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Abstract 

Using a large database of US institutional investors’ trades in the equity market, this paper ex-
plores the effect of simultaneous executions on trading cost. We design a Bayesian network modelling 
the inter-dependencies between investors’ transaction costs, stock characteristics (bid-ask spread, 
turnover and volatility), meta-order attributes (side and size of the trade) and market pressure dur-
ing execution, measured by the net order fow imbalance of investors meta-orders. Unlike standard 
machine learning algorithms, Bayesian networks are able to account for explicit inter-dependencies 
between variables. They also prove to be robust to missing values, as they are able to restore their 
most probable value given the state of the world. Order fow imbalance being only partially observ-
able (on a subset of trades or with a delay), we show how to design a Bayesian network to infer its 
distribution and how to use this information to estimate transaction costs. Our model provides bet-
ter predictions than standard (OLS) models. The forecasting error is smaller and decreases with the 
investors’ order size, as large orders are more informative on the aggregate order fow imbalance (R2 

increases out-of-sample from -0.17% to 2.39% for the smallest to the largest decile of order size). Fi-
nally, we show that the accuracy of transaction costs forecasts depends heavily on stock volatility, with 
a coeffcient of 0.78. 
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1 Introduction 

Transaction costs became of primary importance after the fnancial crisis. On the one hand, invest-

ment banks turned to more standardized products, switching from a high margin, inventory driven 

business to a low margin, fow business, where transactions costs have to be minimized. On the other 

hand, the asset management industry concentrated (Haldane et al. (2014)). A common practice has 

been to organize the execution of large orders around one well structured dealing desk. In 2007, the 

frst Markets in Financial Instruments European directive (MiFID) introduced the concept of “best ex-

ecution” as a new requirement for market participants. The European best practices, including among 

others execution reviews, transaction costs analysis, and adequate split of large orders, have spread 

overseas in this globalized industry. 

In this paper we use a unique dataset of institutional investors trades: the ANcerno database, 

containing a large sample of asset managers meta-orders on the US markets (Angel et al. (2015), 

Pagano (2008), Briere et al. (2019)). While most other databases contain the meta-orders of only one 

asset manager, ANcerno records roughly 10% of total institutional investors activity and 8% of total 

daily traded volume. Because of this specifcity, it is possible to estimate the “imbalance of meta-

orders”, i.e. the aggregated net order fow traded by investors, each day on each stocks. This variable 

plays a role of primarily importance in the transaction costs (Capponi and Cont (2019), Bucci et al. 

(2018)). Transaction costs tend to be large when you trade in the same direction as your peers, while 

you can even have a price improvement (i.e. obtain an average price that is lower than your decision 

price) if you are almost alone in front of the majority of agents trading that day. Stated differently, 

you pay to consume liquidity when you are part of the crowd, executing in the same direction as the 

market, and you are rewarded to provide liquidity to the crowd, when you are executing in the opposite 

direction of the market. 

The specifcity of this “imbalance” variable is that it cannot be observed by market participants in 

real time. Brokers and market makers can have a broad view of the imbalance of their clients’ fows and 

can provide this information to the rest of market participants with a delay, while asset management 

dealing desks do only observe their own instructions. Therefore, the imbalance is a “latent variable” in 

the sense of Bayesian modelling. It is linked to some observable explanatory variables and it conditions 

the transaction costs at the same time. For instance: conditionally to the fact that the investor trades 

a buy meta-order (rather than a sell one), the imbalance is more likely to be large and positive. This 

dependence can be inferred using the Bayes’ rule. 

In this paper, we show how to use a specifc model belonging to the large toolbox provided by 
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machine learning: the Bayesian network, adapted to this kind of conditioning, to predict transaction 

costs, taking into account market information and trade characteristics. This class of models has been 

created in the golden age of machine learning (Jordan (1998)); it is also known as graphical models, 

and has been recently used to model analysts predictions (Bew et al. (2018)). Such models have two 

very interesting characteristics. First, they are able to handle missing data. Second, they can infer 

the distribution of latent variables given the knowledge of other ones. In our case, a model ftted on 

ANcerno data can be used to forecast transaction costs when the imbalance is no longer observable. 

In practice, our model could be ftted on data provided ex-post by brokers1. Afterwards, given other 

explanatory variables and the observed transaction costs, a Bayesian network can infer the expected 

distribution of the imbalance on a given day. This is a natural feature of the Bayes’ rule: once the joint 

distribution of a set of variable is known, it is possible to obtain the expected value of any subset of 

other variables given the observations. 

The goal of this paper is to show how Bayesian networks can be used to model the relation between 

transaction costs and stock characteristics (bid-ask spread, average turnover and volatility), meta-

order attributes (side and size of the trade) and market pressure (net order fow imbalance). This last 

variable will be considered as latent because it is only partially observable by investors (typically with 

a delay, or in real time but only on the investors’ own trades). In practice, a possible way to implement 

our approach would probably be to implement a learning transfer: frst learn the graphical model on 

ANcerno or a similar database provided by brokers, then switch to a database in which the imbalance 

can not be observed. 

We fnd that institutional investors daily order fow imbalance is a good predictor of transaction 

costs. Interestingly, because investors’ trading tends to be crowded in one direction, and given the 

fund manager’s knowledge of its own meta-order, he can infer the aggregate order fow of the market 

that day, to better forecast his trading costs. Stated differently, a fund manager could update his be-

liefs on order fow imbalance distribution of the day, after observing his own trading decision (side and 

size of his order). We fnd that his estimation is more accurate when his executed meta-order is large. 

Besides, we disclose evidence that a sell order is more informative on imbalance distribution than a 

buy order, probably because a crowded selling context is more informative about specifc market con-

ditions than a crowded buying context. We note that when an asset manager takes the decision to sell 

a stock with high participation rate, he could expect a ”rushing towards the exit door” behaviour from 

his peers and assign a high probability for strong negative imbalance. Our fnding confrms that the 
1Brokers, exchanges and custodians are selling the delayed information on the fows they saw the previous day or week. This 

Bayesian modelling approach is perfectly suited to this kind of partial information. 

2 



dominating variable for implementation shortfall forecast is indeed the order fow imbalance and not 

the order size. Moreover, the accuracy of transaction costs and market impact estimates are generally 

very low (Bacry et al. (2015)). Practitioners have long suspected that the diffculty of estimating orders 

transaction costs is due to the variance of price innovations that is hardly predictable. Thanks to our 

Bayesian framework, we prove that this is actually true. The Bayesian network explicitly models the 

dependencies between the variance of the residuals and the rest of network nodes. We fnd that the 

dominant variable is, indeed, the price volatility with coeffcient 0.78, while other nodes contribution 

to the variance is insignifcant. This allows an investor to assess how confdent he could be on each 

prediction given his meta-order and stock characteristics. Finally, we show that using partially ob-

servable order imbalance has value. The Bayesian network provides a better prediction of transaction 

costs after capturing the conditional dependencies between the nodes and the order fow imbalance, 

than when this information is not used at all (R2 increase out-of-sample from 0.38% to 0.50%). Besides, 

the estimates get more accurate when the order size is large (R2 is 2.39% for the tenth decile of order 

size compared to -0.17% for the frst decile). These results can explain the recent concentration of 

institutional investors executions on a few dealing desks. By executing the orders of a large and repre-

sentative set of institutional investors, these dealing desks would have a better grasp of the aggregate 

order fow imbalance of the day. This information of paramount importance could then be either used 

for predicting the transaction cost more accurately, or to design a better optimized execution scheme 

taking the aggregated market pressure into account. 

The structure of this paper is as follows: Section 2 reviews the existing literature on transaction 

costs modelling and Bayesian networks. Section 3 presents the data. Section 4 provides empirical 

evidence of the infuence of investors trade size and orders imbalance on transaction costs. Section 5 

describes the Bayesian network method and its application to transaction costs modelling. Section 6 

concludes. 

2 Related literature 

This paper takes place at the crossing of two felds: the transaction costs and market impact liter-

ature on the one hand, and Bayesian modelling on the other hand. 

Transaction costs and market impact. Market impact attracted the attention of academics fol-

lowing two papers: economists have been initiated to this crucial concept by Kyle’s theoretical paper 

(1985), while researchers in quantitative fnance have been largely infuenced by Almgren and Chriss 
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(2001) empirical results. Kyle (1985) has shown how a market maker should strategically ask in-

formed traders (i.e. asset managers) for a cost to compensate for the diffculty to assess the adverse 

selection she is exposed to in a noisy environment. This is typically what we observe empirically. Asset 

managers have to pay for liquidity demand while they can be rewarded for liquidity provision. Other 

market participants react to the aggregate offer or demand. This aggregate is exactly what we defne 

as the imbalance of meta-orders for a given day. Kyle’s essential result is that given a linear market-

maker pricing rule and within a Gaussian framework, the transaction costs paid by the aggregation of 

investors are linear in the size of the aggregated meta-order. Kyle’s lambda, measuring the sensitiv-

ity of price impact with respect to volume fow, is a traditional measure of liquidity. This theoretical 

framework has been sophisticated recently, extending Kyle’s game theoretical framework to continu-

ous time, non Gaussian behaviours, and allowing risk aversion in market makers’ strategy (Cetin and 

Rogers (2007)). It is now understood that the informed trader optimal strategy is to try to hide its 

meta-order in the noise, while the market maker has to slowly digest orders fow to try to extract the 

information it contains and ask for the corresponding price. However, the resulting market impact is 

not necessarily linear. Empirical studies that followed showed that in practice market impact is more 

square root than linear in the size of the order (Collins and Fabozzi (1991), Bouchard et al. (2011) or 

Robert et al. (2012)). 

