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Abstract 

Chava, Hsu, and Zeng (2019) find that investors don’t fully incorporate business cycle 

variation in cash flow growth and thus conditional Sharpe ratio can be informative for 

future industry returns. It suggests that cash flow risk at the idiosyncratic level is not 

fully incorporated into the prices by investors. I develop a stochastic volatility frame-

work to evaluate the unexpected cash flow news through the variance decomposition 

perspective and apply the method to U.S. industry data. I find that i) The common 

cash flow volatility estimated from unexpected industry-level cash flow news is highly 

correlated to Uncertainty index constructed by Jurado, Ludvigson, and Ng (2015); ii) 

the idiosyncratic cash flow risk is robustly priced and the explanation power cannot be 

consumed by current well-known risk factors and firm characteristics; iii) stocks with 

high conditional Sharpe ratios tend to have higher idiosyncratic cash flow volatility and 

higher compensated returns, which is consistent with Chava, Hsu, and Zeng (2019)’s 

finding. A strategy that goes long the decile portfolio with the largest idiosyncratic 

cash flow volatility and short the decile portfolio with the smallest idiosyncratic cash 

flow volatility yields a Fama-French-Five-Factor alpha of 37 bps per month (t-stat: 

6.90) in long sample (1931-2018) and 64 bps per month (t-stat: 12.28) in the modern 

sample (1963-2018). 
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1. Introduction 

The fundamental question in empirical asset pricing is the determinants of the cross-

sectional stock returns. While a large body of recent research proposing new factors based 

on a host of empirically motivated economic or financial characteristics, we address this 

question from a new perspective, offering evidence that the idiosyncratic cash flow risk - the 

unexpected cash flow news at individual level - is important for understanding the cross-

sectional stock returns. 

In this paper, I argue that cash flow risk at the idiosyncratic level is not fully incorporated 

into the prices by investors. The cash flow risk and discount rates risk have been well 

defined in the pioneer work of Campbell (1991). Campbell and Vuolteenaho (2004a) apply 

the technique and use the market level unexpected news to explain the cross-section of stock 

returns and following their “Bad Beta, Good Beta” work, many papers have explored the 

role of the unexpected news risk in asset pricing. However, most of them focus on the cash 

flow risk at the market level and cash flow risk at individual level has been rarely explored. 

A recent paper by Chava, Hsu, and Zeng (2019) shows that there is significant variation 

in cash flow growth across industries over the business cycle and they find investors do 

not fully incorporate business cycle fluctuations into the industry level cash flows. If the 

business cycle information is not reflected in each industry’s cash flow, then conditional 

Sharpe ratio can be informative for future industry returns. In their paper, sector rotation 

strategy based on history-dependent Sharpe ratio can produce significant returns. It suggests 

that cash flow risk at the idiosyncratic level is not fully incorporated into the prices by 

investors. However, no theoretical model is provided to rationalize the documented Sharpe 

ratio premium and the role of idiosyncratic cash flows should be re-highlighted. In this 

paper, I develop a stochastic volatility framework to evaluate the unexpected cash flow news 

through the variance decomposition perspective, and I relate the conditional Sharpe ratio 

to the firm’s cash flow volatility - especially the idiosyncratic cash flow volatility - to justify 

the premium. 
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Campbell and Vuolteenaho (2004a) apply the technique in Campbell (1991) and use the 

market level unexpected news to explain the cross-section of stock returns. Following their 

“Bad Beta, Good Beta” work, many papers have explore the unexpected news risk like Da 

and Warachka (2009), Botshekan, Kraeussl, and Lucas (2012), Maio (2013), Chen, Da, and 

Zhao (2013), Campbell, Giglio, and Polk (2013), Cooper and Maio (2018), and Campbell, 

Giglio, Polk, and Turley (2018). Da and Warachka (2009) show that stock returns are 

partially driven by the unexpected cash flows by using data of analysts’ earnings forecast 

revisions on market earnings. Botshekan et al. (2012) construct a four-factor model to reflect 

the cash flow and discount rates risk under downside market and upside market. They find 

the downside cash flow risk is robust priced across different specifications and the downside 

cash flow risk premium is mainly attributable to small stocks. Maio (2013) extend the 

Campbell and Vuolteenaho (2004a)’s model and allow the price of aggregate cash flow to 

be time-varying by setting the conditional cash-flow beta to be linear in a state variable. 

Chen et al. (2013) show that cash flow news plays significant roles in determining stock 

returns and the importance increases with the investment horizon by using direct cash flow 

forecasts data. A most recent paper by Campbell et al. (2018) introduces the stochastic 

volatility into the initial homoskedastic ICAPM model and show that the volatility of future 

expected returns is negatively priced in the cross-sectional of stock returns. Different from 

their research, I find that the cash flow news and discount rates news at individual level tend 

to move together, which suggests the existence of common factors behind the big picture. 

Therefore I apply the stochastic volatility model to disentangle the common and idiosyncratic 

volatility from the individual-level news. To the best of my knowledge, however, no one has 

tried to disentangle the pricing properties of cash flow and discount rate news from the 

variance decomposition perspective. To motive the empirical results, I build up a cash flow 

model where each firm’s dividend growth is driven by two independent stochastic volatility 

processes - the common cash flow shock and the idiosyncratic cash flow shock - and the 

equilibrium solutions imply that the idiosyncratic and common cash flow risk are priced in 
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the cross-sectional stock returns. 

My main intention is simple. I argue that the unexpected cash flow volatility could carry 

additional information besides current risk factors and firm characteristics. To verify my 

proposition, I apply the method to U.S. industry portfolios. In the main empirical results, I 

find that the common cash flow volatility estimated from unexpected industry-level cash flow 

news is highly correlated to Uncertainty index constructed by Jurado, Ludvigson, and Ng 

(2015). The idiosyncratic cash flow risk is robustly significant in explaining the cross-section 

of stock returns. The explanation power can not be consumed by current risk factors and firm 

characteristics. A strategy that goes long the decile portfolio with the largest idiosyncratic 

cash flow volatility and short the decile portfolio with the smallest idiosyncratic cash flow 

volatility can produce robust alpha across different specifications. The alpha significantly 

exists with respect to asset pricing models like Fama-French three factor model, Carhart four 

factor model and Fama-French five factor model. For example, the single-sorted strategy 

yields a Fama-French five factor alpha of 0.37% per month (t-stat: 6.90) in long sample 

(1931-2018) and 0.64% per month (t-stat: 12.28) in modern sample (1963-2018). By the 

double sorting, we find the abnormal alpha is mainly driven by the growth industries. 

also build a theoretical connection between conditional Sharpe ratio and idiosyncratic cash 

flow volatility. I find that stocks with high conditional Sharpe ratios tend to have higher 

idiosyncratic cash flow volatility and higher compensated returns, which is consistent with 

Chava et al. (2019)’s finding. 

One related literature is to study the role of the idiosyncratic and common stock return 

volatility in cross-sectional stock return literature. Their focus is the realized return volatility 

while my focus is the unexpected cash flow volatility. These two are closely connected and 

could help to understand the mechanism behind. In the realized return volatility literature, 

Ang, Hodrick, Xing, and Zhang (2006) document that high exposure to systematic return 

volatility or higher idiosyncratic return volatility corresponds to lower stock returns. The 

negative coefficients of common stock return volatility have been widely accepted while 

3 

I 



the negative role of idiosyncratic return volatility is controversial. For the common stock 

volatility, the negative association can be justified by the leverage theory of Black (1976) 

and Christie (1982) and the risk premia theory of French, Schwert, and Stambaugh (1987). 

The leverage hypothesis argues that the firms become more levered when the stock prices fall 

which increase the aggregate volatility. The risk premium hypothesis argue investors demand 

higher risk premia when market volatility increase which depresses the firms’ value and results 

in the negative relationship. Both two explanation can justify the negative relationship 

among stock returns and aggregate return volatility. For the idiosyncratic return volatility, 

Ang et al. (2006) document that portfolios with high realized idiosyncratic volatility deliver 

low value-weighted average returns in the subsequent month while Bali and Cakici (2008) 

document no robustly significant relationship among stock returns and the idiosyncratic 

return volatility. Huang, Liu, Rhee, and Zhang (2009) find that the negative relationship is 

due to the short-term reversal and confirm the positive relationship among expected returns 

and the idiosyncratic volatility. Similar explanation is made by Fu (2009) where he uses 

the exponential GARCH models to estimate expected idiosyncratic volatility and find a 

significantly positive relation between the estimated conditional idiosyncratic volatility and 

expected returns. Fu (2009) argue that Ang et al. (2006)’s findings are largely explained 

by the return reversal of a subset of small stocks with high idiosyncratic volatility. These 

can go back the initial puzzle documented by Duffee (1995). Duffee (1995) documented the 

positive relationship among stock returns and the idiosyncratic volatility and argue that 

the positive contemporaneous relationship cannot be justified by the leverage hypothesis or 

the risk premium hypothesis. Grullon, Lyandres, and Zhdanov (2012) resolve this puzzle 

by showing that the positive relation between firm-level stock returns and firm-level return 

volatility is due to firms’ real options. Here the documented positive relationship among 

idiosyncratic cash flow volatility and stock returns which can also be backed up by the 

argument of Grullon et al. (2012). They take the firm’s future investment as potential 

growth options and the value of the growth options increase with the idiosyncratic return 
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volatility which justifies the positive relationship among volatility and stock returns. Our 

evidence on cash flow volatility support their argument on the amplified effect of good news 

on growth options. 

Different from current discussions on the volatility of stock returns, my focus is the cash 

flow volatility estimated from the unexpected news. Since the basic economic theory tells 

us that prices should fully reflect the future cash flows and the future cash flow news should 

price today’s financial ratios, a direct approach to identify the role of cash flow can be helpful. 

The aim of this paper is three-fold. First I build up a cash flow model where the firm’s 

cash flow is driven by a common factor and an idiosyncratic factor and I argue that the 

cash flow news will be priced in the cross-section stock returns. The model provides a clear 

closed-form solution to show the relationship among idiosyncratic and common cash flow 

risk, cross-section stock returns and the conditional Sharpe ratio. For the corresponding 

identification method, I propose a stochastic volatility econometric method to extract the 

common and idiosyncratic cash flow volatility from cross-section observed data. Second I 

apply the method to the U.S. industry portfolios and results suggest that the common cash 

flow volatility is closely to the whole economy uncertainty (see Jurado et al. (2015)) and the 

idiosyncratic cash flow volatility is not fully consumed by the current well-known risk factors 

and firm characteristic factors. The idiosyncratic cash flow volatility is positively related to 

the stock returns. Third, I relate the conditional Sharpe ratio to the idiosyncratic cash flow 

risk. Firms with higher idiosyncratic cash flow volatility tend to have higher Sharpe ratio 

and higher stock returns, which justifies the Sharpe ratio premium (see Chava et al. (2019)). 

The rest of the paper is organized as follows. In the next section, I introduce the cash 

flow model that motives my empirical analysis and derive the equilibrium solution to show 

the relationship among idiosyncratic and common cash flow risk, cross-section stock returns 

and the conditional Sharpe ratio. Section 3 contains the estimation method to extract the 

volatility measures from the cash flow news. In section 4 I apply the method to US industry 

portfolio data and provide the main findings of this paper, namely that the common cash flow 
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volatility is closely to the whole economy uncertainty and the idiosyncratic cash flow news 

volatility cannot be fully explained by the well-known risk factors and firm characteristics. 

Strategy based on the idiosyncratic cash flow volatility can produce alpha in both long and 

modern samples. Section 5 concludes. 

2. Theory 

2.1. Motivation 

In the influential “Bad Beta, Good Beta” paper, Campbell and Vuolteenaho (2004a) 

break the CAPM beta into two components: the bad one reflecting the future market cash 

flow news and the good one reflecting the future discount rates news. The economically 

motivated two-factor model is well applied to explain the size and value “anomalies”. They 

decompose unexpected market returns into the discount rate and cash flow components by 

using the return decomposition technique of Campbell and Shiller (1988) and  Campbell 

(1991). The Campbell and Shiller’s technique is using a log-linear approximation of the 

present relation for stock prices that allows for time-varying discount rates. In Campbell 

and Vuolteenaho’s paper, the market return is decomposed into 

∞ ∞ � � 
ρj ρjrm,t+1 − Etrm,t+1 ∗ (Et+1 − Et) · Δdm,t+1+j − (Et+1 − Et) · rm,t+1+j 

j=0 j=1 (1) 

= Nm,CF,t+1 + Nm,DR,t+1 

where ρ = 1/(1 + exp(dp)) is a (log-linearization) discount coefficient that depends on 

the mean of log dividend-price ratio dp, rm,t+j is the log market return and Δdm,t+j is the 

log market dividend growth. NCF denotes news about future market cash flows and NDR 

denotes news about future market expected returns. 

