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Abstract

Using a large database of US institutional investors’ trades in the equity market, this paper ex-
plores the effect of simultaneous executions on trading cost. We design a Bayesian network modelling
the inter-dependencies between investors’ transaction costs, stock characteristics (bid-ask spread,
turnover and volatility), meta-order attributes (side and size of the trade) and market pressure dur-
ing execution, measured by the net order flow imbalance of investors meta-orders. Unlike standard
machine learning algorithms, Bayesian networks are able to account for explicit inter-dependencies
between variables. They also prove to be robust to missing values, as they are able to restore their
most probable value given the state of the world. Order flow imbalance being only partially observ-
able (on a subset of trades or with a delay), we show how to design a Bayesian network to infer its
distribution and how to use this information to estimate transaction costs. Our model provides bet-
ter predictions than standard (OLS) models. The forecasting error is smaller and decreases with the
investors’ order size, as large orders are more informative on the aggregate order flow imbalance (R>
increases out-of-sample from -0.17% to 2.39% for the smallest to the largest decile of order size). Fi-
nally, we show that the accuracy of transaction costs forecasts depends heavily on stock volatility, with
a coefficient of 0.78.
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1 Introduction

Transaction costs became of primary importance after the financial crisis. On the one hand, invest-
ment banks turned to more standardized products, switching from a high margin, inventory driven
business to a low margin, flow business, where transactions costs have to be minimized. On the other
hand, the asset management industry concentrated (Haldane et al.|(2014)). A common practice has
been to organize the execution of large orders around one well structured dealing desk. In 2007, the
first Markets in Financial Instruments European directive (MiFID) introduced the concept of “best ex-
ecution” as a new requirement for market participants. The European best practices, including among
others execution reviews, transaction costs analysis, and adequate split of large orders, have spread
overseas in this globalized industry.

In this paper we use a unique dataset of institutional investors trades: the ANcerno database,
containing a large sample of asset managers meta-orders on the US markets (Angel et al.| (2015),
Pagano (2008), Briere et al.| (2019)). While most other databases contain the meta-orders of only one
asset manager, ANcerno records roughly 10% of total institutional investors activity and 8% of total
daily traded volume. Because of this specificity, it is possible to estimate the “imbalance of meta-
orders”, i.e. the aggregated net order flow traded by investors, each day on each stocks. This variable
plays a role of primarily importance in the transaction costs (Capponi and Cont) (2019), Bucci et al.
(2018)). Transaction costs tend to be large when you trade in the same direction as your peers, while
you can even have a price improvement (i.e. obtain an average price that is lower than your decision
price) if you are almost alone in front of the majority of agents trading that day. Stated differently,
you pay to consume liquidity when you are part of the crowd, executing in the same direction as the
market, and you are rewarded to provide liquidity to the crowd, when you are executing in the opposite
direction of the market.

The specificity of this “imbalance” variable is that it cannot be observed by market participants in
real time. Brokers and market makers can have a broad view of the imbalance of their clients’ flows and
can provide this information to the rest of market participants with a delay, while asset management
dealing desks do only observe their own instructions. Therefore, the imbalance is a “latent variable” in
the sense of Bayesian modelling. It is linked to some observable explanatory variables and it conditions
the transaction costs at the same time. For instance: conditionally to the fact that the investor trades
a buy meta-order (rather than a sell one), the imbalance is more likely to be large and positive. This
dependence can be inferred using the Bayes’ rule.

In this paper, we show how to use a specific model belonging to the large toolbox provided by



machine learning: the Bayesian network, adapted to this kind of conditioning, to predict transaction
costs, taking into account market information and trade characteristics. This class of models has been
created in the golden age of machine learning (Jordan| (1998)); it is also known as graphical models,
and has been recently used to model analysts predictions (Bew et al.| (2018)). Such models have two
very interesting characteristics. First, they are able to handle missing data. Second, they can infer
the distribution of latent variables given the knowledge of other ones. In our case, a model fitted on
ANcerno data can be used to forecast transaction costs when the imbalance is no longer observable.
In practice, our model could be fitted on data provided ex-post by broker Afterwards, given other
explanatory variables and the observed transaction costs, a Bayesian network can infer the expected
distribution of the imbalance on a given day. This is a natural feature of the Bayes’ rule: once the joint
distribution of a set of variable is known, it is possible to obtain the expected value of any subset of
other variables given the observations.

The goal of this paper is to show how Bayesian networks can be used to model the relation between
transaction costs and stock characteristics (bid-ask spread, average turnover and volatility), meta-
order attributes (side and size of the trade) and market pressure (net order flow imbalance). This last
variable will be considered as latent because it is only partially observable by investors (typically with
a delay, or in real time but only on the investors’ own trades). In practice, a possible way to implement
our approach would probably be to implement a learning transfer: first learn the graphical model on
ANCcerno or a similar database provided by brokers, then switch to a database in which the imbalance
can not be observed.

We find that institutional investors daily order flow imbalance is a good predictor of transaction
costs. Interestingly, because investors’ trading tends to be crowded in one direction, and given the
fund manager’s knowledge of its own meta-order, he can infer the aggregate order flow of the market
that day, to better forecast his trading costs. Stated differently, a fund manager could update his be-
liefs on order flow imbalance distribution of the day, after observing his own trading decision (side and
size of his order). We find that his estimation is more accurate when his executed meta-order is large.
Besides, we disclose evidence that a sell order is more informative on imbalance distribution than a
buy order, probably because a crowded selling context is more informative about specific market con-
ditions than a crowded buying context. We note that when an asset manager takes the decision to sell
a stock with high participation rate, he could expect a "rushing towards the exit door” behaviour from

his peers and assign a high probability for strong negative imbalance. Our finding confirms that the

1Brokers, exchanges and custodians are selling the delayed information on the flows they saw the previous day or week. This
Bayesian modelling approach is perfectly suited to this kind of partial information.



dominating variable for implementation shortfall forecast is indeed the order flow imbalance and not
the order size. Moreover, the accuracy of transaction costs and market impact estimates are generally
very low (Bacry et al.|(2015)). Practitioners have long suspected that the difficulty of estimating orders
transaction costs is due to the variance of price innovations that is hardly predictable. Thanks to our
Bayesian framework, we prove that this is actually true. The Bayesian network explicitly models the
dependencies between the variance of the residuals and the rest of network nodes. We find that the
dominant variable is, indeed, the price volatility with coefficient 0.78, while other nodes contribution
to the variance is insignificant. This allows an investor to assess how confident he could be on each
prediction given his meta-order and stock characteristics. Finally, we show that using partially ob-
servable order imbalance has value. The Bayesian network provides a better prediction of transaction
costs after capturing the conditional dependencies between the nodes and the order flow imbalance,
than when this information is not used at all (R? increase out-of-sample from 0.38% to 0.50%). Besides,
the estimates get more accurate when the order size is large (R? is 2.39% for the tenth decile of order
size compared to -0.17% for the first decile). These results can explain the recent concentration of
institutional investors executions on a few dealing desks. By executing the orders of a large and repre-
sentative set of institutional investors, these dealing desks would have a better grasp of the aggregate
order flow imbalance of the day. This information of paramount importance could then be either used
for predicting the transaction cost more accurately, or to design a better optimized execution scheme
taking the aggregated market pressure into account.

The structure of this paper is as follows: Section 2 reviews the existing literature on transaction
costs modelling and Bayesian networks. Section 3 presents the data. Section 4 provides empirical
evidence of the influence of investors trade size and orders imbalance on transaction costs. Section 5
describes the Bayesian network method and its application to transaction costs modelling. Section 6

concludes.

2 Related literature

This paper takes place at the crossing of two fields: the transaction costs and market impact liter-

ature on the one hand, and Bayesian modelling on the other hand.