Almgren and Chriss (2001) seminal paper showed how to split an order optimally to minimize 

execution cost, making the assumption of concave transient market impact. Bouchard et al. (2011) 

derived an optimal control scheme to mitigate this cost for large meta-orders. This literature is of 

primary importance since it answers the regulatory requirements around “proof of best execution” 

and provides a baseline framework to asset managers and investment banks to improve their best 

practices and metrics for execution. With the popularity of factor investing, the specifc question of 

the implementation costs of investment strategies following an index or a systematic active strategy 

has been raised by regulators and market participants. Frazzini et al. (2012), Novy-Marx and Velikov 

(2015), or Briere et al. (2019) are attempting to answer the question of potential maximum capacity of 

a trading strategy, by modelling transaction costs for large order sizes and estimating the break-even 

capacity of factor-driven investment strategies. 

Bayesian networks. Machine learning is an extension of statistical learning, born with the sem-

inal paper of Vapnik and Chervonenkis (1971). Following the universal approximation theorem for 

non linear Perceptrons (a specifc class of neural networks) with at least one hidden layer (Hornik 

et al. (1989)), statisticians and mathematicians started investigating approximation schemes based on 
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Figure 1. A simple graphical model for trading costs modelling 

bid-
ask 
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vola-
tility 

trading 
costs 

the minimization of a possibly non-convex loss function, generally using a stochastic gradient descent 

(Amari (1993)) to reach the global minimum while having good chances to escape from the local min-

ima. Successes in Bayesian statistics, focused on coupling a prior and a posterior distribution via the 

concept of conjugate (Vila et al. (2000)), opened the door to a mix of neural networks and Bayesian 

statistics, based on maximum likelihood estimations. Bayesian networks were born (see the semi-

nal paper by Pearl (1986)). Bayesian networks are convenient tools for modelling large multivariate 

probability models and for making inference. A Bayesian network combines observable explanatory 

variables with hidden latent variables in an intuitive, graphical representation. 

In terms of applications, Bayesian networks have frst been used for medical diagnosis, since they 

have been perceived as a natural extension of expert systems. Expert systems emerged with the frst 

wave of artifcial intelligence tools: Deterministic decision trees. Adding some probabilistic properties 

to these trees and reshaping them into graphs is another way to see the emergence of Bayesian net-

works. These models have also been used with success in troubleshooting of computed components, 

from printers (Skaanning et al. (2000)) to computer networks (Lauritzen (2003)). They played an im-

portant role in the automation of problem solving for computers related questions. Recently, they have 

been applied in fnance. Bew et al. (2018) use Bayesian networks to combine analysts’ recommenda-

tions to improve asset management decisions. 

These models can very naturally capture the joint distribution of different variables, specifed via 

a graphical model where nodes represent variables and arrows model the probabilistic dependencies. 

The very simple example of Figure 1 specifes that the stock bid-ask spread and its volatility both 

infuence trading costs, while at the same time, the stock volatility has an infuence on the bid-ask 

spread (Laruelle and Lehalle (2018)). The translation in a probabilistic language of this graph is the 

following. The trading costs TC, follows a law L which parameters ΘTC are functions of the bid-ask 

spread ψ and of the volatility σ : TC ∼ L (ΘTC(ψ,σ)). The parameters of the law of the bid-ask spread 
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are seen as a random variable, itself a function of the volatility: ψ ∼ L (Θψ (σ)). 

More details on the mechanisms of Bayesian networks are given in Section 5. At this stage, it is 

enough to say that latent variables can be added to the graph. An intermediate variable that is not 

always observable, but acting as a probabilistic intermediary (i.e. a conditioning variable) between 

observed variables, is enough to structure a Bayesian model. In the simple example of Figure 1, we 

can observe or not the bid-ask spread. When it is not observed, the Bayesian network will use its 

law L (Θψ (σ)) to infer its most probable value, conditionally to the observed volatility. To do that, the 

model uses Bayes’ conditional probability chain rule. In our analysis, we always observe the bid-ask 

spread, but the net order fow imbalance of institutional investors meta-orders is usually not known. 

This paper proposes a Bayesian network to model and forecast transaction costs with a graphical model 

where the imbalance of institutional meta-orders is a latent variable. 

To sum up, our paper makes use of Bayesian networks to model the expected transaction costs of 

institutional investors as a function of the characteristics of the meta-order (essentially its size and 

direction), the market environment (stock volatility, bid-ask spread and order fow imbalance). We 

contribute to the current literature on trading costs estimation by proposing a methodology to account 

for latent variables, in our case, order fow imbalance. This variable can only be partially observed 

(with a delay or on a subset of all trades), but is essential to structure the model. Our model has 

numerous potential applications and could be used to forecast trading costs, estimate the capacity of a 

strategy or decide on the optimal trading execution. 

3 ANcerno database 

We obtain institutional trading data for the period from January 1st 2010 to September 30th 2011 

from ANcerno Ltd. ANcerno, formerly Abel Noser Corporation, is one of the leading consulting compa-

nies in providing Transaction Cost Analysis (TCA) in the US. It provides equity trading costs analysis 

for more than 500 global institutional investors, including pension funds, insurance companies and 

asset managers. This database was largely used by academics to investigate institutional investors 

trading behaviour (see for example Anand et al. (2011), Puckett and Yan (2011) and Eisele et al. 

(2017)). ANcerno clients send their equity trades in order to monitor their execution quality. AN-

cerno systematically reports all equity trades it receives. Therefore, costs estimated on ANcerno are 

representative of what is effectively paid by institutional investors. Besides, previous research have 

shown that ANcerno is free from any survivorship or backfll bias (see Puckett and Yan (2011)), consti-

tute approximately 8% of the total CRSP daily dollar volume ( Anand et al. (2013)), and 10% of total 
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institutional activity (Puckett and Yan (2011)). 

Hence, in our study we use trade-level data from ANcerno on the historical composition of S&P 

500 index. For each execution, ANcerno reports information on the CUSIP and ticker of the stock, the 

execution time at minute precision, the execution date, execution price, side (i.e., buy or sell), number 

of shares traded, commissions paid, whether the trade is part of a larger order, and a number of trade-

level benchmarks to evaluate the quality of the execution. In our sample, we have execution data of 

285 institutions (i.e., ANcerno clients). They could be either an individual mutual fund, a group of 

funds, or a fund manager subscribing to Abel Noser analytical service. Each institution has one or 

several accounts. In our sample, we successfully track the activity of almost 44 thousands of accounts, 

responsible of 3.9 trillion dollars of transactions, and using the service of 680 different brokerage frms. 

Compared to market volume reported in CRSP, ANcerno accounts for an average of 4.5% over the whole 

period. The traded amount reported in ANcerno is over a trillion dollars every year and is, therefore, 

large enough to be relevant. We complement ANcerno database with daily bid-ask spread obtained 

from Reuters Tick History (RTH). 

Consistent with machine learning best practices, we split our sample to a training set accounting 

for 70% of the meta-orders and a testing set accounting for the remaining 30%. The training-set is 

chosen randomly from meta-orders in our sample such as the number of buy orders and sell orders 

are equal. This procedure is very important for our study in order to estimate a non biased net order 

fow imbalance. In the case of unbalance number of buy and sell orders in the training-set, the prior 

distribution of order fow imbalance will be artifcially skewed toward positive values if the number 

of buy orders is higher or toward negative values otherwise. The training set is used to compute the 

results of section 4 and 5, while the testing set is used for the out-of-sample predictions in section 6. 

4 Transaction cost modelling 

We measure trading costs with the traditional measure of implementation shortfall (Perold (1988)). 

This is the difference between a theoretical or benchmark price and the actual traded price effectively 

paid for the execution, in percent of the benchmark price. In our study, we defne the reference price 

as the last visible price before the start of the execution (arrival price). The implementation shortfall 

measures the total amount of slippage a strategy might experience from its theoretical returns. In 

essence, our cost estimate measures how much of the theoretical returns of a strategy can actually be 

achieved in practice. 
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For a parent-ticket m of size Qk(m) split into Ntrades child tickets 2 of size vk,m(i) executed at date d in 

the direction sk(m), the implementation shortfall is calculated as follows: 

! 
Ntradessk(m) vk,m(i) × Pk(i) − PrefISk(m, d) = ∑ (1)kPk(0) i=1 Qk(m) 

where Pref = Pk(0) is the reference price (in our case, the arrival price as provided by ANcerno). Ink 

this section, we investigate the effect of order size and order fow imbalance on the implementation 

shortfall of investors transactions. 

