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Abstract

I demonstrate that investors trade U.S. corporate bonds not only for liquidity reasons but also
on private information. Bond dealers let less-informed investors provide liquidity to informed
traders and are not adversely selected. I obtain these results by contrasting corporate bond
price reversals in bonds with different information asymmetry, trading volume, and dealers’
capital commitment. I find strong price reversals that become less pronounced following high-
trading-volume days. The effect is the strongest for bonds with high information asymmetry,
and when dealers’ end-of-day inventory does not change. The results suggest that information
reveals itself in prices on high-volume days when dealers do not accept overnight inventory
risk. The findings are in line with the predictions of a theoretical model in which investors
trade both for liquidity reasons and on private news that arrive independently of changes in
inventory. I further show that realized bid-ask spreads are not wide enough to negate reversal
profits of high-asymmetry bonds. Such reversal portfolios earn 3% per year after trading
cost adjustment. By connecting low market transparency with high non-fundamental price

volatility, the paper also contributes to the ongoing policy debate.
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I. Introduction

Sophisticated investors used to own a substantial fraction of U.S. corporate bonds around
the global financial crisis of 2008-2009. Figure 1 shows that hedge funds’ corporate bond
holdings stood at around 40% of the combined holdings of insurance companies, pension
funds, mutual funds, and ETFs around the time of the crisis. Ten years later, this ratio is
four times lower. Citi, one of the biggest corporate bond dealers, states that ‘market diversity
has fallen significantly, the buyer base has become more homogeneous’ (Citi 2018). As ‘smart
money’ was leaving the market, both industry participants and academics expressed concerns
that the price discovery mechanism in corporate bonds might be impaired. The market has
been serving primarily large institutions trading for liquidity reasons; information-driven

trading has become scarce.!
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Figure 1. Hedge funds’ corporate bond holdings, in % of the combined holdings of
insurance companies, pension funds, mutual funds, and ETFs. I use U.S. Flow of Funds
(FF) data to calculate the ratio. The FF data do not separate hedge funds, but the industry
tradition is to interpret households’ corporate bond holdings as the ones dominated by hedge
funds.

' Business cycle, tighter regulation of dealer banks, and the emergence of alternative credit trading venues all
contributed to the flight of ‘smart money’ away from corporate bonds. As BlackRock writes, ‘some investors
have migrated risk exposure from the cash bond market to standardized derivatives to the extent they have
the flexibility to do so from a legal, regulatory, operational, and investment policy perspective’ (BlackRock
2018). Simultaneously, some scholars argue that even bond short-sellers are not trading corporate bonds
on information (see, for instance, Asquith, Au, Covert, and Pathak 2013). Berndt and Zhu (2018) provide
a model that links higher dealer inventory costs with lower market efficiency post-crisis.



In this paper, I demonstrate that, despite these concerns, there is strong empirical ev-
idence that investors still trade corporate bonds not only for liquidity reasons but also on
information. Information-driven trading is more likely in bonds with fewer mutual fund own-
ers, fewer dealers, no actively traded CDS contracts, lower outstanding amounts, and when
bond issuers are smaller firms with more volatile stocks. I call such bonds high-information-
asymmetry bonds. The paper claims that bond dealers are aware of information-based
trading and manage to avoid informed flows. When approached by a client who wants to
trade, dealers choose whether to provide liquidity themselves or to find another investor who
wants to trade in the opposite direction and let him or her provide liquidity.? I demonstrate

that the latter rather than the former happens for high-information-asymmetry bonds.
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Figure 2. Stylized price reversal paths for a high-information-asymmetry bond.
On day 1, the trading volume is either low or high. The solid line shows a reversal path
on a high-volume day when dealers’ end-of-day inventory (in this particular bond) does not
change, and dealers buy from some investors as much as they sell to other investors. The
dashed line refers to when trading volume on day 1 is high, and dealers trade a lot from
their inventory. The ‘Low volume’ dotted line represents the average reversal path. For
comparison purposes, I assume that the price change on day 1 is the same in all three cases.

2The dealer nevertheless executes both trades, but such pre-arranged transactions close fast, and bonds do
not stay on dealer’s books for longer than several minutes.



I obtain these results by contrasting corporate bond price reversals (measured as the first
autocorrelation of returns) following days with different trading volumes and dealers’ capital
commitment. What is the link between price reversals and trading motives? Liquidity
trading (non-informational trading) generates reversals, which represent remuneration for
liquidity providers. Reversals tend to be less pronounced following high-trading-volume
days. On such days, price changes are more persistent because trading is partly driven
by private information.® Price changes are the most persistent following high-volume days
when dealers buy from some investors as much as they sell to other investors (and dealers’
end-of-day inventory does not change). Figure 2 shows the stylized reversal paths I obtain
for a typical high-information-asymmetry bond. Reversals are, on average, strong, but price
changes become more persistent as trading volume increases, especially if dealers only match
buyers and sellers and do not accept overnight inventory risk. The more persistent price
changes are, the more likely it is that trading is information-motivated.

Formally, my empirical analysis proceeds in two steps. In the first step, I use TRACE data
from years 2010-2017 aggregated to the daily frequency to estimate the following volume-

return relationship for individual corporate bonds:*

Rii1 = Bo + (51 + B2 - Inventory-neutral volume, + (5 - |[Alnventory|;) Ry + €41, (1)
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Above, R, stands for total corporate bond retury on day ¢+ 1. Inventory-néutral volume is
the volume of investors’ purchases from dealers matched by investors’ sales to dealers within
business day t; it does not add to dealers’ aggregate end-of-day inventory in this bond. The
difference between investors’ purchases and sales is the change in dealers’ inventory on day
t: it stays on dealers’ books until day ¢ + 1. High trading volume on day ¢ can be due to
high inventory-neutral volume, or a big change in dealers’ inventory, or both.> In (1), 3

measures the reversal on a low-volume day, while S5 and (3 capture how the reversal changes

3] assume that new public information affects prices without inducing abnormally high trading volumes.

41 require the bonds to be traded frequently enough to be included in the sample.

5In this paper, I do not take into account inter-dealer trading volumes. If there are only inter-dealer trades
on day t, both trading volume measures in equation (1) are zero.
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following high-volume days with different dealers’ capital commitment. The volume-return
relationship (1) stems from a theoretical model where risk-averse investors trade corporate
bonds with each other for either liquidity or informational reasons, and inventory fluctuates
independently of news arrival.

In the second step, I run a cross-sectional regression of estimated volume-return coef-
ficients (1, Bs, and Bg on information asymmetry proxies controlling for bond illiquidity,
riskiness, and volume persistence. My information asymmetry proxies are the number of
mutual funds that hold the bond, the number of dealers who intermediate trades in the
bond, the size of the issue and the issuer, the availability of an actively traded CDS contract
on the bond issuer, and issuer’s stock return volatility. Larger values for all proxies except
for stock volatility are associated with lower information asymmetry.

I find that Bl is negative. Bond prices tend to revert following low-volume days. For a
typical high-asymmetry bond, Bl stands at around -0.4; if the price increases by 100 b.p.
on a low-volume day, it falls by 40 b.p. the next day. For the same high-asymmetry bond,
Bg is positive. For every additional standard deviation of inventory-neutral trading volume,
return autocorrelation increases (reversal reduces) by 0.1. B35 is about two times smaller
than Bg for the high-asymmetry bond. The results suggest that bond price changes are
the most persistent when trading volumes are high, but dealers are reluctant to trade from
their inventory capacity. Furthermore, I find that /5’1 decreases, Bg increases, and 33 does
not change as information asymmetry grows in the cross-section of bonds.® These findings
suggest that information-motivated trading in corporate bonds does exist, and it most likely
occurs on high-volume days when dealers are only matching buyers and sellers and do not
accept additional inventory risk.

This paper further argues that the long part of the bond reversal investment strategy,
constructed on higher-asymmetry bonds, delivers higher risk-adjusted returns after trading

cost adjustment. Between October 2005 and June 2017, the long-only monthly re-balanced

6These results hold for both investment-grade and high-yield bonds, and within bonds of the same issuer
(for the issuers with many bonds outstanding).



reversal portfolio on high-information-asymmetry bonds earned 2.8% annualized return after
trading cost adjustment, which is 1.5 p.p. above the corporate bond market and the long-
reversal return on low-asymmetry bonds. These results suggest that, even when illiquidity
is taken into account, reversal returns are high. An investor implementing a bond reversal
strategy in practice may further refine it using information asymmetry proxies to obtain
even better performance.

My paper contributes to several streams of corporate bond literature. The paper discusses
the impact of private information on corporate bond price reversals and, with this regard,
extends a traditional explanation of reversals based on illiquidity stemming from OTC market
frictions. Duffie, Garleanu, and Pedersen (2005) present a theoretical framework where OTC
market frictions drive illiquidity; Friewald and Nagler (2019) provide supporting empirical
evidence from the corporate bond market. I demonstrate that in the cross-section of bonds
with similar illiquidity, the reversals further depend on information asymmetry. In related
work, Bao, Pan, and Wang (2011) study the cross-sectional determinants of negative bond
return covariance in pre-crisis years. They find that return covariance is above and beyond
the levels that can be explained by bid-ask spreads but do not link the unexplained part
directly to information asymmetry.”

Chordia, Goyal, Nozawa, Subrahmanyam, and Tong (2017), Bali, Subrahmanyam, and
Wen (2018), and Bai, Bali, and Wen (2019) also discuss an empirical link between corporate
bond price reversals and illiquidity in the context of pricing the cross-section of corporate
bonds. The papers find that one-month lagged return is the strong return predictor in the
cross-section of corporate bonds. Chordia et al. (2017) show, however, that reversal portfolios
have zero or negative Sharpe ratios after trading cost adjustment. I obtain the same result
for reversal portfolios constructed on low-information-asymmetry bonds. However, I show

that reversal portfolios on high-asymmetry bonds survive trading cost adjustment.

"Feldhiitter and Poulsen (2018) also demonstrate that information asymmetry explains only a small percent-
age of cross-sectional variation in corporate bond bid-ask spreads.



My paper also contributes to the debate on information-driven trading in the corporate
bond market. Asquith et al. (2013) analyze the relationship between bond short interest
and returns and find no evidence of information-based trading either in investment-grade or
in high-yield bonds. Hendershott, Kozhan, and Raman (2019) use similar data on loaned
bonds and conclude that information-driven trading is present in high-yield bonds but not
in the investment-grade universe. In my paper, high-information-asymmetry bonds are not
necessarily high-yield ones. My sample consists mostly of investment-grade bonds, and
yet information asymmetry proxies vary a lot in the sample. Therefore, I find evidence of
information-based trading in investment-grade bonds. Han and Zhou (2014) also argue that
information motives are present in the pricing of bonds of various credit quality by pointing
to the positive relationship between microstructure-based information asymmetry measures
and bond yield spreads. My paper further emphasizes the circumstances in which information
likely stands behind changes in prices of high-asymmetry bonds: when trading volumes are
abnormally high, and non-dealer institutions provide liquidity to informed investors.

The latter finding links this paper to the literature on post-crisis liquidity provision in
the corporate bond market. The literature has recently documented that liquidity provision
has been shifting from dealer banks, which are subject to stricter regulatory requirements, to
less constrained bond investors (see, for instance, Adrian, Boyarchenko, and Shachar 2017,
Bessembinder, Jacobsen, Maxwell, and Venkataraman 2018, Choi and Huh 2018, and Dick-
Nielsen and Rossi 2018). Dealers still intermediate trading in the latter case but act as pure
brokers and do not hold bonds on their books for more than a couple of minutes, avoiding the
risk of holding inventory overnight. Despite the emergence of non-dealer liquidity provision,
the number of trading days with high customer trade imbalance (substantial changes in
dealers’ inventory) still exceeds the number of days with sizeable inventory-neutral trading
volume in my sample.® Dealers decide on a case-by-case basis whether to let other investors

provide liquidity or to accept the inventory risk and provide liquidity themselves. My paper

81 consider aggregate dealers’ corporate bond inventory in the paper and do not investigate end-of-day
inventory changes of individual dealers.



demonstrates that this choice depends on the underlying information asymmetry in the bond,
which has not been previously documented in the literature.” I show that dealers tend to
pass informed flows to less-informed bond investors and are unlikely to be adversely selected.

The design of my empirical tests follows from a theoretical model of corporate bond
trading. In the model, I assume that dealers are never adversely selected. An econometrician
observing the data generated by the model economy recovers a volume-return relationship
(1) and the dependence between volume-return coefficients and information asymmetry that
match the ones I find empirically. The methodology of my analysis builds upon Llorente,
Michaely, Saar, and Wang (2002). The model I construct extends Llorente et al. (2002) in
two dimensions. First, it adapts the asset return dynamics to a defaultable bond rather than
a dividend-paying stock. Second, it introduces a noisy market supply representing dealers’
inventory.'® The model falls in a broader class of economies discussed in Wang (1994). The
analysis of volume-return relationship also follows the tradition of Campbell, Grossman, and
Wang (1993).

Finally, my results contribute to a recent policy debate (see FINRA 2019 proposal). Since
late 2004, all corporate bond trades must be reported with a delay of at most 15 minutes.
Once reported, trade records become immediately available to all market participants. Some
active bond traders have been arguing that there is ‘too much’ post-trade price transparency
in corporate bonds.!! To better study the impact of transparency on liquidity, FINRA
proposed a pilot program according to which some bonds become subject to delayed block
trade reporting. If the pilot goes through, dealers will be allowed to report big trades in
such bonds up to 48 hours later. My paper suggests that this policy change will increase

information asymmetry between investors in bonds included in the pilot. Higher asymmetry

9Goldstein and Hotchkiss (2019) show that dealers are more reluctant to accept overnight inventory risk
in bonds with higher search and inventory costs. Their proxies for the costs associated with OTC market
frictions are different from my information asymmetry proxies.

0T Jorente et al. (2002) also regress estimated volume-return coefficients on information asymmetry proxies in
the cross-section of stocks to find evidence of information-based trading. They do not distinguish between
days with and without changes in aggregate dealers’ inventory.

HFor liquidity providers, it has become too costly to trade away from large temporary positions every market
participant knows about.



is associated with stronger price reversals on days when trading is liquidity-driven. In other
words, lower transparency may lead to higher non-fundamental price volatility, which is
widely regarded as a negative market feature.

The paper is organized as follows. Section II talks about the bond sample and the steps I
take to estimate a volume-return relationship for individual bonds. Section III presents esti-
mated volume-return coefficients, and Section IV investigates its determinants, in particular,
information asymmetry proxies, in a cross-section of bonds. Section V discusses the implica-
tions of my results for reversal investment strategies. Section VI solves a stylized theoretical
model of competitive corporate bond trading and discusses a volume-return relationship an

econometrician observing such an economy recovers. Section VII concludes.

