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Abstract 

I demonstrate that investors trade U.S. corporate bonds not only for liquidity reasons but also 

on private information. Bond dealers let less-informed investors provide liquidity to informed 

traders and are not adversely selected. I obtain these results by contrasting corporate bond 

price reversals in bonds with different information asymmetry, trading volume, and dealers’ 

capital commitment. I find strong price reversals that become less pronounced following high-

trading-volume days. The effect is the strongest for bonds with high information asymmetry, 

and when dealers’ end-of-day inventory does not change. The results suggest that information 

reveals itself in prices on high-volume days when dealers do not accept overnight inventory 

risk. The findings are in line with the predictions of a theoretical model in which investors 

trade both for liquidity reasons and on private news that arrive independently of changes in 

inventory. I further show that realized bid-ask spreads are not wide enough to negate reversal 

profits of high-asymmetry bonds. Such reversal portfolios earn 3% per year after trading 

cost adjustment. By connecting low market transparency with high non-fundamental price 

volatility, the paper also contributes to the ongoing policy debate. 
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I. Introduction 

Sophisticated investors used to own a substantial fraction of U.S. corporate bonds around 

the global financial crisis of 2008–2009. Figure 1 shows that hedge funds’ corporate bond 

holdings stood at around 40% of the combined holdings of insurance companies, pension 

funds, mutual funds, and ETFs around the time of the crisis. Ten years later, this ratio is 

four times lower. Citi, one of the biggest corporate bond dealers, states that ‘market diversity 

has fallen significantly, the buyer base has become more homogeneous’ (Citi 2018). As ‘smart 

money’ was leaving the market, both industry participants and academics expressed concerns 

that the price discovery mechanism in corporate bonds might be impaired. The market has 

been serving primarily large institutions trading for liquidity reasons; information-driven 

trading has become scarce.1 
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Figure 1. Hedge funds’ corporate bond holdings, in % of the combined holdings of 
insurance companies, pension funds, mutual funds, and ETFs. I use U.S. Flow of Funds 
(FF) data to calculate the ratio. The FF data do not separate hedge funds, but the industry 
tradition is to interpret households’ corporate bond holdings as the ones dominated by hedge 
funds. 

1Business cycle, tighter regulation of dealer banks, and the emergence of alternative credit trading venues all 
contributed to the flight of ‘smart money’ away from corporate bonds. As BlackRock writes, ‘some investors 
have migrated risk exposure from the cash bond market to standardized derivatives to the extent they have 
the flexibility to do so from a legal, regulatory, operational, and investment policy perspective’ (BlackRock 
2018). Simultaneously, some scholars argue that even bond short-sellers are not trading corporate bonds 
on information (see, for instance, Asquith, Au, Covert, and Pathak 2013). Berndt and Zhu (2018) provide 
a model that links higher dealer inventory costs with lower market efficiency post-crisis. 
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In this paper, I demonstrate that, despite these concerns, there is strong empirical ev-

idence that investors still trade corporate bonds not only for liquidity reasons but also on 

information. Information-driven trading is more likely in bonds with fewer mutual fund own-

ers, fewer dealers, no actively traded CDS contracts, lower outstanding amounts, and when 

bond issuers are smaller firms with more volatile stocks. I call such bonds high-information-

asymmetry bonds. The paper claims that bond dealers are aware of information-based 

trading and manage to avoid informed flows. When approached by a client who wants to 

trade, dealers choose whether to provide liquidity themselves or to find another investor who 

wants to trade in the opposite direction and let him or her provide liquidity.2 I demonstrate 

that the latter rather than the former happens for high-information-asymmetry bonds. 
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Figure 2. Stylized price reversal paths for a high-information-asymmetry bond. 
On day 1, the trading volume is either low or high. The solid line shows a reversal path 
on a high-volume day when dealers’ end-of-day inventory (in this particular bond) does not 
change, and dealers buy from some investors as much as they sell to other investors. The 
dashed line refers to when trading volume on day 1 is high, and dealers trade a lot from 
their inventory. The ‘Low volume’ dotted line represents the average reversal path. For 
comparison purposes, I assume that the price change on day 1 is the same in all three cases. 

2The dealer nevertheless executes both trades, but such pre-arranged transactions close fast, and bonds do 
not stay on dealer’s books for longer than several minutes. 
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I obtain these results by contrasting corporate bond price reversals (measured as the first 

autocorrelation of returns) following days with different trading volumes and dealers’ capital 

commitment. What is the link between price reversals and trading motives? Liquidity 

trading (non-informational trading) generates reversals, which represent remuneration for 

liquidity providers. Reversals tend to be less pronounced following high-trading-volume 

days. On such days, price changes are more persistent because trading is partly driven 

by private information.3 Price changes are the most persistent following high-volume days 

when dealers buy from some investors as much as they sell to other investors (and dealers’ 

end-of-day inventory does not change). Figure 2 shows the stylized reversal paths I obtain 

for a typical high-information-asymmetry bond. Reversals are, on average, strong, but price 

changes become more persistent as trading volume increases, especially if dealers only match 

buyers and sellers and do not accept overnight inventory risk. The more persistent price 

changes are, the more likely it is that trading is information-motivated. 

Formally, my empirical analysis proceeds in two steps. In the first step, I use TRACE data 

from years 2010–2017 aggregated to the daily frequency to estimate the following volume-

return relationship for individual corporate bonds:4 

Rt+1 = β0 + (β1 + β2 · Inventory-neutral volumet + β3 · |ΔInventory|t) Rt + �t+1, (1)| {z } 
Return autocorrelation 

Above, Rt+1 stands for total corporate bond return on day t+1. Inventory-neutral volume is 

the volume of investors’ purchases from dealers matched by investors’ sales to dealers within 

business day t; it does not add to dealers’ aggregate end-of-day inventory in this bond. The 

difference between investors’ purchases and sales is the change in dealers’ inventory on day 

t: it stays on dealers’ books until day t + 1. High trading volume on day t can be due to 

high inventory-neutral volume, or a big change in dealers’ inventory, or both.5 In (1), β1 

measures the reversal on a low-volume day, while β2 and β3 capture how the reversal changes 

3I assume that new public information affects prices without inducing abnormally high trading volumes. 
4I require the bonds to be traded frequently enough to be included in the sample. 
5In this paper, I do not take into account inter-dealer trading volumes. If there are only inter-dealer trades 
on day t, both trading volume measures in equation (1) are zero. 

4 



following high-volume days with different dealers’ capital commitment. The volume-return 

relationship (1) stems from a theoretical model where risk-averse investors trade corporate 

bonds with each other for either liquidity or informational reasons, and inventory fluctuates 

independently of news arrival. 

In the second step, I run a cross-sectional regression of estimated volume-return coef-

ˆ ˆ ˆficients β1, β2, and β3 on information asymmetry proxies controlling for bond illiquidity, 

riskiness, and volume persistence. My information asymmetry proxies are the number of 

mutual funds that hold the bond, the number of dealers who intermediate trades in the 

bond, the size of the issue and the issuer, the availability of an actively traded CDS contract 

on the bond issuer, and issuer’s stock return volatility. Larger values for all proxies except 

for stock volatility are associated with lower information asymmetry. 

I find that β̂  
1 is negative. Bond prices tend to revert following low-volume days. For a 

ˆtypical high-asymmetry bond, β1 stands at around -0.4; if the price increases by 100 b.p. 

on a low-volume day, it falls by 40 b.p. the next day. For the same high-asymmetry bond, 

β̂2 is positive. For every additional standard deviation of inventory-neutral trading volume, 

ˆreturn autocorrelation increases (reversal reduces) by 0.1. β3 is about two times smaller 

ˆthan β2 for the high-asymmetry bond. The results suggest that bond price changes are 

the most persistent when trading volumes are high, but dealers are reluctant to trade from 

their inventory capacity. Furthermore, I find that β̂  
1 decreases, β̂  

2 increases, and β̂  
3 does 

not change as information asymmetry grows in the cross-section of bonds.6 These findings 

suggest that information-motivated trading in corporate bonds does exist, and it most likely 

occurs on high-volume days when dealers are only matching buyers and sellers and do not 

accept additional inventory risk. 

This paper further argues that the long part of the bond reversal investment strategy, 

constructed on higher-asymmetry bonds, delivers higher risk-adjusted returns after trading 

cost adjustment. Between October 2005 and June 2017, the long-only monthly re-balanced 

6These results hold for both investment-grade and high-yield bonds, and within bonds of the same issuer 
(for the issuers with many bonds outstanding). 
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reversal portfolio on high-information-asymmetry bonds earned 2.8% annualized return after 

trading cost adjustment, which is 1.5 p.p. above the corporate bond market and the long-

reversal return on low-asymmetry bonds. These results suggest that, even when illiquidity 

is taken into account, reversal returns are high. An investor implementing a bond reversal 

strategy in practice may further refine it using information asymmetry proxies to obtain 

even better performance. 

My paper contributes to several streams of corporate bond literature. The paper discusses 

the impact of private information on corporate bond price reversals and, with this regard, 

extends a traditional explanation of reversals based on illiquidity stemming from OTC market 

frictions. Duffie, Gârleanu, and Pedersen (2005) present a theoretical framework where OTC 

market frictions drive illiquidity; Friewald and Nagler (2019) provide supporting empirical 

evidence from the corporate bond market. I demonstrate that in the cross-section of bonds 

with similar illiquidity, the reversals further depend on information asymmetry. In related 

work, Bao, Pan, and Wang (2011) study the cross-sectional determinants of negative bond 

return covariance in pre-crisis years. They find that return covariance is above and beyond 

the levels that can be explained by bid-ask spreads but do not link the unexplained part 

directly to information asymmetry.7 

Chordia, Goyal, Nozawa, Subrahmanyam, and Tong (2017), Bali, Subrahmanyam, and 

Wen (2018), and Bai, Bali, and Wen (2019) also discuss an empirical link between corporate 

bond price reversals and illiquidity in the context of pricing the cross-section of corporate 

bonds. The papers find that one-month lagged return is the strong return predictor in the 

cross-section of corporate bonds. Chordia et al. (2017) show, however, that reversal portfolios 

have zero or negative Sharpe ratios after trading cost adjustment. I obtain the same result 

for reversal portfolios constructed on low-information-asymmetry bonds. However, I show 

that reversal portfolios on high-asymmetry bonds survive trading cost adjustment. 

7Feldhütter and Poulsen (2018) also demonstrate that information asymmetry explains only a small percent-
age of cross-sectional variation in corporate bond bid-ask spreads. 
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My paper also contributes to the debate on information-driven trading in the corporate 

bond market. Asquith et al. (2013) analyze the relationship between bond short interest 

and returns and find no evidence of information-based trading either in investment-grade or 

in high-yield bonds. Hendershott, Kozhan, and Raman (2019) use similar data on loaned 

bonds and conclude that information-driven trading is present in high-yield bonds but not 

in the investment-grade universe. In my paper, high-information-asymmetry bonds are not 

necessarily high-yield ones. My sample consists mostly of investment-grade bonds, and 

yet information asymmetry proxies vary a lot in the sample. Therefore, I find evidence of 

information-based trading in investment-grade bonds. Han and Zhou (2014) also argue that 

information motives are present in the pricing of bonds of various credit quality by pointing 

to the positive relationship between microstructure-based information asymmetry measures 

and bond yield spreads. My paper further emphasizes the circumstances in which information 

likely stands behind changes in prices of high-asymmetry bonds: when trading volumes are 

abnormally high, and non-dealer institutions provide liquidity to informed investors. 

The latter finding links this paper to the literature on post-crisis liquidity provision in 

the corporate bond market. The literature has recently documented that liquidity provision 

has been shifting from dealer banks, which are subject to stricter regulatory requirements, to 

less constrained bond investors (see, for instance, Adrian, Boyarchenko, and Shachar 2017, 

Bessembinder, Jacobsen, Maxwell, and Venkataraman 2018, Choi and Huh 2018, and Dick-

Nielsen and Rossi 2018). Dealers still intermediate trading in the latter case but act as pure 

brokers and do not hold bonds on their books for more than a couple of minutes, avoiding the 

risk of holding inventory overnight. Despite the emergence of non-dealer liquidity provision, 

the number of trading days with high customer trade imbalance (substantial changes in 

dealers’ inventory) still exceeds the number of days with sizeable inventory-neutral trading 

volume in my sample.8 Dealers decide on a case-by-case basis whether to let other investors 

provide liquidity or to accept the inventory risk and provide liquidity themselves. My paper 

8I consider aggregate dealers’ corporate bond inventory in the paper and do not investigate end-of-day 
inventory changes of individual dealers. 
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demonstrates that this choice depends on the underlying information asymmetry in the bond, 

which has not been previously documented in the literature.9 I show that dealers tend to 

pass informed flows to less-informed bond investors and are unlikely to be adversely selected. 

The design of my empirical tests follows from a theoretical model of corporate bond 

trading. In the model, I assume that dealers are never adversely selected. An econometrician 

observing the data generated by the model economy recovers a volume-return relationship 

(1) and the dependence between volume-return coefficients and information asymmetry that 

match the ones I find empirically. The methodology of my analysis builds upon Llorente, 

Michaely, Saar, and Wang (2002). The model I construct extends Llorente et al. (2002) in 

two dimensions. First, it adapts the asset return dynamics to a defaultable bond rather than 

a dividend-paying stock. Second, it introduces a noisy market supply representing dealers’ 

inventory.10 The model falls in a broader class of economies discussed in Wang (1994). The 

analysis of volume-return relationship also follows the tradition of Campbell, Grossman, and 

Wang (1993). 

Finally, my results contribute to a recent policy debate (see FINRA 2019 proposal). Since 

late 2004, all corporate bond trades must be reported with a delay of at most 15 minutes. 

Once reported, trade records become immediately available to all market participants. Some 

active bond traders have been arguing that there is ‘too much’ post-trade price transparency 

in corporate bonds.11 To better study the impact of transparency on liquidity, FINRA 

proposed a pilot program according to which some bonds become subject to delayed block 

trade reporting. If the pilot goes through, dealers will be allowed to report big trades in 

such bonds up to 48 hours later. My paper suggests that this policy change will increase 

information asymmetry between investors in bonds included in the pilot. Higher asymmetry 

9Goldstein and Hotchkiss (2019) show that dealers are more reluctant to accept overnight inventory risk 
in bonds with higher search and inventory costs. Their proxies for the costs associated with OTC market 
frictions are different from my information asymmetry proxies. 

10Llorente et al. (2002) also regress estimated volume-return coefficients on information asymmetry proxies in 
the cross-section of stocks to find evidence of information-based trading. They do not distinguish between 
days with and without changes in aggregate dealers’ inventory. 

11For liquidity providers, it has become too costly to trade away from large temporary positions every market 
participant knows about. 
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is associated with stronger price reversals on days when trading is liquidity-driven. In other 

words, lower transparency may lead to higher non-fundamental price volatility, which is 

widely regarded as a negative market feature. 

The paper is organized as follows. Section II talks about the bond sample and the steps I 

take to estimate a volume-return relationship for individual bonds. Section III presents esti-

mated volume-return coefficients, and Section IV investigates its determinants, in particular, 

information asymmetry proxies, in a cross-section of bonds. Section V discusses the implica-

tions of my results for reversal investment strategies. Section VI solves a stylized theoretical 

model of competitive corporate bond trading and discusses a volume-return relationship an 

econometrician observing such an economy recovers. Section VII concludes. 

II. Data and measurements 

A. Data sources 

I construct the dataset of corporate bond prices and volumes from Enhanced TRACE 

tick-by-tick data. The sample is restricted to USD-denominated, fixed-coupon, not asset-

backed, non-convertible corporate bonds. I apply the filters of Dick-Nielsen (2014) to clean 

the TRACE data. I calculate daily corporate bond prices as volume-weighted transaction 

prices within a given day. Bond characteristics come from Mergent FISD database. I derive 

the number of mutual funds that own the bond from scraping and processing SEC N-Q 

forms available through the SEC EDGAR reporting system. The status of the CDS contract 

on the bond issuer comes from quarterly DTCC Single Name CDS Market Activity reports 

publicly available at the DTCC website. These reports were machine-read and mentioned 

entities were matched to the issuers from Mergent FISD dataset. Quarterly DTCC reports 

are available from Mar 2010, which is the primary reason I start my dataset then; it goes 

up to Jun 2017. I compute issuer-level characteristics (market capitalization, stock return 

volatility) using CRSP data. The number of broker-dealers intermediating trades in different 
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bonds is calculated using the academic version of the TRACE dataset. I talk in more details 

about the sample in Appendix B. 