4.1 Order size 

Kyle (1985) introduced the concept that trades by a market participant may have an impact on 

the market price. Market impact is a direct consequence of the order size effect. A large meta-order 

may move the price in an unfavourable direction for the trader, resulting in a higher implementation 

shortfall. The execution cost is then increasing with order size. A series of empirical studies followed 

Kyle’s theoretical work to confrm the existence of order size effect (Torre and Ferrari (1999), Moro 

et al. (2009), Gomes and Waelbroeck (2015), Bacry et al. (2015), Briere et al. (2019)). To illustrate this 

effect, we regroup ANcerno tickets in 100 bins based on participation rate Q/ADV and plot in Figure 2 

the average implementation shortfall scaled by price volatility of the tickets in each bin. The scaling 

with stock’s price volatility makes estimates of implementation shortfall comparable through time and 

across the universe of stocks. Otherwise, we can not compute the average on each bin as the effect 

of participation rate is not the same for large bid-ask spread stocks than those with small bid-ask 

spreads. ANcerno tickets show a concave relation between the implementation shortfall and order size 

relative to daily traded volume. We observe a sharp increase of the costs from 0 to 0.2 points of price 

volatility when order size increases from 0.01% to 2% of the average daily volume. The slope decays 

afterward. For instance a ticket with 14% participation rate, costs on average 0.4 points of volatility. 

A power law function captures well the dependence of orders trading costs to order size. 

4.2 Order fow imbalance 

While most of trading cost models emphasize on the historical dependence of market impact on 

stock liquidity and order size, It is only recently that order fow imbalance has been recognized as a 

signifcant factor in explaining the magnitude of orders transaction costs. Using ANcerno database, 
2Orders in ANcerno (parent tickets) are split within the execution period into smaller orders (child tickets). For each child 

ticket, ANcerno reports the executed volume, the price and time of execution. 
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Figure 2. Order size effect on trading costs 
Institutional trading data are obtained from ANcerno Ltd on the period ranging from January 1, 2010 
to September 30, 2011. We split our sample into 100 bins based on meta-order participation rate 
Qk(m)/ADVk(d) and plots the average implementation shortfall scaled by stock’s volatility ISk/σk for 
each bin (blue dots) 

Capponi and Cont (2019), compared the explanatory power of order size to the effect of a proxy of mar-

ket pressure ”Order Flow Imbalance” on transaction costs and came to the conclusion that investors 

should focus on modelling the aggregate dynamics of market pressure during execution period, rather 

than focusing on optimizing market impact at a trade-by-trade level. Moreover, market pressure is 

contributed by all market participants present at the trading session. But the traders who are re-

sponsible of executing institutional investors orders contribute the most to this pressure and should be 

specifcally taken into account in price movement forecast and transaction costs modelling. These mar-

ket participants have the same profle as the informed/insider trader introduced by Kyle in 1985. By 

the end of the trading session, the private information, that was once detained by the insider, spread 

to the market and get incorporated into the price level. Bucci et al. (2018) argue that price market 

impact is function of the aggregate net volume, that for shared indiscriminately between all market 

participants. Consequently, a small sized order would cost nearly the same implementation shortfall 

as a much larger order if executed in the same direction during the same time frame. 

We introduce the Net Order Flow Imbalance, to investigate the impact of institutional investors 

synchronous trading on the implementation shortfall. For a met-order m executed at date d, the net 

investors order fow imbalance is defned as the ratio of net volume executed by the other investors at 
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day d over their total traded volume: 

∑m0 6=m Qk(m0 ,d).sk(m0 ,d)Imbk(m, d) = (2)
∑m0 Qk(m0 ,d)6=m 

Where k designs the stock, sk(m0 ,d) is the side of the meta-order m0 (i.e. 1 for buy orders and -1 for 

sell orders) and Qk(m0 ,d) its size. 

Figure 3. Net order fow imbalance effect on trading costs 
Institutional trading data are obtained from ANcerno Ltd on the period ranging from January 1, 2010 
to September 30, 2011. We split our sample into 100 bins based on net order fow imbalance multiplied 
by the side of the trade and plots the average implementation shortfall scaled by stock’s volatility 
ISk/σk for each bin (blue dots) 

Figure 3 illustrates the dependence of the implementation shortfall to institutional investors trad-

ing imbalance. First, we note that the relationship is linear. The stronger the absolute imbalance, 

the higher the absolute value of price deviation during the execution. But depending on whether the 

trade is on the same direction as the net order fow imbalance, thus contributes to the existing market 

pressure, or on the opposite side, and provides liquidity to the market, one could expect either to pay 

a signifcant trading cost up to 0.4 points of price volatility when investors are trading synchronously 

toward the same directions (Imbk(m,d) = 1) or beneft from a price improvement of 0.3 points of volatil-

ity when the trader is almost alone in front of his competitors aggregate fow (Imbk(m, d) = −1). Also 

worth noting that the implementation shortfall at zero imbalance is slightly positive. At neutral mar-

ket pressure, the investors pays a positive transaction cost depending on stock traded and meta-order 

size. 
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4.3 Joint effect of order size and order fow imbalance 

Figure 4. Joint effect of order size and net order fow imbalance on trading costs 
Institutional trading data are obtained from ANcerno Ltd on the period ranging from January 1, 2010 
to September 30, 2011. First, We split our sample on 3 buckets w.r.t meta-order signed imbalance 
(sk(m) · Imbk(m,d)) 30% and 70% quantiles. We sort meta-orders within each bucket into 100 bins 
based on meta-order participation rate (Qk(m)/ADVk(d)) and plots the average implementation short-
fall scaled by stock’s volatility ISk/σk for each of the bins. 

The results in subsection 4.1 and 4.2 show that the implementation shortfall depends on both 

the size of the executed order, and market pressure during execution period. Market pressure being 

approached by investors net order fow imbalance. To disentangle the two effects, we split our sample 

on 3 distinct buckets with respect to meta-order signed imbalance (sk(m) · Imbk(m,d)) 30% and 70% 

quantiles. Within each bucket, we sort meta-orders into 100 bins based on meta-order participation 

rate (Qk(m)/ADVk(d)) and compute the average implementation shortfall scaled by stock’s volatility for 

each of the bins. Figure 4 plots the result, where the blue, line shows order size effect for meta-orders 

executed against high market pressure (signed imbalance is lower than the 30% quantile). Orange 

line illustrate the effect for meta-orders executed under standard market pressure (signed imbalance 

between the 30% and 70% quantiles). Whereas the green line shows the result for orders executed in 

the same direction as the market (signed imbalance larger than the 70% quantile). We observe the 

impact of meta-order size is persistent in the 3 buckets and the power law remains valid even after 

conditioning on net order fow imbalance. The linear effect of the signed imbalance is visible in the 

difference of transaction cost level between the 3 buckets. Which proves that these two explanatory 
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factors does not cancel one another. We also note that most of meta-orders executed against investors 

net order fow beneft from a price improvement between the moment the execution starts and the 

moment it ends. During strongly unbalanced markets, the provider of liquidity is rewarded with a 

better execution price. However, for larger meta-orders (Qk(m)/ADVk(d) = 23%) the market impact 

of the trade prevail and the trader pays on average a positive transaction cost. The opposite is also 

true, when traders seek liquidity on the same direction as the remainder of institutional investors, the 

trading cost gets more expensive than usual. 

To further explore the joint effect of order size and net order fow imbalance on the implementation 

shortfall, we run the following step-wise multivariate regression. First, we perform the regression of 

order implementation shortfall on stock bid-ask spread and the square root of the order participation 

rate scale by stock volatility as described in equation (3). Then, a regression of the implementation 

shortfall on the bid-ask spread and the signed imbalance, also scaled by stock volatility (equation 4). 

Finally, we gather the 3 factors on the same regression as in equation (5). 

s 
Qk(m)

ISk(m,d) = α ψk(d)+ β σ
GK(d) + εk(m,d) (3)k ADVk(d) 

ISk(m,d) = α ψk(d)+ γ σ
GK(d) sk(m) Imbk(m,d)+ εk(m,d) (4)k 

s 
Qk(m)

ISk(m,d) = α ψk(d)+ β σ
GK(d) + γ σ

GK(d) sk(m) Imbk(m,d)+ εk(m,d) (5)k ADVk(d) k 

where ISk(m,d) is the implementation shortfall of meta-order m submitted on stock k at day d. ψk(d) 

is the quoted intraday bid-ask spread of stock k averaged on the month. σGK(d) is the Garman and k 

Klass (1980) intraday volatility of stock k estimated on a 12 month rolling window. Qk(m) and sk(m) 

are respectively size and side (Buy/Sell) of the order. ADVk(d) is the daily traded volume averaged on a 

12 months rolling window, and Qk(m)/ADVk(d) is the participation rate. Imbk(m,d) is the net investors 

order fow imbalance estimate for order m at day d. Finally, α, β and γ are model parameters and 

εk(m,d) is the respective error term. 

