expectations equilibrium does a reasonable job of approximating the observed equilibrium in the mutual fund market. In contrast, mutual fund investors were generally deemed naive return chasers because fund ﬂows respond to past performance even though performance is not persistent.Furthermore, many papers in the mutual fund literature have
	2 
	3 


	2 Deﬁnitions and hypotheses 
	2 Deﬁnitions and hypotheses 
	To formally derive our hypothesis, we use the notation and setup presented in Berk and van Binsbergen (2016). Let qit denote assets under management (AUM) of fund i at time t and let θi denote a parameter that describes the skill of the manager of fund i. At time t, investors use the time t information set It to update their beliefs on θi resulting in the distribution function gt (θi) implying that the expectation of θi at time t is: 
	Z 
	it ≡ E [θi |It ]= θigt (θi) dθi. (1) 
	θ

	See Chevalier and Ellison (1997) and Sirri and Tufano (1998), among others. 
	2

	See Jensen (1968), Malkiel (1995), Gruber (1996), Fama and French (2010), and Del Guercio and Reuter (2013), among others. 
	3

	We assume throughout that gt (·) is not a degenerate distribution function. Let Rdenote the return in excess of the risk free rate earned by investors in fund i at time t. This return can be split up into the excess return of the manager’s benchmark, R, and a deviation from the benchmark εit: 
	n
	it 
	it
	B 

	R= R+ εit. (2) 
	n
	it 
	B
	it 

	Note that qit, Rand Rare elements of It. Let αit (q) denote investors’subjective expec
	n 
	B 
	-

	it it tation of εi,t+1 when investing in fund i that has size q between time t and t +1, and let it be equal to: 
	αit (q)= it − hi (q) , (3) 
	θ

	where hi (q) is a strictly increasing function of q that captures the decreasing returns to scale the manager faces, which can vary by fund. In equilibrium, the size of the fund qit adjusts to ensure that there are no positive net present value investment opportunities so αit (qit)=0 and 
	it = hi (qit) . (4) 
	θ

	At time t +1, the investor observes the manager’s return outperformance, εit+1, which is a θi. The conditional distribution function of εi,t+1 at time t, ft (εit+1), satisﬁes the following condition in equilibrium: 
	signal that is informative about 

	Z 
	E [εit+1 |It ]= εit+1ft (εit+1) dεit+1 = αit (qit)=0. (5) 
	In other words, the manager’s return outperformance can be expressed as follows: 
	εit+1 = θi − hi (qit)+ .it+1 
	= sit+1 − hi (qit) , 
	where sit+1 = θi +.it+1. Our hypothesis relies on the insight that good news, that is, high sit, θi and bad news, low sit, implies bad news about θi. The following lemma shows that this condition holds generally. That is, it is a strictly increasing function of sit. 
	implies good news about 
	θ

	Lemma 1 If the likelihood ratio ft (sit+1 |θi ) /ft (sit+1 |θ) is monotone in sit+1, increasing if θi >θand decreasing otherwise, 
	c
	i 
	c
	i 

	∂θit+1 
	∂θit+1 

	> 0. (6) 
	∂sit+1 
	Proof. See Milgrom (1981). 
	In addition, we assume that the costs that manager i faces in expanding the fund’s scale is given by: hi (q)= bih (q) , (7) 
	where bi > 0 is a parameter that captures the cross sectional variation in the fund’s returns to scale technology and h (q) is a strictly increasing function of q, which essentially determines the form of decreasing returns to scale technology that is common across all funds. Using 
	(7) to rewrite (4) now gives 
	.. 
	θit 
	θit 

	qit = h. (8) bi 
	−1 

	The following lemma shows how the size of the fund qit depends on the information in sit or the parameter bi. 
	Lemma 2 
	it 1 ∂it 
	∂q
	θ

	= (9) 
	∂sit ∂sit 
	bih
	0 
	(qit) 

	and 
	∂q
	∂q
	it h (qit) 

	= − . (10) 
	∂bi bih(qit) 
	0 

	Proof. First, note that εit does not contain information about managerial ability that is not already contained in sit. Because rescaling the fund’s returns to scale technology (i.e., bi) does not change the signal sit, we can conclude that 
	changing the parameter 

	∂θit 
	∂θit 

	=0. (11) 
	∂bi 
	Now diﬀerentiating (8) with respect to sit, and using the fact that these signals are indebi (i.e., ∂bi/∂sit =0), gives 
	-
	pendent of 

	Ł. 
	it 1 ∂it/bi 1 ∂it 1 ∂it 
	∂q
	θ
	θ
	θ

	= Ł. = Ł. = ,
	∂sit hit/bi ∂sit bihit/bi ∂sit ∂sit 
	0 
	θ
	0 
	θ
	bih
	0 
	(qit) 

	where the last equality follows from (8). Similarly, diﬀerentiate (8) with respect to bi, and use (11) to substitute for ∂it/∂bi in this expression. Appealing, again, to (8), gives (10). 
	θ

	i t Fit, that is, 
	Next, let the ﬂow of capital into mutual fund 
	at time 
	be denoted by 

	Fit+1 ≡ log (qit+1/qit) . 
	sit+1, 
	Diﬀerentiating this expression with respect to 

	1 11 
	∂Fit+1 
	dqit+1 
	∂θit+1 

	== > 0,∂sit+1 qit+1 dsit+1 qit+1 ∂sit+1 
	bih
	0 
	(qit+1) 

	where the second equality follows from (9) and the inequality follows from Lemma 1, so good (bad) performance results in an inﬂow (outﬂow) of funds. This result is one of the important insights from Berk and Green (2004). 
	Given the importance of returns to scale technology in determining the size of a fund, a natural question to ask is, what is the implication of steeper decreasing returns to scale for the ﬂow-performance relation? We answer this question by computing the derivative of the ﬂow-performance sensitivity with respect to bi: 
	... . 
	∂ ∂Fit+1 ∂ 11 ∂it+1 
	θ

	= 
	∂sit+1 qit+1 ∂sit+1 
	∂bi 
	∂bi 
	bih
	0 
	(qit+1) 
	∂qit+1

	qit+1h(qit+1)+ (bih(qit+1)+ qit+1bih(qit+1))
	0 
	0 
	00 

	∂bi 
	∂θit+1 

	= − 
	2

	2
	q(bih(qit+1)) ∂sit+1
	it+1 
	0 

	.. 
	qit+1h(qit+1) − h (qit+1) 1+ 
	0 
	q
	it+1
	h
	00
	(q
	it+1
	) 

	h(qit+1) 
	0
	∂θit+1 

	= − , (12) 
	2 

	q
	q
	2 
	∂s
	it+1

	it+1 iit+1
	(b
	h
	0 
	(q
	)) 

	where the ﬁrst equality follows from (11) because when it+1 is solely a function of the history 
	θ

	.. 
	∂ ∂θit+1
	∂ ∂θit+1

	of realized signals and is not a function of bi then =0 and the last equality follows 
	∂bi ∂sit+1 
	from (10). What (12) combined with Lemma 1 tells us is that steeper decreasing returns to scale must lead to a smaller ﬂow of funds response to performance if and only if 
	.. 
	qit+1h(qit+1) 
	00 

	qit+1h(qit+1) − h (qit+1) 1+ > 0. (13) h(qit+1) 
	0 
	0 

	Unfortunately, the left hand side of Equation 13 is not easy to sign without further assumptions. To assess whether this condition holds, we rely on the second-order approximation to the decreasing returns to scale technology: 
	-

	h (q) ' h+ hlog (q)+ hlog (q), (14) 
	0 
	1 
	2 
	2 

	where hi for i = {0, 1, 2} are the coeﬃ cients in the second-order approximation. This approximation nests exactly specifying the technology as logarithmic, most commonly considered in empirical studies, if we set h> 0 and h= h=0. Going forward, we set h=0. This assumption is without loss of generality, because we can rewrite the skill parameter as 
	where hi for i = {0, 1, 2} are the coeﬃ cients in the second-order approximation. This approximation nests exactly specifying the technology as logarithmic, most commonly considered in empirical studies, if we set h> 0 and h= h=0. Going forward, we set h=0. This assumption is without loss of generality, because we can rewrite the skill parameter as 
	-
	1 
	0 
	2 
	0 

	θ= θi − bih, which, in turn, renders h=0. The following proposition shows that, under approximation (14), condition (13) holds generally. That is, steeper decreasing returns to scale leads to a weaker ﬂow response to performance. We take this as our main hypothesis that we will take to the data. 
	0 
	i 
	0
	0 
	0 


	Proposition 3 Under approximation (14), the derivative of the ﬂow-performance sensitivity with respect to the decreasing returns to scale parameter is negative, that is, 
	.. 
	∂ ∂Fit+1 
	∂ ∂Fit+1 
	< 0. 