Transaction costs and market impact. Market impact attracted the attention of academics fol-
lowing two papers: economists have been initiated to this crucial concept by Kyle’s theoretical paper

(1985), while researchers in quantitative finance have been largely influenced by Almgren and Chriss



(2001) empirical results. |Kyle| (1985) has shown how a market maker should strategically ask in-
formed traders (i.e. asset managers) for a cost to compensate for the difficulty to assess the adverse
selection she is exposed to in a noisy environment. This is typically what we observe empirically. Asset
managers have to pay for liquidity demand while they can be rewarded for liquidity provision. Other
market participants react to the aggregate offer or demand. This aggregate is exactly what we define
as the imbalance of meta-orders for a given day. Kyle’s essential result is that given a linear market-
maker pricing rule and within a Gaussian framework, the transaction costs paid by the aggregation of
investors are linear in the size of the aggregated meta-order. Kyle’s lambda, measuring the sensitiv-
ity of price impact with respect to volume flow, is a traditional measure of liquidity. This theoretical
framework has been sophisticated recently, extending Kyle’s game theoretical framework to continu-
ous time, non Gaussian behaviours, and allowing risk aversion in market makers’ strategy (Cetin and
Rogers| (2007)). It is now understood that the informed trader optimal strategy is to try to hide its
meta-order in the noise, while the market maker has to slowly digest orders flow to try to extract the
information it contains and ask for the corresponding price. However, the resulting market impact is
not necessarily linear. Empirical studies that followed showed that in practice market impact is more
square root than linear in the size of the order (Collins and Fabozzi (1991), Bouchard et al.|(2011) or
Robert et al.| (2012)).

Almgren and Chriss| (2001) seminal paper showed how to split an order optimally to minimize
execution cost, making the assumption of concave transient market impact. Bouchard et al.| (2011)
derived an optimal control scheme to mitigate this cost for large meta-orders. This literature is of
primary importance since it answers the regulatory requirements around “proof of best execution”
and provides a baseline framework to asset managers and investment banks to improve their best
practices and metrics for execution. With the popularity of factor investing, the specific question of
the implementation costs of investment strategies following an index or a systematic active strategy
has been raised by regulators and market participants. Frazzini et al.|(2012), Novy-Marx and Velikov
(2015)), or|Briere et al.|(2019) are attempting to answer the question of potential maximum capacity of
a trading strategy, by modelling transaction costs for large order sizes and estimating the break-even

capacity of factor-driven investment strategies.

Bayesian networks. Machine learning is an extension of statistical learning, born with the sem-
inal paper of [Vapnik and Chervonenkis| (1971). Following the universal approximation theorem for
non linear Perceptrons (a specific class of neural networks) with at least one hidden layer (Hornik

et al.|(1989)), statisticians and mathematicians started investigating approximation schemes based on



Figure 1. A simple graphical model for trading costs modelling

trading
costs

the minimization of a possibly non-convex loss function, generally using a stochastic gradient descent
(Amari (1993)) to reach the global minimum while having good chances to escape from the local min-
ima. Successes in Bayesian statistics, focused on coupling a prior and a posterior distribution via the
concept of conjugate (Vila et al. (2000)), opened the door to a mix of neural networks and Bayesian
statistics, based on maximum likelihood estimations. Bayesian networks were born (see the semi-
nal paper by [Pearl| (1986)). Bayesian networks are convenient tools for modelling large multivariate
probability models and for making inference. A Bayesian network combines observable explanatory
variables with hidden latent variables in an intuitive, graphical representation.

In terms of applications, Bayesian networks have first been used for medical diagnosis, since they
have been perceived as a natural extension of expert systems. Expert systems emerged with the first
wave of artificial intelligence tools: Deterministic decision trees. Adding some probabilistic properties
to these trees and reshaping them into graphs is another way to see the emergence of Bayesian net-
works. These models have also been used with success in troubleshooting of computed components,
from printers (Skaanning et al. (2000)) to computer networks (Lauritzen| (2003)). They played an im-
portant role in the automation of problem solving for computers related questions. Recently, they have
been applied in finance. Bew et al.[|(2018) use Bayesian networks to combine analysts’ recommenda-
tions to improve asset management decisions.

These models can very naturally capture the joint distribution of different variables, specified via
a graphical model where nodes represent variables and arrows model the probabilistic dependencies.
The very simple example of Figure [1| specifies that the stock bid-ask spread and its volatility both
influence trading costs, while at the same time, the stock volatility has an influence on the bid-ask
spread (Laruelle and Lehalle|(2018)). The translation in a probabilistic language of this graph is the
following. The trading costs TC, follows a law . which parameters @r¢ are functions of the bid-ask

spread y and of the volatility o: TC ~ £ (®rc(y,0)). The parameters of the law of the bid-ask spread



are seen as a random variable, itself a function of the volatility: y ~ £ (0y(0)).

More details on the mechanisms of Bayesian networks are given in Section 5. At this stage, it is
enough to say that latent variables can be added to the graph. An intermediate variable that is not
always observable, but acting as a probabilistic intermediary (i.e. a conditioning variable) between
observed variables, is enough to structure a Bayesian model. In the simple example of Figure |1, we
can observe or not the bid-ask spread. When it is not observed, the Bayesian network will use its
law .Z(®y(0)) to infer its most probable value, conditionally to the observed volatility. To do that, the
model uses Bayes’ conditional probability chain rule. In our analysis, we always observe the bid-ask
spread, but the net order flow imbalance of institutional investors meta-orders is usually not known.
This paper proposes a Bayesian network to model and forecast transaction costs with a graphical model
where the imbalance of institutional meta-orders is a latent variable.

To sum up, our paper makes use of Bayesian networks to model the expected transaction costs of
institutional investors as a function of the characteristics of the meta-order (essentially its size and
direction), the market environment (stock volatility, bid-ask spread and order flow imbalance). We
contribute to the current literature on trading costs estimation by proposing a methodology to account
for latent variables, in our case, order flow imbalance. This variable can only be partially observed
(with a delay or on a subset of all trades), but is essential to structure the model. Our model has
numerous potential applications and could be used to forecast trading costs, estimate the capacity of a

strategy or decide on the optimal trading execution.

3 ANcerno database

We obtain institutional trading data for the period from January 1 2010 to September 30" 2011
from ANcerno Ltd. ANcerno, formerly Abel Noser Corporation, is one of the leading consulting compa-
nies in providing Transaction Cost Analysis (TCA) in the US. It provides equity trading costs analysis
for more than 500 global institutional investors, including pension funds, insurance companies and
asset managers. This database was largely used by academics to investigate institutional investors
trading behaviour (see for example Anand et al.| (2011), |Puckett and Yan| (2011) and |Eisele et al.
(2017)). ANcerno clients send their equity trades in order to monitor their execution quality. AN-
cerno systematically reports all equity trades it receives. Therefore, costs estimated on ANcerno are
representative of what is effectively paid by institutional investors. Besides, previous research have
shown that ANcerno is free from any survivorship or backfill bias (see /[Puckett and Yan!(2011)), consti-

tute approximately 8% of the total CRSP daily dollar volume (|/Anand et al.| (2013)), and 10% of total



institutional activity (Puckett and Yan|(2011)).

Hence, in our study we use trade-level data from ANcerno on the historical composition of S&P
500 index. For each execution, ANcerno reports information on the CUSIP and ticker of the stock, the
execution time at minute precision, the execution date, execution price, side (i.e., buy or sell), number
of shares traded, commissions paid, whether the trade is part of a larger order, and a number of trade-
level benchmarks to evaluate the quality of the execution. In our sample, we have execution data of
285 institutions (i.e., ANcerno clients). They could be either an individual mutual fund, a group of
funds, or a fund manager subscribing to Abel Noser analytical service. Each institution has one or
several accounts. In our sample, we successfully track the activity of almost 44 thousands of accounts,
responsible of 3.9 trillion dollars of transactions, and using the service of 680 different brokerage firms.
Compared to market volume reported in CRSP, ANcerno accounts for an average of 4.5% over the whole
period. The traded amount reported in ANcerno is over a trillion dollars every year and is, therefore,
large enough to be relevant. We complement ANcerno database with daily bid-ask spread obtained
from Reuters Tick History (RTH).

Consistent with machine learning best practices, we split our sample to a training set accounting
for 70% of the meta-orders and a testing set accounting for the remaining 30%. The training-set is
chosen randomly from meta-orders in our sample such as the number of buy orders and sell orders
are equal. This procedure is very important for our study in order to estimate a non biased net order
flow imbalance. In the case of unbalance number of buy and sell orders in the training-set, the prior
distribution of order flow imbalance will be artificially skewed toward positive values if the number
of buy orders is higher or toward negative values otherwise. The training set is used to compute the

results of section 4 and 5, while the testing set is used for the out-of-sample predictions in section 6.

4 Transaction cost modelling

We measure trading costs with the traditional measure of implementation shortfall (Perold (1988)).
This is the difference between a theoretical or benchmark price and the actual traded price effectively
paid for the execution, in percent of the benchmark price. In our study, we define the reference price
as the last visible price before the start of the execution (arrival price). The implementation shortfall
measures the total amount of slippage a strategy might experience from its theoretical returns. In
essence, our cost estimate measures how much of the theoretical returns of a strategy can actually be

achieved in practice.