The results of these three regressions are presented in Table 1. In the frst regression the coeffcient� �p
σGKof bid-ask spread and order size term (d) Qk(m)/ADVk(d) are respectively 0.4 and 0.95, both k 

statistically signifcant at the 1% level. Consistently with Briere et al. (2019) we fnd that for small 

orders, institutional investors pay only 0.4 times the bid-ask spread. In the second regression, we 

replace the order size term by the market pressure term. We notice that the coeffcient of the bid-ask 
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Table 1. Transaction cost model 
Institutional trading data are obtained from ANcerno Ltd on the period ranging from January 1, 2010 
to September 30, 2011 on the S&P 500 historical components. ψk(d) is the quoted intraday bid-ask 

σGKspread of stock k averaged on the month, obtained from RTH database. (d) and ADVk(d) arek 
respectively the Garman Klass intraday volatility and the average daily volume of stock k estimated 
on a 12 month rolling window. Qk(m) and sk(m) are respectively size and side (Buy/Sell) of the order. 
Imbk(m, d) is the net order fow imbalance for order m at day d. 

Model Dependent variable: ISk(m,d) 

ψk(d) 0.399*** 0.708*** 0.180*** 
(0.032) ( 0.028) (0.032)p

σGK 
k (d) Qk(m)/ADVk(d) 0.951*** 0.712*** 

(0.021) (0.021) 
σGK 

k (d) sk(m) Imbk(m,d) 0.234*** 0.224*** 
(0.002) (0.002) 

Observations 7421548 7421548 7421548 
R2 0.005 0.016 0.017 
Adjusted R2 0.005 0.016 0.017 
Residual Std. Error 0.017 0.017 0.017 
F Statistic 1892.157 5993.682 4391.073 
AIC -3964520 -3972637 -3973801 

Note: *p < 0.1; **p < 0.05; ***p < 0.01 

spread increases (from 0.4 to 0.7) and its confdence interval becomes tighter (lower standard deviation 

0.028 vs 0.032). The determination coeffcient for the second regression is also much higher (1.6% vs 

0.5%). Finally, when we put all explanatory variables together, we fnd that coeffcient of the order 

imbalance does not change (0.22-0.23) while both order size term and bid-ask spread have much lower 

parameters (0.18 for bid-ask spread and 0.71 for order size term) compared to the frst two models. 

Besides, the determination coeffcient of the second and third regressions are comparable. The net 

order fow imbalance seems to be much better predictor of expected implementation shortfall than the 

size of the order. Although, all coeffcient are statistically signifcant a the 1% level. 

5 Bayesian network modelling with net order fow imbalance 

as latent variable 

Institutional investors net order fow imbalance is a key factor in the estimation of meta-orders 

transaction costs. However, this variable is only observable with a delay, for example through brokers 

or custodians’ reports, or on a subset of trades only (the investor’s own trades). Thus, it can not be 

used for production purposes. To remedy this issue, we propose a Bayesian network to incorporate 

all information we could get before the execution of the meta-order, and update our beliefs on the 
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probabilistic distribution of the latent variable. We then use the most probable value of the net order 

fow imbalance to estimate the meta-order transaction cost. One of the interesting features of Bayesian 

networks is that they can be explored in both directions, thanks to the Bayes’ rule. Therefore, we can 

give an estimate of the latent variables, by probabilistic inference, before and after the variable of 

interest is observed. In the context of this study, this means that: 

• given the characteristics of the meta-order (side and size of the trade) and stock attributes (bid-

ask spread, average daily traded volume and price volatility), we can compute a frst estimate of 

the imbalance and forecast the transaction costs that should be paid by the investor. 

• Once we get the effectively paid trading cost, we can recover a more accurate estimate of the 

distribution of investors net order fow of the day, and for example incorporate it in the estimation 

of order fow imbalance of the following day. 

5.1 Bayesian inference 

The main difference between the frenquentist approach and the Bayesian approach is that in the 

latter, the parameters of the models are no longer unknown constants that need to be estimated, 

but random variables which parameters have to be estimated. The statistician has the possibility to 

incorporate his prior belief on the probabilistic distribution of the variable and update his belief step 

by step as soon as new data becomes available. From one step to the other: the former ”posterior 

distribution” is used as a prior for the next step estimate. 

For instance, if y stands for the unknown random variable, x for the observed data, and P(y) for 

the prior. The posterior distribution P(y|x) is obtained as the multiplication of the prior P(y) with the 

likelihood P(x|y) of observing the data, scaled by P(x). The defnition of conditional probabilities applied 

on this procedure reads: 
P(y)P(x|y)

P(y|x) = ∝ P(y)P(x|y). (6)
P(x) 

Figure 5 shows how to estimate the coeffcients of the Bayesian linear regression specifed in equa-

tion (5). First, we start by incorporating our prior beliefs, if any, on the distribution of the parameters 

θ = (α,β ,γ)T . Without any belief, a good choice is to take a non-informative prior like the normal distri-

bution N(0, 1). The best initialisation for priors is hence a law close to the empirical repartition function 

of the considered variable. The variable of interest ISk(m,d) follows a normal distribution centered at 

the estimated value ŷ = Xθ and has variance σ2 of the error term εk(m,d). σ2 requires a non negativeerr err 

prior distribution, such as the positive part of a Gaussian (i.e. HalfNormal) or the positive part of a 
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Cauchy (i.e. HalfCauchy). The Bayesian setup gives direct interpretation of the results: The mean 

of the posterior distribution is the most probable value of the parameters θ , and the 5% confdence 

interval is limited by the 2.5% and 97.5% quantiles of the posterior distribution. 

Figure 5. Bayesian inference of a linear regression 
Blue rectangle represent observed variables. Circles are the parameters that need to be calibrated. 
Each have a prior distributions detailed in white rectangle.p
Xθ = α ψk(d)+ β σGK(d) Qk(m)/ADVk(d)+ γ σGK(d) · sk(m) · Imbk(m, d)k k 

σ GK 
k (d) × q 

Qk(m) 
ADVk (d) 

ψk(d) 
σGK 

k (d) × 
sk(m) × 

Imbk(m,d) 

ISk(m,d) 

α β γ σerr 

Prior: N(0,1) Prior: Hal f N(1) 

Prior: 
N(Xθ ,σerr) 

MCMC (Markov Chain Monte Carlo, see Hastings (1970) for one of the frst references) methods 

offers an easy way to sample from the posterior, especially when the posterior does not obey to a well 

known expression or when we know the expression has a multiplicative term. It is very convenient 

for the Bayesian approach, where the posterior distribution is proportional to the multiplication of the 

prior and the likelihood. MCMC algorithms makes computations tractable for parametric models. The 

intuition behind MCMC is to defne a Markov Chain (x0,x1, . . .) on the support of x, such that as when 

the size n of this chain goes to infnity, the new drawn point xn is distributed accordingly to the law 

Px. The most famous algorithms to generate Markov Chains having this very nice property are the 

Hasting-Metropolis one, explained in Appendix F, that we use in this study, and the Gibbs sampler. 3. 

The marginal distribution of regression coeffcients of the calibrated model is shown in the right panel 

of Table 2, while the result of the OLS regression is in the left panel. As expected from Bayesian models 

when the sample size is large, we end up with the same results. Beside, when the priors are Gaus-

sian, the maximum a posteriori of the parameters is equivalent to a ridge estimate with a quadratic 
3We use the PyMC3 python package implementation of Hasting-Metropolis algorithm described in Salvatier et al. (2016) with 

a large number of iterations Niter = 10000 
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regularization Eθ |X ,Y [θ ] = argmaxθ P(θ |X ,Y ) = argminθ ||Y − Xθ ||2 + σ2 ||θ ||2 . This formula, similar to err 

the one of Ridge regression (see Hoerl and Kennard (1970)), makes the Bayesian regression more ro-p
bust to outliers than OLS. It is the case for example for the order size term σGK(d) Qk(m)/ADVk(d)k 

distribution, which explain the minor difference in coeffcient estimate (0.71 vs 0.69). 

Table 2. OLS regression vs Bayesian regression 
Institutional trading data are obtained from ANcerno Ltd on the period ranging from January 1, 2010 
to September 30, 2011 on the S&P 500 historical components. ψk(d) is the quoted intraday bid-ask 

σGKspread of stock k averaged on the month, obtained from RTH database. (d) and ADVk(d) arek 
respectively the Garman Klass intraday volatility and the average daily volume of stock k estimated 
on a 12 month rolling window. Qk(m) and sk(m) are respectively size and side (Buy/Sell) of the order. 
Imbk(m, d) is the net order fow imbalance for order m at day d. 

coef 
OLS Regression 
std err Q 

2.5% 
Q 

97.5% 
coef 

Bayesian Regression 
std err Q Q 

2.5% 97.5% 

ψk(d)q 
σGK Qk(m)

(d)k ADVk (d) 
σGK(d)sk(m)Imbk(m,d)k 

0.18 
0.71 
0.22 

0.03 
0.02 
0.00 

0.12 
0.67 
0.22 

0.24 
0.75 
0.23 

0.18 
0.69 
0.22 

0.03 
0.02 
0.00 

0.12 
0.65 
0.22 

0.24 
0.73 
0.23 

RMSE (%) 
R2 (%) 

1.66 
1.77 

1.66 
1.77 

5.2 Bayesian network modelling 

Most of the OLS assumptions are violated. As shown in Appendix E, the marginal distribution 

of trading costs has a peaky shape, with fat tails (excess-kurtosis of 23.46). The assumption of ho-

moscedasticity is also violated. The variance of the error term is hardly constant across orders. Fore-

casting errors are smaller for small orders (implemented in a few minutes) compared to large ones 

(split over days) that got exposed for a longer period to market volatility. Finally, it is diffcult to as-

sume that the observations are independent of one on-other. Meta-orders on the same stock, whatever 

the execution day, share some common variance related the stock characteristics. Similarly orders 

executed at the same trading session on different stocks face the same market conditions, and thus 

cannot be considered independent of one another. 

