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ABSTRACT 

We present a forward-looking estimator for the time-varying physical return distribution with 

minimal prior assumptions about the shape of the distribution and no exogenous assumptions 

about the economy or preferences. Our estimator, which is based on a neural network, derives its 

forecasts from option-implied measures and predicts the conditional mean and volatility of returns 

such that profitable trading strategies can be derived. In contrast to backward-looking estima-

tors and alternative forward-looking parametric and non-parametric approaches, its distribution 

forecasts cannot be rejected in statistical tests and it features lower prediction errors and higher 

conditional log likelihood values than the alternatives. 
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1 Introduction 

P, the conditional physical probability density function, is the key input to every application 

of Expected Utility Theory, which itself builds the foundation to any modern economic decision 

making problem.1 For instance, any valuation problem is solved by finding the expected present 
2value of future pay-offs, where the expectation is taken with regard to P. Analogous, the optimal 

3solution to any consumption and investment problem depends crucially on P. The vast majority 
4of the literature follows parametric or non-parametric backward-looking approaches to identify P. 

One serious limitation of backward-looking methodologies is their limited informativeness about 

forward-looking events in the presence of regime shifts or non-stationary data.5 Another strand of 

the literature has relied on the seminal work of Ross (2015) and Hansen and Scheinkman (2009) 

to identify P with forward-looking option data and parametric assumptions on the representative 

investor’s marginal utility.6 Despite its theoretical appeal, recent empirical evidence for the S&P 

500 concludes that the forward-looking P density of returns cannot be accurately recovered based 

on Ross (2015).7 We suggest a fourth strategy for estimating P, which similar to the important 

contribution of Linn et al. (2018) is a pure econometric approach that relies only on minimal 

mathematical continuity and differentiability assumptions and which hence can be considered free 

of parametric assumptions of the underlying economy. 

Our econometric methodology follows the economic idea of Ross (2015) to back out P from in-

herently forward-looking option prices. Yet, instead of relying on simplifying assumptions on an 

investor’s marginal utility, we do instead borrow from a well-developed machine learning literature 

which applies Mixture Density Networks (MDN) to approximate any conditional probability den-

sity function to arbitrary precision (Bishop, 1994). This allows us to extract P from option data 

with only minimal continuity and differentiability requirements and to remain agnostic about the 

underlying structure of the economy and preferences. Our method can also be applied to deter-

mine which factors are truly useful in identifying P. Our analysis with S&P 500 return and option 

data also documents that backward-looking information such as past S&P 500 returns, returns of 

the Fama and French (1993) value and size factor, momentum return and their respective realized 

volatilities do not add noteworthy information about P that is not yet part of option-implied return 

1In this work, our notion of P does not explicitly differentiate between objective and subjective probabilities. Early 
seminal work that discusses both concepts are Ramsey (1931), de Finetti (1937), von Neumann and Morgenstern 
(1947) and Savage (1954). 

2For early work of this seminal concept see Gordon (1962), Lucas Jr (1978), Mehra and Prescott (1985), Hansen 
and Singleton (1982), Hansen and Singleton (1983). Classical textbook treatments are Cochrane (2005) and Duffie 
(2001). 

3See Merton (1969), Merton (1975) for seminal work in optimal consumption and portfolio planning. 
4Noteworthy applications of parametric models on historical returns are Rosenberg and Engle (2002), Barone-

Adesi et al. (2008), Barone-Adesi and Dall’O (2010). Important non-parametric kernel density estimators on historical 
returns are Jackwerth (2000), Jackwerth (2004) and Aı̈t-Sahalia and Lo (1998). 

5Thorough explanations of this concern can be found in Bliss and Panigirtzoglou (2004) and Linn et al. (2018) 
and Cuesdeanu and Jackwerth (forthcoming). 

6See Schneider and Trojani (2019), Jensen et al. (2019), Jackwerth and Menner (2018), Borovička et al. (2016), 
Carr and Yu (2012) and Walden (2017) for recent generalizations of Ross (2015). 

7See Jackwerth and Menner (2018) and Dillschneider and Maurer (2018). 

2 



moments. 