For a parent-ticket m of size Qy(m) split into Ny,ges child tickets EI of size v (i) executed at date d in

the direction s, (m), the implementation shortfall is calculated as follows:

N .
Sk(m) trades vam(l) ) ¢
ISi(m,d) = : X P (i) — B¢ (D
k( ) Pk(()) l:Zl Qk(m) k( ) k

where P’ = P,(0) is the reference price (in our case, the arrival price as provided by ANcerno). In
this section, we investigate the effect of order size and order flow imbalance on the implementation

shortfall of investors transactions.

4.1 Order size

Kyle| (1985) introduced the concept that trades by a market participant may have an impact on
the market price. Market impact is a direct consequence of the order size effect. A large meta-order
may move the price in an unfavourable direction for the trader, resulting in a higher implementation
shortfall. The execution cost is then increasing with order size. A series of empirical studies followed
Kyle’s theoretical work to confirm the existence of order size effect (Torre and Ferrari (1999), Moro
et al.|(2009), |Gomes and Waelbroeck|(2015), Bacry et al. (2015), Briere et al. (2019)). To illustrate this
effect, we regroup ANcerno tickets in 100 bins based on participation rate Q/ADV and plot in Figure
the average implementation shortfall scaled by price volatility of the tickets in each bin. The scaling
with stock’s price volatility makes estimates of implementation shortfall comparable through time and
across the universe of stocks. Otherwise, we can not compute the average on each bin as the effect
of participation rate is not the same for large bid-ask spread stocks than those with small bid-ask
spreads. ANcerno tickets show a concave relation between the implementation shortfall and order size
relative to daily traded volume. We observe a sharp increase of the costs from 0 to 0.2 points of price
volatility when order size increases from 0.01% to 2% of the average daily volume. The slope decays
afterward. For instance a ticket with 14% participation rate, costs on average 0.4 points of volatility.

A power law function captures well the dependence of orders trading costs to order size.

4.2 Order flow imbalance

While most of trading cost models emphasize on the historical dependence of market impact on
stock liquidity and order size, It is only recently that order flow imbalance has been recognized as a

significant factor in explaining the magnitude of orders transaction costs. Using ANcerno database,

2Qrders in ANcerno (parent tickets) are split within the execution period into smaller orders (child tickets). For each child
ticket, ANcerno reports the executed volume, the price and time of execution.



Figure 2. Order size effect on trading costs

Institutional trading data are obtained from ANcerno Ltd on the period ranging from January 1, 2010
to September 30, 2011. We split our sample into 100 bins based on meta-order participation rate
0 (m)/ADV,(d) and plots the average implementation shortfall scaled by stock’s volatility IS;/o; for
each bin (blue dots)
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Capponi and Cont|(2019), compared the explanatory power of order size to the effect of a proxy of mar-
ket pressure "Order Flow Imbalance” on transaction costs and came to the conclusion that investors
should focus on modelling the aggregate dynamics of market pressure during execution period, rather
than focusing on optimizing market impact at a trade-by-trade level. Moreover, market pressure is
contributed by all market participants present at the trading session. But the traders who are re-
sponsible of executing institutional investors orders contribute the most to this pressure and should be
specifically taken into account in price movement forecast and transaction costs modelling. These mar-
ket participants have the same profile as the informed/insider trader introduced by Kyle in 1985. By
the end of the trading session, the private information, that was once detained by the insider, spread
to the market and get incorporated into the price level. |Bucci et al.| (2018) argue that price market
impact is function of the aggregate net volume, that for shared indiscriminately between all market
participants. Consequently, a small sized order would cost nearly the same implementation shortfall
as a much larger order if executed in the same direction during the same time frame.

We introduce the Net Order Flow Imbalance, to investigate the impact of institutional investors
synchronous trading on the implementation shortfall. For a met-order m executed at date d, the net

investors order flow imbalance is defined as the ratio of net volume executed by the other investors at



day d over their total traded volume:

Yot zm Q (' d).s3.(m )

Imbk(m,d): Z " Qk(m/ d)

(2)

Where k designs the stock, s;(m’,d) is the side of the meta-order m’ (i.e. 1 for buy orders and -1 for

sell orders) and Qy (', d) its size.

Figure 3. Net order flow imbalance effect on trading costs

Institutional trading data are obtained from ANcerno Ltd on the period ranging from January 1, 2010
to September 30, 2011. We split our sample into 100 bins based on net order flow imbalance multiplied
by the side of the trade and plots the average implementation shortfall scaled by stock’s volatility
IS/ oy for each bin (blue dots)
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Figure [3|illustrates the dependence of the implementation shortfall to institutional investors trad-
ing imbalance. First, we note that the relationship is linear. The stronger the absolute imbalance,
the higher the absolute value of price deviation during the execution. But depending on whether the
trade is on the same direction as the net order flow imbalance, thus contributes to the existing market
pressure, or on the opposite side, and provides liquidity to the market, one could expect either to pay
a significant trading cost up to 0.4 points of price volatility when investors are trading synchronously
toward the same directions (Imby (m,d) = 1) or benefit from a price improvement of 0.3 points of volatil-
ity when the trader is almost alone in front of his competitors aggregate flow (Imby(m,d) = —1). Also
worth noting that the implementation shortfall at zero imbalance is slightly positive. At neutral mar-
ket pressure, the investors pays a positive transaction cost depending on stock traded and meta-order

size.
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4.3 Joint effect of order size and order flow imbalance

Figure 4. Joint effect of order size and net order flow imbalance on trading costs
Institutional trading data are obtained from ANcerno Ltd on the period ranging from January 1, 2010
to September 30, 2011. First, We split our sample on 3 buckets w.r.t meta-order signed imbalance
(sg(m) - Imbg(m,d)) 30% and 70% quantiles. We sort meta-orders within each bucket into 100 bins
based on meta-order participation rate (Qy(m)/ADV;(d)) and plots the average implementation short-
fall scaled by stock’s volatility IS, /o for each of the bins.
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The results in subsection 4.1 and 4.2 show that the implementation shortfall depends on both
the size of the executed order, and market pressure during execution period. Market pressure being
approached by investors net order flow imbalance. To disentangle the two effects, we split our sample
on 3 distinct buckets with respect to meta-order signed imbalance (si(m) - Imby(m,d)) 30% and 70%
quantiles. Within each bucket, we sort meta-orders into 100 bins based on meta-order participation
rate (Q(m)/ADV(d)) and compute the average implementation shortfall scaled by stock’s volatility for
each of the bins. Figure |4 plots the result, where the blue, line shows order size effect for meta-orders
executed against high market pressure (signed imbalance is lower than the 30% quantile). Orange
line illustrate the effect for meta-orders executed under standard market pressure (signed imbalance
between the 30% and 70% quantiles). Whereas the green line shows the result for orders executed in
the same direction as the market (signed imbalance larger than the 70% quantile). We observe the
impact of meta-order size is persistent in the 3 buckets and the power law remains valid even after
conditioning on net order flow imbalance. The linear effect of the signed imbalance is visible in the

difference of transaction cost level between the 3 buckets. Which proves that these two explanatory
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factors does not cancel one another. We also note that most of meta-orders executed against investors
net order flow benefit from a price improvement between the moment the execution starts and the
moment it ends. During strongly unbalanced markets, the provider of liquidity is rewarded with a
better execution price. However, for larger meta-orders (Qy(m)/ADV,(d) = 23%) the market impact
of the trade prevail and the trader pays on average a positive transaction cost. The opposite is also
true, when traders seek liquidity on the same direction as the remainder of institutional investors, the
trading cost gets more expensive than usual.

To further explore the joint effect of order size and net order flow imbalance on the implementation
shortfall, we run the following step-wise multivariate regression. First, we perform the regression of
order implementation shortfall on stock bid-ask spread and the square root of the order participation
rate scale by stock volatility as described in equation (3). Then, a regression of the implementation
shortfall on the bid-ask spread and the signed imbalance, also scaled by stock volatility (equation [4).

Finally, we gather the 3 factors on the same regression as in equation ().