In addition, Bayesian Networks have the advantage of not relying on Normal error distributions 

(Zuo and Kita (2012)), as do most other machine learning algorithms. Furthermore, Bayesian net-

works have the advantage of giving a human-readable description of dependencies between considered 

variables, whereas other more complex models, such as Neural Networks, suffer from being considered 

as ”black box” models. 
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5.2.1 The structure of our Bayesian network 

Our goal is to estimate the Implementation Shortfall of an order. We would like the Bayesian 

network takes into account: 

• Attributes of the traded stock, such as average bid-ask spread, price volatility and average 

turnover; 

• Characteristics of the meta-order, mainly order size and side of the trade (Buy/ Sell); 

• And the level of crowding during the execution: the net order fow of large institutional frms. 

Figure 6 shows the Bayesian network we engineered. We distinguish 3 key dependencies. First, the 

bid-ask spread depends on the level of stock volatility. Second, the marginal probability distribution of 

order fow imbalance is function of the meta-order size and side. Finally the implementation shortfall 

is function of all network nodes. In the following section, we detail the nature of these dependencies 

and we set the priors for each group of variable separately. 

Figure 6. Bayesian network for transaction costs modelling 

σGK 
k (d)ψk(d) 

Qk (m) 
ADVk (d) 

sk(m) 

αImb βImb 

Imbk(m,d) 

bµ 

ISk(m,d) 

5.2.2 Bid-ask spread dependencies 

The relation between stock volatility and bid-ask spread is well documented. Theoretically, it is 

justifed by Wyart et al. (2008) that, deriving the P&L of traders submitting market orders and those 

submitting limit orders, an equilibrium price is only achievable if the bid-ask spread is proportional 

to price volatility (i.e. ψk(d) ∝ σ GK(d)). In the same fashion, Dayri and Rosenbaum (2015) study the k 
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optimal tick size, and fnd that the bid-ask spread that the market would prefer to pay if not constraint 

∝ 
σk 

GK(d)by the tick size verifes ψk(d) √ . The rational is that market makers, setting the best limits of 2 M 

the order book, accept to provide tight bid-ask spreads not only when the volatility (i.e. the risk of a 

given inventory level) is low, but also when they have more opportunities within the day to unwide 

their position. The relation between the bid-ask spread and the volatility is confrmed empirically on 

our data, as illustrated in Figure 11 of Appendix B. 

Consistent with the literature of stochastic models for volatility, we set the prior of stocks volatility 

to a log normal distribution σGK(d)) ∼ LogNormal. Consequently, the bid-ask spread should follow ak 

log normal distribution too, and the conditional probability of bid-ask spread given price volatility is 

ψσ ,ρψσ detailed in equation (7), where c ,σψ,σ are model parameters. 

ψk(d) σGK(d) ∼ LogNormal 
� 
cψσ + ρψσ log(σGK(d)), σψ,σ 

� 
(7)k k 

Table 3. Bayesian inference: Bid-Ask spread, volatility dependencies 
The table summaries the posterior distribution of model parameters described in equation (7). E[X ], 
std(X), Q2.5% and Q97.5% are respectively the mean, the standard deviation, the 2.5% and 97.5% 
quantile of parameters posterior distribution. The results are obtained from Hasting-Metropolis sam-
pler with Niter = 10000 iterations (PyMC3 implementation). The institutional investors trading data 
are obtained from ANcerno Ltd on the period ranging from January 1st , 2010 to September 30th , 2011. 

E[X ] Std[X] Q2.5% Q97.5% 

cψ,σ 

ρψ,σ 

σψ,σ 

-4.137 
0.777 
0.402 

0.006 
0.001 
0.000 

-4.150 
0.775 
0.401 

-4.126 
0.780 
0.402 

5.2.3 Net order fow imbalance dependencies 

In this section, we quantify the dependence of net order fow imbalance to the remainder variables 

in the network. Figure 7 shows the marginal distribution of the imbalance depending on the sided of 

the meta-order. The U-shape of the plot confrms that institutional investors have indeed correlated 

executions, and tend to execute the same stocks toward the same directions during the same peri-

ods, which intensifes the pressure on price movements. This correlation in trade execution can be 

explained by various factors. Asset managers compete for the same base of customers and can imple-

ment similar strategies (Greenwood and Thesmar (2011), Koch et al. (2016)). Thus, they face similar 

infows and outfows, depending on liquidity needs and investment opportunities. Moreover, the asset 

management industry is subject to a series of regulatory constraints that can push funds to buy or 

sell simultaneously the same kind of assets. We note also, that the U-shape is decomposed in two 
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skewed distributions depending on the side of the meta-order. So, given the side of the meta-order of 

an institutional investor, the remainder of large arbitrageurs executions constitute either a positively 

(for sell) or negatively (for buy) skewed imbalance distribution. Besides, conditional on the level of a 

meta-order participation rate, Figure 8 shows that the intensity of absolute net order fow imbalance 

of investors meta-orders gets stronger, a confrmation of institutional investors crowding. 

Figure 7. Net order fow imbalance distribution given meta-order side 
Institutional trading data are obtained from ANcerno Ltd on the period ranging from January 1, 2010 
to September 30, 2011. Given a meta-order m submitted by an institutional investor, the fgure plots 
the distribution of the net order fow imbalance generated by the remainder of investors as defned in 
equation (2) given the side sk(m) of meta-order m. 

The Side takes two values Buy and Sell. It is modelled with a Bernoulli distribution sk(m) ∼ 

1Bernoulli(pside) of parameter pside = 2 . The data shows that a Beta function is a good approximation 

of the U-shape for variables defned between [0,1]. After applying the linear transformation x → x+1 ,2 

Beta(α, β ) is a plausible distribution of the transformed net order fow imbalance. Moreover, the beta 

distribution have the particularity to produce different shapes depending on the parameters α and β . 

It produces a symmetric U-shape when α = β and (α − 1)(α − 2) > 0, a positive skew when α < β and a 

negative skew when α > β . 

The probability density function of the transformed order fow imbalance PDFBeta is given by: 

xα−1(1 − x)β −1 Γ(α)Γ(β )
PDFBeta(α, β ) = where B(α,β ) = (8)

B(α,β ) Γ(α + β ) 

� � 
Qk(m)

P Imbk(m,d) sk(m), = B(αImb,βImb) (9)
ADVk(d) 
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Figure 8. Net order fow imbalance as a function of participation rate 
Institutional trading data are obtained from ANcerno Ltd on the period ranging from January 1, 2010 
to September 30, 2011. We sort meta-orders into 100 bins based on meta-order participation rate 
(Qk(m)/ADVk(d)) and plots the average absolute net order fow imbalance for each of the bins 

The dependence to order side and order participation rate should be taken into account at the level 

of the parameters of the Beta function (α, β ). 

Qk(m)α
αImb = c + ρs 

α · sk(m)+ ρp 
α · sk(m) · (10)

ADVk(d) 
Qk(m)β

βImb = c + ρβ · sk(m)+ ρβ · sk(m) · (11)s p ADVk(d) 

The result of the Bayesian inference of the imbalance dependencies are summarized in Table 4. 

When sk(m) = 0 and Qk(m)/ADVk(d) = 0, the posterior distribution of net order fow imbalance is given 

by B(0.67,0.68) which produces a U-shape. This means that when the asset manager has no signal or 

information on price movement, he can only assume the synchronization of institutional activity. Thus, 

the symmetric distribution with higher probability at the extreme values of the imbalance. But once 

he detains a signal, since the process leading to generate this signal is independent from the execution 

process, he can use his own meta-order as an observation to update his belief on the distribution of 

the expected market pressure. Note also that ρs 
β and ρp 

β are very low compared to ρα and ρp 
α . This is s 

not an issue, because what determines the strength of the skew for the Beta function is the difference 

(β − α) (see Appendix C for Beta function properties). 
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Table 4. Bayesian inference: Net order fow imbalance dependencies 
The table summaries the posterior distribution of model parameters described in equations (10) and 
(11). E[X ], std(X), Q2.5% and Q97.5% are respectively the mean, the standard deviation, the 2.5% and 
97.5% quantile of parameters posterior distribution. The results are obtained from Hasting-Metropolis 
sampler with Niter = 10000 iterations (PyMC3 implementation). The institutional investors trading data 
are obtained from ANcerno Ltd on the period ranging from January 1st , 2010 to September 30th , 2011. 