The technique allows the unexpected market returns to be represented as the sum of 

cash flow news and discount rates news. By the construction, they can estimate each stock’s 

6 



beta by looking at the co-variance of the individual stock returns and market level news. 

The fitting two-beta ICAPM greatly improves the poor performance of the standard CAPM, 

which suggests that information is hidden in the unexpected cash flow and discount rates 

news. 

Rather than look at market level news, I explore the information that might be hidden at 

individual level news. In this paper, the work is not limited to the market level decomposition 

since the return decomposition also works at the individual stock level. For example, the 

log-linearization formulation works at individual stock level, which is 

∞ ∞ � � 
ρj ρjri,t+1 − Etri,t+1 ∗ (Et+1 − Et) · Δdi,t+1+j − (Et+1 − Et) · ri,t+1+j 

j=0 j=1 (2) 

˜ ˜= Ni,CF,t+1 + Ni,DR,t+1 

where Ni,CF denotes news about future cash flows of stock i and Ni,DR denotes news 

about future expected returns of stock i. If I bring this thought to real data, I find that 

cash flow news or discount rates news at individual level are driven by a common factor 

besides their idiosyncratic exogenous shocks. For example, I show the cash flow news and 

the discount rates news of each 30 industry (defined as Fama and French)1 in figure 1. I find 

that the individual news move together which is consistent with our argument. 

[Insert Figure 1 near here] 

The Campbell and Vuolteenaho (2004a)’s cash flow and discount rates decomposition at 

aggregate market level has became an important contribution to the ability of the CAPM 

model in explaining the cross-sectional differences in average returns. Following this frame-

work, a large number of papers have shown that the cash flow and discount rates news 

are priced in the stock prices like Da and Warachka (2009), Botshekan et al. (2012), Maio 

(2013), Chen et al. (2013), Campbell et al. (2013), Cooper and Maio (2018), and Campbell 

et al. (2018). To the best of my knowledge, however, no one has tried to disentangle the 

1Results are robust when other industry definitions are applied. e.g. 48 industry. 
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pricing properties of cash flow and discount rate news from the variance decomposition -

the idiosyncratic and common factor - perspective. To economically motive the empirical 

evidence, I provide a cash flow model where the individual firm’s dividend growth is driven 

by the common shock and its own idiosyncratic shock and I derive the proposition showing 

that the individual stock returns are determined by both two risk sources. 

2.2. A Cash Flow Model 

I start the theoretical framework from the pricing kernel as Constantinides (1992). In a 

no-arbitrage world, I always have the following condition holds as 

1 =  Et[Mt+1Rt+1] 

Here I assume the state pricing kernel at t+ 1 in this economy follows 

1 
= −rf − · σ2 

m,t+1,� m,t)  (3)  mt+1 m,t + m,t+1 ∼ N(0, σ2 

2 

where mt+1 is the state pricing density at time t + 1,  rf is the constant risk free rates 

and σ2 
m,t are exogenously determined. The pricing kernel form has been applied by previous 

researchers (e.g. Amin and Ng (1993), Wu (2001)) and here I adopt this functional form to 

easily derive the closed-form equilibrium solutions. 

For the cash flow model, I allow the heterogeneous cash flow shocks on individual stocks. 

In my model, the cash flow is driven by two independent stochastic volatility processes - the 

common cash flow shock c and the idiosyncratic shock i - for each stock. d,t+1 d,t+1 

c i (4)  Δdi,t+1 = α0 + α1 · Δdi,t + d,t+1 + d,t+1; 

(σc )2 = β0 
c + βc · (σc + σc ·  c (5)  d,t+1 1 d,t)

2 
d,t t+1; 

(σi )2 = βi · (σi + σi ·  i 
d,t+1 0 + β1 

i 
d,t)

2 
d,t t+1;  (6)  
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� �
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where 

c i |It ∼ N(0, (σi 
d,t+1|It ∼ N(0, (σd,t

c )2),� d,t)
2);d,t+1 

 c ∼ N(0, (ηυ
c )2),  i ∼ N(0, (ηυ

i )2);t+1 t+1 

c(i)
I price the cash flow risk by the following way where ρm reflects the relationship among 

the cash flow growth and the value of dividends regarding different states. The positive sign 

of ρm implies the period of more valuable of dividend coincides with period of higher cash 

flow growth while the negative sign of ρm implies the period of more valuable of dividend 

coincides with period of lower cash flow growth. As long as ρm is not equal to zero, we have 

the cash flow risk being priced. 

covt( 
c 

m d,t)
2 

d,t+1,� m,t+1) =  ρi · (σi ;d,t+1,� m,t+1) =  ρc · (σc , covt( 
i 

m d,t)
2 

I also allow the shock to the dividend and the shock to its volatility to be correlated 

which captures the leverage effect as argued by Black (1976) in explaining the asymmetric 

volatility of individual stock returns. 

corr( c ,  c ) =  ρc 
d,t+1 t+1 l;d,t+1 t+1 l , corr( i ,  i ) =  ρi 

I further assume that the two stochastic volatility processes are uncorrelated which allows 

us to derive a simple closed form solution. 

corr( c ,  i ) = 0, corr( i ,  c ) = 0;  d,t+1 t+1 d,t+1 t+1 

c(i)
corr( t

c 
+1,  t

i 
+1) = 0, corr( m,t+1,  t+1) = 0;  

I build up the house foundation step by step. The first three propositions show the 

formulations of the price-dividend ratio, stock returns and unexpected news. Then the 

fourth proposition shows how the cash flow volatility is related to the conditional Sharpe 
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� �

ratios and the cross-section of stock returns. 

Proposition 1: The log price-dividend ratio in the economy can be represented as 

c
m 

i
m 

(pt − dt)i = c0 + c1 · Δdi,t + c2 · (σc + c3 · (σi (7)d,t)
2 

d,t)
2 

c
v 

i
v 

where 

c
l 

i
l 

c
v 

i
v 

−rf + κ+ (ρ · c1 + 1)α0 + ρ · c2 · β0 
c + ρ · c3 · β0 

i α1 
c0 = , c1 = ;

1 − ρ 1 − ρ · α1 

c 

i 

� 
(1 − ρα1) · (1 − ρβ1) − ρ · η ρ ± [(1 − ρα1) · (ρβ − 1) + ρ · η ρ ]2 − ρ2 · (η )2 · [1 + 2 · ρ · (1 − ρα1)]1 

(1 − ρα1) · (1 − ρβ1) − ρ · ηi ρ ± [(1 − ρα1) · (ρβ − 1) + ρ · η ρ ]2 − ρ2 · (η )2 · [1 + 2 · ρ · (1 − ρα1)]1 

c
l 

i
l 

c
v 

v 

c 

i 

c2 = ;
(1 − ρα1) · ρ2 · (ηcv)2 

� 

c3 = ;
(1 − ρα1) · ρ2 · (ηiv)2 

Proof: See Appendix. 

Note for c2 and c3, each of them has two roots. The root selection actually depends on 

where does the volatility feedback come from. At aggregate level, the negative volatility 

feedback effect requires the sign of the volatility to be negative. However, I cannot conclude 

the signs at individual stock level. 

Proposition 2: The realized return of each stock can be represented as 

c c i i c c i i c c i i ri,t+1 = λ0 · Δdi,t + λ1 · (σd,t)
2 + λ1 · (σd,t)

2 + λ2 · d,t+1 + λ2 · d,t+1 + λ3 ·  d,t+1 + λ3 ·  d,t+1 (8) 

where 

c c i iλ0 = (ρ · c1) · α1 − c1; λ1 = ρ · c2 · β1 − c2; λ1 = ρ · c3 · β1 − c3; 

1c i c c i iλ = λ = ; λ = ρ · c · σ λ = ρ · c · σ2 2 3 2 d,t; 3 3 d,t1 − ρ · α1 
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Proof: See Appendix. 

c(i)
Note that the return will be positively related to cash flow shock and negatively d,t+1 

c(i)
related to the volatility shock  d,t+1. 

The cash flow news framework is first proposed by Campbell and Hentschel (1992) that  

any unexpected returns can be decomposed into a cash flow news term and a discount rates 

news term. The derived shock to dividend level and to its volatility can be well fitted into 

the expected cash flow news and discount rates news framework (Campbell and Vuolteenaho 

(2004a), Campbell, Polk, and Vuolteenaho (2009), Botshekan et al. (2012)). By the model 

construction, I can represent the expected news term in the formulation of common and 

idiosyncratic shocks. 

Proposition 3: 

CF News: 
∞ � 

ρj c i(Et+1 − Et) · Δdi,t+1+j = λ2 
c · d,t+1 + λi 

2 · d,t+1 (9) 
j=0 

DR News: 
∞ � 

−(Et+1 − Et) ρj · ri,t+1+j = λc ·  c ·  i (10)3 d,t+1 + λi 
3 d,t+1 

j=1 

Proof: See Appendix. 

Therefore I have the unexpected cash flow news are reflected by the shock to dividend and 

the unexpected discount rates news are reflected in the shock to the dividend volatility. The 

second derivation is a powerful justification of volatility feedback effect because it indicates 

the increase in volatility will decrease the expected returns which lead to drop in today’s 

stock prices. 

Proposition 4: 

Conditional Sharpe ratio increase with idiosyncratic cash flow volatility. 

Proof: See Appendix. 

Stocks with higher idiosyncratic cash flow risk tend to have higher conditional Sharpe 

ratio. This proposition relates the conditional Sharpe ratio to the cash flow risk, which 
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provide a risk-based explanation why stocks with high conditional Sharpe ratio have higher 

risk premia. 

3. Estimation Methodology 

3.1. Analytic Framework 

In this section, I relate the economic dynamics to the cross-sectional asset pricing. 

argue cash flow risk should be priced and the idiosyncratic cash flow risks can be priced in 

the cross section. The classical CAPM model may fail to reflect the role of idiosyncratic 

cash flow risk. In the traditional CAPM, the systematic market risks are considered. The 

systematic risks in standard CAPM are abstract and hard to interpret while the common 

cash flow risk corresponds to the market risk premia in our framework. The new perspective 

is to provide a risk framework where idiosyncratic cash flow risk determines the asst prices 

conditional on common cash flow risk. In sum, the CAPM model may fail to explain the 

idiosyncratic cash flow risk since the market betas only reflect the systematic risk. 

The cash flow and discount rates risks are first explored by Campbell and Vuolteenaho 

(2004a)’s paper. Campbell and Vuolteenaho (2004a) estimate the unexpected market-level 

news and show aggregate level risks are priced in the cross-section stock returns. By the the 

novel cash flow setting, we manage to show that idiosyncratic cash flow risk is also priced in 

the cross section. For the economic dynamics, the cash flow framework is actually inspired 

by Wu (2001)’s earlier work. However, his paper focus on the market level cash flow and 

provide no insights on heterogeneous cash flow risks while our interests mainly lie in the 

cross-sectional stock pricing. My framework allows us to take one step further to study the 

determinants of cross sectional returns. 
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3.2. Stochastic Volatility Model Estimation 

The priced volatility terms are estimated from the stochastic volatility model as below. 

˜Let Xi,t be the individual cash flow news Ni,CF,t and we can estimate the common factor from 

all individual news term, which can lead to the estimated common volatility and idiosyncratic 

volatility. 

Xi,t = Bi
c · Ft

c + ei,t; (11) 
p � 

Ft
c = α + ρj

c · Ft
c 
−j + Ω0.5 ·  t;  (12)  

j=1 

Ω0.5 = A−1 
t · diag(γt) · A− 

t 
1 ; (13) 

p � 
ei,t = ρi · et−j + h0.5 · t; (14) j i,t 

j=1 

Therefore we have the variance decomposition of the unexpected news term Xi,t. 

var(Xi,t) =  var(Bi
cFt

c) +  var(ei,t) (15) 

by which we have the cash flow news variance decomposition as follows where the total 

variations are equal to the sum of common and idiosyncratic volatility. 

var(Ñi,CF ) = (σc 
CF )

2 (16)CF )
2 + (σi 

4. Application 

In this section, I mainly study the asset pricing property at U.S. industry level. Evidence 

suggests that the idiosyncratic cash flow risk is robust priced at different specifications. 
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4.1. Data 

I choose the U.S. industry portfolio data to test our framework where Fama-French 

Industry 30 data are explored here. I choose the industry specification (30 industries) due 

to the long documented data history than other industry specifications. The sample spans 

from 1926m6 to 2018m12 at monthly frequency. 

The cash flow news and discount rates news are estimated as Campbell and Vuolteenaho 

(2004b) where the state variables are chosen as term spread, default spread and the adjusted 

PE  ratios. 