15c(md) = o ya(d) + B o @) (2w evima) ®)
1Sy (m,d) = o Wi (d) +y 67K (d) si(m) Tmby(m,d) + & (m,d) (4)
1Sy (m,d) = o Wi (d) + B 6% (d) QD"\Z"(L) + 7 6K(d) si(m) Tmby (m,d) + & (m,d) (5)

where IS;(m,d) is the implementation shortfall of meta-order m submitted on stock k at day d. yi(d)
is the quoted intraday bid-ask spread of stock k averaged on the month. G,?K(d) is the |Garman and
Klass| (1980) intraday volatility of stock k estimated on a 12 month rolling window. Q(m) and si(m)
are respectively size and side (Buy/Sell) of the order. ADV,(d) is the daily traded volume averaged on a
12 months rolling window, and Qy(m)/ADV,(d) is the participation rate. Imby(m,d) is the net investors
order flow imbalance estimate for order m at day d. Finally, a, § and y are model parameters and
&(m,d) is the respective error term.

The results of these three regressions are presented in Table[1l In the first regression the coefficient
of bid-ask spread and order size term (G,?K(d) Oy (m) /ADVk(d)> are respectively 0.4 and 0.95, both
statistically significant at the 1% level. Consistently with [Briere et al.| (2019) we find that for small
orders, institutional investors pay only 0.4 times the bid-ask spread. In the second regression, we

replace the order size term by the market pressure term. We notice that the coefficient of the bid-ask

12



Table 1. Transaction cost model

Institutional trading data are obtained from ANcerno Ltd on the period ranging from January 1, 2010
to September 30, 2011 on the S&P 500 historical components. y;(d) is the quoted intraday bid-ask
spread of stock k averaged on the month, obtained from RTH database. o°X(d) and ADV,(d) are
respectively the Garman Klass intraday volatility and the average daily volume of stock k estimated
on a 12 month rolling window. Q(m) and s;(m) are respectively size and side (Buy/Sell) of the order.
Imby (m,d) is the net order flow imbalance for order m at day d.

Model Dependent variable: IS, (m,d)
wi(d) 0.399%** 0.708%** 0.180%**
(0.032) (0.028) (0.032)
oP%(d) \/Ok(m)/ADVi(d)  0.951%%* 0.712%#
(0.021) (0.021)
oK (d) sx(m) Imby(m,d) 0.234%** 0.224%***
(0.002) (0.002)
Observations 7421548 7421548 7421548
R? 0.005 0.016 0.017
Adjusted R? 0.005 0.016 0.017
Residual Std. Error 0.017 0.017 0.017
F Statistic 1892.157  5993.682  4391.073
AIC -3964520  -3972637  -3973801
Note: *p < 0.1; ¥p < 0.05; ***p < 0.01

spread increases (from 0.4 to 0.7) and its confidence interval becomes tighter (lower standard deviation
0.028 vs 0.032). The determination coefficient for the second regression is also much higher (1.6% vs
0.5%). Finally, when we put all explanatory variables together, we find that coefficient of the order
imbalance does not change (0.22-0.23) while both order size term and bid-ask spread have much lower
parameters (0.18 for bid-ask spread and 0.71 for order size term) compared to the first two models.
Besides, the determination coefficient of the second and third regressions are comparable. The net
order flow imbalance seems to be much better predictor of expected implementation shortfall than the

size of the order. Although, all coefficient are statistically significant a the 1% level.

5 Bayesian network modelling with net order flow imbalance
as latent variable

Institutional investors net order flow imbalance is a key factor in the estimation of meta-orders
transaction costs. However, this variable is only observable with a delay, for example through brokers
or custodians’ reports, or on a subset of trades only (the investor’s own trades). Thus, it can not be
used for production purposes. To remedy this issue, we propose a Bayesian network to incorporate

all information we could get before the execution of the meta-order, and update our beliefs on the
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probabilistic distribution of the latent variable. We then use the most probable value of the net order
flow imbalance to estimate the meta-order transaction cost. One of the interesting features of Bayesian
networks is that they can be explored in both directions, thanks to the Bayes’ rule. Therefore, we can
give an estimate of the latent variables, by probabilistic inference, before and after the variable of

interest is observed. In the context of this study, this means that:

e given the characteristics of the meta-order (side and size of the trade) and stock attributes (bid-
ask spread, average daily traded volume and price volatility), we can compute a first estimate of

the imbalance and forecast the transaction costs that should be paid by the investor.

e Once we get the effectively paid trading cost, we can recover a more accurate estimate of the
distribution of investors net order flow of the day, and for example incorporate it in the estimation

of order flow imbalance of the following day.

5.1 Bayesian inference

The main difference between the frenquentist approach and the Bayesian approach is that in the
latter, the parameters of the models are no longer unknown constants that need to be estimated,
but random variables which parameters have to be estimated. The statistician has the possibility to
incorporate his prior belief on the probabilistic distribution of the variable and update his belief step
by step as soon as new data becomes available. From one step to the other: the former "posterior
distribution” is used as a prior for the next step estimate.

For instance, if y stands for the unknown random variable, x for the observed data, and P(y) for
the prior. The posterior distribution P(y|x) is obtained as the multiplication of the prior P(y) with the
likelihood P(x|y) of observing the data, scaled by P(x). The definition of conditional probabilities applied

on this procedure reads:
P(y)P(xly)

POT) = =

o< P(y)P(xly). (6)

Figure 5| shows how to estimate the coefficients of the Bayesian linear regression specified in equa-
tion (5). First, we start by incorporating our prior beliefs, if any, on the distribution of the parameters
6 = (a,B,y)". Without any belief, a good choice is to take a non-informative prior like the normal distri-
bution N(0, 1). The best initialisation for priors is hence a law close to the empirical repartition function
of the considered variable. The variable of interest ISy(m,d) follows a normal distribution centered at

the estimated value = X0 and has variance ¢?, of the error term & (m,d). ¢2, requires a non negative

err

prior distribution, such as the positive part of a Gaussian (i.e. HalfNormal) or the positive part of a
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Cauchy (i.e. HalfCauchy). The Bayesian setup gives direct interpretation of the results: The mean
of the posterior distribution is the most probable value of the parameters 6, and the 5% confidence

interval is limited by the 2.5% and 97.5% quantiles of the posterior distribution.

Figure 5. Bayesian inference of a linear regression
Blue rectangle represent observed variables. Circles are the parameters that need to be calibrated.
Each have a prior distributions detailed in white rectangle.

X6 = o yi(d) + B o7 (d) \/Qx(m)/ADV(d) +7 67K(d) - sx(m) - Imby (m,d)

Prior: N(0,1) Prior: HalfN(1)
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MCMC (Markov Chain Monte Carlo, see Hastings| (1970) for one of the first references) methods
offers an easy way to sample from the posterior, especially when the posterior does not obey to a well
known expression or when we know the expression has a multiplicative term. It is very convenient
for the Bayesian approach, where the posterior distribution is proportional to the multiplication of the
prior and the likelihood. MCMC algorithms makes computations tractable for parametric models. The
intuition behind MCMC is to define a Markov Chain (xg,xi,...) on the support of x, such that as when
the size n of this chain goes to infinity, the new drawn point x, is distributed accordingly to the law
P,. The most famous algorithms to generate Markov Chains having this very nice property are the
Hasting-Metropolis one, explained in Appendix F, that we use in this study, and the Gibbs sampler. ﬂ
The marginal distribution of regression coefficients of the calibrated model is shown in the right panel
of Table[2] while the result of the OLS regression is in the left panel. As expected from Bayesian models
when the sample size is large, we end up with the same results. Beside, when the priors are Gaus-

sian, the maximum a posteriori of the parameters is equivalent to a ridge estimate with a quadratic

3We use the PyMC3 python package implementation of Hasting-Metropolis algorithm described in[Salvatier et al.[(2016) with
a large number of iterations Ny, = 10000
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regularization (Egy y [6] = argmaxg P(6]X,Y) = argming ||Y —X6||*+ o]0 |2).(This formula, similar to

the one of Ridge regression (see Hoerl and Kennard| (1970)), makes the Bayesian regression more ro-

bust to outliers than OLS. It is the case for example for the order size term 67X (d)/Qx(m)/ADV(d)

distribution, which explain the minor difference in coefficient estimate (0.71 vs 0.69).

Table 2. OLS regression vs Bayesian regression

Institutional trading data are obtained from ANcerno Ltd on the period ranging from January 1, 2010
to September 30, 2011 on the S&P 500 historical components. y;(d) is the quoted intraday bid-ask
spread of stock k averaged on the month, obtained from RTH database. o°X(d) and ADV,(d) are
respectively the Garman Klass intraday volatility and the average daily volume of stock k estimated
on a 12 month rolling window. Q(m) and s;(m) are respectively size and side (Buy/Sell) of the order.
Imby (m,d) is the net order flow imbalance for order m at day d.

