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Abstract

We analyze the effects of returns to scale on capital allocation decisions in the
mutual fund market by exploiting individual heterogeneity in decreasing returns to
scale across funds. We find strong evidence that steeper decreasing returns to scale
attenuate flow sensitivity to performance and lead to smaller fund sizes. Our results
are consistent with a rational model for active management. Using the model, we argue
that a large fraction of capital allocation due to differences in decreasing returns to

scale can be plausibly attributed to investors anticipating these effects of scale.

*We thank seminar participants at Emory University for their comments and suggestions.



1 Introduction

An important question in financial economics is whether investors efficiently allocate capital
across financial assets. Under the standard neoclassical assumptions, investors compete
with each other for positive present value opportunities, and by doing so, remove them in
equilibrium. In the case of mutual funds, the literature has argued that decreasing returns
to scale (DRS) play a key role in equilibrating the mutual fund market (Berk and Green
(2004)). Because the percentage fee that mutual funds charge changes infrequently, the bulk
of the equilibration process operates through the size (or Assets Under Management (AUM))
of the fund. When good news about a mutual fund arrives, rational Bayesian updating will
lead investors to view the fund as a positive Net Present Value (NPV) buying opportunity
at its current size. In response, flows will go to that fund. As the fund grows, the manager
of the fund finds it increasingly harder to put the new inflows to good use, leading to a
deterioration of the performance of the fund. The flows into the fund will stop when the
fund is no longer a positive NPV investment, and the fund’s abnormal return to investors

has reverted back to zero.

In this paper we investigate this equilibrating mechanism more closely. In particular,
if the above-mentioned equilibration process is at work, we should expect to find that the
degree of decreasing returns to scale (DRS) can have implications for the flow sensitivity to
performance (FSP). While there is much evidence that an active fund’s ability to outperform
its benchmark declines as its size increases,! there is surprisingly little empirical work devoted
to whether investors account for the adverse effects of fund scale in making their capital

allocation decisions.

We address this important question by formally deriving and empirically testing what a
rational model for active management implies about the relation between returns to scale
and flow sensitivity to performance. Using a theory model similar to that of Berk and
Green (2004), we show that steeper decreasing returns to scale attenuates flow sensitivity
to performance. In the model, investors rationally interpret high performance as evidence
of the manager’s superior skill, so good performance results in an inflow of funds. More
importantly, the magnitude of the capital response is primarily driven by the extent of
decreasing returns to scale. As a fund’s returns decrease in scale more steeply, the positive
net alpha is competed away with a smaller amount of capital inflows, making flows less

sensitive to performance.

To test this theoretical insight, one needs a source of heterogeneity in decreasing re-

ISee, for example, Chen et al. (2004), Yan (2008), Ferreira et al. (2013), and Zhu (2018).



turns to scale. One also needs to observe investor reactions to this heterogeneity. Indeed,
we demonstrate that there is a substantial amount of heterogeneity in DRS across individ-
ual funds, with correspondingly heterogeneous flow sensitivity to performance across funds.
Our approach can be interpreted as inferring how the subjective size-performance relation,
perceived by investors in real time, is incorporated into the flow-performance relation go-
ing forward. We find that a steeper decreasing returns to scale parameter predicts a lower

sensitivity of flows to performance, consistent with the main prediction of our model.

One of the challenges in estimating the effect of decreasing returns to scale on flow
sensitivity to performance is the estimation error in fund-specific DRS. As a result, the point
estimates of the DRS-FSP relation using DRS estimates from simple fund-by-fund regressions
are likely to suffer from an errors-in-variables bias. We alleviate the errors-in-variables bias
by relating the heterogeneity in decreasing returns to scale to a set of fund characteristics. In
particular, by regressing the fund-specific DRS estimates on these characteristics, we obtain
fitted values that we use as a more robust way of obtaining cross-sectional variation. We find
the degree of DRS is stronger for higher-volatility funds, sole-managed funds, older funds, as
well as funds that have experienced outflows in the past year. Next, we show that while the
statistical significance of the DRS-FSP relation is unaffected by using characteristic-based
DRS, the point estimates become substantially more negative, suggesting that the projection

onto characteristics indeed has alleviated the errors-in-variables problem.

Next we turn to the economic significance of our estimates. In particular, we assess how
equilibrium fund size is affected by the cross-sectional variation in decreasing returns to scale
parameters. This exercise does require model assumptions. We calibrate a rational model
in the spirit of Berk and Green (2004) to compute counterfactual fund sizes. We find that
at least 49% of the cross-sectional variance of fund sizes can be related to cross-sectional
variation in decreasing returns to scale parameters. More importantly, the uncalibrated
version of our model with heterogeneous returns to scale can quantitatively reproduce capital
allocation in the version calibrated to the empirical DRS-FSP relationship. We also find
that the DRS-FSP relation estimates in the uncalibrated version tend to be substantially
more negative than those from the data. Thus, it appears that investors in the data face a
substantially harder learning problem than in our simple model, though we leave identifying
additional aspects of learning to explain this gap as a question to be explored by future

research.

Beyond implications for fund flows, steeper decreasing returns to scale has implications
for fund size in equilibrium. In the model, fund size in equilibrium is proportional to the

ratio of perceived skill over diseconomies of scale, which predicts that, all else equal, the



decreasing returns to scale parameter should be lower for larger funds. This prediction is
confirmed in our empirical analysis. Moreover, if investors update their beliefs about skill
as in the model, their perception of optimal size ought to converge to true optimal size as
funds grow older. Consistent with this argument, we find that estimates for the optimal size
largely explains capital allocation across older funds in the data. We measure (log) optimal
size by the average ratio of the usual net alpha that is adjusted for returns to scale over
the characteristic-based DRS. We show that older fund’s size continues to be significantly
related to our measure of its optimal size even when we control for an alternative measure
of optimal size that assumes fund scale has the same effect on performance for all funds.
Again, investors seem to account not only for the presence of decreasing returns to scale,

but also for the heterogeneity of decreasing returns to scale across funds.

Taken together, our results demonstrate that investors do account for the adverse effects
of fund scale in making their capital allocation decisions, and that the rational expectations
equilibrium does a reasonable job of approximating the observed equilibrium in the mutual
fund market. In contrast, mutual fund investors were generally deemed naive return chasers
because fund flows respond to past performance even though performance is not persistent.?
Furthermore, many papers in the mutual fund literature have documented that mutual fund
returns show little evidence of outperformance.®> While these findings led many researchers
to question the rationality of mutual fund investors, Berk and Green (2004) argue that they
are consistent with a model of how competition between rational investors determines the
net alpha in equilibrium. We contribute to this debate by presenting findings that are hard

to reconcile with anything other than the existence of rational fund flows.

2 Definitions and hypotheses

To formally derive our hypothesis, we use the notation and setup presented in Berk and
van Binsbergen (2016). Let ¢;; denote assets under management (AUM) of fund i at time
t and let 0; denote a parameter that describes the skill of the manager of fund i. At time
t, investors use the time ¢ information set I; to update their beliefs on 6; resulting in the

distribution function g; (6;) implying that the expectation of 6; at time ¢ is:

by = E[0;|1,] = /(@-gt (0,) db. (1)

2See Chevalier and Ellison (1997) and Sirri and Tufano (1998), among others.
3See Jensen (1968), Malkiel (1995), Gruber (1996), Fama and French (2010), and Del Guercio and Reuter
(2013), among others.




We assume throughout that g; (-) is not a degenerate distribution function. Let R, denote
the return in excess of the risk free rate earned by investors in fund ¢ at time ¢. This return
can be split up into the excess return of the manager’s benchmark, RZ, and a deviation from
the benchmark e;;:

Rl = RE +¢,. (2)

Note that ¢, R and RE are elements of I;. Let a;; (¢) denote investors’ subjective expec-
tation of €;,41 when investing in fund ¢ that has size ¢ between time ¢ and ¢ + 1, and let it

be equal to:

it (q) = 0t — i (), (3)
where h; (q) is a strictly increasing function of ¢ that captures the decreasing returns to scale
the manager faces, which can vary by fund. In equilibrium, the size of the fund ¢;; adjusts to
ensure that there are no positive net present value investment opportunities so a; (gi;) = 0

and

Oy = h; (C]z‘t) . (4)

At time ¢ 4 1, the investor observes the manager’s return outperformance, ;,1, which is a
signal that is informative about ;. The conditional distribution function of €;;,, at time ¢,

fi (€i41), satisfies the following condition in equilibrium:

ey [It] = /(&‘tﬂft (€it+1) deirr1 = it (qie) = 0. (5)
In other words, the manager’s return outperformance can be expressed as follows:

Eitr1 = Oi—hi(qit) + €1
= Sir1 — Ny (%'t) )

where s;;11 = 0; +€;41. Our hypothesis relies on the insight that good news, that is, high s;;,
implies good news about 6; and bad news, low s;;, implies bad news about ;. The following
lemma shows that this condition holds generally. That is, 0; is a strictly increasing function

of Sit-

Lemma 1 If the likelihood ratio f; (Si1110:) /fi (Sits1 |05) is monotone in Sy.1, increasing
if 0; > 0; and decreasing otherwise,
00;
L 0. (6)
08it11

Proof. See Milgrom (1981). m



In addition, we assume that the costs that manager ¢ faces in expanding the fund’s scale
is given by:
hi(q) = bih (q), (7)

where b; > 0 is a parameter that captures the cross sectional variation in the fund’s returns to
scale technology and h (q) is a strictly increasing function of ¢, which essentially determines

the form of decreasing returns to scale technology that is common across all funds. Using

w=n (3) ( 8

The following lemma shows how the size of the fund ¢;; depends on the information in s;; or

(7) to rewrite (4) now gives

the parameter b;.

Lemma 2 _
i 1 0,

St S )
aszt bzh (th) aszt

and
9t _ h (git)
ob; bl (Qit) '

Proof. First, note that €; does not contain information about managerial ability that is

(10)

not already contained in sy. Because rescaling the fund’s returns to scale technology (i.e.,

changing the parameter b;) does not change the signal sy, we can conclude that

90
0b;

—0. (11)

Now differentiating (8) with respect to s;;, and using the fact that these signals are inde-
pendent of b; (i.e., Ob;/0s; = 0), gives

bk (

Osiv I (ait/bi)g Osit i (0i1/b:) C:it bl (qi) Dsie”
T

m (8). Similarly, differentiate (8) with respect to b;, and
use (11) to substitute for 90;/0b; in this expression. Appealing, again, to (8), gives (10). m

where the last equality follows fi

Next, let the flow of capital into mutual fund 7 at time ¢ be denoted by Fj;, that is,

Fiy1 = log <Qit+1/Qit) .



Differentiating this expression with respect to s;1,

OF141 . 1 dgi . 1 1 agit+1

58it+1 B Qit+1 dSit41 B Git+1 b (QitJrl) 58it+1

> 0,

where the second equality follows from (9) and the inequality follows from Lemma 1, so good
(bad) performance results in an inflow (outflow) of funds. This result is one of the important
insights from Berk and Green (2004).

Given the importance of returns to scale technology in determining the size of a fund, a
natural question to ask is, what is the implication of steeper decreasing returns to scale for
the flow-performance relation? We answer this question by computing the derivative of the

flow-performance sensitivity with respect to b;:

0 <8Fit+1) _ 0 (/1 1 ) p@it“
Ob; \ Osit11 ob; J(er bih' (Qizs1) %gitﬂ
qlt+1h (th+1) + qzm ( ih' (Qit—H) + Git+10:1" (Qit-i—l)) 6§it+1

Qit-l—l (bl (Qit+1))2 08t 41

gl aes) = ) (1 255252)
qi2t+1 (bl (Qit+1))2 8

7,t+1
12
Szt—H ( )

where the first equality follows from (11) because when 0, is solely a function of the history
of realized signals and is not a function of b; then 6‘2 (gii—:i) 0 and the last equality follows
from (10). What (12) combined with Lemma 1 tells us is thit steeper decreasing returns to

scale must lead to a smaller flow of funds response to performance if and only if

i 1h” (g
Qi (Gits1) — M (Giga) [ 1+ w1 it t+1 (1) 0. (13)
' (Git+1)

Unfortunately, the left hand side of Equation 13 is not easy to sign without further assump-
tions. To assess whether this condition holds, we rely on the second-order approximation to

the decreasing returns to scale technology:
h(q) ~ ho + h1log (q) + halog (¢)°, (14)

where h; for : = {0, 1,2} are the coefficients in the second-order approximation. This approx-
imation nests exactly specifying the technology as logarithmic, most commonly considered
in empirical studies, if we set h; > 0 and hg = hy = 0. Going forward, we set hyg = 0.

This assumption is without loss of generality, because we can rewrite the skill parameter as



0. = 6; — b;hg, which, in turn, renders hj = 0. The following proposition shows that, under
approximation (14), condition (13) holds generally. That is, steeper decreasing returns to
scale leads to a weaker flow response to performance. We take this as our main hypothesis
that we will take to the data.

Proposition 3 Under approzimation (14), the derivative of the flow-performance sensitivity

with respect to the decreasing returns to scale parameter is negative, that 1s,

0 (0Fi
ob; <8Sit+1) << 0

Proof. Under approzimation (14), the left-hand side of (13) is then given by:

2h2—(h1 +2ho log(qu_l))
h1+2h210g<qz-t+1>—(*Clog(qim)+h210g<qw+1>2)<1+ ST )

qit+1

= hi+ 2hylog (gir1) — (*(1 log (qit+1) + halog (qi+1)°) 61 n 2hj}17§g (git+1)
(h1 + 2h210g (girs1))” N2 (b1 log (gies1) + halog (gurd)°) ff2
B hi + 2hy log (Git+1) \
(h1 + halog (qz‘t+1))2 + h3log (Qit+1)2
hi + 2hylog (gits1) .

The numerator of this expression is the sum of two squares, so it is positive. Note that the
denominator can be rewritten as the product of qu.1 and h' (¢y41) under the given approz-
imation. Recall that h(q) is a strictly increasing function of q, reflecting the fact that all
mutual funds must face decreasing returns to scale in equilibrium. Requiring that, under the
approzimation, h' (¢i1+1) > 0 is also ensured, this means that the denominator is positive as

well. It then follows immediately that condition (18) holds, which completes the proof. m

3 Data

Our data come from CRSP and Morningstar. We require that funds appear in both CRSP
and Morningstar, which allows us to validate data accuracy across the two databases. We
merge CRSP and Morningstar based on funds’ tickers, CUSIPs, and names. We then com-
pare assets and returns across the two sources in an effort to check the accuracy of each
match following Berk and van Binsbergen (2015). We refer the readers to the data appen-
dices of that paper for the details. Our mutual fund data set contains 3,066 actively managed

domestic equity-only mutual funds in the United States between 1979 and 2014.



We use Morningstar Category to categorize funds into nine groups corresponding to
Morningstar’s 3 x 3 stylebox (large value, mid-cap growth, etc.). We also use keywords in the
Primary Prospectus Benchmark variable in Morningstar to exclude bond funds, international
funds, target funds, real estate funds, sector funds, and other non-equity funds. We drop
funds identified by CRSP or Morningstar as index funds, in addition to funds whose name
contains “index.” We also drop any fund observations before the fund’s (inflation-adjusted)
AUM reaches $5 million.

We now define the key variables used in our empirical analysis: fund performance, fund

size, and fund flows. Summary statistics are in Table 1.

3.1 Fund Performance

We take two approaches to measuring fund performance. First, we use the standard risk-
based approach. The recent literature finds that investors use the CAPM in making their
capital allocation decisions (Berk and van Binsbergen (2016)), and hence we adopt the
CAPM. In this case the risk adjustment R$APM is given by:

RgAPM = ﬁitMKTb

where MK, is the realized excess return on the market portfolio and 3, is the market beta
of fund 7. We estimate (3, by regressing the fund’s excess return to investors onto the market
portfolio over the sixty months prior to month ¢. Because we need historical data of sufficient
length to produce reliable beta estimates, we require a fund to have at least two years of

track record to estimate the fund’s betas from the rolling window regressions.

Second, we follow Berk and van Binsbergen (2015) by taking the set of passively managed
index funds offered by Vanguard as the alternative investment opportunity set. We then
define the Vanguard benchmark as the closest portfolio in that set to the mutual fund. Let
R] denote the excess return earned by investors in the j’th Vanguard index fund at time ¢.

Then the Vanguard benchmark return for fund i is given by:

n(t)

Vanguard __ 7 DJ
Rit - E :61 Rt?

Jj=1

where 7 (t) is the total number of index funds offered by Vanguard at time t and 3/ is obtained

from the appropriate linear projection of active mutual fund ¢ onto the set of Vanguard index

4See Table 1 of that paper for the list of Vanguard Index Funds used to calculate the Vanguard benchmark.



funds. As pointed out by Berk and van Binsbergen (2015), by using Vanguard funds as the
benchmark, we ensure that this alternative investment opportunity set was marketed and
tradable at the time. Again, we require a minimum of 24 months of data to estimate 5;’ 'S
necessary for defining the Vanguard benchmark for fund <.

~CAPM .
Our measures of fund performance are then a; , the realized return for

it 1,
the fund in month ¢ less RSAPM and R)™&"*¢, Tkﬁaverage o(&lct(APM is +1.5 bp per month,
We adjust all AUM numbers by inflation by expressing all numbers in January 1, 2000

dollars. Adjusting AUM by inflation reflects the notion that the fund’s real (rather than

nominal) size is relevant for capturing decreasing returns to scale in active management.

and aYanguard

~Vaneuard -
whereas the average a,;,""*""" is —1.4 bp per month.

3.2 Fund Size and Flows

That is, lagged real AUM corresponds to ¢;;_1 in the previous section. There is considerable

dispersion in real AUM: the inner-quartile range is from $45 million to $618 million.
We calculate flows for fund ¢ in month ¢ as:

o AUM;; — AUM;,_, (1 + Ry)
" AUM;_1 (14 Ry) ’

where AU M;; is the (nominal) AUM of fund ¢ at the end of month ¢, and R;; is the total
return of fund 7 in month ¢.° So flows represent the change in the fund’s net assets not
attributable to its return gains or losses. The flow of fund data contains some implausible
outliers, so we winsorize flows at its 1st and 99th percentiles. Median Fj; is —0.2% per

month.