B. Sample filtering and ‘active periods’ 

I estimate the dynamic volume-return relationship for each bond separately, which re-

quires long enough time-series of returns and volumes for every bond. In a baseline specifica-

tion of the volume-return relationship (1), I estimate four coefficients in an OLS regression. 

To avoid over-fitting, I require at least 60 daily observations per bond. However, corporate 

bonds experience waves of trading activity, as documented in Ivashchenko and Neklyudov 

(2018). The intervals between trading days with non-zero trading volume might be quite 

long. Asking for at least 60 consecutive business days is too restrictive, there are very few 

bonds that satisfy this criterion. Instead, I ask for 60 daily observations where every two 

successive observations are at most three business days apart.12 

For some bonds, there is more than one sequence of 60 daily observations where every 

two consecutive ones are at most three business days apart. I call every such sequence an 

‘active period’ and retain all active periods in the sample. I remove all days in between the 

active periods from the sample. Estimation of the volume-return relationship is carried out 

per bond per active period. 

Also, I remove from the sample all active periods when a bond was either upgraded from 

high-yield (HY) to investment-grade (IG) territory or downgraded in the opposite direction. 

Bao, O’Hara, and Zhou (2018) analyze the corporate bond market liquidity around down-

grades and find abnormal price and volume patterns associated with insurance companies 

selling bonds due to regulatory constraints. To ensure that downgrade anomalies do not 

drive my results, I remove all such periods from my sample. I also remove bonds with less 

than one year to maturity from the sample. Such bonds are excluded from major bond 

12Here I follow the methodology of Bao et al. (2011) who study the illiquidity of corporate bonds on the 
daily data and allow consecutive observations to be at most seven days apart. 
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market indices, which also drives substantial institutional rebalancing and creates abnormal 

price patterns that are not the primary focus of this study. 

Mean Median S.D. Min 5th 25th 75th 95th Max N.Obs. 
Issue size, mln USD 1011.28 750.00 820.94 9.07 166.07 500.00 1250.00 2500.00 15000.00 2720325 
Rating 7.73 7.00 3.29 1.00 3.00 6.00 9.00 14.00 21.00 2720325 
Age, years 4.15 3.08 3.96 0.00 0.25 1.42 5.75 12.17 31.50 2720325 
Maturity, years 8.20 5.58 7.62 1.00 1.42 3.17 9.08 27.33 29.92 2720325 
Duration 6.07 4.86 4.24 0.86 1.40 2.94 7.62 15.57 21.57 2720325 
Total return, % 0.02 0.02 0.81 -8.19 -1.15 -0.24 0.29 1.18 8.49 2720325 
Credit spread, % 2.33 1.70 2.68 0.00 0.59 1.13 2.70 6.01 88.70 2720325 
Average bid-ask, % 0.98 0.63 1.02 0.00 0.08 0.29 1.33 3.02 19.99 1550785 
No. trades per day 9.06 6.00 12.77 1.00 1.00 3.00 11.00 28.00 2540.00 2720325 
No. days since last trade 1.10 1.00 0.35 1.00 1.00 1.00 1.00 2.00 3.00 2718673 
C-to-C volume, % of size 0.53 0.02 1.89 0.00 0.00 0.00 0.16 2.83 15.99 2720325 
C-to-D volume, % of size 0.01 0.00 3.11 -19.67 -4.00 -0.20 0.32 3.91 17.91 2720325 

1.35 0.26 2.81 0.00 0.00 0.06 1.17 6.80 19.67 2720325|C-to-D volume|, % of size 

Table I. Summary statistics of the filtered bond-day panel. The sample period is from 
Mar 31, 2010, to Jun 30, 2017. For every bond, I retain only long sequences of daily 
observations close to each other in the sample. Here, I keep sequences longer than 60 days, 
where every two daily observations are at most three business days apart. Besides, I exclude 
from the sample active periods that contain a crossing of the investment-grade/high-yield 
rating threshold. I keep only bonds with more than one year to maturity in the sample. Size 
is the amount outstanding. Rating is on a conventional numerical scale from 1 (AAA) to 
21 (C). The credit spread is the difference between the observed yield to maturity and yield 
to maturity of the bond with the same coupons discounted using the Treasury curve as in 
Gilchrist and Zakraǰsek (2012). Average bid-ask spread (realized) is the difference between 
average client buy and sell prices, expressed as a percentage of the daily average price. It 
is computed only for the days with at least three trades. C-to-C (client-to-client) trading 
volume (also, ‘inventory-neutral’ volume) is a minimum between total client purchases and 
total client sales per bond per day; it is always positive. C-to-D (client-to-dealer) trading 
volume is the difference between client purchases and client sales; it can be positive (dealers’ 
inventory decreases) or negative (dealers’ inventory increases) depending on which of the two 
is greater. The absolute value of the C-to-D trading volume is also the absolute value of the 
change in aggregate broker-dealer inventory in a given bond. For further details about the 
sample, see Appendix B. The same summary statistics for a full, unfiltered bond-day panel 
is in Table C1 in Appendix C. 

Table I presents summary statistics of the bond-day panel where only active periods are 

retained in the sample. My filtered sample includes around 2.7 million bond-day observations 

that cover approximately 10 thousand distinct active periods between 2010 and 2017 and 5 

thousand different bonds issued by 1 thousand unique firms. An average bond in the sample 

is an investment-grade bond issued about four years ago with approximately eight years left 

to maturity. Its outstanding notional amount is around 1 billion USD. The average daily 
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total return of an average bond in the sample is 2 b.p.; the credit spread is approximately 

2.3%. The average realized bid-ask spread is about 1%.13 

C. Volume measures 

To construct a proxy for the inventory-neutral trading volume of equation (1), I first 

compute total daily client purchases from dealers and client sales to dealers; call it Vit 
buy and 

V sell 14 
it respectively for bond i on day t. The minimum of the two is a proxy for inventory-

neutral trading volume which I also call ‘C-to-C volume’: n o 
(c) buy, V sellInventory-neutral volumeit = C-to-C volumeit = Vit = min V itit . 

It represents trading volume that has no impact on aggregate dealers’ inventory in bond i at 

the end of the trading day t as compared to day t−1; it is non-negative by construction. The 

difference between client purchases and client sales is a negative change in dealers’ inventory 

(‘C-to-D volume’): 

(s) 
= V buy − V sell−Change in inventoryit = C-to-D volumeit = V .it it it 

The C-to-D volume can be either positive or negative. Positive values represent net purchases 

by clients from dealers and correspond to a decrease in total broker-dealers’ inventory in bond 

i on day t. Conversely, negative values of V (s) are increases in dealers’ inventory. When I 

estimate equation (1), I consider the absolute value of the C-to-D trading volume, |V (s)|.it 

Table I shows that the absolute value of the C-to-D volume is on average several times higher 

than the C-to-C volume. 

Table II demonstrates that there is a positive statistical relationship between the abso-

lute value of changes in inventory and the C-to-C trading volume, but the corresponding 

correlation coefficient is relatively small. For about two-thirds of bond-active periods, we � � 
(c) (s)

can not reject the hypothesis that Corr Vt , Vt = 0, i.e., bond inventory is equally likely 

13I present the same summary statistics for the full, unfiltered bond-day panel in Table C1 in Appendix C. 
Compared to an average bond in the unfiltered sample, the average bond in my sample has a higher 
outstanding amount, higher credit rating, lower credit spread and bid-ask spread, and lower return. 

14I do not take into account inter-dealer trades when I construct volume proxies. 

12 



Mean Med. No.>0 No.<0 No.>0* No.<0* No. Obs. 
(c) (s)

Corr(V , |V |)t t 
(c) (s)

Corr(V , V )t t 
(c) (c)

Corr(V , V )t t−1
(s) (s) 
t t−1

0.142 

-0.052 

0.063 

0.091 

0.130 

-0.044 

0.028 

0.085 

8356 

3233 

5758 

7612 

1466 

6589 

4064 

2210 

5052 

665 

2920 

3876 

89 

2624 

11 

28 

9822 

9822 

9822 

9822Corr(|V |, |V |) 

Table II. Correlation coefficients between different measures of the trading vol-
ume. V (c) is the C-to-C trading volume, V (s) is a signed C-to-D trading volume, and |V (s)|
is its absolute value. Each correlation coefficient is estimated per bond per active period. 
‘Mean’ and ‘Med.’ are sample average and median values. ‘No. > (<) 0’ is the number 
of positive (negative) correlation coefficients. ‘No. > (<) 0*’ is the number of positive 
(negative) coefficients significant at 10% confidence level. The number of observations is the 
number of bond-active periods. 

to fall or to increase on high C-to-C volume days. The persistence of both the C-to-C and 

the absolute value of the C-to-D trading volume is rather small, as suggested by correlation 

coefficients in the last two lines of Table II. 

D. Proxies for information asymmetry 

In empirical tests, I am using several variables to proxy for the extent of information 

asymmetry between bond investors. Some variables are bond-level proxies: 

- the number of mutual funds that hold the bond; 

- the number of dealers that intermediate trades in the bond; 

- bond outstanding notional amount. 

Other variables are issuer-level information asymmetry proxies: 

- availability of an active CDS contract on the bond issuer (dummy variable); 

- issuer market capitalization; 

- realized stock return volatility in an active period when the bond trades actively. 

The last two proxies are calculated only for traded companies. Here I assume that informed 

trading is less likely in bonds that are held by many mutual funds, intermediated by many 

dealers, have higher outstanding amounts and an actively traded CDS contract on the bond 
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issuer which is a large firm with lower stock return volatility. Below I justify in more details 

the use of these variables as the proxies for information asymmetry. 

The number of mutual funds that own the bond is related to the number of buy-

side analysts scrutinizing bond valuations and the credit quality of the issuer. As in equity 

literature, I assume that analyst coverage is negatively related to information asymmetry 

between investors. Similarly, the number of brokers intermediating trades in the bond 

is positively related to sell-side analyst coverage and, hence, negatively related to informa-

tion asymmetry. The number of active brokers also measures competition among brokers 

in a given bond. The lack of competition likely affects an average-volume day reversal, β1 

in equation (1), similarly to high information asymmetry: prices of bonds traded in a less 

competitive market should revert more on average. However, there is no straightforward ex-

planation for why prices for low-competition bonds should revert less following high-volume 

days (the positive relationship between β2 in equation (1) and information asymmetry) unless 

low competition among dealers is due to high information asymmetry in the first place. 

Issuer and issue sizes are typical proxies for trade informativeness in the literature. 

Both are related to broader investor base and, again, more in-depth analyst coverage, which 

supposedly leads to a higher number of investors who are ready to arbitrage out bond 

misvaluations. As Table III shows, issue and issuer sizes are indeed positively correlated 

with the numbers of intermediating dealers and mutual funds that own the bond. 

No. funds Active CDS Issue size No. dealers Issuer size Stock vol 
Active CDS 0.09*** 
Issue size 0.59*** 0.02 
No. dealers 0.42*** -0.01 0.61*** 
Issuer size 0.04*** -0.08*** 0.40*** 0.30*** 
Stock vol 0.04*** -0.10*** -0.13*** 0.14*** -0.27*** 
Bid-ask -0.24*** -0.13*** -0.40*** -0.05*** -0.15*** 0.41*** 

Table III. Correlation coefficients between information asymmetry proxies esti-
mated in the cross-section of bonds. If there is more than one active period per bond, the 
average value across active periods is taken. The total number of bonds (observations) in 
the sample is 5028. *, **, and *** stand for 10%, 5%, and 1% significance respectively. 
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The existence of an actively traded CDS contract on the bond issuer is a reasonable 

proxy for trade informativeness because it is cheaper on average to trade CDS contracts than 

cash bonds, as Zawadowski and Oehmke (2016) show. Some investors who possess private 

credit information will rather trade a single-name CDS contract than a bond if the former 

is available and liquid. Also, the existence of an active CDS contract on the issuer might 

attract some CDS-bond basis arbitrageurs who trade in the CDS market and the bond market 

simultaneously. This type of arbitrage does not require any private information about the 

credit quality of the bond issuer. Hence, an active ‘basis trading’ in some bond implies that 

only a smaller portion of trading volume in this bond (as compared to an identical bond 

without an actively traded CDS contract) might be due to private information. 

Finally, stock return volatility computed for bond issuers over time intervals that 

constitute the active periods measures uncertainty of bond issuers equity valuations. It is 

natural to assume that the periods of high uncertainty in equity valuations are also the 

periods of high asymmetry of information about debt values. Hence, informed trading in 

equities and bonds might coincide. 

I do not use the realized bid-ask spread as an information asymmetry proxy in the paper. 

It is true that the bid-ask spread might itself be positively related to the extent of informed 

trading, as in Glosten and Milgrom (1985). However, the mere existence of bid-ask spreads, 

information or non-information driven, implies price reversals as in Roll (1984), i.e., the ‘bid-

ask bounce’ effect. It implies stronger reversals for bonds with wider spreads. Hence, the 

impact of the bid-ask bounce on the average-day return autocorrelation, β1 in equation (1), 

is similar to the expected effect of information asymmetry. The impact of the bid-ask bounce 

on β2 and β3 in equation (1) is unclear because it depends on whether the effect becomes 

stronger or weaker with higher trading volumes. To avoid these concerns, I use realized 

bid-ask spreads only as a control variable in my cross-sectional regressions of estimated 

volume-return coefficients and not as a proxy of informed trading. 
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III. Volume-return relationship 

I estimate equation (1) separately for every bond and every active period rescaling trading 

volumes such that β1 measures the first return autocorrelation on average-volume trading 

days: 

(c) (s)˜ ˜Rt+1 = β0 + β1Rt + β2RtVt + β3RtVt + �t+1. (2) 

Above, Rt+1 is the total bond return between t and t + 1, Ṽ 
t 
(c) 
is the C-to-C trading volume 

on day t, standardized15 for every active period separately, and Ṽ 
t 
(s) 
is the absolute value of 

the C-to-D trading volume (the absolute value of inventory change) on day t, also demeaned 

and standardized. 

On the days when both the C-to-C and the C-to-D trading volumes are at the average 

level for a given bond in a considered active period, the first return autocorrelation is β1. On 

the days when the C-to-C volume is 1 standard deviation above the mean and the change in 

inventory is at the average level, the first return autocorrelation is β1 + β2. Conversely, when 

only the C-to-D volume is 1 standard deviation above the average, return autocorrelation 

equals to β1 + β3. Negative values of β1 would mean that prices revert following average-

volume days. Positive values of β2 and β3 would mean that prices tend to revert less following 

high-volume days. In this short section, I present and discuss the estimated volume-return 

coefficients β̂  
1, β̂  

2, and β̂  
3, and in the next section, I investigate in details the relationship 

between the coefficients and information asymmetry proxies, which is the main focus of this 

study. 

Table IV gives a snapshot of β̂  
1, β̂  

2, β̂  
3 estimated for each bond in every active period. 

The average bond-active period has the first return autocorrelation of approximately -0.33. 

If the price drops today by 100 b.p. and both trading volumes are at the average level, 

the price will tend to increase by 33 b.p. tomorrow. One-third of the initial price decrease 

ˆreverts the next day. The average β2 of 0.07 suggests that following high C-to-C volume days, 

15De-meaned and divided by the sample standard deviation. 
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Mean Med. No.>0 No.<0 No.>0* No.<0* No. Obs. 
β̂1 

β̂2 

β̂3 

β̂2 − β̂3 

-0.3285 
0.0716 
0.0585 
0.0131 

-0.3425 
0.0622 
0.0568 
0.0044 

108 
7130 
6928 
5046 

9714 
2692 
2894 
4776 

0 
1697 
2054 
3819 

8761 
188 
349 
3498 

9822 
9822 
9822 
9822 

Table IV. Summary statistics of the estimated volume-return coefficients of equa-
tion (2). Each estimated coefficient is per bond per active period. There are at most nine 
active periods per bond. Returns are total returns between t and t + 1. Trading volumes are 
demeaned and standardized per bond per active period. Mean and Med. are respectively 
sample average and sample median. ‘No. > (<) 0’ is the number of positive (negative) 
coefficients. ‘No. > (<) 0*’ is the number of positive (negative) coefficients significant at 
10% confidence level. The number of observations is the number of bond-active periods. 

prices tend to revert less. In a previous example, if the initial 100 b.p. price decrease was 

accompanied by 1 standard deviation above-average C-to-C trading volume, then the next 

ˆday reversal would be close to one-forth rather than one-third. The average β3 of around 

0.06 suggests that prices revert comparably less following high C-to-D volume days either. 

Both β̂  
2 and β̂  

3 are predominantly positive, and the difference between the two is equally 

likely to be positive or negative. 