	∂sit+1 
	∂bi 

	Proof. Under approximation (14), the left-hand side of (13) is then given by: 
	!
	qit+1
	2h
	2
	−(h
	1
	+2h
	2 
	log(qit+1))
	Ł 
	2
	. 

	h+2hlog (qit+1) − hlog (qit+1)+ hlog (qit+1) 1+ 
	1 
	2 
	1 
	2 

	qit+1 
	h
	1
	+2h
	2 
	log(qit+1) 

	Ł . 2h
	2
	2 

	= h+2hlog (qit+1) − hlog (qit+1)+ hlog (qit+1) 
	= h+2hlog (qit+1) − hlog (qit+1)+ hlog (qit+1) 
	1 
	2 
	1 
	2 

	h+2hlog (qit+1)
	1 
	2 


	Ł. 
	(h+2hlog (qit+1))− 2 hlog (qit+1)+ hlog (qit+1)h
	1 
	2 
	2 
	1 
	2 
	2 
	2 

	= 
	h+2hlog (qit+1) + hlog (qit+1))+ hlog (qit+1)
	1 
	2 
	(h
	1 
	2 
	2 
	2
	2 
	2 

	= . 
	h+2hlog (qit+1) 
	1 
	2 

	The numerator of this expression is the sum of two squares, so it is positive. Note that the denominator can be rewritten as the product of qit+1 and h(qit+1) under the given approximation. Recall that h (q) is a strictly increasing function of q, reﬂecting the fact that all mutual funds must face decreasing returns to scale in equilibrium. Requiring that, under the approximation, h(qit+1) > 0 is also ensured, this means that the denominator is positive as well. It then follows immediately that condition (1
	0 
	-
	0 


	3 Data 
	3 Data 
	Our data come from CRSP and Morningstar. We require that funds appear in both CRSP and Morningstar, which allows us to validate data accuracy across the two databases. We merge CRSP and Morningstar based on funds’tickers, CUSIPs, and names. We then compare assets and returns across the two sources in an eﬀort to check the accuracy of each match following Berk and van Binsbergen (2015). We refer the readers to the data appendices of that paper for the details. Our mutual fund data set contains 3,066 actively
	-
	-

	We use Morningstar Category to categorize funds into nine groups corresponding to Morningstar’s 3×3 stylebox (large value, mid-cap growth, etc.). We also use keywords in the Primary Prospectus Benchmark variable in Morningstar to exclude bond funds, international funds, target funds, real estate funds, sector funds, and other non-equity funds. We drop funds identiﬁed by CRSP or Morningstar as index funds, in addition to funds whose name contains “index.”We also drop any fund observations before the fund’s (
	We now deﬁne the key variables used in our empirical analysis: fund performance, fund size, and fund ﬂows. Summary statistics are in Table 1. 
	3.1 Fund Performance 
	3.1 Fund Performance 
	We take two approaches to measuring fund performance. First, we use the standard risk-based approach. The recent literature ﬁnds that investors use the CAPM in making their capital allocation decisions (Berk and van Binsbergen (2016)), and hence we adopt the CAPM. In this case the risk adjustment Ris given by: 
	it 
	CAPM 

	CAPM 
	R

	MKTt,
	it it 
	= β

	where MKTt is the realized excess return on the market portfolio and βis the market beta of fund i. We estimate βby regressing the fund’s excess return to investors onto the market portfolio over the sixty months prior to month t. Because we need historical data of suﬃ cient length to produce reliable beta estimates, we require a fund to have at least two years of track record to estimate the fund’s betas from the rolling window regressions. 
	it 
	it 

	Second, we follow Berk and van Binsbergen (2015) by taking the set of passively managed index funds oﬀered by Vanguard as the alternative investment opportunity set.We then deﬁne the Vanguard benchmark as the closest portfolio in that set to the mutual fund. Let 
	4 

	R
	R
	j 

	denote the excess return earned by investors in the j’th Vanguard index fund at time t. Then the Vanguard benchmark return for fund i is given by: 
	t 

	n(t)
	X 
	Vanguard 
	β
	β
	j 
	R
	j

	R = ,
	t 

	it i j=1 
	where n (t) is the total number of index funds oﬀered by Vanguard at time t and βis obtained from the appropriate linear projection of active mutual fund i onto the set of Vanguard index 
	j
	i 

	See Table 1 of that paper for the list of Vanguard Index Funds used to calculate the Vanguard benchmark. 
	4

	funds. As pointed out by Berk and van Binsbergen (2015), by using Vanguard funds as the benchmark, we ensure that this alternative investment opportunity set was marketed and tradable at the time. Again, we require a minimum of 24 months of data to estimate β’s necessary for deﬁning the Vanguard benchmark for fund i. 
	j
	i 

	CAPM Vanguard 
	α

	Our measures of fund performance are then b and αb , the realized return for 
	it it 
	Vanguard CAPM 
	α

	the fund in month t less Rand R . The average of b is +1.5 bp per month, 
	CAPM 

	itit it 
	Vanguard 
	whereas the average αbis −1.4 bp per month. 
	it 


	3.2 Fund Size and Flows 
	3.2 Fund Size and Flows 
	We adjust all AUM numbers by inﬂation by expressing all numbers in January 1, 2000 dollars. Adjusting AUM by inﬂation reﬂects the notion that the fund’s real (rather than nominal) size is relevant for capturing decreasing returns to scale in active management. qit−1 in the previous section. There is considerable dispersion in real AUM: the inner-quartile range is from $45 million to $618 million. 
	That is, lagged real AUM corresponds to 

	We calculate ﬂows for fund i in month t as: 
	AUMit − AUMit−1 (1 + Rit)
	Fit = ,
	AUMit−1 (1 + Rit) 
	where AUMit is the (nominal) AUM of fund i at the end of month t, and Rit is the total return of fund i in month t.So ﬂows represent the change in the fund’s net assets not attributable to its return gains or losses. The ﬂow of fund data contains some implausible Fit is −0.2% per month. 
	5 
	outliers, so we winsorize ﬂows at its 1st and 99th percentiles. Median 



	4 Methodology 
	4 Methodology 
	Our analysis relies on a theoretical link between decreasing returns to scale and ﬂow sensitivity to returns. We discuss how we estimate each part in the following sections. 
	-

	Note that we use AUMit−1 (1 + Rit) in the denominator rather than AUMit−1, which is typically used in much of the existing literature on fund ﬂows. Unfortunately, this deﬁnition distorts the ﬂow for very large negative returns. For example, liquidition of a fund, i.e., AUMit =0, implies a ﬂow of − (1 + Rit). Our measure of the ﬂow of funds is equal to, and correctly so, −1 in this case. Regardless, our ﬁndings are unaﬀected by using the more common deﬁnition of the ﬂow. 
	5

	4.1 Fund-Speciﬁc Decreasing Returns to Scale (DRS) 
	4.1 Fund-Speciﬁc Decreasing Returns to Scale (DRS) 
	Empirically, we assume that the net alpha that manager i generates by actively managing money is given by: 
	αit = ai − bi log (qit−1)+ .it, (15) 
	where ai is the fund ﬁxed eﬀect, bi captures the size eﬀect, which can vary by fund, and qit−1 is the dollar size of the fund. 
	The simple regression model in equation (15) corresponds to the model in Section 2. This model further assumes the form of the fund’s decreasing returns to scale technology is logarithmic, which is often used to empirically analyze the nature of returns to scale due to severe skewness in dollar fund size. 
	We depart from much of the literature describing the size-performance relation by taking the size-performance relation to vary across funds. Indeed, the eﬀect of scale on a fund’s performance is unlikely to be constant across funds. For example, a fund’s returns should be decreasing in scale more steeply for those that have to invest in small and illiquid stocks, which are likely to face lower liquidity. 
	Given that it is not clear a priori why and how the size-performance relation depends on which fund characteristics, we prefer to estimate fund-speciﬁc a and b parameters in our main analysis. For each fund i at time t, we run the time-series regression of αiτ on log (qiτ −1) using sixty months of its data before time t. Estimating b fund by fund leads to imprecise estimates especially for funds with short track records, so we require at least three years of data to estimate fund-speciﬁc returns to scale of
	d
	The estimate of bi, DRS, is obtained from (15) using sixty months of the data for fund i prior to time t, where the alpha can be estimated under model m ∈{CAPM, Vanguard}. Intuitively, these estimates represent, for investors who use model m in making capital allocation decisions, their perception of the eﬀect of size on performance for fund i at time t based on information prior to time t. 
	it
	m 

	d
	Panel A of Figure 1 shows how the cross-sectional distribution of DRSit using the CAPM alpha varies over time. For each month in 1991 through 2014, the ﬁgure plots the average as well as the percentiles of the estimated fund-speciﬁc b parameters across all funds operating in that month. The plot shows considerable heterogeneity in decreasing returns to scale across funds. For example, the interquartile range is more than 3 times larger than the estimates’ cross-sectional median in a typical month; in fact, 
	Panel A of Figure 1 shows how the cross-sectional distribution of DRSit using the CAPM alpha varies over time. For each month in 1991 through 2014, the ﬁgure plots the average as well as the percentiles of the estimated fund-speciﬁc b parameters across all funds operating in that month. The plot shows considerable heterogeneity in decreasing returns to scale across funds. For example, the interquartile range is more than 3 times larger than the estimates’ cross-sectional median in a typical month; in fact, 
	points (bp) per month. This evidence suggests that the subjective size-performance relation, perceived by investors in real time, provides an ideal identifying variation in the extent of decreasing returns to scale. 

	d
	Panel B of Figure 1 shows the time evolution of DRSit when we take Vanguard index funds as the alternative investment opportunity set. Similar to our main measure in Panel A, the alternative measure exhibits a clear heterogeneity in diseconomies of scale across funds, though these estimates typically indicate milder decreasing returns to scale. 