4 Methodology

Our analysis relies on a theoretical link between decreasing returns to scale and flow sensi-

tivity to returns. We discuss how we estimate each part in the following sections.

Note that we use AUM;;_1 (1 + R;;) in the denominator rather than AUM;;_q, which is typically used
in much of the existing literature on fund flows. Unfortunately, this definition distorts the flow for very
large negative returns. For example, liquidition of a fund, i.e., AUM;; = 0, implies a flow of — (1 + R;;).
Our measure of the flow of funds is equal to, and correctly so, —1 in this case. Regardless, our findings are
unaffected by using the more common definition of the flow.



4.1 Fund-Specific Decreasing Returns to Scale (DRS)

Empirically, we assume that the net alpha that manager ¢ generates by actively managing
money is given by:
vy = a; — b;log (qir—1) + €ir, (15)

where a; is the fund fixed effect, b; captures the size effect, which can vary by fund, and ¢;;_,
is the dollar size of the fund.

The simple regression model in equation (15) corresponds to the model in Section 2.
This model further assumes the form of the fund’s decreasing returns to scale technology is
logarithmic, which is often used to empirically analyze the nature of returns to scale due to

severe skewness in dollar fund size.

We depart from much of the literature describing the size-performance relation by taking
the size-performance relation to vary across funds. Indeed, the effect of scale on a fund’s
performance is unlikely to be constant across funds. For example, a fund’s returns should
be decreasing in scale more steeply for those that have to invest in small and illiquid stocks,

which are likely to face lower liquidity.

Given that it is not clear a priori why and how the size-performance relation depends
on which fund characteristics, we prefer to estimate fund-specific a and b parameters in our
main analysis. For each fund i at time ¢, we run the time-series regression of «;, on log (g;r_1)
using sixty months of its data before time ¢. Estimating b fund by fund leads to imprecise
estimates especially for funds with short track records, so we require at least three years of

data to estimate fund-specific returns to scale of a mutual fund.

The estimate of b;, D/}?S:, is obtained from (15) using sixty months of the data for fund
i prior to time t, where the alpha can be estimated under model m € {CAPM, Vanguard}.
Intuitively, these estimates represent, for investors who use model m in making capital
allocation decisions, their perception of the effect of size on performance for fund i at time

t based on information prior to time t¢.

Panel A of Figure 1 shows how the cross-sectional distribution of DRS i+ using the CAPM
alpha varies over time. For each month in 1991 through 2014, the figure plots the average as
well as the percentiles of the estimated fund-specific b parameters across all funds operating
in that month. The plot shows considerable heterogeneity in decreasing returns to scale
across funds. For example, the interquartile range is more than 3 times larger than the
estimates’ cross-sectional median in a typical month; in fact, this ratio can be almost as
large as 22 in some months. We find that, for the average fund, one percent increase in fund

size is typically associated with a sizeable decrease in fund performance of about 0.9 basis

10



points (bp) per month. This evidence suggests that the subjective size-performance relation,
perceived by investors in real time, provides an ideal identifying variation in the extent of

decreasing returns to scale.

Panel B of Figure 1 shows the time evolution of l)/ﬁSit when we take Vanguard index
funds as the alternative investment opportunity set. Similar to our main measure in Panel A,
the alternative measure exhibits a clear heterogeneity in diseconomies of scale across funds,

though these estimates typically indicate milder decreasing returns to scale.

4.2 Fund-Specific Flow Sensitivity to Performance (FSP)

We estimate the fund-specific flow sensitivities to past performance by estimating the fol-

lowing regression fund by fund:
Fi = ¢i + 7, Pit—1 + vit, (16)

where Pj;_; is annual alpha for the year leading to month ¢ — 1, computed by compounding

the monthly alphas as follows:

t—1

P =[] ((+ R, — R7) ( L
s=t—12
This regression is consistent with empirical evidence that investors do not respond immedi-
ately. For example, Berk and van Binsbergen (2016) and Barber, Huang, and Odean (2016)
show that flows respond to recent returns, as well as distant returns. Parameter v, > 0
captures the positive time-series relation between performance and fund flows, which can
vary by fund. Again, this is where we depart from much of the literature describing the

flow-performance relation.

At time ¢, we calculate the fund’s flow sensitivity to performance by estimating (16)
using its data over the subsequent 5 years. For fund i, let ffg\PT be the estimated flow-
performance regression coefficient of that model, where the perfqrmance can be estimated
under model m € {CAPM, Vanguard}. To avoid using imprecise estimates, we require these
coefficient estimates to be obtained from at least three years of data. For the average fund,
we observe that an increase of 1% in the monthly CAPM alpha is associated with an increase

of 1.3% in monthly flows next month.

Figure 2 displays the evolution of the distribution of F/S\Pit by plotting the average as
well as the percentiles of the estimated flow sensitivities to performance at each point of

time. Panel A shows the results using the CAPM alpha, and Panel B shows the results when

11



net alpha is computed using Vanguard index funds as benchmark portfolios. Note that the
results are very similar across the two panels, manifesting considerable heterogeneity in the
flow-performance relation across funds. More importantly, Figure 2 shows that while both
the mean and median F/S\Pit do not exhibit any obvious trend, these are certainly time
varying. As the red dashed lines in the figure make clear, the distribution has remained

roughly the same over our sample period, conditional on the median.

5 Results

5.1 DRS and Flow Sensitivity to Performance

To investigate whether investors pay attention to the fund’s decreasing returns to scale
technology in making their capital allocation decisions, we run panel regressions of fund i’s
flow sensitivity to performance going forward in month ¢, F/S\Pit, on the fund’s returns to
scale estimated as of the previous month-end, D/}?Sit. We test the null hypothesis that the
slope on DRS is zero.® We consider two approaches: plain OLS and OLS with fixed effects
(OLS FE), as|detailed below. We report the results in Table 2.” In Panel A, we report the
results using the CAPM as the benchmark; in Panel B, we use Vanguard index funds as the

benchmark.

We show results based on raw estimates in the first three columns. Across these three
columns, we gradually saturate with month and fund fixed effects to focus on variation com-
ing from the market equilibrating mechanism beyond differences in sensitivity across funds
and over time. The fund fixed effects absorb the cross-sectional variation in flow/performance
sensitivity that is due to differences in investor clientele across funds, while the time fixed
effects soak up any variation in flow /performance sensitivity due to investor attention alloca-
tion over time. Indeed, there is evidence of clientele differences because some investors tend
to update faster than others,® and Figure 2 shows how the average as well as the median of

flow-performance dynamics vary considerably over time.

In the first column, we include no fixed effects to include all variation in flow sensitivities.

Consistent with the main prediction of our model, the estimated coefficient on D/R\Sit is

6Surely, not only the independent variable, but the dependent variable are measured imprecisely. The
measurement error in DRS;; will bias the OLS estimator toward zero. While the measurement error in
FSP;; will not induce bias in the OLS coefficients, it will render their variance larger. For now, we do not
worry, as the errors-in-variables problem will work against us from finding a statistically significant relation
that the model predicts.

"Table 2 reports the double clustered (by fund and time) t-statistics.

8See Berk and Tonks (2007).

12



significantly negative using the CAPM benchmark. This finding is unaffected by controlling
for month and/or fund fixed effects. In the second column, we include month fixed effects.
The third column further adds fixed effects for funds. The negative coefficients on D/R\Sit
in the CAPM-adjusted result are highly statistically significant, with t-statistic that are
smaller than —3. While the estimated coefficient on ﬁSit using the Vanguard benchmark
in column 1 is marginally insignificant (with ¢-statistic of —1.6), including month and/or
fund fixed effects in this case causes the t-statistics to grow substantially in magnitude.
Thus, the estimates in the next two columns of Panel B are significantly negative at the 10%

and 5% confidence levels, respectively.

The last two columns in Table 2 repeat this exercise with percentile ranks in each month
based on D/R\Sz-t and F/S\Pit. In this case, we do not use month fixed effects, as percentile
ranks already soak up any time variation in the flow-performance relation. In column 4 of
each panel, the estimated plain OLS coefficient on D/F?Sit is significantly negative at the 1%
confidence level. We then allow for differences in clientele across funds by adding fund fixed
effects (see column 5 of Table 2). Again, the evidence for our main prediction becomes only
stronger: the estimated coefficients on DRS i+ roughly double, while the ¢-statistic more than
double to —7.8 in Panel A and to —6.9 in Panel B.

To summarize, we find a strong negative relation between decreasing returns to scale and
flow sensitivity to performance. This relation, which is statistically significant, is consistent
with the presence of investors rationally accounting for the adverse effects of fund scale in
making their capital allocation decisions. Unfortunately, these coefficient values are not easily
interpretable in economic terms, as they represent the effect of one regression coefficient on
another regression coefficient. In Section 5.4.1, we propose a way of assessing the economic

magnitude of such relation by computing counterfactual fund sizes.

5.2 DRS and Fund Size in Equilibrium

While the main implication of our model is that steeper decreasing returns to scale attenu-
ate flow sensitivity to performance, another immediate implication is that steeper decreasing
returns to scale shrink fund size. Recall that fund size in equilibrium is proportional to the
ratio of perceived skill over diseconomies of scale (see equation (8)). Are large funds char-
acterized by relatively flat decreasing returns to scale technology? To address this question,
we run panel regressions of fund ¢’s log real AUM in month ¢ on the fund’s returns to scale

estimated as of the previous month-end, D/ESit. We test the null hypothesis that the slope

13



on DRSy is zero.” We consider two approaches: plain OLS and OLS with fixed effects
(OLS FI), as detailed below. We report the results in Table 4.1 In Panel A, we report the
results using the CAPM as the benchmark; in Panel B, we use Vanguard index funds as the

benchmark.

Across the first three columns, we gradually saturate with month and fund fixed effects
to focus on variation coming from the market equilibrating mechanism beyond differences in
size across funds and over time. The fund fixed effects absorb the cross-sectional variation
in fund size due to differences in investors’ perception of skill across funds, while the time
fixed effects soak up any variation in fund size due to the arrival of news that commonly
affect fund performance.

In the first column, we include no fixed effects to include all variation in fund sizes.
Consistent with the above prediction of our model, the estimated coefficients on D/}?Sit are
significantly negative. This finding is unaffected by using the CAPM or the Vanguard bench-
mark, as well as controlling for month and/or fund fixed effects. In the second column, we
include month fixed effects. The third column further adds fixed effects for funds. The neg-
ative coefficients on D/R\Sit in the CAPM-adjusted result are highly statistically significant,
with ¢-statistic that are smaller than —2.33. The estimated coefficient on D/]?Sit using the
Vanguard benchmark in column 1 is marginally significant, with ¢-statistic of —1.8. However,
including month and/or fund fixed effects in this case cause the t-statistics to grow substan-
tially in magnitude, so the estimate in column 2 (3) of Panel B are significantly negative at
the 5% (1%) confidence level. Finally, the last column in Table 4 shows that these findings
are unaffected by further including controls that are plausibly correlated with the fund size:

family size, fund age, and turnover.

5.3 Determinants of Returns to Scale

In this subsection, we investigate what drives heterogeneity in returns to scale by analyzing
how it depends on fund characteristics. We explore a number of characteristics that seem
relevant a priori for heterogeneity in returns to scale: volatility, a multi-manager indicator,

a redemption indicator, fund age, and risk exposures.'!

9 Again, the independent variable is measured imprecisely. The measurement error in DRS;; will bias the
OLS estimator toward zero. We will address the estimation error in scale effects in Section 5.4.

10Table 4 reports the double clustered (by fund and time) t-statistics.

11'We also explore whether high-turnover funds exhibit steeper decreasing returns to scale and whether there
is a weaker negative size-performance relation for funds with a significant degree of international exposure in
unreported results. We find a negative relation between returns to scale and international exposure, although
the relation is mostly statistically insignificant. The relation between returns to scale and turnover is usually
insignificant and flips to negative when we add other fund characteristics. More importantly, our results in
Tables 5 and 6 are unaffected by including these characteristics as controls. All of these results are available
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The first characteristic, Std (Alpha), is the standard deviation of a fund’s alphas, which
we calculate over the prior 1 year. The second characteristic, 1 (MultiMgr), is a dummy
variable that is equal to one if the fund is managed by many managers. About 56% of our
funds are multi-manager funds. The third characteristic, 1 (Out flows), is an indicator for
whether the fund experienced outflows over the prior 1 year. The fourth characteristic we
examine is fund age, measured by the natural logarithm of years since the fund’s first offer
date (from CRSP) or, if missing, since the fund’s inception date (from Morningstar). As is
common in the mutual fund literature, we measure the riskiness of the mutual fund using
its risk exposures to the factors identified by Fama and French (1995) and Carhart (1997).'2

Why do we expect these characteristics to affect how scale impacts performance? The-
oretically, a fund’s portfolio can be interpreted as a combination of investing in the passive
benchmark and investing in the actively managed portfolio that is independent of the bench-
mark returns. Since the cost of managing benchmark exposure is relatively small, the costs
of operating the fund are primarily determined by the amount of funds under active man-
agement. A reasonable hypothesis is funds that manage a greater proportion of their assets
actively are likely to face larger trading costs and, thus, steeper decreasing returns to scale.

These behaviors manifest themselves as higher volatility of benchmark-adjusted returns.

Funds experiencing investor outflows might also exhibit steeper decreasing returns to
scale. The reason is that funds experiencing redemptions are forced to decrease existing
positions, which creates price pressure against these mutual funds.!> On the other hand,
younger funds might exhibit milder decreasing returns to scale. This hypothesis is motivated
by Chevalier and Ellison (1999), who find that younger managers hold less risky and more
conventional portfolios because they are more likely to be fired for bad performance. In
turn, it suggests that younger funds tend to be less aggressive in their trading, perhaps
due to fund managers’ career concerns. Such incentives, if present, would mitigate the
performance erosion associated with fund size. In addition, the division of labor within a
fund might alleviate the negative impact of size on performance, so it is the fund’s assets
under management on a per-manager basis that matters for capturing decreasing returns
to scale. If so, a multi-manager fund would be able to deploy capital more easily and,

consequently, exhibit milder decreasing returns to scale.

Surely, the extent of decreasing returns to scale is likely to be affected by the stock
characteristics chosen by the funds. For example, Carhart (1997) finds that funds with high

upon request.
12We estimate these risk exposures by regressing the fund’s return on the factors over the prior sixty
months.

13See Coval and Stafford (2007).
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past performance repeat their abnormal performance not because fund managers successfully
follow momentum strategies, but probably because some mutual funds accidentally end up
holding last year’s winners. In turn, these funds capture short-term momentum effect in
stock returns virtually without transaction costs. This logic suggests that momentum funds
are likely to exhibit steeper decreasing returns to scale. In analyzing the dependence of
returns to scale on fund characteristics, we thus control for the contribution of fund style

and risk using the loadings on the four Fama-French-Carhart factors.

We examine these hypotheses by running panel regressions of the scale effect computed
using only fund #’s observations prior to month ¢ — 1, D/R\Sit, on the fund’s characteristics
at the end of the previous month. Table 5 shows the estimation results.!* Panel A reports
the results using the CAPM as the benchmark; Panel B uses Vanguard index funds as the
benchmark. In both panels, we find significant relations between DRS and three character-
istics: volatility (column 1), the multi-manager indicator (column 2), and the redemption
indicator (column 3). We also find that the slope on fund age is positive (column 4). This
result is marginally significant for the CAPM (with ¢-statistic of 1.63 in Panel A of Table 5),
but it is statistically significant using the Vanguard benchmark. These results lend strong

support to the narrative from the previous paragraphs.

When all four fund characteristics are added at the same time (column 5), the estimated
slopes on volatility, multi-manager indicator, and redemption indicator are robust, indicating
steeper decreasing returns to scale for higher-volatility funds, sole-manager funds, and funds
experiencing outflows. Finally, fund age continues to enter with a positive slope, as in column
4, and it now does so significantly regardless of how one defines the benchmark, indicating
that decreasing returns to scale are more pronounced for old funds. To summarize, the same
conclusions continue to hold when we jointly assess the dependence of returns to scale on

fund characteristics.

5.4 Characteristic-Based DRS

We have estimated fund-specific b parameter based on a rolling estimation window. As noted
earlier, estimating b fund by fund leads to imprecise estimates especially for funds with short
track records. Instead of using the coefficient estimates DRS as before, we use the estimates
from column 5 of Table 6 to obtain an economically interpretable component of DRS based
on fund characteristics. This implementation choice assumes that all the funds with the
same fund characteristics share the same b value. While ignoring variation might potentially

lead to inaccuracy in quantifying fund-specific b, this method actually seems to increase the

14Standard errors of these regressions are two-way clustered by fund and time.
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accuracy of the b estimate by dramatically reducing estimation errors. While 27% (30%) of
the funds in our sample end up with negative DRS using the CAPM (Vanguard benchmark),
less than 1% and 2% of their predicted values based on fund characteristics, denoted by
DRS , are negative using the CAPM and Vanguard benchmark, respectively. These results
seem sensible since, theoretically, all mutual funds must face decreasing returns to scale in

equilibrium.

Figure 3 shows how the cross-sectional distributions of D/]\%/Sit varies over time. Panel A
shows the results using the CAPM alpha, and Panel B shows the results when net alpha is
computed using the Vanguard benchmark. While these distributions are naturally tighter
than those of D/R\Sit, they remain quite disperse, confirming the presence of considerable
heterogeneity in DRS. Interestingly, the cross-sectional distributions over our sample period
are stable, net of time-series variation in median DRS , which themselves are similar to those

in Figure 1.

To assess the robustness of our results regarding the effect of returns to scale on capital
flows and sizes, we replace DRS by DRS jand rerun the regressions in Tables 2 and 3, whose
results are tabulated in Tables 5 and 6, respectively. When we rerun our analysis in Table 2
with characteristic-based DRS, we obtain similar and even stronger results indicating that
steeper decreasing returns to scale attenuates flow sensitivity. Table 5 shows that DRS
has significantly negative slopes throughout, but the coefficients’ estimated values become
substantially more negative than in Table 2: the estimated coefficients based on raw estimates

are more than 7 times larger (compare the first three columns of Tables 2 and 5).