II. Data and measurements

A. Data sources

I construct the dataset of corporate bond prices and volumes from Enhanced TRACE
tick-by-tick data. The sample is restricted to USD-denominated, fixed-coupon, not asset-
backed, non-convertible corporate bonds. T apply the filters of Dick-Nielsen (2014) to clean
the TRACE data. I calculate daily corporate bond prices as volume-weighted transaction
prices within a given day. Bond characteristics come from Mergent FISD database. I derive
the number of mutual funds that own the bond from scraping and processing SEC N-Q
forms available through the SEC EDGAR reporting system. The status of the CDS contract
on the bond issuer comes from quarterly DTCC Single Name CDS Market Activity reports
publicly available at the DTCC website. These reports were machine-read and mentioned
entities were matched to the issuers from Mergent FISD dataset. Quarterly DTCC reports
are available from Mar 2010, which is the primary reason I start my dataset then; it goes
up to Jun 2017. I compute issuer-level characteristics (market capitalization, stock return

volatility) using CRSP data. The number of broker-dealers intermediating trades in different



bonds is calculated using the academic version of the TRACE dataset. I talk in more details

about the sample in Appendix B.

B.  Sample filtering and ‘active periods’

I estimate the dynamic volume-return relationship for each bond separately, which re-
quires long enough time-series of returns and volumes for every bond. In a baseline specifica-
tion of the volume-return relationship (1), I estimate four coefficients in an OLS regression.
To avoid over-fitting, I require at least 60 daily observations per bond. However, corporate
bonds experience waves of trading activity, as documented in Ivashchenko and Neklyudov
(2018). The intervals between trading days with non-zero trading volume might be quite
long. Asking for at least 60 consecutive business days is too restrictive, there are very few
bonds that satisfy this criterion. Instead, I ask for 60 daily observations where every two
successive observations are at most three business days apart.!?

For some bonds, there is more than one sequence of 60 daily observations where every
two consecutive ones are at most three business days apart. I call every such sequence an
‘active period’ and retain all active periods in the sample. I remove all days in between the
active periods from the sample. Estimation of the volume-return relationship is carried out
per bond per active period.

Also, I remove from the sample all active periods when a bond was either upgraded from
high-yield (HY) to investment-grade (IG) territory or downgraded in the opposite direction.
Bao, O’Hara, and Zhou (2018) analyze the corporate bond market liquidity around down-
grades and find abnormal price and volume patterns associated with insurance companies
selling bonds due to regulatory constraints. To ensure that downgrade anomalies do not
drive my results, I remove all such periods from my sample. I also remove bonds with less

than one year to maturity from the sample. Such bonds are excluded from major bond

2Here T follow the methodology of Bao et al. (2011) who study the illiquidity of corporate bonds on the
daily data and allow consecutive observations to be at most seven days apart.
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market indices, which also drives substantial institutional rebalancing and creates abnormal

price patterns that are not the primary focus of this study.

Mean  Median  S.D. Min 5th 25th 75th 95th Max N.Obs.
Issue size, mln USD 1011.28  750.00 820.94 | 9.07  166.07 500.00 1250.00 2500.00 15000.00 | 2720325
Rating 7.73 7.00 3.29 1.00 3.00 6.00 9.00 14.00 21.00 2720325
Age, years 4.15 3.08 3.96 0.00 0.25 1.42 5.75 12.17 31.50 2720325
Maturity, years 8.20 5.58 7.62 1.00 1.42 3.17 9.08 27.33 29.92 2720325
Duration 6.07 4.86 4.24 0.86 1.40 2.94 7.62 15.57 21.57 2720325
Total return, % 0.02 0.02 0.81 -8.19  -1.15 -0.24 0.29 1.18 8.49 2720325
Credit spread, % 2.33 1.70 2.68 0.00 0.59 1.13 2.70 6.01 88.70 2720325
Average bid-ask, % 0.98 0.63 1.02 0.00 0.08 0.29 1.33 3.02 19.99 1550785
No. trades per day 9.06 6.00 12.77 1.00 1.00 3.00 11.00 28.00 2540.00 | 2720325
No. days since last trade 1.10 1.00 0.35 1.00 1.00 1.00 1.00 2.00 3.00 2718673
C-to-C volume, % of size 0.53 0.02 1.89 0.00 0.00 0.00 0.16 2.83 15.99 2720325
C-to-D volume, % of size 0.01 0.00 3.11 | -19.67 -4.00 -0.20 0.32 3.91 17.91 2720325
|C-to-D volume|, % of size 1.35 0.26 2.81 0.00 0.00 0.06 1.17 6.80 19.67 2720325

Table I. Summary statistics of the filtered bond-day panel. The sample period is from
Mar 31, 2010, to Jun 30, 2017. For every bond, I retain only long sequences of daily
observations close to each other in the sample. Here, I keep sequences longer than 60 days,
where every two daily observations are at most three business days apart. Besides, I exclude
from the sample active periods that contain a crossing of the investment-grade/high-yield
rating threshold. I keep only bonds with more than one year to maturity in the sample. Size
is the amount outstanding. Rating is on a conventional numerical scale from 1 (AAA) to
21 (C). The credit spread is the difference between the observed yield to maturity and yield
to maturity of the bond with the same coupons discounted using the Treasury curve as in
Gilchrist and Zakrajsek (2012). Average bid-ask spread (realized) is the difference between
average client buy and sell prices, expressed as a percentage of the daily average price. It
is computed only for the days with at least three trades. C-to-C (client-to-client) trading
volume (also, ‘inventory-neutral’ volume) is a minimum between total client purchases and
total client sales per bond per day; it is always positive. C-to-D (client-to-dealer) trading
volume is the difference between client purchases and client sales; it can be positive (dealers’
inventory decreases) or negative (dealers’ inventory increases) depending on which of the two
is greater. The absolute value of the C-to-D trading volume is also the absolute value of the
change in aggregate broker-dealer inventory in a given bond. For further details about the
sample, see Appendix B. The same summary statistics for a full, unfiltered bond-day panel
is in Table C1 in Appendix C.

Table I presents summary statistics of the bond-day panel where only active periods are
retained in the sample. My filtered sample includes around 2.7 million bond-day observations
that cover approximately 10 thousand distinct active periods between 2010 and 2017 and 5
thousand different bonds issued by 1 thousand unique firms. An average bond in the sample
is an investment-grade bond issued about four years ago with approximately eight years left

to maturity. Its outstanding notional amount is around 1 billion USD. The average daily
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total return of an average bond in the sample is 2 b.p.; the credit spread is approximately

2.3%. The average realized bid-ask spread is about 1%.'3

C. Volume measures

To construct a proxy for the inventory-neutral trading volume of equation (1), I first
compute total daily client purchases from dealers and client sales to dealers; call it V;'"Y and

t.14

Vel respectively for bond i on day The minimum of the two is a proxy for inventory-

neutral trading volume which I also call ‘C-to-C volume’:
Inventory-neutral volume,, = C-to-C volumey, = VA = min {V;]touy, V;ieu}

It represents trading volume that has no impact on aggregate dealers’ inventory in bond 7 at
the end of the trading day ¢ as compared to day ¢ —1; it is non-negative by construction. The
difference between client purchases and client sales is a negative change in dealers’ inventory

(‘C-to-D volume’):
—Change in inventory;, = C-to-D volume; = V¥ = yPw — preell

The C-to-D volume can be either positive or negative. Positive values represent net purchases
by clients from dealers and correspond to a decrease in total broker-dealers’ inventory in bond
i on day t. Conversely, negative values of V®) are increases in dealers’ inventory. When I
estimate equation (1), I consider the absolute value of the C-to-D trading volume, |[V\*)].
Table I shows that the absolute value of the C-to-D volume is on average several times higher
than the C-to-C volume.

Table II demonstrates that there is a positive statistical relationship between the abso-
lute value of changes in inventory and the C-to-C trading volume, but the corresponding
correlation coefficient is relatively small. For about two-thirds of bond-active periods, we

can not reject the hypothesis that Corr (V;(C) , V;(S) > 0, i.e., bond inventory is equally likely

13T present the same summary statistics for the full, unfilterel bond-day panel in Table C1 in Appendix C.
Compared to an average bond in the unfiltered sample, the average bond in my sample has a higher
outstanding amount, higher credit rating, lower credit spread and bid-ask spread, and lower return.

14T do not take into account inter-dealer trades when I construct volume proxies.
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Mean Med. | No.>0 No.<0 | No.>0* No.<0* | No. Obs.
Cor(V, V) | 0142 0130 | 8356 1466 | 5052 89 9822
Corr(V,9, v,y 0.052  -0.044 | 3233 6589 665 2624 9822
Corr (V9 V) 0.063  0.028 | 5758 4064 | 2920 11 9822
Corr([V, D, [V) | 0.091 0085 | 7612 2210 | 3876 28 9822

Table II. Correlation coefficients between different measures of the trading vol-
ume. V' is the C-to-C trading volume, V) is a signed C-to-D trading volume, and |V (*)]|
is its absolute value. Each correlation coefficient is estimated per bond per active period.
‘Mean’ and ‘Med.” are sample average and median values. ‘No. > (<) 0’ is the number
of positive (negative) correlation coefficients. ‘No. > (<) 0*’ is the number of positive
(negative) coefficients significant at 10% confidence level. The number of observations is the
number of bond-active periods.

to fall or to increase on high C-to-C volume days. The persistence of both the C-to-C and
the absolute value of the C-to-D trading volume is rather small, as suggested by correlation

coefficients in the last two lines of Table II.

D. Proxies for information asymmetry

In empirical tests, I am using several variables to proxy for the extent of information

asymmetry between bond investors. Some variables are bond-level proxies:

- the number of mutual funds that hold the bond;
- the number of dealers that intermediate trades in the bond;

- bond outstanding notional amount.
Other variables are issuer-level information asymmetry proxies:

- availability of an active CDS contract on the bond issuer (dummy variable);
- issuer market capitalization;

- realized stock return volatility in an active period when the bond trades actively.

The last two proxies are calculated only for traded companies. Here I assume that informed
trading is less likely in bonds that are held by many mutual funds, intermediated by many

dealers, have higher outstanding amounts and an actively traded CDS contract on the bond
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issuer which is a large firm with lower stock return volatility. Below I justify in more details
the use of these variables as the proxies for information asymmetry.

The number of mutual funds that own the bond is related to the number of buy-
side analysts scrutinizing bond valuations and the credit quality of the issuer. As in equity
literature, I assume that analyst coverage is negatively related to information asymmetry
between investors. Similarly, the number of brokers intermediating trades in the bond
is positively related to sell-side analyst coverage and, hence, negatively related to informa-
tion asymmetry. The number of active brokers also measures competition among brokers
in a given bond. The lack of competition likely affects an average-volume day reversal, 3;
in equation (1), similarly to high information asymmetry: prices of bonds traded in a less
competitive market should revert more on average. However, there is no straightforward ex-
planation for why prices for low-competition bonds should revert less following high-volume
days (the positive relationship between /3, in equation (1) and information asymmetry) unless
low competition among dealers is due to high information asymmetry in the first place.

Issuer and issue sizes are typical proxies for trade informativeness in the literature.
Both are related to broader investor base and, again, more in-depth analyst coverage, which
supposedly leads to a higher number of investors who are ready to arbitrage out bond
misvaluations. As Table III shows, issue and issuer sizes are indeed positively correlated

with the numbers of intermediating dealers and mutual funds that own the bond.

No. funds Active CDS Issue size No. dealers Issuer size Stock vol
Active CDS | 0.09%**
Issue size 0.59*** 0.02
No. dealers 0.42%** -0.01 0.61%**
Issuer size 0.04*** -0.08%** 0.40%** 0.30***
Stock vol 0.04%** -0.10%** -0.13%** 0.14%** -0.27F%*
Bid-ask -0.24%** -0.13%** -0.40%** -0.05%** -0.15%** 0.41%**

Table III. Correlation coefficients between information asymmetry proxies esti-
mated in the cross-section of bonds. If there is more than one active period per bond, the
average value across active periods is taken. The total number of bonds (observations) in
the sample is 5028. *, ** and *** stand for 10%, 5%, and 1% significance respectively.
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The existence of an actively traded CDS contract on the bond issuer is a reasonable
proxy for trade informativeness because it is cheaper on average to trade CDS contracts than
cash bonds, as Zawadowski and Oehmke (2016) show. Some investors who possess private
credit information will rather trade a single-name CDS contract than a bond if the former
is available and liquid. Also, the existence of an active CDS contract on the issuer might
attract some CDS-bond basis arbitrageurs who trade in the CDS market and the bond market
simultaneously. This type of arbitrage does not require any private information about the
credit quality of the bond issuer. Hence, an active ‘basis trading’ in some bond implies that
only a smaller portion of trading volume in this bond (as compared to an identical bond
without an actively traded CDS contract) might be due to private information.

Finally, stock return volatility computed for bond issuers over time intervals that
constitute the active periods measures uncertainty of bond issuers equity valuations. It is
natural to assume that the periods of high uncertainty in equity valuations are also the
periods of high asymmetry of information about debt values. Hence, informed trading in
equities and bonds might coincide.

I do not use the realized bid-ask spread as an information asymmetry proxy in the paper.
It is true that the bid-ask spread might itself be positively related to the extent of informed
trading, as in Glosten and Milgrom (1985). However, the mere existence of bid-ask spreads,
information or non-information driven, implies price reversals as in Roll (1984), i.e., the ‘bid-
ask bounce’ effect. It implies stronger reversals for bonds with wider spreads. Hence, the
impact of the bid-ask bounce on the average-day return autocorrelation, f; in equation (1),
is similar to the expected effect of information asymmetry. The impact of the bid-ask bounce
on 33 and f33 in equation (1) is unclear because it depends on whether the effect becomes
stronger or weaker with higher trading volumes. To avoid these concerns, I use realized
bid-ask spreads only as a control variable in my cross-sectional regressions of estimated

volume-return coefficients and not as a proxy of informed trading.
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III. Volume-return relationship

I estimate equation (1) separately for every bond and every active period rescaling trading
volumes such that ; measures the first return autocorrelation on average-volume trading
days:

Ris1 = Bo+ iR + B RV + B3RV + €. (2)

Above, R;y is the total bond return between ¢ and t + 1, f/t(c) is the C-to-C trading volume
on day ¢, standardized!® for every active period separately, and V,*) is the absolute value of
the C-to-D trading volume (the absolute value of inventory change) on day ¢, also demeaned
and standardized.

On the days when both the C-to-C and the C-to-D trading volumes are at the average
level for a given bond in a considered active period, the first return autocorrelation is 5;. On
the days when the C-to-C volume is 1 standard deviation above the mean and the change in
inventory is at the average level, the first return autocorrelation is 5 + 5. Conversely, when
only the C-to-D volume is 1 standard deviation above the average, return autocorrelation
equals to 1 + (3. Negative values of ; would mean that prices revert following average-
volume days. Positive values of 35 and 3 would mean that prices tend to revert less following
high-volume days. In this short section, I present and discuss the estimated volume-return
coefficients Bl, Bg, and Bg, and in the next section, I investigate in details the relationship
between the coefficients and information asymmetry proxies, which is the main focus of this
study.