	4.2 Fund-Speciﬁc Flow Sensitivity to Performance (FSP) 
	4.2 Fund-Speciﬁc Flow Sensitivity to Performance (FSP) 
	We estimate the fund-speciﬁc ﬂow sensitivities to past performance by estimating the following regression fund by fund: 
	-

	Fit = ci + γPit−1 + υit, (16) 
	i

	where Pit−1 is annual alpha for the year leading to month t − 1, computed by compounding the monthly alphas as follows: 
	t−1
	YŁ . 
	Pit−1 = 1+ R− R− 1.
	is
	n 
	B 

	is s=t−12 
	This regression is consistent with empirical evidence that investors do not respond immediately. For example, Berk and van Binsbergen (2016) and Barber, Huang, and Odean (2016) show that ﬂows respond to recent returns, as well as distant returns. Parameter γ> 0 captures the positive time-series relation between performance and fund ﬂows, which can vary by fund. Again, this is where we depart from much of the literature describing the ﬂow-performance relation. 
	-
	i 

	At time t, we calculate the fund’s ﬂow sensitivity to performance by estimating (16) 
	m 
	d 

	using its data over the subsequent 5 years. For fund i, let F SP be the estimated ﬂow-performance regression coeﬃ cient of that model, where the performance can be estimated under model m ∈{CAPM, Vanguard}. To avoid using imprecise estimates, we require these coeﬃ cient estimates to be obtained from at least three years of data. For the average fund, we observe that an increase of 1% in the monthly CAPM alpha is associated with an increase of 1.3% in monthly ﬂows next month. 
	it 

	d
	F SP it by plotting the average as well as the percentiles of the estimated ﬂow sensitivities to performance at each point of time. Panel A shows the results using the CAPM alpha, and Panel B shows the results when 
	F SP it by plotting the average as well as the percentiles of the estimated ﬂow sensitivities to performance at each point of time. Panel A shows the results using the CAPM alpha, and Panel B shows the results when 
	Figure 2 displays the evolution of the distribution of 

	net alpha is computed using Vanguard index funds as benchmark portfolios. Note that the results are very similar across the two panels, manifesting considerable heterogeneity in the ﬂow-performance relation across funds. More importantly, Figure 2 shows that while both 

	d
	the mean and median F SP it do not exhibit any obvious trend, these are certainly time varying. As the red dashed lines in the ﬁgure make clear, the distribution has remained roughly the same over our sample period, conditional on the median. 


	5 Results 
	5 Results 
	5.1 DRS and Flow Sensitivity to Performance 
	5.1 DRS and Flow Sensitivity to Performance 
	To investigate whether investors pay attention to the fund’s decreasing returns to scale technology in making their capital allocation decisions, we run panel regressions of fund i’s 
	d
	ﬂow sensitivity to performance going forward in month t, F SP it, on the fund’s returns to 
	d
	scale estimated as of the previous month-end, DRSit. We test the null hypothesis that the 
	6
	d 

	DRSit is zero. We consider two approaches: plain OLS and OLS with ﬁxed eﬀects (OLS FE), as detailed below. We report the results in Table 2.In Panel A, we report the results using the CAPM as the benchmark; in Panel B, we use Vanguard index funds as the benchmark. 
	slope on 
	7 

	We show results based on raw estimates in the ﬁrst three columns. Across these three columns, we gradually saturate with month and fund ﬁxed eﬀects to focus on variation coming from the market equilibrating mechanism beyond diﬀerences in sensitivity across funds and over time. The fund ﬁxed eﬀects absorb the cross-sectional variation in ﬂow/performance sensitivity that is due to diﬀerences in investor clientele across funds, while the time ﬁxed eﬀects soak up any variation in ﬂow/performance sensitivity due
	-
	-
	8 

	In the ﬁrst column, we include no ﬁxed eﬀects to include all variation in ﬂow sensitivities. 
	d
	Consistent with the main prediction of our model, the estimated coeﬃ cient on DRSit is 
	Surely, not only the independent variable, but the dependent variable are measured imprecisely. The measurement error in DRSit will bias the OLS estimator toward zero. While the measurement error in F SPit will not induce bias in the OLS coeﬃ cients, it will render their variance larger. For now, we do not worry, as the errors-in-variables problem will work against us from ﬁnding a statistically signiﬁcant relation that the model predicts. 
	6

	Table 2 reports the double clustered (by fund and time) t-statistics. 
	7

	See Berk and Tonks (2007). 
	8

	signiﬁcantly negative using the CAPM benchmark. This ﬁnding is unaﬀected by controlling for month and/or fund ﬁxed eﬀects. In the second column, we include month ﬁxed eﬀects. 
	d
	The third column further adds ﬁxed eﬀects for funds. The negative coeﬃ cients on DRSit in the CAPM-adjusted result are highly statistically signiﬁcant, with t-statistic that are 
	d
	smaller than −3. While the estimated coeﬃ cient on DRSit using the Vanguard benchmark in column 1 is marginally insigniﬁcant (with t-statistic of −1.6), including month and/or fund ﬁxed eﬀects in this case causes the t-statistics to grow substantially in magnitude. Thus, the estimates in the next two columns of Panel B are signiﬁcantly negative at the 10% and 5% conﬁdence levels, respectively. 
	The last two columns in Table 2 repeat this exercise with percentile ranks in each month 
	dd
	based on DRSit and F SP it. In this case, we do not use month ﬁxed eﬀects, as percentile ranks already soak up any time variation in the ﬂow-performance relation. In column 4 of 
	d
	DRSit is signiﬁcantly negative at the 1% conﬁdence level. We then allow for diﬀerences in clientele across funds by adding fund ﬁxed eﬀects (see column 5 of Table 2). Again, the evidence for our main prediction becomes only 
	each panel, the estimated plain OLS coeﬃ cient on 

	d
	DRSit roughly double, while the t-statistic more than double to −7.8 in Panel A and to −6.9 in Panel B. 
	stronger: the estimated coeﬃ cients on 

	To summarize, we ﬁnd a strong negative relation between decreasing returns to scale and ﬂow sensitivity to performance. This relation, which is statistically signiﬁcant, is consistent with the presence of investors rationally accounting for the adverse eﬀects of fund scale in making their capital allocation decisions. Unfortunately, these coeﬃ cient values are not easily interpretable in economic terms, as they represent the eﬀect of one regression coeﬃ cient on another regression coeﬃ cient. In Section 5.4

	5.2 DRS and Fund Size in Equilibrium 
	5.2 DRS and Fund Size in Equilibrium 
	While the main implication of our model is that steeper decreasing returns to scale attenuate ﬂow sensitivity to performance, another immediate implication is that steeper decreasing returns to scale shrink fund size. Recall that fund size in equilibrium is proportional to the ratio of perceived skill over diseconomies of scale (see equation (8)). Are large funds characterized by relatively ﬂat decreasing returns to scale technology? To address this question, we run panel regressions of fund i’s log real AU
	-
	-

	d
	estimated as of the previous month-end, DRSit. We test the null hypothesis that the slope 
	9
	d 

	on DRSit is zero. We consider two approaches: plain OLS and OLS with ﬁxed eﬀects (OLS FE), as detailed below. We report the results in Table 4.In Panel A, we report the results using the CAPM as the benchmark; in Panel B, we use Vanguard index funds as the benchmark. 
	10 

	Across the ﬁrst three columns, we gradually saturate with month and fund ﬁxed eﬀects to focus on variation coming from the market equilibrating mechanism beyond diﬀerences in size across funds and over time. The fund ﬁxed eﬀects absorb the cross-sectional variation in fund size due to diﬀerences in investors’perception of skill across funds, while the time ﬁxed eﬀects soak up any variation in fund size due to the arrival of news that commonly aﬀect fund performance. 
	In the ﬁrst column, we include no ﬁxed eﬀects to include all variation in fund sizes. 
	d
	Consistent with the above prediction of our model, the estimated coeﬃ cients on DRSit are signiﬁcantly negative. This ﬁnding is unaﬀected by using the CAPM or the Vanguard benchmark, as well as controlling for month and/or fund ﬁxed eﬀects. In the second column, we include month ﬁxed eﬀects. The third column further adds ﬁxed eﬀects for funds. The neg-
	-

	d
	ative coeﬃ cients on DRSit in the CAPM-adjusted result are highly statistically signiﬁcant, 
	d
	with t-statistic that are smaller than −2.33. The estimated coeﬃ cient on DRSit using the Vanguard benchmark in column 1 is marginally signiﬁcant, with t-statistic of −1.8. However, including month and/or fund ﬁxed eﬀects in this case cause the t-statistics to grow substantially in magnitude, so the estimate in column 2 (3) of Panel B are signiﬁcantly negative at the 5% (1%) conﬁdence level. Finally, the last column in Table 4 shows that these ﬁndings are unaﬀected by further including controls that are pla
	-


	5.3 Determinants of Returns to Scale 
	5.3 Determinants of Returns to Scale 
	In this subsection, we investigate what drives heterogeneity in returns to scale by analyzing how it depends on fund characteristics. We explore a number of characteristics that seem relevant a priori for heterogeneity in returns to scale: volatility, a multi-manager indicator, a redemption indicator, fund age, and risk 
	exposures.
	11 

	Again, the independent variable is measured imprecisely. The measurement error in DRSit will bias the OLS estimator toward zero. We will address the estimation error in scale eﬀects in Section 5.4. 
	9