The results from Table 3 are also very similar when capital flows are replaced with log real
size: the slopes on DRS are significantly negative in Table 6, except for the first two columns
in Panel B before controlling for fund fixed effects. These estimates of the size-DRS relation
are likely to suffer from an omitted-variable bias; in equilibrium, the size of a fund is driven
not only by its decreasing returns to scale technology, but also by its raw skill. Consistent
with this argument, we find that the slopes on DRS turn significant (in the last two columns
in Panel B) after controlling for fund fixed effects. Again, the coefficients’ estimates values
become substantially more negative than in Table 3: the estimated coefficients in regressions

with fund fixed effects are typically more than 30 times larger.

To summarize, when we conduct the analysis using cleaner measures of decreasing returns
to scale, our conclusions on the effects of decreasing returns to scale on capital allocation
only become stronger. These results suggest that the attenuation bias due to using DRS to
conduct the analysis is quite severe, so we assess the economic magnitude of the DRS-FSP

relation estimated using DRS in the following subsection.
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5.4.1 Simulation Exercise

In this section, we use our model to ask how much capital is allocated the way it is because
of these differences in decreasing returns to scale. Specifically, we compute counterfactual
fund sizes by assuming the investors believe a priori that returns are decreasing in scale at

the same (average) rate for all funds.

Two factors fully determine the magnitude of capital response to performance in a rational
model — the degree of decreasing returns to scale, and the prior and posterior beliefs about
managerial skill. This means that, for a given value of b in equation (15), the prior uncertainty
about a, 0g, can be inferred from the flow-performance relation, as long as investors update

their posteriors with the history of returns as Bayesians.

We simulate benchmark-adjusted fund returns from equation (15). It is straightforward

to show that the mean of investors’ posteriors will satisfy the following recursion:

2
T30

Oi = 0it—1 + ———Tut
o2 +to? "

where 6, is the mean of the initial prior. Using (8), we compute fund size as follows:
Ot
qit = €Xp b

We begin by tying down the model parameters that can be set directly. Following Berk
and Green (2004), we set Std(e) = 20% per year, or 5.77% per month. Investors’ prior on
a fund’s ability is that 6; is normally distributed with mean 6y and standard deviation o2.
Since investors are assumed to have rational expectations, this is also the distribution from
which we draw each fund’s skill. We shall also assume that funds shut down the first time
0;; < 6, where we set # = 0."> These parameter values are summarized in the top panel of
Table 3. It is straightforward to see that the only remaining parameters that we need to set

for simulating data are b, y and oy.

The empirical distribution of b is generally well approximated by a geometric distribution,
from which we draw b randomly. In that case, assuming that 6, is independent of b gives
rise to distributions of fund size considerably more disperse than in our actual sample.

Specifically, the simulated fund sizes tend to be too big for funds whose returns decrease in

5 Intuitively, managers incur fixed costs of operation each period. These costs can be, for example,
overhead, back-office expenses, and the opportunity cost of the manager’s time. Managers will optimally
choose to exit when they cannot cover their fixed costs.
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scale more gradually, while the simulated fund sizes tend to be too small for those that exhibit
steeper decreasing returns to scale. In turn, we model prior mean as a quadratic function
of b. Our approach is to fit the parameters governing this function such that the simulated
mean and standard deviation of log fund size essentially match the empirical benchmark
values of 5.12 and 1.89, respectively.!® The prior mean as a function of b that we use in our

simulation analysis is plotted in Panel A of Figure 4.

Recall from Table 5 that steeper decreasing returns to scale imply less flow sensitivity to

performance. For example, as shown in column 3 of Panel A,
FSP =0.117 — 2.40 x DRS. (17)

We consider five plausible values of b: 0.00357, 0.00531, 0.00770, 0.0106, and 0.0140. These
values correspond to the 10th, 25th, 50th, 75th, and 90th percentiles of fund-specific b
estimates, respectively. For each value of b, we construct 2,500 samples of simulated panel
data for 100 funds over 100 months. In each sample, we estimate the flow-performance

sensitivity by running the following regression:

log (git/qit—1) = ¢ + yrie + V.

Given b, we set og so that the median of the v estimates across simulated samples matches
the flow-performance relation implied by (17). Panel B of Table 7 contains the values of o
for all five values of b that resulted from this process. Panel B of Figure 4 also plots the
prior uncertainty as a function of b that we use in our simulation analysis. Column 3 shows
the target flow-performance sensitivities computed using (17), while the resulting median of
the v estimates across simulated samples are reported in the last column of Panel B. Note
that the relation between flow and performance in the model is a close match to the target

relation.

Matching the flow-performance sensitivities for funds at different levels of decreasing
returns to scale requires the distribution of skills across these funds to be quite different
than the skill distribution for funds whose returns decrease with fund size at a median rate.
Panel C of Table 7 shows the median of the v estimates across simulated samples for each b,

but using the counterfactual value of oy = 0.162% per month instead of its calibrated value.

16Note that there generally exist multiple ways prior mean as a function of b for which the simulated
mean and standard deviation of log fund size can match the empirical benchmark values. To pick a single
function, we impose the additional constraint that the simulated mean of log fund size is decreasing in b. This
constraint is motivated by empirical evidence presented earlier in Section 5.2: steeper decreasing returns to
scale shrink fund size.
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If we assume that prior uncertainty is constant across different levels of decreasing returns to
scale, the model produces much smaller (larger) flow sensitivities to performance for funds

that exhibit relatively steeper (flatter) decreasing returns to scale than those implied by (17).

To quantitatively assess the role of heterogeneity in returns to scale in capital allocation,
and to assess the economic magnitude of equation (17), we must construct a counterfac-
tual. We construct two counterfactuals. We construct the first counterfactual by assuming
investors who learn about skill based on distorted beliefs that the fund exhibits median
decreasing returns to scale and its skill is drawn from a normal distribution with the corre-
spondingly calibrated standard deviation. Specifically, the first set of counterfactual investors
assume that b = 0.00770 and oy = 0.162% per month. We then construct the other counter-
factual by assuming investors who learn about skill based on distorted beliefs that the fund’s
skill is drawn from a distribution corresponding to those facing median decreasing returns
to scale, i.e., they assume that oy = 0.162% per month. The second set of counterfactual
investors differ from the first set in that they know the true b. Then, updating investors’
beliefs with the history of its returns under the counterfactual assumptions, we compute

what the size of the fund would have been.

We construct 2,500 samples of simulated panel data for 10,000 funds over 100 months.
To simulate a given sample, we first draw each fund’s DRS b; randomly from a geometric
distribution consistent with the distribution of fund-specific b estimates, while we draw the
fund’s skill ; from a normal distribution with mean 6, (b;) and standard deviation oq (b;).
Next, we draw the random values of ¢;;, building up the panel data of r; and ¢;. For
every i and t, we compute the fund’s size under the counterfactual, ¢, as detailed above.
Finally, for each sample, we calculate the R-squared from a regression of log (¢;;) on log(g5)
to check the goodness of fit by counterfactuals. Under the first counterfactual, 1 minus the
R-squared can be interpreted as the fraction of capital allocation explained by individual
heterogeneity in decreasing returns to scale, coupled with difference between the empirical
and model DRS-FSP relations. On the other hand, 1 minus the R-squared under the second
counterfactual can be interpreted as the fraction of capital allocation explained solely by this

difference between the empirical and model DRS-FSP relations.

We report the results in Table 8. Panel A reports the results from our first counterfac-
tual; Panel B focuses on the second counterfactual. The first two rows in each panel show
summary statistics of the coefficient estimates from the regression of log (¢i) on log (¢%)
across simulated samples; the last row shows summary statistics of the R-squared from this

regression across simulated samples.

Even under the first counterfactual where investors believe that all funds are subject to
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the same decreasing returns to scale technology and their skills are drawn from the same
distribution, the counterfactually computed fund sizes explain about 51% of the variation
of simulated fund sizes. Perhaps surprisingly, counterfactual sizes are negatively related to
actual sizes. This is because a fund whose returns decrease in scale more steeply (gradually)
is typically small (big) in equilibrium, but its counterfactual size tend to be bigger (smaller),
as investors underestimate (overestimate) the effects of scale on performance under the first
counterfactual. Thus, the counterfactuals ignoring heterogeneity in DRS are very different
than the actual size. In this sense, we can interpret 1 minus the R-squared as a lower bound
on the role of heterogeneity in returns to scale on capital allocation: at least 49% of the
cross-sectional variance of fund sizes can be related to cross-sectional variation in decreasing

returns to scale parameters, which is economically significant.

Under the second counterfactual, investors account for heterogeneity in returns to scale.
These counterfactual investors differ from the actual investors in that they ignore how the
distribution of skill changes across different levels of b. Not only do the counterfactually
computed fund sizes explain almost completely the variation in simulated fund sizes, they
are quantitatively very similar to the actual sizes, i.e., log/@t) = 0.0006 + 0.9999 log ( it)
log (qg ) Thus, the uncalibrated version of our model with heterogeneous returns toﬁc e
does a gileat job at explaining capital allocation in the fully calibrated version. On the other
hand, recall that conditional on higher (lower) b, the uncalibrated model produces much
smaller (larger) flow sensitivities to performance (see Panel C of Table 7), indicating a much
stronger DRS-F'SP relation than in the data. In this sense, the DRS-FSP relation estimated
in the uncalibrated model puts a theoretical upper bound on its magnitude to be found in
the data, which allows us assess the economic magnitude of equation (17). Panel C of Table
8 shows summary statistics of the DRS-FSP relations in both the fully calibrated model and

the uncalibrated model.

As expected, the DRS-FSP relation estimates in the fully calibrated model tend to be
closely related to those in the data: —2.6, compared to —2.4 in the data (column 3 of Panel
A of Table 5). On the other hand, the DRS-FSP relation estimates in the uncalibrated
version tend to be substantially more negative, about —11.2. Thus, it appears that the
magnitude of the DRS-FSP relation estimates from the data is much smaller than what the
model predicts. While this confirms how severe the errors-in-variables problem, it might also
suggest that our simple model does not fully capture how investors react to the effects of
scale. For example, investors in our simple model know precisely the fund-specific effects of

scale, but investors in the data might be learning about returns to scale, which would help
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explain the small magnitude of empirical DRS-FSP relation estimates.!” We leave bridging

this gap to future research.

To summarize, Table 8 shows that a significant fraction of how capital is allocated in
equilibrium is explained because of investor response to differences in decreasing returns to
scale. While fund sizes in the data are quantitatively consistent with what our simple model
predicts they should be, the magnitude of empirical DRS-FSP relation estimates are much

smaller than were our simple model to hold perfectly in the data.

5.5 DRS and Optimal Fund Size

Thus far, we have used heterogeneity in decreasing returns to scale across funds and over
time to test whether investors respond to the adverse effects of fund scale in making their
capital allocation decisions. If investors update their beliefs about skill as in the model, their
perception of optimal size ought to converge to true optimal size over a fund’s lifetime. This
idea predicts that the sizes of older funds should be more closely related to their optimal sizes
based on the model than those of younger funds are. In this section, we test this prediction

and find empirical support for it.

We estimate fund-specific a and b parameters to compute the optimal fund size ¢;. Using
the b estimates based on fund characteristics, the parameter a for fund 7 can be estimated

as:

T.
R 1 <« ~
a; = i Z < it + bit log (Qit—1)>

where a;; is the risk-adjusted net return, and T; is the number of observations for fund
i. We exponentiate the average value of the ratios a; /Et over a fund’s lifetime to get an
estimate for ¢}, ¢F. Of course, if investors ignore heterogeneity in decreasing returns to scale,
our measure of optimal fund size might be irrelevant. To allow for investor learning about
optimal fund size based on a simple return model, we construct an alternative measure of
optimal log fund size, assuming that fund size has the same effect on performance for all
funds. Using a recursive demeaning procedure of Zhu (2018), we estimate the average fund-
level decreasing returns to scale parameter in our sample, denoted by ng.ls Measuring

performance using the CAPM, the estimated coefficient is statistically significant, indicating

1TFor formal models that relate capital allocation to learning about returns to scale, see Pastor and
Stambaugh (2012) and Kim (2017).

18P4stor, Stambaugh, and Taylor (2015) analyze the nature of returns to scale by developing a recursive
demeaning procedure. They find coefficients indicative of decreasing returns to scale both at the fund level
and at the industry level, though only the latter is statistically significant. Zhu (2018) improves upon the
empirical strategy in PST (by using more recent fund sizes as the instrument) and establishes strong evidence
of fund-level diseconomies of scale.
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that an 1% increase in fund size is associated with a decrease in the fund’s CAPM alpha of
0.0042% per month, or 5.1 bp per year.! We can then estimate the parameter a for fund i

as:

T,
~ I~/ =
A;RD2 = T Z (ait + brp2 log (Qit—l))
t=1

The alternative measure of optimal fund size ¢ p, is calculated as exp (@- RD? /BRD2> .C

To test the above prediction, we examine how the relation between log real AUM and our
measures of optimal fund size depends on fund age. Specifically, we assign funds to one of
three samples based on fund age: [0,5], (5,10], and > 10 years. In each age-sorted sample,
we run panel regressions of fund ¢’s log real AUM in month ¢ on the fund’s log optimal fund
size estimate, log (77). We report the results in the first three columns of Table 9.2! In Panel
A, we report the results using the CAPM as the benchmark; in Panel B, we use Vanguard

index funds as the benchmark.

Across all age-sorted samples, the estimated coefficients on log (¢) are positive, with ¢-
statistics of more than 13 using the CAPM as the benchmark and t-statistics around 8 using
the Vanguard benchmark. More importantly, the coefficient values increases over a typical
fund’s lifetime, indicating that this positive relation between the fund’s size and its optimal
size is stronger for older funds. As the fund ages, investors learn about its optimal size, so
a fund’s optimal size has a larger effect that that fund’s equilibrium size if it is older. In
addition, the R? of the regressions are consistent. The R? in the > 10 sample is the highest
and is monotonically declining in samples of younger funds, which is not surprising since a
reasonable measure of optimal size ought to explain more of the variation in fund size in

samples of older funds.

In columns 4 through 6, we run the multiple regression of log (¢;;) on both log () and
log (G/zp») in all three age-sorted samples. We consider two null hypotheses: that the slope
coefficient on log (¢}) is zero, and that the slope on log (¢fzp,). We find that the slope on
our main measure of optimal fund size is positive and significant in the > 10 sample, but its
significance disappears in samples of younger funds. The slope on the alternative measure is

positive and significant across all age-sorted samples.

The significantly positive coefficient on log (gf) in the multiple regression reveals in-

vestors do recognize that there is heterogeneity in decreasing returns to scale, conditional on

9Using Vanguard index funds as benchmarks, the coefficient estimate is again statistically significant,
indicating that an 1% increase in fund size is associated with a decrease in fund performance of 0.0013%, or
1.5 bp per year.

20To remove some implausible outliers, we winsorize these estimates at their 1st and 99th percentiles.

21Table 9 reports the double clustered (by fund and time) standard errors.
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log (¢ zps)- On the other hand, a significantly larger coefficient on log (g5 ps), and the much
larger R? from the multiple regressions, suggests that this simpler version of optimal size
better explains sizes in equilibrium. Our results offer the following narrative. Investors want
to account for heterogeneity in decreasing returns to scale, but estimating b fund by fund
leads to imprecise estimates especially for young funds, which renders the estimation error
in ¢/ severe. To reduce the estimation error, investors seem to ignore fund-level variation
in b for young funds, which allows them to use cross-sectional information in quantifying
fund-specific ¢f. In particular, the investors only use the ¢ estimate (together with gz )
in making their capital allocation decisions when a fund grows old enough such that the

estimation error in its optimal size based on fund-specific b is relatively modest.

Consistent with this idea, we find that the log (¢} ps) estimates are informative of log (¢}).
Figure 5 plots the main measure of optimal fund size log (¢) versus the alternative measure
of optimal fund size log (¢/zps). The circles represent pairs of (log (¢ rps),10g (gF)). The
red line depicts the identity line. If the two measures of optimal fund size coincide, the
red line would fit the data perfectly. We see that log (¢F) tends to move nearly one-for-
one with log (¢fzps), so this estimator is a reasonable way to measure a fund’s optimal
size that also circumvents the need to address the estimation error in decreasing returns to
scale. However, the two quantities generally do differ: the R-squared from a cross-sectional
regression of log (¢) on log (Gzps) is 0.55 using the CAPM and only 0.14 if we use the
Vanguard benchmark. Therefore, g/, alone does not suffice in capturing optimal size,

which leads investors to directly estimate ¢ for funds with sufficiently long track records.

In short, the estimates of optimal size largely explains capital allocation to older funds.
Both measures of optimal fund size matter, which is consistent with our narrative that in-
vestors account for not only the presence of decreasing returns to scale, but the heterogeneity

of decreasing returns to scale.

6 Conclusion

The main contribution of this paper is to provide and verify predictions unique to a rational
model for active management: the role of decreasing returns to scale in equilibrating the
market for mutual funds. Not only do we find that steeper decreasing returns to scale
attenuate flow sensitivity to performance, we also find that differences in decreasing returns to
scale across funds are quantitatively important for explaining capital allocation in the market
for mutual funds. Interestingly, the magnitude of empirical DRS-FSP relation estimates are

much smaller than were our simple model to hold perfectly in the data. Bridging this gap
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by using more accurate measurements of a fund’s returns to scale or flow sensitivity, or
by considering new aspects of learning about the parameters governing fund returns, is an
important area for future research. Overall, our results strongly support that, as a group,

investors in the mutual fund market are sophisticated.
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Table 1: Summary Statistics

This table shows summary statistics for our sample of active equity mutual funds from 1979—
2014. The unit of observation is the fund/month. All returns are in units of fraction per
month. Net return is the return received by investors. Net alpha equals net return minus
the return on benchmark portfolio, calculated using the CAPM or using a set of Vanguard
index funds. Fund size is the fund’s total AUM aggregated across share classes, adjusted by
inflation. The numbers are reported in Y2000 $ millions per month. Flow is the monthly
change in the fund’s net assets not attributable to its return gains or losses. Turnover is in
units of fraction per year. Volatility is the standard deviation of a fund’s alphas, calculated
over the prior 1 year. Fund age is the number of years since the fund’s first offer date (from
CRSP) or, if missing, since the fund’s inception date (from Morningstar). # of managers is
the number of managers managing the fund in a given month. D/R\Szt is the fund’s returns
to scale estimated as of the previous month-end; DRS;; is the economically interpretable
component of DRSzt based on fund characteristics. F SP,t is the fund’s flow sensitivity to
performance going forward.