Table IV gives a snapshot of Bl, BQ, Bg estimated for each bond in every active period.
The average bond-active period has the first return autocorrelation of approximately -0.33.
If the price drops today by 100 b.p. and both trading volumes are at the average level,
the price will tend to increase by 33 b.p. tomorrow. One-third of the initial price decrease

reverts the next day. The average By 0f 0.07 suggests that following high C-to-C volume days,

5De-meaned and divided by the sample standard deviation.
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Mean Med. | No.>0 No.<0 | No.>0* No.<0* | No. Obs.
51 -0.3285 -0.3425 108 9714 0 8761 9822
Bg 0.0716  0.0622 7130 2692 1697 188 9822
33 0.0585  0.0568 6928 2894 2054 349 9822
Bg — /33 0.0131  0.0044 5046 4776 3819 3498 9822

Table I'V. Summary statistics of the estimated volume-return coefficients of equa-
tion (2). Each estimated coefficient is per bond per active period. There are at most nine
active periods per bond. Returns are total returns between ¢ and ¢+ 1. Trading volumes are
demeaned and standardized per bond per active period. Mean and Med. are respectively
sample average and sample median. ‘No. > (<) 0’ is the number of positive (negative)
coefficients. ‘No. > (<) 0* is the number of positive (negative) coefficients significant at
10% confidence level. The number of observations is the number of bond-active periods.

prices tend to revert less. In a previous example, if the initial 100 b.p. price decrease was
accompanied by 1 standard deviation above-average C-to-C trading volume, then the next
day reversal would be close to one-forth rather than one-third. The average Bg of around
0.06 suggests that prices revert comparably less following high C-to-D volume days either.
Both Bg and 33 are predominantly positive, and the difference between the two is equally
likely to be positive or negative.

At this stage, we can not infer much from estimated volume-return coefficients. The
signs and the magnitudes of the coefficients certainly look reasonable. Strongly negative Bl
is a reflection of high illiquidity of the corporate bond market. The values of Bg and 33
are close; hence, both types of trading volume interact statistically similarly with reversals.
Positive Bg and Bg can be consistent with the presence of informed trading, but can also
reflect correlated trading volumes, or the interaction of the bid-ask bounce or bond riskiness
with the trading volume. In the next section, I investigate explanatory factors of the cross-
sections of volume-return coefficients with a particular focus on the impact of information

asymmetry.
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IV. Determinants of volume-return coefficients

A.  Empirical design

In the introduction, I put forward an intuition on how volume-return coefficients i, (s,
and (3 in equation (2) should vary with information asymmetry. In particular, I suggest
that more information asymmetry implies lower [§; (stronger reversals on average), higher
Pa (weaker reversals following high-volume days when dealers’ inventory does not change
much), and no particular effect on f3 (no difference in reversals between high- and low-
information-asymmetry bonds following days when dealers’ inventory changes a lot). One
gets the same relationship between volume-return coefficients in a theoretical model a-la
Llorente et al. (2002) extended with noisy changes in market supply (dealers’ inventory)
that are independent from the arrival of private news. I present such a model formally in
Section VI. In this section, I am testing the predictions of the model empirically in the
cross-section of bonds.

The estimates Bl, Bg, and Bg obtained in the previous section are per bond and per active
period. There is more than one active period for about every fifth bond in the sample, but
there are at most nine active periods per bond. I take bond averages to obtain the cross-
section of coefficients, and in the rest of this section, I fit explanatory linear models to this
cross-section.!® Call Bn,i a column-vector of estimates (n = 1, 2, or 3 and i € {1,..., N}

where N is the total number of bonds). I fit the following model for each n (i.e., each

16active periods are asynchronous across bonds. Hence, one needs to make additional assumptions to inves-
tigate the co-movement of volume-return coefficients. I attributed the estimated coefficients to quarters
in the proportion of the active period time in a given quarter and extracted time fixed effects from the
bond-quarter panel to find that there is virtually no common time variation in the coefficients (unreported).
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volume-return coefficient) separately:

Bmi = ¢,1 (No. funds, CDS, Issue/issuer size, No. dealers, ~Equity volatility), +

(.

Eg Info asymn:gtt proxies Q
+ ¢p2 (Bid-ask, C-to-C/D volume correlation, Bond volatility, Credit spreal), +

)
N J

+ Cn,0 + Enis (3)

where ¢, € RS, Cn2 € R®, and €n,i for every n is an i.i.d. zero-mean Normal. If my intuition

about the dependence of volume-return coefficients on information asymmetry proxies is
correct, I should find ¢;7 > 0, c2; <0, and c3; = 0.

I include five controls in the baseline specification (3): realized bid-ask spread, the first
autocorrelations of f/t(c) and f/t(s), realized bond return volatility, and the credit spread.
Volume autocorrelations and return volatility are estimated per bond per active period, and
then bond averages are computed if there is more than one active period per bond.

The realized bid-ask spread controls for bond illiquidity.!” Wider spreads are associated
with more illiquid bonds that tend to have stronger price reversals even if the information is
symmetric, buy and sell orders arrive randomly, and the fundamental value of the security
never changes (the ‘bid-ask bounce’ effect of Roll 1984). In principle, bid-ask spreads also
widen with the asymmetry of information, as in Glosten and Milgrom (1985), and that is
why the literature often uses bid-ask spreads as a measure of information asymmetry. I do
not do so because multiple non-informational reasons might explain different bid-ask spreads
in the cross-section of bonds, for instance, competition between dealers, different inventory
holding costs, or counterparty search costs. The bid-ask spread as the illiquidity control is
the most relevant for the regressions of Bl.

Volume correlations control for the persistence of trade flow and price impact. Recall

from Table IV that returns tend to continue following high C-to-C and C-to-D volume days

17Schestag, Schuster, and Uhrig-Homburg (2016) provide a detailed comparison of different bond illiquidity
measures. In light of their results on different measures one can compute using tick-by-tick TRACE data,
the realized bid-ask spread looks like a reasonable choice for this paper. I obtained similar results with
alternative bond illiquidity measures as well (Amihud, Roll, price inter-quartile range).
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(positive Bg and Bg) I want to link it with the presence of informed trading, but one would
find the same signs of volume-return coefficients if trade flows were persistent. Imagine that
some investor executes a big buy trade over two business days.!® On each day, her trades
have a price impact, and returns tend to continue (or revert less). So, correlated volumes
would generate the relationship between volumes and future returns similar to one of the
asymmetric information and returns. I control for this alternative explanation by including
the first autocorrelations of ‘Z(C) and ‘7;(8) in the group of control variables. These controls
are the most relevant for the regressions of Bg and 33

The next control is the average realized bond return volatility. Riskier bonds tend to
experience larger price swings, even if underlying risks are not directly related to informa-
tion asymmetry. In the cross-section, some bonds are riskier than the other, and it might
explain some differences between estimated volume-return coefficients. Same happens in the
theoretical model of Section VI. The desired dependence of volume-return coefficients on
information asymmetry is obtained when holding unconditional bond return variance fixed.
To mimic this condition in the empirical analysis, I include realized bond return volatility as
a control variable in every regression. It is relevant for the regressions of all three volume-
return coefficients. I further include average credit spread as a control variable to make
sure that I compare bonds with the same riskiness. One can easily find a high-yield and an
investment-grade bond with comparable levels of return volatility in some periods, but their
credit spreads must be different.

Table V presents summary statistics of the cross-section of estimated volume-return coef-
ficients to be explained, information asymmetry proxies, and control variables. The average
bond in the cross-section is owned by 35 mutual funds and about the same number of dealers
intermediate trades in this bond. The bond is issued by a large company (76 bln USD market

cap) and has an outstanding notional amount of around 800 mln USD. The average realized

18This hypothesis may not be very realistic since on the corporate bond market one may get better execution
prices trading higher volumes as shown in Edwards, Harris, and Piwowar (2007). This may also explain

why the average autocorrelation of f/t(c) is relatively low in the data (see Table II).
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Mean Median S.D. Min 5th 25th 75th 95th Max | N.Obs.
51 -0.31 -0.33 0.12 | -0.62 -0.48 -0.40 -0.24 -0.09 0.05 5028
Bg 0.07 0.06 0.12 | -0.48 -0.10 0.01 0.12 0.25 0.79 5028
Bg 0.06 0.06 0.10 | -0.33 -0.10 -0.00 0.11 0.21 0.49 5028
No. mutual fund owners 35.47 28.41 31.31 | 0.00 0.00 12.91 49.55 97.29  230.46 5028
Active CDS (dummy) 0.44 0.00 0.50 | 0.00 0.00 0.00 1.00 1.00 1.00 5028
Issue size, bln USD 0.82 0.60 0.70 | 0.01 0.07 040 1.00 2.25 9.39 5028
No. dealers 33.98 29.50 15.13 | 7.96 17.65 23.96 39.89 65.46 168.72 5026
Issuer size, bln USD 76.09 40.92 92.71 | 0.02 2.58 13.44 115.85 236.12 761.79 4693
Stock return volatility, % 1.77 1.57 0.84 | 0.65 0.93 1.23 2.06 3.25 10.52 4683
Average bid-ask, % 1.05 0.77 0.83 | 0.07 0.22 0.46 1.38 2.82 8.66 5028
C-to-C volume correlation | 0.08 0.06 0.11 | -0.18 -0.05 -0.00 0.14 0.29 0.66 5028
C-to-D volume correlation | 0.10 0.10 0.09 | -0.24 -0.05 0.04 0.15 0.25 0.79 5028
Bond return volatility, % 0.72 0.59 0.51 | 0.05 0.17 0.36 0.94 1.68 4.96 5028
Credit spread, % 2.42 1.74 2.85 | 0.14 0.58 1.11 2.78 6.39 68.96 5028

Table V. Summary statistics of the cross-section of volume-return coefficients
and their predictors. The sample contains bond averages computed across all active
periods in case there is more than one for a given bond. The number of fund owners on a
given trading date represents the number of mutual funds that claim to own a bond as of the
latest available SEC N-Q form filing. ‘Active CDS’ is a dummy variable that equals 1 for all
bonds of the issuer on all days in a given quarter if the CDS on this issuer is in a list of top
thousand actively traded single-name CDS contracts in that quarter according to DTCC.
‘Issue size’ is an outstanding notional amount of a bond issue, ‘issuer size’ is the market
capitalization of an issuer (if a traded company). The number of dealers is the number of
broker-dealers that intermediate trades in a bond on each trading day. Stock return volatility
is the realized volatility in a given active period for a given issuer. For further details, see
Appendix B.

bid-ask spread of the bond is 105 b.p., and its credit spread is 242 b.p. 44% of bonds in the
sample have an actively traded CDS on the bond issuer. There is substantial variation in

both the left-hand side and right-hand side variables of regressions (3) as Table V shows.

B. Main results

Tables VI-VIII present estimated regressions (3) of volume-return coefficients on infor-
mation asymmetry proxies and controls. Table VI contains the results for Bl. Observe that
the number of fund owners, the CDS dummy, issue and issuer size, and the number of inter-
mediating dealers, all have a significantly positive impact on Bl if included in the regression
separately. In joint models 7 (all bonds) and 8 (bonds issued by traded firms only), the

loading on the CDS dummy becomes insignificant but on the negative stock return volatil-

21



ity — significantly positive. These results suggest that average-day price reversals become
more pronounced (Bl becomes more negative) for higher information asymmetry bonds: the
bonds with fewer fund owners and intermediating dealers, no actively traded CDS contract
on the issuer, lower issue and issuer size, and high stock return volatility. Observe also in
Table VI that the coefficient on the average bid-ask spread is significant with a reasonable
sign. Higher bid-asks are associated with stronger reversals.

Interestingly, in Table VI, C-to-C and C-to-D volume persistence both enter the models
for Bl significantly but with different signs. Following an average-volume day, higher C-to-
C volume persistence implies less strong reversals, while higher C-to-D volume persistence
implies stronger reversals holding other bond characteristics equal. One can interpret this
finding as follows: if an investor has to trade persistently high volumes over several consecu-
tive days with a dealer hence asking the dealer for immediacy, trading costs in such trading
arrangement will be higher than when another bond investor supplies liquidity.

The link between high information asymmetry and strong price reversals following average-
volume days relates to a recent policy debate on delayed corporate bond trade dissemination.
Now, dealers must report corporate bond trades to TRACE at most 15 minutes after trade
execution. A pilot program, currently under discussion, proposes a 48 hours delay between
trade execution and reporting for some bonds (see FINRA 2019). From the perspective of
the results presented in Table VI, such policy change might lead to stronger price reversals
in bonds selected for the pilot because the policy increases information asymmetry between
investors. Since we talk about average-volume days here, trading on such days is primarily
liquidity-driven and stronger reversals can be interpreted as higher non-fundamental price
volatility (bond valuations do not change when prices do not reveal any fundamental infor-
mation). Higher volatility unrelated to fundamentals is a likely (and negative) consequence
of the delayed trade dissemination pilot if it goes through.

Table VII presents the results for BQ. Recall that higher 8, means less strong reversals

following days when investors trade a lot essentially with each other and dealers do not
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Dependent variable: Bl

1 (2 (3) (4) (5) (6) (7 (®)

Intercept —0.331*** —0.290*** —0.385*** —0.391*** —0.309*** —0.283*** —0.408*** —0.409***
(0.004) (0.004) (0.005) (0.006) (0.004) (0.005) (0.006) (0.007)
Average bid-ask —0.067*** —0.077*** —0.067*** —0.118*** —0.089*** —0.084*** —0.079*** —0.092***
(0.005) (0.005) (0.005) (0.006) (0.005) (0.005) (0.006) (0.006)
C-to-C vlm corr. 0.253*** 0.327*** 0.167*** 0.187*** 0.308*** 0.338*** 0.140*** 0.143***
(0.016) (0.015) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016)
C-to-D vlm corr. —0.166*** —0.198*** —0.060*** —0.161*** —0.189*** —0.217*** —0.076*** —0.087***
(0.015) (0.015) (0.014) (0.014) (0.015) (0.015) (0.015) (0.015)
No. funds 0.001*** 0.0004*** 0.0003***
(0.0001) (0.0001) (0.0001)
CDS dummy 0.006** 0.003 0.002
(0.003) (0.003) (0.003)
Issue size 0.079*** 0.058*** 0.052%**
(0.004) (0.005) (0.005)
No. dealers 0.003*** 0.001*** 0.001***
(0.0001) (0.0002) (0.0002)
Issuer size 0.0002*** 0.0001***
(0.00002) (0.00002)
—Equity volatility 0.355 0.494*
(0.288) (0.275)
Risk controls YES YES YES YES YES YES YES YES
Observations 5,028 5,028 5,028 5,026 4,693 4,683 5,026 4,681
R? 0.310 0.249 0.380 0.330 0.278 0.259 0.392 0.405
Note: *p<0.1; **p<0.05; ***p<0.01