OLS Regression Bayesian Regression
coef std err Q Q coef std err Q Q
25%  97.5% 25%  97.5%

wi(d) 0.18 0.03 0.12 0.24 0.18 0.03 0.12 0.24

oS (a)\/ (B9 071 002 067 0.5 069 002 065  0.73

05K (d)si(m)haby(m,d) | 0.22 0.00 0.22 0.23 0.22 0.00 0.22 0.23
RMSE (%) 1.66 1.66
R? (%) 1.77 1.77

5.2 Bayesian network modelling

Most of the OLS assumptions are violated. As shown in Appendix E, the marginal distribution
of trading costs has a peaky shape, with fat tails (excess-kurtosis of 23.46). The assumption of ho-
moscedasticity is also violated. The variance of the error term is hardly constant across orders. Fore-
casting errors are smaller for small orders (implemented in a few minutes) compared to large ones
(split over days) that got exposed for a longer period to market volatility. Finally, it is difficult to as-
sume that the observations are independent of one on-other. Meta-orders on the same stock, whatever
the execution day, share some common variance related the stock characteristics. Similarly orders
executed at the same trading session on different stocks face the same market conditions, and thus
cannot be considered independent of one another.

In addition, Bayesian Networks have the advantage of not relying on Normal error distributions
(Zuo and Kital (2012)), as do most other machine learning algorithms. Furthermore, Bayesian net-
works have the advantage of giving a human-readable description of dependencies between considered
variables, whereas other more complex models, such as Neural Networks, suffer from being considered

as "black box” models.
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5.2.1 The structure of our Bayesian network

Our goal is to estimate the Implementation Shortfall of an order. We would like the Bayesian

network takes into account:

e Attributes of the traded stock, such as average bid-ask spread, price volatility and average

turnover;
e Characteristics of the meta-order, mainly order size and side of the trade (Buy/ Sell);
e And the level of crowding during the execution: the net order flow of large institutional firms.

Figure [6] shows the Bayesian network we engineered. We distinguish 3 key dependencies. First, the
bid-ask spread depends on the level of stock volatility. Second, the marginal probability distribution of
order flow imbalance is function of the meta-order size and side. Finally the implementation shortfall
is function of all network nodes. In the following section, we detail the nature of these dependencies

and we set the priors for each group of variable separately.

Figure 6. Bayesian network for transaction costs modelling

5.2.2 Bid-ask spread dependencies

The relation between stock volatility and bid-ask spread is well documented. Theoretically, it is
justified by Wyart et al.|(2008) that, deriving the P&L of traders submitting market orders and those
submitting limit orders, an equilibrium price is only achievable if the bid-ask spread is proportional

to price volatility (i.e. yi(d) > 6’¥(d)). In the same fashion, Dayri and Rosenbaum| (2015) study the
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optimal tick size, and find that the bid-ask spread that the market would prefer to pay if not constraint

GK
by the tick size verifies WkT(d) o< %Tnfld) The rational is that market makers, setting the best limits of

the order book, accept to provide tight bid-ask spreads not only when the volatility (i.e. the risk of a
given inventory level) is low, but also when they have more opportunities within the day to unwide
their position. The relation between the bid-ask spread and the volatility is confirmed empirically on
our data, as illustrated in Figure|11|of Appendix B.

Consistent with the literature of stochastic models for volatility, we set the prior of stocks volatility

GK

to a log normal distribution 0,”*(d)) ~ LogNormal. Consequently, the bid-ask spread should follow a

log normal distribution too, and the conditional probability of bid-ask spread given price volatility is

detailed in equation , where c¥°,p¥°, 0y - are model parameters.

vi(d) 6°%(d) ~ LogNormal (c(‘“’er""’log(G,?K(d)), le)( (7

Table 3. Bayesian inference: Bid-Ask spread, volatility dependencies

The table summaries the posterior distribution of model parameters described in equation (7). E[X],
std(X), Q2.5% and Q97.5% are respectively the mean, the standard deviation, the 2.5% and 97.5%
quantile of parameters posterior distribution. The results are obtained from Hasting-Metropolis sam-
pler with N, = 10000 iterations (PyMC3 implementation). The institutional investors trading data
are obtained from ANcerno Ltd on the period ranging from January 1, 2010 to September 30, 2011.

E[X] Std[x] Q2.5% Q97.5%
Cyo -4.137 0.006 -4.150 -4.126
Pyo 0.777 0.001 0.775 0.780
Cy.o 0.402 0.000 0.401 0.402

5.2.3 Net order flow imbalance dependencies

In this section, we quantify the dependence of net order flow imbalance to the remainder variables
in the network. Figure [7| shows the marginal distribution of the imbalance depending on the sided of
the meta-order. The U-shape of the plot confirms that institutional investors have indeed correlated
executions, and tend to execute the same stocks toward the same directions during the same peri-
ods, which intensifies the pressure on price movements. This correlation in trade execution can be
explained by various factors. Asset managers compete for the same base of customers and can imple-
ment similar strategies (Greenwood and Thesmar| (2011)), [Koch et al.|(2016)). Thus, they face similar
inflows and outflows, depending on liquidity needs and investment opportunities. Moreover, the asset
management industry is subject to a series of regulatory constraints that can push funds to buy or

sell simultaneously the same kind of assets. We note also, that the U-shape is decomposed in two
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skewed distributions depending on the side of the meta-order. So, given the side of the meta-order of
an institutional investor, the remainder of large arbitrageurs executions constitute either a positively
(for sell) or negatively (for buy) skewed imbalance distribution. Besides, conditional on the level of a
meta-order participation rate, Figure [8) shows that the intensity of absolute net order flow imbalance

of investors meta-orders gets stronger, a confirmation of institutional investors crowding.

Figure 7. Net order flow imbalance distribution given meta-order side

Institutional trading data are obtained from ANcerno Ltd on the period ranging from January 1, 2010
to September 30, 2011. Given a meta-order m submitted by an institutional investor, the figure plots
the distribution of the net order flow imbalance generated by the remainder of investors as defined in
equation (2) given the side s;(m) of meta-order m.

Buy Order

2.0 Sell Order

1.5

1.0

0.5

0.0 T T T T . . :

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Imbalance

The Side takes two values Buy and Sell. It is modelled with a Bernoulli distribution s;(m) ~
Bernoulli(pyy.) of parameter pyy. = % The data shows that a Beta function is a good approximation
of the U-shape for variables defined between [0,1]. After applying the linear transformation x — %,
Beta(a, B) is a plausible distribution of the transformed net order flow imbalance. Moreover, the beta
distribution have the particularity to produce different shapes depending on the parameters o and f.
It produces a symmetric U-shape when a = f8 and (o —1)(a —2) > 0, a positive skew when o < f and a

negative skew when o > f3.

The probability density function of the transformed order flow imbalance PDFg., is given by:

xocfl —x p—1
PDFgen (o, B) = B((la,[i; where B(a,fB)= 1;(((2_1;(5)) (8)
P (Imbk(m,d) sk(m), A%;E:Zi)) 6B(almbaﬁlmb) 9
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Figure 8. Net order flow imbalance as a function of participation rate

Institutional trading data are obtained from ANcerno Ltd on the period ranging from January 1, 2010
to September 30, 2011. We sort meta-orders into 100 bins based on meta-order participation rate
(Qx(m)/ADV,(d)) and plots the average absolute net order flow imbalance for each of the bins
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|Imby(d)|
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The dependence to order side and order participation rate should be taken into account at the level

of the parameters of the Beta function (o, f3).

Ox(m)

Oltmb :c“—&—pf‘-sk(m)—i—pg-sk(m)-w (10)
Bimb = P + pP - s(m) + pB - 5. (m) - AQDk\ET(L) (11)

The result of the Bayesian inference of the imbalance dependencies are summarized in Table
When s;(m) = 0 and Qy(m)/ADV,(d) = 0, the posterior distribution of net order flow imbalance is given
by B(0.67,0.68) which produces a U-shape. This means that when the asset manager has no signal or
information on price movement, he can only assume the synchronization of institutional activity. Thus,
the symmetric distribution with higher probability at the extreme values of the imbalance. But once
he detains a signal, since the process leading to generate this signal is independent from the execution
process, he can use his own meta-order as an observation to update his belief on the distribution of
the expected market pressure. Note also that psﬁ and pg are very low compared to p* and pJ. This is
not an issue, because what determines the strength of the skew for the Beta function is the difference

(B — o) (see Appendix C for Beta function properties).
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Table 4. Bayesian inference: Net order flow imbalance dependencies

The table summaries the posterior distribution of model parameters described in equations and
. E[X], std(X), Q2.5% and Q97.5% are respectively the mean, the standard deviation, the 2.5% and
97.5% quantile of parameters posterior distribution. The results are obtained from Hasting-Metropolis
sampler with Ny, = 10000 iterations (PyMC3 implementation). The institutional investors trading data
are obtained from ANcerno Ltd on the period ranging from January 1, 2010 to September 30, 2011.