The term spread (TS) is defined as the difference between the ten-year yield and the 

three-month yield. The default spread (DS) is defined as the difference between Moody’s 

Seasoned Aaa and Baa bond yields. The CAPE is cyclically adjusted Price Earnings ratio 

downloaded from Robert Shiller’s website. 
�∞The −(Et+1 − Et) j=1 ρ

j · ri,t+1+j is estimated from the VAR system while the (Et+1 − 
�∞Et) j=0 ρ

j · Δdi,t+1+j is backed from the unexpected returns ri,t+1 − Et[ri,t+1]. I present the 

calculated news term in Figure 1. A fact that can be documented here is that either cash 

flow news or discount rates news are driven by a common factor and they tended to move 

in the same direction. Therefore it is consistent with our argument that each news term is 

driven by a common shock sources and their volatility can be decomposed into two parts -

a common part and an idiosyncratic part. 

4.1.1. Volatility 

I apply the estimation framework discussed in the methodology part. I estimate the cash 

flow volatility where the cash flow volatility follows an AR(1) process. I also run robust check 

letting the cash flow volatility follows an stationary AR(p) process and the main conclusion 

holds in our U.S industry portfolio application. 

For cash flow volatility, I estimate it by letting the volatility term follows an AR(1) pro-

cess. The AR(1) framework is consistent with the economic model and reflects the stationary 
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property of volatility updating process. 

ln(γt) =  ā+ b̄ · ln(γt−1) +  Q0.5η̄t; (17) 

ln(hi,t) =  a + b · ln(hi,t−1) +  q 0.5ηi,t; (18) 

The stochastic volatility model is estimated via Gibbs sampling. Detailed procedures to 

carry out the estimation are introduced in the technical appendix. In the benchmark specifi-

cations, we use 20,000 replications and base our inference on the last 5000 replications. The 

lag in cash flow estimation is equal to four. Detailed processes are introduced in the techni-

cal appendix. I find that the idiosyncratic volatility varies across different industries. Each 

industry has its idiosyncratic cash flow volatility evolving pattern. It could be attributed to 

its industry’s life cycle and other industry characteristics. 

[Insert Figure 2 near here] 

[Insert Figure 3 near here] 

4.2. Common Cash Flow Volatility 

The common cash flow volatility is estimated from the U.S. whole industry’s cross-

sectional cash flows. It is the common source that drive each industry’s dividend growth. 

Compared to the economic uncertainty index constructed by Jurado et al. (2015), I find 

that the common cash flow volatility is highly correlated to both financial uncertainty and 

macroeconomic uncertainty at 82% and 73%, respectively. 

[Insert Figure 4 near here] 

In Jurado, Ludvigson, and Ng (2015)’s construction, it takes 132 macro series to con-

struct the macroeconomic uncertainty UNCmacro and it takes 147 financial time series to 
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construct the financial uncertainty UNCfin  . The macro data represents broad categories of 

macroeconomic time series including real output and income, employment and hours, dif-

ferent economic sector orders, inventories, and sales, consumer spending, compensation and 

labor costs, capacity utilization measures, price indexes, bond and stock market indexes, and 

foreign exchange measures while the financial data-set includes valuation ratios such as the 

dividend-price ratio and earnings-price ratio, growth rates of aggregate dividends and prices, 

default and term spreads, yields spreads of private and public bond, and a broad cross-

section of portfolio equity returns. Here I simply use the unexpected cash flow news from 

thirty industry portfolios and the estimated common cash flow volatility is tightly co-moves 

with Jurado et al. (2015)’s macroeconomic and financial uncertainty. 

4.3. Idiosyncratic Cash Flow Volatility 

4.3.1. ICFV in the Cross-Section 

I first investigate how the idiosyncratic cash flow volatility (ICFV) is related to the 

industry characteristics. Monthly cross-sectional regressions are run for the modern sample 

(1963-2018): 

Yt = α + γ · Ft + t 

where Yt = {ICFVi}, ICFVi is the idiosyncratic cash flow volatility and Ft are firm 

characteristics including the operating profitability ROE, the book-to-market ratio BM , 

the average firm size Size, leverage LEV as Johnson (2004), idiosyncratic stock volatility 

IV  OL  constructed as Ang, Hodrick, Xing, and Zhang (2009) and risk factors such as the 

economic uncertainty UNC  from Jurado, Ludvigson, and Ng (2015), lottery demand factor 

FMAX  from Bali, Brown, Murray, and Tang (2017) and liquidity factor ILLIQ from Pastor 

and Stambaugh (2003). In order to control for the potential economic explanation of the 

estimated volatility measures, we include these industry characteristics and risk factors in 

the cross-sectional regressions. In table 1, the intercepts Cons remain significant across 
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different specifications and the explained R2 are less than 5% except specification (5) and (7). 

Results suggest that the idiosyncratic cash low volatility can not be fully explained by firm’s 

characteristics. We find that IV  OL, LEV and UNC  factors can increase the explanatory 

power R2 a lot. For industry characteristics, evidence suggests that value firms and large 

firms tend to have larger idiosyncratic cash flow volatility. High firm leverage corresponds 

to high idiosyncratic cash flow volatility which is consistent with findings of Ang, Hodrick, 

Xing, and Zhang (2009). The interesting finding is that high past idiosyncratic stock return 

volatility IV  OL  corresponds to high idiosyncratic cash low volatility and it has the largest 

explanatory power on the idiosyncratic cash flow risk. For the risk factors, the high economic 

uncertainty UNC  indicates high idiosyncratic cash flow volatility. Both ILLIQ and FMAX  

factors are significant but the explanatory power is trivial. 

[Insert Table 1 near here] 

Results in table 2 suggest the coefficients of idiosyncratic cash flow volatility are positive 

across all specifications while the magnitudes range from 0.075 to 0.150. We find that the id-

iosyncratic cash flow volatility can explain 15% in the first column. The positive magnitudes 

implies that a portfolio buying stocks with the highest idiosyncratic cash flow volatility and 

short-selling stocks with the lowest cash flow volatility can generate returns in the following 

month controlling for all else. The βmkt coefficients are positive and insignificant. We find 

that the coefficients of BM are positive across all specifications which is consistent with the 

value effect. The coefficients of SIZE are negative but insignificant. The leverage and the 

lagged idiosyncratic stock volatility are negatively priced which is consistent with Ang et al. 

(2009). The economic uncertainty is significantly priced as documented by Bali, Brown, and 

Tang (2017) and investors get compensated by economic uncertainty exposure. The liquidity 

factor by Stambaugh (1999) is negatively priced in the industry cross section. As shown in 

Column 5, 6 and 7, including UNC, ILLIQ and FMAX  do not affect the power of the 

idiosyncratic cash flow volatility and other firm characteristic variables. 
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Here we study the role of idiosyncratic cash flow volatility which is related to the idiosyn-

cratic and common stock return volatility covered in previous cross-sectional stock return 

literature. Ang et al. (2006) document that high exposure to systematic return volatility 

or higher idiosyncratic return volatility corresponds to lower stock returns. The negative 

coefficients of common return volatility have been widely accepted while the negative role of 

idiosyncratic return volatility is controversial. For the common return volatility, the negative 

association can be justified by the leverage theory of Black (1976) and  Christie (1982) and  

the risk premia theory of French et al. (1987). The leverage hypothesis argues that the firms 

become more levered when the stock prices fall which increase the aggregate volatility. The 

risk premium hypothesis argue investors demand higher risk premia when market volatil-

ity increase which depresses the firms’ value and results in the negative relationship. Both 

two explanation can justify the negative relationship among stock returns and aggregate 

volatility. For the idiosyncratic volatility, Ang et al. (2006) document that portfolios with 

high realized idiosyncratic volatility deliver low value-weighted average returns in the sub-

sequent month while Bali and Cakici (2008) document no robustly significant relationship 

among stock returns and idiosyncratic volatility. Huang et al. (2009) find that the negative 

relationship is due to the short-term reversal and confirm the positive relationship among ex-

pected returns and idiosyncratic volatility. Similar explanation is made by Fu (2009) where  

he use the exponential GARCH models to estimate expected idiosyncratic volatility and find 

a significantly positive relation between the estimated conditional idiosyncratic volatility and 

expected returns. Fu (2009) argue that Ang et al. (2006)’s findings are largely explained by 

the return reversal of a subset of small stocks with high idiosyncratic volatility. These can 

go back the initial puzzle documented by Duffee (1995). Duffee (1995) documented the 

positive relationship among stock returns and idiosyncratic volatility and argue that the 

positive contemporaneous relationship cannot be justified by the leverage hypothesis or the 

risk premium hypothesis. Grullon et al. (2012) resolve this puzzle by showing that the 

positive relation between firm-level stock returns and firm-level return volatility is due to 
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firms’ real options. Here the documented positive relationship among idiosyncratic cash flow 

volatility and stock returns which can also be backed up by the argument of Grullon et al. 

(2012). They take the firm’s future investment as potential growth options and the value 

of the growth options increase with the idiosyncratic volatility which justifies the positive 

relationship among volatility and stock returns. Here the amplified effect of good news on 

growth options is closely related to the cash flow volatility we estimated from each stock’s 

unexpected cash flows. Later we double sort the industry stocks by the idiosyncratic cash 

flow uncertainty and the book-to-market ratios. Results suggest the pricing of idiosyncratic 

cash flow risk is mainly driven by the growth industry. There are other hypothesis to ex-

plain the relationship among idiosyncratic volatility and stock returns. Stambaugh, Yu, and 

Yuan (2015) argue the negative relationship of some stocks is due to the relatively higher 

constraint on short selling. 

[Insert Table 2 near here] 

Due to extensive data mining in research on cross-sectional expected returns, Harvey, 

Liu, and Zhu (2016) argue that we should raise the threshold for accepting empirical results 

as evident of true economic phenomena. Their results suggests that today a newly discovered 

factor needs to clear a much higher hurdle, with a t statistics greater than 3.0. As shown 

in table 2, the Fama-MacBeth cross-sectional regression indicates that the industry level 

cash flow volatility passes this test with a t statistic above the threshold 3.0 when firm’s 

characteristics are considered. 

4.3.2. Sorted Portfolios 

Uni-variate Sorted Portfolios: At the end of each month, I sort all stocks into five groups 

based on the estimated idiosyncratic cash flow volatility. A strategy that goes long the decile 

portfolio with the largest idiosyncratic cash flow volatility and short the decile portfolio 

with the smallest idiosyncratic cash flow volatility can produce robust alpha across different 
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specifications. The alpha significantly exists with respect to asset pricing models like Fama-

French three factor model, Carhart four factor model and Fama-French five factor model. 

For example, the single-sorted strategy yields a Fama-French five factor alpha of 0.37% per 

month (t-stat: 6.90) in long sample (1931-2018) and 0.64% per month (t-stat: 12.28) in 

modern sample (1963-2018). 

[Insert Table 3 near here] 

Double-Sorted Portfolios: I show that the abnormal returns can be obtained by sorting 

stocks into different idiosyncratic cash flow volatility groups. Here I proceed to evaluate the 

role of idiosyncratic cash flow volatility by further sorting the stocks into different industry 

characteristic groups. I consider the well-known characteristics like the book-to market ratio 

BM , the debt-to-asset ratio LEV and the average market capitalization Size. At the end 

of each month, we sort all stocks into three groups based on the estimated idiosyncratic 

volatility and sort stocks in each volatility group into two groups based on an ascending sort 

of the industry characteristics. The intersections of the two industry characteristics groups 

and the three volatility groups generate six portfolios. Therefore we obtain the cash flow 

volatility premium by taking difference of high volatility and low volatility. Panel A of Table 

4 shows that the equally-weighted volatility factor generates an average monthly return of 

0.50% with a Newey-West t-statistic of 2.88 in Growth group and an insignificant average 

monthly return of 0.21% in Value group. It suggest the industry cash flow volatility is more 

likely priced in the growth industry which is supposed to have high cash flow volatility. The 

finding here is consistent with Grullon et al. (2012)’s argument that the value of firms’ growth 

options increases with the idiosyncratic volatility which results in the positive relationship 

among stock returns and idiosyncratic volatility. Panel B of Table 4 shows that the equally-

weighted uncertainty factor generates an average monthly return of 0.45% with a Newey-West 

t-statistic of 2.65 in High leverage group and an average monthly return of 0.26% with a 

Newey-West t-statistic of 1.82 in Low leverage group. Panel C of Table 4 shows that the 
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equally-weighted uncertainty factor generates an average monthly return of 0.32% with a 

Newey-West t-statistic of 1.90 in Small firm group and an average monthly return of 0.40% 

with a Newey-West t-statistic of 2.84 in Large firm group. These results indicate that the 

idiosyncratic cash flow volatility is more likely to be priced in the growth industries. 