Panel A: Fund-Level Variables

Percentiles

# of obs. Mean Stdev. 25% 50% 75%

Net return 424,793  0.0079 0.0497 —0.0193  0.0123 0.0387

Net alpha (CAPM Risk Adj.) 354,427  0.0001 0.0209 —0.0105 —0.0002 0.0104

Net alpha (Vanguard Benchmark) 420,163 —0.0001 0.0155 —0.0083 —0.0001 0.0080

Fund size (in 2000 $millions) 421,701 995 4008 45 163 616

Flows 421,697  0.0049 0.0529 —0.0143 —0.0021 0.0145

Turnover 402,907  0.8317 0.7027 0.34 0.64 1.1

Volatility (CAPM Risk Adj.) 322,939  0.0188 0.0115  0.0106  0.0158 0.0239

Volatility (Vanguard Benchmark) 387,197  0.0142 0.0082  0.0086  0.0122 0.0177

Fund age (years) 423,871 13.44 13.38 4.58 9.28  16.77

# of managers 404,551 2.36 2.12 1 2 3
Panel B: Estimated DRS and FSP

Percentiles

# of obs. Mean Stdev. 25% 50% 5%

DRS (CAPM Risk Adj.) 252,434  0.0084 0.0165 —0.0002  0.0052 0.0137

DRS (CAPM Risk Adj.) 247,989  0.0084 0.0044  0.0053  0.0077 0.0106

DRS (Vanguard Benchmark) 300,963  0.0044 0.0109 —0.0008  0.0028 0.0081

DRS (Vanguard Benchmark) 294,815  0.0044 0.0024  0.0028  0.0043 0.0059

FSP (CAPM Risk Adj.) 266,376  0.1045 0.1910  0.0140  0.0756 0.1694

P (Vanguard Benchmark) 293,895  0.1487 0.2898  0.0171  0.1094 0.2499
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The dependent variable in each regression model is F/S\Pit, the fund’s flow sensitivity to
performance going forward. DRS;; is the fund’s returns to scale estimated as of the previous
month-end. The first three columns report the results using the raw estimates. The last two
columns repeat the same analysis using percentile ranks for each variable across funds. In
each version, from left to right, we gradually saturate with month and fund fixed effects to
focus on variation coming from the market equilibrating mechanism beyond differences in
sensitivity across funds and over time. Standard errors, two-way clustered by fund and by

Table 2: Relation Between DRS and FSP

month, are in parentheses.

Panel A: CAPM Risk Measure

Dependent Variable: F/S\Pit

D/R\Sit —0.375 —0.296 —0.279 —0.0424 —0.0769
(0.0938) (0.0941) (0.0898) (0.0119) (0.00984)
Month FE No Yes Yes No No
Fund FE No No Yes No Yes
Observations 182691 182691 182676 182691 182676
Scale Raw est. Raw est. Raw est. Pctl. rank  Pctl. rank
Panel B: Vanguard Benchmark
Dependent Variable: F/S\Pit
D/R\Sit —0.355 —-0.414 —0.375 —0.0264 —0.0597
(0.219) (0.223) (0.167) (0.0102) (0.00863)
Month FE No Yes Yes No No
Fund FE No No Yes No Yes
Observations 221749 221749 221743 221749 221743
Scale Raw est. Raw est. Raw est. Pctl. rank  Pctl. rank
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Table 3: Relation Between DRS and Size

The dependent variable in each regression model is the fund’s log real AUM in § millions
(base year is 2000). DRS;; is the fund’s returns to scale estimated as of the previous month-
end. Across the first three columns, we gradually saturate with month and fund fixed effects
to focus on variation coming from the market equilibrating mechanism beyond differences
in size across funds and over time. The last column repeats the same analysis by further
including controls that are plausibly correlated with the fund size: family size, fund age, and
turnover. Standard errors, two-way clustered by fund and by month, are in parentheses.

Panel A: CAPM Risk Measure

Dependent Variable: Log Real AUM

DRS,, ~3.86 ~5.23 ~1.30 ~1.12
(1.65) (1.68) (0.558) (0.447)
Month FE No Yes Yes Yes
Fund FE No No Yes Yes
Controls No No No Yes
Observations 252420 252420 252411 247054

Panel B: Vanguard Benchmark

Dependent Variable: Log Real AUM

DRS,;, ~3.97 ~5.36 ~2.34 ~2.66
(2.20) (2.22) (0.755) (0.611)
Month FE No Yes Yes Yes
Fund FE No No Yes Yes
Controls No No No Yes
Observations 300947 300947 300936 294412
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Table 4: Determinants of Returns to Scale

The dependent variable in each regression model is D/ESit, the fund’s scale effect computed
using only its observations prior to the month. Std (Alpha) is the standard deviation of the
fund’s alphas, which we calculate over the prior 1 year. 1 (MultiMgr) is a dummy variable
that is equal to one if the fund is managed by many managers. 1 (Outflows) is an indicator
for whether the fund experienced outflows over the prior 1 year. LogFundAge is the natural
logarithm of years since the fund’s first offer date (from CRSP) or, if missing, since the fund’s
inception date (from Morningstar). All models are estimated by OLS. Standard errors, two-
way clustered by fund and time, are in parentheses.

Panel A: CAPM Risk Measure

Dependent Variable: DRS,,

Std (Alpha) 0.267 0.265
(0.0239) (0.0244)
L (MultiMgr) —0.00164 —0.000998
(0.000364) (0.000354)
1 (Out flows) 0.00217 0.00214
(0.000398) (0.000388)
LogFundAge 0.000602 0.000785
(0.000369)  (0.000349)
Controls Yes Yes Yes Yes Yes
Observations 252362 248077 252434 252200 247989

Panel B: Vanguard Benchmark

Dependent Variable: DRS,,

Std (Alpha) 0.154 0.147
(0.0185) (0.0185)
L (MultiMgr) —0.00102 —0.000717
(0.000234) (0.000225)
1 (Out flows) 0.00179 0.00152
(0.000242) (0.000225)
LogFundAge 0.00146 0.00136

(0.000225)  (0.000210)

Controls Yes Yes Yes Yes Yes

Observations 300883 294922~ 300963 300666 294815
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Table 5: Relation Between DRS and FSP
This table is the same as Table 2 but replaces DRS;; by their predicted values based on fund
characteristics, DRS);.

Panel A: CAPM Risk Measure

Dependent Variable: FSPy

DRS;; —2.95 —2.28 —2.37 —0.0536 —0.0854
(0.568) (0.657) (0.596) (0.0152) (0.0148)
Month FE No Yes Yes No No
Fund FE No No Yes No Yes
Observations 178624 178624 178612 178624 178612
Scale Raw est. Raw est. Raw est. Pctl. rank  Pctl. rank
Panel B: Vanguard Benchmark
Dependent Variable: F/S\Pit
DRS;; ~7.83 —6.88 ~3.39 —0.0546 ~0.0404
(1.84) (1.89) (1.99) (0.0133) (0.0134)
Month FE No Yes Yes No No
Fund FE No No Yes No Yes
Observations 216044 216044 216040 216044 216040
Scale Raw est. Raw est. Raw est. Pctl. rank  Pctl. rank
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Table 6: Relation Between DRS and Size

This table is the same as Table 3 but replaces DRS i« by their predicted values based on fund

characteristics, DRS);.

Panel A: CAPM Risk Measure

Dependent Variable: Log Real AUM

DRS,;, —44.1 ~63.3 —49.0 —36.4
(8.10) (9.08) (3.83) (3.29)
Month FE No Yes Yes Yes
Fund FE No No Yes Yes
Controls No No No Yes
Observations 247975 247975 247965 243079
Panel B: Vanguard Benchmark
Dependent Variable: Log Real AUM
DRS,, ~16.7 ~16.1 ~88.7 755
(14.9) (15.7) (7.10) (5.91)
Month FE No Yes Yes Yes
Fund FE No No Yes Yes
Controls No No No Yes
Observations 294,799 294,799 294,790 288,867
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Table 7: Calibration

The top panel summarizes the model parameters that we set directly and their parameter
values. Then, for each value of b, we construct 2,500 samples of simulated panel data for
100 funds over 100 months. In each sample, we estimate the flow-performance sensitivity ~.
Given b, we set og so that the median of the v estimates across simulated samples matches
the flow-performance relation implied by the regression model in column 3 of Panel A of
Table 5 (i.e., FSP = 0.117 — 2.40 x DRS). Panel B contains the values of oy that resulted
from this process for five plausible values of b: 0.00357, 0.00531, 0.00770, 0.0106, and 0.0140.
These values correspond to the 10th, 25th, 50th, 75th, and 90th percentiles of fund-specific b
estimates, respectively. Column 3 shows the target flow-performance sensitivities computed
using F.ISP = 0.117 — 2.40 x DRS, while the resulting median of the v estimates across
simulated samples are reported in the last column. Panel C repeats the same analysis for
each b, but using the counterfactual value of oy = 0.162% per month.

Panel A: Parameter Values

Variable Symbol  Value
Return standard deviation o 5.77%
Exit mean [ 0%

Panel B: Calibration

Parameter set Calibrated parameter FSP

Decreasing returns to scale (b) Prior standard deviation (o) Target Model
0.00357 0.00116 0.109  0.110
0.00531 0.00139 0.105 0.107
0.00770 0.00162 0.099  0.099
0.01065 0.00186 0.092  0.093
0.01396 0.00204 0.084 0.084

Panel C: Counterfactual

Parameter set Counterfactual parameter FSP

Decreasing returns to scale (b) Prior standard deviation (o) Target Model
0.00357 0.00162 0.109  0.213
0.00531 0.00162 0.105  0.143
0.00770 0.00162 0.099  0.099
0.01065 0.00162 0.092 0.071
0.01396 0.00162 0.084 0.054
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Table 8: Simulation

We construct 2,500 samples of simulated panel data for 10,000 funds over 100 months.
To simulate a given sample, we first draw each fund’s DRS b; randomly from a geometric
distribution consistent with the distribution of fund-specific b estimates, while we draw the
fund’s skill ; from a normal distribution with mean 6 (b;) and standard deviation o (b;).
Next, we draw the random values of ¢, building up the panel data of r;; and ¢;;. For every
i and t, we compute the fund’s size under the counterfactual, ¢, as detailed in Section
5.4.1. Finally, for each sample, we calculate the R-squared from a regression of log (¢;;) on
log (qg ) € check the goodness of fit by counterfactuals. Panel A reports the results from our
first coutiterfactual; Panel B focuses on the second counterfactual. Panel C shows summary
statisticsYof the DRS-FSP relations in both the fully calibrated model and the uncalibrated
model (i.e., using the counterfactual value of oy = 0.162% per month).

Panel A: First Counterfactual

log (¢it) = K+ Mog (q) f&u

Percenttiles
Mean Stdev. 1% 25% 50% 75% 99%
10.175 0.0023 10.169 10.173 10.175 10.176 10.180

3
X( —-1.033 0.0005 -1.034 -—-1.033 -1.033 —-1.033 —1.032

0.5067 0.0006 0.5053 0.5063 0.5068 0.5072  0.5081

Panel B: Second Counterfactual
log (gi) = & + Aog (¢77) f &4
Percentiles
Mean Stdev. 1% 25% 50% 5% 99%
R 0.0006 0.0055 —0.012 —0.003 0.0005 0.0042 0.0138
h\ 0.9999 0.0011 0.9973 0.9992 0.9999 1.0006 1.0024
0.9999 0.0000 0.9998 0.9998 0.9999 0.9999 0.9999

Panel C: Estimated DRS-FSP Relation

Data —2.367
Percentiles
Mean Stdev. 25% 50% 5%
Calibrated Model —2.643 0.0001 —2.644 —2.643 —2.643

Uncalibrated Model — —11.17 0.0001 -11.17 —-11.17 -11.17

35



Table 9: Relation Between Optimal Size and Fund Size

The dependent variable in each regression model is the fund’s log real AUM in $ millions
(base year is 2000). ¢ is an estimate for the optimal fund size; @p, is an alternative
measure of optimal fund size, assuming that fund size has the same effect on performance
for all funds. We assign funds to one of three samples based on fund age: [0, 5], (5,10], and
> 10 years. Columns 1-3 show the results from running panel regressions of log real AUM on
the fund’s log optimal fund size estimate in each age-sorted sample. The last three columns
show the results from running multiple regressions of log (¢;:) on both log (¢}) and log (gzps)
in all three age-sorted samples. The double clustered (by fund and time) standard errors are
in parentheses.

Panel A: CAPM Risk Measure

Dependent Variable: Log Real AUM

log (q7) 0.218 0.364 0.430 —0.0189 0.00599 0.0474
(0.0158)  (0.0208)  (0.0330)  (0.0148)  (0.0110)  (0.00942)

108 (Grps) 0.497 0.762 0.916
(0.0230)  (0.0166)  (0.0143)

R? 0.146 0.354 0.428 0.308 0.665 0.824
Observations 64718 105288 196233 64718 105288 196233
Fund ages [0, 5] yr. (5,10] yr. > 10 yr. [0, 5] yr. (5,10] yr. > 10 yr.

Panel B: Vanguard Benchmark

Dependent Variable: Log Real AUM

log (q7) 0.0546 0.0745 0.132 0.0147 0.0126 0.0251
(0.00655)  (0.00906)  (0.0166)  (0.00472)  (0.00423)  (0.00514)

10g (T5ps) 0.273 0.484 0.692
(0.0111)  (0.0113)  (0.0128)

R? 0.0497 0.0721 0.134 0.248 0.510 0.699
Observations 75870 110319 196467 75870 110319 196467
Fund ages [0, 5] yr. (5,10] yr. > 10 yr. [0, 5] yr. (5,10] yr. > 10 yr.
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Panel A: CAPM risk measure
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Figure 1: Distribution of fund-specific decreasing returns to scale over time: The
figure plots each month’s mean and percentiles of estimated size effect on performance across
all funds operating during that month. Panel A estimates DRS using the CAPM alpha to
measure fund performance. Panel B estimates DRS when we take Vanguard index funds as
the alternative investment opportunity set.
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Figure 2: Distribution of fund-specific flow sensitivity to performance over time:
The figure plots each month’s mean and percentiles of estimated flow sensitivity to per-
formance across all funds operating during that month. Panel A estimates FSP using the
CAPM alpha to measure fund performance.
computed using Vanguard index funds as benchmark portfolios.

Panel B estimates FSP when net alpha is



Panel A: CAPM risk measure
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Figure 3: Cross-sectional distribution of characteristic-based DRS over time: This
figure is the same as Figure 1 but measures size effect on performance not by DRS};, but by
their predicted values based on fund characteristics, DR.S;.
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Panel A: Prior mean as a function of DRS
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Figure 4: Priors, conditional on the fund’s decreasing returns to scale parameter
b: Panel A plots the prior mean (fy) as a function of b that we use in our simulation
analysis. Panel B plots the prior uncertainty (o() as a function of b that we use in our
simulation analysis. Given b, o is calibrated so that the median of the FSP (flow sensitivity
to performance) estimates across simulated samples matches the flow-performance relation
implied by the regression model in column 3 of Panel A of Table 5. Our approach is to
calibrate the prior uncertainty for 100 disperse values of b, fitting a quadratic polynomial
to the data, (b,00), that resulted from this process to extrapolate the prior uncertainty,
conditional on other values of b, that we use in our simulation analysis.
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Panel A: CAPM risk measure
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Figure 5: Relation between two measures of optimal fund size: The figure plots the
main measure of optimal fund size, log (¢}), versus the alternative measure of optimal fund
size, log (¢'zpy)- We compute the optimal fund size, g, by estimating fund-specific a and b
parameters. We construct an alternative measure of optimal log fund size, ignoring the fact
that there is individual heterogeneity in decreasing returns to scale. The circles represent
pairs of (log (¢'grps) ,log (¢F)). The red line depicts the identity line.
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	We analyze the eﬀects of returns to scale on capital allocation decisions in the mutual fund market by exploiting individual heterogeneity in decreasing returns to scale across funds. We ﬁnd strong evidence that steeper decreasing returns to scale attenuate ﬂow sensitivity to performance and lead to smaller fund sizes. Our results are consistent with a rational model for active management. Using the model, we argue that a large fraction of capital allocation due to diﬀerences in decreasing returns to scale 
	We thank seminar participants at Emory University for their comments and suggestions. 
	∗


	1 Introduction 
	1 Introduction 
	An important question in ﬁnancial economics is whether investors eﬃ ciently allocate capital across ﬁnancial assets. Under the standard neoclassical assumptions, investors compete with each other for positive present value opportunities, and by doing so, remove them in equilibrium. In the case of mutual funds, the literature has argued that decreasing returns to scale (DRS) play a key role in equilibrating the mutual fund market (Berk and Green (2004)). Because the percentage fee that mutual funds charge ch
	In this paper we investigate this equilibrating mechanism more closely. In particular, if the above-mentioned equilibration process is at work, we should expect to ﬁnd that the degree of decreasing returns to scale (DRS) can have implications for the ﬂow sensitivity to performance (FSP). While there is much evidence that an active fund’s ability to outperform its benchmark declines as its size increases,there is surprisingly little empirical work devoted to whether investors account for the adverse eﬀects o
	1 

	We address this important question by formally deriving and empirically testing what a rational model for active management implies about the relation between returns to scale and ﬂow sensitivity to performance. Using a theory model similar to that of Berk and Green (2004), we show that steeper decreasing returns to scale attenuates ﬂow sensitivity to performance. In the model, investors rationally interpret high performance as evidence of the manager’s superior skill, so good performance results in an inﬂo
	To test this theoretical insight, one needs a source of heterogeneity in decreasing re
	-