E[X] Std[x] Q2.5% Q97.5%
ca 0.666 0.001 0.664 0.667
pY 0.101 0.001 0.099 0.102
po 0.884 0.021 0.846 0.928
b 0.675 0.001 0.673 0.677
pP 0.000 0.000 4.2¢-08 0.000
pP 0.001 0.001 1.4e-07 0.003

To better interpret the results of the table, we plot the posterior distribution of the net order flow
imbalance, given two levels of participation rate (0.1% and 30%) for buy and sell trades. As expected,
we observe that the side of the trade skews the distribution positively for a buy order and negatively
for a sell order. The information of the meta-order participation rate intensifies the skew and increases
the probability of having a full synchronization of investors executions |Imb| = 1. However, the shape
of the distribution is not symmetrical between buy orders and sell orders. The skew of imbalance
distribution is much stronger for sell orders. This means that when an investor is selling massively
with large %, he could expect a high selling pressure from the market due to investors synchronous
inflows and outflow. Because institutional investors are natural buyers, implementing more long only
strategies than short selling ones, a high selling pressure correspond to a "Rushing toward the exit

door” situations. While on the opposite scenario, a buying order with high participation rate although

informative on the market does not give as much evidence on market participants behaviour.

5.24 Implementation shortfall dependencies

Similarly, we model the implementation shortfall as a function of all the other nodes of the net-
work. the data shows the historical distribution of implementation shortfall displays fat tails with
pronounced non-Gaussian peaky shape. Thus, a double exponential (Laplace) probability density is a

good prior of IS distribution. The probability density function (PDF) of Laplace is given by:

l —
154(m.d) ~ Laplace(yib).  PDFuupas(rof.b) = 3o exp (~ 1) < (12)

The location parameter u is given by equation (13). As in the linear regression, we condition the

magnitude of transaction cost to stock bid-ask spread, the participation rate scaled by the volatility and
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Figure 9. Inferred net order flow imbalance given the side and the size of the meta-order
The figure shows the posterior distribution of net order flow imbalance given the meta-order charac-
teristics. On the left panel we plots the distribution for buy orders with two levels of participation
rate, blue line corresponds to small orders Qi(m)/ADV(d) = 0.1% and orange line for large orders
QOi(m)/ADVy(d) = 30%. The right panel shows the result for sell orders with the same levels of partici-
pation rate
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investors order flow imbalance signed by meta-order side and scaled by stock volatility. Nevertheless,
we don’t assume the square root function for meta-order size but a power law highlighted by the
exponent y that we estimate.

p=ao+ayyi(d)+a,

Q
»ADV

exp {‘ég(GkGK(d)) +7 log <AQDI<\EZEL)> } <ras‘,1mb G,?K(d) si(m) Imbg(m,d)  (13)

Estimation accuracy is function of market condition, speed and duration of the execution algo-
rithm, the aggressiveness in seeking liquidity. This heteroscedasticity of the implementation shortfall
is taken into account by making the standard deviation of Laplace distribution » depend on stock at-
tributes (spread and volatility), meta-order characteristic (participation rate) and market condition

(absolute imbalance) as follows:

b=exp(b), by =bo+bylog(yi(d))+bs log(o-kGK(d)) errgv log (AQDk\Ekm()d)> <rb1mblog(|lmbk(m,d)) (14)

Table[5|summarizes the first two moments and the 2.5% and 97.5% quantiles of the posterior distri-
bution of the parameters. First, we note that the exponent of the order size term is a bit lower than the
square root ¥ = 0.41, consistent with the previous finding of [Bacry et al.[(2015) that used a proprietary
database of a broker execution in Europe. The literature usually document a power law with exponent
between 0.4 and 0.5 (Gomes and Waelbroeck| (2015) and Briere et al.[(2019)). The parameters relative

to the location term are consistent with the ones estimated with OLS regression. As expected, the
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Table 5. Bayesian inference: Implementation shortfall dependencies

The table summaries the posterior distribution of model parameters described in equations and
. E[X], std(X), Q2.5% and Q97.5% are respectively the mean, the standard deviation, the 2.5% and
97.5% quantile of parameters posterior distribution.The results are obtained from Hasting-Metropolis
sampler with Ny, = 10000 iterations (PyMC3 implementation). The institutional investors trading
data are obtained from ANcerno Ltd on the period ranging from January 1%, 2010 to September 30",
2011.

E[X] Std[X] Q2.5% Q97.5%
ao 0.00 0.00 -0.00 0.00
ay -0.60 0.37 -1.36 0.12
ay o 0.67 0.24 0.26 1.15
» ADV
y 0.41 0.11 0.20 0.62
as.mb 0.20 0.02 0.17 0.24
bo 0.06 0.17 -0.27 0.40
by 0.09 0.03 0.05 0.14
bs 0.78 0.03 0.71 0.85
b o 0.05 0.01 0.04 0.06
ADV
Bionb 0.01 0.01 -0.01 0.03

intercept parameter is null, the coefficient of the order size and order flow imbalance terms are similar
to those estimated by the OLS regression. Only the coefficient of bid-ask spread differs significantly.
The parameters of the scale of Laplace distribution are small except the stock volatility coefficient.
It proves that the main contributor to the heteroscedasticity is not the order size but stock volatility,
consistent with the findings of |Capponi and Cont| (2019) suggesting that conditionally to the level of

stock volatility and execution duration, the order size have small impact on transaction costs.

5.3 Forecasting implementation shortfall

We gather the different blocks of variable dependencies to constitute the Bayesian network of Fig-
ure @ The parameters (u,b, Qiup, Bimp) are estimated via Bayesian inference using Hasting-Metropolis
algorithm. Once the network is calibrated on 70% of the meta-orders, we use it to infer the latent
variable of net order flow imbalance given meta-order and stock characteristics and estimate orders
implementation shortfall both in-sample (on the training set) and out-of-sample (on the testing set,
the remaining 30% of the meta-orders not yet seen by the algorithm). Table [6] displays the results
for both the linear regression and the Bayesian network predictions in- and out-of-sample. For the
linear regression, we compare a model without order flow imbalance (equation (3), column 1) and one
with order flow imbalance (equation (5)), column 2). In this last model, the realized imbalance is fully
observed in real time, which is never achievable in practice, but can serve as a benchmark case. We

then show the results of three Bayesian networks: The first network (column 3) has never seen the in-
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formation of the imbalance, neither during the training phase nor the prediction phase. In that sense,
it is comparable to the first linear regression (OLS when imbalance is not available) in the first column
of Table[6] The second network (column 4) was trained with the information of order flow imbalance.
Once this information is captured by the conditional probabilities of network edges, the network is
exploited without the use of the imbalance. In this regard, order flow imbalance is partially observed.
The last network (column 5) has full information on the imbalance, both at the training and testing
phases, and is similar to the second OLS regression displayed in column 2. Adding information on
imbalance improves the forecasting accuracy, both for the OLS regression and the Bayesian network.
In-sample, it increases the R? from 0.52% to 1.77% for the two models, and reduces the forecasting
error (RMSE from 1.67% to 1.66% and MAPE from 98.74% to 98.48%). For the same set of informa-
tion (imbalance observable or not), the Bayesian network has the same accuracy than the OLS on the
training set. However, the absolute average error is much smaller for the Bayesian network (-0.43 bps
vs -0.86 when imbalance is available, -1.41 bps vs -1.43 bps when it is not). In-sample, and when all
explanatory variables are observable, the Bayesian network has only a limited advantage over simple
linear regressions in terms of prediction accuracy. Out-of-sample, when the imbalance is not available
(Panel B, columns 1 and 4), the Bayesian network is also similar to the linear regression (lower aver-
age error = 0.08 bps vs 0.16 bps, but similar RMSE= 1.39 % and R? =0.38%, and slightly higher MAPE=
99.3% vs 99.0%. But when imbalance is available (Panel B, columns 2 and 5), the Bayesian network
has higher forecasting accuracy than the linear regression on all criteria (R>= 1.20% vs 1.10%, average
error= -0.43 bps vs -1.08 bps, RMSE= 1.388 % vs 1.389%, and MAPE= 99.41 % vs 99.57%).