[Insert Table 4 near here] 

4.4. Conditional Sharpe Ratio 

As argued by Chava et al. (2019). investors fail to incorporate the business cycle informa-

tion into the cash flow growth and it affect the cross-sectional returns. If the pattern holds, 

then the price ratio during the similar history regime should predict the future returns. In 

their paper, they showed that firms with higher conditional (regime-dependent) Sharpe ra-

tios correspond to higher stock returns and they find those firms have stronger fundamentals 

and more upward analyst forecast revisions. Here I argue that higher idiosyncratic cash flow 

volatility leads to higher conditional Sharpe ratio and brings higher risk compensation as 

shown in proposition  4.  

[Insert Table 5 near here] 

Table 5 shows that portfolio with higher idiosyncratic cash flow risk has higher conditional 

Sharpe ratio and higher average stock returns. The result provides empirical support for the 

previous proposition. Figure 5 shows how the conditional Sharpe ratios of top quintile and 

bottom quintile evolve during 1963 to 2018. The conditional Sharpe ratio of top quintile is 

larger than the bottom Sharpe ratio for most of the time. 

[Insert Figure 5 near here] 
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4.5. Further Discussions 

I apply the method to the US industry portfolios. Results suggest that the common 

cash flow volatility represents the economic uncertainty while the idiosyncratic cash flow 

volatility is persistent priced in the cross sectional stock returns. Investors are compensated 

by holding a diversified portfolios. Results suggest that the volatility measure estimated from 

the unexpected stock returns are not fully explained by the current risk factors and the firm 

characteristics. My argument here is that there are information embedded in the unexpected 

return news at individual level and we can extract new factors from the individual cash flow 

news. It can also help to better understand the role of cash flows in pricing the current 

stocks. 

The method can also be applied to other situations. For example, we can study the 

cross-country stock returns to evaluate the role of idiosyncratic and common cash flows, the 

analysis which may complement our understanding in global investment. It is also possible 

to extend the sample to the individual stocks in a larger sample and to evaluate the role of 

current risk factors and the well-known firm characteristics by the newly estimated volatility 

measures. 

5. Conclusion 

The fundamental question in empirical asset pricing is the determinants of the cross-

sectional stock returns. While a large body of recent research proposing new factors based on 

a host of empirically motivated economic or financial characteristics, I address this question 

from a new perspective, offering evidence that idiosyncratic and common cash flow volatility 

is important for understanding stock returns. My main intention is simple. I argue that the 

unexpected cash flow news should carry additional information besides current risk factors 

and firm characteristics. In particular, drawing on classic work of Campbell and Vuolteenaho 

(2004a) and the insightful framework of Wu (2001), I link uncertainty to cross-sectional stock 
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returns through the common and idiosyncratic volatility perspective. 

A recent paper by Chava et al. (2019) shows that there is significant variation in cash 

flow growth across industries over the business cycle and they find investors do not fully in-

corporate business cycle fluctuations into the industry level cash flows. If the business cycle 

information is not reflected in each industry’s cash flow, then conditional Sharpe ratio can 

be informative for future industry returns. In their paper, sector rotation strategy based on 

history-dependent Sharpe ratio can produce significant returns. It suggests that cash flow 

risk at the idiosyncratic level is not fully incorporated into the prices by investors. How-

ever, no theoretical model is provided to rationalize the documented Sharpe ratio premium 

and the role of idiosyncratic cash flows should be re-highlighted. In this paper, I develop 

a stochastic volatility framework to evaluate the unexpected cash flow news through the 

variance decomposition perspective, and I relate the conditional Sharpe ratio to the firm’s 

cash flow volatility - especially the idiosyncratic cash flow volatility - to justify the premium. 

I propose a method to estimate common and idiosyncratic cash flow volatility from Camp-

bell and Vuolteenaho (2004a)’s cs cash flow news. Papers have been developed based on the 

aggregate unexpected news but the individual dimension has been less explored. Moreover, 

the pure news shock has less been connected to the macroeconomic business cycles. I am 

inspired by a previous work of Wu (2001) where they explored the cash flow model and 

connected the unexpected stock returns to the model implied shock on cash flow and on its 

volatility term. I extend the aggregate level cash flow model by allowing a common factor 

and an idiosyncratic factor driving each firm’s cash flow growth. The setting allows us to 

have a new perspective and able to study the cross-sectional pricing from the volatility per-

spective and to provide a theoretical justification for Chava et al. (2019)’s findings on Sharpe 

ratios. 

I apply the method to the U.S. industry portfolios and to study the role of newly esti-

mated volatility measure. I find that the common cash flow volatility estimated from unex-

pected industry-level cash flow news is highly correlated to Uncertainty index constructed 
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by Jurado, Ludvigson, and Ng (2015). I also documented that the idiosyncratic cash flow 

volatility is positively priced in the cross-sectional stock returns. I control for well-known risk 

factors and firm characteristics to see the economic mechanism behind and results suggest 

the idiosyncratic cash flow volatility is not consumed by the current factors. I do the double 

sorting by the book-to-market ratio, the industry leverage and the average capitalization 

and find that the abnormal alphas are main driven by the growth industries. A strategy 

that goes long the decile portfolio with the largest idiosyncratic cash flow volatility and short 

the decile portfolio with the smallest idiosyncratic cash flow volatility yields a Fama-French-

Five-Factor alpha of 37 bps per month (t-stat: 6.90) in long sample (1931-2018) and 64 

bps per month (t-stat: 12.28) in the modern sample (1963-2018). The results suggest the 

idiosyncratic cash flow risk is not fully reflected by current risk factors. The results may not 

be limited to U.S. industry portfolios. Our method can also be applied to other situations, 

for example the cross-country asset returns and the cross-section individual firm returns. 
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Table 1: Comparison with Firm Characteristics: ICFVi 

This table shows results from regressing the idiosyncratic cash flow volatility on firm characteristics. 
The variables are economic uncertainty factor UNC  from Jurado, Ludvigson, and Ng (2015), lottery 
demand factor FMAX  from Bali, Brown, Murray, and Tang (2017), liquidity factor ILLIQ from 
Pastor and Stambaugh (2003), operating profitability ROE, book-to-market ratio BM , average firm 
size Size, leverage LEV as Johnson (2004) and idiosyncratic stock volatility IV  OL  constructed as 
Ang, Hodrick, Xing, and Zhang (2009). Newey-West adjusted t statistics are reported in brackets. 
The sample period is from 1963 to 2018. 
ICFVi (1) (2) (3) (4) (5) (6) (7) (8) (9) 
BM  0.004  - - - - - - - 0.001  

[3.04]  - - - - - - - [1.14]  
SIZE  - 0.199  - - - - - - 0.219  

- [25.11]  - - - - - - [25.82]  
ROE  - - -0.001  - - - - - 0.000  

- - [-1.19] - - - - - [-0.55] 
LEV - - - 2.410 - - - - 3.142 

- - - [11.15]  - - - - [16.15]  
IVOL - - - - 0.183 - - - 0.114 

- - - - [54.15]  - - - [33.00]  
ILLIQ  - - - - - 1.288  - - 2.093  

- - - - - [3.68]  - - [6.63]  
UNC  - - - - - - 0.063  - 0.054  

- - - - - - [54.98]  - [43.71]  
FMAX  - - - - - - - -0.011  -0.006  

- - - - - - - [-4.75]  [-2.86]  
Cons 3.733 2.317 3.739 3.079 3.391 3.720 -0.531 3.634 -2.396 

[14.55] [10.58] [14.54] [12.36] [18.35] [14.96] [-2.16] [15.55] [-11.50] 
R2 0.00 0.06 0.00 0.05 0.14 0.00 0.08 0.00 0.25 
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Table 2: Fama-MacBeth Cross-Section Regressions 
This table reports the time-series averages of the slope coefficients obtained from regressing monthly 
excess returns (in percentage) on the cash flow volatility and a set of factors. The control variables 
are the βmkt of market risk factor (MktRf) from Fama and French (1993 & 2015), economic 
uncertainty factor UNC  from Jurado, Ludvigson, and Ng (2015), lottery demand factor FMAX  
from Bali, Brown, Murray, and Tang (2017), liquidity factor ILLIQ from Pastor and Stambaugh 
(2003), operating profitability ROE, book-to-market ratio BM , average firm size Size, leverage 
LEV as Johnson (2004) and idiosyncratic stock volatility IV  OL  constructed as Ang, Hodrick, 
Xing, and Zhang (2009). Newey-West adjusted t -statistics are reported in brackets. The sample 
period is from 1963 to 2018. 

(1) (2) (3) (4) (5) (6) (7) 
ICFVi 0.105 0.105 0.075 0.148 0.150 0.148 0.150 

[2.67] [2.87] [1.93] [3.71] [3.75] [3.71] [3.75] 
βmkt - -0.001 0.038 0.150 0.148 0.150 0.148 

- [-0.01] [0.22] [0.81] [0.79] [0.81] [0.79] 
BM - - 0.021 0.163 0.172 0.163 0.172 

- - [0.12] [0.95] [1.00] [0.95] [1.00] 
SIZE - - 0.042 0.054 0.050 0.054 0.050 

- - [0.72] [0.94] [0.86] [0.94] [0.86] 
ROE - - - -0.149 -0.139 -0.149 -0.139 

- - - [-0.45] [-0.42] [-0.45] [-0.42] 
LEV - - - -1.807 -1.801 -1.807 -1.801 

- - - [-3.26] [-3.21] [-3.26] [-3.21] 
IV  OL  - - - -0.242 -0.244 -0.242 -0.244 

- - - [-2.47] [-2.46] [-2.47] [-2.46] 
ILLIQ - - - - -0.225  - -

- - - - [-1.10] - -
UNC  - - - - - -0.212 -

- - - - - [-1.35]  -
FMAX  - - - - - - 1.447  

- - - - - - [8.08]  
Cons 0.424 0.439 0.154 0.310 0.151 0.533 0.248 

[1.45] [1.78] [0.26] [0.50] [0.64] [0.89] [1.33] 
R2 0.15 0.24 0.37 0.51 0.51 0.51 0.51 
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Table 3: Uni-variate Sorted Portfolios 
This table shows results of real equally-weighted returns of industry portfolios sorted accord-
ing to their industry-level cash flow volatility. Return data are monthly over the long sample 
from 1931 to 2018 and over the modern sample from 1963 to 2018. Industry definitions are 
from Kenneth French’s website. CAPM (FF3, Carhart4, and FF5 ) denotes average excess 
returns unexplained by the CAPM (Fama-French three-factor model, Carhart four-factor 
model and Fama-French five-factor model). The numbers in parentheses are t statistics ac-
cording to Newey and West (1987). One, two, and three asterisks denote significance at the 
10%, 5%, and 1% levels, respectively. 

Long Sample (1) (2) (3) (4) (5) H − L 
CAP MAlpha 0.63 0.64 0.63 0.82 1.02 0.39*** 

(7.75) (8.07) (8.05) (10.52) (11.00) (7.41) 
FF  3Alpha 0.64 0.65 0.63 0.83 1.03 0.39*** 

(7.80) (8.09) (8.08) (10.57) (11.12) (7.54) 
Carhart4Alpha 0.60 0.59 0.58 0.79 0.96 0.37*** 

(6.96) (7.19) (7.19) (9.60) (10.18) (6.90) 
Modern Sample (1) (2) (3) (4) (5) H − L 
CAP MAlpha 0.09 0.11 0.09 0.30 0.44 0.36*** 

(1.86) (2.55) (2.23) (7.20) (7.79) (6.95) 
FF  3Alpha -0.18 -0.17 -0.16 0.05 0.28 0.46*** 

(-6.15) (-6.08) (-5.98) (1.76) (5.73) (8.91) 
Carhart4Alpha -0.02 -0.01 -0.02 0.17 0.42 0.44*** 

(-0.72) (-0.20) (-0.69) (5.49) (7.69) (8.13) 
FF  5Alpha -0.23 -0.25 -0.19 0.00 0.42 0.64*** 

(-6.76) (-8.58) (-6.04) (0.14) (7.94) (12.28) 
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Table 4: Double-Sorted Portfolios 
This table shows results of real equally-weighted returns of industry portfolios sorted ac-
cording to their industry-level cash flow volatility and their industry characteristics. Return 
data are monthly over the modern sample from 1970 to 2018. Industry definitions are from 
Kenneth French’s website. Industry characteristics include the book-to-market ratio BM , 
the industry leverage LEV and the average firm size factor Size. The numbers in paren-
theses are t statistics according to Newey and West (1987). One, two, and three asterisks 
denote significance at the 10%, 5%, and 1% levels, respectively. 