Our option-implied MDN approach works as follows: We assume that the conditional probability 

of next day’s S&P 500 return is a weighted sum of Gaussian distributions, which introduces the 

aforementioned continuity and differentiability conditions on P. As conditioning variables we use 
the risk-free rate and two sets of factors. One set of factors captures forward-looking option-implied 

risk-neutral moments of the S&P 500; namely (i) the SV IX2 from Martin (2017), (ii) the risk-

neutral skewness and (iii) risk-neutral kurtosis from Bakshi et al. (2003). The second set of factors 

captures a subset of classical backward-looking return factors such as the return of the value, size 

and momentum factor and their respective 10-trading day rolling window variances. Each mean and 

variance of the Gaussian mixture model as well as the weight that each Gaussian density obtains is 

allowed to be a function of the conditioning variables. It is key that we are agnostic about the type 

of function that these quantities follow. Instead, we approximate these functions by a feed-forward 

neural network with one hidden layer of neurons and let the neural network learn from the data, 

how to best approximate these functions and hence, P. In order to keep this paper focused on 

core financial concepts, we refer the reader to our two technical reports that explain mathematical 

details for setting up well-specified MDNs (Rothfuss et al., 2019b) and for explaining step-by-step 

how to estimate well-specified MDNs (Rothfuss et al., 2019a). 

We confront our methodology with end-of-day S&P 500 return and CBOE option data, spanning 

the period January 2004 to July 2017, to answer five questions. First, do backward-looking factor 

returns add information about P that is not yet spanned by forward-looking option-implied infor-

mation? In order to answer this question we compare the in-sample and out-of-sample log likelihood 

values of three MDNs which only differ with regard to the set of conditioning variables. One MDN 

conditions on forward-looking option data and the risk-free rate only. A second one conditions on 

backward-looking factor returns and their historical volatility. A third MDN conditions on both 

types of information, forward-looking option data including the risk-free rate and backward looking 

factor returns and their historical volatilities. When comparing the respective log likelihood val-

ues we follow Welch and Goyal (2008) and compare all likelihood values to a baseline case, which 

we specify to be a non-parametric kernel density estimator (Jackwerth, 2000; Aı̈t-Sahalia and Lo, 

1998). Our analysis concludes that a MDN with only forward-looking option-implied information 

is sufficient to beat the non-parametric kernel density estimator by a margin of roughly 5%, both 

with in- and out-of-sample data. While adding backward-looking factor returns further increases 

the in-sample log-likelihood by a relative margin of 0.6%, the out-of-sample relative increase in the 

log-likelihood is only 0.04%. We hence conclude that the backward-looking factor returns and their 

historical volatilities do not add noteworthy information about P and can hence be easily skipped 

when building a forward-looking P estimate. 

The second question of our paper is to test whether each of the four considered P estimates could 

be the data generating process for the realized time series of daily S&P 500 returns. We follow 

Jackwerth and Menner (2018) and apply a Berkowitz (2001) and Knüppel (2015) test. Based on 

out-of-sample data, we reject that the non-parametric kernel density estimator and the backward-
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looking MDN are proper characterizations of P. We fail to reject the hypothesis for the forward-
looking MDN. These tests also show a text book like pattern for over-fitting when working with 

backward-looking P estimates. All of the considered backward-looking densities cannot be rejected 

using in-sample data, yet, they do not generalize well to previously unseen out-of-sample data and 

are strongly rejected here. 

Based on the first two research questions we conclude that the forward-looking P estimate that 

combines a MDN with forward-looking option data and the risk-free rate provides an accurate 

statistical description of daily S&P 500 returns. As a third research question we want to understand 

whether our forward-looking P estimate is useful from a financial economic point of view. To assess 

that we implement two dynamic trading strategies that rely on P as a signal for trading and compare 

the resulting Sharpe ratio to a static trading strategy that does not rely on P. One strategy goes 

long (short) the S&P 500 on days where the implied forward-looking expected return is positive 

(negative). We compare the Sharpe ratio of this strategy to a buy-and-hold strategy. The second 

trading strategy invests in delta-neutral straddles and closes the position after one day. We increase 

the short position on days where the conditional forward-looking variance expectation is falling and 

we reduce it for days where the variance forecast is rising. We compare the outcome of the straddle 

timing strategy to a static short straddle strategy. With regard to the first trading strategy, we 

document an in-sample (out-of-sample) Sharpe ratio of 0.69 (0.74), relative to a 0.39 (0.65) Sharpe 

ratio of the static buy-and-hold strategy. We document an in-sample (out-of-sample) Sharpe ratio 

for the dynamic straddle strategy of 4.9 (5.4), relative to a 2.7 (3.2) Sharpe ratio for the static short 

straddle strategy. Based on the in-sample and out-of-sample Sharpe ratio results, we conclude that 

the forward-looking P density carries economically meaningful information about the time-series 

properties of daily stock returns. 