At this stage, we can not infer much from estimated volume-return coefficients. The 

signs and the magnitudes of the coefficients certainly look reasonable. Strongly negative β̂  
1 

ˆ ˆis a reflection of high illiquidity of the corporate bond market. The values of β2 and β3 

are close; hence, both types of trading volume interact statistically similarly with reversals. 

ˆ ˆPositive β2 and β3 can be consistent with the presence of informed trading, but can also 

reflect correlated trading volumes, or the interaction of the bid-ask bounce or bond riskiness 

with the trading volume. In the next section, I investigate explanatory factors of the cross-

sections of volume-return coefficients with a particular focus on the impact of information 

asymmetry. 
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IV. Determinants of volume-return coefficients 

A. Empirical design 

In the introduction, I put forward an intuition on how volume-return coefficients β1, β2, 

and β3 in equation (2) should vary with information asymmetry. In particular, I suggest 

that more information asymmetry implies lower β1 (stronger reversals on average), higher 

β2 (weaker reversals following high-volume days when dealers’ inventory does not change 

much), and no particular effect on β3 (no difference in reversals between high- and low-

information-asymmetry bonds following days when dealers’ inventory changes a lot). One 

gets the same relationship between volume-return coefficients in a theoretical model a-là 

Llorente et al. (2002) extended with noisy changes in market supply (dealers’ inventory) 

that are independent from the arrival of private news. I present such a model formally in 

Section VI. In this section, I am testing the predictions of the model empirically in the 

cross-section of bonds. 

The estimates β̂  
1, β̂  

2, and β̂  
3 obtained in the previous section are per bond and per active 

period. There is more than one active period for about every fifth bond in the sample, but 

there are at most nine active periods per bond. I take bond averages to obtain the cross-

section of coefficients, and in the rest of this section, I fit explanatory linear models to this 

cross-section.16 Call β̂  
n,i a column-vector of estimates (n = 1, 2, or 3 and i ∈ {1, . . . , N} 

where N is the total number of bonds). I fit the following model for each n (i.e., each 

16active periods are asynchronous across bonds. Hence, one needs to make additional assumptions to inves-
tigate the co-movement of volume-return coefficients. I attributed the estimated coefficients to quarters 
in the proportion of the active period time in a given quarter and extracted time fixed effects from the 
bond-quarter panel to find that there is virtually no common time variation in the coefficients (unreported). 
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volume-return coefficient) separately: 

β̂  
n,i = cn,1 (No. funds, CDS, Issue/issuer size, No. dealers, –Equity volatility)i +| {z } 

Info asymmetry proxies 

+ cn,2 (Bid-ask, C-to-C/D volume correlation, Bond volatility, Credit spread)i +| {z } 
Controls 

+ cn,0 + �n,i, (3) 

where cn,1 ∈ R6 , cn,2 ∈ R5 , and �n,i for every n is an i.i.d. zero-mean Normal. If my intuition 

about the dependence of volume-return coefficients on information asymmetry proxies is 

correct, I should find c1,1 > 0, c2,1 < 0, and c3,1 = 0. 

I include five controls in the baseline specification (3): realized bid-ask spread, the first 

(c) (S)˜ ˜autocorrelations of Vt and Vt , realized bond return volatility, and the credit spread. 

Volume autocorrelations and return volatility are estimated per bond per active period, and 

then bond averages are computed if there is more than one active period per bond. 

The realized bid-ask spread controls for bond illiquidity.17 Wider spreads are associated 

with more illiquid bonds that tend to have stronger price reversals even if the information is 

symmetric, buy and sell orders arrive randomly, and the fundamental value of the security 

never changes (the ‘bid-ask bounce’ effect of Roll 1984). In principle, bid-ask spreads also 

widen with the asymmetry of information, as in Glosten and Milgrom (1985), and that is 

why the literature often uses bid-ask spreads as a measure of information asymmetry. I do 

not do so because multiple non-informational reasons might explain different bid-ask spreads 

in the cross-section of bonds, for instance, competition between dealers, different inventory 

holding costs, or counterparty search costs. The bid-ask spread as the illiquidity control is 

the most relevant for the regressions of β̂  
1. 

Volume correlations control for the persistence of trade flow and price impact. Recall 

from Table IV that returns tend to continue following high C-to-C and C-to-D volume days 

17Schestag, Schuster, and Uhrig-Homburg (2016) provide a detailed comparison of different bond illiquidity 
measures. In light of their results on different measures one can compute using tick-by-tick TRACE data, 
the realized bid-ask spread looks like a reasonable choice for this paper. I obtained similar results with 
alternative bond illiquidity measures as well (Amihud, Roll, price inter-quartile range). 
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(positive β̂  
2 and β̂  

3). I want to link it with the presence of informed trading, but one would 

find the same signs of volume-return coefficients if trade flows were persistent. Imagine that 

some investor executes a big buy trade over two business days.18 On each day, her trades 

have a price impact, and returns tend to continue (or revert less). So, correlated volumes 

would generate the relationship between volumes and future returns similar to one of the 

asymmetric information and returns. I control for this alternative explanation by including 

(c) (s)
the first autocorrelations of Ṽ 

t and Ṽ 
t in the group of control variables. These controls 

are the most relevant for the regressions of β̂  
2 and β̂  

3. 

The next control is the average realized bond return volatility. Riskier bonds tend to 

experience larger price swings, even if underlying risks are not directly related to informa-

tion asymmetry. In the cross-section, some bonds are riskier than the other, and it might 

explain some differences between estimated volume-return coefficients. Same happens in the 

theoretical model of Section VI. The desired dependence of volume-return coefficients on 

information asymmetry is obtained when holding unconditional bond return variance fixed. 

To mimic this condition in the empirical analysis, I include realized bond return volatility as 

a control variable in every regression. It is relevant for the regressions of all three volume-

return coefficients. I further include average credit spread as a control variable to make 

sure that I compare bonds with the same riskiness. One can easily find a high-yield and an 

investment-grade bond with comparable levels of return volatility in some periods, but their 

credit spreads must be different. 

Table V presents summary statistics of the cross-section of estimated volume-return coef-

ficients to be explained, information asymmetry proxies, and control variables. The average 

bond in the cross-section is owned by 35 mutual funds and about the same number of dealers 

intermediate trades in this bond. The bond is issued by a large company (76 bln USD market 

cap) and has an outstanding notional amount of around 800 mln USD. The average realized 

18This hypothesis may not be very realistic since on the corporate bond market one may get better execution 
prices trading higher volumes as shown in Edwards, Harris, and Piwowar (2007). This may also explain 
why the average autocorrelation of Ṽ 

t 
(c) 
is relatively low in the data (see Table II). 
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Mean Median S.D. Min 5th 25th 75th 95th Max N.Obs. 
β̂1 

β̂2 

β̂3 

-0.31 
0.07 
0.06 

-0.33 
0.06 
0.06 

0.12 
0.12 
0.10 

-0.62 
-0.48 
-0.33 

-0.48 
-0.10 
-0.10 

-0.40 
0.01 
-0.00 

-0.24 
0.12 
0.11 

-0.09 
0.25 
0.21 

0.05 
0.79 
0.49 

5028 
5028 
5028 

No. mutual fund owners 35.47 28.41 31.31 0.00 0.00 12.91 49.55 97.29 230.46 5028 
Active CDS (dummy) 0.44 0.00 0.50 0.00 0.00 0.00 1.00 1.00 1.00 5028 
Issue size, bln USD 0.82 0.60 0.70 0.01 0.07 0.40 1.00 2.25 9.39 5028 
No. dealers 33.98 29.50 15.13 7.96 17.65 23.96 39.89 65.46 168.72 5026 
Issuer size, bln USD 76.09 40.92 92.71 0.02 2.58 13.44 115.85 236.12 761.79 4693 
Stock return volatility, % 1.77 1.57 0.84 0.65 0.93 1.23 2.06 3.25 10.52 4683 
Average bid-ask, % 1.05 0.77 0.83 0.07 0.22 0.46 1.38 2.82 8.66 5028 
C-to-C volume correlation 0.08 0.06 0.11 -0.18 -0.05 -0.00 0.14 0.29 0.66 5028 
C-to-D volume correlation 0.10 0.10 0.09 -0.24 -0.05 0.04 0.15 0.25 0.79 5028 
Bond return volatility, % 0.72 0.59 0.51 0.05 0.17 0.36 0.94 1.68 4.96 5028 
Credit spread, % 2.42 1.74 2.85 0.14 0.58 1.11 2.78 6.39 68.96 5028 

Table V. Summary statistics of the cross-section of volume-return coefficients 
and their predictors. The sample contains bond averages computed across all active 
periods in case there is more than one for a given bond. The number of fund owners on a 
given trading date represents the number of mutual funds that claim to own a bond as of the 
latest available SEC N-Q form filing. ‘Active CDS’ is a dummy variable that equals 1 for all 
bonds of the issuer on all days in a given quarter if the CDS on this issuer is in a list of top 
thousand actively traded single-name CDS contracts in that quarter according to DTCC. 
‘Issue size’ is an outstanding notional amount of a bond issue, ‘issuer size’ is the market 
capitalization of an issuer (if a traded company). The number of dealers is the number of 
broker-dealers that intermediate trades in a bond on each trading day. Stock return volatility 
is the realized volatility in a given active period for a given issuer. For further details, see 
Appendix B. 

bid-ask spread of the bond is 105 b.p., and its credit spread is 242 b.p. 44% of bonds in the 

sample have an actively traded CDS on the bond issuer. There is substantial variation in 

both the left-hand side and right-hand side variables of regressions (3) as Table V shows. 

B. Main results 

Tables VI–VIII present estimated regressions (3) of volume-return coefficients on infor-

mation asymmetry proxies and controls. Table VI contains the results for β̂  
1. Observe that 

the number of fund owners, the CDS dummy, issue and issuer size, and the number of inter-

ˆmediating dealers, all have a significantly positive impact on β1 if included in the regression 

separately. In joint models 7 (all bonds) and 8 (bonds issued by traded firms only), the 

loading on the CDS dummy becomes insignificant but on the negative stock return volatil-
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ity – significantly positive. These results suggest that average-day price reversals become 

more pronounced (β̂  
1 becomes more negative) for higher information asymmetry bonds: the 

bonds with fewer fund owners and intermediating dealers, no actively traded CDS contract 

on the issuer, lower issue and issuer size, and high stock return volatility. Observe also in 

Table VI that the coefficient on the average bid-ask spread is significant with a reasonable 

sign. Higher bid-asks are associated with stronger reversals. 

Interestingly, in Table VI, C-to-C and C-to-D volume persistence both enter the models 

for β̂  
1 significantly but with different signs. Following an average-volume day, higher C-to-

C volume persistence implies less strong reversals, while higher C-to-D volume persistence 

implies stronger reversals holding other bond characteristics equal. One can interpret this 

finding as follows: if an investor has to trade persistently high volumes over several consecu-

tive days with a dealer hence asking the dealer for immediacy, trading costs in such trading 

arrangement will be higher than when another bond investor supplies liquidity. 

The link between high information asymmetry and strong price reversals following average-

volume days relates to a recent policy debate on delayed corporate bond trade dissemination. 

Now, dealers must report corporate bond trades to TRACE at most 15 minutes after trade 

execution. A pilot program, currently under discussion, proposes a 48 hours delay between 

trade execution and reporting for some bonds (see FINRA 2019). From the perspective of 

the results presented in Table VI, such policy change might lead to stronger price reversals 

in bonds selected for the pilot because the policy increases information asymmetry between 

investors. Since we talk about average-volume days here, trading on such days is primarily 

liquidity-driven and stronger reversals can be interpreted as higher non-fundamental price 

volatility (bond valuations do not change when prices do not reveal any fundamental infor-

mation). Higher volatility unrelated to fundamentals is a likely (and negative) consequence 

of the delayed trade dissemination pilot if it goes through. 

Table VII presents the results for β̂  
2. Recall that higher β2 means less strong reversals 

following days when investors trade a lot essentially with each other and dealers do not 
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Dependent variable: β̂1 

(1) (2) (3) (4) (5) (6) (7) (8) 

Intercept −0.331∗∗∗ −0.290∗∗∗ −0.385∗∗∗ −0.391∗∗∗ −0.309∗∗∗ −0.283∗∗∗ −0.408∗∗∗ −0.409∗∗∗ 

(0.004) (0.004) (0.005) (0.006) (0.004) (0.005) (0.006) (0.007) 
Average bid-ask −0.067∗∗∗ −0.077∗∗∗ −0.067∗∗∗ −0.118∗∗∗ −0.089∗∗∗ −0.084∗∗∗ −0.079∗∗∗ −0.092∗∗∗ 

(0.005) (0.005) (0.005) (0.006) (0.005) (0.005) (0.006) (0.006) 
C-to-C vlm corr. 0.253∗∗∗ 0.327∗∗∗ 0.167∗∗∗ 0.187∗∗∗ 0.308∗∗∗ 0.338∗∗∗ 0.140∗∗∗ 0.143∗∗∗ 

(0.016) (0.015) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) 
C-to-D vlm corr. −0.166∗∗∗ −0.198∗∗∗ −0.060∗∗∗ −0.161∗∗∗ −0.189∗∗∗ −0.217∗∗∗ −0.076∗∗∗ −0.087∗∗∗ 

(0.015) (0.015) (0.014) (0.014) (0.015) (0.015) (0.015) (0.015) 
No. funds 0.001∗∗∗ 0.0004∗∗∗ 0.0003∗∗∗ 

(0.0001) (0.0001) (0.0001) 
CDS dummy 0.006∗∗ 0.003 0.002 

(0.003) (0.003) (0.003) 
Issue size 0.079∗∗∗ 0.058∗∗∗ 0.052∗∗∗ 

(0.004) (0.005) (0.005) 
No. dealers 0.003∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 

(0.0001) (0.0002) (0.0002) 
Issuer size 0.0002∗∗∗ 0.0001∗∗∗ 

(0.00002) (0.00002) 
–Equity volatility 0.355 0.494∗ 

(0.288) (0.275) 

Risk controls YES YES YES YES YES YES YES YES 
Observations 5,028 5,028 5,028 5,026 4,693 4,683 5,026 4,681 
R2 0.310 0.249 0.380 0.330 0.278 0.259 0.392 0.405 

∗Note: p<0.1; ∗∗ p<0.05; ∗∗∗ p<0.01 

ˆTable VI. Cross-sectional regressions of β1. Each model is an OLS regression with 
ˆheteroscedasticity-consistent standard errors. β1 is averaged for every bond across all active 

periods, so are the predictors. Average bid-ask is the percentage difference between the 
daily buy and sell prices, excluding inter-dealer trades. Volume correlations are the first 

(c) (s)
autocorrelations of Ṽ 

t and Ṽ 
t . ‘No. funds’ is the number of mutual funds that own the 

bond. CDS dummy equals 1 if the average Active CDS dummy for the bond across its active 
periods is above 0.5 and 0 otherwise. The issue size is the outstanding notional amount in 
bln USD. The issuer size is market cap in bln USD. ‘No. dealers’ is the average number 
of unique dealers that intermediate trades in each bond. Equity volatility is the average 
realized volatility of daily stock returns across all active periods for each bond. Risk controls 
include credit spread and realized bond return volatility. 

hold any additional inventory by the end of the trading day. I expect β̂  
2 to be increasing 

in information asymmetry: reversals must be less strong for high asymmetry bonds when 

informed trading is most likely, i.e., after high C-to-C volume days. Observe first in Table VII 

that all information asymmetry proxies enter the models for β̂  
2 significantly when included 

separately (models 1 to 6) except for stock return volatility. The signs of all asymmetry 

proxies are as expected: higher information asymmetry implies higher β̂  
2. In a joint model 

7 (bonds issued by public and private firms) the CDS dummy turns insignificant while in a 

joint model 8 (bonds issued by public firms only) the issuer size becomes insignificant and 

flips a sign. Otherwise, a joint model 8 says that bonds with fewer mutual fund owners and 
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Dependent variable: β̂2 

(1) (2) (3) (4) (5) (6) (7) (8) 

Intercept 0.088∗∗∗ 0.075∗∗∗ 0.101∗∗∗ 0.113∗∗∗ 0.074∗∗∗ 0.067∗∗∗ 0.119∗∗∗ 0.112∗∗∗ 

(0.005) (0.005) (0.006) (0.007) (0.005) (0.006) (0.008) (0.009) 
Average bid-ask 0.001 0.004 0.002 0.021∗∗∗ 0.009∗ 0.007 0.011∗ 0.013∗∗ 