BM/ICF  Vi (1) (2) (3) H − L 
Growth 0.58 0.66 1.08 0.50*** 

(2.02) (2.46) (3.50) (2.88) 
V alue  0.66 0.62 0.88 0.21 

(2.32) (2.30) (2.95) (1.33) 
LEV/ICF  Vi (1) (2) (3) H − L 
High  0.64 0.65 1.10 0.45*** 

(2.26) (2.35) (3.47) (2.65) 
Low 0.60 0.63 0.86 0.26* 

(2.10) (2.43) (3.18) (1.82) 
SIZE/ICF  Vi (1) (2) (3) H − L 
Small 0.61 0.63 0.92 0.32* 

(2.04) (2.15) (2.81) (1.90) 
Large 0.63 0.65 1.03 0.40*** 

(2.32) (2.67) (3.99) (2.84) 

Table 5: Conditional Sharpe Ratio 
This table shows results of real equally-weighted returns of industry portfolios sorted accord-
ing to their industry-level cash flow volatility. Return data are monthly over the modern 
sample from 1963 to 2018. Industry definitions are from Kenneth French’s website. The 
numbers in parentheses are t statistics according to Newey and West (1987). One, two, and 
three asterisks denote significance at the 10%, 5%, and 1% levels, respectively. 

Modern Sample (1) (2) (3) (4) (5) H − L 
Average Ret 0.67 0.69 0.66 0.87 1.09 0.42*** 

(8.27) (8.69) (8.60) (11.27) (11.71) (7.96) 

Sharpe Ratio 0.423 0.433 0.438 0.447 0.469 0.046*** 
(4.92) 
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Fig. 1. Cash Flow News - Industry Portfolios 

Fig. 2. Common Cash Flow Volatility 
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Fig. 4. Common Cash Flow Volatility and Uncertainty Index of Jurado, Ludvigson, and Ng 
(2015) 

Fig. 5. Conditional Sharpe Ratios Sorted by Idiosyncratic Cash Flow Volatility 
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Appendix A. A Cash Flow Model 

Δdi,t+1 = α0 + α1 · Δdi,t + d,t
c 

+1 + d,t
i 

+1 

(σc )2 = β0 
c + βc · (σc + σc ·  c 

d,t+1 1 d,t)
2 

d,t t+1 

(σi = β0 
i + βi · (σi + σi ·  i 

d,t+1)
2

1 d,t)
2 

d,t t+1 

A.1. Proposition 1 

(pt − dt)i = c0 + c1 · Δdi,t + c2 · (σc + c3 · (σi 
d,t)

2 
d,t)

2 

Proof: 
1 
σ21 =  Et(Mt+1Rt+1) =  Et(exp(−rf,t+1 − m,t + m,t+1 + rt+1))

2 

where 

rt+1 = κ + ρ · (pt+1 − dt+1) + Δdt+1 − (pt − dt) 

Let A(·) =  −rf,t+1 − 1 σ2 
m,t+1 + rt+1, we have  

2 m,t + 

1 
E[A(·)] + V ar(A(·)) = 0 

2 

By the educated guess, 

(pt − dt)i = c0 + c1 · Δdi,t + c2 · (σc + c3 · (σi 
d,t)

2 
d,t)

2 

Substitute the guess into A(·) and the corresponding equation: 

• For the constant term: 

−rf + κ + ρ · c0 + (ρ · c1 + 1)α0 + ρ · c2 · β0 
c + ρ · c3 · β0 

i − c0 = 0  
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� �

−rf + κ + (ρ · c1 + 1)α0 + ρ · c2 · β0 
c + ρ · c3 · βi 

⇒ c0 = 0 

1 − ρ 

• For the Δd corresponding term: 

(ρ · c1) · α1 − c1 = 0  

α1⇒ c1 = 
1 − ρ · α1 

• For the (σc 
d,t)

2 corresponding term: 

c
m 

c
v 

c
l 

c
v 

c 

ρ2 2 βc ρc ηc
1 ·c2 · (ηc)2 +(ρ · −1) · c2 + 

1
(ρ · c1 +1)2 +(ρ · c1 +1)  · +(ρ · c1 +1)  · (ρc2 · )ρl

c = 0v 1 m v2 2 

cρv 
c
l 

� 
(1 − ρα1) · (1 − ρβ1) − ρ · η ± [(1 − ρα1) · (ρβ − 1) + ρ · η ρ ]2 − ρ2 · (η )2 · [1 + 2 · ρ · (1 − ρα1)]1 

c 

⇒ c2 = 
(1 − ρα1) · ρ2 · (ηcv)2 

i
m 

i
v 

i
l 

i
v 

ii
lv 

i 

• For the (σi 
d,t)

2 corresponding term: 

1 12ρ2 · c3 · (ηvi )2 +(ρ · β1 
i − 1) · c3 + (ρ · c1 +1)2 +(ρ · c1 +1)  · ρim +(ρ ·c1 +1)  · (ρc3 · ηvi )ρil = 0  

2 2 

� 
(1 − ρα1) · (1 − ρβ1) − ρ · ηi ρ ± [(1 − ρα1) · (ρβ − 1) + ρ · η ρ ]2 − ρ2 · (η )2 · [1 + 2 · ρ · (1 − ρα1)]1⇒ c3 = 

(1 − ρα1) · ρ2 · (ηiv)2 

Q.E.D. 

A.2. Proposition 2 

· (σc + λi · (σi + λc · c · i ·  c ·  i ri,t+1 = λ0 · Δdi,t + λc 
1 d,t)

2
1 d,t)

2
2 d,t+1 + λ2 

i 
d,t+1 + λ3 

c 
d,t+1 + λi 

3 d,t+1 

Proof: 

rt+1 = κ + ρ · (pt+1 − dt+1) + Δdt+1 − (pt − dt) 
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By proposition 1, 

(pt − dt)i = c0 + c1 · (σc + c3 · (σi · Δdi,t + c2 d,t)
2 

d,t)
2 

We have 

· (σc + λi · (σi + λc c i ·  c ·  i ri,t+1 = λ0 · Δdi,t + λc 
1 d,t)

2
1 d,t)

2
2 · d,t+1 + λ2 

i · d,t+1 + λc 
3 d,t+1 + λi 

3 d,t+1 

where 

λ0 = (ρ · c1) · α1 − c1; 

λc · βc λi · βi 
1 = ρ · c2 1 − c2; 1 = ρ · c3 1 − c3; 

λc 
2 = λi 

2 = 1 − ρ 
1 
· α1 

; 

λc = ρ · c2 · σc λi = ρ · c3 · σi 
3 d,t; 3 d,t 

Q.E.D. 

A.3. Proposition 3 

CF News: 
∞ � 

ρj = λc c i(Et+1 − Et) · Δdi,t+1+j 2 · d,t+1 + λi 
2 · d,t+1 

j=0 

DR News: 
∞ � 

ρj = λc ·  c ·  i−(Et+1 − Et) · ri,t+1+j 3 d,t+1 + λ3 
i 

d,t+1 
j=1 

Proof: 
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CF News: 

∞ ∞ � � 
ρj ρj(Et+1 − Et) · Δdi,t+1+j = · [Et+1[Δdi,t+1+j ] − Et[Δdi,t+1+j ]] 

j=0 j=0 

∞ � 
j i = ρj · α ( c )1 d,t+1 + d,t+1 

j=0 

1 
( c i = )d,t+1 + d,t+11 − ρ · α1 

= λc 
2 · c

d,t+1 + λi 
2 · i

d,t+1 

DR News: 

∞ ∞ � � 
ρj ρj−1−(Et+1 − Et) · ri,t+1+j = −ρ · [Et+1[ri,t+1+j ] − Et[ri,t+1+j ]] 

j=1 j=1 

∞ � 
= −ρ ρj−1 σc σi σc σi · [Et+1[λ

c 
1 d,t+1+j + λi 

1 d,t+1+j ] − Et[λ
c 
1 d,t+1+j + λi 

1 d,t+1+j ]] 
j=1 

∞ ∞ � � 
= −ρ (ρβ1 

c)j · (λ1 
c σc (ρβ1 

i )j · (λ1 
i σi 

d,t t
c 
+1) − ρ d,t t

i 
+1) 

j=0 j=0 

−λc 
1 −λi 

1 = ρ σc σi 
d,t t

c 
+1 + ρ d,t t

i 
+11 − ρ · β1 

c 1 − ρ · β1 
i 

= ρ · c2 · σc ·  c · σi ·  i 
d,t t+1 + ρ · c3 d,t t+1 

= λc ·  c ·  i 
3 d,t+1 + λi 

3 d,t+1 

Q.E.D. 

A.4. Proposition 4 

Proof: 

In proposition 2, we have 

· (σc + λi + λc c i ·  i · (σi ·  c ri,t+1 = λ0 · Δdi,t + λc 
1 d,t)

2
1 d,t)

2
2 · d,t+1 + λ2 

i · d,t+1 + λc 
3 d,t+1 + λi 

3 d,t+1 
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The conditional Sharpe ratio using log returns can be represented as 

Et[ri,t+1] +  1 V art[ri,t+1]2SR = �t 
V art[ri,t+1] 

c c 1 c c c cλ · (σ + λi · (σi + [(λ · σ · σi · η )2 + (λi · ηi )2]0 · Δdi,t + λ1 d,t)
2

1 d,t)
2

2 2 d,t)
2 + (λi 

2 d,t)
2 + (λ3 v 3 v 

= � 
c c c c· σi · ηi )2 

Conditional Sharpe Ratio increases with idiosyncratic cash flow volatility σi 

(λ2 · σd,t)
2 + (λi 

2 d,t)
2 + (λ3 · ηv)2 + (λi 

3 v 

d,t. 

Q.E.D. 
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	1. Introduction 
	1. Introduction 
	The fundamental question in empirical asset pricing is the determinants of the cross-sectional stock returns. While a large body of recent research proposing new factors based on a host of empirically motivated economic or ﬁnancial characteristics, we address this question from a new perspective, oﬀering evidence that the idiosyncratic cash ﬂow risk -the unexpected cash ﬂow news at individual level -is important for understanding the cross-sectional stock returns. 
	In this paper, I argue that cash ﬂow risk at the idiosyncratic level is not fully incorporated into the prices by investors. The cash ﬂow risk and discount rates risk have been well deﬁned in the pioneer work of Campbell (1991). Campbell and Vuolteenaho (2004a) apply the technique and use the market level unexpected news to explain the cross-section of stock returns and following their “Bad Beta, Good Beta” work, many papers have explored the role of the unexpected news risk in asset pricing. However, most 
	Campbell and Vuolteenaho (2004a) apply the technique in Campbell (1991) and use the 
	market level unexpected news to explain the cross-section of stock returns. Following their “Bad Beta, Good Beta” work, many papers have explore the unexpected news risk like Da and Warachka (2009), Botshekan, Kraeussl, and Lucas (2012), Maio (2013), Chen, Da, and Zhao (2013), Campbell, Giglio, and Polk (2013), Cooper and Maio (2018), and Campbell, Giglio, Polk, and Turley (2018). Da and Warachka (2009) show that stock returns are partially driven by the unexpected cash ﬂows by using data of analysts’ earni
	market level unexpected news to explain the cross-section of stock returns. Following their “Bad Beta, Good Beta” work, many papers have explore the unexpected news risk like Da and Warachka (2009), Botshekan, Kraeussl, and Lucas (2012), Maio (2013), Chen, Da, and Zhao (2013), Campbell, Giglio, and Polk (2013), Cooper and Maio (2018), and Campbell, Giglio, Polk, and Turley (2018). Da and Warachka (2009) show that stock returns are partially driven by the unexpected cash ﬂows by using data of analysts’ earni
	the cross-sectional stock returns. 