	Table 4 reports the double clustered (by fund and time) t-statistics. 
	10 

	We also explore whether high-turnover funds exhibit steeper decreasing returns to scale and whether there is a weaker negative size-performance relation for funds with a signiﬁcant degree of international exposure in unreported results. We ﬁnd a negative relation between returns to scale and international exposure, although the relation is mostly statistically insigniﬁcant. The relation between returns to scale and turnover is usually insigniﬁcant and ﬂips to negative when we add other fund characteristics.
	11 

	The ﬁrst characteristic, Std (Alpha), is the standard deviation of a fund’s alphas, which we calculate over the prior 1 year. The second characteristic, 1(MultiMgr), is a dummy variable that is equal to one if the fund is managed by many managers. About 56% of our funds are multi-manager funds. The third characteristic, 1(Outflows), is an indicator for whether the fund experienced outﬂows over the prior 1 year. The fourth characteristic we examine is fund age, measured by the natural logarithm of years sinc
	and Carhart (1997).
	12 

	Why do we expect these characteristics to aﬀect how scale impacts performance? Theoretically, a fund’s portfolio can be interpreted as a combination of investing in the passive benchmark and investing in the actively managed portfolio that is independent of the benchmark returns. Since the cost of managing benchmark exposure is relatively small, the costs of operating the fund are primarily determined by the amount of funds under active management. A reasonable hypothesis is funds that manage a greater prop
	-
	-
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	Funds experiencing investor outﬂows might also exhibit steeper decreasing returns to scale. The reason is that funds experiencing redemptions are forced to decrease existing positions, which creates price pressure against these mutual On the other hand, younger funds might exhibit milder decreasing returns to scale. This hypothesis is motivated by Chevalier and Ellison (1999), who ﬁnd that younger managers hold less risky and more conventional portfolios because they are more likely to be ﬁred for bad perfo
	funds.
	13 

	Surely, the extent of decreasing returns to scale is likely to be aﬀected by the stock characteristics chosen by the funds. For example, Carhart (1997) ﬁnds that funds with high 
	upon request. 
	We estimate these risk exposures by regressing the fund’s return on the factors over the prior sixty months. 
	12 

	See Coval and Staﬀord (2007). 
	13 

	past performance repeat their abnormal performance not because fund managers successfully follow momentum strategies, but probably because some mutual funds accidentally end up holding last year’s winners. In turn, these funds capture short-term momentum eﬀect in stock returns virtually without transaction costs. This logic suggests that momentum funds are likely to exhibit steeper decreasing returns to scale. In analyzing the dependence of returns to scale on fund characteristics, we thus control for the c
	We examine these hypotheses by running panel regressions of the scale eﬀect computed 
	d
	it − 1DRSit, on the fund’s characteristics at the end of the previous month. Table 5 shows the estimation Panel A reports the results using the CAPM as the benchmark; Panel B uses Vanguard index funds as the 
	using only fund 
	’s observations prior to month 
	, 
	results.
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	d
	benchmark. In both panels, we ﬁnd signiﬁcant relations between DRS and three characteristics: volatility (column 1), the multi-manager indicator (column 2), and the redemption indicator (column 3). We also ﬁnd that the slope on fund age is positive (column 4). This result is marginally signiﬁcant for the CAPM (with t-statistic of 1.63 in Panel A of Table 5), but it is statistically signiﬁcant using the Vanguard benchmark. These results lend strong support to the narrative from the previous paragraphs. 
	-

	When all four fund characteristics are added at the same time (column 5), the estimated slopes on volatility, multi-manager indicator, and redemption indicator are robust, indicating steeper decreasing returns to scale for higher-volatility funds, sole-manager funds, and funds experiencing outﬂows. Finally, fund age continues to enter with a positive slope, as in column 4, and it now does so signiﬁcantly regardless of how one deﬁnes the benchmark, indicating that decreasing returns to scale are more pronoun

	5.4 Characteristic-Based DRS 
	5.4 Characteristic-Based DRS 
	We have estimated fund-speciﬁc b parameter based on a rolling estimation window. As noted earlier, estimating b fund by fund leads to imprecise estimates especially for funds with short 
	d
	track records. Instead of using the coeﬃ cient estimates DRS as before, we use the estimates 
	d
	from column 5 of Table 6 to obtain an economically interpretable component of DRS based on fund characteristics. This implementation choice assumes that all the funds with the same fund characteristics share the same b value. While ignoring variation might potentially lead to inaccuracy in quantifying fund-speciﬁc b, this method actually seems to increase the 
	e two-way clustered by fund and time. 
	14 
	Standard errors of these regressions ar

	accuracy of the b estimate by dramatically reducing estimation errors. While 27% (30%) of 
	d
	the funds in our sample end up with negative DRS using the CAPM (Vanguard benchmark), less than 1% and 2% of their predicted values based on fund characteristics, denoted by 
	g
	DRS, are negative using the CAPM and Vanguard benchmark, respectively. These results seem sensible since, theoretically, all mutual funds must face decreasing returns to scale in equilibrium. 
	g
	DRSit varies over time. Panel A shows the results using the CAPM alpha, and Panel B shows the results when net alpha is computed using the Vanguard benchmark. While these distributions are naturally tighter 
	Figure 3 shows how the cross-sectional distributions of 

	d
	than those of DRSit, they remain quite disperse, conﬁrming the presence of considerable heterogeneity in DRS. Interestingly, the cross-sectional distributions over our sample period 
	d
	are stable, net of time-series variation in median DRS, which themselves are similar to those in Figure 1. 
	To assess the robustness of our results regarding the eﬀect of returns to scale on capital 
	d
	ﬂows and sizes, we replace DRS and rerun the regressions in Tables 2 and 3, whose 
	DRS by results are tabulated in Tables 5 and 6, respectively. When we rerun our analysis in Table 2 with characteristic-based DRS, we obtain similar and even stronger results indicating that 
	g 

	g
	steeper decreasing returns to scale attenuates ﬂow sensitivity. Table 5 shows that DRS has signiﬁcantly negative slopes throughout, but the coeﬃ cients’estimated values become substantially more negative than in Table 2: the estimated coeﬃ cients based on raw estimates are more than 7 times larger (compare the ﬁrst three columns of Tables 2 and 5). 
	The results from Table 3 are also very similar when capital ﬂows are replaced with log real 
	g
	size: the slopes on DRS are signiﬁcantly negative in Table 6, except for the ﬁrst two columns in Panel B before controlling for fund ﬁxed eﬀects. These estimates of the size-DRS relation are likely to suﬀer from an omitted-variable bias; in equilibrium, the size of a fund is driven not only by its decreasing returns to scale technology, but also by its raw skill. Consistent 
	g
	with this argument, we ﬁnd that the slopes on DRS turn signiﬁcant (in the last two columns in Panel B) after controlling for fund ﬁxed eﬀects. Again, the coeﬃ cients’estimates values become substantially more negative than in Table 3: the estimated coeﬃ cients in regressions with fund ﬁxed eﬀects are typically more than 30 times larger. 
	To summarize, when we conduct the analysis using cleaner measures of decreasing returns to scale, our conclusions on the eﬀects of decreasing returns to scale on capital allocation 
	d
	only become stronger. These results suggest that the attenuation bias due to using DRS to conduct the analysis is quite severe, so we assess the economic magnitude of the DRS-FSP 
	g
	relation estimated using DRS in the following subsection. 
	5.4.1 Simulation Exercise 
	5.4.1 Simulation Exercise 
	In this section, we use our model to ask how much capital is allocated the way it is because of these diﬀerences in decreasing returns to scale. Speciﬁcally, we compute counterfactual fund sizes by assuming the investors believe a priori that returns are decreasing in scale at the same (average) rate for all funds. 
	Two factors fully determine the magnitude of capital response to performance in a rational model – the degree of decreasing returns to scale, and the prior and posterior beliefs about managerial skill. This means that, for a given value of b in equation (15), the prior uncertainty about a, σ, can be inferred from the ﬂow-performance relation, as long as investors update their posteriors with the history of returns as Bayesians. 
	0

	We simulate benchmark-adjusted fund returns from equation (15). It is straightforward to show that the mean of investors’posteriors will satisfy the following recursion: 
	θit = θit−1 + rit,
	σ
	2 
	i0 