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) 
C-to-C vlm corr. 0.070∗∗∗ 0.041∗∗ 0.089∗∗∗ 0.096∗∗∗ 0.046∗∗∗ 0.040∗∗ 0.106∗∗∗ 0.105∗∗∗ 

(0.017) (0.016) (0.017) (0.018) (0.016) (0.016) (0.018) (0.017) 
C-to-D vlm corr. −0.104∗∗∗ −0.090∗∗∗ −0.132∗∗∗ −0.106∗∗∗ −0.097∗∗∗ −0.094∗∗∗ −0.120∗∗∗ −0.127∗∗∗ 

(0.018) (0.018) (0.019) (0.018) (0.018) (0.018) (0.020) (0.020) 
No. funds −0.0004∗∗∗ −0.0002∗∗∗ −0.0002∗∗∗ 

(0.00005) (0.0001) (0.0001) 
CDS dummy −0.007∗∗ −0.005 −0.006∗ 

(0.003) (0.003) (0.003) 
Issue size −0.023∗∗∗ −0.009∗∗ −0.012∗∗∗ 

(0.003) (0.004) (0.004) 
No. dealers −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ 

(0.0001) (0.0002) (0.0002) 
Issuer size −0.00003∗ 0.00002 

(0.00002) (0.00002) 
–Equity volatility −0.352 −0.575∗ 

(0.304) (0.312) 

Risk controls YES YES YES YES YES YES YES YES 
Observations 5,028 5,028 5,028 5,026 4,693 4,683 5,026 4,681 
R2 0.021 0.012 0.024 0.025 0.013 0.013 0.030 0.034 

∗Note: p<0.1; ∗∗ p<0.05; ∗∗∗ p<0.01 

ˆTable VII. Cross-sectional regressions of β2. Each model is an OLS regression with 
ˆheteroscedasticity-consistent standard errors. β2 is averaged for every bond across all active 

periods, so are the predictors. Average bid-ask is the percentage difference between the 
daily buy and sell prices, excluding inter-dealer trades. Volume correlations are the first 

(c) (s)
autocorrelations of Ṽ 

t and Ṽ 
t . ‘No. funds’ is the number of mutual funds that own the 

bond. CDS dummy equals 1 if the average Active CDS dummy for the bond across its active 
periods is above 0.5 and 0 otherwise. The issue size is the outstanding notional amount in 
bln USD. The issuer size is market cap in bln USD. ‘No. dealers’ is the average number 
of unique dealers that intermediate trades in each bond. Equity volatility is the average 
realized volatility of daily stock returns across all active periods for each bond. Risk controls 
include credit spread and realized bond return volatility. 

intermediating dealers, lower outstanding amounts, no actively traded CDS contract, and 

higher stock return volatility exhibit less strong price reversals following high C-to-C volume 

days. 

Also, observe in Table VII that the loading on the C-to-C volume persistence is positive 

and significant. It means that if high C-to-C volumes are positively correlated over time, 

reversals will be less strong due to a repetitive price impact. The bid-ask spread enters joint 

models of Table VII with significantly positive coefficients: the bonds with higher bid-ask 

spreads tend to revert less following high C-to-C volume days. If I treated the bid-ask spread 
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Dependent variable: β̂3 

(1) (2) (3) (4) (5) (6) (7) (8) 

Intercept 0.070∗∗∗ 0.074∗∗∗ 0.086∗∗∗ 0.091∗∗∗ 0.089∗∗∗ 0.076∗∗∗ 0.088∗∗∗ 0.097∗∗∗ 

(0.004) (0.004) (0.005) (0.006) (0.004) (0.005) (0.006) (0.007) 
Average bid-ask −0.057∗∗∗ −0.058∗∗∗ −0.060∗∗∗ −0.053∗∗∗ −0.054∗∗∗ −0.057∗∗∗ −0.051∗∗∗ −0.049∗∗∗ 

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) 
C-to-C vlm corr. −0.017 −0.006 0.009 0.012 0.005 −0.015 0.011 0.008 

(0.014) (0.014) (0.015) (0.015) (0.014) (0.014) (0.015) (0.016) 
C-to-D vlm corr. 0.007 0.001 −0.010 −0.003 −0.016 0.002 −0.012 −0.021 

(0.015) (0.015) (0.016) (0.015) (0.016) (0.015) (0.016) (0.017) 
No. funds 0.0002∗∗∗ 0.0003∗∗∗ 0.0002∗∗∗ 

(0.00005) (0.0001) (0.0001) 
CDS dummy 0.005∗ 0.005∗ 0.002 

(0.003) (0.003) (0.003) 
Issue size −0.007∗∗∗ −0.010∗∗∗ −0.005 

(0.002) (0.003) (0.004) 
No. dealers −0.0004∗∗∗ −0.0004∗∗ −0.0002 

(0.0001) (0.0002) (0.0002) 
Issuer size −0.0001∗∗∗ −0.0001∗∗∗ 

(0.00002) (0.00002) 
–Equity volatility 0.020 0.426 

(0.284) (0.280) 

Risk controls YES YES YES YES YES YES YES YES 
Observations 5,028 5,028 5,028 5,026 4,693 4,683 5,026 4,681 
R2 0.083 0.082 0.083 0.085 0.083 0.070 0.091 0.087 

∗Note: p<0.1; ∗∗ p<0.05; ∗∗∗ p<0.01 

ˆTable VIII. Cross-sectional regressions of β3. Each model is an OLS regression with 
ˆheteroscedasticity-consistent standard errors. β3 is averaged for every bond across all active 

periods, so are the predictors. Average bid-ask is the percentage difference between the 
daily buy and sell prices, excluding inter-dealer trades. Volume correlations are the first 

(c) (s)
autocorrelations of Ṽ 

t and Ṽ 
t . ‘No. funds’ is the number of mutual funds that own the 

bond. CDS dummy equals 1 if the average Active CDS dummy for the bond across its active 
periods is above 0.5 and 0 otherwise. The issue size is the outstanding notional amount in 
bln USD. The issuer size is market cap in bln USD. ‘No. dealers’ is the average number 
of unique dealers that intermediate trades in each bond. Equity volatility is the average 
realized volatility of daily stock returns across all active periods for each bond. Risk controls 
include credit spread and realized bond return volatility. 

as a proxy for information asymmetry, this sign on the bid-ask would have been in line with 

the signs on other information asymmetry proxies. 

Table VIII presents the regressions for β̂  
3. The interpretation of β3 is analogous to β2, but 

now we are talking about the reversals following days when dealers’ inventory changes a lot. 

Higher β3 means that prices tend to revert less following high C-to-D volume days. Unlike 

for β2, I do not expect to find any particular dependence of β3 on information asymmetry 

because dealers would rather pass high-asymmetry bonds to other investors and would not 

hold excess inventory in bonds with less transparent valuations. 
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ˆTable VIII shows that there is indeed no clear-cut dependence of β3 on information 

asymmetry. For instance, the number of mutual fund bond owners and the CDS dummy have 

significantly positive loadings in models 1 and 2 (opposite to what information asymmetry 

explanation predicts), while issuer and issue size and the number of dealers have significantly 

positive loadings in models 3–5 (in line with information asymmetry explanation). In joint 

models 7 and 8 as well, there are both positive and negative loadings on the variables of 

interest. In particular, in model 8, only the number of mutual fund bond owners and issuer 

size have significant loadings, but they are of opposite signs. 

Tables VI–VIII show that high-information-asymmetry bonds experience on average 

stronger price reversals than low asymmetry bonds. However, following high C-to-C trading 

volume days, this ‘gap’ in reversals closes; such thing does not happen following days with 

high C-to-D trading volume. How large is this difference in reversals between high and low 

asymmetry bonds? To answer this question, I take the last models from Tables VI–VIII 

(models number 8) and compute average values of volume-return coefficients predicted by 

fitted models for different deciles of information asymmetry proxies.19 The bonds with the 

most information asymmetry are in the first decile for every proxy except for stock return 

volatility (here, the most asymmetry is in the tenth decile). Conversely, the bonds with 

the least information asymmetry are in top deciles (bottom decile of stock return volatil-

ity). I keep control variables fixed at the median level to ensure that predicted values of 

volume-return coefficients vary only due to changing information asymmetry. 

Figure 3 presents the results. The left panel shows the average values of β̂  
1. They are 

decreasing monotonically from -0.2 for the bonds with little or none information asymme-

try to almost -0.4 for the bonds with the highest asymmetry. The predicted reversal for 

high-asymmetry bonds is almost twice stronger than for low-asymmetry bonds following 

average-volume days. The middle panel in Figure 3 shows an additional impact of high C-

to-C volumes on next-day reversals. The average values of β̂  
2 are monotonically increasing 

19The results look almost identical when I use models number 7 for public and non-public firms with all 
proxies included (unreported). 

26 



−0.35

−0.30

−0.25

−0.20

E[β1̂|covariates]

HighAverageLow

0.02

0.04

0.06

0.08

0.10

0.12

E[β2̂|covariates]

HighAverageLow

Info asymmetry

0.02

0.04

0.06

0.08

0.10

0.12

E[β3̂|covariates]

HighAverageLow

Figure 3. Point estimates and confidence intervals for the expected values of 
volume-return coefficients. The calculations are based on models (8) from Tables VI-
VIII. On the x-axes from left to right are the deciles of information asymmetry proxies. For 
instance, ‘Low asymmetry’ bond is the one that has the number of fund owners, active CDS 
dummy, issue size, number of dealers, and issuer size all in the 90th percentile and stock 
volatility in the 10th percentile. ‘High asymmetry’ bond has the number of fund owners, 
active CDS dummy, issue size, number of dealers, and issuer size all in the 10th percentile 
and stock volatility in the 90th percentile. All other covariates from the regression models 
(average bid-ask spread, volume correlations, return volatility, and credit spread) are fixed 
at the median level. Solid lines are points estimates and shaded areas around them are 95% 
confidence bands. 

from 0.02 for low-asymmetry to 0.10 for high-asymmetry bonds. It means that every addi-

tional standard deviation of the C-to-C volume reduces the difference in next-day reversals 

between high- and low-asymmetry bonds by almost 0.08. Figure C1 in Appendix C shows 

that following a day with the C-to-C trading volume 2 standard deviations above the aver-

age, there is practically no difference in reversals between high- and low-asymmetry bonds. 

Finally, the right panel in Figure 3 demonstrates that predicted β̂  
3 is relatively insensitive 

ˆto the degree of information asymmetry; the average β3 stays close to 0.06 as information 

asymmetry varies. This result implies that the average difference in reversals between high-

and low-asymmetry bonds stays the same following days when dealers’ inventory changes a 

lot. The evidence presented in Figure 3 suggests that information-driven trading in corpo-

rate bonds exists, and it is much more likely when investors essentially trade with each other 

within one trading day rather than when they trade with dealers. 
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Figure 4. Cumulative returns around days with large bond inventory changes. 
The ‘event’ that happens on day 0: broker-dealers bond inventory increases or decreases by 
more than 2 standard deviations (computed per bond per active period) and it is the only 
type of trading that occurs on day 0 (inventory stays on the books till day 1). Daily log 
price returns are cumulated from day -5. Returns are computed using clean prices and do 
not contain accrued interest. 

To provide additional evidence that dealers are very unlikely to be adversely selected 

(to trade with a privately informed investor) in the corporate bond market, I plot typical 

cumulative return paths around days when dealers’ inventory changes a lot only in one 

particular direction. In terms of two types of volume introduced in Section II, such days 

correspond to high C-to-D volume and zero C-to-C volume. Figure 4 plots the results of 

such ‘event study’. On the left panel, a more interesting one, dealers’ inventory increase 

by at least 2 standard deviations (per bond per active period) on day 0. In other words, 

on day 0, investors sell a lot of bonds to dealers hence asking for immediacy. There is a 

well-pronounced drop in cumulative returns on day 0 regardless of whether prices were going 

up or down before the event. Cumulative returns rebound to their pre-event paths on day 1. 

It means that additional inventory that dealers acquired on day 0 is sold (at least partially) 
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on day 1 at higher prices. Even for the worst-performing bonds, dealers could sell at higher 

prices 2-3 days after the initial increase in inventory. The right panel of Figure 4 presents 

similar cumulative return patterns for the days when dealers’ inventory reduces by more 

than 2 standard deviations (some investors are willing to buy a lot of bonds and do not 

want to wait for a selling investor to come to the market). There is a pronounces spike in 

cumulative returns on day 0. On day 1, prices are lower than on day 0 except for the cases 

when bonds have been performing well pre-event. Such a situation (dealers sell short-term 

‘winners’) is the only case in Figure 4 when prices do not move in dealers favor post-event. In 

all other cases, dealers benefit from price movements on and right after the event day, which 

is consistent with a finding that dealers are unlikely to trade with an informed counterparty. 

C. Further evidence 

There are firms that have many bonds outstanding. These bonds may differ in coupon 

rates, maturity, embedded options, and other characteristics. I investigate how volume-

return coefficients differ across bonds of the same issuer. In Table IX, I present the estimates 

of model (3) only for firms with more than fifteen bonds outstanding. I include issuer fixed 

effects in the regression models; such fixed effects represent the average values of volume-

return coefficients for different issuers. Thus, Table IX shows within-firm dependence of 

volume-return coefficients on information asymmetry. I find that the impact of information 

asymmetry on β̂  
1 and β̂  

2 (and the lack of impact on β̂  
3) holds for the bonds of the same issuer. 

It suggests that private information some investors might possess is not only issuer-level 

(which is most likely private news about the credit quality of the issuer) but also bond-level. 

The bond-level information can be, for instance, private knowledge about liquidity trades 

of other investors, which yields a better estimate of price pressures and subsequent price 

reversals.20 It can also be private knowledge about the exercise probability of embedded 

20I remain agnostic about a mechanism through which some investors may learn valuable information about 
price pressures. Barbon, Di Maggio, Franzoni, and Landier (2018) suggest that there is information leakage 
from brokers to clients in the equity market. 
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options. Most bonds in my sample are callable; issuers have a right to redeem them at pre-

specified dates before maturity. An early call changes the duration of a bond and, therefore, 

its risk profile. Superior knowledge about the likelihood of an early call gives advantage in 

predicting bond returns prior to call announcements. 

β̂1 β̂1 β̂2 β̂2 β̂3 β̂3 

Average bid-ask −0.078∗∗∗ −0.090∗∗∗ 0.006 0.008 −0.007 −0.005 
(0.012) (0.012) (0.013) (0.012) (0.010) (0.009) 

No. funds 0.0004∗∗∗ 0.0003∗∗∗ −0.0002∗∗ −0.0002∗ 0.0002 0.0002 
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

CDS dummy 0.022 −0.009 0.001 −0.004 0.001 −0.005 
(0.019) (0.017) (0.020) (0.020) (0.016) (0.015) 

Issue size 0.038∗∗∗ 0.032∗∗∗ −0.001 −0.003 −0.005 −0.005 
(0.007) (0.007) (0.005) (0.005) (0.005) (0.005) 

No. dealers 0.001∗∗∗ 0.002∗∗∗ −0.001∗∗ −0.001∗∗ −0.0005∗ −0.0004 
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) 

Issuer size 0.001∗∗∗ 0.0001 −0.0002 
(0.0001) (0.0001) (0.0001) 

–Equity volatility 3.028∗∗∗ −2.477∗∗∗ 1.214 
(0.784) (0.937) (0.839) 

Issuer FE YES YES YES YES YES YES 
Risk controls YES YES YES YES YES YES 
Vlm correlations YES YES YES YES YES YES 
Observations 1,927 1,837 1,927 1,837 1,927 1,837 
R2 0.555 0.566 0.116 0.134 0.228 0.213 

∗Note: p<0.1; ∗∗ p<0.05; ∗∗∗ p<0.01 

Table IX. Cross-sectional regressions of β̂  
1, β̂  

2, and β̂  
3 for large issuers only. Each 

model is an OLS regression with heteroscedasticity-consistent standard errors. Volume-
return coefficients are averaged for every bond across all active periods, so are the predictors. 
Average bid-ask is the percentage difference between the daily buy and sell prices, excluding 

(c) (s)
inter-dealer trades. Volume correlations are the first autocorrelations of Ṽ 

t and Ṽ 
t . ‘No. 

funds’ is the number of mutual funds that own the bond. CDS dummy equals 1 if the average 
Active CDS dummy for the bond across its active periods is above 0.5 and 0 otherwise. The 
issue size is the outstanding notional amount in bln USD. The issuer size is market cap in 
bln USD. ‘No. dealers’ is the average number of unique dealers that intermediate trades in 
each bond. Equity volatility is the average realized volatility of daily stock returns across all 
active periods for each bond. Risk controls include credit spread and realized bond return 
volatility. 