E[X ] Std[X] Q2.5% Q97.5% 

cα 0.666 0.001 0.664 0.667 
ρα 

s 
ρα 

p
βc

0.101 
0.884 
0.675 

0.001 
0.021 
0.001 

0.099 
0.846 
0.673 

0.102 
0.928 
0.677 

ρ
β 
s 0.000 0.000 4.2e-08 0.000 

ρ
β 
p 0.001 0.001 1.4e-07 0.003 

To better interpret the results of the table, we plot the posterior distribution of the net order fow 

imbalance, given two levels of participation rate (0.1% and 30%) for buy and sell trades. As expected, 

we observe that the side of the trade skews the distribution positively for a buy order and negatively 

for a sell order. The information of the meta-order participation rate intensifes the skew and increases 

the probability of having a full synchronization of investors executions |Imb| = 1. However, the shape 

of the distribution is not symmetrical between buy orders and sell orders. The skew of imbalance 

distribution is much stronger for sell orders. This means that when an investor is selling massively 
Qwith large ADV , he could expect a high selling pressure from the market due to investors synchronous 

infows and outfow. Because institutional investors are natural buyers, implementing more long only 

strategies than short selling ones, a high selling pressure correspond to a ”Rushing toward the exit 

door” situations. While on the opposite scenario, a buying order with high participation rate although 

informative on the market does not give as much evidence on market participants behaviour. 

5.2.4 Implementation shortfall dependencies 

Similarly, we model the implementation shortfall as a function of all the other nodes of the net-

work. the data shows the historical distribution of implementation shortfall displays fat tails with 

pronounced non-Gaussian peaky shape. Thus, a double exponential (Laplace) probability density is a 

good prior of IS distribution. The probability density function (PDF) of Laplace is given by: 

� � 
1 |x − µ|

ISk(m,d) ∼ Laplace(µ,b), PDFLaplace(x, µ, b) = 
2b 

exp − 
b 

(12) 

The location parameter µ is given by equation (13). As in the linear regression, we condition the 

magnitude of transaction cost to stock bid-ask spread, the participation rate scaled by the volatility and 
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Figure 9. Inferred net order fow imbalance given the side and the size of the meta-order 
The fgure shows the posterior distribution of net order fow imbalance given the meta-order charac-
teristics. On the left panel we plots the distribution for buy orders with two levels of participation 
rate, blue line corresponds to small orders Qk(m)/ADVk(d) = 0.1% and orange line for large orders 
Qk(m)/ADVk(d) = 30%. The right panel shows the result for sell orders with the same levels of partici-
pation rate 

investors order fow imbalance signed by meta-order side and scaled by stock volatility. Nevertheless, 

we don’t assume the square root function for meta-order size but a power law highlighted by the 

exponent γ that we estimate. 

� � �� 
Qk(m)

µ = a0 + aψ ψk(d)+ a
σ , Q exp log(σk 

GK(d)) + γ log + as,Imb σk 
GK(d) sk(m) Imbk(m,d) (13)

ADV ADVk(d) 

Estimation accuracy is function of market condition, speed and duration of the execution algo-

rithm, the aggressiveness in seeking liquidity. This heteroscedasticity of the implementation shortfall 

is taken into account by making the standard deviation of Laplace distribution b depend on stock at-

tributes (spread and volatility), meta-order characteristic (participation rate) and market condition 

(absolute imbalance) as follows: 

� � 
Qk(m)

b = exp(bln), bln = b0 + bψ log(ψk(d)) + bσ log(σk 
GK(d)) + b Q log + bImb log(|Imbk(m, d)|) (14)

ADV ADVk(d) 

Table 5 summarizes the frst two moments and the 2.5% and 97.5% quantiles of the posterior distri-

bution of the parameters. First, we note that the exponent of the order size term is a bit lower than the 

square root γ̂  = 0.41, consistent with the previous fnding of Bacry et al. (2015) that used a proprietary 

database of a broker execution in Europe. The literature usually document a power law with exponent 

between 0.4 and 0.5 (Gomes and Waelbroeck (2015) and Briere et al. (2019)). The parameters relative 

to the location term are consistent with the ones estimated with OLS regression. As expected, the 

22 



Table 5. Bayesian inference: Implementation shortfall dependencies 
The table summaries the posterior distribution of model parameters described in equations (13) and 
(14). E[X ], std(X), Q2.5% and Q97.5% are respectively the mean, the standard deviation, the 2.5% and 
97.5% quantile of parameters posterior distribution.The results are obtained from Hasting-Metropolis 
sampler with Niter = 10000 iterations (PyMC3 implementation). The institutional investors trading 
data are obtained from ANcerno Ltd on the period ranging from January 1st , 2010 to September 30th , 
2011. 

E[X ] Std[X] Q2.5% Q97.5% 

a0 0.00 0.00 -0.00 0.00 
aψ -0.60 0.37 -1.36 0.12 
a

σ , Q 
ADV 

0.67 0.24 0.26 1.15 
γ 0.41 0.11 0.20 0.62 
aS,Imb 0.20 0.02 0.17 0.24 
b0 0.06 0.17 -0.27 0.40 
bψ 0.09 0.03 0.05 0.14 
bσ 0.78 0.03 0.71 0.85 
b Q 0.05 0.01 0.04 0.06 

ADV 

bImb 0.01 0.01 -0.01 0.03 

intercept parameter is null, the coeffcient of the order size and order fow imbalance terms are similar 

to those estimated by the OLS regression. Only the coeffcient of bid-ask spread differs signifcantly. 

The parameters of the scale of Laplace distribution are small except the stock volatility coeffcient. 

It proves that the main contributor to the heteroscedasticity is not the order size but stock volatility, 

consistent with the fndings of Capponi and Cont (2019) suggesting that conditionally to the level of 

stock volatility and execution duration, the order size have small impact on transaction costs. 

5.3 Forecasting implementation shortfall 

We gather the different blocks of variable dependencies to constitute the Bayesian network of Fig-

ure 6. The parameters (µ,b,αimb,βimb) are estimated via Bayesian inference using Hasting-Metropolis 

algorithm. Once the network is calibrated on 70% of the meta-orders, we use it to infer the latent 

variable of net order fow imbalance given meta-order and stock characteristics and estimate orders 

implementation shortfall both in-sample (on the training set) and out-of-sample (on the testing set, 

the remaining 30% of the meta-orders not yet seen by the algorithm). Table 6 displays the results 

for both the linear regression and the Bayesian network predictions in- and out-of-sample. For the 

linear regression, we compare a model without order fow imbalance (equation (3), column 1) and one 

with order fow imbalance (equation (5), column 2). In this last model, the realized imbalance is fully 

observed in real time, which is never achievable in practice, but can serve as a benchmark case. We 

then show the results of three Bayesian networks: The frst network (column 3) has never seen the in-
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formation of the imbalance, neither during the training phase nor the prediction phase. In that sense, 

it is comparable to the frst linear regression (OLS when imbalance is not available) in the frst column 

of Table 6. The second network (column 4) was trained with the information of order fow imbalance. 

Once this information is captured by the conditional probabilities of network edges, the network is 

exploited without the use of the imbalance. In this regard, order fow imbalance is partially observed. 

The last network (column 5) has full information on the imbalance, both at the training and testing 

phases, and is similar to the second OLS regression displayed in column 2. Adding information on 

imbalance improves the forecasting accuracy, both for the OLS regression and the Bayesian network. 

In-sample, it increases the R2 from 0.52% to 1.77% for the two models, and reduces the forecasting 

error (RMSE from 1.67% to 1.66% and MAPE from 98.74% to 98.48%). For the same set of informa-

tion (imbalance observable or not), the Bayesian network has the same accuracy than the OLS on the 

training set. However, the absolute average error is much smaller for the Bayesian network (-0.43 bps 

vs -0.86 when imbalance is available, -1.41 bps vs -1.43 bps when it is not). In-sample, and when all 

explanatory variables are observable, the Bayesian network has only a limited advantage over simple 

linear regressions in terms of prediction accuracy. Out-of-sample, when the imbalance is not available 

(Panel B, columns 1 and 4), the Bayesian network is also similar to the linear regression (lower aver-

age error = 0.08 bps vs 0.16 bps, but similar RMSE= 1.39 % and R2 =0.38%, and slightly higher MAPE= 

99.3% vs 99.0%. But when imbalance is available (Panel B, columns 2 and 5), the Bayesian network 

has higher forecasting accuracy than the linear regression on all criteria (R2= 1.20% vs 1.10%, average 

error= -0.43 bps vs -1.08 bps, RMSE= 1.388 % vs 1.389%, and MAPE= 99.41 % vs 99.57%). 