Our fourth research question aims to understand which of the forward-looking option-implied con-

ditioning variables are especially important for the forward-looking P density. We perform an 

adjusted Patton and Timmermann (2010) test to assess the impact of a particular option-implied 

conditioning variable onto P. Our findings highlight that all of the considered option-implied vari-

ables are informative about P at the 1% significance level. From all option-implied quantities, we 

find SV IX2 to have the strongest effect on the ex-ante mean, variance, skewness and kurtosis of 

P. Bakshi et al. (2003) option-implied skewness and kurtosis are only important for pinning down 

the forward-looking P skewness and kurtosis. 

The adjusted Patton and Timmermann (2010) test does not reveal how the option-implied moments 

feed into P. The fifth research question does therefore aim to learn from the feed-forward neural 

network. We follow Davison and Hinkley (1997) and construct confidence intervals for the predictive 

relationship that the neural network based MDN implies. With regard to V IX2 , we identify a close 

to linear positive predictive relationship to next day’s expected return; well inline with the economic 

model of Martin (2017). The positive linear relationship is statistically significant for days when 

SV IX2 is particularly large. Also of interest is the observation of a positive relationship between 

SV IX2 and the expected P variance. The identified relationship is linear for days where the 
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annualized SV IX is above 17%. As to the relationship between SV IX2 and forward-looking P 

skewness we document that as option-implied variance drops from an annualized value of 17.3% to 

12.2%, next day’s P skewness reduces from roughly 0 to -0.62. 

Our work is closest related to the young, yet fast growing and influential, literature on estimating 

P from option data. Ross (2015) develops an economic technique to recover the physical return 

density from its risk-neutral counter-part. His key economic restriction is that the representative 

investor’s ratio of marginal utility between two states is transition independent and thus constant 

over time. The empirical success of the Ross (2015) theorem is mixed. Audrino et al. (2015) show 

that a trading strategy with signals extracted from Ross (2015) recovered P moments outperforms 

trading signals from risk-neutral moments. On the other hand, Jackwerth and Menner (2018) apply 

a series of statistical tests on the Ross (2015) implied P density. The authors reject the hypothesis 

that realized S&P 500 returns are drawn from the Ross (2015) implied P density. Jackwerth and 

Menner (2018) identify that a key challenge to the empirical success of Ross (2015) theorem is the 

difficulty to obtain the required transition state prices from option price data. Findings in Bakshi 

et al. (2018) on options on 30-year Treasury bond futures do also challenge the adequacy of the 

Ross (2015) required pricing kernel. 

Jensen et al. (2019) generalize the work of Ross (2015). The authors replace the time-homogeneity 

restriction on the pricing kernel with a weaker time-separability constraint. The authors show that 

this extension improves the resulting accuracy of the implied P volatility forecast, yet it still does 

not pass a Berkowitz (2001) test. In contrast to these important contributions, our paper shows 

how to transform option-implied information to P without relying on the economically important, 

yet, empirically difficult to measure concept of a pricing kernel. Our approach is only data driven 

and uses a small-scale feed-forward neural network as part of a MDN to uncover P from a panel of 

option prices. 

Our work is also related to the model-free P recoveries of Schneider and Trojani (2019) and Linn 

et al. (2018). Schneider and Trojani (2019) use economically motivated sign restrictions on tradable 

higher moment risk premiums to derive constraints on the physical conditional moments of returns. 

Their recovered P estimate is free of technical assumptions on the underlying economy and shown to 

predict S&P 500 returns. The model-free approach of Linn et al. (2018) is an innovative econometric 

approach that estimates P using the forward-looking option-implied density and the inverse of 

the Radon-Nikodym derivative. The authors’ approach relies on a finite order cubic B-spline to 

approximate the inverse of the Radon-Nikodym derivative with a set of time-varying option-implied 

densities and return realizations that are sampled from the corresponding P density. Their model-

free estimate for P shares the same information set as our option-implied forward-looking density 

and similar to Linn et al. (2018), our approach of recovering P is a pure econometric approach. 