In Appendix C, I present further empirical results. Table C2 estimates equation (3) 

for investment-grade (IG) and high-yield (HY) subsamples separately. The markets for 

IG and HY bonds have different institutional clientele because of regulatory restrictions, 

but information asymmetry proxies I use should work within each subsample. Table C2 

confirms that it is indeed the case for β̂  
1 and β̂  

2. β̂  
1 tends to decrease and β̂  

2 to increase 
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with information asymmetry both for IG and HY bonds. In the regressions for β̂  
3, there 

are fewer significant coefficients compared to the regressions of β̂  
1 and β̂  

2, and the signs of 

the coefficients are inconclusive about the impact of information asymmetry on reversals 

following high C-to-D volume days. Hence, Table C2 confirms the results that have been 

established in the pooled sample. 

I also consider alternative specifications of equation (2) to address the omitted variable 

problem that may render the estimates of volume-return coefficients biased. In Appendix C, 

I present key results for volume-return coefficients estimated controlling for either market 

returns or trading volumes (included as linear terms in addition to the interactions with 

returns) in equation (2). Tables C3 and C5 present summary statistics of volume-return 

coefficients for these two cases, while Tables C4 and C6 show the dependence on information 

asymmetry proxies. Figures C2 and C3, the counterparts of Figure 3, demonstrate how 

predicted volume-return coefficients vary with information asymmetry. Clearly, the main 

ˆresult of the empirical analysis remains intact. β1 decreases as information asymmetry grows 

while β̂  
2 increases; the impact of asymmetry on β̂  

3 is neutral. 

V. Implications for investment strategies 

Corporate bond price reversals depend on the extent of information asymmetry in a given 

bond, as my empirical analysis shows. What does it imply for the design of the short-term 

corporate bond reversal strategy? In this section, I show that the reversal strategy earns 

more if information asymmetry is taken into account in portfolio formation. 

I start by constructing reversal portfolios as in Bai et al. (2019). At every rebalancing 

date (which is monthly) bonds are double sorted on previous month’s credit rating and 

return. In Bai et al. (2019) each sorting is into quintiles but since my sample is smaller I 

sort into rating terciles and return quintiles, a total of 15 bins. I only consider the long part 

of the reversal portfolio: this is a simple average of size-weighted returns in the top reversal 
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quintile (lowest past returns) across three rating terciles.21 The rebalancing is at the end of 

each month. I consider an unfiltered bond-month sample, i.e., I do not restrict the sample to 

active periods and do not remove the crossing of IG/HY threshold (I would introduce a look-

ahead bias if I did so). I do require the bonds to have, as of the sorting date, an outstanding 

amount of at least 200 mln USD and a 12-month average of the realized bid-ask spread of 

at most 100 b.p. The latter helps to bring down the transaction cost of the reversal strategy 

which is usually very high due to high portfolio turnover. I use the 12-month average of the 

realized bid-ask spread to account for transaction costs. I also extend the sample back to 

2005 to compare the performance of the reversal strategy pre- and post-2008 crisis. 

In addition to a long-reversal portfolio, I consider its two sub-portfolios separately. The 

first sub-portfolio contains the bonds with a below-median number of mutual fund bond-

holders as of the sorting date.22 This sub-portfolio contains bonds with supposedly more 

information asymmetry. The second sub-portfolio contains the bonds with an above-median 

number of mutual fund bondholders (less information asymmetry). The results of the pre-

vious section suggest that in-sample and following average-volume periods the reversals are 

stronger for bonds with more information asymmetry. So, one might expect the reversal 

portfolio with more information asymmetry to outperform the reversal portfolio with less 

information asymmetry out-of-sample . 

Table X presents performance measures of three reversal portfolios in comparison to the 

market portfolio. Between Oct 2005 and Jun 2017 average long-reversal portfolio returns 

unadjusted for trading costs were around 8.4% per year. The sub-portfolio with many fund 

owners earned around 8% while the portfolio with few fund owners earned around 9%, 

which is 4.5 times more than the market portfolio. The volatility of the sub-portfolio with 

few fund owners was also lower which translates into a superior risk-adjusted performance 

21I do not consider a short leg here for two reasons. First, in the sample I work with shorting top-performing 
corporate bonds was not profitable. Second, I do not have reliable estimates for the cost of shorting. 

22For sorting, I take the variable ‘number of mutual fund owners’ as before but with a lag of 6 months. Since 
N-Q forms are reported semiannually, it ensures that I am not sorting on the information not yet available 
at the sorting date. 
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Cum trading costs 
Mean S.D. SR IR 

Net trading costs 
Mean S.D. SR IR 

Long reversal (LR) 
LR: many funds 
LR: few funds 
Market 

8.40 6.44 1.12 1.83 
8.02 7.09 0.97 1.40 
9.01 6.11 1.28 2.06 
2.16 3.66 0.28 

1.96 6.34 0.13 0.18 
1.39 6.99 0.04 0.01 
2.81 6.01 0.28 0.44 
1.36 3.66 0.07 

Table X. Performance statistics of the long leg of the reversal strategy for cor-
porate bonds with monthly rebalancing. Mean is a sample average of monthly returns, in 
% per annum. S.D. is the standard deviation of monthly returns, in % per annum. SR is 
the Sharpe ratio relative to the 3 month Treasury Bill. IR is the information ratio relative 
to the market. The sample is Oct 2005 to Jun 2017. For portfolio construction, I apply 
the following filters to the sample: a) previous month outstanding amount is greater than 
200 mln USD, b) previous month 12-month moving average of the realized bid-ask spread 
is below 100 b.p. Reversal portfolios are obtained from the double-sorting of bonds on the 
previous month credit rating (three terciles) and total return (five quintiles). For each of 
the 15 bins, the average bond return weighted by the previous month outstanding amount is 
computed. Long-reversal (LR) return is a simple average return across three rating terciles 
for the top reversal (lowest past returns) quintile. ‘LR: few funds’ is the reversal portfolio 
with a below-median number of fund owners. ‘LR: many funds’ is the reversal portfolio with 
an above-median number of fund owners. Market return is the value-weighted return of the 
bonds in the sample. Trading costs are assumed to be half of the 12-month average of the 
realized bid-ask spread (average bid-ask spread in Table I). 

of the reversal strategy for bonds with more information asymmetry. Once I account for 

trading costs, the performance of reversal portfolios becomes considerably lower because of 

high portfolio turnover. However, the sub-portfolio with few fund owners still earns almost 

3% per year after trading cost adjustment, which is twice more than the corporate bond 

market. The information ratio of the reversal portfolio with few fund owners amounts to 

approximately 0.5 (annualized) relative to the corporate bond market. The return on the 

reversal portfolio with many fund owners is considerably lower and is close the bond market 

after trading cost adjustment. 

Figure 5 shows how reversal returns accumulate over time. Observe in Figure 5a that 

two-thirds of the total reversal portfolio value gains (unadjusted for trading costs) come from 

years 2009–2011. The difference between the value of sub-portfolios with few and many fund 

owners starts to accumulate since mid-2009 and is growing slowly but steadily ever since. 

Figure 5b plots portfolio values net of trading costs and tells a similar story except the 
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Figure 5. The value of long-reversal corporate bond portfolios with monthly rebal-
ancing. I normalize the value of all portfolios in Sep 2005 to 1. For portfolio construction, I 
apply the following filters to the sample: a) previous month outstanding amount is greater 
than 200 mln USD, b) previous month 12-month moving average of the realized bid-ask 
spread is below 100 b.p. Reversal portfolios are obtained from the double-sorting of bonds 
on the previous month credit rating (three terciles) and total return (five quintiles). For each 
of the 15 bins, the average bond return weighted by the previous month outstanding amount 
is computed. Long-reversal (LR) return is a simple average return across three rating terciles 
for the top reversal (lowest past returns) quintile. ‘LR: few funds’ is the reversal portfolio 
with a below-median number of fund owners. ‘LR: many funds’ is the reversal portfolio with 
an above-median number of fund owners. Market return is the value-weighted return of the 
bonds in the sample. Trading costs are assumed to be half of the 12-month average of the 
realized bid-ask spread (average bid-ask spread in Table I). 

reversal strategies here are performing worse than the market since approximately 2013. 

The long-reversal portfolio with few fund owners is still worth considerably more than the 

market portfolio by the end of the sample period. 

The evidence presented in this section demonstrates that conditioning on information 

asymmetry considerably affects the performance of reversal strategies in practice. Reversals 

tend to be stronger for bonds with more information asymmetry and long-reversal portfolios 

with less mutual fund ownership, for instance, can outperform the corporate bond market 

after adjustment for trading costs. Given these findings, one can further investigate differ-
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ent information asymmetry signals and potentially improve the performance of the reversal 

strategy on corporate bonds. 

VI. The model 

In this section, I present a model of competitive bond trading volume that builds on 

the same premises as my empirical analysis above: investors trading bonds with each other 

are occasionally adversely selected while dealers avoid information-driven trade flow. The 

model justifies equation (2), which I estimate in the empirical part of the paper, and yields 

predictions about the dependence of volume-return coefficients on information asymmetry 

that closely match empirical results I have discussed above. One can view the model of 

this section as the formal presentation of the intuition behind volume-return relationships I 

analyze in the empirical part of the paper. 

The model is a modification of Llorente et al. (2002) which is a simplified version of Wang 

(1994) in its turn. In these models, two types of investors, informed and uninformed ones, are 

trading with each other for liquidity reasons and on private information. My model differs 

from Llorente et al. (2002) in two ways: I tailor the arithmetic of returns to defaultable 

bonds rather than to stocks as in the original model and I introduce noisy bond supply. 

Changing a dividend-paying stock for a perpetual coupon-paying defaultable bond within 

the model requires approximations to keep the analysis tractable. In Llorente et al. (2002), 

private information is the information about dividends, which is an additive component 

of dollar returns. In my model, private information relates to default risk, which is not an 

additive term in returns calculation. To make returns linear in a default loss and simplify the 

learning problem for uninformed traders, I consider a log-linear approximation of defaultable 

bond returns as in Hanson, Greenwood, and Liao (2018). Given that daily bond returns in 

my sample are small numbers (see Table I) with 5th and 95th percentiles close to 1% in the 
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absolute value, the log-linear approximation of returns should not undermine the relevance 

of theoretical results for my empirical analysis.23 

I introduce noisy bond supply to the model to generate the additional trading volume 

that is not due to liquidity or informational signals the agents receive. In the model, I assume 

that supply changes that proxy for changes in dealers’ bond inventory are independent of the 

arrival of private news. Table II suggests that such an assumption is not at odds with the 

data; the correlation between client-to-client and client-to-dealer daily volume measures in 

my sample is low. In the model, supply changes are publicly observed, unlike private liquidity 

signals. Under these assumptions, I can derive the dynamic volume-return relationship 

similar to (2) and provide additional implications for my empirical analysis compared to the 

baseline model of Llorente et al. (2002). 

A. The economy 

The discrete-time economy has two traded securities: a riskless bond in unlimited supply 

at a constant interest rate that is set to 0 for simplicity and a risky perpetual bond that 

pays a coupon C every period. Hanson et al. (2018) demonstrate that Campbell and Shiller 

(1988) decomposition applied to such a bond yields the log return rt of the following form: 

rt+1 ≈ κ + c(1 − θ) + θpt+1 − pt − dt+1, (4) 

where pt ≡ log Pt is the log ex-coupon price of the bond, θ and κ are deterministic functions 

of the log-coupon c ≡ log C, and dt+1 is the log default loss at time t + 1.24 

I assume that the log default loss consists of two additive components: 

dt+1 = ft + gt. 

ft is publicly known at time t while gt is a private time t information of a subset of investors. 

At time t + 1, the value of dt+1 becomes publicly observed. 

23To preserve the linearity of demand with respect to state variables when working with percentage rather 
than dollar returns, I also have to log-linearize the wealth dynamics of the agents. 

24For the derivation see Appendix A. 
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The risky bond is traded in a competitive bond market with noisy supply st, which is 

a public knowledge. The market is populated with two classes of investors, i = 1, 2, with 

relative population weights ω and 1 − ω. The investors are identical within each class, and 

each investor’s initial endowment of the risky bond is set to 0 for simplicity. Type 1 investors 

are informed; they observe gt. Type 2 investors do not observe gt but learn it from the bond 

price using the Bayes rule. In addition, Type 1 investors have a random exposure zt to 

some non-traded asset that generates a log return of nt+1 in the subsequent period.25 Type 

2 investors do not know the exposure of type 1 investors to the non-traded risk. Overall, 

the information set of the informed investors at time t is {d, p, n, f, s, g, z} while the0,...,t 

information set of the uninformed investors is {d, p, n, f, s} .0,...,t 

I assume that nt, gt, and zt are time-independent zero-mean normally distributed ran-

dom variables with variances σn 
2 , σg 

2 , σz 
2 respectively. I further assume that ft is also time-

independent and normally distributed with the mean mf = κ + c(1 − θ) and the variance 

σf 
2 . 26 All of nt, gt, zt, and ft are contemporaneously uncorrelated except for nt and ft that 

have a time-invariant negative covariance, which means that default losses are low when 

non-traded asset returns are high. This implies a constant positive covariance between rt 

and nt that equals σrn. Finally, the supply of the risky bond follows an AR(1) process 

st+1 = δst + �t+1, (5) 

where |δ| < 1 and �t is normally distributed with zero mean and variance σ2; it is independent s 

over time and is independent from nt, gt, zt, and ft. 

The investors of both types i = 1, 2 maximize the next period conditional expected utility h i 
(i)−W (i) (i)
t+1−e derived from the next period wealth W by choosing the demand X forEt t+1 t 

the risky bond.27 To keep the model tractable I need to take the log-linear approximation 

25Here I follow Llorente et al. (2002) assuming for simplicity that only one type of investors has income from 
a non-traded asset. It is enough to generate price reversals due to liquidity trading. 

26The mean of ft is chosen such that the long-term mean of the log bond price is 0 and the contributions of 
coupons and public news about future defaults to returns cancel one another on average. 

27As in Llorente et al. (2002), the risk aversion is set to 1 since it only enters the expressions for investors‘ 
demands as the multiple of the variances of all exogenous shocks. Hence, one can implement higher or 
lower risk aversion in the model by proportionally scaling variances of all shocks up or down. 
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of the wealth dynamics, which under the assumptions of the model is 

(1) (1) (1)
W ≈ W + Xt rt+1 + zt(1 + nt+1),t+1 t 

(2) (2) (2)
W ≈ W + Xt+1 t t rt+1. 

The model setup is different from Llorente et al. (2002) in two ways. First, I work with 

log returns approximated in (4) around p̄  ≡ 0 and linearized wealth dynamics instead of 

dollar returns and non-linearized wealth dynamics. Second, more importantly, I assume 

noisy supply (5) instead of a constant zero supply. Noisy supply allows me to decompose 

the trading volume in the model into two components: the first one is related to trading 

between informed and uninformed investors and exogenous changes in asset supply drive the 

second one. Empirical counterparts of these two components are respectively the volume 

of corporate bonds purchased by clients matched by client sales in a given period and net 

changes in broker-dealer inventory. 

B. Model equilibrium 

I solve for the rational expectations equilibrium of the model assuming a linear pricing 

function for the log bond price. Define the log price adjusted for the publicly known credit 

loss component as p̃t ≡ pt + (ft − mf ) and assume it is linear with respect to gt, zt, and st: 

p̃t = −a(gt + bzt + est). (6) 

Observe that the steady-state level of log bond price is 0 as in the linear approximation of 

log return (4). 

Given the pricing function (6), the equation for returns (4) re-writes as:28 

rt+1 = −θ (ft+1 − mf ) + θp̃t+1 − p̃t − gt. (7) 

The expression for conditional expected returns follows from (7): 

E(i) t [rt+1] = −p̃t − Et 
(i) 
[gt] − aeθδst. 

28In what follows, I replace an approximate equality in (4) with the exact one. 

38 



��� ��� ��� ���

The informed investors know gt, hence E(1) t [gt] = gt. The uninformed investors observe p̃t 

and st and estimate E(2) [gt|p̃t, st]. I show in Appendix A thatt 

E(2) [gt|p̃t, st] = γ(gt + bzt), (8)t 

σ2 

where γ = g > 0. One can further show that conditional return variances for two types 
σ2+b2σ2 
g z 

of investors are constant over time. 