	σ+ tσ
	2 
	2 
	i0 

	where θi0 is the mean of the initial prior. Using (8), we compute fund size as follows: 
	.. 
	θit 
	θit 

	qit = exp . bi 
	We begin by tying down the model parameters that can be set directly. Following Berk and Green (2004), we set Std(ε) = 20% per year, or 5.77% per month. Investors’prior on a fund’s ability is that θi is normally distributed with mean θand standard deviation σ. Since investors are assumed to have rational expectations, this is also the distribution from which we draw each fund’s skill. We shall also assume that funds shut down the ﬁrst time θit <, where we set =0.These parameter values are summarized in the 
	0 
	0
	2 
	θ
	θ 
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	The empirical distribution of b is generally well approximated by a geometric distribution, from which we draw b randomly. In that case, assuming that θis independent of b gives rise to distributions of fund size considerably more disperse than in our actual sample. Speciﬁcally, the simulated fund sizes tend to be too big for funds whose returns decrease in 
	0 

	s of operation each period. These costs can be, for example, overhead, back-oﬃ ce expenses, and the opportunity cost of the manager’s time. Managers will optimally choose to exit when they cannot cover their ﬁxed costs. 
	15 
	Intuitively, managers incur ﬁxed cost

	scale more gradually, while the simulated fund sizes tend to be too small for those that exhibit steeper decreasing returns to scale. In turn, we model prior mean as a quadratic function of b. Our approach is to ﬁt the parameters governing this function such that the simulated mean and standard deviation of log fund size essentially match the empirical benchmark values of 5.12 and 1.89, The prior mean as a function of b that we use in our simulation analysis is plotted in Panel A of Figure 4. 
	respectively.
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	Recall from Table 5 that steeper decreasing returns to scale imply less ﬂow sensitivity to performance. For example, as shown in column 3 of Panel A, 
	d
	F SP =0.117 − 2.40 × DRS. (17) 
	We consider ﬁve plausible values of b: 0.00357, 0.00531, 0.00770, 0.0106, and 0.0140. These values correspond to the 10th, 25th, 50th, 75th, and 90th percentiles of fund-speciﬁc b estimates, respectively. For each value of b, we construct 2,500 samples of simulated panel data for 100 funds over 100 months. In each sample, we estimate the ﬂow-performance sensitivity by running the following regression: 
	it/qit−1)= c + γrit + υit. 
	log (q

	Given b, we set σso that the median of the γ estimates across simulated samples matches the ﬂow-performance relation implied by (17). Panel B of Table 7 contains the values of σfor all ﬁve values of b that resulted from this process. Panel B of Figure 4 also plots the prior uncertainty as a function of b that we use in our simulation analysis. Column 3 shows the target ﬂow-performance sensitivities computed using (17), while the resulting median of the γ estimates across simulated samples are reported in th
	0 
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	Matching the ﬂow-performance sensitivities for funds at diﬀerent levels of decreasing returns to scale requires the distribution of skills across these funds to be quite diﬀerent than the skill distribution for funds whose returns decrease with fund size at a median rate. Panel C of Table 7 shows the median of the γ estimates across simulated samples for each b, but using the counterfactual value of σ=0.162% per month instead of its calibrated value. 
	0 

	le ways prior mean as a function of b for which the simulated mean and standard deviation of log fund size can match the empirical benchmark values. To pick a single function, we impose the additional constraint that the simulated mean of log fund size is decreasing in b. This constraint is motivated by empirical evidence presented earlier in Section 5.2: steeper decreasing returns to scale shrink fund size. 
	16 
	Note that there generally exist multip

	If we assume that prior uncertainty is constant across diﬀerent levels of decreasing returns to scale, the model produces much smaller (larger) ﬂow sensitivities to performance for funds that exhibit relatively steeper (ﬂatter) decreasing returns to scale than those implied by (17). 
	To quantitatively assess the role of heterogeneity in returns to scale in capital allocation, and to assess the economic magnitude of equation (17), we must construct a counterfactual. We construct two counterfactuals. We construct the ﬁrst counterfactual by assuming investors who learn about skill based on distorted beliefs that the fund exhibits median decreasing returns to scale and its skill is drawn from a normal distribution with the correspondingly calibrated standard deviation. Speciﬁcally, the ﬁrst
	-
	-
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	We construct 2,500 samples of simulated panel data for 10, 000 funds over 100 months. To simulate a given sample, we ﬁrst draw each fund’s DRS bi randomly from a geometric distribution consistent with the distribution of fund-speciﬁc b estimates, while we draw the fund’s skill θi from a normal distribution with mean θ(bi) and standard deviation σ(bi). εit, building up the panel data of rit and qit. For every i and t, we compute the fund’s size under the counterfactual, q, as detailed above. log (qit) on log
	0 
	0 
	Next, we draw the random values of 
	it
	C 
	Finally, for each sample, we calculate the R-squared from a regression of 
	it
	C 

	We report the results in Table 8. Panel A reports the results from our ﬁrst counterfactual; Panel B focuses on the second counterfactual. The ﬁrst two rows in each panel show
	-

	Ł. 
	summary statistics of the coeﬃ cient estimates from the regression of log (qit) on log qacross simulated samples; the last row shows summary statistics of the R-squared from this regression across simulated samples. 
	it
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	Even under the ﬁrst counterfactual where investors believe that all funds are subject to 
	the same decreasing returns to scale technology and their skills are drawn from the same distribution, the counterfactually computed fund sizes explain about 51% of the variation of simulated fund sizes. Perhaps surprisingly, counterfactual sizes are negatively related to actual sizes. This is because a fund whose returns decrease in scale more steeply (gradually) is typically small (big) in equilibrium, but its counterfactual size tend to be bigger (smaller), as investors underestimate (overestimate) the e
	Under the second counterfactual, investors account for heterogeneity in returns to scale. These counterfactual investors diﬀer from the actual investors in that they ignore how the distribution of skill changes across diﬀerent levels of b. Not only do the counterfactually computed fund sizes explain almost completely the variation in simulated fund sizes, they are quantitatively very similar to the actual sizes, i.e., log (qit)=0.0006 + 0.9999 log q≈
	d
	Ł 
	it
	C 
	. 

	Ł. 
	log q. Thus, the uncalibrated version of our model with heterogeneous returns to scale does a great job at explaining capital allocation in the fully calibrated version. On the other hand, recall that conditional on higher (lower) b, the uncalibrated model produces much smaller (larger) ﬂow sensitivities to performance (see Panel C of Table 7), indicating a much stronger DRS-FSP relation than in the data. In this sense, the DRS-FSP relation estimated in the uncalibrated model puts a theoretical upper bound 
	it
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	As expected, the DRS-FSP relation estimates in the fully calibrated model tend to be closely related to those in the data: −2.6, compared to −2.4 in the data (column 3 of Panel A of Table 5). On the other hand, the DRS-FSP relation estimates in the uncalibrated version tend to be substantially more negative, about −11.2. Thus, it appears that the magnitude of the DRS-FSP relation estimates from the data is much smaller than what the model predicts. While this conﬁrms how severe the errors-in-variables probl
	As expected, the DRS-FSP relation estimates in the fully calibrated model tend to be closely related to those in the data: −2.6, compared to −2.4 in the data (column 3 of Panel A of Table 5). On the other hand, the DRS-FSP relation estimates in the uncalibrated version tend to be substantially more negative, about −11.2. Thus, it appears that the magnitude of the DRS-FSP relation estimates from the data is much smaller than what the model predicts. While this conﬁrms how severe the errors-in-variables probl
	explain the small magnitude of empirical DRS-FSP relation We leave bridging 
	estimates.
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	this gap to future research. 
	To summarize, Table 8 shows that a signiﬁcant fraction of how capital is allocated in equilibrium is explained because of investor response to diﬀerences in decreasing returns to scale. While fund sizes in the data are quantitatively consistent with what our simple model predicts they should be, the magnitude of empirical DRS-FSP relation estimates are much smaller than were our simple model to hold perfectly in the data. 


	5.5 DRS and Optimal Fund Size 
	5.5 DRS and Optimal Fund Size 
	Thus far, we have used heterogeneity in decreasing returns to scale across funds and over time to test whether investors respond to the adverse eﬀects of fund scale in making their capital allocation decisions. If investors update their beliefs about skill as in the model, their perception of optimal size ought to converge to true optimal size over a fund’s lifetime. This idea predicts that the sizes of older funds should be more closely related to their optimal sizes based on the model than those of younge
	and ﬁnd empirical support for it. 
	We estimate fund-speciﬁc a and b parameters to compute the optimal fund size q. Using the b estimates based on fund characteristics, the parameter a for fund i can be estimated as: 
	i 
	∗ 

	Ti
	X. . 
	1 

	bai = αbit + bit log (qit−1) ,
	b
	Ti 

	t=1 
	where αbit is the risk-adjusted net return, and Ti is the number of observations for fund i. We exponentiate the average value of the ratios bai/bit over a fund’s lifetime to get an estimate for q, qb. Of course, if investors ignore heterogeneity in decreasing returns to scale, our measure of optimal fund size might be irrelevant. To allow for investor learning about optimal fund size based on a simple return model, we construct an alternative measure of optimal log fund size, assuming that fund size has th
	b
	i 
	∗ 
	i 
	∗ 
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	level decreasing returns to scale parameter in our sample, denoted by bRD2. Measuring 
	b

	performance using the CAPM, the estimated coeﬃ cient is statistically signiﬁcant, indicating 
	allocation to learning about returns to scale, see Pastor and Stambaugh (2012) and Kim (2017). 
	17 
	For formal models that relate capital 

	Pástor, Stambaugh, and Taylor (2015) analyze the nature of returns to scale by developing a recursive demeaning procedure. They ﬁnd coeﬃ cients indicative of decreasing returns to scale both at the fund level and at the industry level, though only the latter is statistically signiﬁcant. Zhu (2018) improves upon the empirical strategy in PST (by using more recent fund sizes as the instrument) and establishes strong evidence of fund-level diseconomies of scale. 
	18 

	that an 1% increase in fund size is associated with a decrease in the fund’s CAPM alpha of 0.0042% per month, or 5.1 bp per year.We can then estimate the parameter a for fund i as: 
	19 