Different to the previous two contributions however, we do not identify P based on the conceptually 

important, though rather indirect route via a pricing kernel. Instead, we directly approximate the 

unknown P distribution by a small-scale MDN with a feed-forward neural network that conditions 

on option-implied information. 
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Our work also adds to the growing literature that uses machine learning and neural network tech-

niques in finance applications. Early work in this field includes Hutchinson et al. (1994) and Yao 

et al. (2000) who use neural networks to price options on the S&P 500 and Nikkei 225 futures. More 

recently, Ludwig (2015) documents several advantages when using a neural network to interpolate 

the option-implied volatility surface. Dunis et al. (2011) and Zhao et al. (2018) show how to use 

neural networks for portfolio formation and trading strategies. The influential study of Gu et al. 

(2019) compares a range of machine learning techniques for time series and cross-sectional return 

predictions. The authors conclude that well-performing machine learning techniques, such as neu-

ral networks, benefit from the ability to capture important data non-linearities. We add to this 

literature by showing that machine learning techniques are not only useful for return predictions, 

but they also help improve our understanding on deep financial economic questions, such as how 

to use the in real-time available rich cross-section of option data to learn about the full conditional 

return density under P. 
The concept of using MDNs and neural networks to approximate conditional probability density 

functions has been primarily developed in the computer science literature. The seminal work in that 

field is Bishop (1994). Recently, there has been a new interest in that literature to further improve 

on that technique. Rothfuss et al. (2019a) develop a noise regularization to machine learning tools 

like a MDN to prevent over-fitting in applications that have to rely on small training samples. 

In our implementation of the MDN we test for over-fitting using their regularization technique. 

Rothfuss et al. (2019b) use a controlled simulation study to assess how different non-parametric 

conditional density estimators perform when asked to learn a specific density function. The authors 

conclude that a MDN dominates the other considered non-parametric density estimators. On a 

technical level, we differ from these studies by letting the training algorithm choose the size of the 

neural network, which allows the data to determine the proper degree of complexity and which 

renders noise regularization unnecessary in our case. On an economic level, we differ from these 

studies by using this well developed tool from the computer science literature to address one of 

the most fundamental questions in financial economics, namely how to find a good forward-looking 

estimate for the conditional density of daily S&P 500 returns. 

The rest of the paper is structured as follows. Section 2 provides an overview of the MDN and our 

estimation procedure. We present our data sets in section 3. Our main results are documented in 

section 4, followed by several robustness checks in section 5. Section 6 concludes. 

Model-free Conditional Physical Density Estimation 

In this section, we present our conditional density estimator that is able (but not restricted) to form 

physical density estimates based on forward-looking information alone. We consider this estimator 

to be model-free in the sense that we do not restrict in any way the shape of the distribution or 

the relationship between the distribution’s shape and the inputs that it is conditioned on. Instead, 

the estimator learns these characteristics during the training phase from the data. The estimator, 
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called Mixture Density Network (MDN), combines a neural network with the class of mixture 

density models and has been developed by Bishop (1994). 

Let rt = log St be the log return of an asset’s price at time t and Xt−1 = (x1,t−1, ..., xi,t−1, ..., St−1 

xN,t−1)
| ∈ I ⊆ RN be a set of N predictor variables, that we can observe in t − 1. We start by 

expressing the conditional physical log return density p(rt|Xt−1) as a mixture density model, more 

precisely, by a Gaussian mixture model 

KX 
p(rt|Xt−1) = αk(Xt−1) N (rt|µk(Xt−1), σk 

2(Xt−1)). (1) 
k=1 

Here, the conditional density is constructed as the weighted sum of K Gaussian densities with 

respective weights αk(Xt−1), means µk(Xt−1) and variances σ2(Xt−1). The weights, means andk 

variances of the mixture model are an unknown function of the input variables Xt−1. In order toPKform a valid density, it must hold k=1 αk(Xt−1) = 1. As Bishop (2006) emphasizes, this speci-

fication is flexible enough to approximate almost any distribution to arbitrary precision, provided 

the number of Gaussians K is large enough. 