	My main intention is simple. I argue that the unexpected cash ﬂow volatility could carry additional information besides current risk factors and ﬁrm characteristics. To verify my proposition, I apply the method to U.S. industry portfolios. In the main empirical results, I ﬁnd that the common cash ﬂow volatility estimated from unexpected industry-level cash ﬂow news is highly correlated to Uncertainty index constructed by Jurado, Ludvigson, and Ng (2015). The idiosyncratic cash ﬂow risk is robustly signiﬁcan
	One related literature is to study the role of the idiosyncratic and common stock return volatility in cross-sectional stock return literature. Their focus is the realized return volatility while my focus is the unexpected cash ﬂow volatility. These two are closely connected and could help to understand the mechanism behind. In the realized return volatility literature, Ang, Hodrick, Xing, and Zhang (2006) document that high exposure to systematic return volatility or higher idiosyncratic return volatility 
	the negative role of idiosyncratic return volatility is controversial. For the common stock 
	volatility, the negative association can be justiﬁed by the leverage theory of Black (1976) and Christie (1982) and the risk premia theory of French, Schwert, and Stambaugh (1987). The leverage hypothesis argues that the ﬁrms become more levered when the stock prices fall which increase the aggregate volatility. The risk premium hypothesis argue investors demand higher risk premia when market volatility increase which depresses the ﬁrms’ value and results in the negative relationship. Both two explanation c
	volatility which justiﬁes the positive relationship among volatility and stock returns. Our 
	evidence on cash ﬂow volatility support their argument on the ampliﬁed eﬀect of good news on growth options. 
	Diﬀerent from current discussions on the volatility of stock returns, my focus is the cash ﬂow volatility estimated from the unexpected news. Since the basic economic theory tells us that prices should fully reﬂect the future cash ﬂows and the future cash ﬂow news should price today’s ﬁnancial ratios, a direct approach to identify the role of cash ﬂow can be helpful. 
	The aim of this paper is three-fold. First I build up a cash ﬂow model where the ﬁrm’s cash ﬂow is driven by a common factor and an idiosyncratic factor and I argue that the cash ﬂow news will be priced in the cross-section stock returns. The model provides a clear closed-form solution to show the relationship among idiosyncratic and common cash ﬂow risk, cross-section stock returns and the conditional Sharpe ratio. For the corresponding identiﬁcation method, I propose a stochastic volatility econometric me
	The rest of the paper is organized as follows. In the next section, I introduce the cash ﬂow model that motives my empirical analysis and derive the equilibrium solution to show the relationship among idiosyncratic and common cash ﬂow risk, cross-section stock returns and the conditional Sharpe ratio. Section 3 contains the estimation method to extract the volatility measures from the cash ﬂow news. In section 4 I apply the method to US industry portfolio data and provide the main ﬁndings of this paper, nam
	volatility is closely to the whole economy uncertainty and the idiosyncratic cash ﬂow news 
	volatility cannot be fully explained by the well-known risk factors and ﬁrm characteristics. Strategy based on the idiosyncratic cash ﬂow volatility can produce alpha in both long and modern samples. Section 5 concludes. 

	2. Theory 
	2. Theory 
	2.1. Motivation 
	2.1. Motivation 
	In the inﬂuential “Bad Beta, Good Beta” paper, Campbell and Vuolteenaho (2004a) break the CAPM beta into two components: the bad one reﬂecting the future market cash ﬂow news and the good one reﬂecting the future discount rates news. The economically motivated two-factor model is well applied to explain the size and value “anomalies”. They decompose unexpected market returns into the discount rate and cash ﬂow components by using the return decomposition technique of Campbell and Shiller (1988)and Campbell 
	∞∞ 
	.. 
	ρ
	ρ
	j 
	ρ
	j

	rm,t+1 − Etrm,t+1  (Et+1 − Et) · Δdm,t+1+j − (Et+1 − Et) · rm,t+1+j j=0 j=1 (1) 
	= Nm,CF,t+1 + Nm,DR,t+1 
	where ρ =1/(1 + exp()) is a (log-linearization) discount coeﬃcient that depends on the mean of log dividend-price ratio dp, rm,t+j is the log market return and Δdm,t+j is the CF denotes news about future market cash ﬂows and NDR denotes news about future market expected returns. 
	dp
	log market dividend growth. N

	The technique allows the unexpected market returns to be represented as the sum of cash ﬂow news and discount rates news. By the construction, they can estimate each stock’s 
	beta by looking at the co-variance of the individual stock returns and market level news. 
	The ﬁtting two-beta ICAPM greatly improves the poor performance of the standard CAPM, which suggests that information is hidden in the unexpected cash ﬂow and discount rates news. 
	Rather than look at market level news, I explore the information that might be hidden at individual level news. In this paper, the work is not limited to the market level decomposition since the return decomposition also works at the individual stock level. For example, the log-linearization formulation works at individual stock level, which is 
	∞∞ 
	.. 
	ρ
	ρ
	j 
	ρ
	j

	ri,t+1 − Etri,t+1  (Et+1 − Et) · Δdi,t+1+j − (Et+1 − Et) · ri,t+1+j j=0 j=1 (2) 
	˜˜
	= Ni,CF,t+1 + Ni,DR,t+1 
	where Ni,CF denotes news about future cash ﬂows of stock i and Ni,DR denotes news about future expected returns of stock i. If I bring this thought to real data, I ﬁnd that cash ﬂow news or discount rates news at individual level are driven by a common factor besides their idiosyncratic exogenous shocks. For example, I show the cash ﬂow news and the discount rates news of each 30 industry (deﬁned as Fama and French)in ﬁgure 1. I ﬁnd that the individual news move together which is consistent with our argumen
	1 

	[Insert Figure 1 near here] 
	The Campbell and Vuolteenaho (2004a)’s cash ﬂow and discount rates decomposition at aggregate market level has became an important contribution to the ability of the CAPM model in explaining the cross-sectional diﬀerences in average returns. Following this framework, a large number of papers have shown that the cash ﬂow and discount rates news are priced in the stock prices like Da and Warachka (2009), Botshekan et al. (2012), Maio (2013), Chen et al. (2013), Campbell et al. (2013), Cooper and Maio (2018), 
	-

	Results are robust when other industry deﬁnitions are applied. e.g. 48 industry. 
	1

	pricing properties of cash ﬂow and discount rate news from the variance decomposition 
	-

	the idiosyncratic and common factor -perspective. To economically motive the empirical evidence, I provide a cash ﬂow model where the individual ﬁrm’s dividend growth is driven by the common shock and its own idiosyncratic shock and I derive the proposition showing that the individual stock returns are determined by both two risk sources. 

	2.2. A Cash Flow Model 
	2.2. A Cash Flow Model 
	I start the theoretical framework from the pricing kernel as Constantinides (1992). In a no-arbitrage world, I always have the following condition holds as 
	1= Et[Mt+1Rt+1] 
	Here I assume the state pricing kernel at t+ 1 in this economy follows 
	1 
	= −rf −· σm,t+1, ) (3) 
	2 
	m,t

	mt+1 m,t + m,t+1 ∼ N(0,σ
	2 

	2 
	where mt+1 is the state pricing density at time t+1, rf is the constant risk free rates and σ
	2 

	are exogenously determined. The pricing kernel form has been applied by previous researchers (e.g. Amin and Ng (1993), Wu (2001)) and here I adopt this functional form to easily derive the closed-form equilibrium solutions. 
	m,t 

	For the cash ﬂow model, I allow the heterogeneous cash ﬂow shocks on individual stocks. In my model, the cash ﬂow is driven by two independent stochastic volatility processes -the common cash ﬂow shock and the idiosyncratic shock -for each stock. 
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	c(i)
	m reﬂects the relationship among the cash ﬂow growth and the value of dividends regarding diﬀerent states. The positive sign of ρm implies the period of more valuable of dividend coincides with period of higher cash ﬂow growth while the negative sign of ρm implies the period of more valuable of dividend coincides with period of lower cash ﬂow growth. As long as ρm is not equal to zero, we have the cash ﬂow risk being priced. 
	I price the cash ﬂow risk by the following way where ρ
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	I also allow the shock to the dividend and the shock to its volatility to be correlated which captures the leverage eﬀect as argued by Black (1976) in explaining the asymmetric volatility of individual stock returns. 
	corr( ,υ)= ρ;
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	I further assume that the two stochastic volatility processes are uncorrelated which allows us to derive a simple closed form solution. 
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	I build up the house foundation step by step. The ﬁrst three propositions show the formulations of the price-dividend ratio, stock returns and unexpected news. Then the fourth proposition shows how the cash ﬂow volatility is related to the conditional Sharpe 
	ratios and the cross-section of stock returns. 
	Proposition 1: The log price-dividend ratio in the economy can be represented as 
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	Proof: See Appendix. 
	Note for cand c, each of them has two roots. The root selection actually depends on where does the volatility feedback come from. At aggregate level, the negative volatility feedback eﬀect requires the sign of the volatility to be negative. However, I cannot conclude the signs at individual stock level. 
	2 
	3

	Proposition 2: The realized return of each stock can be represented as 
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	Proof: See Appendix. 
	c(i)
	Note that the return will be positively related to cash ﬂow shock and negatively 
	d,t+1 c(i)
	related to the volatility shock υ
	d,t+1The cash ﬂow news framework is ﬁrst proposed by Campbell and Hentschel (1992)that any unexpected returns can be decomposed into a cash ﬂow news term and a discount rates news term. The derived shock to dividend level and to its volatility can be well ﬁtted into the expected cash ﬂow news and discount rates news framework (Campbell and Vuolteenaho (2004a), Campbell, Polk, and Vuolteenaho (2009), Botshekan et al. (2012)). By the model construction, I can represent the expected news term in the formulatio
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	Proof: See Appendix. 
	Therefore I have the unexpected cash ﬂow news are reﬂected by the shock to dividend and the unexpected discount rates news are reﬂected in the shock to the dividend volatility. The second derivation is a powerful justiﬁcation of volatility feedback eﬀect because it indicates the increase in volatility will decrease the expected returns which lead to drop in today’s stock prices. 
	Proposition 4: 
	Conditional Sharpe ratio increase with idiosyncratic cash ﬂow volatility. 
	Proof: See Appendix. 
	Stocks with higher idiosyncratic cash ﬂow risk tend to have higher conditional Sharpe ratio. This proposition relates the conditional Sharpe ratio to the cash ﬂow risk, which 
	provide a risk-based explanation why stocks with high conditional Sharpe ratio have higher 
	risk premia. 


	3. Estimation Methodology 
	3. Estimation Methodology 
	3.1. Analytic Framework 
	3.1. Analytic Framework 
	In this section, I relate the economic dynamics to the cross-sectional asset pricing. argue cash ﬂow risk should be priced and the idiosyncratic cash ﬂow risks can be priced in the cross section. The classical CAPM model may fail to reﬂect the role of idiosyncratic cash ﬂow risk. In the traditional CAPM, the systematic market risks are considered. The systematic risks in standard CAPM are abstract and hard to interpret while the common cash ﬂow risk corresponds to the market risk premia in our framework. Th
	The cash ﬂow and discount rates risks are ﬁrst explored by Campbell and Vuolteenaho (2004a)’s paper. Campbell and Vuolteenaho (2004a) estimate the unexpected market-level news and show aggregate level risks are priced in the cross-section stock returns. By the the novel cash ﬂow setting, we manage to show that idiosyncratic cash ﬂow risk is also priced in the cross section. For the economic dynamics, the cash ﬂow framework is actually inspired by Wu (2001)’s earlier work. However, his paper focus on the mar

	3.2. Stochastic Volatility Model Estimation 
	3.2. Stochastic Volatility Model Estimation 
	The priced volatility terms are estimated from the stochastic volatility model as below. ˜
	Let Xi,t be the individual cash ﬂow news Ni,CF,t and we can estimate the common factor from all individual news term, which can lead to the estimated common volatility and idiosyncratic volatility. 
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	Therefore we have the variance decomposition of the unexpected news term Xi,t. 
	var(Xi,t)= var(BF)+ var(ei,t) (15) 
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	by which we have the cash ﬂow news variance decomposition as follows where the total variations are equal to the sum of common and idiosyncratic volatility. 
	var(Ni,CF )=(σ)(16)
	˜
	c 
	CF 
	2 

	CF )+(σ
	2 
	i 



	4. Application 
	4. Application 
	In this section, I mainly study the asset pricing property at U.S. industry level. Evidence suggests that the idiosyncratic cash ﬂow risk is robust priced at diﬀerent speciﬁcations. 
	4.1. Data 
	4.1. Data 
	I choose the U.S. industry portfolio data to test our framework where Fama-French Industry 30 data are explored here. I choose the industry speciﬁcation (30 industries) due to the long documented data history than other industry speciﬁcations. The sample spans from 1926m6 to 2018m12 at monthly frequency. 
	The cash ﬂow news and discount rates news are estimated as Campbell and Vuolteenaho (2004b) where the state variables are chosen as term spread, default spread and the adjusted PE ratios. 
	The term spread (TS) is deﬁned as the diﬀerence between the ten-year yield and the three-month yield. The default spread (DS) is deﬁned as the diﬀerence between Moody’s Seasoned Aaa and Baa bond yields. The CAPE is cyclically adjusted Price Earnings ratio downloaded from Robert Shiller’s website. 
	.∞
	The −(Et+1 − Et) ρ· ri,t+1+j is estimated from the VAR system while the (Et+1 − 
	j=1 
	j 