The Bayesian Network is particularly valuable when a subset a variables are only partially observ-

able. In this case, the network captures the conditional dependencies between the nodes, and flls the 

missing information with the most probable values of the latent variables. In our case, the realized 

imbalance is not used for the prediction, but the Bayesian network is trained on imbalance to infer its 

distribution given meta-orders characteristics. This gives a better forecast for the realized transaction 

cost, both in-sample and out-of-sample (for example higher R2 =0.56% vs 0.52% in-sample, 0.50% vs 

0.38% out-of-sample) than OLS or Bayesian networks that could not rely on this information. 

Table 7 provides similar results to those in Table 6, but for ten deciles of orders size, and for 

Bayesian networks using partial or full information on imbalance. We split the training and test-

ing sets in 10 bins with respect to the training set order size. The frst bin contains small orders, lower 

than 0.01% of daily volume, while the last one contains very large orders, higher than 4.34% of daily 

volume. We assess the accuracy of the Bayesian network within the three confgurations of information 

availability (order fow imbalance fully, partially or not available). Consistent with intuition, we fnd 
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Table 6. Performance of the Bayesian network compared to the standard OLS regression 
Institutional trading data are obtained from ANcerno Ltd on the period ranging from January 1, 2010 
to September 30, 2011. In-sample predictions are computed on 70% of the data such us the number 
of buy orders is equal to the number of sell orders. The remaining 30% serves for the out-of-sample 
prediction. RMSE and MAPE are respectively the Root Mean Squared Error and the Mean Absolute 
Percentage Error of the estimates 

Imbalance OLS Regression Bayesian Network 
Available No Yes No Partial Yes 

Panel A: In-sample Estimation 
E[IS] (bps) 
E[ ÎS] (bps) 

E[ ÎS − IS] (bps) 

9.020 
7.590 
-1.430 

9.020 
8.161 
-0.859 

9.020 
7.606 
-1.414 

9.020 
8.617 
-0.403 

9.020 
8.588 
-0.431 

RMSE (%) 1.669 1.659 1.669 1.669 1.659 
MAPE (%) 

R2 (%) 
98.743 
0.517 

98.476 
1.773 

98.739 
0.517 

98.686 
0.558 

98.476 
1.771 

Panel B: Out-of-sample Estimation 
E[IS] (bps) 
E[ ÎS] (bps) 

E[ ÎS − IS] (bps) 

6.394 
6.557 
0.163 

6.394 
5.317 
-1.076 

6.394 
6.482 
0.088 

6.394 
8.030 
1.637 

6.394 
5.960 
-0.434 

RMSE (%) 1.394 1.389 1.394 1.393 1.388 
MAPE (%) 

R2 (%) 
99.022 
0.377 

99.570 
1.104 

99.301 
0.378 

99.340 
0.502 

99.410 
1.204 

that the inferred order fow imbalance distribution is more accurate when the investor holds a larger 

order. The posterior distribution of order fow imbalance given a small order is a symmetric U-shape 

function (Figure 9). At best it is slightly skewed, either positively or negatively, depending on the di-

rection of the order. Thus, the larger the investors’ trade, the more informative it is on the estimation 

of order fow imbalance, and as a consequence the more accurate is the forecast of resulting implemen-

tation shortfall. We observe that the R2 increases steadily, whatever the confguration of information 

availability (partial or full), in-sample and out-of-sample, starting at the seventh bin. For example, 

the in-sample estimation of transaction costs when imbalance is partially available, goes from an R2 

of 0.18% for the seventh decile to 2.13% for the tenth decile, while smaller deciles of order size have 

relatively small R2 (from -0.03% to 0.09% for the frst 4 bins). Actually, for small order size, the market 

impact is very limited and disappears in market noise. Even if the Bayesian network is trained using 

information on order fow imbalance, it has no advantage when the investor uses its trades attributes, 

if he trades only small order sizes. Said differently, it is hard to make good prior predictions of the 

order fow and thus the transaction cost when executing small orders. But we see how information on 

the investors’ own orders becomes more informative on the aggregate net order fow as the investors’ 

own order size get larger. This is in line with the recent concentration of institutional investors execu-

tions on few dealing desks. Because the large dealing desk has a more accurate picture on investors’ 
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order fow imbalance of the day, it can assess the expected transaction cost more accurately and po-

tentially design a better optimized executing scheme using this information. Note also that the RMSE 

does not drop, because higher order size bins have few orders with large implementation shortfall that 

increases the average transaction cost for the bin. This is visible in the difference between the mean 

and the median realized trading cost (30.64 bps vs 24.79 bps in-sample for the tenth bin and 1.89 bps 

vs 1.67 bps for the frst bin).The MAPE on the other hand, not suffering from this bias, gets smaller as 

the order size increase. 

Table 7. Performance of the Bayesian network given order size 
Institutional trading data are obtained from ANcerno Ltd on the period ranging from January 1, 2010 
to September 30, 2011. In sample predictions are computed on 70% of the data such us the number 
of buy orders is equal to the number of sell orders. The remaining 30% serves for the out-of sample 
prediction. The sample are split in 10 bins w.r.t training set orders size. Q50 is the 50% quantile 
of implementation shortfall realized distribution. RMSE and MAPE are respectively the Root Mean 
Squared Error and the Mean Absolute Percentage Error of the estimates 

Bins 1 2 3 4 5 6 7 8 9 10 
QE[ ADV ] (%) 0.01 0.02 0.03 0.04 0.06 0.09 0.15 0.28 0.64 4.34 

Panel A: In-sample Bayesian Estimation 
Effective Trading Costs 

E[IS] (bps) 1.89 2.87 2.61 4.85 6.88 7.82 7.01 9.25 16.50 30.64 
Q50 (bps) 1.67 2.67 2.34 2.89 5.09 6.11 5.99 8.06 11.54 24.79 

Imbalance Partially Available 
E[ ÎS] (bps) 4.26 4.52 4.82 5.25 5.78 6.51 7.58 9.32 12.59 25.62 
RMSE (%) 1.41 1.44 1.51 1.52 1.56 1.61 1.68 1.74 1.92 2.17 
MAPE (%) 100.19 99.78 100.11 99.69 98.92 98.59 98.46 97.86 96.91 93.60 
R2 (%) -0.03 0.04 -0.00 0.09 0.17 0.24 0.18 0.27 0.77 2.13 

Imbalance Available 
E[ ÎS] (bps) 3.72 4.09 4.36 4.86 5.54 6.36 7.63 9.54 13.07 26.80 
RMSE (%) 1.39 1.43 1.50 1.51 1.55 1.60 1.67 1.73 1.90 2.17 
MAPE (%) 98.76 98.72 98.76 99.02 98.66 98.70 98.59 98.54 98.06 96.89 
R2 (%) 1.50 1.69 1.43 1.37 1.55 1.35 1.33 1.35 2.09 2.89 
Panel B: Out-of-sample Bayesian Estimation 

Effective Trading Costs 
E[IS] (bps) -1.44 -0.14 0.75 2.70 3.80 4.83 8.09 8.81 12.71 28.09 
Q50 (bps) 0.00 0.00 0.00 1.65 1.28 3.62 5.49 6.73 8.01 19.09 

E[ ÎS] (bps) 4.53 4.77 5.05 
Imbalance Partially Available 
5.39 5.87 6.50 7.46 8.98 11.85 22.73 

RMSE (%) 1.22 1.24 1.27 1.37 1.32 1.35 1.40 1.45 1.61 1.71 
MAPE (%) 
R2 (%) 

101.28 
-0.17 

101.25 
-0.09 

101.23 
-0.05 

100.99 
0.06 

101.33 
0.13 

98.96 
0.17 

98.23 
0.39 

97.59 
0.41 

97.22 
0.72 

93.65 
2.39 

Imbalance Available 
E[ ÎS] (bps) 2.19 2.28 2.69 2.98 3.67 4.33 5.57 6.97 9.91 22.13 
RMSE (%) 1.21 1.23 1.26 1.36 1.32 1.35 1.39 1.45 1.60 1.72 
MAPE (%) 
R2 (%) 

99.47 
1.18 

99.69 
1.25 

99.51 
1.15 

99.78 
0.85 

99.73 
0.92 

99.37 
1.18 

99.62 
0.81 

99.38 
0.96 

99.23 
1.34 

97.95 
2.08 
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5.4 Inference of investors order fow imbalance given post-trade cost and 

market conditions 

Figure 10. Bayesian Inference of Net Order Flow Imbalance 
The fgure plots in two panels the posterior distribution of net order fow imbalance given two example 
of market conditions and order characteristics. Each time, the blue curve plots the inferred distribution 
when only meta-orders attributes are considered and the orange line is the updated distribution once 
the resulting transaction cost is observed. 