	See, for example, Chen et al. (2004), Yan (2008), Ferreira et al. (2013), and Zhu (2018). 
	1

	turns to scale. One also needs to observe investor reactions to this heterogeneity. Indeed, we demonstrate that there is a substantial amount of heterogeneity in DRS across individual funds, with correspondingly heterogeneous ﬂow sensitivity to performance across funds. Our approach can be interpreted as inferring how the subjective size-performance relation, perceived by investors in real time, is incorporated into the ﬂow-performance relation going forward. We ﬁnd that a steeper decreasing returns to scal
	-
	-

	One of the challenges in estimating the eﬀect of decreasing returns to scale on ﬂow sensitivity to performance is the estimation error in fund-speciﬁc DRS. As a result, the point estimates of the DRS-FSP relation using DRS estimates from simple fund-by-fund regressions are likely to suﬀer from an errors-in-variables bias. We alleviate the errors-in-variables bias by relating the heterogeneity in decreasing returns to scale to a set of fund characteristics. In particular, by regressing the fund-speciﬁc DRS e
	Next we turn to the economic signiﬁcance of our estimates. In particular, we assess how equilibrium fund size is aﬀected by the cross-sectional variation in decreasing returns to scale parameters. This exercise does require model assumptions. We calibrate a rational model in the spirit of Berk and Green (2004) to compute counterfactual fund sizes. We ﬁnd that at least 49% of the cross-sectional variance of fund sizes can be related to cross-sectional variation in decreasing returns to scale parameters. More
	Beyond implications for fund ﬂows, steeper decreasing returns to scale has implications for fund size in equilibrium. In the model, fund size in equilibrium is proportional to the ratio of perceived skill over diseconomies of scale, which predicts that, all else equal, the 
	Beyond implications for fund ﬂows, steeper decreasing returns to scale has implications for fund size in equilibrium. In the model, fund size in equilibrium is proportional to the ratio of perceived skill over diseconomies of scale, which predicts that, all else equal, the 
	decreasing returns to scale parameter should be lower for larger funds. This prediction is conﬁrmed in our empirical analysis. Moreover, if investors update their beliefs about skill as in the model, their perception of optimal size ought to converge to true optimal size as funds grow older. Consistent with this argument, we ﬁnd that estimates for the optimal size largely explains capital allocation across older funds in the data. We measure (log) optimal size by the average ratio of the usual net alpha tha

	Taken together, our results demonstrate that investors do account for the adverse eﬀects of fund scale in making their capital allocation decisions, and that the rational expectations equilibrium does a reasonable job of approximating the observed equilibrium in the mutual fund market. In contrast, mutual fund investors were generally deemed naive return chasers because fund ﬂows respond to past performance even though performance is not persistent.Furthermore, many papers in the mutual fund literature have
	2 
	3 


	2 Deﬁnitions and hypotheses 
	2 Deﬁnitions and hypotheses 
	To formally derive our hypothesis, we use the notation and setup presented in Berk and van Binsbergen (2016). Let qit denote assets under management (AUM) of fund i at time t and let θi denote a parameter that describes the skill of the manager of fund i. At time t, investors use the time t information set It to update their beliefs on θi resulting in the distribution function gt (θi) implying that the expectation of θi at time t is: 
	Z 
	it ≡ E [θi |It ]= θigt (θi) dθi. (1) 
	θ

	See Chevalier and Ellison (1997) and Sirri and Tufano (1998), among others. 
	2

	See Jensen (1968), Malkiel (1995), Gruber (1996), Fama and French (2010), and Del Guercio and Reuter (2013), among others. 
	3

	We assume throughout that gt (·) is not a degenerate distribution function. Let Rdenote the return in excess of the risk free rate earned by investors in fund i at time t. This return can be split up into the excess return of the manager’s benchmark, R, and a deviation from the benchmark εit: 
	n
	it 
	it
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	R= R+ εit. (2) 
	n
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	it 

	Note that qit, Rand Rare elements of It. Let αit (q) denote investors’subjective expec
	n 
	B 
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	it it tation of εi,t+1 when investing in fund i that has size q between time t and t +1, and let it be equal to: 
	αit (q)= it − hi (q) , (3) 
	θ

	where hi (q) is a strictly increasing function of q that captures the decreasing returns to scale the manager faces, which can vary by fund. In equilibrium, the size of the fund qit adjusts to ensure that there are no positive net present value investment opportunities so αit (qit)=0 and 
	it = hi (qit) . (4) 
	θ

	At time t +1, the investor observes the manager’s return outperformance, εit+1, which is a θi. The conditional distribution function of εi,t+1 at time t, ft (εit+1), satisﬁes the following condition in equilibrium: 
	signal that is informative about 

	Z 
	E [εit+1 |It ]= εit+1ft (εit+1) dεit+1 = αit (qit)=0. (5) 
	In other words, the manager’s return outperformance can be expressed as follows: 
	εit+1 = θi − hi (qit)+ .it+1 
	= sit+1 − hi (qit) , 
	where sit+1 = θi +.it+1. Our hypothesis relies on the insight that good news, that is, high sit, θi and bad news, low sit, implies bad news about θi. The following lemma shows that this condition holds generally. That is, it is a strictly increasing function of sit. 
	implies good news about 
	θ

	Lemma 1 If the likelihood ratio ft (sit+1 |θi ) /ft (sit+1 |θ) is monotone in sit+1, increasing if θi >θand decreasing otherwise, 
	c
	i 
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	∂θit+1 
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	> 0. (6) 
	∂sit+1 
	Proof. See Milgrom (1981). 
	In addition, we assume that the costs that manager i faces in expanding the fund’s scale is given by: hi (q)= bih (q) , (7) 
	where bi > 0 is a parameter that captures the cross sectional variation in the fund’s returns to scale technology and h (q) is a strictly increasing function of q, which essentially determines the form of decreasing returns to scale technology that is common across all funds. Using 
	(7) to rewrite (4) now gives 
	.. 
	θit 
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	qit = h. (8) bi 
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	The following lemma shows how the size of the fund qit depends on the information in sit or the parameter bi. 
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	∂bi bih(qit) 
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	Proof. First, note that εit does not contain information about managerial ability that is not already contained in sit. Because rescaling the fund’s returns to scale technology (i.e., bi) does not change the signal sit, we can conclude that 
	changing the parameter 

	∂θit 
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	=0. (11) 
	∂bi 
	Now diﬀerentiating (8) with respect to sit, and using the fact that these signals are indebi (i.e., ∂bi/∂sit =0), gives 
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	pendent of 
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	where the last equality follows from (8). Similarly, diﬀerentiate (8) with respect to bi, and use (11) to substitute for ∂it/∂bi in this expression. Appealing, again, to (8), gives (10). 
	θ

	i t Fit, that is, 
	Next, let the ﬂow of capital into mutual fund 
	at time 
	be denoted by 

	Fit+1 ≡ log (qit+1/qit) . 
	sit+1, 
	Diﬀerentiating this expression with respect to 

	1 11 
	∂Fit+1 
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	where the second equality follows from (9) and the inequality follows from Lemma 1, so good (bad) performance results in an inﬂow (outﬂow) of funds. This result is one of the important insights from Berk and Green (2004). 
	Given the importance of returns to scale technology in determining the size of a fund, a natural question to ask is, what is the implication of steeper decreasing returns to scale for the ﬂow-performance relation? We answer this question by computing the derivative of the ﬂow-performance sensitivity with respect to bi: 
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	where the ﬁrst equality follows from (11) because when it+1 is solely a function of the history 
	θ
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	of realized signals and is not a function of bi then =0 and the last equality follows 
	∂bi ∂sit+1 
	from (10). What (12) combined with Lemma 1 tells us is that steeper decreasing returns to scale must lead to a smaller ﬂow of funds response to performance if and only if 
	.. 
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	Unfortunately, the left hand side of Equation 13 is not easy to sign without further assumptions. To assess whether this condition holds, we rely on the second-order approximation to the decreasing returns to scale technology: 
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	h (q) ' h+ hlog (q)+ hlog (q), (14) 
	0 
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	where hi for i = {0, 1, 2} are the coeﬃ cients in the second-order approximation. This approximation nests exactly specifying the technology as logarithmic, most commonly considered in empirical studies, if we set h> 0 and h= h=0. Going forward, we set h=0. This assumption is without loss of generality, because we can rewrite the skill parameter as 
	where hi for i = {0, 1, 2} are the coeﬃ cients in the second-order approximation. This approximation nests exactly specifying the technology as logarithmic, most commonly considered in empirical studies, if we set h> 0 and h= h=0. Going forward, we set h=0. This assumption is without loss of generality, because we can rewrite the skill parameter as 
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	θ= θi − bih, which, in turn, renders h=0. The following proposition shows that, under approximation (14), condition (13) holds generally. That is, steeper decreasing returns to scale leads to a weaker ﬂow response to performance. We take this as our main hypothesis that we will take to the data. 
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	Proposition 3 Under approximation (14), the derivative of the ﬂow-performance sensitivity with respect to the decreasing returns to scale parameter is negative, that is, 
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	Proof. Under approximation (14), the left-hand side of (13) is then given by: 
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	The numerator of this expression is the sum of two squares, so it is positive. Note that the denominator can be rewritten as the product of qit+1 and h(qit+1) under the given approximation. Recall that h (q) is a strictly increasing function of q, reﬂecting the fact that all mutual funds must face decreasing returns to scale in equilibrium. Requiring that, under the approximation, h(qit+1) > 0 is also ensured, this means that the denominator is positive as well. It then follows immediately that condition (1
	0 
	-
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	3 Data 
	3 Data 
	Our data come from CRSP and Morningstar. We require that funds appear in both CRSP and Morningstar, which allows us to validate data accuracy across the two databases. We merge CRSP and Morningstar based on funds’tickers, CUSIPs, and names. We then compare assets and returns across the two sources in an eﬀort to check the accuracy of each match following Berk and van Binsbergen (2015). We refer the readers to the data appendices of that paper for the details. Our mutual fund data set contains 3,066 actively
	-
	-

	We use Morningstar Category to categorize funds into nine groups corresponding to Morningstar’s 3×3 stylebox (large value, mid-cap growth, etc.). We also use keywords in the Primary Prospectus Benchmark variable in Morningstar to exclude bond funds, international funds, target funds, real estate funds, sector funds, and other non-equity funds. We drop funds identiﬁed by CRSP or Morningstar as index funds, in addition to funds whose name contains “index.”We also drop any fund observations before the fund’s (
	We now deﬁne the key variables used in our empirical analysis: fund performance, fund size, and fund ﬂows. Summary statistics are in Table 1. 
	3.1 Fund Performance 
	3.1 Fund Performance 
	We take two approaches to measuring fund performance. First, we use the standard risk-based approach. The recent literature ﬁnds that investors use the CAPM in making their capital allocation decisions (Berk and van Binsbergen (2016)), and hence we adopt the CAPM. In this case the risk adjustment Ris given by: 
	it 
	CAPM 

	CAPM 
	R

	MKTt,
	it it 
	= β

	where MKTt is the realized excess return on the market portfolio and βis the market beta of fund i. We estimate βby regressing the fund’s excess return to investors onto the market portfolio over the sixty months prior to month t. Because we need historical data of suﬃ cient length to produce reliable beta estimates, we require a fund to have at least two years of track record to estimate the fund’s betas from the rolling window regressions. 
	it 
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	Second, we follow Berk and van Binsbergen (2015) by taking the set of passively managed index funds oﬀered by Vanguard as the alternative investment opportunity set.We then deﬁne the Vanguard benchmark as the closest portfolio in that set to the mutual fund. Let 
	4 
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	denote the excess return earned by investors in the j’th Vanguard index fund at time t. Then the Vanguard benchmark return for fund i is given by: 
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	it i j=1 
	where n (t) is the total number of index funds oﬀered by Vanguard at time t and βis obtained from the appropriate linear projection of active mutual fund i onto the set of Vanguard index 
	j
	i 

	See Table 1 of that paper for the list of Vanguard Index Funds used to calculate the Vanguard benchmark. 
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	funds. As pointed out by Berk and van Binsbergen (2015), by using Vanguard funds as the benchmark, we ensure that this alternative investment opportunity set was marketed and tradable at the time. Again, we require a minimum of 24 months of data to estimate β’s necessary for deﬁning the Vanguard benchmark for fund i. 
	j
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	CAPM Vanguard 
	α

	Our measures of fund performance are then b and αb , the realized return for 
	it it 
	Vanguard CAPM 
	α

	the fund in month t less Rand R . The average of b is +1.5 bp per month, 
	CAPM 

	itit it 
	Vanguard 
	whereas the average αbis −1.4 bp per month. 
	it 


	3.2 Fund Size and Flows 
	3.2 Fund Size and Flows 
	We adjust all AUM numbers by inﬂation by expressing all numbers in January 1, 2000 dollars. Adjusting AUM by inﬂation reﬂects the notion that the fund’s real (rather than nominal) size is relevant for capturing decreasing returns to scale in active management. qit−1 in the previous section. There is considerable dispersion in real AUM: the inner-quartile range is from $45 million to $618 million. 
	That is, lagged real AUM corresponds to 

	We calculate ﬂows for fund i in month t as: 
	AUMit − AUMit−1 (1 + Rit)
	Fit = ,
	AUMit−1 (1 + Rit) 
	where AUMit is the (nominal) AUM of fund i at the end of month t, and Rit is the total return of fund i in month t.So ﬂows represent the change in the fund’s net assets not attributable to its return gains or losses. The ﬂow of fund data contains some implausible Fit is −0.2% per month. 
	5 
	outliers, so we winsorize ﬂows at its 1st and 99th percentiles. Median 



	4 Methodology 
	4 Methodology 
	Our analysis relies on a theoretical link between decreasing returns to scale and ﬂow sensitivity to returns. We discuss how we estimate each part in the following sections. 
	-

	Note that we use AUMit−1 (1 + Rit) in the denominator rather than AUMit−1, which is typically used in much of the existing literature on fund ﬂows. Unfortunately, this deﬁnition distorts the ﬂow for very large negative returns. For example, liquidition of a fund, i.e., AUMit =0, implies a ﬂow of − (1 + Rit). Our measure of the ﬂow of funds is equal to, and correctly so, −1 in this case. Regardless, our ﬁndings are unaﬀected by using the more common deﬁnition of the ﬂow. 
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	4.1 Fund-Speciﬁc Decreasing Returns to Scale (DRS) 
	4.1 Fund-Speciﬁc Decreasing Returns to Scale (DRS) 
	Empirically, we assume that the net alpha that manager i generates by actively managing money is given by: 
	αit = ai − bi log (qit−1)+ .it, (15) 
	where ai is the fund ﬁxed eﬀect, bi captures the size eﬀect, which can vary by fund, and qit−1 is the dollar size of the fund. 
	The simple regression model in equation (15) corresponds to the model in Section 2. This model further assumes the form of the fund’s decreasing returns to scale technology is logarithmic, which is often used to empirically analyze the nature of returns to scale due to severe skewness in dollar fund size. 
	We depart from much of the literature describing the size-performance relation by taking the size-performance relation to vary across funds. Indeed, the eﬀect of scale on a fund’s performance is unlikely to be constant across funds. For example, a fund’s returns should be decreasing in scale more steeply for those that have to invest in small and illiquid stocks, which are likely to face lower liquidity. 
	Given that it is not clear a priori why and how the size-performance relation depends on which fund characteristics, we prefer to estimate fund-speciﬁc a and b parameters in our main analysis. For each fund i at time t, we run the time-series regression of αiτ on log (qiτ −1) using sixty months of its data before time t. Estimating b fund by fund leads to imprecise estimates especially for funds with short track records, so we require at least three years of data to estimate fund-speciﬁc returns to scale of
	d
	The estimate of bi, DRS, is obtained from (15) using sixty months of the data for fund i prior to time t, where the alpha can be estimated under model m ∈{CAPM, Vanguard}. Intuitively, these estimates represent, for investors who use model m in making capital allocation decisions, their perception of the eﬀect of size on performance for fund i at time t based on information prior to time t. 
	it
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	d
	Panel A of Figure 1 shows how the cross-sectional distribution of DRSit using the CAPM alpha varies over time. For each month in 1991 through 2014, the ﬁgure plots the average as well as the percentiles of the estimated fund-speciﬁc b parameters across all funds operating in that month. The plot shows considerable heterogeneity in decreasing returns to scale across funds. For example, the interquartile range is more than 3 times larger than the estimates’ cross-sectional median in a typical month; in fact, 
	Panel A of Figure 1 shows how the cross-sectional distribution of DRSit using the CAPM alpha varies over time. For each month in 1991 through 2014, the ﬁgure plots the average as well as the percentiles of the estimated fund-speciﬁc b parameters across all funds operating in that month. The plot shows considerable heterogeneity in decreasing returns to scale across funds. For example, the interquartile range is more than 3 times larger than the estimates’ cross-sectional median in a typical month; in fact, 
	points (bp) per month. This evidence suggests that the subjective size-performance relation, perceived by investors in real time, provides an ideal identifying variation in the extent of decreasing returns to scale. 

	d
	Panel B of Figure 1 shows the time evolution of DRSit when we take Vanguard index funds as the alternative investment opportunity set. Similar to our main measure in Panel A, the alternative measure exhibits a clear heterogeneity in diseconomies of scale across funds, though these estimates typically indicate milder decreasing returns to scale. 