	XTi .. 
	1 

	baiRD2 = αbit + bRD2 log (qit−1) . 
	b
	Ti 

	t=1 
	.. 
	∗ 20 
	The alternative measure of optimal fund size qbis calculated as exp baiRD2/bRD2 . 
	iRD2 
	b

	To test the above prediction, we examine how the relation between log real AUM and our measures of optimal fund size depends on fund age. Speciﬁcally, we assign funds to one of three samples based on fund age: [0, 5], (5, 10], and > 10 years. In each age-sorted sample, we run panel regressions of fund i’s log real AUM in month t on the fund’s log optimal fund 
	∗
	size estimate, log (qb). We report the results in the ﬁrst three columns of Table 9.In Panel A, we report the results using the CAPM as the benchmark; in Panel B, we use Vanguard index funds as the benchmark. 
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	Across all age-sorted samples, the estimated coeﬃ cients on log (qb) are positive, with t-statistics of more than 13 using the CAPM as the benchmark and t-statistics around 8 using the Vanguard benchmark. More importantly, the coeﬃ cient values increases over a typical fund’s lifetime, indicating that this positive relation between the fund’s size and its optimal size is stronger for older funds. As the fund ages, investors learn about its optimal size, so a fund’s optimal size has a larger eﬀect that that 
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	In columns 4 through 6, we run the multiple regression of log (qit) on both log (qb) and log (qb) in all three age-sorted samples. We consider two null hypotheses: that the slope 
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	∗
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	iRD2 
	∗∗
	coeﬃ cient on log (qb) is zero, and that the slope on log (qb). We ﬁnd that the slope on our main measure of optimal fund size is positive and signiﬁcant in the > 10 sample, but its signiﬁcance disappears in samples of younger funds. The slope on the alternative measure is positive and signiﬁcant across all age-sorted samples. 
	i 
	iRD2

	The signiﬁcantly positive coeﬃ cient on log (qb) in the multiple regression reveals investors do recognize that there is heterogeneity in decreasing returns to scale, conditional on 
	i 
	∗
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	marks, the coeﬃ cient estimate is again statistically signiﬁcant, indicating that an 1% increase in fund size is associated with a decrease in fund performance of 0.0013%, or 
	19 
	Using Vanguard index funds as bench

	1.5 bp per year. To remove some implausible outliers, we winsorize these estimates at their 1st and 99th percentiles. Table 9 reports the double clustered (by fund and time) standard errors. 
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	log (qb). On the other hand, a signiﬁcantly larger coeﬃ cient on log (qb), and the much 
	∗ 
	∗ 

	iRD2 iRD2 larger Rfrom the multiple regressions, suggests that this simpler version of optimal size better explains sizes in equilibrium. Our results oﬀer the following narrative. Investors want to account for heterogeneity in decreasing returns to scale, but estimating b fund by fund leads to imprecise estimates especially for young funds, which renders the estimation error in qsevere. To reduce the estimation error, investors seem to ignore fund-level variation in b for young funds, which allows them to u
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	∗ ∗∗
	fund-speciﬁc q. In particular, the investors only use the qbestimate (together with qb) in making their capital allocation decisions when a fund grows old enough such that the estimation error in its optimal size based on fund-speciﬁc b is relatively modest. 
	i 
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	iRD2

	∗∗
	Consistent with this idea, we ﬁnd that the log (qb) estimates are informative of log (qb). Figure 5 plots the main measure of optimal fund size log (qb) versus the alternative measure 
	iRD2
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	∗ ∗∗
	of optimal fund size log (qb). The circles represent pairs of (log (qb) , log (qb)). The red line depicts the identity line. If the two measures of optimal fund size coincide, the red line would ﬁt the data perfectly. We see that log (qb) tends to move nearly one-for
	iRD2
	iRD2
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	one with log (qb), so this estimator is a reasonable way to measure a fund’s optimal size that also circumvents the need to address the estimation error in decreasing returns to scale. However, the two quantities generally do diﬀer: the R-squared from a cross-sectional regression of log (qb) on log (qb) is 0.55 using the CAPM and only 0.14 if we use the 
	iRD2
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	Vanguard benchmark. Therefore, qbalone does not suﬃ ce in capturing optimal size, 
	∗ 

	iRD2 which leads investors to directly estimate qbfor funds with suﬃ ciently long track records. 
	i 
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	In short, the estimates of optimal size largely explains capital allocation to older funds. Both measures of optimal fund size matter, which is consistent with our narrative that investors account for not only the presence of decreasing returns to scale, but the heterogeneity of decreasing returns to scale. 
	-



	6 Conclusion 
	6 Conclusion 
	The main contribution of this paper is to provide and verify predictions unique to a rational model for active management: the role of decreasing returns to scale in equilibrating the market for mutual funds. Not only do we ﬁnd that steeper decreasing returns to scale attenuate ﬂow sensitivity to performance, we also ﬁnd that diﬀerences in decreasing returns to scale across funds are quantitatively important for explaining capital allocation in the market for mutual funds. Interestingly, the magnitude of em
	The main contribution of this paper is to provide and verify predictions unique to a rational model for active management: the role of decreasing returns to scale in equilibrating the market for mutual funds. Not only do we ﬁnd that steeper decreasing returns to scale attenuate ﬂow sensitivity to performance, we also ﬁnd that diﬀerences in decreasing returns to scale across funds are quantitatively important for explaining capital allocation in the market for mutual funds. Interestingly, the magnitude of em
	by using more accurate measurements of a fund’s returns to scale or ﬂow sensitivity, or by considering new aspects of learning about the parameters governing fund returns, is an important area for future research. Overall, our results strongly support that, as a group, investors in the mutual fund market are sophisticated. 
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	Table 1: Summary Statistics 
	This table shows summary statistics for our sample of active equity mutual funds from 1979— 2014. The unit of observation is the fund/month. All returns are in units of fraction per month. Net return is the return received by investors. Net alpha equals net return minus the return on benchmark portfolio, calculated using the CAPM or using a set of Vanguard index funds. Fund size is the fund’s total AUM aggregated across share classes, adjusted by inﬂation. The numbers are reported in Y2000 $ millions per mo
	d
	the number of managers managing the fund in a given month. DRSit is the fund’s returns 
	g
	to scale estimated as of the previous month-end; DRSit is the economically interpretable 
	dd
	DRSit based on fund characteristics. F SP it is the fund’s ﬂow sensitivity to performance going forward. 
	component of 

	Panel A: 
	Panel A: 
	Panel A: 
	Fund-Level Variables 

	TR
	Percentiles 

	# of obs. 
	# of obs. 
	Mean 
	Stdev. 
	25% 
	50% 
	75% 

	Net return 
	Net return 
	424, 793 
	0.0079 
	0.0497 
	−0.0193 
	0.0123 
	0.0387 

	Net alpha (CAPM Risk Adj.) 
	Net alpha (CAPM Risk Adj.) 
	354, 427 
	0.0001 
	0.0209 
	−0.0105 
	−0.0002 
	0.0104 

	Net alpha (Vanguard Benchmark) 
	Net alpha (Vanguard Benchmark) 
	420, 163 
	−0.0001 
	0.0155 
	−0.0083 
	−0.0001 
	0.0080 

	Fund size (in 2000 $millions) 
	Fund size (in 2000 $millions) 
	421, 701 
	995 
	4008 
	45 
	163 
	616 

	Flows 
	Flows 
	421, 697 
	0.0049 
	0.0529 
	−0.0143 
	−0.0021 
	0.0145 

	Turnover 
	Turnover 
	402, 907 
	0.8317 
	0.7027 
	0.34 
	0.64 
	1.1 

	Volatility (CAPM Risk Adj.) 
	Volatility (CAPM Risk Adj.) 
	322, 939 
	0.0188 
	0.0115 
	0.0106 
	0.0158 
	0.0239 

	Volatility (Vanguard Benchmark) 
	Volatility (Vanguard Benchmark) 
	387, 197 
	0.0142 
	0.0082 
	0.0086 
	0.0122 
	0.0177 

	Fund age (years) 
	Fund age (years) 
	423, 871 
	13.44 
	13.38 
	4.58 
	9.28 
	16.77 

	# of managers 
	# of managers 
	404, 551 
	2.36 
	2.12 
	1 
	2 
	3 

	TR
	Panel B: 
	Estimated DRS and FSP 

	TR
	Percentiles 

	TR
	# of obs. 
	Mean 
	Stdev. 
	25% 
	50% 
	75% 

	dDRS (CAPM Risk Adj.) 
	dDRS (CAPM Risk Adj.) 
	252, 434 
	0.0084 
	0.0165 
	−0.0002 
	0.0052 
	0.0137 

	gDRS (CAPM Risk Adj.) 
	gDRS (CAPM Risk Adj.) 
	247, 989 
	0.0084 
	0.0044 
	0.0053 
	0.0077 
	0.0106 

	dDRS (Vanguard Benchmark) 
	dDRS (Vanguard Benchmark) 
	300, 963 
	0.0044 
	0.0109 
	−0.0008 
	0.0028 
	0.0081 

	gDRS (Vanguard Benchmark) 
	gDRS (Vanguard Benchmark) 
	294, 815 
	0.0044 
	0.0024 
	0.0028 
	0.0043 
	0.0059 

	dF SP (CAPM Risk Adj.) 
	dF SP (CAPM Risk Adj.) 
	266, 376 
	0.1045 
	0.1910 
	0.0140 
	0.0756 
	0.1694 

	dF SP (Vanguard Benchmark) 
	dF SP (Vanguard Benchmark) 
	293, 895 
	0.1487 
	0.2898 
	0.0171 
	0.1094 
	0.2499 


	Table 2: Relation Between DRS and FSP 
	d
	The dependent variable in each regression model is F SP it, the fund’s ﬂow sensitivity to 
	d
	DRSit is the fund’s returns to scale estimated as of the previous month-end. The ﬁrst three columns report the results using the raw estimates. The last two columns repeat the same analysis using percentile ranks for each variable across funds. In each version, from left to right, we gradually saturate with month and fund ﬁxed eﬀects to focus on variation coming from the market equilibrating mechanism beyond diﬀerences in sensitivity across funds and over time. Standard errors, two-way clustered by fund and
	performance going forward. 