Investors net order imbalance is a latent variable, thus not observable by the asset manager before 

executing his trade. His best prediction of market pressure is the inferred imbalance, after observing 

his own trading decision. However, his decision although usually in line with investors’ trading because 

of the crowd effect, can depart from what is actually traded by his peers. One of the interests of 

our Bayesian network model is that it can be used to recover the aggregate order fow imbalance 

prevailing during the investor’s order execution, knowing his transaction costs. After receiving his 

Transaction Cost Analysis report, the investor could update his belief on investors imbalance during his 

execution using the calibrated Bayesian Network. We explore two cases as an example. First case: the 

investor sells a stock sk(m)= -1; with a small participation rate Qk(m)/ADVk(d) = 0.01%. His order is not 

very informative on market pressure since his trade is small, so his best estimate using the Bayesian 

network is a U-shape slightly skewed towards negative values of mean -0.10 (blue distribution of the 

left panel of Figure 10). Unexpectedly the resulting trading cost is huge ISk(m,d) = 3.02% because 

the imbalance is very large and negative Imbk(m,d)= -0.94. The investor could update his belief on 

the true distribution prevailing during his execution. The posterior distribution after incorporating 

the realized trading cost gives higher probability to values at -1 (Orange line of the left panel). The 

average posterior imbalance distribution is -0.17 (Table 8). Second case: the investor takes the decision 
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to sell massively a stock, Qk(m)/ADVk(d) = 31.8%. This is usually happening during market panic 

where other investors sell massively as well. Therefore, his prior distribution is highly skewed to 

the left (E[Imb] = −0.40, blue distribution of the right panel, Figure 10). While the investor expects 

a high transaction cost, he got lucky to be against the aggregate order fow (Imbk(m,d)= 0.94) and 

benefted from a price improvement of 2.6%. The posterior imbalance distribution after incorporating 

this information is displayed on the right panel of Figure 10 (orange line) with a 0.05 average. 

Table 8. Bayesian inference of net order fow imbalance 
The table summaries the frst 2 moment and the 2.5% and 97.5% quantiles of net order fow imbal-
ance inferred distribution for two scenarios before and after order implementation shortfall become 
available 

ˆE[Imb] Std[ ˆImb] Q2.5% Q97.5% 

Before exec -0.097 
Inferred Imbalance: Example 1 

0.333 -1.0 0.953 
After exec -0.175 0.381 -1.0 0.999 

Before exec -0.400 
Inferred Imbalance: Example 2 

0.328 -1.0 0.909 
After exec 0.050 0.386 -1.0 1.000 

6 Conclusion 

In this paper, we use a Bayesian network to model transaction costs on US equity markets using 

ANcerno data, a large database of asset managers’ instructions. Our main motivation is to make use of 

a variable of paramount importance for transaction costs, the Net Order Flow Imbalance. This variable 

is not observed by all market participants. Brokers and market makers have access to the imbalance 

of their clients’ fows, while dealing desks of asset managers do only observe their own instructions. 

Nevertheless, brokers, custodians and even exchanges started recently reselling aggregate information 

on their clients fows with a delay. Bayesian networks open new perspectives to model transaction costs 

using latent variables, i.e. variables that are not always known when the model has to be used, but can 

be partially observed during the learning process. They enable to design a model linking observed and 

latent variables, based on conditional probabilities. The partially observable data can then be used to 

train the model. 

Bayesian networks are able to estimate not only expected values, but the whole probability dis-

tribution of a given variable. They are thus able to estimate the variance of the residuals of their 

estimation. Because of the heteroskedasticity of the error term, market impact models and transac-

tion costs estimates have traditionally a very small R2 . A common belief among practitionners is that 
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the effect of small mechanical price pressure is disappearing in the ”market noise” (i.e. innovation on 

prices). We confrm this intuition in our model, by allowing the accuracy of trading costs forecasts to 

depend on market conditions and the investors’ order characteristics. We fnd that the main variable 

explaining the variance of the residuals is the stock volatility, with a coeffcient of 0.78. 

Last but not least, we show several advantages of Bayesian networks for transaction costs fore-

casting. First, even when the latent variables (in our case, the imbalance of institutional orders at 

the start of the day) cannot be observed, the estimation relies on its pre-captured relationships with 

other observable variables (like the size and side of the investor’s order to be executed). This allows 

the model to provide a better prediction than standard (for example OLS) models. Second, we show 

that the estimates get more accurate with the size of the meta-order the investor has to execute, be-

cause the larger the meta-order, the better the estimation of the order fow imbalance. This gives an 

informational advantage for large dealing desks in charge of executing the orders of numerous or large 

investors as they have a better picture of the aggregate imbalance. This fnding is consistent with 

the current evolution of market practice. Small asset managers increasingly use the services of large 

dealing desks to beneft from this information, leading to the recent concentration of institutional in-

vestors orders on a few dealing desks. Finally, these models can use Bayesian inference to deduce the 

expected distribution of the latent variable. We show how it is feasible to ask the Bayesian network 

the expected distribution of large orders of other investors, either at the start or at the end of the day, 

once the resulting trading costs are observed. 

Bayesian networks are very promising models to account for partial information. They could prove 

particularly valuable for “alternative datasets”, like airlines activity, web traffc, or fnancial fows, 

than often provide very detailed information on a small subset of transactions. They are diffcult to 

use in standard models, that do not accept missing values. Bayesian networks structurally model 

relationship between missing and known variables. They could naturally fll this gap. 
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Appendix A Garman Klass volatility defnition 

Garman-Klass estimate of the volatility uses the open, high, low and close prices of the day. This 

estimate is robust and very close in practice to more sophisticated ones. The formula is given by: 

vuut !2 !2N Hk Ck1 1 d−t d−t
σ

GK 
k (d) = ∑ log − (2log(2) − 1) log (15)

N 2 Lk 
d−t Ok 

d−tt=1 

where the indexation k refers to the stock. d to the calculation day. N is the length of the rolling window 

in day. In our case 252 trading days. Ot
k , Ht

k , Lt
k , Ck are respectively the open, high, low, close prices of t 

stock k at day t 

Appendix B Bid-Ask spread and volatility distribution depen-

dencies 

Figure 11. Bid-Ask spread and volatility distribution dependencies 

The left panel of fgure 11 shows the scatter plot of the log bid-ask spread and log volatility of S&P 

500 components of 2010 and 2011. It proves that the variables are related. The right panel displays � 
the centered distributions X − X of log bid-ask spread and log volatility. 

Appendix C Beta distribution properties 

The probability density function of the Beta distribution PDFBeta is given by: 

xα−1(1 − x)β −1 Γ(α)Γ(β )∀x ∈ [0,1] PDFBeta(α,β ,x) = where B(α,β ) = (16)
B(α,β ) Γ(α + β ) 
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The frst 3 moments of the distribution are as following: 
√ 

αβ 2 (β −α) α+β +1E[X ] = α Var[X ] = Skew[X ] = √
α+β (α+β )2(α+β +1) (α+β +2) αβ 

Note that the skew of the distribution is proportional to (β − α). So when α << β the probability 

density function is signifcantly skewed toward values at 0 and in the opposite case α << β the proba-

bility density function is skewed toward values at 1. The particular case where α = β the distribution 

1 1 1is symmetric around the mean E[X ] = 2 . (PDFBeta(α,β , 2 +x) = PDFBeta(α,β , 2 −x)) and the skew is null. 

if in addition the condition (α − 1)(α − 2) > 0 is fulflled the distribution has a U-shape. Otherwise the 

Beta distribution produces a concave function. 

Appendix D Net order fow imbalance properties 

Figure 12. Net order fow imbalance, daily returns correlation 

Net order fow imbalance has a strong predictive power of daily returns. The cross sectional average 

correlation for S&P 500 index components on our period of study is signifcantly positive up to 10.72% 

(Figure 12). Furthermore, investors trading imbalance prevail through time. Table 9 shows that the 

daily imbalance auto-correlation decays slowly from 12.03% for the frst lag to 7.44% after 5 days. Since 

order fow imbalance is only available with a delay, the long memory of the imbalance is appreciated. 

Table 9. Net Order Flow Imbalance auto-correlation 

Imbt−1 Imbt−2 Imbt−3 Imbt−4 Imbt−5 

Imbt 12.03 9.11 8.37 7.69 7.44 
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Appendix E Implementation shortfall distribution 

Figure 13. Implementation shortfall marginal distribution 

The implementation shortfall estimated on ANcerno meta-orders on S&P 500 components of 2010 

and 2011, displays a non-normal distribution centred at 0, with standard deviation equal to 0.64, a pos-

itive skew of 0.34 and highly signifcant excess kurtosis of 23.46. These moments are more comparable 

to a double exponential distribution. 

Appendix F Hasting-Metropolis algorithm 

Hasting-Metropolisis one of pioneer Markov Chain Monte Carlo algorithm developed in early 90s 

to sample from an unknown distribution. Given a function f proportional to the desired probability 

distribution P(x) (a.k.a the target distribution) and a proposal distribution q() = q(.|x) easy to simulate, 

the algorithm construct a series of variable (x1,x2, ...,xn) such as given xn 

1. Generate yn ∼ q(y|xn), 

2. Generate u ∼ U [0,1] a uniform distribution n o 
f (yn)q(xn|yn)3. Compute the acceptance rate α = min ,1f (xn)q(yn|xn) 

4. Accept the new candidate yn with probability α if u ≤ α Otherwise reject. 

⎧ ⎪⎨yn, if u ≤ α 
Xn = (17)⎪⎩xn, otherwise 
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