The Bayesian Network is particularly valuable when a subset a variables are only partially observ-
able. In this case, the network captures the conditional dependencies between the nodes, and fills the
missing information with the most probable values of the latent variables. In our case, the realized
imbalance is not used for the prediction, but the Bayesian network is trained on imbalance to infer its
distribution given meta-orders characteristics. This gives a better forecast for the realized transaction
cost, both in-sample and out-of-sample (for example higher R?> =0.56% vs 0.52% in-sample, 0.50% vs
0.38% out-of-sample) than OLS or Bayesian networks that could not rely on this information.

Table [7] provides similar results to those in Table [ but for ten deciles of orders size, and for
Bayesian networks using partial or full information on imbalance. We split the training and test-
ing sets in 10 bins with respect to the training set order size. The first bin contains small orders, lower
than 0.01% of daily volume, while the last one contains very large orders, higher than 4.34% of daily
volume. We assess the accuracy of the Bayesian network within the three configurations of information

availability (order flow imbalance fully, partially or not available). Consistent with intuition, we find
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Table 6. Performance of the Bayesian network compared to the standard OLS regression
Institutional trading data are obtained from ANcerno Ltd on the period ranging from January 1, 2010
to September 30, 2011. In-sample predictions are computed on 70% of the data such us the number
of buy orders is equal to the number of sell orders. The remaining 30% serves for the out-of-sample
prediction. RMSE and MAPE are respectively the Root Mean Squared Error and the Mean Absolute
Percentage Error of the estimates

Imbalance OLS Regression Bayesian Network
Available No Yes No Partial Yes
Panel A: In-sample Estimation
E[IS] (bps) 9.020 9.020 9.020 9.020 9.020
E[1S] (bps) 7.590 8.161 7.606 8.617 8.588
E[IS —IS] (bps) -1.430 -0.859 -1.414 -0.403 -0.431
RMSE (%) 1.669 1.659 1.669 1.669 1.659
MAPE (%) 98.743 98.476 98.739 98.686 98.476
R? (%) 0.517 1.773 0.517 0.558 1.771
Panel B: Out-of-sample Estimation
E[IS] (bps) 6.394 6.394 6.394 6.394 6.394
E[1S] (bps) 6.557 5.317 6.482 8.030 5.960
E[IS —IS] (bps) 0.163 -1.076 0.088 1.637 -0.434
RMSE (%) 1.394 1.389 1.394 1.393 1.388
MAPE (%) 99.022 99.570 99.301 99.340 99.410
R? (%) 0.377 1.104 0.378 0.502 1.204

that the inferred order flow imbalance distribution is more accurate when the investor holds a larger
order. The posterior distribution of order flow imbalance given a small order is a symmetric U-shape
function (Figure [9). At best it is slightly skewed, either positively or negatively, depending on the di-
rection of the order. Thus, the larger the investors’ trade, the more informative it is on the estimation
of order flow imbalance, and as a consequence the more accurate is the forecast of resulting implemen-
tation shortfall. We observe that the R? increases steadily, whatever the configuration of information
availability (partial or full), in-sample and out-of-sample, starting at the seventh bin. For example,
the in-sample estimation of transaction costs when imbalance is partially available, goes from an R?
of 0.18% for the seventh decile to 2.13% for the tenth decile, while smaller deciles of order size have
relatively small R? (from -0.03% to 0.09% for the first 4 bins). Actually, for small order size, the market
impact is very limited and disappears in market noise. Even if the Bayesian network is trained using
information on order flow imbalance, it has no advantage when the investor uses its trades attributes,
if he trades only small order sizes. Said differently, it is hard to make good prior predictions of the
order flow and thus the transaction cost when executing small orders. But we see how information on
the investors’ own orders becomes more informative on the aggregate net order flow as the investors’
own order size get larger. This is in line with the recent concentration of institutional investors execu-

tions on few dealing desks. Because the large dealing desk has a more accurate picture on investors’
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order flow imbalance of the day, it can assess the expected transaction cost more accurately and po-
tentially design a better optimized executing scheme using this information. Note also that the RMSE
does not drop, because higher order size bins have few orders with large implementation shortfall that
increases the average transaction cost for the bin. This is visible in the difference between the mean
and the median realized trading cost (30.64 bps vs 24.79 bps in-sample for the tenth bin and 1.89 bps
vs 1.67 bps for the first bin).The MAPE on the other hand, not suffering from this bias, gets smaller as
the order size increase.

Table 7. Performance of the Bayesian network given order size

Institutional trading data are obtained from ANcerno Ltd on the period ranging from January 1, 2010
to September 30, 2011. In sample predictions are computed on 70% of the data such us the number
of buy orders is equal to the number of sell orders. The remaining 30% serves for the out-of sample
prediction. The sample are split in 10 bins w.r.t training set orders size. Q50 is the 50% quantile
of implementation shortfall realized distribution. RMSE and MAPE are respectively the Root Mean
Squared Error and the Mean Absolute Percentage Error of the estimates

Bins 1 2 3 4 5 6 7 8 9 10
]E[/WQV] (%) 0.01 0.02 0.03 0.04 0.06 0.09 0.15 0.28 0.64 4.34
Panel A: In-sample Bayesian Estimation

Effective Trading Costs
E[IS] (bps)  1.89 2.87 2.61 4.85 6.88 7.82 7.01 9.25 16.50 30.64
050 (bps) 1.67 2.67 2.34 2.89 5.09 6.11 5.99 8.06 11.54 24.79
Imbalance Partially Available
E[S] (bps)  4.26 4.52 4.82 5.25 5.78 6.51 7.58 9.32 12.59 25.62
RMSE (%) 1.41 1.44 1.51 1.52 1.56 1.61 1.68 1.74 1.92 2.17
MAPE (%) 100.19 99.78 100.11 99.69 9892 9859 9846 97.86 9691 93.60
R? (%) -0.03 0.04 -0.00 0.09 0.17 0.24 0.18 0.27 0.77 2.13
Imbalance Available
E[1S] (bps)  3.72 4.09 4.36 4.86 5.54 6.36 7.63 9.54 13.07 26.80
RMSE (%) 1.39 1.43 1.50 1.51 1.55 1.60 1.67 1.73 1.90 2.17
MAPE (%) 98.76 98.72 98.76 99.02 98.66 98.70 98.59 98.54 98.06 96.89

R? (%) 1.50 1.69 1.43 1.37 1.55 1.35 1.33 1.35 2.09 2.89
Panel B: Out-of-sample Bayesian Estimation
Effective Trading Costs

E[IS] (bps) -1.44 -0.14 0.75 2.70 3.80 4.83 8.09 8.81 12.71  28.09
050 (bps) 0.00 0.00 0.00 1.65 1.28 3.62 5.49 6.73 8.01 19.09
Imbalance Partially Available
E[1S] (bps)  4.53 4.77 5.05 5.39 5.87 6.50 7.46 8.98 11.85 22.73
RMSE (%) 1.22 1.24 1.27 1.37 1.32 1.35 1.40 1.45 1.61 1.71
MAPE (%) 101.28 101.25 101.23 100.99 101.33 98.96 9823 97.59 97.22 93.65
R? (%) -0.17  -0.09 -0.05 0.06 0.13 0.17 0.39 0.41 0.72 2.39
Imbalance Available
E[S] (bps)  2.19 2.28 2.69 2.98 3.67 4.33 5.57 6.97 9.91 22.13
RMSE (%) 1.21 1.23 1.26 1.36 1.32 1.35 1.39 1.45 1.60 1.72
MAPE (%) 99.47 99.69 99.51 99.78 99.73 99.37 99.62 99.38 99.23 97.95
R? (%) 1.18 1.25 1.15 0.85 0.92 1.18 0.81 0.96 1.34 2.08
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5.4 Inference of investors order flow imbalance given post-trade cost and