With conditional expected return linear in gt, zt, and st and conditional return variance 

(1) (2)
constant for both types of investors, the demand for risky bonds, Xt and Xt , is also linear 

in gt, zt, and st 29 . The market for risky bonds clears: 

(1) (2)
ωXt (gt, zt, st) + (1 − ω)Xt (gt, zt, st) = st, 

which must hold for any values of gt, zt, and st, implying a system of three non-linear equa-

tions for yet undetermined coefficients a, b, and e. One can show that if the parameters 

of the model are such that the system has real-valued solutions then it must be that a, b, 

and e are all positive, moreover, ω + γ − ωγ < a < 1 and b = σrn. I demonstrate in Ap-

pendix A that under mild restrictions on the parameters (that boil down to σs 
2 being not 

‘too big’) the model always has real-valued solutions, of which a unique triple of {a ∗, b∗ , e ∗} 

has economically reasonable values. 

C. Trading volume in the model 

Consider the aggregate difference in risky bond holdings in the economy at time t 

(1) (2)
ωΔXt + (1 − ω)ΔXt = Δst. 

Using the equilibrium conditions one can decompose it as 

(1) (2) (1) (2) (1) (2)
ωΔX + (1 − ω)ΔX = V (Δgt, Δzt) + V (Δgt, Δzt)+ V (Δst) + V (Δst),t t c,t c,t s,t s,t| {z } | {z } 

=0 =Δst 

where 

(1) (2)
Vc,t (Δgt, Δzt) = Vc,t (Δgt, Δzt) = |α (Δgt + σrnΔzt)| , (9) 

29See Appendix A. 
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(1) (2)
and α = ω(a − 1)/σr 

2. Here, Vc and Vc represent the volume of trading between informed and 

uninformed investors. This trading volume is due to changes in a private signal about credit 

loss Δg (information-driven trading) and the position in a non-traded asset Δz (liquidity-

(1) (2)
driven trading). Vc and Vc always have opposite signs but are equal in the absolute value. 

For the convenience of notation, I will denote this trading volume vc,t = |α (Δgt + σrnΔzt)| > 

0. An econometrician observing bond trading records in the TRACE database can compute 

what the client buy volume matched by the client sell volume was at time t. 30 It is an 

empirical proxy for vc,t. 

(1) (2)
Two other components, Vs and Vs , represent trading due to changing bond supply. 

One can show that in equilibrium these two components are always of the same sign and 

they represent the proportion in which two types of agents absorb additional bond supply 

Δs. By construction, a change in bond supply is the buy volume that was not matched by 

the sell volume of the opposite sign. Its absolute value is equal to the absolute value of a 

change in aggregate dealers’ inventory. The latter is an empirical counterpart of vs,t ≡ |Δst|. 

What the model assumes is that vc,t and Δst are independent since the latter is uncorrelated 

with Δg and Δz that drive the former. Table III has demonstrated that this assumption 

largely holds in the data. The key takeaway of this paragraph is that I assume that an 

econometrician knows vc,t and vs,t, and these two quantities are defined within the model as 

stated above. 

D. Volume-return relationship and information asymmetry 

Assume an econometrician observes the time-series of bond returns rt and two types of 

volume, vc,t and vs,t, as discussed above. Then the conditional expectation of future returns 

given current returns and volume can be approximated as � � 
Et [rt+1|rt, vc,t, vs,t] ≈ β1 + β2v 2 + β3v 2 rt, (10)c,t s,t 

30All records in TRACE represent trading between a broker-dealer and a client and can be of two types only: 
a purchase by a client from a dealer or a sale to a dealer. 
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the derivation is presented in Appendix A. This volume-return relationship is a theoretical 

counterpart of equation (2) estimated in the empirical part of the paper. Unlike equation 

(2), equation (10) contains squared volumes. In the data, squared volumes are extremely 

right-skewed, hence from an econometric standpoint, it is reasonable to estimate the volume-

return relationship as in (2) with volume entering the equation without a square (Llorente 

et al. 2002 follow the same approach). It does not change an economic interpretation of 

volume-return coefficients.31 

Now, I would like to discuss how coefficients β1, β2, and β3 change in the model as 

the extent of informed trading changes. In the benchmark model Llorente et al. (2002), 

both β1 and β2 are negative, but β1 is decreasing and β2 is increasing with the extent of 

information asymmetry proxied by σg 
2 . β1 measures the first return autocorrelation, and 

negative β1 decreasing with σg 
2 means that for two equally risky bonds returns will revert 

more for the one with more information asymmetry. β2 measures the impact of volume on 

the first autocorrelation, and negative β2 increasing with σg 
2 means that for two equally risky 

bonds returns will revert less following high-volume days for the one with more information 

asymmetry. These theoretical results find empirical support in the U.S. stock market, as 

Llorente et al. (2002) shows. 

Unlike in the benchmark model, I can not make a general statement about the signs of 

volume-return coefficients and their dependence on σg 
2; I need to solve the model numerically 

first. In Figure 6, I present the relationships between information asymmetry σg 
2 and β 

coefficients for the model calibrated to an average bond in TRACE. The bond has a coupon 

rate of 5%, high persistence of a supply shock δ = 0.95, and a daily standard deviation 

of returns of 1%.32 The latter stays fixed in all numerical solutions; this is an additional 

31Since an econometrician knows the sign of inventory changes, she could write an analog of equation (10) 
conditioning additionally on this piece of knowledge. It would change the form of the equation slightly, 
and the loadings on two types of volume would become incomparable. An important part of my empirical 
analysis consists of a direct comparison of coefficients β2 and β3, and for that, I need to condition in (10) 
on the absolute value of inventory changes. 

32In Figure 6, I set δ = 0.95 which roughly corresponds to Corr(Δst, Δst−1) = −0.03 because in the model 
Corr(Δst, Δst−1) = − 1 (1 − δ). In the model, δ measures the persistence of supply, which is roughly the2 
persistence of inventory. δ = 0.95 implies the half-life of broker-dealer inventory of about 13 days. Further 
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constraint I impose on the solutions of the model.33 Figure 6 represents the cross-section of 

bonds with the same unconditional risk but different contributions of public, private, and 

liquidity shocks to return variance. 
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Figure 6. Dependence of β1, β2, and β3 on information asymmetry σg 
2 holding total 

return variance fixed. Each point on the curves is a numerical solution of the model. I 
obtain the relationships between σg 

2 and β coefficients by varying σg from 0 to 1% holding 
an unconditional standard deviation of returns at 1%, which is a daily standard deviation 
of bond returns in the TRACE data. I choose the following parameters of the model to 
match a median bond in sample: coupon rate C = 5%, the persistence of a supply shock 
δ = 0.95. The fraction of informed investors is ω = 0.05, the correlation between traded and 
non-traded asset returns is σrn = 0.3, the variance of the supply shock is σs 

2 = 0.1. I first 
solve the model for a very small value of σg, 5 b.p. here. Then, I hold the equilibrium value of 
a fixed in all subsequent solutions for σg > 5 b.p; I allow e to change. Thus, the comparative 
statics plotted here is a collection of solutions of the system of equations of three variables 
(σz 
2, σf 

2 , and e): two model equilibrium equations plus an additional restriction on the total 
return variance. 

The left and central panels in Figure 6 deliver the same message as the benchmark model. 

With more informed trading, returns tend to revert more, but less so following days when 

investors trade a lot with each other. On the left panel, which presents reversals following 

no-volume days, there is no reversal when σg is zero, and returns are due to public news 

that is fully priced within the same period. As σg increases, no-volume reversals intensify 

(unreported) estimations show, in line with the results of Dick-Nielsen and Rossi (2018), that dealers revert 
deviations from their target inventory faster post-crisis. 

33Llorente et al. (2002) impose the same restriction on the total unconditional variance of returns. 
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due to a greater impact of uninformed investors’ errors in estimating gt on returns.34 On 

the central panel, the reversal following high-volume days is the strongest when σg is zero 

because the entire trading volume between informed and uninformed investors represents, 

in this case, liquidity trading. Liquidity trading has price impact but does not reveal any 

new information about the asset payoff; hence, the price reverts the next period. As σg 

increases, it’s more and more likely that some part of the between-investors trading volume 

comes from Δg and conveys the information about future returns; hence the reversal tends to 

decrease (β2 tends to increase). The right panel in Figure 6 shows that β3 that measures an 

additional component of reversals following days when inventory changes a lot is relatively 

insensitive to σg. It does not look surprising given that Δs in the model is uncorrelated with 

other motives for trading. One would expect β3 to be flat with respect to σg in such case; 

a slightly upward sloping line on the right panel of Figure 6 is due to equilibrium e (price 

impact of inventory-changing trades) changing with σg. 

The shape of the lines in Figure 6 matches closely the shape of their empirical counterparts 

presented in Figure 3. In the model, as it is in the data, β1 decreases, and β2 increases with 

information asymmetry, while β3 is insensitive to information asymmetry. It gives additional 

support for the premises of the model: client-to-client trading volume may be due to private 

information, but client-to-dealer trading volume is likely driven by liquidity needs only. 

As in Llorente et al. (2002), the limitation of my extended model is that β2 stays negative 

for all reasonable model calibrations and does not turn positive (same applies to β3 which 

is not the part of the benchmark model). In reality, as Section III has shown, β2 is positive 

for most corporate bonds. It does not undermine the main idea suggested by the model 

and tested in the empirical part of the paper. As the extent of informed trading increases, 

34Here is the intuition for this result. With no volume, time t returns are not driven by liquidity shocks since 
Δzt and Δgt must be zero. Assume zt−1 > 0 and informed investors are net sellers of bonds. From (7) 

a E(2)
and (8) one finds that rt is negative when [gt−1] < gt−1 other things being equal, i.e., when actualγ t−1 
losses in default are higher than previously expected by uninformed investors. But that means that in t−1 
informed investors’ demand for bonds was lower than required by their hedging needs; so it is in t since 
the volume is zero. Hence, time t price is low and time t + 1 expected return is high. Higher information 
asymmetry amplifies this effect. 
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returns following high-volume days are less likely to revert, especially when dealers are not 

trading from their inventory capacity. 

VII. Conclusion 

In this paper, I estimate a dynamic volume-return relationship for individual bonds and 

explore the determinants of estimated volume-return coefficients in a cross-section of bonds. 

A particular focus of my analysis is on the impact of information asymmetry on volume-

return coefficients. 

The hypotheses that I test arise from a stylized theoretical model of competitive bond 

trading with asymmetric information and non-traded risks. In the model, trading between 

investors is due to liquidity needs (hedging of the non-traded risk) or private information. 

Also, investors in the model absorb random bond supply shocks; their empirical counter-

part is the change in aggregate bond inventory. The model suggests that bonds with high 

information asymmetry have stronger price reversals than bonds with low information asym-

metry, but less so following high-volume days when dealers’ inventory does not change, and 

investors are essentially trading with each other. Conversely, following days with substantial 

changes in dealers’ inventory, the difference in reversals between high- low-asymmetry bonds 

remains. In the model, this result emerges because changes in inventory (supply shocks) are 

assumed independent from the arrival of private news. 

I find strong empirical support for model predictions in the data. Bonds with high 

information asymmetry exhibit stronger price reversals than low-asymmetry bonds, but less 

so following days when trading volumes are high, but dealers’ inventory does not change 

at the end of the day (clients purchases equal client sales). High-asymmetry bonds in my 

analysis are the bonds that are owned by few mutual funds and intermediated by few dealers, 

have smaller outstanding amounts and issued by smaller firms with no actively traded CDS 

contract on the issuer and high stock return volatility. 
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In particular, I find that a typical bond with high information asymmetry has the first 

autocorrelation of returns close to -0.4 following average-volume trading days. Following two 

standard deviations above-average volume day when dealers’ inventory does not change, the 

first autocorrelation reduces to -0.18. A similar bond with the same average realized bid-

ask spread, return volatility, credit spread, and volume autocorrelation, but low information 

asymmetry has the first return autocorrelation of -0.2, which increases only by 0.05 to -0.15 

following high-volume inventory-neutral days. 

If one considers, instead, the reversals following days when trading volume is high, but it 

is due to substantial changes in dealers’ inventory, then the difference in reversals between 

bonds with high and low information asymmetry remains at the average-volume day level. 

These results are consistent with the assumption that trading volume in high-asymmetry 

bonds is more likely to come from investors who possess private information. Since dealers 

typically know their clients well and might be able to detect informed investors, they let other 

investors provide liquidity for such trades. Overall, my results suggest that there might be 

informed trading in corporate bonds, but when it happens, dealers are not providing liquidity 

and are not adversely selected. 

My findings have implications for the design of investment strategies exploiting corporate 

bond reversals. In particular, I show that long-reversal portfolios of high-asymmetry bonds 

outperform long-reversal portfolios of low-asymmetry bonds both before and after adjust-

ment for trading costs. Hence, illiquidity does not fully explain reversal returns. Moreover, 

reversal portfolios of high-asymmetry bonds outperform the corporate bond market after 

trading cost adjustment. An investor considering an implementation of a bond reversal 

strategy might profit from additionally sorting bonds on information asymmetry proxies. 

My results also relate to a recent policy debate about corporate bond market trans-

parency. I find that bonds with less transparent valuations tend to have stronger price re-

versals when trading is purely liquidity-driven, and fundamental values of the bonds likely re-

main unchanged. Stronger liquidity-driven reversal is just another name for non-fundamental 
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price volatility that is often regarded as an undesirable feature of a well-functioning financial 

market. From this standpoint, a proposed reduction in corporate bond market transparency 

(TRACE delayed trade dissemination pilot project) might not be optimal. 
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Appendix A. Aspects of the model 

Log-linear approximation of returns 

Consider a homogeneous portfolio of perpetual defaultable bonds with invoice price Pt 

and coupon rate C. Its next period return Rt+1 is: 

(1 − Dt+1)(Pt+1 + C)
1 + Rt+1 = ,

Pt 

where Dt+1 = ht+1Lt+1, and ht+1 represents a default rate and Lt+1 ∈ [0, 1] represents loss 

given default for bonds in the portfolio at time t + 1.35 Define rt ≡ log(1 + Rt), pt ≡ log(Pt), 

c ≡ log(C), and −dt ≡ log(1 − Dt). Then 

rt+1 = −dt+1 − pt + log(Pt+1 + C)� � 
C 

= −dt+1 − pt + pt+1 + log 1 + 
Pt+1 � � 
c−pt+1= −dt+1 − pt + pt+1 + log 1 + e 

Notice that the first-order Taylor expansion of log (1 + ec−x) around c − x̄ yields: 
c−x̄� � � � e c−x c−x̄ log 1 + e ≈ log 1 + e + 

x 
((c − x) − (c − x̄)) . 

1 + ec−¯ 

Then the expression for returns becomes: 
c−p̄  c−p̄� � e e c−p̄  t+1rt+1 = −dt+1 − pt + pt+1 + log 1 + e + 

p 
(c − pt+1) − 

p 
(c − p̄)

1 + ec−¯ 1 + ec−¯ | {z } 
c−p̄1 eCall θ= ⇒ =1−θ c−p̄  c−p̄1+e 1+e 

= −dt+1 − pt + pt+1 − log θ + (1 − θ)(c − pt+1) − (1 − θ)(c − p̄) � � 
= θpt+1 − pt − dt+1 + (1 − θ)c + (− log θ − (1 − θ) log θ−1 − 1 ,| {z } 

≡κ 

which is equation (4). I set p̄  = 0 (the steady-state bond price is par), then θ = 
1+
1 
C . 

35With probability 1 − ht+1 the bond pays Pt+1 + C and with probability ht+1 it pays (1 − Lt+1)(Pt+1 + C). 
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Learning by uninformed investors 

The uninformed investor is a Bayesian agent learning about gt and zt at time t by ob-

serving p̃t and st. Recall that 

p̃t = −a(gt + bzt + est). 

Hence, the agent knows gt + bzt and an estimate of gt immediately gives an estimate of zt. 

The conditional distribution of p̃t given gt and st is � � 
p̃t|gt, st ∼ N −a(gt + est), a 2b2σ2 .z 

The unconditional distribution of gt is N(0, σ2). Bayes theorem implies that gt|p̃t, st is alsog 

Normal with a PDF fg|˜ :p,s ! 
2(p̃t + a(gt + est))

2 gtfg|p,s˜ ∝ exp − − . 
2b2σ2 2σ22a z g| {z } 
≡− 1

2 K 

Expanding the square and collecting terms, one gets:� � 
2σ2aσ2 ̃  est2 g pt+a gg − 2gt − + Λ(p̃t, st)t a2(σ2+b2σ2)

K = 
g z 

,
b2σ2σ2 

z g 

σg 
2+b2σz 

2 

where Λ(p̃t, st) does not depend on gt. Plug in the expression for the pricing function 

p̃t = −a(gt + bzt + est) to get: 

σ2 

E(2) g 
t [gt|p̃t, st] = (gt + bzt),

σ2 + b2σ2 | g {z z} 
≡γ 

V(2) [gt|p̃t, st] = (1 − γ)σ2 .t g 

Optimal demands 

The informed investor is solving the following problem: � � �� 
(1) (1)− W +X rt+1+Zt(1+nt+1)t tmax Et e , 

(1)
Xt 
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where the distributions of rt+1 and nt+1 given the informed investor’s information set at time 

t are both Normal with means E(1) [rt+1] and 0, and variances V(1) [rt+1] and σ2 correspond-t t n 

ingly. The covariance between rt+1 and nt+1 is time-invariant and equals σrn by assumption. 