	4.2 Fund-Speciﬁc Flow Sensitivity to Performance (FSP) 
	4.2 Fund-Speciﬁc Flow Sensitivity to Performance (FSP) 
	We estimate the fund-speciﬁc ﬂow sensitivities to past performance by estimating the following regression fund by fund: 
	-

	Fit = ci + γPit−1 + υit, (16) 
	i

	where Pit−1 is annual alpha for the year leading to month t − 1, computed by compounding the monthly alphas as follows: 
	t−1
	YŁ . 
	Pit−1 = 1+ R− R− 1.
	is
	n 
	B 

	is s=t−12 
	This regression is consistent with empirical evidence that investors do not respond immediately. For example, Berk and van Binsbergen (2016) and Barber, Huang, and Odean (2016) show that ﬂows respond to recent returns, as well as distant returns. Parameter γ> 0 captures the positive time-series relation between performance and fund ﬂows, which can vary by fund. Again, this is where we depart from much of the literature describing the ﬂow-performance relation. 
	-
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	At time t, we calculate the fund’s ﬂow sensitivity to performance by estimating (16) 
	m 
	d 

	using its data over the subsequent 5 years. For fund i, let F SP be the estimated ﬂow-performance regression coeﬃ cient of that model, where the performance can be estimated under model m ∈{CAPM, Vanguard}. To avoid using imprecise estimates, we require these coeﬃ cient estimates to be obtained from at least three years of data. For the average fund, we observe that an increase of 1% in the monthly CAPM alpha is associated with an increase of 1.3% in monthly ﬂows next month. 
	it 

	d
	F SP it by plotting the average as well as the percentiles of the estimated ﬂow sensitivities to performance at each point of time. Panel A shows the results using the CAPM alpha, and Panel B shows the results when 
	F SP it by plotting the average as well as the percentiles of the estimated ﬂow sensitivities to performance at each point of time. Panel A shows the results using the CAPM alpha, and Panel B shows the results when 
	Figure 2 displays the evolution of the distribution of 

	net alpha is computed using Vanguard index funds as benchmark portfolios. Note that the results are very similar across the two panels, manifesting considerable heterogeneity in the ﬂow-performance relation across funds. More importantly, Figure 2 shows that while both 

	d
	the mean and median F SP it do not exhibit any obvious trend, these are certainly time varying. As the red dashed lines in the ﬁgure make clear, the distribution has remained roughly the same over our sample period, conditional on the median. 


	5 Results 
	5 Results 
	5.1 DRS and Flow Sensitivity to Performance 
	5.1 DRS and Flow Sensitivity to Performance 
	To investigate whether investors pay attention to the fund’s decreasing returns to scale technology in making their capital allocation decisions, we run panel regressions of fund i’s 
	d
	ﬂow sensitivity to performance going forward in month t, F SP it, on the fund’s returns to 
	d
	scale estimated as of the previous month-end, DRSit. We test the null hypothesis that the 
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	DRSit is zero. We consider two approaches: plain OLS and OLS with ﬁxed eﬀects (OLS FE), as detailed below. We report the results in Table 2.In Panel A, we report the results using the CAPM as the benchmark; in Panel B, we use Vanguard index funds as the benchmark. 
	slope on 
	7 

	We show results based on raw estimates in the ﬁrst three columns. Across these three columns, we gradually saturate with month and fund ﬁxed eﬀects to focus on variation coming from the market equilibrating mechanism beyond diﬀerences in sensitivity across funds and over time. The fund ﬁxed eﬀects absorb the cross-sectional variation in ﬂow/performance sensitivity that is due to diﬀerences in investor clientele across funds, while the time ﬁxed eﬀects soak up any variation in ﬂow/performance sensitivity due
	-
	-
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	In the ﬁrst column, we include no ﬁxed eﬀects to include all variation in ﬂow sensitivities. 
	d
	Consistent with the main prediction of our model, the estimated coeﬃ cient on DRSit is 
	Surely, not only the independent variable, but the dependent variable are measured imprecisely. The measurement error in DRSit will bias the OLS estimator toward zero. While the measurement error in F SPit will not induce bias in the OLS coeﬃ cients, it will render their variance larger. For now, we do not worry, as the errors-in-variables problem will work against us from ﬁnding a statistically signiﬁcant relation that the model predicts. 
	6

	Table 2 reports the double clustered (by fund and time) t-statistics. 
	7

	See Berk and Tonks (2007). 
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	signiﬁcantly negative using the CAPM benchmark. This ﬁnding is unaﬀected by controlling for month and/or fund ﬁxed eﬀects. In the second column, we include month ﬁxed eﬀects. 
	d
	The third column further adds ﬁxed eﬀects for funds. The negative coeﬃ cients on DRSit in the CAPM-adjusted result are highly statistically signiﬁcant, with t-statistic that are 
	d
	smaller than −3. While the estimated coeﬃ cient on DRSit using the Vanguard benchmark in column 1 is marginally insigniﬁcant (with t-statistic of −1.6), including month and/or fund ﬁxed eﬀects in this case causes the t-statistics to grow substantially in magnitude. Thus, the estimates in the next two columns of Panel B are signiﬁcantly negative at the 10% and 5% conﬁdence levels, respectively. 
	The last two columns in Table 2 repeat this exercise with percentile ranks in each month 
	dd
	based on DRSit and F SP it. In this case, we do not use month ﬁxed eﬀects, as percentile ranks already soak up any time variation in the ﬂow-performance relation. In column 4 of 
	d
	DRSit is signiﬁcantly negative at the 1% conﬁdence level. We then allow for diﬀerences in clientele across funds by adding fund ﬁxed eﬀects (see column 5 of Table 2). Again, the evidence for our main prediction becomes only 
	each panel, the estimated plain OLS coeﬃ cient on 

	d
	DRSit roughly double, while the t-statistic more than double to −7.8 in Panel A and to −6.9 in Panel B. 
	stronger: the estimated coeﬃ cients on 

	To summarize, we ﬁnd a strong negative relation between decreasing returns to scale and ﬂow sensitivity to performance. This relation, which is statistically signiﬁcant, is consistent with the presence of investors rationally accounting for the adverse eﬀects of fund scale in making their capital allocation decisions. Unfortunately, these coeﬃ cient values are not easily interpretable in economic terms, as they represent the eﬀect of one regression coeﬃ cient on another regression coeﬃ cient. In Section 5.4

	5.2 DRS and Fund Size in Equilibrium 
	5.2 DRS and Fund Size in Equilibrium 
	While the main implication of our model is that steeper decreasing returns to scale attenuate ﬂow sensitivity to performance, another immediate implication is that steeper decreasing returns to scale shrink fund size. Recall that fund size in equilibrium is proportional to the ratio of perceived skill over diseconomies of scale (see equation (8)). Are large funds characterized by relatively ﬂat decreasing returns to scale technology? To address this question, we run panel regressions of fund i’s log real AU
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	estimated as of the previous month-end, DRSit. We test the null hypothesis that the slope 
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	on DRSit is zero. We consider two approaches: plain OLS and OLS with ﬁxed eﬀects (OLS FE), as detailed below. We report the results in Table 4.In Panel A, we report the results using the CAPM as the benchmark; in Panel B, we use Vanguard index funds as the benchmark. 
	10 

	Across the ﬁrst three columns, we gradually saturate with month and fund ﬁxed eﬀects to focus on variation coming from the market equilibrating mechanism beyond diﬀerences in size across funds and over time. The fund ﬁxed eﬀects absorb the cross-sectional variation in fund size due to diﬀerences in investors’perception of skill across funds, while the time ﬁxed eﬀects soak up any variation in fund size due to the arrival of news that commonly aﬀect fund performance. 
	In the ﬁrst column, we include no ﬁxed eﬀects to include all variation in fund sizes. 
	d
	Consistent with the above prediction of our model, the estimated coeﬃ cients on DRSit are signiﬁcantly negative. This ﬁnding is unaﬀected by using the CAPM or the Vanguard benchmark, as well as controlling for month and/or fund ﬁxed eﬀects. In the second column, we include month ﬁxed eﬀects. The third column further adds ﬁxed eﬀects for funds. The neg-
	-

	d
	ative coeﬃ cients on DRSit in the CAPM-adjusted result are highly statistically signiﬁcant, 
	d
	with t-statistic that are smaller than −2.33. The estimated coeﬃ cient on DRSit using the Vanguard benchmark in column 1 is marginally signiﬁcant, with t-statistic of −1.8. However, including month and/or fund ﬁxed eﬀects in this case cause the t-statistics to grow substantially in magnitude, so the estimate in column 2 (3) of Panel B are signiﬁcantly negative at the 5% (1%) conﬁdence level. Finally, the last column in Table 4 shows that these ﬁndings are unaﬀected by further including controls that are pla
	-


	5.3 Determinants of Returns to Scale 
	5.3 Determinants of Returns to Scale 
	In this subsection, we investigate what drives heterogeneity in returns to scale by analyzing how it depends on fund characteristics. We explore a number of characteristics that seem relevant a priori for heterogeneity in returns to scale: volatility, a multi-manager indicator, a redemption indicator, fund age, and risk 
	exposures.
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	Again, the independent variable is measured imprecisely. The measurement error in DRSit will bias the OLS estimator toward zero. We will address the estimation error in scale eﬀects in Section 5.4. 
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	Table 4 reports the double clustered (by fund and time) t-statistics. 
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	We also explore whether high-turnover funds exhibit steeper decreasing returns to scale and whether there is a weaker negative size-performance relation for funds with a signiﬁcant degree of international exposure in unreported results. We ﬁnd a negative relation between returns to scale and international exposure, although the relation is mostly statistically insigniﬁcant. The relation between returns to scale and turnover is usually insigniﬁcant and ﬂips to negative when we add other fund characteristics.
	11 

	The ﬁrst characteristic, Std (Alpha), is the standard deviation of a fund’s alphas, which we calculate over the prior 1 year. The second characteristic, 1(MultiMgr), is a dummy variable that is equal to one if the fund is managed by many managers. About 56% of our funds are multi-manager funds. The third characteristic, 1(Outflows), is an indicator for whether the fund experienced outﬂows over the prior 1 year. The fourth characteristic we examine is fund age, measured by the natural logarithm of years sinc
	and Carhart (1997).
	12 

	Why do we expect these characteristics to aﬀect how scale impacts performance? Theoretically, a fund’s portfolio can be interpreted as a combination of investing in the passive benchmark and investing in the actively managed portfolio that is independent of the benchmark returns. Since the cost of managing benchmark exposure is relatively small, the costs of operating the fund are primarily determined by the amount of funds under active management. A reasonable hypothesis is funds that manage a greater prop
	-
	-
	-

	Funds experiencing investor outﬂows might also exhibit steeper decreasing returns to scale. The reason is that funds experiencing redemptions are forced to decrease existing positions, which creates price pressure against these mutual On the other hand, younger funds might exhibit milder decreasing returns to scale. This hypothesis is motivated by Chevalier and Ellison (1999), who ﬁnd that younger managers hold less risky and more conventional portfolios because they are more likely to be ﬁred for bad perfo
	funds.
	13 

	Surely, the extent of decreasing returns to scale is likely to be aﬀected by the stock characteristics chosen by the funds. For example, Carhart (1997) ﬁnds that funds with high 
	upon request. 
	We estimate these risk exposures by regressing the fund’s return on the factors over the prior sixty months. 
	12 

	See Coval and Staﬀord (2007). 
	13 

	past performance repeat their abnormal performance not because fund managers successfully follow momentum strategies, but probably because some mutual funds accidentally end up holding last year’s winners. In turn, these funds capture short-term momentum eﬀect in stock returns virtually without transaction costs. This logic suggests that momentum funds are likely to exhibit steeper decreasing returns to scale. In analyzing the dependence of returns to scale on fund characteristics, we thus control for the c
	We examine these hypotheses by running panel regressions of the scale eﬀect computed 
	d
	it − 1DRSit, on the fund’s characteristics at the end of the previous month. Table 5 shows the estimation Panel A reports the results using the CAPM as the benchmark; Panel B uses Vanguard index funds as the 
	using only fund 
	’s observations prior to month 
	, 
	results.
	14 

	d
	benchmark. In both panels, we ﬁnd signiﬁcant relations between DRS and three characteristics: volatility (column 1), the multi-manager indicator (column 2), and the redemption indicator (column 3). We also ﬁnd that the slope on fund age is positive (column 4). This result is marginally signiﬁcant for the CAPM (with t-statistic of 1.63 in Panel A of Table 5), but it is statistically signiﬁcant using the Vanguard benchmark. These results lend strong support to the narrative from the previous paragraphs. 
	-

	When all four fund characteristics are added at the same time (column 5), the estimated slopes on volatility, multi-manager indicator, and redemption indicator are robust, indicating steeper decreasing returns to scale for higher-volatility funds, sole-manager funds, and funds experiencing outﬂows. Finally, fund age continues to enter with a positive slope, as in column 4, and it now does so signiﬁcantly regardless of how one deﬁnes the benchmark, indicating that decreasing returns to scale are more pronoun

	5.4 Characteristic-Based DRS 
	5.4 Characteristic-Based DRS 
	We have estimated fund-speciﬁc b parameter based on a rolling estimation window. As noted earlier, estimating b fund by fund leads to imprecise estimates especially for funds with short 
	d
	track records. Instead of using the coeﬃ cient estimates DRS as before, we use the estimates 
	d
	from column 5 of Table 6 to obtain an economically interpretable component of DRS based on fund characteristics. This implementation choice assumes that all the funds with the same fund characteristics share the same b value. While ignoring variation might potentially lead to inaccuracy in quantifying fund-speciﬁc b, this method actually seems to increase the 
	e two-way clustered by fund and time. 
	14 
	Standard errors of these regressions ar

	accuracy of the b estimate by dramatically reducing estimation errors. While 27% (30%) of 
	d
	the funds in our sample end up with negative DRS using the CAPM (Vanguard benchmark), less than 1% and 2% of their predicted values based on fund characteristics, denoted by 
	g
	DRS, are negative using the CAPM and Vanguard benchmark, respectively. These results seem sensible since, theoretically, all mutual funds must face decreasing returns to scale in equilibrium. 
	g
	DRSit varies over time. Panel A shows the results using the CAPM alpha, and Panel B shows the results when net alpha is computed using the Vanguard benchmark. While these distributions are naturally tighter 
	Figure 3 shows how the cross-sectional distributions of 

	d
	than those of DRSit, they remain quite disperse, conﬁrming the presence of considerable heterogeneity in DRS. Interestingly, the cross-sectional distributions over our sample period 
	d
	are stable, net of time-series variation in median DRS, which themselves are similar to those in Figure 1. 
	To assess the robustness of our results regarding the eﬀect of returns to scale on capital 
	d
	ﬂows and sizes, we replace DRS and rerun the regressions in Tables 2 and 3, whose 
	DRS by results are tabulated in Tables 5 and 6, respectively. When we rerun our analysis in Table 2 with characteristic-based DRS, we obtain similar and even stronger results indicating that 
	g 

	g
	steeper decreasing returns to scale attenuates ﬂow sensitivity. Table 5 shows that DRS has signiﬁcantly negative slopes throughout, but the coeﬃ cients’estimated values become substantially more negative than in Table 2: the estimated coeﬃ cients based on raw estimates are more than 7 times larger (compare the ﬁrst three columns of Tables 2 and 5). 
	The results from Table 3 are also very similar when capital ﬂows are replaced with log real 
	g
	size: the slopes on DRS are signiﬁcantly negative in Table 6, except for the ﬁrst two columns in Panel B before controlling for fund ﬁxed eﬀects. These estimates of the size-DRS relation are likely to suﬀer from an omitted-variable bias; in equilibrium, the size of a fund is driven not only by its decreasing returns to scale technology, but also by its raw skill. Consistent 
	g
	with this argument, we ﬁnd that the slopes on DRS turn signiﬁcant (in the last two columns in Panel B) after controlling for fund ﬁxed eﬀects. Again, the coeﬃ cients’estimates values become substantially more negative than in Table 3: the estimated coeﬃ cients in regressions with fund ﬁxed eﬀects are typically more than 30 times larger. 
	To summarize, when we conduct the analysis using cleaner measures of decreasing returns to scale, our conclusions on the eﬀects of decreasing returns to scale on capital allocation 
	d
	only become stronger. These results suggest that the attenuation bias due to using DRS to conduct the analysis is quite severe, so we assess the economic magnitude of the DRS-FSP 
	g
	relation estimated using DRS in the following subsection. 
	5.4.1 Simulation Exercise 
	5.4.1 Simulation Exercise 
	In this section, we use our model to ask how much capital is allocated the way it is because of these diﬀerences in decreasing returns to scale. Speciﬁcally, we compute counterfactual fund sizes by assuming the investors believe a priori that returns are decreasing in scale at the same (average) rate for all funds. 
	Two factors fully determine the magnitude of capital response to performance in a rational model – the degree of decreasing returns to scale, and the prior and posterior beliefs about managerial skill. This means that, for a given value of b in equation (15), the prior uncertainty about a, σ, can be inferred from the ﬂow-performance relation, as long as investors update their posteriors with the history of returns as Bayesians. 
	0

	We simulate benchmark-adjusted fund returns from equation (15). It is straightforward to show that the mean of investors’posteriors will satisfy the following recursion: 
	θit = θit−1 + rit,
	σ
	2 
	i0 

	σ+ tσ
	2 
	2 
	i0 

	where θi0 is the mean of the initial prior. Using (8), we compute fund size as follows: 
	.. 
	θit 
	θit 

	qit = exp . bi 
	We begin by tying down the model parameters that can be set directly. Following Berk and Green (2004), we set Std(ε) = 20% per year, or 5.77% per month. Investors’prior on a fund’s ability is that θi is normally distributed with mean θand standard deviation σ. Since investors are assumed to have rational expectations, this is also the distribution from which we draw each fund’s skill. We shall also assume that funds shut down the ﬁrst time θit <, where we set =0.These parameter values are summarized in the 
	0 
	0
	2 
	θ
	θ 
	15 
	0 
	0

	The empirical distribution of b is generally well approximated by a geometric distribution, from which we draw b randomly. In that case, assuming that θis independent of b gives rise to distributions of fund size considerably more disperse than in our actual sample. Speciﬁcally, the simulated fund sizes tend to be too big for funds whose returns decrease in 
	0 

	s of operation each period. These costs can be, for example, overhead, back-oﬃ ce expenses, and the opportunity cost of the manager’s time. Managers will optimally choose to exit when they cannot cover their ﬁxed costs. 
	15 
	Intuitively, managers incur ﬁxed cost

	scale more gradually, while the simulated fund sizes tend to be too small for those that exhibit steeper decreasing returns to scale. In turn, we model prior mean as a quadratic function of b. Our approach is to ﬁt the parameters governing this function such that the simulated mean and standard deviation of log fund size essentially match the empirical benchmark values of 5.12 and 1.89, The prior mean as a function of b that we use in our simulation analysis is plotted in Panel A of Figure 4. 
	respectively.
	16 