Table VI. Cross-sectional regressions of Bl. Each model is an OLS regression with
heteroscedasticity-consistent standard errors. 5’1 is averaged for every bond across all active
periods, so are the predictors. Average bid-ask is the percentage difference between the
daily buy and sell prices, excluding inter-dealer trades. Volume correlations are the first
autocorrelations of V,” and V,”). ‘No. funds’ is the number of mutual funds that own the
bond. CDS dummy equals 1 if the average Active CDS dummy for the bond across its active
periods is above 0.5 and 0 otherwise. The issue size is the outstanding notional amount in
bln USD. The issuer size is market cap in bln USD. ‘No. dealers’ is the average number
of unique dealers that intermediate trades in each bond. Equity volatility is the average
realized volatility of daily stock returns across all active periods for each bond. Risk controls
include credit spread and realized bond return volatility.

hold any additional inventory by the end of the trading day. I expect BQ to be increasing
in information asymmetry: reversals must be less strong for high asymmetry bonds when
informed trading is most likely, i.e., after high C-to-C volume days. Observe first in Table VII
that all information asymmetry proxies enter the models for Bs significantly when included
separately (models 1 to 6) except for stock return volatility. The signs of all asymmetry
proxies are as expected: higher information asymmetry implies higher /3’2. In a joint model
7 (bonds issued by public and private firms) the CDS dummy turns insignificant while in a
joint model 8 (bonds issued by public firms only) the issuer size becomes insignificant and

flips a sign. Otherwise, a joint model 8 says that bonds with fewer mutual fund owners and
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Dependent variable: BQ

@ (2) () () ©) (6) (7 (8)

Intercept 0.088*** 0.075*** 0.101*** 0.113*** 0.074*** 0.067*** 0.119*** 0.112%**
(0.005) (0.005) (0.006) (0.007) (0.005) (0.006) (0.008) (0.009)
Average bid-ask 0.001 0.004 0.002 0.021*** 0.009* 0.007 0.011* 0.013**
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006)
C-to-C vlm corr. 0.070*** 0.041** 0.089*** 0.096*** 0.046*** 0.040** 0.106*** 0.105***
(0.017) (0.016) (0.017) (0.018) (0.016) (0.016) (0.018) (0.017)
C-to-D vlm corr. —0.104*** —0.090*** —0.132%** —0.106*** —0.097*** —0.094*** —0.120%** —0.127***
(0.018) (0.018) (0.019) (0.018) (0.018) (0.018) (0.020) (0.020)
No. funds —0.0004*** —0.0002*** —0.0002***
(0.00005) (0.0001) (0.0001)
CDS dummy —0.007** —0.005 —0.006*
(0.003) (0.003) (0.003)
Issue size —0.023*** —0.009** —0.012***
(0.003) (0.004) (0.004)
No. dealers —0.001*** —0.001*** —0.001***
(0.0001) (0.0002) (0.0002)
Issuer size —0.00003* 0.00002
(0.00002) (0.00002)
—Equity volatility —0.352 —0.575*
(0.304) (0.312)
Risk controls YES YES YES YES YES YES YES YES
Observations 5,028 5,028 5,028 5,026 4,693 4,683 5,026 4,681
R? 0.021 0.012 0.024 0.025 0.013 0.013 0.030 0.034
Note: *p<0.1; **p<0.05; ***p<0.01

Table VII. Cross-sectional regressions of /5’2. Each model is an OLS regression with
heteroscedasticity-consistent standard errors. Bg is averaged for every bond across all active
periods, so are the predictors. Average bid-ask is the percentage difference between the
daily buy and sell prices, excluding inter-dealer trades. Volume correlations are the first
autocorrelations of V,” and V,”). ‘No. funds’ is the number of mutual funds that own the
bond. CDS dummy equals 1 if the average Active CDS dummy for the bond across its active
periods is above 0.5 and 0 otherwise. The issue size is the outstanding notional amount in
bln USD. The issuer size is market cap in bln USD. ‘No. dealers’ is the average number
of unique dealers that intermediate trades in each bond. Equity volatility is the average
realized volatility of daily stock returns across all active periods for each bond. Risk controls
include credit spread and realized bond return volatility.

intermediating dealers, lower outstanding amounts, no actively traded CDS contract, and
higher stock return volatility exhibit less strong price reversals following high C-to-C volume
days.

Also, observe in Table VII that the loading on the C-to-C volume persistence is positive
and significant. It means that if high C-to-C volumes are positively correlated over time,
reversals will be less strong due to a repetitive price impact. The bid-ask spread enters joint
models of Table VII with significantly positive coefficients: the bonds with higher bid-ask

spreads tend to revert less following high C-to-C volume days. If I treated the bid-ask spread
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Dependent variable: ﬁ3

@ 2 () (4) (5) (6) (M) (®)

Intercept 0.070*** 0.074*** 0.086*** 0.091*** 0.089*** 0.076*** 0.088*** 0.097***
(0.004) (0.004) (0.005) (0.006) (0.004) (0.005) (0.006) (0.007)
Average bid-ask —0.057*** —0.058*** —0.060*** —0.053*** —0.054*** —0.057*** —0.051*** —0.049***
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005)
C-to-C vlm corr. —0.017 —0.006 0.009 0.012 0.005 —0.015 0.011 0.008
(0.014) (0.014) (0.015) (0.015) (0.014) (0.014) (0.015) (0.016)
C-to-D vlm corr. 0.007 0.001 —0.010 —0.003 —0.016 0.002 —0.012 —0.021
(0.015) (0.015) (0.016) (0.015) (0.016) (0.015) (0.016) (0.017)
No. funds 0.0002*** 0.0003*** 0.0002***
(0.00005) (0.0001) (0.0001)
CDS dummy 0.005* 0.005* 0.002
(0.003) (0.003) (0.003)
Issue size —0.007*** —0.010*** —0.005
(0.002) (0.003) (0.004)
No. dealers —0.0004*** —0.0004** —0.0002
(0.0001) (0.0002) (0.0002)
Issuer size —0.0001*** —0.0001***
(0.00002) (0.00002)
—Equity volatility 0.020 0.426
(0.284) (0.280)
Risk controls YES YES YES YES YES YES YES YES
Observations 5,028 5,028 5,028 5,026 4,693 4,683 5,026 4,681
R? 0.083 0.082 0.083 0.085 0.083 0.070 0.091 0.087
Note: *p<0.1; **p<0.05; ***p<0.01

Table VIII. Cross-sectional regressions of 5. Bach model is an OLS regression with
heteroscedasticity-consistent standard errors. Bg is averaged for every bond across all active
periods, so are the predictors. Average bid-ask is the percentage difference between the
daily buy and sell prices, excluding inter-dealer trades. Volume correlations are the first
autocorrelations of V,” and V,”). ‘No. funds’ is the number of mutual funds that own the
bond. CDS dummy equals 1 if the average Active CDS dummy for the bond across its active
periods is above 0.5 and 0 otherwise. The issue size is the outstanding notional amount in
bln USD. The issuer size is market cap in bln USD. ‘No. dealers’ is the average number
of unique dealers that intermediate trades in each bond. Equity volatility is the average
realized volatility of daily stock returns across all active periods for each bond. Risk controls
include credit spread and realized bond return volatility.

as a proxy for information asymmetry, this sign on the bid-ask would have been in line with
the signs on other information asymmetry proxies.

Table VIII presents the regressions for 33. The interpretation of 33 is analogous to (s, but
now we are talking about the reversals following days when dealers’ inventory changes a lot.
Higher 3 means that prices tend to revert less following high C-to-D volume days. Unlike
for 85, I do not expect to find any particular dependence of 3 on information asymmetry
because dealers would rather pass high-asymmetry bonds to other investors and would not

hold excess inventory in bonds with less transparent valuations.
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Table VIII shows that there is indeed no clear-cut dependence of /5’3 on information
asymmetry. For instance, the number of mutual fund bond owners and the CDS dummy have
significantly positive loadings in models 1 and 2 (opposite to what information asymmetry
explanation predicts), while issuer and issue size and the number of dealers have significantly
positive loadings in models 3-5 (in line with information asymmetry explanation). In joint
models 7 and 8 as well, there are both positive and negative loadings on the variables of
interest. In particular, in model 8, only the number of mutual fund bond owners and issuer
size have significant loadings, but they are of opposite signs.

Tables VI-VIII show that high-information-asymmetry bonds experience on average
stronger price reversals than low asymmetry bonds. However, following high C-to-C trading
volume days, this ‘gap’ in reversals closes; such thing does not happen following days with
high C-to-D trading volume. How large is this difference in reversals between high and low
asymmetry bonds? To answer this question, I take the last models from Tables VI-VIII
(models number 8) and compute average values of volume-return coefficients predicted by
fitted models for different deciles of information asymmetry proxies.'® The bonds with the
most information asymmetry are in the first decile for every proxy except for stock return
volatility (here, the most asymmetry is in the tenth decile). Conversely, the bonds with
the least information asymmetry are in top deciles (bottom decile of stock return volatil-
ity). I keep control variables fixed at the median level to ensure that predicted values of
volume-return coefficients vary only due to changing information asymmetry.

Figure 3 presents the results. The left panel shows the average values of Bl. They are
decreasing monotonically from -0.2 for the bonds with little or none information asymme-
try to almost -0.4 for the bonds with the highest asymmetry. The predicted reversal for
high-asymmetry bonds is almost twice stronger than for low-asymmetry bonds following
average-volume days. The middle panel in Figure 3 shows an additional impact of high C-

to-C volumes on next-day reversals. The average values of (8, are monotonically increasing

The results look almost identical when I use models number 7 for public and non-public firms with all
proxies included (unreported).
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Figure 3. Point estimates and confidence intervals for the expected values of
volume-return coefficients. The calculations are based on models (8) from Tables VI-
VIII. On the x-axes from left to right are the deciles of information asymmetry proxies. For
instance, ‘Low asymmetry’ bond is the one that has the number of fund owners, active CDS
dummy, issue size, number of dealers, and issuer size all in the 90th percentile and stock
volatility in the 10th percentile. ‘High asymmetry’ bond has the number of fund owners,
active CDS dummy, issue size, number of dealers, and issuer size all in the 10th percentile
and stock volatility in the 90th percentile. All other covariates from the regression models
(average bid-ask spread, volume correlations, return volatility, and credit spread) are fixed
at the median level. Solid lines are points estimates and shaded areas around them are 95%
confidence bands.

from 0.02 for low-asymmetry to 0.10 for high-asymmetry bonds. It means that every addi-
tional standard deviation of the C-to-C volume reduces the difference in next-day reversals
between high- and low-asymmetry bonds by almost 0.08. Figure C1 in Appendix C shows
that following a day with the C-to-C trading volume 2 standard deviations above the aver-
age, there is practically no difference in reversals between high- and low-asymmetry bonds.
Finally, the right panel in Figure 3 demonstrates that predicted Bg, is relatively insensitive
to the degree of information asymmetry; the average Bg stays close to 0.06 as information
asymmetry varies. This result implies that the average difference in reversals between high-
and low-asymmetry bonds stays the same following days when dealers’ inventory changes a
lot. The evidence presented in Figure 3 suggests that information-driven trading in corpo-
rate bonds exists, and it is much more likely when investors essentially trade with each other

within one trading day rather than when they trade with dealers.
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Figure 4. Cumulative returns around days with large bond inventory changes.
The ‘event’ that happens on day 0: broker-dealers bond inventory increases or decreases by
more than 2 standard deviations (computed per bond per active period) and it is the only
type of trading that occurs on day 0 (inventory stays on the books till day 1). Daily log
price returns are cumulated from day -5. Returns are computed using clean prices and do
not contain accrued interest.

To provide additional evidence that dealers are very unlikely to be adversely selected
(to trade with a privately informed investor) in the corporate bond market, I plot typical
cumulative return paths around days when dealers’ inventory changes a lot only in one
particular direction. In terms of two types of volume introduced in Section II, such days
correspond to high C-to-D volume and zero C-to-C volume. Figure 4 plots the results of
such ‘event study’. On the left panel, a more interesting one, dealers’ inventory increase
by at least 2 standard deviations (per bond per active period) on day 0. In other words,
on day 0, investors sell a lot of bonds to dealers hence asking for immediacy. There is a
well-pronounced drop in cumulative returns on day 0 regardless of whether prices were going
up or down before the event. Cumulative returns rebound to their pre-event paths on day 1.

It means that additional inventory that dealers acquired on day 0 is sold (at least partially)
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on day 1 at higher prices. Even for the worst-performing bonds, dealers could sell at higher
prices 2-3 days after the initial increase in inventory. The right panel of Figure 4 presents
similar cumulative return patterns for the days when dealers’ inventory reduces by more
than 2 standard deviations (some investors are willing to buy a lot of bonds and do not
want to wait for a selling investor to come to the market). There is a pronounces spike in
cumulative returns on day 0. On day 1, prices are lower than on day 0 except for the cases
when bonds have been performing well pre-event. Such a situation (dealers sell short-term
‘winners’) is the only case in Figure 4 when prices do not move in dealers favor post-event. In
all other cases, dealers benefit from price movements on and right after the event day, which

is consistent with a finding that dealers are unlikely to trade with an informed counterparty:.

C. Further evidence

There are firms that have many bonds outstanding. These bonds may differ in coupon
rates, maturity, embedded options, and other characteristics. I investigate how volume-
return coefficients differ across bonds of the same issuer. In Table IX, I present the estimates
of model (3) only for firms with more than fifteen bonds outstanding. I include issuer fixed
effects in the regression models; such fixed effects represent the average values of volume-
return coefficients for different issuers. Thus, Table IX shows within-firm dependence of
volume-return coefficients on information asymmetry. I find that the impact of information
asymmetry on ,@1 and /5’2 (and the lack of impact on 53) holds for the bonds of the same issuer.
It suggests that private information some investors might possess is not only issuer-level
(which is most likely private news about the credit quality of the issuer) but also bond-level.
The bond-level information can be, for instance, private knowledge about liquidity trades
of other investors, which yields a better estimate of price pressures and subsequent price

reversals.?’ It can also be private knowledge about the exercise probability of embedded

20T remain agnostic about a mechanism through which some investors may learn valuable information about
price pressures. Barbon, Di Maggio, Franzoni, and Landier (2018) suggest that there is information leakage
from brokers to clients in the equity market.
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options. Most bonds in my sample are callable; issuers have a right to redeem them at pre-
specified dates before maturity. An early call changes the duration of a bond and, therefore,
its risk profile. Superior knowledge about the likelihood of an early call gives advantage in

predicting bond returns prior to call announcements.