The solution of the informed investor’s optimization problem is 

E(1) (1) t [rt+1] − σrnZt
Xt = . 

V(1) t [rt+1] 

The optimization problem for the uninformed investor (who does not own the non-traded 

asset by assumption) is the same up to Zt component in the wealth dynamic and yields 

E(2) (2) t [rt+1]Xt = . 
V(2) t [rt+1] 

Conditional variances V(1) t [rt+1] and V(2) t [rt+1] are constant: 

V(1) t [rt+1] = θ2(σf 
2 + σp 

2),˜ 

V(2) t [rt+1] = θ2(σf 
2 + σp 

2
˜) + (1 − γ)σg 

2 , 

Now, call σr 
2 ≡ θ2(σf 

2 + σp 
2
˜) and plug in the expressions for conditional expected returns and 

variances into the expressions for optimal demand to get: 

(1) a − 1 b(a − 1) ae(1 − θδ) 
= zt +Xt gt + st,

σ2 σ2 σ2 
r r r 

(2) a − γ b(a − γ) ae(1 − θδ) 
= zt +Xt gt + st. 
σr 
2 + (1 − γ)σg 

2 σr 
2 + (1 − γ)σg 

2 σ2 + (1 − γ)σg 
2 

r 

Existence of the equilibrium 

The equilibrium conditions imply the following system of three non-linear equations in 

a, b, and e: 
ω(a−1) (1−ω)(a−γ)+ = 0,2 

r 
2 
r 

2 
gσ σ +(1−γ)σ 

ω(ab−σrn) (1−ω)(a−γ)b = 0,+2 
r σ2 

r+(1−γ)σ2 
gσ 

ωae(1−θδ) (1−ω)ae(1−θδ) = 1.+2 
r σ2 

r+(1−γ)σ2 
gσ 
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The second equation immediately implies that b = σrn is the only possible solution for b. 

The system of two remaining equations for a and e can be re-written as 

0 = φ1(a, e) ≡ (a − ā)(σr 
2 + ω(1 − γ)σg 

2) − (1 − ā)ω(1 − γ)σg 
2 , 

0 = φ2(a, e) ≡ ae(1 − θδ)ω(1 − γ) − σr 
2(a − γ), 

where ā = ω + γ − ωγ > γ > 0. Observe from the first equation that φ1(ā, e) < 0 and 

φ1(1, e) > 0. Hence, if the solution a ∗ exists, it must be that a ∗ ∈ (ā, 1). Then, take the 

derivative of the first equation with respect to a treating e as a function of a: 

d d 
+ b2σ2 + σ2 2 + σ2[φ1(a, e(a))] = σr 

2 + ω(1 − γ)σg 
2 + (a − ā)(σg 

2 
z s e s ae [e(a)]),

da da 

which is positive for a ∈ (ā, 1) if e ∗(a) that solves the second equation 0 = φ2(a, e) grows 

in a. In this case we would have a unique positive solution a ∗ ∈ (ā, 1). Now, I am going to 

establish the conditions under which this is indeed the case. 

The second equation can be re-written as a quadratic equation with respect to e: � � 
0 = φ2(a, e) = a 2(a − γ)θ2σ2 e 2 − (a(1 − θδ)ω(1 − γ)) e + (a − γ)θ2(σf 

2 + a 2(σ2 + b2σ2)).s g z 

Since a ∗ > ā > γ, it must be that φ2(a, 0) > 0, and if the solution e ∗ exists it must be that 

e ∗ > 0. Two candidate solutions of the quadratic equation can be written as: 

e ∗ (a) = v(a) ± v(a)k(a) where 

(1 − θδ)(1 − γ)ω 1 
v(a) ≡ , 

a(a − γ)2θ2σs 
2 | {z } 

≡1/B p
k(a) ≡ 1 − B2ψ(a),� � 

σ2 σ2 + b2σ2 
f g z 2ψ(a) ≡ (a − γ)2 + a ;
σs 
2 σs 

2 

and for a ∈ (ā, 1) v > 0, v0 < 0, 0 < k < 1, k0 < 0, ψ > 0, ψ0 > 0. For the solutions to exist it 

must be that ψ < B−2 for a ∈ (ā, 1). Observe that � � � � 
σ2 σ2 σ2 σ2 

ψ = (a − γ)2 f f 2 f f 2+ a < (1 − γ)2 + a and 
σ2 σ2 σ2 σ2 
s s s s 

(1 − θδ)2(1 − γ)2ω2 

B−2 = . 
4θ4σs 

4 
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So, it is suffice to impose the following restriction on model parameters: 

(1 − θδ)2ω2 1� � > 1,
4θ4 σ2 σ2 + σ2 + b2σ2 

s f g z 

to guarantee that the discriminant is non-negative and the quadratic equation for e has 

solutions. The condition is easy to obey since the shocks in the left-hand side denominator 

are small numbers. From now on I assume that the condition is satisfied. 

Of the two roots of the quadratic equation for e, I am going to focus on the smaller one, 

e ∗(a) = v(a) − v(a)k(a). First, it is the root that guarantees that e ∗(a) grows with a when 

a ∈ (ā, 1) as I am about to prove. Second, for reasonable parameters values v(a) is a fairly 

large number (in a numerical example in Section VI it is around 60) and a positive root 

z 

v(a) + v(a)k(a) does not make much economic sense. 

g 

The smaller root e ∗(a) = v(a) − v(a)k(a) grows with a ∈ (ā, 1) if 
da
d [e ∗(a)] > 0, i.e.: 

v 0 − v 0k − vk0 > 0 ⇔ 

f 

v 0(1 − k) > vk0 ⇔ 

v0 k0 
> ⇔ 

v 1 − k 
v0 k0(1 + k)
> ⇔ 

v 1 − k2 

0 − 1 v 2k B
2ψ0(1 + k) 

> ⇔ 
v B2ψ� � 
0 ψ0 v 1 1 + 

k 
1 

> − ⇔ 
v 2 ψ� � 

2a − γ 1 ψ0 1 + 
k 
1 

− > − ⇔ 
a(a − γ) 2 ψ 

σ2 σ2+b2σ2 

σ2 
s− > − s� � 1 + ⇔ 

a(a − γ) (a − γ)2 fσ
2 

+
σ2 

zgσ
2+b2σ2 

2 k a
σ2 

fσ
2 

+ zgσ
2+b2σ2 

s s � � 
s 

γ σ2 

2 − < s 
a(2a

σ2 − γ) 1 
1 + and observe that 

a σ2 
zgf σ2+b2σ2 

+ a2 k 
σ2 

ss σ2 

� �
(a − γ) + a(a − γ)(2a − γ)2a − γ 1σ2 
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� 

�� 
1a(2a − γ)+γ 1 

2 − < 2 < 1 + 1 + < ,
k ka a2+ 

σ2 σ2+b2σ2 

σ2 σ2 

σ2 σ2+b2σ2 

σ2 σ2 

4θ4 σ2 σ2 + σ2 + b2σ2 
s f g z 

the equation 0 = φ2(a, e) always has a root e ∗(a) > 0 that grows with a ∈ (ā, 1), and it leads 

⎞ ⎟⎠ 

∗ ∗∈the unique solution (¯ 1) of 0 φ ( ( )).to a a, = a, e a1 

Derivation of the volume-return relationship 

−Plug in the expression for the pricing function ˜ ( bz ) into (7)+ + to getp = a g est t t t 

⎤ ⎥⎦ 

z 

s 

z 

g 

s 

⎡ ⎢⎣ 

g 

f 

s 

⎛ ⎜⎝ 

s

f 

rt = −θ(ft − mf ) − aθgt − aθbzt − aθest + (a − 1)gt−1 + abzt−1 + aest−1. 

Assume an econometrician also observes vc,t = |α(Δgt + σrnΔzt)| and vs,t = st − st−1. Now, 

the goal is to compute Et [rt+1|rt, vc,t, vs,t] . 

Call, for the sake of convenience of notations, x ≡ rt+1, y ≡ rt, v ≡ α(Δgt + σrnΔzt), and 

The unconditional distribution of (x, y, v, u) is Gaussian: 

which is indeed true. 

To sum up, under the condition 

(1 − θδ)2ω2 1 � > 1 

u ≡ vs,t. 

0 Σ11 Σ12 
(x, y, v, u) ∼ N 0, , 

0 
Σ12 Σ22 

where Σ11 = σxx, Σ12 ≡ [σxy σxv σxu ⎡ ⎢⎢⎢⎢⎣ 

] and 

σyy σyv σyu 

⎤ ⎥⎥⎥⎥⎦ .Σ22 ≡ σyv σvv 0 

σyu 0 σuu 

The projection theorem for multivariate Normal distributions implies: 

E [x|y, v, u] = βxyy + βxvv + βxuu, 

where (βxy βxv βxu) = Σ12Σ
−1 
22 . 
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Now consider E [x|y, |v|, u] . First, apply the law of iterated expectations: 

E [x|y, |v|, u] = E [E [x|y, v, u] |y, |v|, u] 

= E [βxyy + βxvv + βxuu|y, |v|, u] 

= βxyy + βxvE [v|y, |v|, u] + βxuu. 

Notice that E [v|y, |v|, u] = E [v|y, |v|] since σvu = 0. Now, use the fact that for any random 

variable Q with a PDF fQ(q): 

fQ(|q|) − fQ(−|q|)E [Q||q|] = |q| . 
fQ(|q|) + fQ(−|q|) 

In this case, it implies: 
fv|y(|v|) − fv|y(−|v|)E [v|y, |v|] = |v| ,
fv|y(|v|) + fv|y(−|v|) 

where � � 
σ2σyv yv 

v|y ∼ N y, σvv − . 
σyy σyy 

After straightforward algebra, one finds that 
ρ|v|y − e−ρ|v|ye

E [v|y, |v|] = |v| 
ρ|v|y + e−ρ|v|y 

≈ ρyv|v|2 y 
e 

for small values of v, where ρyv = σyv .
σvv σyy −σ2 

yv 

Assembling altogether: � � 
E [x|y, |v|, u] ≈ βxy + ρβxv|v|2 y + βxuu. 

Since v and u are assumed independent, an additional conditioning on |u| in the expectation 

sign is straightforward: � � 
E [x|y, |v|, |u|] ≈ βxy + ρyvβxv|v|2 + ρyuβxu|u|2 y, 

which is the analogue of (10). Above, ρyu = σyu . To compute the coefficients in this
σuuσyy −σ2 

yu 

relationship given model parameters one needs to compute the covariance matrix Σ. Direct 
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calculations yield: � � (ae)2(θ2 + 1 − 2θδ)
σxx = θ2σf 

2 + (aθ)2 + (a − 1)2 σg 
2 + (ab)2(θ2 + 1)σz 

2 + σs 
2;

1 − δ2 

(ae)2(θδ(1 − δ) + δ − θ)
σxy = (1 − a)aθσg 

2 − (ab)2θσz 
2 + σs 

2;
1 − δ2 

σxv = α(a(σ2 + b2σ2) − σ2);g z g 

ae(1 − θδ)
σ2σxu = ;

1 + δ s 

σyy = σxx; 

σyv = α(1 − a(1 + θ))σg 
2 − αab2(1 + θ)σz 

2; 

ae(1 + θ)
σ2σyu = − s ;1 + δ 

σvv = 2α
2(σg 

2 + b2σ2);z 

2 
σ2σuu = s . 1 + δ 
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Appendix B. Data and sample 

Sample selection 

I apply some filters to the TRACE database after cleaning it as in Dick-Nielsen (2014). 

Here are the criteria I use to select the bonds in the sample: 

• The bond is nominated in USD; 

• It is a fixed coupon (including zero-coupon), non-asset backed, non-convertible, non-

enhanced bond; 

• Not privately issued and not issued under Rule 144A; 

• Of one of the following types according to the Mergent FISD classification: CMTN (US 

Corporate MTN), CDEB (US Corporate Debentures), CMTZ (US Corporate MTN 

Zero), CZ (US Corporate Zero), USBN (US Corporate Bank Note), PS (Preferred 

Security), UCID (US Corporate Insured Debenture); 

• The interest is paid 1, 2, 4, or 12 times a year, or the bond is zero-coupon; 

• The quoting convention is 30/360. 

Four additional criteria must be jointly satisfied to keep a trade record in the sample: 

• The trade is executed between Jan 1, 2010, and Jun 30, 2017; 

• Executed at eligible times (time stamps of the trades are between 00:00:00 and 23:59:59; 

there is a small number of trades in TRACE with misreported times that do not fall 

into this range, I remove them from the sample); 

• Executed on NYSE business days; 

• Executed on or after the dated date of the bond (the date when the interest starts to 

accrue). 

Agency transactions with commissions are retained in the sample. 
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Winsorization 

To ensure that my results are not driven by extreme observations, I winsorize some 

variables. In particular, in the original bond-day panel (before active periods are determined) 

I winsorize: 

• C-to-C trading volume at 99%; 

• C-to-D trading volume at 1% and 99%; 

• Credit spread at 99.9%; 

• Bid-ask spread at 99.9%; 

• Total daily returns at 0.1% and 99.9%. 

SEC N-Q forms and holdings data 

Adapted from Ivashchenko and Neklyudov (2018). 

SEC N-Q forms submitted by mutual funds are available online through the SEC EDGAR 

system. I recover the number of mutual fund owners from machine-read N-Q forms. Mutual 

funds have a lot of discretion in how they fill in their N-Q forms, which makes it challenging 

to process the data. Below I describe the main steps I take. 

Funds do not report bond CUSIP numbers in N-Q forms. I identify bond holdings in N-Q 

forms by issuer name, maturity, and coupon rate. I attempt to find N-Q records matching 

the CUSIPs in my sample. Several possibilities arise. If there is no match, I assign a value 

of zero to the number of mutual funds that hold the bond. If there is a match, it may or 

may not be unique. Even if the match is unique (which is the dominant case), it may refer 

to a not-in-sample bond with the same coupon rate and maturity. To ensure that I identify 

a correct bond I compute the cosine text similarity measure between an issuer name from 

the FISD database and an issuer name I recover from N-Q forms.36 Table B1 provides some 

examples. Table B1a shows a record with a uniquely identified bond, while Table B1b shows 

36I experimented with different similarity measures and did not observe much difference in results. 
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a record with double matching: one bond is the true bond I am looking for, another bond is 

mortgage-backed security with the same coupon rate and maturity. Regardless of whether 

the match is unique or not, I keep a record in the sample only if the cosine similarity measure 

is above 0.45. 

cusip id issuer maturity rate report CIK what similarity 
22541LAL7 credit suisse first boston (usa) inc 2009-01-15 3.88 2005-01-31 0000933996 credit suisse fb usa inc 0.67 

(a) Unique maturity and coupon rate pair 

cusip id issuer maturity rate report CIK what similarity 
36158FAA8 ge global ins hldg corp 2026-02-15 7.00 2005-01-31 0000933996 ge global insurance holding 0.56 
36158FAA8 ge global ins hldg corp 2026-02-15 7.00 2005-01-31 0000933996 fhlmc pool 0.17 

(b) Non-unique maturity and coupon rate pair 

Table B1. Examples of records with a unique and non-unique combination of 
maturity and coupon rate. First four columns (CUSIP number, issuer name, maturity, 
and coupon rate) are the data from Mergent FISD. The next three columns (report date, 
investment fund identifier CIK, and ‘what’) are the data from a machine-read N-Q filing 
matched to the FISD data by maturity and coupon rate. ‘Similarity’ is a cosine similarity 
between ‘issuer’ and ‘what’ fields. 

Funds report N-Q forms twice every fiscal year, which is fund-specific. I use the ‘last 

observation carried forward’ approach to fill business days between two reporting dates for 

every fund, i.e., I assume that a fund holds all recently reported bonds every business day 

between the most recent and the previous N-Q report.37 Once I have fund-bond-day holding 

indicators, I compute the number of funds that hold the bond in a given period and use this 

variable as the ‘number of mutual fund owners’ in my analysis. 