	Recall from Table 5 that steeper decreasing returns to scale imply less ﬂow sensitivity to performance. For example, as shown in column 3 of Panel A, 
	d
	F SP =0.117 − 2.40 × DRS. (17) 
	We consider ﬁve plausible values of b: 0.00357, 0.00531, 0.00770, 0.0106, and 0.0140. These values correspond to the 10th, 25th, 50th, 75th, and 90th percentiles of fund-speciﬁc b estimates, respectively. For each value of b, we construct 2,500 samples of simulated panel data for 100 funds over 100 months. In each sample, we estimate the ﬂow-performance sensitivity by running the following regression: 
	it/qit−1)= c + γrit + υit. 
	log (q

	Given b, we set σso that the median of the γ estimates across simulated samples matches the ﬂow-performance relation implied by (17). Panel B of Table 7 contains the values of σfor all ﬁve values of b that resulted from this process. Panel B of Figure 4 also plots the prior uncertainty as a function of b that we use in our simulation analysis. Column 3 shows the target ﬂow-performance sensitivities computed using (17), while the resulting median of the γ estimates across simulated samples are reported in th
	0 
	0 

	Matching the ﬂow-performance sensitivities for funds at diﬀerent levels of decreasing returns to scale requires the distribution of skills across these funds to be quite diﬀerent than the skill distribution for funds whose returns decrease with fund size at a median rate. Panel C of Table 7 shows the median of the γ estimates across simulated samples for each b, but using the counterfactual value of σ=0.162% per month instead of its calibrated value. 
	0 

	le ways prior mean as a function of b for which the simulated mean and standard deviation of log fund size can match the empirical benchmark values. To pick a single function, we impose the additional constraint that the simulated mean of log fund size is decreasing in b. This constraint is motivated by empirical evidence presented earlier in Section 5.2: steeper decreasing returns to scale shrink fund size. 
	16 
	Note that there generally exist multip

	If we assume that prior uncertainty is constant across diﬀerent levels of decreasing returns to scale, the model produces much smaller (larger) ﬂow sensitivities to performance for funds that exhibit relatively steeper (ﬂatter) decreasing returns to scale than those implied by (17). 
	To quantitatively assess the role of heterogeneity in returns to scale in capital allocation, and to assess the economic magnitude of equation (17), we must construct a counterfactual. We construct two counterfactuals. We construct the ﬁrst counterfactual by assuming investors who learn about skill based on distorted beliefs that the fund exhibits median decreasing returns to scale and its skill is drawn from a normal distribution with the correspondingly calibrated standard deviation. Speciﬁcally, the ﬁrst
	-
	-
	0 
	0 

	We construct 2,500 samples of simulated panel data for 10, 000 funds over 100 months. To simulate a given sample, we ﬁrst draw each fund’s DRS bi randomly from a geometric distribution consistent with the distribution of fund-speciﬁc b estimates, while we draw the fund’s skill θi from a normal distribution with mean θ(bi) and standard deviation σ(bi). εit, building up the panel data of rit and qit. For every i and t, we compute the fund’s size under the counterfactual, q, as detailed above. log (qit) on log
	0 
	0 
	Next, we draw the random values of 
	it
	C 
	Finally, for each sample, we calculate the R-squared from a regression of 
	it
	C 

	We report the results in Table 8. Panel A reports the results from our ﬁrst counterfactual; Panel B focuses on the second counterfactual. The ﬁrst two rows in each panel show
	-

	Ł. 
	summary statistics of the coeﬃ cient estimates from the regression of log (qit) on log qacross simulated samples; the last row shows summary statistics of the R-squared from this regression across simulated samples. 
	it
	C 

	Even under the ﬁrst counterfactual where investors believe that all funds are subject to 
	the same decreasing returns to scale technology and their skills are drawn from the same distribution, the counterfactually computed fund sizes explain about 51% of the variation of simulated fund sizes. Perhaps surprisingly, counterfactual sizes are negatively related to actual sizes. This is because a fund whose returns decrease in scale more steeply (gradually) is typically small (big) in equilibrium, but its counterfactual size tend to be bigger (smaller), as investors underestimate (overestimate) the e
	Under the second counterfactual, investors account for heterogeneity in returns to scale. These counterfactual investors diﬀer from the actual investors in that they ignore how the distribution of skill changes across diﬀerent levels of b. Not only do the counterfactually computed fund sizes explain almost completely the variation in simulated fund sizes, they are quantitatively very similar to the actual sizes, i.e., log (qit)=0.0006 + 0.9999 log q≈
	d
	Ł 
	it
	C 
	. 

	Ł. 
	log q. Thus, the uncalibrated version of our model with heterogeneous returns to scale does a great job at explaining capital allocation in the fully calibrated version. On the other hand, recall that conditional on higher (lower) b, the uncalibrated model produces much smaller (larger) ﬂow sensitivities to performance (see Panel C of Table 7), indicating a much stronger DRS-FSP relation than in the data. In this sense, the DRS-FSP relation estimated in the uncalibrated model puts a theoretical upper bound 
	it
	C 

	As expected, the DRS-FSP relation estimates in the fully calibrated model tend to be closely related to those in the data: −2.6, compared to −2.4 in the data (column 3 of Panel A of Table 5). On the other hand, the DRS-FSP relation estimates in the uncalibrated version tend to be substantially more negative, about −11.2. Thus, it appears that the magnitude of the DRS-FSP relation estimates from the data is much smaller than what the model predicts. While this conﬁrms how severe the errors-in-variables probl
	As expected, the DRS-FSP relation estimates in the fully calibrated model tend to be closely related to those in the data: −2.6, compared to −2.4 in the data (column 3 of Panel A of Table 5). On the other hand, the DRS-FSP relation estimates in the uncalibrated version tend to be substantially more negative, about −11.2. Thus, it appears that the magnitude of the DRS-FSP relation estimates from the data is much smaller than what the model predicts. While this conﬁrms how severe the errors-in-variables probl
	explain the small magnitude of empirical DRS-FSP relation We leave bridging 
	estimates.
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	this gap to future research. 
	To summarize, Table 8 shows that a signiﬁcant fraction of how capital is allocated in equilibrium is explained because of investor response to diﬀerences in decreasing returns to scale. While fund sizes in the data are quantitatively consistent with what our simple model predicts they should be, the magnitude of empirical DRS-FSP relation estimates are much smaller than were our simple model to hold perfectly in the data. 


	5.5 DRS and Optimal Fund Size 
	5.5 DRS and Optimal Fund Size 
	Thus far, we have used heterogeneity in decreasing returns to scale across funds and over time to test whether investors respond to the adverse eﬀects of fund scale in making their capital allocation decisions. If investors update their beliefs about skill as in the model, their perception of optimal size ought to converge to true optimal size over a fund’s lifetime. This idea predicts that the sizes of older funds should be more closely related to their optimal sizes based on the model than those of younge
	and ﬁnd empirical support for it. 
	We estimate fund-speciﬁc a and b parameters to compute the optimal fund size q. Using the b estimates based on fund characteristics, the parameter a for fund i can be estimated as: 
	i 
	∗ 

	Ti
	X. . 
	1 

	bai = αbit + bit log (qit−1) ,
	b
	Ti 

	t=1 
	where αbit is the risk-adjusted net return, and Ti is the number of observations for fund i. We exponentiate the average value of the ratios bai/bit over a fund’s lifetime to get an estimate for q, qb. Of course, if investors ignore heterogeneity in decreasing returns to scale, our measure of optimal fund size might be irrelevant. To allow for investor learning about optimal fund size based on a simple return model, we construct an alternative measure of optimal log fund size, assuming that fund size has th
	b
	i 
	∗ 
	i 
	∗ 
	-

	18 
	level decreasing returns to scale parameter in our sample, denoted by bRD2. Measuring 
	b

	performance using the CAPM, the estimated coeﬃ cient is statistically signiﬁcant, indicating 
	allocation to learning about returns to scale, see Pastor and Stambaugh (2012) and Kim (2017). 
	17 
	For formal models that relate capital 

	Pástor, Stambaugh, and Taylor (2015) analyze the nature of returns to scale by developing a recursive demeaning procedure. They ﬁnd coeﬃ cients indicative of decreasing returns to scale both at the fund level and at the industry level, though only the latter is statistically signiﬁcant. Zhu (2018) improves upon the empirical strategy in PST (by using more recent fund sizes as the instrument) and establishes strong evidence of fund-level diseconomies of scale. 
	18 

	that an 1% increase in fund size is associated with a decrease in the fund’s CAPM alpha of 0.0042% per month, or 5.1 bp per year.We can then estimate the parameter a for fund i as: 
	19 

	XTi .. 
	1 

	baiRD2 = αbit + bRD2 log (qit−1) . 
	b
	Ti 

	t=1 
	.. 
	∗ 20 
	The alternative measure of optimal fund size qbis calculated as exp baiRD2/bRD2 . 
	iRD2 
	b

	To test the above prediction, we examine how the relation between log real AUM and our measures of optimal fund size depends on fund age. Speciﬁcally, we assign funds to one of three samples based on fund age: [0, 5], (5, 10], and > 10 years. In each age-sorted sample, we run panel regressions of fund i’s log real AUM in month t on the fund’s log optimal fund 
	∗
	size estimate, log (qb). We report the results in the ﬁrst three columns of Table 9.In Panel A, we report the results using the CAPM as the benchmark; in Panel B, we use Vanguard index funds as the benchmark. 
	i 
	21 

	Across all age-sorted samples, the estimated coeﬃ cients on log (qb) are positive, with t-statistics of more than 13 using the CAPM as the benchmark and t-statistics around 8 using the Vanguard benchmark. More importantly, the coeﬃ cient values increases over a typical fund’s lifetime, indicating that this positive relation between the fund’s size and its optimal size is stronger for older funds. As the fund ages, investors learn about its optimal size, so a fund’s optimal size has a larger eﬀect that that 
	i 
	∗
	2 
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	In columns 4 through 6, we run the multiple regression of log (qit) on both log (qb) and log (qb) in all three age-sorted samples. We consider two null hypotheses: that the slope 
	i 
	∗
	∗ 

	iRD2 
	∗∗
	coeﬃ cient on log (qb) is zero, and that the slope on log (qb). We ﬁnd that the slope on our main measure of optimal fund size is positive and signiﬁcant in the > 10 sample, but its signiﬁcance disappears in samples of younger funds. The slope on the alternative measure is positive and signiﬁcant across all age-sorted samples. 
	i 
	iRD2

	The signiﬁcantly positive coeﬃ cient on log (qb) in the multiple regression reveals investors do recognize that there is heterogeneity in decreasing returns to scale, conditional on 
	i 
	∗
	-

	marks, the coeﬃ cient estimate is again statistically signiﬁcant, indicating that an 1% increase in fund size is associated with a decrease in fund performance of 0.0013%, or 
	19 
	Using Vanguard index funds as bench

	1.5 bp per year. To remove some implausible outliers, we winsorize these estimates at their 1st and 99th percentiles. Table 9 reports the double clustered (by fund and time) standard errors. 
	20 
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	log (qb). On the other hand, a signiﬁcantly larger coeﬃ cient on log (qb), and the much 
	∗ 
	∗ 

	iRD2 iRD2 larger Rfrom the multiple regressions, suggests that this simpler version of optimal size better explains sizes in equilibrium. Our results oﬀer the following narrative. Investors want to account for heterogeneity in decreasing returns to scale, but estimating b fund by fund leads to imprecise estimates especially for young funds, which renders the estimation error in qsevere. To reduce the estimation error, investors seem to ignore fund-level variation in b for young funds, which allows them to u
	2 
	i 
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	∗ ∗∗
	fund-speciﬁc q. In particular, the investors only use the qbestimate (together with qb) in making their capital allocation decisions when a fund grows old enough such that the estimation error in its optimal size based on fund-speciﬁc b is relatively modest. 
	i 
	i 
	iRD2

	∗∗
	Consistent with this idea, we ﬁnd that the log (qb) estimates are informative of log (qb). Figure 5 plots the main measure of optimal fund size log (qb) versus the alternative measure 
	iRD2
	i 
	i 
	∗

	∗ ∗∗
	of optimal fund size log (qb). The circles represent pairs of (log (qb) , log (qb)). The red line depicts the identity line. If the two measures of optimal fund size coincide, the red line would ﬁt the data perfectly. We see that log (qb) tends to move nearly one-for
	iRD2
	iRD2
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	∗ 
	one with log (qb), so this estimator is a reasonable way to measure a fund’s optimal size that also circumvents the need to address the estimation error in decreasing returns to scale. However, the two quantities generally do diﬀer: the R-squared from a cross-sectional regression of log (qb) on log (qb) is 0.55 using the CAPM and only 0.14 if we use the 
	iRD2
	i 
	∗
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	iRD2 
	Vanguard benchmark. Therefore, qbalone does not suﬃ ce in capturing optimal size, 
	∗ 

	iRD2 which leads investors to directly estimate qbfor funds with suﬃ ciently long track records. 
	i 
	∗ 

	In short, the estimates of optimal size largely explains capital allocation to older funds. Both measures of optimal fund size matter, which is consistent with our narrative that investors account for not only the presence of decreasing returns to scale, but the heterogeneity of decreasing returns to scale. 
	-



	6 Conclusion 
	6 Conclusion 
	The main contribution of this paper is to provide and verify predictions unique to a rational model for active management: the role of decreasing returns to scale in equilibrating the market for mutual funds. Not only do we ﬁnd that steeper decreasing returns to scale attenuate ﬂow sensitivity to performance, we also ﬁnd that diﬀerences in decreasing returns to scale across funds are quantitatively important for explaining capital allocation in the market for mutual funds. Interestingly, the magnitude of em
	The main contribution of this paper is to provide and verify predictions unique to a rational model for active management: the role of decreasing returns to scale in equilibrating the market for mutual funds. Not only do we ﬁnd that steeper decreasing returns to scale attenuate ﬂow sensitivity to performance, we also ﬁnd that diﬀerences in decreasing returns to scale across funds are quantitatively important for explaining capital allocation in the market for mutual funds. Interestingly, the magnitude of em
	by using more accurate measurements of a fund’s returns to scale or ﬂow sensitivity, or by considering new aspects of learning about the parameters governing fund returns, is an important area for future research. Overall, our results strongly support that, as a group, investors in the mutual fund market are sophisticated. 
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	Table 1: Summary Statistics 
	This table shows summary statistics for our sample of active equity mutual funds from 1979— 2014. The unit of observation is the fund/month. All returns are in units of fraction per month. Net return is the return received by investors. Net alpha equals net return minus the return on benchmark portfolio, calculated using the CAPM or using a set of Vanguard index funds. Fund size is the fund’s total AUM aggregated across share classes, adjusted by inﬂation. The numbers are reported in Y2000 $ millions per mo
	d
	the number of managers managing the fund in a given month. DRSit is the fund’s returns 
	g
	to scale estimated as of the previous month-end; DRSit is the economically interpretable 
	dd
	DRSit based on fund characteristics. F SP it is the fund’s ﬂow sensitivity to performance going forward. 
	component of 

	Panel A: 
	Panel A: 
	Panel A: 
	Fund-Level Variables 

	TR
	Percentiles 

	# of obs. 
	# of obs. 
	Mean 
	Stdev. 
	25% 
	50% 
	75% 

	Net return 
	Net return 
	424, 793 
	0.0079 
	0.0497 
	−0.0193 
	0.0123 
	0.0387 

	Net alpha (CAPM Risk Adj.) 
	Net alpha (CAPM Risk Adj.) 
	354, 427 
	0.0001 
	0.0209 
	−0.0105 
	−0.0002 
	0.0104 

	Net alpha (Vanguard Benchmark) 
	Net alpha (Vanguard Benchmark) 
	420, 163 
	−0.0001 
	0.0155 
	−0.0083 
	−0.0001 
	0.0080 

	Fund size (in 2000 $millions) 
	Fund size (in 2000 $millions) 
	421, 701 
	995 
	4008 
	45 
	163 
	616 

	Flows 
	Flows 
	421, 697 
	0.0049 
	0.0529 
	−0.0143 
	−0.0021 
	0.0145 

	Turnover 
	Turnover 
	402, 907 
	0.8317 
	0.7027 
	0.34 
	0.64 
	1.1 

	Volatility (CAPM Risk Adj.) 
	Volatility (CAPM Risk Adj.) 
	322, 939 
	0.0188 
	0.0115 
	0.0106 
	0.0158 
	0.0239 

	Volatility (Vanguard Benchmark) 
	Volatility (Vanguard Benchmark) 
	387, 197 
	0.0142 
	0.0082 
	0.0086 
	0.0122 
	0.0177 

	Fund age (years) 
	Fund age (years) 
	423, 871 
	13.44 
	13.38 
	4.58 
	9.28 
	16.77 

	# of managers 
	# of managers 
	404, 551 
	2.36 
	2.12 
	1 
	2 
	3 

	TR
	Panel B: 
	Estimated DRS and FSP 

	TR
	Percentiles 

	TR
	# of obs. 
	Mean 
	Stdev. 
	25% 
	50% 
	75% 

	dDRS (CAPM Risk Adj.) 
	dDRS (CAPM Risk Adj.) 
	252, 434 
	0.0084 
	0.0165 
	−0.0002 
	0.0052 
	0.0137 

	gDRS (CAPM Risk Adj.) 
	gDRS (CAPM Risk Adj.) 
	247, 989 
	0.0084 
	0.0044 
	0.0053 
	0.0077 
	0.0106 

	dDRS (Vanguard Benchmark) 
	dDRS (Vanguard Benchmark) 
	300, 963 
	0.0044 
	0.0109 
	−0.0008 
	0.0028 
	0.0081 

	gDRS (Vanguard Benchmark) 
	gDRS (Vanguard Benchmark) 
	294, 815 
	0.0044 
	0.0024 
	0.0028 
	0.0043 
	0.0059 

	dF SP (CAPM Risk Adj.) 
	dF SP (CAPM Risk Adj.) 
	266, 376 
	0.1045 
	0.1910 
	0.0140 
	0.0756 
	0.1694 

	dF SP (Vanguard Benchmark) 
	dF SP (Vanguard Benchmark) 
	293, 895 
	0.1487 
	0.2898 
	0.0171 
	0.1094 
	0.2499 


	Table 2: Relation Between DRS and FSP 
	d
	The dependent variable in each regression model is F SP it, the fund’s ﬂow sensitivity to 
	d
	DRSit is the fund’s returns to scale estimated as of the previous month-end. The ﬁrst three columns report the results using the raw estimates. The last two columns repeat the same analysis using percentile ranks for each variable across funds. In each version, from left to right, we gradually saturate with month and fund ﬁxed eﬀects to focus on variation coming from the market equilibrating mechanism beyond diﬀerences in sensitivity across funds and over time. Standard errors, two-way clustered by fund and
	performance going forward. 