B1 B1 B2 B2 B3 B3
Average bid-ask —0.078*** —0.090*** 0.006 0.008 —0.007 —0.005
(0.012) (0.012) (0.013) (0.012) (0.010) (0.009)
No. funds 0.0004*** 0.0003*** —0.0002** —0.0002* 0.0002 0.0002
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
CDS dummy 0.022 —0.009 0.001 —0.004 0.001 —0.005
(0.019) (0.017) (0.020) (0.020) (0.016) (0.015)
Issue size 0.038*** 0.032*** —0.001 —0.003 —0.005 —0.005
(0.007) (0.007) (0.005) (0.005) (0.005) (0.005)
No. dealers 0.001*** 0.002*** —0.001** —0.001** —0.0005* —0.0004
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Issuer size 0.001*** 0.0001 —0.0002
(0.0001) (0.0001) (0.0001)
—Equity volatility 3.028*** —2.477*** 1.214
(0.784) (0.937) (0.839)
Issuer FE YES YES YES YES YES YES
Risk controls YES YES YES YES YES YES
VIm correlations YES YES YES YES YES YES
Observations 1,927 1,837 1,927 1,837 1,927 1,837
R2 0.555 0.566 0.116 0.134 0.228 0.213
Note: *p<0.1; **p<0.05; ***p<0.01

Table IX. Cross-sectional regressions of Bl, Bg, and Bg for large issuers only. Each
model is an OLS regression with heteroscedasticity-consistent standard errors. Volume-
return coefficients are averaged for every bond across all active periods, so are the predictors.
Average bid-ask is the percentage difference between the daily buy and sell prlces excludlng
inter-dealer trades. Volume correlations are the first autocorrelations of V and V ‘No.
funds’ is the number of mutual funds that own the bond. CDS dummy equals 1 if the average
Active CDS dummy for the bond across its active periods is above 0.5 and 0 otherwise. The
issue size is the outstanding notional amount in bln USD. The issuer size is market cap in
bln USD. ‘No. dealers’ is the average number of unique dealers that intermediate trades in
each bond. Equity volatility is the average realized volatility of daily stock returns across all
active periods for each bond. Risk controls include credit spread and realized bond return
volatility.

In Appendix C, I present further empirical results. Table C2 estimates equation (3)
for investment-grade (IG) and high-yield (HY) subsamples separately. The markets for
IG and HY bonds have different institutional clientele because of regulatory restrictions,
but information asymmetry proxies I use should work within each subsample. Table C2

confirms that it is indeed the case for Bl and BQ. Bl tends to decrease and 52 to increase
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with information asymmetry both for IG and HY bonds. In the regressions for Bg, there
are fewer significant coefficients compared to the regressions of B, and s, and the signs of
the coefficients are inconclusive about the impact of information asymmetry on reversals
following high C-to-D volume days. Hence, Table C2 confirms the results that have been
established in the pooled sample.

I also consider alternative specifications of equation (2) to address the omitted variable
problem that may render the estimates of volume-return coefficients biased. In Appendix C,
I present key results for volume-return coefficients estimated controlling for either market
returns or trading volumes (included as linear terms in addition to the interactions with
returns) in equation (2). Tables C3 and C5 present summary statistics of volume-return
coefficients for these two cases, while Tables C4 and C6 show the dependence on information
asymmetry proxies. Figures C2 and C3, the counterparts of Figure 3, demonstrate how
predicted volume-return coefficients vary with information asymmetry. Clearly, the main
result of the empirical analysis remains intact. 3, decreases as information asymmetry grows

while Bg increases; the impact of asymmetry on Bg is neutral.

V. Implications for investment strategies

Corporate bond price reversals depend on the extent of information asymmetry in a given
bond, as my empirical analysis shows. What does it imply for the design of the short-term
corporate bond reversal strategy? In this section, I show that the reversal strategy earns
more if information asymmetry is taken into account in portfolio formation.

I start by constructing reversal portfolios as in Bai et al. (2019). At every rebalancing
date (which is monthly) bonds are double sorted on previous month’s credit rating and
return. In Bai et al. (2019) each sorting is into quintiles but since my sample is smaller I
sort into rating terciles and return quintiles, a total of 15 bins. I only consider the long part

of the reversal portfolio: this is a simple average of size-weighted returns in the top reversal
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quintile (lowest past returns) across three rating terciles.?’ The rebalancing is at the end of
each month. I consider an unfiltered bond-month sample, i.e., I do not restrict the sample to
active periods and do not remove the crossing of IG/HY threshold (I would introduce a look-
ahead bias if I did so). I do require the bonds to have, as of the sorting date, an outstanding
amount of at least 200 mln USD and a 12-month average of the realized bid-ask spread of
at most 100 b.p. The latter helps to bring down the transaction cost of the reversal strategy
which is usually very high due to high portfolio turnover. I use the 12-month average of the
realized bid-ask spread to account for transaction costs. I also extend the sample back to
2005 to compare the performance of the reversal strategy pre- and post-2008 crisis.

In addition to a long-reversal portfolio, I consider its two sub-portfolios separately. The
first sub-portfolio contains the bonds with a below-median number of mutual fund bond-
holders as of the sorting date.?? This sub-portfolio contains bonds with supposedly more
information asymmetry. The second sub-portfolio contains the bonds with an above-median
number of mutual fund bondholders (less information asymmetry). The results of the pre-
vious section suggest that in-sample and following average-volume periods the reversals are
stronger for bonds with more information asymmetry. So, one might expect the reversal
portfolio with more information asymmetry to outperform the reversal portfolio with less
information asymmetry out-of-sample .

Table X presents performance measures of three reversal portfolios in comparison to the
market portfolio. Between Oct 2005 and Jun 2017 average long-reversal portfolio returns
unadjusted for trading costs were around 8.4% per year. The sub-portfolio with many fund
owners earned around 8% while the portfolio with few fund owners earned around 9%,
which is 4.5 times more than the market portfolio. The volatility of the sub-portfolio with

few fund owners was also lower which translates into a superior risk-adjusted performance

21T do not consider a short leg here for two reasons. First, in the sample I work with shorting top-performing
corporate bonds was not profitable. Second, I do not have reliable estimates for the cost of shorting.

22For sorting, I take the variable ‘number of mutual fund owners’ as before but with a lag of 6 months. Since
N-Q forms are reported semiannually, it ensures that I am not sorting on the information not yet available
at the sorting date.
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Cum trading costs Net trading costs
Mean S.D. SR IR | Mean S.D. SR IR
Long reversal (LR) | 840 6.44 1.12 183 | 196 6.34 0.13 0.18

LR: many funds 8.02 7.09 097 140 | 139 6.99 0.04 0.01
LR: few funds 9.01 6.11 128 206 | 2.81 6.01 028 0.44
Market 2.16  3.66 0.28 1.36  3.66 0.07

Table X. Performance statistics of the long leg of the reversal strategy for cor-
porate bonds with monthly rebalancing. Mean is a sample average of monthly returns, in
% per annum. S.D. is the standard deviation of monthly returns, in % per annum. SR is
the Sharpe ratio relative to the 3 month Treasury Bill. IR is the information ratio relative
to the market. The sample is Oct 2005 to Jun 2017. For portfolio construction, I apply
the following filters to the sample: a) previous month outstanding amount is greater than
200 mln USD, b) previous month 12-month moving average of the realized bid-ask spread
is below 100 b.p. Reversal portfolios are obtained from the double-sorting of bonds on the
previous month credit rating (three terciles) and total return (five quintiles). For each of
the 15 bins, the average bond return weighted by the previous month outstanding amount is
computed. Long-reversal (LR) return is a simple average return across three rating terciles
for the top reversal (lowest past returns) quintile. ‘LR: few funds’ is the reversal portfolio
with a below-median number of fund owners. ‘LR: many funds’ is the reversal portfolio with
an above-median number of fund owners. Market return is the value-weighted return of the
bonds in the sample. Trading costs are assumed to be half of the 12-month average of the
realized bid-ask spread (average bid-ask spread in Table I).

of the reversal strategy for bonds with more information asymmetry. Once I account for
trading costs, the performance of reversal portfolios becomes considerably lower because of
high portfolio turnover. However, the sub-portfolio with few fund owners still earns almost
3% per year after trading cost adjustment, which is twice more than the corporate bond
market. The information ratio of the reversal portfolio with few fund owners amounts to
approximately 0.5 (annualized) relative to the corporate bond market. The return on the
reversal portfolio with many fund owners is considerably lower and is close the bond market
after trading cost adjustment.

Figure 5 shows how reversal returns accumulate over time. Observe in Figure 5a that
two-thirds of the total reversal portfolio value gains (unadjusted for trading costs) come from
years 2009-2011. The difference between the value of sub-portfolios with few and many fund
owners starts to accumulate since mid-2009 and is growing slowly but steadily ever since.

Figure 5b plots portfolio values net of trading costs and tells a similar story except the
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Figure 5. The value of long-reversal corporate bond portfolios with monthly rebal-
ancing. I normalize the value of all portfolios in Sep 2005 to 1. For portfolio construction, I
apply the following filters to the sample: a) previous month outstanding amount is greater
than 200 mln USD, b) previous month 12-month moving average of the realized bid-ask
spread is below 100 b.p. Reversal portfolios are obtained from the double-sorting of bonds
on the previous month credit rating (three terciles) and total return (five quintiles). For each
of the 15 bins, the average bond return weighted by the previous month outstanding amount
is computed. Long-reversal (LR) return is a simple average return across three rating terciles
for the top reversal (lowest past returns) quintile. ‘LR: few funds’ is the reversal portfolio
with a below-median number of fund owners. ‘LR: many funds’ is the reversal portfolio with
an above-median number of fund owners. Market return is the value-weighted return of the
bonds in the sample. Trading costs are assumed to be half of the 12-month average of the
realized bid-ask spread (average bid-ask spread in Table I).

reversal strategies here are performing worse than the market since approximately 2013.
The long-reversal portfolio with few fund owners is still worth considerably more than the
market portfolio by the end of the sample period.

The evidence presented in this section demonstrates that conditioning on information
asymmetry considerably affects the performance of reversal strategies in practice. Reversals
tend to be stronger for bonds with more information asymmetry and long-reversal portfolios
with less mutual fund ownership, for instance, can outperform the corporate bond market

after adjustment for trading costs. Given these findings, one can further investigate differ-
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ent information asymmetry signals and potentially improve the performance of the reversal

strategy on corporate bonds.

VI. The model

In this section, I present a model of competitive bond trading volume that builds on
the same premises as my empirical analysis above: investors trading bonds with each other
are occasionally adversely selected while dealers avoid information-driven trade flow. The
model justifies equation (2), which I estimate in the empirical part of the paper, and yields
predictions about the dependence of volume-return coefficients on information asymmetry
that closely match empirical results I have discussed above. One can view the model of
this section as the formal presentation of the intuition behind volume-return relationships I
analyze in the empirical part of the paper.

The model is a modification of Llorente et al. (2002) which is a simplified version of Wang
(1994) in its turn. In these models, two types of investors, informed and uninformed ones, are
trading with each other for liquidity reasons and on private information. My model differs
from Llorente et al. (2002) in two ways: I tailor the arithmetic of returns to defaultable
bonds rather than to stocks as in the original model and I introduce noisy bond supply.

Changing a dividend-paying stock for a perpetual coupon-paying defaultable bond within
the model requires approximations to keep the analysis tractable. In Llorente et al. (2002),
private information is the information about dividends, which is an additive component
of dollar returns. In my model, private information relates to default risk, which is not an
additive term in returns calculation. To make returns linear in a default loss and simplify the
learning problem for uninformed traders, I consider a log-linear approximation of defaultable
bond returns as in Hanson, Greenwood, and Liao (2018). Given that daily bond returns in

my sample are small numbers (see Table I) with 5th and 95th percentiles close to 1% in the
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absolute value, the log-linear approximation of returns should not undermine the relevance
of theoretical results for my empirical analysis.?

I introduce noisy bond supply to the model to generate the additional trading volume
that is not due to liquidity or informational signals the agents receive. In the model, I assume
that supply changes that proxy for changes in dealers’ bond inventory are independent of the
arrival of private news. Table II suggests that such an assumption is not at odds with the
data; the correlation between client-to-client and client-to-dealer daily volume measures in
my sample is low. In the model, supply changes are publicly observed, unlike private liquidity
signals. Under these assumptions, I can derive the dynamic volume-return relationship

similar to (2) and provide additional implications for my empirical analysis compared to the

baseline model of Llorente et al. (2002).

A.  The economy

The discrete-time economy has two traded securities: a riskless bond in unlimited supply
at a constant interest rate that is set to 0 for simplicity and a risky perpetual bond that
pays a coupon C' every period. Hanson et al. (2018) demonstrate that Campbell and Shiller

(1988) decomposition applied to such a bond yields the log return r; of the following form:
T R K+ (1 —0) +0p — pr — diga, (4)

where p; = log P, is the log ex-coupon price of the bond, 6 and  are deterministic functions
of the log-coupon ¢ = log C, and d,,; is the log default loss at time ¢ + 1.24

I assume that the log default loss consists of two additive components:

dit1 = fi + g

f+ is publicly known at time ¢ while g, is a private time ¢ information of a subset of investors.

At time t + 1, the value of d; 1 becomes publicly observed.

23To preserve the linearity of demand with respect to state variables when working with percentage rather
than dollar returns, I also have to log-linearize the wealth dynamics of the agents.
24For the derivation see Appendix A.
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The risky bond is traded in a competitive bond market with noisy supply s;, which is
a public knowledge. The market is populated with two classes of investors, ¢ = 1,2, with
relative population weights w and 1 — w. The investors are identical within each class, and
each investor’s initial endowment of the risky bond is set to 0 for simplicity. Type 1 investors
are informed; they observe g;. Type 2 investors do not observe g; but learn it from the bond
price using the Bayes rule. In addition, Type 1 investors have a random exposure z; to
some non-traded asset that generates a log return of n,,; in the subsequent period.?” Type
2 investors do not know the exposure of type 1 investors to the non-traded risk. Overall,
the information set of the informed investors at time t is {d,p,n, f, 87972}0,...,t while the
information set of the uninformed investors is {d,p,n, f, s}, .

I assume that ny, g;, and z; are time-independent zero-mean normally distributed ran-

2 2

02, 02 respectively. I further assume that f; is also time-

dom variables with variances o,,, o,

independent and normally distributed with the mean m; = k 4+ ¢(1 — 6) and the variance
0?.26 All of ny, g4, 2z, and f; are contemporaneously uncorrelated except for n; and f; that
have a time-invariant negative covariance, which means that default losses are low when
non-traded asset returns are high. This implies a constant positive covariance between r;

and n; that equals o,,. Finally, the supply of the risky bond follows an AR(1) process
Stp1 = 08 + €441, (5)
where |§] < 1 and ¢, is normally distributed with zero mean and variance ¢; it is independent
over time and is independent from ny, g, 2;, and f;.
The investors of both types ¢ = 1,2 maximize the next period conditional expected utility

E, [—e_Wt(-?l] derived from the next period wealth Wt(i)l by choosing the demand Xt(i) for

the risky bond.?” To keep the model tractable I need to take the log-linear approximation

Z5Here I follow Llorente et al. (2002) assuming for simplicity that only one type of investors has income from
a non-traded asset. It is enough to generate price reversals due to liquidity trading.

26The mean of f; is chosen such that the long-term mean of the log bond price is 0 and the contributions of
coupons and public news about future defaults to returns cancel one another on average.