market conditions

Figure 10. Bayesian Inference of Net Order Flow Imbalance

The figure plots in two panels the posterior distribution of net order flow imbalance given two example
of market conditions and order characteristics. Each time, the blue curve plots the inferred distribution
when only meta-orders attributes are considered and the orange line is the updated distribution once
the resulting transaction cost is observed.
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Investors net order imbalance is a latent variable, thus not observable by the asset manager before
executing his trade. His best prediction of market pressure is the inferred imbalance, after observing
his own trading decision. However, his decision although usually in line with investors’ trading because
of the crowd effect, can depart from what is actually traded by his peers. One of the interests of
our Bayesian network model is that it can be used to recover the aggregate order flow imbalance
prevailing during the investor’s order execution, knowing his transaction costs. After receiving his
Transaction Cost Analysis report, the investor could update his belief on investors imbalance during his
execution using the calibrated Bayesian Network. We explore two cases as an example. First case: the
investor sells a stock s (m)= -1; with a small participation rate Qy(m)/ADV;(d) = 0.01%. His order is not
very informative on market pressure since his trade is small, so his best estimate using the Bayesian
network is a U-shape slightly skewed towards negative values of mean -0.10 (blue distribution of the
left panel of Figure . Unexpectedly the resulting trading cost is huge IS;(m,d) = 3.02% because
the imbalance is very large and negative Imby(m,d)= -0.94. The investor could update his belief on
the true distribution prevailing during his execution. The posterior distribution after incorporating
the realized trading cost gives higher probability to values at -1 (Orange line of the left panel). The

average posterior imbalance distribution is -0.17 (Table[8). Second case: the investor takes the decision
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to sell massively a stock, Qx(m)/ADVy(d) = 31.8%. This is usually happening during market panic
where other investors sell massively as well. Therefore, his prior distribution is highly skewed to
the left (E[Imb] = —0.40, blue distribution of the right panel, Figure . While the investor expects
a high transaction cost, he got lucky to be against the aggregate order flow (Imby(m,d)= 0.94) and
benefited from a price improvement of 2.6%. The posterior imbalance distribution after incorporating

this information is displayed on the right panel of Figure [10|(orange line) with a 0.05 average.

Table 8. Bayesian inference of net order flow imbalance

The table summaries the first 2 moment and the 2.5% and 97.5% quantiles of net order flow imbal-
ance inferred distribution for two scenarios before and after order implementation shortfall become
available

E[Imb] Std[Imb] Q2.5% Q97.5%
Inferred Imbalance: Example 1
Before exec -0.097 0.333 -1.0 0.953
After exec -0.175 0.381 -1.0 0.999
Inferred Imbalance: Example 2
Before exec -0.400 0.328 -1.0 0.909
After exec 0.050 0.386 -1.0 1.000

6 Conclusion

In this paper, we use a Bayesian network to model transaction costs on US equity markets using
ANcerno data, a large database of asset managers’ instructions. Our main motivation is to make use of
a variable of paramount importance for transaction costs, the Net Order Flow Imbalance. This variable
is not observed by all market participants. Brokers and market makers have access to the imbalance
of their clients’ flows, while dealing desks of asset managers do only observe their own instructions.
Nevertheless, brokers, custodians and even exchanges started recently reselling aggregate information
on their clients flows with a delay. Bayesian networks open new perspectives to model transaction costs
using latent variables, i.e. variables that are not always known when the model has to be used, but can
be partially observed during the learning process. They enable to design a model linking observed and
latent variables, based on conditional probabilities. The partially observable data can then be used to
train the model.

Bayesian networks are able to estimate not only expected values, but the whole probability dis-
tribution of a given variable. They are thus able to estimate the variance of the residuals of their
estimation. Because of the heteroskedasticity of the error term, market impact models and transac-

tion costs estimates have traditionally a very small R?>. A common belief among practitionners is that
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the effect of small mechanical price pressure is disappearing in the “market noise” (i.e. innovation on
prices). We confirm this intuition in our model, by allowing the accuracy of trading costs forecasts to
depend on market conditions and the investors’ order characteristics. We find that the main variable
explaining the variance of the residuals is the stock volatility, with a coefficient of 0.78.

Last but not least, we show several advantages of Bayesian networks for transaction costs fore-
casting. First, even when the latent variables (in our case, the imbalance of institutional orders at
the start of the day) cannot be observed, the estimation relies on its pre-captured relationships with
other observable variables (like the size and side of the investor’s order to be executed). This allows
the model to provide a better prediction than standard (for example OLS) models. Second, we show
that the estimates get more accurate with the size of the meta-order the investor has to execute, be-
cause the larger the meta-order, the better the estimation of the order flow imbalance. This gives an
informational advantage for large dealing desks in charge of executing the orders of numerous or large
investors as they have a better picture of the aggregate imbalance. This finding is consistent with
the current evolution of market practice. Small asset managers increasingly use the services of large
dealing desks to benefit from this information, leading to the recent concentration of institutional in-
vestors orders on a few dealing desks. Finally, these models can use Bayesian inference to deduce the
expected distribution of the latent variable. We show how it is feasible to ask the Bayesian network
the expected distribution of large orders of other investors, either at the start or at the end of the day,
once the resulting trading costs are observed.

Bayesian networks are very promising models to account for partial information. They could prove
particularly valuable for “alternative datasets”, like airlines activity, web traffic, or financial flows,
than often provide very detailed information on a small subset of transactions. They are difficult to
use in standard models, that do not accept missing values. Bayesian networks structurally model

relationship between missing and known variables. They could naturally fill this gap.
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Appendix A Garman Klass volatility definition

Garman-Klass estimate of the volatility uses the open, high, low and close prices of the day. This

estimate is robust and very close in practice to more sophisticated ones. The formula is given by:

2 2
1 ¥ HY_ Ch_
G,?K(d)\lfzizlog Lg ’) — (2log(2) —1)log O‘é ’) (15)
1= —t —t

where the indexation & refers to the stock. d to the calculation day. N is the length of the rolling window
in day. In our case 252 trading days. OF, HX, L¥, CF are respectively the open, high, low, close prices of

stock k at day ¢

Appendix B Bid-Ask spread and volatility distribution depen-

dencies

Figure 11. Bid-Ask spread and volatility distribution dependencies
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The left panel of figure [11{shows the scatter plot of the log bid-ask spread and log volatility of S&P
500 components of 2010 and 2011. It proves that the variables are related. The right panel displays
the centered distributions ()(—X ) Cf log bid-ask spread and log volatility.

Appendix C Beta distribution properties

The probability density function of the Beta distribution PDFg,,, is given by:

x* (1 —)c)ﬁ’1

_ D(a)T(B)
B(a.p) where B(a,B) = (16)

Vx € [0, 1] PDFBeta(auﬁax) = F(a+ﬁ)
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The first 3 moments of the distribution are as following:

E[X] = 7%5 VarlX] = s Skew[X] = 2B-0V/aipil ii;;i%

Note that the skew of the distribution is proportional to (8 — o). So when a << f the probability
density function is significantly skewed toward values at 0 and in the opposite case oo << 8 the proba-
bility density function is skewed toward values at 1. The particular case where oo =  the distribution
is symmetric around the mean E[X]| = % (PDFgena (@, B, % +x) =PDFgen(a, B, % —x)) and the skew is null.

if in addition the condition (a —1)( —2) > 0 is fulfilled the distribution has a U-shape. Otherwise the

Beta distribution produces a concave function.

Appendix D Net order flow imbalance properties

Figure 12. Net order flow imbalance, daily returns correlation
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Net order flow imbalance has a strong predictive power of daily returns. The cross sectional average
correlation for S&P 500 index components on our period of study is significantly positive up to 10.72%
(Figure [12). Furthermore, investors trading imbalance prevail through time. Table [9 shows that the
daily imbalance auto-correlation decays slowly from 12.03% for the first lag to 7.44% after 5 days. Since

order flow imbalance is only available with a delay, the long memory of the imbalance is appreciated.

Table 9. Net Order Flow Imbalance auto-correlation

Imb;_; Imb;_» Imb;_; Imb; 4 Imb,_5
Imb; 12.03 9.11 8.37 7.69 7.44
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Appendix E Implementation shortfall distribution

Figure 13. Implementation shortfall marginal distribution
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The implementation shortfall estimated on ANcerno meta-orders on S&P 500 components of 2010
and 2011, displays a non-normal distribution centred at 0, with standard deviation equal to 0.64, a pos-
itive skew of 0.34 and highly significant excess kurtosis of 23.46. These moments are more comparable

to a double exponential distribution.

Appendix F Hasting-Metropolis algorithm

Hasting-Metropolisis one of pioneer Markov Chain Monte Carlo algorithm developed in early 90s
to sample from an unknown distribution. Given a function f proportional to the desired probability
distribution P(x) (a.k.a the target distribution) and a proposal distribution ¢() = ¢(.|x) easy to simulate,

the algorithm construct a series of variable (x|,x,...,x,) such as given x,
1. Generate y, ~ g(y|x,),
2. Generate u ~ 7|0, 1] a uniform distribution
3. Compute the acceptance rate oo = min {%, 1}

4. Accept the new candidate y, with probability « if u < o Otherwise reject.

n, fu<a
Xy = a7

X,, otherwise
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