	.∞
	Et) ρ· Δdi,t+1+j is backed from the unexpected returns ri,t+1 − Et[ri,t+1]. I present the calculated news term in Figure 1. A fact that can be documented here is that either cash ﬂow news or discount rates news are driven by a common factor and they tended to move in the same direction. Therefore it is consistent with our argument that each news term is driven by a common shock sources and their volatility can be decomposed into two parts a common part and an idiosyncratic part. 
	j=0 
	j 
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	4.1.1. Volatility 
	4.1.1. Volatility 
	I apply the estimation framework discussed in the methodology part. I estimate the cash ﬂow volatility where the cash ﬂow volatility follows an AR(1) process. I also run robust check letting the cash ﬂow volatility follows an stationary AR(p) process and the main conclusion holds in our U.S industry portfolio application. 
	For cash ﬂow volatility, I estimate it by letting the volatility term follows an AR(1) process. The AR(1) framework is consistent with the economic model and reﬂects the stationary 
	-

	property of volatility updating process. 
	ln(γt)= a¯+b · ln(γt−1)+ Qη¯t; (17) ln(hi,t)= a + b · ln(hi,t−1)+ q ηi,t; (18) 
	¯
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	The stochastic volatility model is estimated via Gibbs sampling. Detailed procedures to carry out the estimation are introduced in the technical appendix. In the benchmark speciﬁcations, we use 20,000 replications and base our inference on the last 5000 replications. The lag in cash ﬂow estimation is equal to four. Detailed processes are introduced in the technical appendix. I ﬁnd that the idiosyncratic volatility varies across diﬀerent industries. Each industry has its idiosyncratic cash ﬂow volatility evo
	-
	-

	[Insert Figure 2 near here] 
	[Insert Figure 3 near here] 


	4.2. Common Cash Flow Volatility 
	4.2. Common Cash Flow Volatility 
	The common cash ﬂow volatility is estimated from the U.S. whole industry’s cross-sectional cash ﬂows. It is the common source that drive each industry’s dividend growth. Compared to the economic uncertainty index constructed by Jurado et al. (2015), I ﬁnd that the common cash ﬂow volatility is highly correlated to both ﬁnancial uncertainty and macroeconomic uncertainty at 82% and 73%, respectively. 
	[Insert Figure 4 near here] 
	In Jurado, Ludvigson, and Ng (2015)’s construction, it takes 132 macro series to construct the macroeconomic uncertainty UNCand it takes 147 ﬁnancial time series to 
	-
	macro 

	construct the ﬁnancial uncertainty UNC. The macro data represents broad categories of 
	fin 

	macroeconomic time series including real output and income, employment and hours, different economic sector orders, inventories, and sales, consumer spending, compensation and labor costs, capacity utilization measures, price indexes, bond and stock market indexes, and foreign exchange measures while the ﬁnancial data-set includes valuation ratios such as the dividend-price ratio and earnings-price ratio, growth rates of aggregate dividends and prices, default and term spreads, yields spreads of private and
	-


	4.3. Idiosyncratic Cash Flow Volatility 
	4.3. Idiosyncratic Cash Flow Volatility 
	4.3.1. ICFV in the Cross-Section 
	4.3.1. ICFV in the Cross-Section 
	I ﬁrst investigate how the idiosyncratic cash ﬂow volatility (ICFV) is related to the industry characteristics. Monthly cross-sectional regressions are run for the modern sample (1963-2018): 
	Yt = α + γ · Ft + t 
	where Yt = {ICFVi}, ICFVi is the idiosyncratic cash ﬂow volatility and Ft are ﬁrm characteristics including the operating proﬁtability ROE, the book-to-market ratio BM, the average ﬁrm size Size, leverage LEV as Johnson (2004), idiosyncratic stock volatility IV OL constructed as Ang, Hodrick, Xing, and Zhang (2009) and risk factors such as the economic uncertainty UNC from Jurado, Ludvigson, and Ng (2015), lottery demand factor FMAX from Bali, Brown, Murray, and Tang (2017) and liquidity factor ILLIQ from P
	diﬀerent speciﬁcations and the explained Rare less than 5% except speciﬁcation (5) and (7). 
	2 

	Results suggest that the idiosyncratic cash low volatility can not be fully explained by ﬁrm’s characteristics. We ﬁnd that IV OL, LEV and UNC factors can increase the explanatory power Ra lot. For industry characteristics, evidence suggests that value ﬁrms and large ﬁrms tend to have larger idiosyncratic cash ﬂow volatility. High ﬁrm leverage corresponds to high idiosyncratic cash ﬂow volatility which is consistent with ﬁndings of Ang, Hodrick, Xing, and Zhang (2009). The interesting ﬁnding is that high pa
	2 

	[Insert Table 1 near here] 
	Results in table 2 suggest the coeﬃcients of idiosyncratic cash ﬂow volatility are positive across all speciﬁcations while the magnitudes range from 0.075 to 0.150. We ﬁnd that the idiosyncratic cash ﬂow volatility can explain 15% in the ﬁrst column. The positive magnitudes implies that a portfolio buying stocks with the highest idiosyncratic cash ﬂow volatility and short-selling stocks with the lowest cash ﬂow volatility can generate returns in the following month controlling for all else. The βmkt coeﬃcie
	-

	Here we study the role of idiosyncratic cash ﬂow volatility which is related to the idiosyn
	-

	cratic and common stock return volatility covered in previous cross-sectional stock return literature. Ang et al. (2006) document that high exposure to systematic return volatility or higher idiosyncratic return volatility corresponds to lower stock returns. The negative coeﬃcients of common return volatility have been widely accepted while the negative role of idiosyncratic return volatility is controversial. For the common return volatility, the negative association can be justiﬁed by the leverage theory 
	cratic and common stock return volatility covered in previous cross-sectional stock return literature. Ang et al. (2006) document that high exposure to systematic return volatility or higher idiosyncratic return volatility corresponds to lower stock returns. The negative coeﬃcients of common return volatility have been widely accepted while the negative role of idiosyncratic return volatility is controversial. For the common return volatility, the negative association can be justiﬁed by the leverage theory 
	-
	-
	-

	ﬁrms’ real options. Here the documented positive relationship among idiosyncratic cash ﬂow volatility and stock returns which can also be backed up by the argument of Grullon et al. (2012). They take the ﬁrm’s future investment as potential growth options and the value of the growth options increase with the idiosyncratic volatility which justiﬁes the positive relationship among volatility and stock returns. Here the ampliﬁed eﬀect of good news on growth options is closely related to the cash ﬂow volatility
	-


	[Insert Table 2 near here] 
	Due to extensive data mining in research on cross-sectional expected returns, Harvey, Liu, and Zhu (2016) argue that we should raise the threshold for accepting empirical results as evident of true economic phenomena. Their results suggests that today a newly discovered factor needs to clear a much higher hurdle, with a t statistics greater than 3.0. As shown in table 2, the Fama-MacBeth cross-sectional regression indicates that the industry level cash ﬂow volatility passes this test with a t statistic abov

	4.3.2. Sorted Portfolios 
	4.3.2. Sorted Portfolios 
	Uni-variate Sorted Portfolios: At the end of each month, I sort all stocks into ﬁve groups based on the estimated idiosyncratic cash ﬂow volatility. A strategy that goes long the decile portfolio with the largest idiosyncratic cash ﬂow volatility and short the decile portfolio with the smallest idiosyncratic cash ﬂow volatility can produce robust alpha across diﬀerent 
	Uni-variate Sorted Portfolios: At the end of each month, I sort all stocks into ﬁve groups based on the estimated idiosyncratic cash ﬂow volatility. A strategy that goes long the decile portfolio with the largest idiosyncratic cash ﬂow volatility and short the decile portfolio with the smallest idiosyncratic cash ﬂow volatility can produce robust alpha across diﬀerent 
	speciﬁcations. The alpha signiﬁcantly exists with respect to asset pricing models like Fama-French three factor model, Carhart four factor model and Fama-French ﬁve factor model. For example, the single-sorted strategy yields a Fama-French ﬁve factor alpha of 0.37% per month (t-stat: 6.90) in long sample (1931-2018) and 0.64% per month (t-stat: 12.28) in modern sample (1963-2018). 

	[Insert Table 3 near here] 
	Double-Sorted Portfolios: I show that the abnormal returns can be obtained by sorting stocks into diﬀerent idiosyncratic cash ﬂow volatility groups. Here I proceed to evaluate the role of idiosyncratic cash ﬂow volatility by further sorting the stocks into diﬀerent industry characteristic groups. I consider the well-known characteristics like the book-to market ratio BM, the debt-to-asset ratio LEV and the average market capitalization Size. At the end of each month, we sort all stocks into three groups bas
	Double-Sorted Portfolios: I show that the abnormal returns can be obtained by sorting stocks into diﬀerent idiosyncratic cash ﬂow volatility groups. Here I proceed to evaluate the role of idiosyncratic cash ﬂow volatility by further sorting the stocks into diﬀerent industry characteristic groups. I consider the well-known characteristics like the book-to market ratio BM, the debt-to-asset ratio LEV and the average market capitalization Size. At the end of each month, we sort all stocks into three groups bas
	equally-weighted uncertainty factor generates an average monthly return of 0.32% with a Newey-West t-statistic of 1.90 in Small ﬁrm group and an average monthly return of 0.40% with a Newey-West t-statistic of 2.84 in Large ﬁrm group. These results indicate that the idiosyncratic cash ﬂow volatility is more likely to be priced in the growth industries. 

	[Insert Table 4 near here] 


	4.4. Conditional Sharpe Ratio 
	4.4. Conditional Sharpe Ratio 
	As argued by Chava et al. (2019). investors fail to incorporate the business cycle information into the cash ﬂow growth and it aﬀect the cross-sectional returns. If the pattern holds, then the price ratio during the similar history regime should predict the future returns. In their paper, they showed that ﬁrms with higher conditional (regime-dependent) Sharpe ratios correspond to higher stock returns and they ﬁnd those ﬁrms have stronger fundamentals and more upward analyst forecast revisions. Here I argue 
	-
	-

	[Insert Table 5 near here] 
	Table 5 shows that portfolio with higher idiosyncratic cash ﬂow risk has higher conditional Sharpe ratio and higher average stock returns. The result provides empirical support for the previous proposition. Figure 5 shows how the conditional Sharpe ratios of top quintile and bottom quintile evolve during 1963 to 2018. The conditional Sharpe ratio of top quintile is larger than the bottom Sharpe ratio for most of the time. 
	[Insert Figure 5 near here] 

	4.5. Further Discussions 
	4.5. Further Discussions 
	I apply the method to the US industry portfolios. Results suggest that the common cash ﬂow volatility represents the economic uncertainty while the idiosyncratic cash ﬂow volatility is persistent priced in the cross sectional stock returns. Investors are compensated by holding a diversiﬁed portfolios. Results suggest that the volatility measure estimated from the unexpected stock returns are not fully explained by the current risk factors and the ﬁrm characteristics. My argument here is that there are infor
	The method can also be applied to other situations. For example, we can study the cross-country stock returns to evaluate the role of idiosyncratic and common cash ﬂows, the analysis which may complement our understanding in global investment. It is also possible to extend the sample to the individual stocks in a larger sample and to evaluate the role of current risk factors and the well-known ﬁrm characteristics by the newly estimated volatility measures. 


	5. Conclusion 
	5. Conclusion 
	The fundamental question in empirical asset pricing is the determinants of the cross-sectional stock returns. While a large body of recent research proposing new factors based on a host of empirically motivated economic or ﬁnancial characteristics, I address this question from a new perspective, oﬀering evidence that idiosyncratic and common cash ﬂow volatility is important for understanding stock returns. My main intention is simple. I argue that the unexpected cash ﬂow news should carry additional informa
	The fundamental question in empirical asset pricing is the determinants of the cross-sectional stock returns. While a large body of recent research proposing new factors based on a host of empirically motivated economic or ﬁnancial characteristics, I address this question from a new perspective, oﬀering evidence that idiosyncratic and common cash ﬂow volatility is important for understanding stock returns. My main intention is simple. I argue that the unexpected cash ﬂow news should carry additional informa
	returns through the common and idiosyncratic volatility perspective. 