27As in Llorente et al. (2002), the risk aversion is set to 1 since it only enters the expressions for investors*
demands as the multiple of the variances of all exogenous shocks. Hence, one can implement higher or
lower risk aversion in the model by proportionally scaling variances of all shocks up or down.
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of the wealth dynamics, which under the assumptions of the model is
Wt(-il-)l ~ Wt(l) + Xt(l)TtJrl + Zt(l + nt-i—l)a
Wt(—i2—)1 ~ Wt@) + th(2)rt+1-

The model setup is different from Llorente et al. (2002) in two ways. First, I work with
log returns approximated in (4) around p = 0 and linearized wealth dynamics instead of
dollar returns and non-linearized wealth dynamics. Second, more importantly, I assume
noisy supply (5) instead of a constant zero supply. Noisy supply allows me to decompose
the trading volume in the model into two components: the first one is related to trading
between informed and uninformed investors and exogenous changes in asset supply drive the
second one. Empirical counterparts of these two components are respectively the volume
of corporate bonds purchased by clients matched by client sales in a given period and net

changes in broker-dealer inventory.

B.  Model equilibrium

I solve for the rational expectations equilibrium of the model assuming a linear pricing
function for the log bond price. Define the log price adjusted for the publicly known credit
loss component as p = p; + (fy — my) and assume it is linear with respect to g, z;, and s

Pr = —a(gs + bz + esy). (6)

Observe that the steady-state level of log bond price is 0 as in the linear approximation of

log return (4).

Given the pricing function (6), the equation for returns (4) re-writes as:?®

Tev1 = =0 (fiyr —myg) + 0Dey1 — P — G- (7)
The expression for conditional expected returns follows from (7):

B [re1] = —pr — B [ge] — aefs,.

28In what follows, I replace an approximate equality in (4) with the exact one.
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The informed investors know g, hence E{" [9:] = ¢:- The uninformed investors observe p;

and s; and estimate Ef) [9¢|Pt, s¢]. 1 show in Appendix A that

E? [gelpe. s¢) = (g + b2e), (8)

where v = 034(:—51203 > 0. One can further show that conditional return variances for two types
of investors are constant over time.

With conditional expected return linear in gy, 2;, and s; and conditional return variance
constant for both types of investors, the demand for risky bonds, Xt(l) and Xt@), is also linear

in g;, z, and 5,22, The market for risky bonds clears:
th(l)(gh 2, 8¢) + (1 — W)Xt(2) (9t, 2, 5¢) = ¢,

which must hold for any values of ¢, z;, and s;, implying a system of three non-linear equa-
tions for yet undetermined coefficients a,b, and e. One can show that if the parameters
of the model are such that the system has real-valued solutions then it must be that a, b,
and e are all positive, moreover, w +v —wy < a < 1 and b = 0,,. | demonstrate in Ap-
pendix A that under mild restrictions on the parameters (that boil down to 2 being not
‘too big’) the model always has real-valued solutions, of which a unique triple of {a*, b*,e*}

has economically reasonable values.

C. Trading volume in the model
Consider the aggregate difference in risky bond holdings in the economy at time ¢
wAXt(l) + (1 - w)AXt(Q) = Asy.
Using the equilibrium conditions one can decompose it as

WAXY + (1 - w)AX? = VD (Ag, Az) + VE (Age, Az) + V) (Asy) + VE (Asy),

=0 —As,
where

VD (Ag, Az) = VD (Ag, Az) = |a(Ag + 0mAz)|, (9)

29Gee Appendix A.
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and o = w(@—1) /52 Here, Vc(l) and Vc(2) represent the volume of trading between informed and
uninformed investors. This trading volume is due to changes in a private signal about credit
loss Ag (information-driven trading) and the position in a non-traded asset Az (liquidity-
driven trading). Vc(l) and VC(Q) always have opposite signs but are equal in the absolute value.
For the convenience of notation, I will denote this trading volume v.; = |a (Ags + 0, A2)| =
0. An econometrician observing bond trading records in the TRACE database can compute
what the client buy volume matched by the client sell volume was at time ¢.° It is an
empirical proxy for v.;.

Two other components, VY and VS(2), represent trading due to changing bond supply.
One can show that in equilibrium these two components are always of the same sign and
they represent the proportion in which two types of agents absorb additional bond supply
As. By construction, a change in bond supply is the buy volume that was not matched by
the sell volume of the opposite sign. Its absolute value is equal to the absolute value of a
change in aggregate dealers’ inventory. The latter is an empirical counterpart of vs; = |Asy|.
What the model assumes is that v., and As,; are independent since the latter is uncorrelated
with Ag and Az that drive the former. Table III has demonstrated that this assumption
largely holds in the data. The key takeaway of this paragraph is that I assume that an
econometrician knows v.; and v, and these two quantities are defined within the model as

stated above.

D.  Volume-return relationship and information asymmetry

Assume an econometrician observes the time-series of bond returns r; and two types of
volume, v.; and v,,, as discussed above. Then the conditional expectation of future returns

given current returns and volume can be approximated as

By [reg1|re; Ve, vsd) = (81 + Bovl, + B3v2,) (t (10)

30All records in TRACE represent trading between a broker-dealer and a client and can be of two types only:
a purchase by a client from a dealer or a sale to a dealer.
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the derivation is presented in Appendix A. This volume-return relationship is a theoretical
counterpart of equation (2) estimated in the empirical part of the paper. Unlike equation
(2), equation (10) contains squared volumes. In the data, squared volumes are extremely
right-skewed, hence from an econometric standpoint, it is reasonable to estimate the volume-
return relationship as in (2) with volume entering the equation without a square (Llorente
et al. 2002 follow the same approach). It does not change an economic interpretation of
volume-return coefficients.3!

Now, I would like to discuss how coefficients (31, f2, and (B3 change in the model as
the extent of informed trading changes. In the benchmark model Llorente et al. (2002),
both §; and [, are negative, but [, is decreasing and [, is increasing with the extent of
information asymmetry proxied by 03. f£1 measures the first return autocorrelation, and
negative (3; decreasing with 02 means that for two equally risky bonds returns will revert
more for the one with more information asymmetry. [ measures the impact of volume on
the first autocorrelation, and negative (3, increasing with 03 means that for two equally risky
bonds returns will revert less following high-volume days for the one with more information
asymmetry. These theoretical results find empirical support in the U.S. stock market, as
Llorente et al. (2002) shows.

Unlike in the benchmark model, I can not make a general statement about the signs of
volume-return coefficients and their dependence on 02; I need to solve the model numerically
first. In Figure 6, I present the relationships between information asymmetry 03 and 3
coefficients for the model calibrated to an average bond in TRACE. The bond has a coupon
rate of 5%, high persistence of a supply shock § = 0.95, and a daily standard deviation

of returns of 1%.3? The latter stays fixed in all numerical solutions; this is an additional

31Since an econometrician knows the sign of inventory changes, she could write an analog of equation (10)
conditioning additionally on this piece of knowledge. It would change the form of the equation slightly,
and the loadings on two types of volume would become incomparable. An important part of my empirical
analysis consists of a direct comparison of coefficients 32 and s, and for that, I need to condition in (10)
on the absolute value of inventory changes.

32In Figure 6, I set 6 = 0.95 which roughly corresponds to Corr(As;, As;_1) = —0.03 because in the model
Corr(As;, Asi_1) = —%(1 — ). In the model, 6 measures the persistence of supply, which is roughly the
persistence of inventory. § = 0.95 implies the half-life of broker-dealer inventory of about 13 days. Further
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1.33 Figure 6 represents the cross-section of

constraint I impose on the solutions of the mode
bonds with the same unconditional risk but different contributions of public, private, and

liquidity shocks to return variance.

By x 102 By x 102 B3 x 10?
0.0 —0.04 —0.04 — /
—0.06 —0.06 —|
704 —
—0.08 —0.08 —
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ag><10 ag><10 ag><10

Figure 6. Dependence of 3, $5, and 53 on information asymmetry 03 holding total
return variance fixed. Each point on the curves is a numerical solution of the model. 1
obtain the relationships between 03 and [ coefficients by varying o, from 0 to 1% holding
an unconditional standard deviation of returns at 1%, which is a daily standard deviation
of bond returns in the TRACE data. I choose the following parameters of the model to
match a median bond in sample: coupon rate C' = 5%, the persistence of a supply shock
0 = 0.95. The fraction of informed investors is w = 0.05, the correlation between traded and
non-traded asset returns is 0., = 0.3, the variance of the supply shock is ¢ = 0.1. T first
solve the model for a very small value of o4, 5 b.p. here. Then, I hold the equilibrium value of
a fixed in all subsequent solutions for o, > 5 b.p; I allow e to change. Thus, the comparative
statics plotted here is a collection of solutions of the system of equations of three variables
(02, crj%, and e): two model equilibrium equations plus an additional restriction on the total

return variance.

The left and central panels in Figure 6 deliver the same message as the benchmark model.
With more informed trading, returns tend to revert more, but less so following days when
investors trade a lot with each other. On the left panel, which presents reversals following
no-volume days, there is no reversal when o, is zero, and returns are due to public news

that is fully priced within the same period. As o, increases, no-volume reversals intensify

(unreported) estimations show, in line with the results of Dick-Nielsen and Rossi (2018), that dealers revert
deviations from their target inventory faster post-crisis.
33Llorente et al. (2002) impose the same restriction on the total unconditional variance of returns.
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due to a greater impact of uninformed investors’ errors in estimating g; on returns.** On
the central panel, the reversal following high-volume days is the strongest when o, is zero
because the entire trading volume between informed and uninformed investors represents,
in this case, liquidity trading. Liquidity trading has price impact but does not reveal any
new information about the asset payoff; hence, the price reverts the next period. As o,
increases, it’s more and more likely that some part of the between-investors trading volume
comes from Ag and conveys the information about future returns; hence the reversal tends to
decrease (3, tends to increase). The right panel in Figure 6 shows that 5 that measures an
additional component of reversals following days when inventory changes a lot is relatively
insensitive to o,. It does not look surprising given that As in the model is uncorrelated with
other motives for trading. One would expect 33 to be flat with respect to o, in such case;
a slightly upward sloping line on the right panel of Figure 6 is due to equilibrium e (price
impact of inventory-changing trades) changing with o,,.

The shape of the lines in Figure 6 matches closely the shape of their empirical counterparts
presented in Figure 3. In the model, as it is in the data, 5; decreases, and (3, increases with
information asymmetry, while (3 is insensitive to information asymmetry. It gives additional
support for the premises of the model: client-to-client trading volume may be due to private
information, but client-to-dealer trading volume is likely driven by liquidity needs only.

As in Llorente et al. (2002), the limitation of my extended model is that [y stays negative
for all reasonable model calibrations and does not turn positive (same applies to 3 which
is not the part of the benchmark model). In reality, as Section III has shown, [ is positive
for most corporate bonds. It does not undermine the main idea suggested by the model

and tested in the empirical part of the paper. As the extent of informed trading increases,

34Here is the intuition for this result. With no volume, time ¢ returns are not driven by liquidity shocks since
Az; and Ag; must be zero. Assume z;_; > 0 and informed investors are net sellers of bonds. From (7)
and (8) one finds that r; is negative when %Eg1 [g¢—1] < g¢—1 other things being equal, i.e., when actual
losses in default are higher than previously expected by uninformed investors. But that means that in ¢t —1
informed investors’ demand for bonds was lower than required by their hedging needs; so it is in ¢ since
the volume is zero. Hence, time ¢ price is low and time t + 1 expected return is high. Higher information
asymmetry amplifies this effect.
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returns following high-volume days are less likely to revert, especially when dealers are not

trading from their inventory capacity.

VII. Conclusion

In this paper, I estimate a dynamic volume-return relationship for individual bonds and
explore the determinants of estimated volume-return coefficients in a cross-section of bonds.
A particular focus of my analysis is on the impact of information asymmetry on volume-
return coefficients.

The hypotheses that I test arise from a stylized theoretical model of competitive bond
trading with asymmetric information and non-traded risks. In the model, trading between
investors is due to liquidity needs (hedging of the non-traded risk) or private information.
Also, investors in the model absorb random bond supply shocks; their empirical counter-
part is the change in aggregate bond inventory. The model suggests that bonds with high
information asymmetry have stronger price reversals than bonds with low information asym-
metry, but less so following high-volume days when dealers’ inventory does not change, and
investors are essentially trading with each other. Conversely, following days with substantial
changes in dealers’ inventory, the difference in reversals between high- low-asymmetry bonds
remains. In the model, this result emerges because changes in inventory (supply shocks) are
assumed independent from the arrival of private news.

I find strong empirical support for model predictions in the data. Bonds with high
information asymmetry exhibit stronger price reversals than low-asymmetry bonds, but less
so following days when trading volumes are high, but dealers’ inventory does not change
at the end of the day (clients purchases equal client sales). High-asymmetry bonds in my
analysis are the bonds that are owned by few mutual funds and intermediated by few dealers,
have smaller outstanding amounts and issued by smaller firms with no actively traded CDS

contract on the issuer and high stock return volatility.
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In particular, I find that a typical bond with high information asymmetry has the first
autocorrelation of returns close to -0.4 following average-volume trading days. Following two
standard deviations above-average volume day when dealers’ inventory does not change, the
first autocorrelation reduces to -0.18. A similar bond with the same average realized bid-
ask spread, return volatility, credit spread, and volume autocorrelation, but low information
asymmetry has the first return autocorrelation of -0.2, which increases only by 0.05 to -0.15
following high-volume inventory-neutral days.

If one considers, instead, the reversals following days when trading volume is high, but it
is due to substantial changes in dealers’ inventory, then the difference in reversals between
bonds with high and low information asymmetry remains at the average-volume day level.
These results are consistent with the assumption that trading volume in high-asymmetry
bonds is more likely to come from investors who possess private information. Since dealers
typically know their clients well and might be able to detect informed investors, they let other
investors provide liquidity for such trades. Overall, my results suggest that there might be
informed trading in corporate bonds, but when it happens, dealers are not providing liquidity
and are not adversely selected.

My findings have implications for the design of investment strategies exploiting corporate
bond reversals. In particular, I show that long-reversal portfolios of high-asymmetry bonds
outperform long-reversal portfolios of low-asymmetry bonds both before and after adjust-
ment for trading costs. Hence, illiquidity does not fully explain reversal returns. Moreover,
reversal portfolios of high-asymmetry bonds outperform the corporate bond market after
trading cost adjustment. An investor considering an implementation of a bond reversal
strategy might profit from additionally sorting bonds on information asymmetry proxies.

My results also relate to a recent policy debate about corporate bond market trans-
parency. I find that bonds with less transparent valuations tend to have stronger price re-
versals when trading is purely liquidity-driven, and fundamental values of the bonds likely re-

main unchanged. Stronger liquidity-driven reversal is just another name for non-fundamental
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price volatility that is often regarded as an undesirable feature of a well-functioning financial
market. From this standpoint, a proposed reduction in corporate bond market transparency

(TRACE delayed trade dissemination pilot project) might not be optimal.
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Appendix A. Aspects of the model

Log-linear approximation of returns

Consider a homogeneous portfolio of perpetual defaultable bonds with invoice price P,

and coupon rate C. Its next period return R, is:

(1 = Di1) (P + O)
P, ’

1+ R =

where Dyy1 = hyi 1L, and hy i represents a default rate and L;,; € [0, 1] represents loss
given default for bonds in the portfolio at time ¢ 4 1.3 Define r; = log(1 + R;), p; = log(P,),

c = log(C), and —d; = log(1 — D). Then

Tey1 = —dir1 — pr +1og(Pipr + C)

C
= —di41 — Pt + Py + log (1 + 2 ) (
1

= —dps1 — pr + pey1 + log (1 + 7P

Notice that the first-order Taylor expansion of log (1 + e¢“~*) around<c — T yields:

CcC—T

log (K%— ec_m) ~ log ((‘j— ec_“?) (r # ((c—z)—(c—2)).