	Panel A: CAPM Risk Measure 
	d
	it 
	Dependent Variable: 
	F SP 

	dDRSit 
	dDRSit 
	dDRSit 
	−0.375 (0.0938) 
	−0.296 (0.0941) 
	−0.279 (0.0898) 
	−0.0424 (0.0119) 
	−0.0769 (0.00984) 

	Month FE Fund FE 
	Month FE Fund FE 
	No No 
	Yes No 
	Yes Yes 
	No No 
	No Yes 

	Observations Scale 
	Observations Scale 
	182691 Raw est. 
	182691 Raw est. 
	182676 Raw est. 
	182691 Pctl. rank 
	182676 Pctl. rank 


	Panel B: Vanguard Benchmark 
	d
	it 
	Dependent Variable: 
	F SP 

	dDRSit 
	dDRSit 
	dDRSit 
	−0.355 (0.219) 
	−0.414 (0.223) 
	−0.375 (0.167) 
	−0.0264 (0.0102) 
	−0.0597 (0.00863) 

	Month FE Fund FE 
	Month FE Fund FE 
	No No 
	Yes No 
	Yes Yes 
	No No 
	No Yes 

	Observations Scale 
	Observations Scale 
	221749 Raw est. 
	221749 Raw est. 
	221743 Raw est. 
	221749 Pctl. rank 
	221743 Pctl. rank 


	Table 3: Relation Between DRS and Size The dependent variable in each regression model is the fund’s log real AUM in $ millions 
	d
	DRSit is the fund’s returns to scale estimated as of the previous month-end. Across the ﬁrst three columns, we gradually saturate with month and fund ﬁxed eﬀects to focus on variation coming from the market equilibrating mechanism beyond diﬀerences in size across funds and over time. The last column repeats the same analysis by further including controls that are plausibly correlated with the fund size: family size, fund age, and turnover. Standard errors, two-way clustered by fund and by month, are in pare
	(base year is 2000). 

	Panel A: CAPM Risk Measure 
	Dependent Variable: Log Real AUM 
	dDRSit 
	dDRSit 
	dDRSit 
	−3.86 (1.65) 
	−5.23 (1.68) 
	−1.30 (0.558) 
	−1.12 (0.447) 

	Month FE Fund FE Controls 
	Month FE Fund FE Controls 
	No No No 
	Yes No No 
	Yes Yes No 
	Yes Yes Yes 

	Observations 
	Observations 
	252420 
	252420 
	252411 
	247054 


	Panel B: Vanguard Benchmark 
	Dependent Variable: Log Real AUM 
	dDRSit 
	dDRSit 
	dDRSit 
	−3.97 (2.20) 
	−5.36 (2.22) 
	−2.34 (0.755) 
	−2.66 (0.611) 

	Month FE Fund FE Controls 
	Month FE Fund FE Controls 
	No No No 
	Yes No No 
	Yes Yes No 
	Yes Yes Yes 

	Observations 
	Observations 
	300947 
	300947 
	300936 
	294412 


	Table 4: Determinants of Returns to Scale 
	d
	The dependent variable in each regression model is DRSit, the fund’s scale eﬀect computed using only its observations prior to the month. Std (Alpha) is the standard deviation of the fund’s alphas, which we calculate over the prior 1 year. 1(MultiMgr) is a dummy variable that is equal to one if the fund is managed by many managers. 1(Outflows) is an indicator for whether the fund experienced outﬂows over the prior 1 year. LogF undAge is the natural logarithm of years since the fund’s ﬁrst oﬀer date (from CR
	Panel A: CAPM Risk Measure 
	d
	it 
	Dependent Variable: 
	DRS

	Std (Alpha) 1 (MultiMgr) 1 (Outflows) LogF undAge 
	Std (Alpha) 1 (MultiMgr) 1 (Outflows) LogF undAge 
	Std (Alpha) 1 (MultiMgr) 1 (Outflows) LogF undAge 
	0.267 (0.0239) 
	−0.00164 (0.000364) 
	0.00217 (0.000398) 
	0.000602 (0.000369) 
	0.265 (0.0244) −0.000998 (0.000354) 0.00214 (0.000388) 0.000785 (0.000349) 

	Controls 
	Controls 
	Yes 
	Yes 
	Yes 
	Yes 
	Yes 

	Observations 
	Observations 
	252362 
	248077 
	252434 
	252200 
	247989 

	Panel B: Vanguard Benchmark 
	Panel B: Vanguard Benchmark 


	d
	it 
	it 
	Dependent Variable: 
	DRS

	Table 5: Relation Between DRS and FSP 

	Std (Alpha) 1 (MultiMgr) 1 (Outflows) LogF undAge 
	Std (Alpha) 1 (MultiMgr) 1 (Outflows) LogF undAge 
	Std (Alpha) 1 (MultiMgr) 1 (Outflows) LogF undAge 
	0.154 (0.0185) 
	−0.00102 (0.000234) 
	0.00179 (0.000242) 
	0.00146 (0.000225) 
	0.147 (0.0185) −0.000717 (0.000225) 0.00152 (0.000225) 0.00136 (0.000210) 

	Controls 
	Controls 
	Yes 
	Yes 
	Yes 
	Yes 
	Yes 

	Observations 
	Observations 
	300883 
	294922 
	31 
	300963 
	300666 
	294815 


	d
	This table is the same as Table 2 but replaces DRSit by their predicted values based on fund 
	g
	DRSit. 
	characteristics, 

	Panel A: CAPM Risk Measure 
	d
	it 
	Dependent Variable: 
	F SP 

	gDRSit 
	gDRSit 
	gDRSit 
	−2.95 (0.568) 
	−2.28 (0.657) 
	−2.37 (0.596) 
	−0.0536 (0.0152) 
	−0.0854 (0.0148) 

	Month FE Fund FE 
	Month FE Fund FE 
	No No 
	Yes No 
	Yes Yes 
	No No 
	No Yes 

	Observations Scale 
	Observations Scale 
	178624 Raw est. 
	178624 Raw est. 
	178612 Raw est. 
	178624 Pctl. rank 
	178612 Pctl. rank 


	Panel B: Vanguard Benchmark 
	d
	it 
	it 
	Dependent Variable: 
	F SP 

	Table 6: Relation Between DRS and Size 

	gDRSit 
	gDRSit 
	gDRSit 
	−7.83 (1.84) 
	−6.88 (1.89) 
	−3.39 (1.99) 
	−0.0546 (0.0133) 
	−0.0404 (0.0134) 

	Month FE Fund FE 
	Month FE Fund FE 
	No No 
	Yes No 
	Yes Yes 
	No No 
	No Yes 

	Observations Scale 
	Observations Scale 
	216044 Raw est. 
	216044 Raw est. 
	216040 Raw est. 
	216044 Pctl. rank 
	216040 Pctl. rank 


	d
	This table is the same as Table 3 but replaces DRSit by their predicted values based on fund 
	g
	DRSit. 
	characteristics, 

	Panel A: CAPM Risk Measure 
	Dependent Variable: Log Real AUM 
	dDRSit 
	dDRSit 
	dDRSit 
	−44.1 (8.10) 
	−63.3 (9.08) 
	−49.0 (3.83) 
	−36.4 (3.29) 

	Month FE Fund FE Controls 
	Month FE Fund FE Controls 
	No No No 
	Yes No No 
	Yes Yes No 
	Yes Yes Yes 

	Observations 
	Observations 
	247975 
	247975 
	247965 
	243079 


	Panel B: Vanguard Benchmark 
	Dependent Variable: Log Real AUM 
	dDRSit 
	dDRSit 
	dDRSit 
	−16.7 (14.9) 
	−16.1 (15.7) 
	−88.7 (7.10) 
	−75.5 (5.91) 

	Month FE Fund FE Controls 
	Month FE Fund FE Controls 
	No No No 
	Yes No No 
	Yes Yes No 
	Yes Yes Yes 

	Observations 
	Observations 
	294,799 
	294,799 
	294,790 
	288,867 


	Table 7: Calibration 
	The top panel summarizes the model parameters that we set directly and their parameter values. Then, for each value of b, we construct 2,500 samples of simulated panel data for 100 funds over 100 months. In each sample, we estimate the ﬂow-performance sensitivity γ. Given b, we set σso that the median of the γ estimates across simulated samples matches the ﬂow-performance relation implied by the regression model in column 3 of Panel A of 
	0 

	d
	Table 5 (i.e., F SP =0.117 − 2.40 × DRS). Panel B contains the values of σthat resulted from this process for ﬁve plausible values of b: 0.00357, 0.00531, 0.00770, 0.0106, and 0.0140. These values correspond to the 10th, 25th, 50th, 75th, and 90th percentiles of fund-speciﬁc b estimates, respectively. Column 3 shows the target ﬂow-performance sensitivities computed 
	0 

	d
	using F SP =0.117 − 2.40 × DRS, while the resulting median of the γ estimates across simulated samples are reported in the last column. Panel C repeats the same analysis for each b, but using the counterfactual value of σ=0.162% per month. 
	0 