	A recent paper by Chava et al. (2019) shows that there is signiﬁcant variation in cash ﬂow growth across industries over the business cycle and they ﬁnd investors do not fully incorporate business cycle ﬂuctuations into the industry level cash ﬂows. If the business cycle information is not reﬂected in each industry’s cash ﬂow, then conditional Sharpe ratio can be informative for future industry returns. In their paper, sector rotation strategy based on history-dependent Sharpe ratio can produce signiﬁcant r
	-
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	I propose a method to estimate common and idiosyncratic cash ﬂow volatility from Campbell and Vuolteenaho (2004a)’s cs cash ﬂow news. Papers have been developed based on the aggregate unexpected news but the individual dimension has been less explored. Moreover, the pure news shock has less been connected to the macroeconomic business cycles. I am inspired by a previous work of Wu (2001) where they explored the cash ﬂow model and connected the unexpected stock returns to the model implied shock on cash ﬂow 
	-
	-

	I apply the method to the U.S. industry portfolios and to study the role of newly estimated volatility measure. I ﬁnd that the common cash ﬂow volatility estimated from unexpected industry-level cash ﬂow news is highly correlated to Uncertainty index constructed 
	-
	-

	by Jurado, Ludvigson, and Ng (2015). I also documented that the idiosyncratic cash ﬂow 
	volatility is positively priced in the cross-sectional stock returns. I control for well-known risk factors and ﬁrm characteristics to see the economic mechanism behind and results suggest the idiosyncratic cash ﬂow volatility is not consumed by the current factors. I do the double sorting by the book-to-market ratio, the industry leverage and the average capitalization and ﬁnd that the abnormal alphas are main driven by the growth industries. A strategy that goes long the decile portfolio with the largest 
	-
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	Table 1: Comparison with Firm Characteristics: ICFVi 
	This table shows results from regressing the idiosyncratic cash ﬂow volatility on ﬁrm characteristics. The variables are economic uncertainty factor UNC from Jurado, Ludvigson, and Ng (2015), lottery demand factor FMAX from Bali, Brown, Murray, and Tang (2017), liquidity factor ILLIQ from Pastor and Stambaugh (2003), operating proﬁtability ROE, book-to-market ratio BM, average ﬁrm size Size, leverage LEV as Johnson (2004) and idiosyncratic stock volatility IV OL constructed as Ang, Hodrick, Xing, and Zhang 
	ICFVi 
	ICFVi 
	ICFVi 
	(1) 
	(2) 
	(3) 
	(4) 
	(5) 
	(6) 
	(7) 
	(8) 
	(9) 

	BM 
	BM 
	0.004 
	-
	-
	-
	-
	-
	-
	-
	0.001 

	TR
	[3.04] 
	-
	-
	-
	-
	-
	-
	-
	[1.14] 

	SIZE 
	SIZE 
	-
	0.199 
	-
	-
	-
	-
	-
	-
	0.219 

	TR
	-
	[25.11] 
	-
	-
	-
	-
	-
	-
	[25.82] 

	ROE 
	ROE 
	-
	-
	-0.001 
	-
	-
	-
	-
	-
	0.000 

	TR
	-
	-
	[-1.19] 
	-
	-
	-
	-
	-
	[-0.55] 

	LEV 
	LEV 
	-
	-
	-
	2.410 
	-
	-
	-
	-
	3.142 

	TR
	-
	-
	-
	[11.15] 
	-
	-
	-
	-
	[16.15] 

	IVOL 
	IVOL 
	-
	-
	-
	-
	0.183 
	-
	-
	-
	0.114 

	TR
	-
	-
	-
	-
	[54.15] 
	-
	-
	-
	[33.00] 

	ILLIQ 
	ILLIQ 
	-
	-
	-
	-
	-
	1.288 
	-
	-
	2.093 

	TR
	-
	-
	-
	-
	-
	[3.68] 
	-
	-
	[6.63] 

	UNC 
	UNC 
	-
	-
	-
	-
	-
	-
	0.063 
	-
	0.054 

	TR
	-
	-
	-
	-
	-
	-
	[54.98] 
	-
	[43.71] 

	FMAX 
	FMAX 
	-
	-
	-
	-
	-
	-
	-
	-0.011 
	-0.006 

	TR
	-
	-
	-
	-
	-
	-
	-
	[-4.75] 
	[-2.86] 

	Cons 
	Cons 
	3.733 
	2.317 
	3.739 
	3.079 
	3.391 
	3.720 
	-0.531 
	3.634 
	-2.396 

	TR
	[14.55] 
	[10.58] 
	[14.54] 
	[12.36] 
	[18.35] 
	[14.96] 
	[-2.16] 
	[15.55] 
	[-11.50] 

	R2 
	R2 
	0.00 
	0.06 
	0.00 
	0.05 
	0.14 
	0.00 
	0.08 
	0.00 
	0.25 


	Table 2: Fama-MacBeth Cross-Section Regressions This table reports the time-series averages of the slope coeﬃcients obtained from regressing monthly excess returns (in percentage) on the cash ﬂow volatility and a set of factors. The control variables are the βmkt of market risk factor (MktRf) from Fama and French (1993 & 2015), economic uncertainty factor UNC from Jurado, Ludvigson, and Ng (2015), lottery demand factor FMAX from Bali, Brown, Murray, and Tang (2017), liquidity factor ILLIQ from Pastor and St
	Table
	TR
	(1) 
	(2) 
	(3) 
	(4) 
	(5) 
	(6) 
	(7) 

	ICFVi 
	ICFVi 
	0.105 
	0.105 
	0.075 
	0.148 
	0.150 
	0.148 
	0.150 

	TR
	[2.67] 
	[2.87] 
	[1.93] 
	[3.71] 
	[3.75] 
	[3.71] 
	[3.75] 

	βmkt 
	βmkt 
	-
	-0.001 
	0.038 
	0.150 
	0.148 
	0.150 
	0.148 

	TR
	-
	[-0.01] 
	[0.22] 
	[0.81] 
	[0.79] 
	[0.81] 
	[0.79] 

	BM 
	BM 
	-
	-
	0.021 
	0.163 
	0.172 
	0.163 
	0.172 

	TR
	-
	-
	[0.12] 
	[0.95] 
	[1.00] 
	[0.95] 
	[1.00] 

	SIZE 
	SIZE 
	-
	-
	0.042 
	0.054 
	0.050 
	0.054 
	0.050 

	TR
	-
	-
	[0.72] 
	[0.94] 
	[0.86] 
	[0.94] 
	[0.86] 

	ROE 
	ROE 
	-
	-
	-
	-0.149 
	-0.139 
	-0.149 
	-0.139 

	TR
	-
	-
	-
	[-0.45] 
	[-0.42] 
	[-0.45] 
	[-0.42] 

	LEV 
	LEV 
	-
	-
	-
	-1.807 
	-1.801 
	-1.807 
	-1.801 

	TR
	-
	-
	-
	[-3.26] 
	[-3.21] 
	[-3.26] 
	[-3.21] 

	IV OL 
	IV OL 
	-
	-
	-
	-0.242 
	-0.244 
	-0.242 
	-0.244 

	TR
	-
	-
	-
	[-2.47] 
	[-2.46] 
	[-2.47] 
	[-2.46] 

	ILLIQ 
	ILLIQ 
	-
	-
	-
	-
	-0.225 
	-
	-

	TR
	-
	-
	-
	-
	[-1.10] 
	-
	-

	UNC 
	UNC 
	-
	-
	-
	-
	-
	-0.212 
	-

	TR
	-
	-
	-
	-
	-
	[-1.35] 
	-

	FMAX 
	FMAX 
	-
	-
	-
	-
	-
	-
	1.447 

	TR
	-
	-
	-
	-
	-
	-
	[8.08] 

	Cons 
	Cons 
	0.424 
	0.439 
	0.154 
	0.310 
	0.151 
	0.533 
	0.248 

	TR
	[1.45] 
	[1.78] 
	[0.26] 
	[0.50] 
	[0.64] 
	[0.89] 
	[1.33] 

	R2 
	R2 
	0.15 
	0.24 
	0.37 
	0.51 
	0.51 
	0.51 
	0.51 


	Table 3: Uni-variate Sorted Portfolios This table shows results of real equally-weighted returns of industry portfolios sorted according to their industry-level cash ﬂow volatility. Return data are monthly over the long sample from 1931 to 2018 and over the modern sample from 1963 to 2018. Industry deﬁnitions are from Kenneth French’s website. CAPM (FF3, Carhart4, and FF5 ) denotes average excess returns unexplained by the CAPM (Fama-French three-factor model, Carhart four-factor model and Fama-French ﬁve-f
	-
	-

	Long Sample 
	Long Sample 
	Long Sample 
	(1) (2) (3) (4) (5) 
	H − L 

	CAP MAlpha 
	CAP MAlpha 
	0.63 0.64 0.63 0.82 1.02 
	0.39*** 

	TR
	(7.75) (8.07) (8.05) (10.52) (11.00) 
	(7.41) 

	FF 3Alpha 
	FF 3Alpha 
	0.64 0.65 0.63 0.83 1.03 
	0.39*** 

	TR
	(7.80) (8.09) (8.08) (10.57) (11.12) 
	(7.54) 

	Carhart4Alpha 
	Carhart4Alpha 
	0.60 0.59 0.58 0.79 0.96 
	0.37*** 

	TR
	(6.96) (7.19) (7.19) (9.60) (10.18) 
	(6.90) 

	Modern Sample 
	Modern Sample 
	(1) (2) (3) (4) (5) 
	H − L 

	CAP MAlpha 
	CAP MAlpha 
	0.09 0.11 0.09 0.30 0.44 
	0.36*** 

	TR
	(1.86) (2.55) (2.23) (7.20) (7.79) 
	(6.95) 

	FF 3Alpha 
	FF 3Alpha 
	-0.18 -0.17 -0.16 0.05 0.28 
	0.46*** 

	TR
	(-6.15) (-6.08) (-5.98) (1.76) (5.73) 
	(8.91) 

	Carhart4Alpha 
	Carhart4Alpha 
	-0.02 -0.01 -0.02 0.17 0.42 
	0.44*** 

	TR
	(-0.72) (-0.20) (-0.69) (5.49) (7.69) 
	(8.13) 

	FF 5Alpha 
	FF 5Alpha 
	-0.23 -0.25 -0.19 0.00 0.42 
	0.64*** 

	TR
	(-6.76) (-8.58) (-6.04) (0.14) (7.94) 
	(12.28) 


	Table 4: Double-Sorted Portfolios 
	This table shows results of real equally-weighted returns of industry portfolios sorted according to their industry-level cash ﬂow volatility and their industry characteristics. Return data are monthly over the modern sample from 1970 to 2018. Industry deﬁnitions are from Kenneth French’s website. Industry characteristics include the book-to-market ratio BM, the industry leverage LEV and the average ﬁrm size factor Size. The numbers in parentheses are t statistics according to Newey and West (1987). One, tw
	-
	-

	BM/ICF Vi 
	BM/ICF Vi 
	BM/ICF Vi 
	(1) 
	(2) 
	(3) 
	H − L 

	Growth 
	Growth 
	0.58 
	0.66 
	1.08 
	0.50*** 

	TR
	(2.02) 
	(2.46) 
	(3.50) 
	(2.88) 

	Value 
	Value 
	0.66 
	0.62 
	0.88 
	0.21 

	TR
	(2.32) 
	(2.30) 
	(2.95) 
	(1.33) 

	LEV/ICF Vi 
	LEV/ICF Vi 
	(1) 
	(2) 
	(3) 
	H − L 

	High 
	High 
	0.64 
	0.65 
	1.10 
	0.45*** 

	TR
	(2.26) 
	(2.35) 
	(3.47) 
	(2.65) 

	Low 
	Low 
	0.60 
	0.63 
	0.86 
	0.26* 

	TR
	(2.10) 
	(2.43) 
	(3.18) 
	(1.82) 

	SIZE/ICF Vi 
	SIZE/ICF Vi 
	(1) 
	(2) 
	(3) 
	H − L 

	Small 
	Small 
	0.61 
	0.63 
	0.92 
	0.32* 

	TR
	(2.04) 
	(2.15) 
	(2.81) 
	(1.90) 

	Large 
	Large 
	0.63 
	0.65 
	1.03 
	0.40*** 

	TR
	(2.32) 
	(2.67) 
	(3.99) 
	(2.84) 


	Table 5: Conditional Sharpe Ratio This table shows results of real equally-weighted returns of industry portfolios sorted according to their industry-level cash ﬂow volatility. Return data are monthly over the modern sample from 1963 to 2018. Industry deﬁnitions are from Kenneth French’s website. The numbers in parentheses are t statistics according to Newey and West (1987). One, two, and three asterisks denote signiﬁcance at the 10%, 5%, and 1% levels, respectively. 
	-

	Modern Sample 
	Modern Sample 
	Modern Sample 
	(1) 
	(2) 
	(3) 
	(4) 
	(5) 
	H − L 

	Average Ret 
	Average Ret 
	0.67 
	0.69 
	0.66 
	0.87 
	1.09 
	0.42*** 

	TR
	(8.27) 
	(8.69) 
	(8.60) 
	(11.27) 
	(11.71) 
	(7.96) 

	Sharpe Ratio 
	Sharpe Ratio 
	0.423 
	0.433 
	0.438 
	0.447 
	0.469 
	0.046*** (4.92) 
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