Then the expression Yor returns becomes:

c—p c—p

= e (& _
Tey1 = —dip1 — pr+ P + log (1 + € ptH) {‘L m(c — Pry1) — m(c — D)

~~ o
_ 1 ec—D _
éﬁll 9_714»50_5: ==1-0 <

+e¢™P
= —dyy1 — pt + pry1 — log 0 + (1 - 9>(C_pt+1) - (1 - 8)(0—5)

= QpH_l — Pt — dt+1 + (]_ — Q)C + (_ loge - (1 - 0) ].Og (9_1 - 1)17

(&

-~
=K

which is equation (4). I set p = 0 (the stea(y—state bond p(ice is par), then 6 = HLC

35With probability 1 — hsy1 the bond pays P,41 + C and with probability h;1 it pays (1 — L11)(Piy1 +C).
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Learning by uninformed tnvestors

The uninformed investor is a Bayesian agent learning about g; and z; at time ¢ by ob-
serving p; and s;. Recall that

pr = —a(g: + bz + esy).
Hence, the agent knows g; + bz; and an estimate of g; immediately gives an estimate of z;.
The conditional distribution of p; given ¢; and s; is
Delge, e ~ N (—a(gt + esy), a26202)

The unconditional distribution of g, is N (0, 03). Bayes theorerr( implies that g|p:, s; is also

Normal with a PDF fy5:

~ 2 2
Folps 0% €XD ~ Petalgetes)  gi |
’ 2a%b?%0? 202

N J J/
=}
Expanding the square and collecting ferms, one gets:
9t2 — 29 {—%} (FA(ﬁt,St)
K = bzggag AN )
024b%02

where A(p, s;) does not depend on g;. Plug in the expression for the pricing function

pr = —a(gr + bz + es;) to get:
2

E [g:|pr, s¢) = (9¢ + bzy),

g
2 1 252
o; + b*o;

=7

VE [glpr, i) = (1=~

Optimal demands

The informed investor is solving the following problem:

- (1) (1)
maXEt |:< (Wt +X; Tt+1+Zt(1+nt+1))1 (

xM

A2



where the distributions of r;; and ns,; given the informed investor’s information set at time
t are both Normal with means E{" [ri11] and 0, and variances v [7¢+1] and o2 correspond-
ingly. The covariance between r;,; and n,,; is time-invariant and equals o,,, by assumption.

The solution of the informed investor’s optimization problem is

1) Egl) [rtJrl] - UrnZt
X = 1)
Vi [resa]

The optimization problem for the uninformed investor (who does not own the non-traded

asset by assumption) is the same up to Z; component in the wealth dynamic and yields

2) _ EEZ) [r41]

X! .
VE [rep)

Conditional variances VEI) [ri11] and V§2) [r141] are constant:
(1) _ 02( 2 2
V' rea] =0 (O'f +03),
2
Vi [ren) = 6%(0F + 03) + (1= 7)oy,
Now, call 02 = 02(0? + 0’%) and plug in the expressions for conditional expected returns and

variances into the expressions for optimal demand to get:

a—1 bla —1 ae(l — 0o
Xt(l) =2 9t ( ) )Zt + ( 2 ) t
- b(a — )
Xt(z) i (a=7) 24 ae( ) S¢.

R e e L g ey e ey )

FExistence of the equilibrium

The equilibrium conditions imply the following system of three non-linear equations in

a, b, and e:

wla=1)  (-w)(a=y) _
o? + az+(1—7)33 =0,
w(ab—orn) + (1—w)(a—7)b _ O,

72 T+ (1—)0?

wae(1—69) (1—w)ae(1—06)
o2 + 024+(1—7)o2 =1
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The second equation immediately implies that b = o,,, is the only possible solution for b.

The system of two remaining equations for a and e can be re-written as

0=d¢1(a,e) = (a—a)(o? +w(l— 7)03) —(1-a)w(l - 7)05,

0= ¢2(a,e) = ae(l — 00)w(l — ) — o7(a — ),
where @ = w + 7 —wy > v > 0. Observe from the first equation that ¢;(a,e) < 0 and
¢1(1,e) > 0. Hence, if the solution a* exists, it must be that a* € (@, 1). Then, take the

derivative of the first equation with respect to a treating e as a function of a:

% [¢1(a,e(a))] = 02 +w(l — 7)05 + (a — d)(ag +b%0? + ol + a?aediil[e(a)]),

which is positive for a € (a, 1) if e*(a) that solves the second equation 0 = ¢s(a,e) grows
in a. In this case we would have a unique positive solution a* € (a,1). Now, I am going to
establish the conditions under which this is indeed the case.

The second equation can be re-written as a quadratic equation with respect to e:

0= ¢a(a,e) = (a’(a—7)0%07) ¢ = (a(l = 00)w(1 — 7)) e + (a — 7)0*(0} + a*(oy + b°02)).
Since a* > a > v, it must be thg: ¢2(a,0) > 0, and if the solution e* exists it must be that
e* > 0. Two candidate solutions of the quadratic equation can be written as:

e*(a) = v(a) £ v(a)k(a) where

o(a) (1—-66)(1 —~y)w 1
20202 ala—7) ’

=1/p
1 — B%)\(a),

k(a) =
o2 o2+ bo?
v = (- (G+ =)

and for a € (a,1) v>0,v' < 0,0 <k <1,k <0,¢ > 0,9’ > 0. For the solutions to exist it

must be that ) < B~2 for a € (a,1). Observe that

1
0'2 O'2 O'2 O'2
f f f f

U= (a—7) (; + ﬁa2> 6 (=) (? * §a2> (and

e (1= 0901 — )%

40404
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So, it is suffice to impose the following restriction on model parameters:
(1 —66)%w? 1
40* o2 (0} + 02 + b%02)

Y

to guarantee that the discriminant is non-negative and the quadratic equation for e has
solutions. The condition is easy to obey since the shocks in the left-hand side denominator
are small numbers. From now on I assume that the condition is satisfied.

Of the two roots of the quadratic equation for e, I am going to focus on the smaller one,
e*(a) = v(a) — v(a)k(a). First, it is the root that guarantees that e*(a) grows with a when
a € (a,1) as I am about to prove. Second, for reasonable parameters values v(a) is a fairly
large number (in a numerical example in Section VI it is around 60) and a positive root
v(a) 4+ v(a)k(a) does not make much economic sense.

The smaller root e*(a) = v(a) — v(a)k(a) grows with a € (a, 1) if - [e*(a)] > 0, i.e.:

v —vk—vk >0&

V(1 —k) > ok &
v’ k'
— > =
v 11—k
v K (1+ k)
v 1 —k?
v’ - —5 B2 (1 + k)
v B2y
L1 (14
v 1w(ity) N
v 2 P
2a — 19 (1+1
e B S O ) YN
ala—7) 2 @
U? a§+b%§
20 — 7 Sla—7)+-~5—=ala—7)(2a—") 1
_ ( — )>— s ; 2 +E =
R
2 2 2 2
g+ 20202 ) 1
9 T % — — ( + —) and observe that
a U_J; + Ug+l; 02a2 k
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Z—Z + 022 a(2a —
)
which is indeed true.
To sum up, under the condition
(1 — 66)%*w? 1

>1
4604 o2 ( t+og+ b20?)
(a) > 0 that grows with a € (a, 1), and it leads

the equation 0 = ¢2(a, €) always has a root €

to the unique solution a* € (a,1) of 0 = ¢1(a, e*(a)).

Derivation of the volume-return relationship

Plug in the expression for the pricing function p, = —a(g; + bz + es;) into (7) to get
re = —0(fy —my) — abg, — abbz, — abes, + (a — 1) g1 + abz_1 + aes;_;.
Assume an econometrician also observes v.; = |a(Ag: + 0,,A%)| and vs; = s; — S¢—1. Now,
the goal is to compute E; [1e41|re, Ve, Use) -

Call, for the sake of convenience of notations, x = 141, y = 1y, v = a(Agy + 0, A %), and

u = vg¢. The unconditional distribution of (z,y,v,u) is Gaussian:

/ DY
(,f[j"y,’(]7u) NN 11 12

/

12 222

where X171 = 044, 12 = [02y Opy 0] and

Oyy Oyv Oyu (
2225 0 .

yv  Owv

’(jyu 0 Ouu gn
The projection theorem for multivariate Normal distributidns implies:
E [‘T|y7 v, U] = 6:vyy + Bacvv + Bwuua
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Now consider E [z|y, |v|,u] . First, apply the law of iterated expectations:
E[zly, [v],u] = E[E [z[y, v, u] |y, [v], ]
=E [Buoyy + Lot + Beutt|y, [v], 1]
= By + B [v]y, [0], u] + Bruu.
Notice that E [vly, |v|,u] = E [v|y, |v|] since o,, = 0. Now, use the fact that for any random

variable ) with a PDF fg(q):

follal) — fo(=lql)
folal) + fo(—lal)

E[Qllq]] = |4l

In this case, it implies:
Joly(v]) = foy(=[v])
fory([v]) + fv\y(_yv‘y

o o2
U|yNN< yvyagvv_ yv)
oyY Oyy

After straightforward algebra, one finds that

E[v]y, [v]] = |v]

where

ePlvly _ o—plvly

_ ~ 2
Efoly. ol = 1ol Sy ~ Pl

Tyv

CovOyy—02

for small values of v, where py, = :
Yyv

Assembling altogether:

E [z, [v], u] & (Bay + pBav|v]?) é+ Bl
Since v and u are assumed independent, an additional condlitioning on |u| in the expectation

sign is straightforward:

E [.T|y7 |U|7 |U” ~ (63:1/ + pyvﬁxv‘”P + pyuﬁxu|u|2)

which is the analogue of (10). Above, p,, = ———. To compute<he coefficients in this

OuuOyy —agu

relationship given model parameters one needs to compute the covariance matrix Y. Direct

A7



calculations yield:

(ae)?(0* +1 —260) ,

0oz = 0°0F 4 ((a0)? + (a — 1)?) C; + (ab)?(6* + 1)o? + 5 o2
2
1 _
Oy = (1 — a)abo’ — (ab)’0o? + ac) <06<1 — ;2) 0 6)03;

Opy = a(a(az + b%0?) — o2);

g
ae(1 —69) ,
U:ru - 1+ 6 O’sﬂ
Oyy = Ogx;

oy = a(l —a(l+0))o; — aab®(1+ 0)o?;
ae(1+0)

=g

0w = 20°(0; 4+ b°07);

_ 2 2
Cun = o;.
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Appendix B. Data and sample

Sample selection

I apply some filters to the TRACE database after cleaning it as in Dick-Nielsen (2014).

Here are the criteria I use to select the bonds in the sample:

e The bond is nominated in USD;

e It is a fixed coupon (including zero-coupon), non-asset backed, non-convertible, non-
enhanced bond;

e Not privately issued and not issued under Rule 144A;

e Of one of the following types according to the Mergent FISD classification: CMTN (US
Corporate MTN), CDEB (US Corporate Debentures), CMTZ (US Corporate MTN
Zero), CZ (US Corporate Zero), USBN (US Corporate Bank Note), PS (Preferred
Security), UCID (US Corporate Insured Debenture);

e The interest is paid 1, 2, 4, or 12 times a year, or the bond is zero-coupon;

e The quoting convention is 30/360.
Four additional criteria must be jointly satisfied to keep a trade record in the sample:

e The trade is executed between Jan 1, 2010, and Jun 30, 2017;

e Executed at eligible times (time stamps of the trades are between 00:00:00 and 23:59:59;
there is a small number of trades in TRACE with misreported times that do not fall
into this range, I remove them from the sample);

e Executed on NYSE business days;

e Executed on or after the dated date of the bond (the date when the interest starts to

accrue).

Agency transactions with commissions are retained in the sample.
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Winsorization

To ensure that my results are not driven by extreme observations, I winsorize some
variables. In particular, in the original bond-day panel (before active periods are determined)

I winsorize:

e C-to-C trading volume at 99%;

e C-to-D trading volume at 1% and 99%;
e Credit spread at 99.9%;

Bid-ask spread at 99.9%;

Total daily returns at 0.1% and 99.9%.

SEC N-Q) forms and holdings data

Adapted from Ivashchenko and Neklyudov (2018).

SEC N-Q forms submitted by mutual funds are available online through the SEC EDGAR
system. I recover the number of mutual fund owners from machine-read N-Q forms. Mutual
funds have a lot of discretion in how they fill in their N-Q) forms, which makes it challenging
to process the data. Below I describe the main steps I take.

Funds do not report bond CUSIP numbers in N-Q forms. I identify bond holdings in N-Q
forms by issuer name, maturity, and coupon rate. I attempt to find N-Q records matching
the CUSIPs in my sample. Several possibilities arise. If there is no match, I assign a value
of zero to the number of mutual funds that hold the bond. If there is a match, it may or
may not be unique. Even if the match is unique (which is the dominant case), it may refer
to a not-in-sample bond with the same coupon rate and maturity. To ensure that I identify
a correct bond I compute the cosine text similarity measure between an issuer name from
the FISD database and an issuer name I recover from N-Q forms.?® Table B1 provides some

examples. Table Bla shows a record with a uniquely identified bond, while Table B1b shows

36T experimented with different similarity measures and did not observe much difference in results.
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a record with double matching: one bond is the true bond I am looking for, another bond is
mortgage-backed security with the same coupon rate and maturity. Regardless of whether
the match is unique or not, I keep a record in the sample only if the cosine similarity measure

is above 0.45.

cusip-id issuer maturity  rate report CIK what similarity

22541LAL7  credit suisse first boston (usa) inc  2009-01-15 3.88 2005-01-31 0000933996 credit suisse fb usa inc 0.67

(a) Unique maturity and coupon rate pair

cusip_id issuer maturity  rate report CIK what similarity
36158FAA8 ge global ins hldg corp  2026-02-15 7.00 2005-01-31 0000933996 ge global insurance holding 0.56
36158FAA8 ge global ins hldg corp  2026-02-15 7.00 2005-01-31 0000933996 fhlme pool 0.17

(b) Non-unique maturity and coupon rate pair

Table B1. Examples of records with a unique and non-unique combination of
maturity and coupon rate. First four columns (CUSIP number, issuer name, maturity,
and coupon rate) are the data from Mergent FISD. The next three columns (report date,
investment fund identifier CIK, and ‘what’) are the data from a machine-read N-Q filing
matched to the FISD data by maturity and coupon rate. ‘Similarity’ is a cosine similarity
between ‘issuer’ and ‘what’ fields.