A MDN uses a feed-forward neural network to jointly estimate αk(Xt−1), µk(Xt−1) and σ2(Xt−1).k 

For robustness, we restrict ourselves to neural networks with one hidden layer of neurons. To 

formalize that, we express the distribution’s parameters as a function of the input variables that 

we condition on: f : I → RK × RK × RK 
+ , f(Xt−1) = (α1(Xt−1), ..., αK (Xt−1), µ1(Xt−1), ...,+ 

µK (Xt−1), σ1
2(Xt−1), ..., σ2 (Xt−1))

| and write the j-th element of f asK ! 
H NX X 

fj (Xt−1) = w2,j,h φ w1,i,h xi,t−1 + w2,j,bias. (2) 
h=1 i=1 

Here, we assume that the input vector Xt−1 already contains a constant element. In essence, the 

neural network, which is characterized by equation 2, can be seen as a weighted sum of homogeneous 

functionals of the input variables. The difference between the functionals only lies in the weights 

that are assigned to each input. Note that these first-level weights w1,i,h are shared among all 

elements of f , while the second-level weights w2,j,h and w2,j,bias are element-specific. The function 

φ(·), called activation function, should be continuous, bounded and non-constant and we follow 
−ze common practice in the literature in choosing the tangens hyperbolicus function, i.e. φ(z) = 

z −e 
−z . ez +e 

As Hornik (1991) showed, this neural network specification is flexible enough to approximate any 

continuous function fj (Xt−1) to arbitrary precision, provided that the number of hidden neurons 

H is large enough. Put differently, the neural network’s parameters w1,i,h, w2,j,h and w2,j,bias define 

the function fj (Xt−1), which is selected from the full space of continuous functions in the model 

training phase. Beside the number of hidden neurons H, which we let our training algorithm choose 

freely, we impose no restrictions on fj (Xt−1) in any way. In combination with the flexible density 

definition in equation 1, the MDN can approximate any conditional distribution p(rt|Xt−1) without 

prior restrictions about this distribution (Bishop, 1994). 
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2.1 Estimation 

The parameters of our Gaussian mixture density from eq. 1 are subject to a number of natural 

constraints: The variances of the component densities σ2(Xt−1) must be positive. Also, the weights k 

αk(Xt−1) must be positive and add up to 1. Translating these restrictions into a set of constraints for 

the neural network’s weights would be very challenging, if not impossible. Instead, we transform the 

neural network’s weight and variance outputs to enforce fulfilling the constraints. More precisely, 

let αk(Xt−1) be the MDN output for a weight and σ2(Xt−1) be the MDN output for the variance k 

of a mixture component. The actual weight and variance of that component is then set to 

σ̃2 (Xt−1)σ̃k 
2(Xt−1) = e k , 

eαk(Xt−1) 

α̃k(Xt−1) = PK . 
αi(Xt−1)

i=1 e 

These transformations allow us to maintain an unconstrained output for the neural network while 

fulfilling the natural parameter constraints of a mixture density model. 

We now collect a training data set {(rt, Xt−1)}t∈[1,T ]. As we are aiming for a full density estimator, 

we fit the neural network parameters θ = (w1,i,h, w2,j,h, w2,j,bias) by maximizing the conditional 

log-likelihood of the observed data points: 

TX 
θ ∗ = arg max log p̂(rt|Xt−1; θ). (3) 

θ 
t=1 

There exists a large body of literature about the training of neural networks. Bishop (2006) and 

Géron (2017) provide a good introduction and overview of different training techniques. We use 

stochastic gradient descent with the adaptive learning rate method of Kingma and Ba (2015) to train 

our Mixture Density Network. In a nutshell, this local optimization technique repeatedly iterates 

over the complete training data set and adjusts the parameters step-by-step to draw closer to the 

optimal solution. The starting values for the weights of the MDN are set randomly. Within each 

iteration, the method starts in the beginning of the training data set, feeds the respective input data 

point into the neural network and computes the model-implied likelihood of the associated observed 

return. The optimizer now slightly adjusts the weights along their gradients of the likelihood 

function to increase the likelihood of that return in subsequent estimations. Afterwards, it proceeds 

to the next observation and repeats updating the weights until the end of the data set is reached. 

This process is repeated L times. 