Actively traded CDS contracts 

DTCC publishes a list of 1000 most actively traded single-name CDS contracts quarterly 

since June 2009.38 It includes both American and European, sovereign, and corporate issuers. 

I machine-read the data from these quarterly DTCC reports and remove all sovereign and 

all non-American reference entities. The DTCC reports contain some aggregate information 

37It introduces a timing error when a fund opens a new or closes an existing bond position. It should not 
be critical for my results because I compute the average number of mutual funds that hold the bond in 
active periods, which are quite prolonged by construction. 

38See DTCC website. 
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on CDS transactions like the total number of clearing dealers and average daily notional 

amount. In this paper, I use only the fact that an entity is listed among 1000 most actively 

traded contracts and do not use additional characteristics provided by DTCC. 

The reference entities in DTCC reports are text strings; other firm IDs are not provided. 

I match text strings from DTCC reports to issuer names from Mergent FISD database (after 

some usual text cleaning) by computing Jaro-Winkler distance and keeping all name pairs 

where the distance is less than 0.2. Then I manually check all matched pairs to ensure that I 

do not have any false matches. All the entities that were not matched or were not mentioned 

in the DTCC report in a given quarter are assigned the CDS dummy value of 0. All matched 

entities are assigned the value of 1 for all days in a given quarter. Among 1000 U.S. firms 

mentioned at least once in DTCC reports from 2010 to 2017, I match a bit more than 800. 

I might have some ‘true negatives’ in the final sample (the firms that were not matched due 

to some text processing errors), but it should not affect my results as long as ‘false positives’ 

(wrongly matched firms) are absent. 
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Appendix C. Additional Tables and Charts 

Mean Median S.D. Min 5th 25th 75th 95th Max N.Obs. 
Issue size, mln USD 655.24 500.00 708.38 0.61 9.40 250.00 850.00 2000.00 15000.00 5746678 
Rating 7.97 7.33 3.27 1.00 4.00 6.00 10.00 14.00 21.00 5746678 
Age, years 4.93 3.58 4.63 0.00 0.33 1.67 6.75 15.50 62.42 5746678 
Maturity, years 9.37 6.50 8.05 1.00 1.50 3.50 12.08 27.33 29.92 5746678 
Duration 6.75 5.57 4.49 0.84 1.41 3.20 9.00 15.86 27.93 5746678 
Total return, % 0.03 0.03 1.25 -8.19 -1.85 -0.36 0.43 1.90 8.49 5746678 
Credit spread, % 2.55 1.90 2.84 0.00 0.69 1.28 2.98 6.24 88.70 5746678 
Average bid-ask, % 1.14 0.74 1.16 0.00 0.08 0.31 1.62 3.37 19.99 2308138 
No. trades per day 6.45 3.00 11.17 1.00 1.00 2.00 7.00 22.00 2540.00 5746678 
No. days since last trade 2.33 1.00 7.25 1.00 1.00 1.00 2.00 7.00 1436.00 5735632 
C-to-C volume, % of size 0.50 0.00 1.97 0.00 0.00 0.00 0.08 2.50 15.99 5746678 
C-to-D volume, % of size 0.01 0.00 3.52 -19.67 -4.35 -0.22 0.33 4.29 17.91 5746678 

1.52 0.28 3.18 0.00 0.00 0.05 1.31 7.86 19.67 5746678|C-to-D volume|, % of size 

Table C1. Summary statistics of the unfiltered bond-day panel. This is a counterpart of 
Table I that shows how sample characteristics change in the full unfiltered bond-day panel 
(no restriction on the number of days since the previous trade). 
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Figure C1. Point estimates for high-volume day reversals. The calculations are 
based on models (8) from Tables VI-VIII. On the x-axis from left to right are the deciles 
of information asymmetry proxies. For instance, ‘Low asymmetry’ bond is the one that has 
the number of fund owners, active CDS dummy, issue size, number of dealers, and issuer 
size all in the 90-th percentile and stock volatility in the 10-th percentile. ‘High asymmetry’ 
bond has the number of fund owners, active CDS dummy, issue size, number of dealers, and 
issuer size all in the 10-th percentile and stock volatility in the 90-th percentile. All other 
covariates from the regression models (average bid-ask spread, volume correlations, return 
volatility, and credit spread) are fixed at the median level. High C-to-C volume day is the day 
with C-to-C volume 2 standard deviations above the average (and average C-to-D volume); 
its reversal is E[β̂  

1|covariates] + 2E[β̂  
2|covariates]. High C-to-D volume day is the day with 

C-to-D volume 2 standard deviations above the average (and average C-to-C volume); its 
reversal is E[β̂  

1|covariates] + 2E[β̂  
3|covariates]. The reversal on the average volume day is 

simply E[β̂  
1|covariates]. 
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IG HY IG HY IG HY 
β̂1 β̂2 β̂3 

Intercept −0.407∗∗∗ −0.425∗∗∗ 0.108∗∗∗ 0.103∗∗∗ 0.107∗∗∗ 0.102∗∗∗ 

(0.008) (0.023) (0.011) (0.019) (0.008) (0.019) 
Average bid-ask −0.084∗∗∗ −0.085∗∗∗ 0.018∗∗ −0.012 −0.038∗∗∗ −0.050∗∗∗ 

(0.007) (0.013) (0.008) (0.014) (0.006) (0.012) 
C-to-C vlm corr. 0.136∗∗∗ 0.124∗∗ 0.092∗∗∗ 0.165∗∗∗ −0.010 0.029 

(0.017) (0.052) (0.019) (0.046) (0.016) (0.046) 
C-to-D vlm corr. −0.088∗∗∗ −0.024 −0.126∗∗∗ −0.110∗∗ −0.025 0.004 

(0.016) (0.043) (0.022) (0.050) (0.019) (0.049) 
No. funds 0.0002∗∗∗ 0.0003∗ −0.0002∗∗ −0.0002∗ 0.0002∗∗ 0.00003 

(0.0001) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) 
CDS dummy 0.005∗ −0.006 −0.007∗ 0.005 0.006∗∗ −0.009 

(0.003) (0.009) (0.004) (0.008) (0.003) (0.008) 
Issue size 0.058∗∗∗ 0.089∗∗∗ −0.009∗∗ −0.024∗ −0.001 0.013 

(0.005) (0.019) (0.004) (0.014) (0.004) (0.015) 
No. dealers 0.001∗∗∗ 0.002∗∗∗ −0.001∗∗∗ 0.0001 −0.0002 0.0003 

(0.0002) (0.001) (0.0002) (0.0004) (0.0002) (0.0005) 
Issuer size 0.00005∗∗∗ 0.00003 0.00003 −0.00000 −0.0001∗∗∗ −0.0003∗∗∗ 

(0.00002) (0.0001) (0.00002) (0.0001) (0.00002) (0.0001) 
–Equity volatility −0.541∗ 1.119∗∗ −1.143∗∗∗ 0.492 0.544 −0.097 

(0.320) (0.485) (0.422) (0.453) (0.356) (0.407) 

Risk controls YES YES YES YES YES YES 
Observations 3,971 710 3,971 710 3,971 710 
R2 0.443 0.381 0.038 0.042 0.089 0.117 

∗Note: p<0.1; ∗∗ p<0.05; ∗∗∗ p<0.01 

ˆ ˆ ˆTable C2. Cross-sectional regressions of β1, β2, and β3; investment-grade and 
high-yield bonds separately. Each model is an OLS regression with heteroscedasticity-
consistent standard errors. Average bid-ask is the percentage difference between the daily 
buy and sell prices, excluding inter-dealer trades. Volume correlations are the first autocorre-

(c) (s)
lations of Ṽ 

t and Ṽ 
t . ‘No. funds’ is the number of mutual funds that own the bond. CDS 

dummy equals 1 if the average Active CDS dummy for the bond across its active periods is 
above 0.5 and 0 otherwise. The issue size is the outstanding notional amount in bln USD. 
The issuer size is market cap in bln USD. ‘No. dealers’ is the average number of unique 
dealers that intermediate trades in each bond. Stock return volatility is the average realized 
volatility of daily stock returns across all active periods for each bond. Risk controls include 
credit spread and realized bond return volatility. 
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Mean Med. No.>0 No.<0 No.>0* No.<0* No. Obs. 
β̂1 

β̂2 

β̂3 

-0.3287 
0.0712 
0.0584 

-0.3429 
0.0618 
0.0564 

114 
7079 
6894 

9649 
2684 
2869 

0 
1671 
2043 

8700 
185 
345 

9763 
9763 
9763 

Table C3. Summary statistics for the cross-section of volume-return coefficients 
(estimated controlling for the market return in the first-step regression). This is 

= β0 + β1Rt + β2Rt t 
(c)˜a counterpart of Table IV, but the first-step regression here is Rt+1 V + 

˜ + β4Rmktβ3RtV (s) + �t+1. The market return Rmkt is the return on Barclays IG Corporate t t t 

Bond index. 

β̂1 β̂1 β̂2 β̂2 β̂3 β̂3 

Intercept −0.438∗∗∗ −0.448∗∗∗ 0.111∗∗∗ 0.099∗∗∗ 0.078∗∗∗ 0.089∗∗∗ 

(0.005) (0.007) (0.008) (0.009) (0.006) (0.007) 
Average bid-ask −0.044∗∗∗ −0.052∗∗∗ 0.017∗∗∗ 0.017∗∗∗ −0.046∗∗∗ −0.042∗∗∗ 

(0.006) (0.005) (0.006) (0.007) (0.005) (0.005) 
C-to-C vlm corr. 0.077∗∗∗ 0.074∗∗∗ 0.111∗∗∗ 0.101∗∗∗ 0.021 0.018 

(0.016) (0.016) (0.019) (0.019) (0.016) (0.017) 
C-to-D vlm corr. −0.059∗∗∗ −0.069∗∗∗ −0.119∗∗∗ −0.120∗∗∗ −0.013 −0.021 

(0.014) (0.014) (0.020) (0.021) (0.017) (0.018) 
No. funds 0.001∗∗∗ 0.0004∗∗∗ −0.0001∗∗ −0.0001∗∗ 0.0003∗∗∗ 0.0002∗∗∗ 

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 
CDS dummy −0.001 −0.002 −0.006∗ −0.006∗ 0.004 0.002 

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 
Issue size 0.024∗∗∗ 0.028∗∗∗ −0.012∗∗∗ −0.011∗∗∗ −0.009∗∗ −0.004 

(0.004) (0.004) (0.004) (0.004) (0.003) (0.004) 
No. dealers 0.001∗∗∗ 0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.0004∗∗ −0.0002 

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) 
Issuer size −0.0001∗∗∗ 0.00000 −0.0001∗∗∗ 

(0.00002) (0.00002) (0.00002) 
–Equity volatility −0.782∗∗ −0.974∗∗∗ 0.656∗∗ 

(0.323) (0.340) (0.279) 

Risk controls YES YES YES YES YES YES 
Observations 4,985 4,656 4,985 4,656 4,985 4,656 
R2 0.260 0.274 0.030 0.033 0.077 0.075 

∗Note: p<0.1; ∗∗ p<0.05; ∗∗∗ p<0.01 

ˆ ˆ ˆTable C4. Cross-sectional regressions of β1, β2, and β3 (market return included 
in the first-step regression). Each model is an OLS regression with heteroscedasticity-
consistent standard errors. Volume-return coefficients are averaged for every bond across all 
active periods, so are the predictors. Average bid-ask is the percentage difference between 
the daily buy and sell prices, excluding inter-dealer trades. Volume correlations are the first 

(c) (s)
autocorrelations of Ṽ 

t and Ṽ 
t . ‘No. funds’ is the number of mutual funds that own the 

bond. CDS dummy equals 1 if the average Active CDS dummy for the bond across its active 
periods is above 0.5 and 0 otherwise. The issue size is the outstanding notional amount in 
bln USD. The issuer size is market cap in bln USD. ‘No. dealers’ is the average number 
of unique dealers that intermediate trades in each bond. Equity volatility is the average 
realized volatility of daily stock returns across all active periods for each bond. Risk controls 
include credit spread and realized bond return volatility. 
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Figure C2. Point estimates and confidence intervals for the expected values of 
volume-return coefficients (market return included in the first-step regression). 
This figure is a counterpart of Figure 3, but the volume-return coefficients are estimated 
controlling for market return in the first-step regression (see Table C3). 
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Mean Med. No.>0 No.<0 No.>0* No.<0* No. Obs. 
β̂1 

β̂2 

β̂3 

-0.3112 
0.1126 
0.0778 

-0.3252 
0.0798 
0.0732 

179 
7414 
7304 

9644 
2409 
2519 

12 
1948 
2405 

8302 
157 
289 

9823 
9823 
9823 

Table C5. Summary statistics for the cross-section of volume-return coefficients 
(estimated controlling for volumes in the first-step regression). This is a counterpart 

(c) (s)˜ ˜of Table IV, but the first step equation here is Rt+1 = β0 + β1Rt + β2RtVt + β3RtVt + 
(c) (s)˜ ˜β4V + β5Vt t + �t+1. 

β̂1 β̂1 β̂2 β̂2 β̂3 β̂3 

Intercept −0.395∗∗∗ −0.398∗∗∗ 0.170∗∗∗ 0.164∗∗∗ 0.104∗∗∗ 0.117∗∗∗ 

(0.007) (0.007) (0.011) (0.013) (0.007) (0.008) 
Average bid-ask −0.091∗∗∗ −0.103∗∗∗ 0.027∗∗∗ 0.027∗∗∗ −0.055∗∗∗ −0.050∗∗∗ 

(0.006) (0.006) (0.009) (0.010) (0.006) (0.006) 
C-to-C vlm corr. 0.122∗∗∗ 0.119∗∗∗ 0.022 0.016 −0.010 −0.007 

(0.017) (0.017) (0.026) (0.026) (0.017) (0.017) 
C-to-D vlm corr. −0.074∗∗∗ −0.075∗∗∗ −0.099∗∗∗ −0.072∗ 0.019 0.007 

(0.016) (0.017) (0.037) (0.039) (0.019) (0.020) 
No. funds 0.0003∗∗∗ 0.0003∗∗∗ −0.0003∗∗∗ −0.0003∗∗∗ 0.0003∗∗∗ 0.0002∗∗∗ 

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 
CDS dummy 0.002 0.002 −0.004 −0.004 0.005∗ 0.002 

(0.003) (0.003) (0.005) (0.005) (0.003) (0.003) 
Issue size 0.050∗∗∗ 0.046∗∗∗ −0.016∗∗∗ −0.014∗∗ −0.016∗∗∗ −0.010∗∗ 

(0.005) (0.005) (0.006) (0.006) (0.004) (0.004) 
No. dealers 0.001∗∗∗ 0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.0003∗ −0.0001 

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) 
Issuer size 0.00004∗∗ −0.00003 −0.0001∗∗∗ 

(0.00002) (0.00003) (0.00002) 
–Equity volatility 0.453 −0.330 0.645∗∗ 

(0.286) (0.472) (0.298) 

Risk controls YES YES YES YES YES YES 
Observations 5,018 4,691 5,018 4,691 5,018 4,691 
R2 0.356 0.368 0.029 0.027 0.076 0.076 

∗Note: p<0.1; ∗∗ p<0.05; ∗∗∗ p<0.01 

ˆ ˆ ˆTable C6. Cross-sectional regressions of β1, β2, and β3 (volumes included in 
the first-step regression). Each model is an OLS regression with heteroscedasticity-
consistent standard errors. Volume-return coefficients are averaged for every bond across all 
active periods, so are the predictors. Average bid-ask is the percentage difference between 
the daily buy and sell prices, excluding inter-dealer trades. Volume correlations are the first 

(c) (s)
autocorrelations of Ṽ 

t and Ṽ 
t . ‘No. funds’ is the number of mutual funds that own the 

bond. CDS dummy equals 1 if the average Active CDS dummy for the bond across its active 
periods is above 0.5 and 0 otherwise. The issue size is the outstanding notional amount in 
bln USD. The issuer size is market cap in bln USD. ‘No. dealers’ is the average number 
of unique dealers that intermediate trades in each bond. Equity volatility is the average 
realized volatility of daily stock returns across all active periods for each bond. Risk controls 
include credit spread and realized bond return volatility. 
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Figure C3. Point estimates and confidence intervals for the expected values of 
volume-return coefficients (volumes included in the first-step regression). This 
figure is a counterpart of Figure 3, but the volume-return coefficients are estimated control-
ling for trading volumes in the first-step regression (see Table C5). 
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