	Panel A: 
	Panel A: 
	Panel A: 
	Parameter Values 

	Variable 
	Variable 
	Symbol 
	Value 

	Return standard deviation 
	Return standard deviation 
	σ 
	5.77% 

	Exit mean 
	Exit mean 
	θ 
	0% 

	Panel B: 
	Panel B: 
	Calibration 

	Parameter set 
	Parameter set 
	Calibrated parameter 
	F SP 

	Decreasing returns to scale (b) 
	Decreasing returns to scale (b) 
	Prior standard deviation (σ0) 
	Target 
	Model 

	0.00357 
	0.00357 
	0.00116 
	0.109 
	0.110 

	0.00531 
	0.00531 
	0.00139 
	0.105 
	0.107 

	0.00770 
	0.00770 
	0.00162 
	0.099 
	0.099 

	0.01065 
	0.01065 
	0.00186 
	0.092 
	0.093 

	0.01396 
	0.01396 
	0.00204 
	0.084 
	0.084 

	Panel C: 
	Panel C: 
	Counterfactual 

	Parameter set 
	Parameter set 
	Counterfactual parameter 
	F SP 

	Decreasing returns to scale (b) 
	Decreasing returns to scale (b) 
	Prior standard deviation (σ0) 
	Target 
	Model 

	0.00357 
	0.00357 
	0.00162 
	0.109 
	0.213 

	0.00531 
	0.00531 
	0.00162 
	0.105 
	0.143 

	0.00770 
	0.00770 
	0.00162 
	0.099 
	0.099 

	0.01065 
	0.01065 
	0.00162 
	0.092 
	0.071 

	0.01396 
	0.01396 
	0.00162 
	0.084 
	0.054 


	Table 8: Simulation We construct 2,500 samples of simulated panel data for 10,000 funds over 100 months. To simulate a given sample, we ﬁrst draw each fund’s DRS bi randomly from a geometric distribution consistent with the distribution of fund-speciﬁc b estimates, while we draw the fund’s skill θi from a normal distribution with mean θ(bi) and standard deviation σ(bi). εit, building up the panel data of rit and qit. For every i and t, we compute the fund’s size under the counterfactual, q, as detailed in S
	0 
	0 
	Next, we draw the random values of 
	it
	C 

	5.4.1. Finally, for each sample, we calculate the R-squared from a regression of log (qit) on 
	5.4.1. Finally, for each sample, we calculate the R-squared from a regression of log (qit) on 
	Ł. 
	log qto check the goodness of ﬁt by counterfactuals. Panel A reports the results from our ﬁrst counterfactual; Panel B focuses on the second counterfactual. Panel C shows summary statistics of the DRS-FSP relations in both the fully calibrated model and the uncalibrated σ=0.162% per month). 
	it
	C 
	model (i.e., using the counterfactual value of 
	0 

	Panel A: First Counterfactual
	Ł. 
	it)= κ + λ log q
	log (q
	C 

	it it 
	+ ξ

	Percentiles 
	Mean Stdev. 1% 25% 50% 75% 99% 
	b 10.175 0.0023 10.169 10.173 10.175 10.176 10.180
	κ 
	b
	λ −1.033 0.0005 −1.034 −1.033 −1.033 −1.033 −1.032 R0.5067 0.0006 0.5053 0.5063 0.5068 0.5072 0.5081 
	2 

	Panel B: Second Counterfactual
	Ł. 
	it)= κ + λ log q
	log (q
	C 

	it it 
	+ ξ

	Percentiles 
	Mean Stdev. 1% 25% 50% 75% 99% 
	b 0.0006 −0.012 0.0005 0.0138
	κ 0.0055 −0.003 0.0042 
	b
	λ 0.9999 0.0011 0.9973 0.9992 0.9999 1.0006 1.0024 R0.9999 0.0000 0.9998 0.9998 0.9999 0.9999 0.9999 
	2 

	Panel C: Estimated DRS-FSP Relation 
	Data −2.367 Percentiles Mean Stdev. 25% 50% 75% 
	Calibrated Model −2.643 0.0001 −2.644 −2.643 −2.643 Uncalibrated Model −11.17 0.0001 −11.17 −11.17 −11.17 
	Table 9: Relation Between Optimal Size and Fund Size 
	The dependent variable in each regression model is the fund’s log real AUM in $ millions (base year is 2000). qbis an estimate for the optimal fund size; qbis an alternative 
	∗ 
	∗ 

	i iRD2 
	measure of optimal fund size, assuming that fund size has the same eﬀect on performance for all funds. We assign funds to one of three samples based on fund age: [0, 5], (5, 10], and > 10 years. Columns 1—3 show the results from running panel regressions of log real AUM on the fund’s log optimal fund size estimate in each age-sorted sample. The last three columns 
	∗∗
	show the results from running multiple regressions of log (qit) on both log (qb) and log (qb) in all three age-sorted samples. The double clustered (by fund and time) standard errors are in parentheses. 
	i 
	iRD2

	Panel A: CAPM Risk Measure 
	Dependent Variable: Log Real AUM 
	log (qb)0.218 0.364 0.430 −0.0189 0.00599 0.0474 (0.0158) (0.0208) (0.0330) (0.0148) (0.0110) (0.00942) log (qb)0.497 0.762 0.916
	i 
	∗
	∗ 

	iRD2 
	(0.0230) (0.0166) (0.0143) 
	R0.146 0.354 0.428 0.308 0.665 0.824 
	2 

	Observations 64718 105288 196233 64718 105288 196233 Fund ages [0, 5] yr. (5, 10] yr. > 10 yr. [0, 5] yr. (5, 10] yr. > 10 yr. 
	Panel B: Vanguard Benchmark 
	Dependent Variable: Log Real AUM 
	∗log (bq )i ∗log (bq )iRD2
	∗log (bq )i ∗log (bq )iRD2
	∗log (bq )i ∗log (bq )iRD2
	0.0546 (0.00655) 
	0.0745 (0.00906) 
	0.132 (0.0166) 
	0.0147 (0.00472) 0.273 (0.0111) 
	0.0126 (0.00423) 0.484 (0.0113) 
	0.0251 (0.00514) 0.692 (0.0128) 

	R2 
	R2 
	0.0497 
	0.0721 
	0.134 
	0.248 
	0.510 
	0.699 

	Observations Fund ages 
	Observations Fund ages 
	75870 [0, 5] yr. 
	110319 (5, 10] yr. 
	196467 > 10 yr. 
	75870 [0, 5] yr. 
	110319 (5, 10] yr. 
	196467 > 10 yr. 


	Figure
	Figure 1: Distribution of fund-speciﬁc decreasing returns to scale over time: The ﬁgure plots each month’s mean and percentiles of estimated size eﬀect on performance across all funds operating during that month. Panel A estimates DRS using the CAPM alpha to measure fund performance. Panel B estimates DRS when we take Vanguard index funds as the alternative investment opportunity set. 
	Figure
	Figure 2: Distribution of fund-speciﬁc ﬂow sensitivity to performance over time: The ﬁgure plots each month’s mean and percentiles of estimated ﬂow sensitivity to performance across all funds operating during that month. Panel A estimates FSP using the CAPM alpha to measure fund performance. Panel B estimates FSP when net alpha is computed using Vanguard index funds as benchmark portfolios. 
	-

	Figure
	Figure 3: Cross-sectional distribution of characteristic-based DRS over time: This 
	d
	DRSit, but by 
	ﬁgure is the same as Figure 1 but measures size eﬀect on performance not by 

	g
	their predicted values based on fund characteristics, DRSit. 
	Figure
	Figure 4: Priors, conditional on the fund’s decreasing returns to scale parameter 
	b: Panel A plots the prior mean (θ) as a function of b that we use in our simulation σ) as a function of b that we use in our simulation analysis. Given b, σis calibrated so that the median of the FSP (ﬂow sensitivity to performance) estimates across simulated samples matches the ﬂow-performance relation implied by the regression model in column 3 of Panel A of Table 5. Our approach is to calibrate the prior uncertainty for 100 disperse values of b, ﬁtting a quadratic polynomial to the data, (b, σ), that re
	0
	analysis. Panel B plots the prior uncertainty (
	0
	0 
	0

	Figure
	Figure 5: Relation between two measures of optimal fund size: The ﬁgure plots the main measure of optimal fund size, log (qb), versus the alternative measure of optimal fund 
	i 
	∗

	∗∗
	∗∗

	size, log (qb). We compute the optimal fund size, qb, by estimating fund-speciﬁc a and b parameters. We construct an alternative measure of optimal log fund size, ignoring the fact that there is individual heterogeneity in decreasing returns to scale. The circles represent pairs of (log (qb) , log (qb)). The red line depicts the identity line. 
	iRD2
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	∗ 
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	iRD2 i 