Funds report N-Q forms twice every fiscal year, which is fund-specific. T use the ‘last
observation carried forward’ approach to fill business days between two reporting dates for
every fund, i.e., I assume that a fund holds all recently reported bonds every business day
between the most recent and the previous N-Q report.>” Once I have fund-bond-day holding
indicators, I compute the number of funds that hold the bond in a given period and use this

variable as the ‘number of mutual fund owners’ in my analysis.

Actively traded CDS contracts

DTCC publishes a list of 1000 most actively traded single-name CDS contracts quarterly
since June 2009.3® It includes both American and European, sovereign, and corporate issuers.
I machine-read the data from these quarterly DTCC reports and remove all sovereign and

all non-American reference entities. The DTCC reports contain some aggregate information

37Tt introduces a timing error when a fund opens a new or closes an existing bond position. It should not
be critical for my results because I compute the average number of mutual funds that hold the bond in
active periods, which are quite prolonged by construction.

38Gee DTCC website.
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on CDS transactions like the total number of clearing dealers and average daily notional
amount. In this paper, I use only the fact that an entity is listed among 1000 most actively
traded contracts and do not use additional characteristics provided by DTCC.

The reference entities in DTCC reports are text strings; other firm IDs are not provided.
I match text strings from DTCC reports to issuer names from Mergent FISD database (after
some usual text cleaning) by computing Jaro-Winkler distance and keeping all name pairs
where the distance is less than 0.2. Then I manually check all matched pairs to ensure that I
do not have any false matches. All the entities that were not matched or were not mentioned
in the DTCC report in a given quarter are assigned the CDS dummy value of 0. All matched
entities are assigned the value of 1 for all days in a given quarter. Among 1000 U.S. firms
mentioned at least once in DTCC reports from 2010 to 2017, I match a bit more than 800.
I might have some ‘true negatives’ in the final sample (the firms that were not matched due
to some text processing errors), but it should not affect my results as long as ‘false positives’

(wrongly matched firms) are absent.
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Appendix C. Additional Tables and Charts

Mean Median  S.D. Min 5th 25th 75th 95th Max N.Obs.
Issue size, mln USD 655.24  500.00 708.38 | 0.61 9.40  250.00 850.00 2000.00 15000.00 | 5746678
Rating 7.97 7.33 3.27 1.00  4.00 6.00 10.00 14.00 21.00 5746678
Age, years 4.93 3.58 4.63 0.00  0.33 1.67 6.75 15.50 62.42 5746678
Maturity, years 9.37 6.50 8.05 1.00  1.50 3.50 12.08 27.33 29.92 5746678
Duration 6.75 5.57 4.49 0.84 141 3.20 9.00 15.86 27.93 5746678
Total return, % 0.03 0.03 1.25 -8.19 -1.85 -0.36 0.43 1.90 8.49 5746678
Credit spread, % 2.55 1.90 2.84 0.00  0.69 1.28 2.98 6.24 88.70 5746678
Average bid-ask, % 1.14 0.74 1.16 0.00 0.08 0.31 1.62 3.37 19.99 2308138
No. trades per day 6.45 3.00 11.17 1.00 1.00 2.00 7.00 22.00 2540.00 | 5746678
No. days since last trade 2.33 1.00 7.25 1.00 1.00 1.00 2.00 7.00 1436.00 | 5735632
C-to-C volume, % of size 0.50 0.00 1.97 0.00  0.00 0.00 0.08 2.50 15.99 5746678
C-to-D volume, % of size 0.01 0.00 3.52 | -19.67 -4.35 -0.22 0.33 4.29 17.91 5746678
|C-to-D volume|, % of size | 1.52 0.28 3.18 0.00  0.00 0.05 1.31 7.86 19.67 5746678

Table C1. Summary statistics of the unfiltered bond-day panel. This is a counterpart of
Table I that shows how sample characteristics change in the full unfiltered bond-day panel
(no restriction on the number of days since the previous trade).

C1
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Info asymmetry

Figure C1. Point estimates for high-volume day reversals. The calculations are
based on models (8) from Tables VI-VIII. On the x-axis from left to right are the deciles
of information asymmetry proxies. For instance, ‘Low asymmetry’ bond is the one that has
the number of fund owners, active CDS dummy, issue size, number of dealers, and issuer
size all in the 90-th percentile and stock volatility in the 10-th percentile. ‘High asymmetry’
bond has the number of fund owners, active CDS dummy, issue size, number of dealers, and
issuer size all in the 10-th percentile and stock volatility in the 90-th percentile. All other
covariates from the regression models (average bid-ask spread, volume correlations, return
volatility, and credit spread) are fixed at the median level. High C-to-C volume day is the day
with C-to-C volume 2 standard deviations above the average (and average C-to-D volume);
its reversal is E[@l\covariates] + 2E[Bg|covariates]. High C-to-D volume day is the day with
C-to-D volume 2 standard deviations above the average (and average C-to-C volume); its
reversal is E[3|covariates] + 2E[fs|covariates]. The reversal on the average volume day is
simply E[3;|covariates].
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1G HY 1G HY 1G HY
B1 B2 B3
Intercept —0.407*** —0.425%** 0.108*** 0.103*** 0.107*** 0.102***
(0.008) (0.023) (0.011) (0.019) (0.008) (0.019)
Average bid-ask —0.084*** —0.085*** 0.018** —0.012 —0.038*** —0.050***
(0.007) (0.013) (0.008) (0.014) (0.006) (0.012)
C-to-C vlm corr. 0.136*** 0.124** 0.092%** 0.165%*** —0.010 0.029
(0.017) (0.052) (0.019) (0.046) (0.016) (0.046)
C-to-D vlm corr. —0.088*** —0.024 —0.126*** —0.110** —0.025 0.004
(0.016) (0.043) (0.022) (0.050) (0.019) (0.049)
No. funds 0.0002*** 0.0003* —0.0002** —0.0002* 0.0002** 0.00003
(0.0001) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001)
CDS dummy 0.005* —0.006 —0.007* 0.005 0.006** —0.009
(0.003) (0.009) (0.004) (0.008) (0.003) (0.008)
Issue size 0.058*** 0.089*** —0.009** —0.024* —0.001 0.013
(0.005) (0.019) (0.004) (0.014) (0.004) (0.015)
No. dealers 0.001*** 0.002*** —0.001*** 0.0001 —0.0002 0.0003
(0.0002) (0.001) (0.0002) (0.0004) (0.0002) (0.0005)
Issuer size 0.00005*** 0.00003 0.00003 —0.00000 —0.0001*** —0.0003***
(0.00002) (0.0001) (0.00002) (0.0001) (0.00002) (0.0001)
—Equity volatility —0.541* 1.119** —1.143*** 0.492 0.544 —0.097
(0.320) (0.485) (0.422) (0.453) (0.356) (0.407)
Risk controls YES YES YES YES YES YES
Observations 3,971 710 3,971 710 3,971 710
R2 0.443 0.381 0.038 0.042 0.089 0.117
Note: *p<0.1; **p<0.05; ***p<0.01

Table C2. Cross-sectional regressions of Bl, Bg, and Bg; investment-grade and
high-yield bonds separately. Each model is an OLS regression with heteroscedasticity-
consistent standard errors. Average bid-ask is the percentage difference between the daily
buy and sell prices, excluding inter-dealer trades. Volume correlations are the first autocorre-
lations of V, and V;'”). “No. funds’ is the number of mutual funds that own the bond. CDS
dummy equals 1 if the average Active CDS dummy for the bond across its active periods is
above 0.5 and 0 otherwise. The issue size is the outstanding notional amount in bln USD.
The issuer size is market cap in bln USD. ‘No. dealers’ is the average number of unique
dealers that intermediate trades in each bond. Stock return volatility is the average realized
volatility of daily stock returns across all active periods for each bond. Risk controls include
credit spread and realized bond return volatility.
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Mean Med. | No.>0 No.<0 | No.>0* No.<0* | No. Obs.
B1 | -0.3287 -0.3429 114 9649 0 8700 9763
BQ 0.0712  0.0618 7079 2684 1671 185 9763
Bg 0.0584  0.0564 6894 2869 2043 345 9763

Table C3. Summary statistics for the cross-section of volume-return coefficients
(estimated controlling for the market return in the first-step regression). This is
a counterpart of Table IV, but the first-step regression here is Ry 1 = o+ 01 R: + ﬂgRt‘z(C) +

B3Rt‘~/t(s) + B4R™K 4 €, 1. The market return R™* is the return on Barclays IG Corporate
Bond index.

B1 B1 B2 B2 B3 B3
Intercept —0.438*** —0.448*** 0.111*** 0.099*** 0.078*** 0.089***
(0.005) (0.007) (0.008) (0.009) (0.006) (0.007)
Average bid-ask —0.044*** —0.052*** 0.017*** 0.017*** —0.046*** —0.042***
(0.006) (0.005) (0.006) (0.007) (0.005) (0.005)
C-to-C vlm corr. 0.077*** 0.074*** 0.111%** 0.101*** 0.021 0.018
(0.016) (0.016) (0.019) (0.019) (0.016) (0.017)
C-to-D vlm corr. —0.059*** —0.069*** —0.119*** —0.120*** —0.013 —0.021
(0.014) (0.014) (0.020) (0.021) (0.017) (0.018)
No. funds 0.001*** 0.0004*** —0.0001** —0.0001** 0.0003*** 0.0002***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
CDS dummy —0.001 —0.002 —0.006* —0.006* 0.004 0.002
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Issue size 0.024*** 0.028*** —0.012*** —0.011*** —0.009** —0.004
(0.004) (0.004) (0.004) (0.004) (0.003) (0.004)
No. dealers 0.001*** 0.001*** —0.001*** —0.001*** —0.0004** —0.0002
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Issuer size —0.0001*** 0.00000 —0.0001***
(0.00002) (0.00002) (0.00002)
—Equity volatility —0.782** —0.974%*** 0.656**
(0.323) (0.340) (0.279)
Risk controls YES YES YES YES YES YES
Observations 4,985 4,656 4,985 4,656 4,985 4,656
R2 0.260 0.274 0.030 0.033 0.077 0.075
Note: *p<0.1; **p<0.05; ***p<0.01

Table C4. Cross-sectional regressions of Bl, Bg, and Bg (market return included
in the first-step regression). Each model is an OLS regression with heteroscedasticity-
consistent standard errors. Volume-return coefficients are averaged for every bond across all
active periods, so are the predictors. Average bid-ask is the percentage difference between
the daily buy and sell prices, excluding inter-dealer trades. Volume correlations are the first
autocorrelations of V,” and V,”). ‘No. funds’ is the number of mutual funds that own the
bond. CDS dummy equals 1 if the average Active CDS dummy for the bond across its active
periods is above 0.5 and 0 otherwise. The issue size is the outstanding notional amount in
bln USD. The issuer size is market cap in bln USD. ‘No. dealers’ is the average number
of unique dealers that intermediate trades in each bond. Equity volatility is the average
realized volatility of daily stock returns across all active periods for each bond. Risk controls
include credit spread and realized bond return volatility.
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Figure C2. Point estimates and confidence intervals for the expected values of
volume-return coefficients (market return included in the first-step regression).
This figure is a counterpart of Figure 3, but the volume-return coefficients are estimated
controlling for market return in the first-step regression (see Table C3).
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Mean Med. | No.>0 No.<0 | No.>0* No.<0* | No. Obs.
f1 | -0.3112  -0.3252 179 9644 12 8302 9823
BQ 0.1126  0.0798 7414 2409 1948 157 9823
Bg 0.0778  0.0732 7304 2519 2405 289 9823

Table C5. Summary statistics for the cross-section of volume-return coefficients
(estimated controlling for volumes in the first-step regression). This is a counterpart

of Table IV, but the first step equation here is R, 1 = By + S1 Ry + BgRtVt(c) + 53Rt\7t(8) +

BV 4 BV +

€tr1-
B1 B1 B2 B2 B3 B3
Intercept —0.395*** —0.398*** 0.170*** 0.164*** 0.104*** 0.117***
(0.007) (0.007) (0.011) (0.013) (0.007) (0.008)
Average bid-ask —0.091%*** —0.103*** 0.027*** 0.027*** —0.055*** —0.050***
(0.006) (0.006) (0.009) (0.010) (0.006) (0.006)
C-to-C vlm corr. 0.122%*** 0.119*** 0.022 0.016 —0.010 —0.007
(0.017) (0.017) (0.026) (0.026) (0.017) (0.017)
C-to-D vlm corr. —0.074*** —0.075*** —0.099*** —0.072* 0.019 0.007
(0.016) (0.017) (0.037) (0.039) (0.019) (0.020)
No. funds 0.0003*** 0.0003*** —0.0003*** —0.0003*** 0.0003*** 0.0002***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
CDS dummy 0.002 0.002 —0.004 —0.004 0.005* 0.002
(0.003) (0.003) (0.005) (0.005) (0.003) (0.003)
Issue size 0.050*** 0.046*** —0.016*** —0.014** —0.016*** —0.010**
(0.005) (0.005) (0.006) (0.006) (0.004) (0.004)
No. dealers 0.001*** 0.001*** —0.001*** —0.001%*** —0.0003* —0.0001
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Issuer size 0.00004** —0.00003 —0.0001***
(0.00002) (0.00003) (0.00002)
—Equity volatility 0.453 —0.330 0.645**
(0.286) (0.472) (0.298)
Risk controls YES YES YES YES YES YES
Observations 5,018 4,691 5,018 4,691 5,018 4,691
R2 0.356 0.368 0.029 0.027 0.076 0.076
Note: *p<0.1; **p<0.05; ***p<0.01

Table C6. Cross-sectional regressions of 5’1, BQ, and Bg (volumes included in
the first-step regression). FEach model is an OLS regression with heteroscedasticity-
consistent standard errors. Volume-return coefficients are averaged for every bond across all
active periods, so are the predictors. Average bid-ask is the percentage difference between
the daily buy and sell prices, excluding inter-dealer trades. Volume correlations are the first
autocorrelations of ‘N/t(c) and Vt(s). ‘No. funds’ is the number of mutual funds that own the
bond. CDS dummy equals 1 if the average Active CDS dummy for the bond across its active
periods is above 0.5 and 0 otherwise. The issue size is the outstanding notional amount in
bln USD. The issuer size is market cap in bln USD. ‘No. dealers’ is the average number
of unique dealers that intermediate trades in each bond. Equity volatility is the average
realized volatility of daily stock returns across all active periods for each bond. Risk controls
include credit spread and realized bond return volatility.

C6



E[Bi|covariates| E[B;|covariates| E|[Bs|covariates|

0.16 — 0.16 —

—0.20 —
0.14 — 0.14 —
0.12 — 0.12 —

—0.25 —
0.10 — 0.10 —
0.08 — 0.08 —

—0.30 —
0.06 — 0.06 —
0.04 — 0.04 —

0.35 —
0.02 — 0.02 —

Low Average High Low Average High Low Average High

Info asymmetry

Figure C3. Point estimates and confidence intervals for the expected values of
volume-return coefficients (volumes included in the first-step regression). This
figure is a counterpart of Figure 3, but the volume-return coefficients are estimated control-
ling for trading volumes in the first-step regression (see Table C5).
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