	Panel A: CAPM Risk Measure 
	d
	it 
	Dependent Variable: 
	F SP 

	dDRSit 
	dDRSit 
	dDRSit 
	−0.375 (0.0938) 
	−0.296 (0.0941) 
	−0.279 (0.0898) 
	−0.0424 (0.0119) 
	−0.0769 (0.00984) 

	Month FE Fund FE 
	Month FE Fund FE 
	No No 
	Yes No 
	Yes Yes 
	No No 
	No Yes 

	Observations Scale 
	Observations Scale 
	182691 Raw est. 
	182691 Raw est. 
	182676 Raw est. 
	182691 Pctl. rank 
	182676 Pctl. rank 


	Panel B: Vanguard Benchmark 
	d
	it 
	Dependent Variable: 
	F SP 

	dDRSit 
	dDRSit 
	dDRSit 
	−0.355 (0.219) 
	−0.414 (0.223) 
	−0.375 (0.167) 
	−0.0264 (0.0102) 
	−0.0597 (0.00863) 

	Month FE Fund FE 
	Month FE Fund FE 
	No No 
	Yes No 
	Yes Yes 
	No No 
	No Yes 

	Observations Scale 
	Observations Scale 
	221749 Raw est. 
	221749 Raw est. 
	221743 Raw est. 
	221749 Pctl. rank 
	221743 Pctl. rank 


	Table 3: Relation Between DRS and Size The dependent variable in each regression model is the fund’s log real AUM in $ millions 
	d
	DRSit is the fund’s returns to scale estimated as of the previous month-end. Across the ﬁrst three columns, we gradually saturate with month and fund ﬁxed eﬀects to focus on variation coming from the market equilibrating mechanism beyond diﬀerences in size across funds and over time. The last column repeats the same analysis by further including controls that are plausibly correlated with the fund size: family size, fund age, and turnover. Standard errors, two-way clustered by fund and by month, are in pare
	(base year is 2000). 

	Panel A: CAPM Risk Measure 
	Dependent Variable: Log Real AUM 
	dDRSit 
	dDRSit 
	dDRSit 
	−3.86 (1.65) 
	−5.23 (1.68) 
	−1.30 (0.558) 
	−1.12 (0.447) 

	Month FE Fund FE Controls 
	Month FE Fund FE Controls 
	No No No 
	Yes No No 
	Yes Yes No 
	Yes Yes Yes 

	Observations 
	Observations 
	252420 
	252420 
	252411 
	247054 


	Panel B: Vanguard Benchmark 
	Dependent Variable: Log Real AUM 
	dDRSit 
	dDRSit 
	dDRSit 
	−3.97 (2.20) 
	−5.36 (2.22) 
	−2.34 (0.755) 
	−2.66 (0.611) 

	Month FE Fund FE Controls 
	Month FE Fund FE Controls 
	No No No 
	Yes No No 
	Yes Yes No 
	Yes Yes Yes 

	Observations 
	Observations 
	300947 
	300947 
	300936 
	294412 


	Table 4: Determinants of Returns to Scale 
	d
	The dependent variable in each regression model is DRSit, the fund’s scale eﬀect computed using only its observations prior to the month. Std (Alpha) is the standard deviation of the fund’s alphas, which we calculate over the prior 1 year. 1(MultiMgr) is a dummy variable that is equal to one if the fund is managed by many managers. 1(Outflows) is an indicator for whether the fund experienced outﬂows over the prior 1 year. LogF undAge is the natural logarithm of years since the fund’s ﬁrst oﬀer date (from CR
	Panel A: CAPM Risk Measure 
	d
	it 
	Dependent Variable: 
	DRS

	Std (Alpha) 1 (MultiMgr) 1 (Outflows) LogF undAge 
	Std (Alpha) 1 (MultiMgr) 1 (Outflows) LogF undAge 
	Std (Alpha) 1 (MultiMgr) 1 (Outflows) LogF undAge 
	0.267 (0.0239) 
	−0.00164 (0.000364) 
	0.00217 (0.000398) 
	0.000602 (0.000369) 
	0.265 (0.0244) −0.000998 (0.000354) 0.00214 (0.000388) 0.000785 (0.000349) 

	Controls 
	Controls 
	Yes 
	Yes 
	Yes 
	Yes 
	Yes 

	Observations 
	Observations 
	252362 
	248077 
	252434 
	252200 
	247989 

	Panel B: Vanguard Benchmark 
	Panel B: Vanguard Benchmark 


	d
	it 
	it 
	Dependent Variable: 
	DRS

	Table 5: Relation Between DRS and FSP 

	Std (Alpha) 1 (MultiMgr) 1 (Outflows) LogF undAge 
	Std (Alpha) 1 (MultiMgr) 1 (Outflows) LogF undAge 
	Std (Alpha) 1 (MultiMgr) 1 (Outflows) LogF undAge 
	0.154 (0.0185) 
	−0.00102 (0.000234) 
	0.00179 (0.000242) 
	0.00146 (0.000225) 
	0.147 (0.0185) −0.000717 (0.000225) 0.00152 (0.000225) 0.00136 (0.000210) 

	Controls 
	Controls 
	Yes 
	Yes 
	Yes 
	Yes 
	Yes 

	Observations 
	Observations 
	300883 
	294922 
	31 
	300963 
	300666 
	294815 


	d
	This table is the same as Table 2 but replaces DRSit by their predicted values based on fund 
	g
	DRSit. 
	characteristics, 

	Panel A: CAPM Risk Measure 
	d
	it 
	Dependent Variable: 
	F SP 

	gDRSit 
	gDRSit 
	gDRSit 
	−2.95 (0.568) 
	−2.28 (0.657) 
	−2.37 (0.596) 
	−0.0536 (0.0152) 
	−0.0854 (0.0148) 

	Month FE Fund FE 
	Month FE Fund FE 
	No No 
	Yes No 
	Yes Yes 
	No No 
	No Yes 

	Observations Scale 
	Observations Scale 
	178624 Raw est. 
	178624 Raw est. 
	178612 Raw est. 
	178624 Pctl. rank 
	178612 Pctl. rank 


	Panel B: Vanguard Benchmark 
	d
	it 
	it 
	Dependent Variable: 
	F SP 

	Table 6: Relation Between DRS and Size 

	gDRSit 
	gDRSit 
	gDRSit 
	−7.83 (1.84) 
	−6.88 (1.89) 
	−3.39 (1.99) 
	−0.0546 (0.0133) 
	−0.0404 (0.0134) 

	Month FE Fund FE 
	Month FE Fund FE 
	No No 
	Yes No 
	Yes Yes 
	No No 
	No Yes 

	Observations Scale 
	Observations Scale 
	216044 Raw est. 
	216044 Raw est. 
	216040 Raw est. 
	216044 Pctl. rank 
	216040 Pctl. rank 


	d
	This table is the same as Table 3 but replaces DRSit by their predicted values based on fund 
	g
	DRSit. 
	characteristics, 

	Panel A: CAPM Risk Measure 
	Dependent Variable: Log Real AUM 
	dDRSit 
	dDRSit 
	dDRSit 
	−44.1 (8.10) 
	−63.3 (9.08) 
	−49.0 (3.83) 
	−36.4 (3.29) 

	Month FE Fund FE Controls 
	Month FE Fund FE Controls 
	No No No 
	Yes No No 
	Yes Yes No 
	Yes Yes Yes 

	Observations 
	Observations 
	247975 
	247975 
	247965 
	243079 


	Panel B: Vanguard Benchmark 
	Dependent Variable: Log Real AUM 
	dDRSit 
	dDRSit 
	dDRSit 
	−16.7 (14.9) 
	−16.1 (15.7) 
	−88.7 (7.10) 
	−75.5 (5.91) 

	Month FE Fund FE Controls 
	Month FE Fund FE Controls 
	No No No 
	Yes No No 
	Yes Yes No 
	Yes Yes Yes 

	Observations 
	Observations 
	294,799 
	294,799 
	294,790 
	288,867 


	Table 7: Calibration 
	The top panel summarizes the model parameters that we set directly and their parameter values. Then, for each value of b, we construct 2,500 samples of simulated panel data for 100 funds over 100 months. In each sample, we estimate the ﬂow-performance sensitivity γ. Given b, we set σso that the median of the γ estimates across simulated samples matches the ﬂow-performance relation implied by the regression model in column 3 of Panel A of 
	0 

	d
	Table 5 (i.e., F SP =0.117 − 2.40 × DRS). Panel B contains the values of σthat resulted from this process for ﬁve plausible values of b: 0.00357, 0.00531, 0.00770, 0.0106, and 0.0140. These values correspond to the 10th, 25th, 50th, 75th, and 90th percentiles of fund-speciﬁc b estimates, respectively. Column 3 shows the target ﬂow-performance sensitivities computed 
	0 

	d
	using F SP =0.117 − 2.40 × DRS, while the resulting median of the γ estimates across simulated samples are reported in the last column. Panel C repeats the same analysis for each b, but using the counterfactual value of σ=0.162% per month. 
	0 

	Panel A: 
	Panel A: 
	Panel A: 
	Parameter Values 

	Variable 
	Variable 
	Symbol 
	Value 

	Return standard deviation 
	Return standard deviation 
	σ 
	5.77% 

	Exit mean 
	Exit mean 
	θ 
	0% 

	Panel B: 
	Panel B: 
	Calibration 

	Parameter set 
	Parameter set 
	Calibrated parameter 
	F SP 

	Decreasing returns to scale (b) 
	Decreasing returns to scale (b) 
	Prior standard deviation (σ0) 
	Target 
	Model 

	0.00357 
	0.00357 
	0.00116 
	0.109 
	0.110 

	0.00531 
	0.00531 
	0.00139 
	0.105 
	0.107 

	0.00770 
	0.00770 
	0.00162 
	0.099 
	0.099 

	0.01065 
	0.01065 
	0.00186 
	0.092 
	0.093 

	0.01396 
	0.01396 
	0.00204 
	0.084 
	0.084 

	Panel C: 
	Panel C: 
	Counterfactual 

	Parameter set 
	Parameter set 
	Counterfactual parameter 
	F SP 

	Decreasing returns to scale (b) 
	Decreasing returns to scale (b) 
	Prior standard deviation (σ0) 
	Target 
	Model 

	0.00357 
	0.00357 
	0.00162 
	0.109 
	0.213 

	0.00531 
	0.00531 
	0.00162 
	0.105 
	0.143 

	0.00770 
	0.00770 
	0.00162 
	0.099 
	0.099 

	0.01065 
	0.01065 
	0.00162 
	0.092 
	0.071 

	0.01396 
	0.01396 
	0.00162 
	0.084 
	0.054 


	Table 8: Simulation We construct 2,500 samples of simulated panel data for 10,000 funds over 100 months. To simulate a given sample, we ﬁrst draw each fund’s DRS bi randomly from a geometric distribution consistent with the distribution of fund-speciﬁc b estimates, while we draw the fund’s skill θi from a normal distribution with mean θ(bi) and standard deviation σ(bi). εit, building up the panel data of rit and qit. For every i and t, we compute the fund’s size under the counterfactual, q, as detailed in S
	0 
	0 
	Next, we draw the random values of 
	it
	C 

	5.4.1. Finally, for each sample, we calculate the R-squared from a regression of log (qit) on 
	5.4.1. Finally, for each sample, we calculate the R-squared from a regression of log (qit) on 
	Ł. 
	log qto check the goodness of ﬁt by counterfactuals. Panel A reports the results from our ﬁrst counterfactual; Panel B focuses on the second counterfactual. Panel C shows summary statistics of the DRS-FSP relations in both the fully calibrated model and the uncalibrated σ=0.162% per month). 
	it
	C 
	model (i.e., using the counterfactual value of 
	0 

	Panel A: First Counterfactual
	Ł. 
	it)= κ + λ log q
	log (q
	C 

	it it 
	+ ξ

	Percentiles 
	Mean Stdev. 1% 25% 50% 75% 99% 
	b 10.175 0.0023 10.169 10.173 10.175 10.176 10.180
	κ 
	b
	λ −1.033 0.0005 −1.034 −1.033 −1.033 −1.033 −1.032 R0.5067 0.0006 0.5053 0.5063 0.5068 0.5072 0.5081 
	2 

	Panel B: Second Counterfactual
	Ł. 
	it)= κ + λ log q
	log (q
	C 

	it it 
	+ ξ

	Percentiles 
	Mean Stdev. 1% 25% 50% 75% 99% 
	b 0.0006 −0.012 0.0005 0.0138
	κ 0.0055 −0.003 0.0042 
	b
	λ 0.9999 0.0011 0.9973 0.9992 0.9999 1.0006 1.0024 R0.9999 0.0000 0.9998 0.9998 0.9999 0.9999 0.9999 
	2 

	Panel C: Estimated DRS-FSP Relation 
	Data −2.367 Percentiles Mean Stdev. 25% 50% 75% 
	Calibrated Model −2.643 0.0001 −2.644 −2.643 −2.643 Uncalibrated Model −11.17 0.0001 −11.17 −11.17 −11.17 
	Table 9: Relation Between Optimal Size and Fund Size 
	The dependent variable in each regression model is the fund’s log real AUM in $ millions (base year is 2000). qbis an estimate for the optimal fund size; qbis an alternative 
	∗ 
	∗ 

	i iRD2 
	measure of optimal fund size, assuming that fund size has the same eﬀect on performance for all funds. We assign funds to one of three samples based on fund age: [0, 5], (5, 10], and > 10 years. Columns 1—3 show the results from running panel regressions of log real AUM on the fund’s log optimal fund size estimate in each age-sorted sample. The last three columns 
	∗∗
	show the results from running multiple regressions of log (qit) on both log (qb) and log (qb) in all three age-sorted samples. The double clustered (by fund and time) standard errors are in parentheses. 
	i 
	iRD2

	Panel A: CAPM Risk Measure 
	Dependent Variable: Log Real AUM 
	log (qb)0.218 0.364 0.430 −0.0189 0.00599 0.0474 (0.0158) (0.0208) (0.0330) (0.0148) (0.0110) (0.00942) log (qb)0.497 0.762 0.916
	i 
	∗
	∗ 

	iRD2 
	(0.0230) (0.0166) (0.0143) 
	R0.146 0.354 0.428 0.308 0.665 0.824 
	2 

	Observations 64718 105288 196233 64718 105288 196233 Fund ages [0, 5] yr. (5, 10] yr. > 10 yr. [0, 5] yr. (5, 10] yr. > 10 yr. 
	Panel B: Vanguard Benchmark 
	Dependent Variable: Log Real AUM 
	∗log (bq )i ∗log (bq )iRD2
	∗log (bq )i ∗log (bq )iRD2
	∗log (bq )i ∗log (bq )iRD2
	0.0546 (0.00655) 
	0.0745 (0.00906) 
	0.132 (0.0166) 
	0.0147 (0.00472) 0.273 (0.0111) 
	0.0126 (0.00423) 0.484 (0.0113) 
	0.0251 (0.00514) 0.692 (0.0128) 

	R2 
	R2 
	0.0497 
	0.0721 
	0.134 
	0.248 
	0.510 
	0.699 

	Observations Fund ages 
	Observations Fund ages 
	75870 [0, 5] yr. 
	110319 (5, 10] yr. 
	196467 > 10 yr. 
	75870 [0, 5] yr. 
	110319 (5, 10] yr. 
	196467 > 10 yr. 


	Figure
	Figure 1: Distribution of fund-speciﬁc decreasing returns to scale over time: The ﬁgure plots each month’s mean and percentiles of estimated size eﬀect on performance across all funds operating during that month. Panel A estimates DRS using the CAPM alpha to measure fund performance. Panel B estimates DRS when we take Vanguard index funds as the alternative investment opportunity set. 
	Figure
	Figure 2: Distribution of fund-speciﬁc ﬂow sensitivity to performance over time: The ﬁgure plots each month’s mean and percentiles of estimated ﬂow sensitivity to performance across all funds operating during that month. Panel A estimates FSP using the CAPM alpha to measure fund performance. Panel B estimates FSP when net alpha is computed using Vanguard index funds as benchmark portfolios. 
	-

	Figure
	Figure 3: Cross-sectional distribution of characteristic-based DRS over time: This 
	d
	DRSit, but by 
	ﬁgure is the same as Figure 1 but measures size eﬀect on performance not by 

	g
	their predicted values based on fund characteristics, DRSit. 
	Figure
	Figure 4: Priors, conditional on the fund’s decreasing returns to scale parameter 
	b: Panel A plots the prior mean (θ) as a function of b that we use in our simulation σ) as a function of b that we use in our simulation analysis. Given b, σis calibrated so that the median of the FSP (ﬂow sensitivity to performance) estimates across simulated samples matches the ﬂow-performance relation implied by the regression model in column 3 of Panel A of Table 5. Our approach is to calibrate the prior uncertainty for 100 disperse values of b, ﬁtting a quadratic polynomial to the data, (b, σ), that re
	0
	analysis. Panel B plots the prior uncertainty (
	0
	0 
	0

	Figure
	Figure 5: Relation between two measures of optimal fund size: The ﬁgure plots the main measure of optimal fund size, log (qb), versus the alternative measure of optimal fund 
	i 
	∗

	∗∗
	∗∗

	size, log (qb). We compute the optimal fund size, qb, by estimating fund-speciﬁc a and b parameters. We construct an alternative measure of optimal log fund size, ignoring the fact that there is individual heterogeneity in decreasing returns to scale. The circles represent pairs of (log (qb) , log (qb)). The red line depicts the identity line. 
	iRD2
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