A central issue when training neural networks is determining the optimal degree of complexity of 

the model. Models with too limited capacity may not be a able to sufficiently capture the structure 

of the data, inducing a restriction bias. On the other hand, if a model is too expressive, it is prone 

to over-fit the training data, resulting in poor generalization. There are three hyper-parameters 

embedded in our approach that allow to adjust the complexity of the Mixture Density Network: 

the number of mixture components K, the number of hidden neurons H and the number of training 
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iterations L. Increasing any of these hyper-parameters makes the model more complex. 

In order to pin down the hyper-parameters and find the best degree of complexity for our use case, 

we perform a cross-validation-based hyper-parameter grid search. More precisely, we divide the 

training data set into 10 equally sized folds. For each hyper-parameter combination on the grid, we 

in turn leave out one of the folds and use the 9 other folds for training. We now train the MDN 5 

times on this trimmed training data set with different starting values for the weight optimization. 

After each training, we record the average conditional log-likelihood for the returns in the fold 

that was left out. We arrive at a performance figure for a given hyper-parameter combination 

by taking the average log-likelihood across all folds and starting values. Finally, we choose the 

hyper-parameter combination with the highest performance, that is, the highest cross-validation 

conditional likelihood. 

Data 

Our forward-looking estimate of the physical return density heavily relies on risk-neutral informa-

tion. We use the moments of the risk-neutral distribution, which can be inferred from option prices, 

as inputs for our estimation. To this end, we obtain end-of-day quotes for S&P 500 options from 

the Chicago Board Options Exchange (CBOE). The option data spans the period January 2004 

until July 2017 and comes with matched underlying prices at the time of the option market’s close. 

Bakshi et al. (2003) showed how the variance, skewness and kurtosis of the risk-neutral distribution 

can be backed out from option prices in a model-free way via aggregation over the strike range. 

Martin (2017) introduced the SVIX, a similarly constructed measure, that is closely related to the 

risk-neutral variance and that constitutes a lower bound for the expected return under reasonable 

assumptions. Due to its theoretical merits, we thus replace the risk-neutral variance estimate of 

Bakshi et al. (2003) with the SVIX in our physical density predictions. 

A careful and precise estimation of the SVIX and the risk-neutral moments from the raw option 

data is crucial for our analysis. Ulrich and Walther (2018) compare several popular approaches 

for building the implied volatility surface and thus risk-neutral moment estimates and find large 

differences in the estimates that result from the choice of the calculation method. These differences 

are especially pronounced in the tail regions of the risk-neutral density, which are of high importance 

for the risk-neutral skewness and kurtosis measures that we use. We follow their advise and use a 

kernel regression over the strike range for interpolating the implied volatility surface at observed 

maturities. After having obtained the risk-neutral measures for observed maturities by aggregating 

appropriately over the strike range, we linearly interpolate these along the maturity dimension 

to a fix maturity of 30 calendar days. In that, we exclude options with maturities of less than 

7 days as the term structure of risk-neutral moments becomes increasingly non-linear for very 

short-term options. At times, this filter removes all observations with maturities that are shorter 

than 30 calendar days, in which case we linearly extrapolate the moment estimates that relate to 

longer-term maturities. 
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Table 1: Data Summary Statistics 

Percentiles 
Mean Volatility 10% 25% 50% 75% 90% 

S&P 500 return 0.03 1.17 -1.11 -0.39 0.07 0.53 1.13 

Riskfree rate 0.005 0.007 0.00 0.00 0.001 0.008 0.019 
SVIX2 394.30 494.35 134.12 167.20 238.33 413.58 720.12 
QSkew -2.46 0.94 -3.46 -2.93 -2.41 -1.94 -1.51 
QKurt 24.37 16.62 8.59 13.16 20.85 30.27 43.11 

Value return 0.003 0.64 -0.57 -0.28 -0.00 0.26 0.58 
Size return 0.002 0.57 -0.67 -0.34 0.01 0.34 0.67 
Momentum return -0.002 0.96 -0.94 -0.38 0.06 0.43 0.89 
S&P 500 risk 1.88 6.01 0.22 0.40 0.84 1.77 3.71 
Value Risk 0.41 0.92 0.04 0.07 0.14 0.29 0.77 
Size risk 0.33 0.41 0.10 0.15 0.23 0.35 0.59 
Momentum Risk 0.93 2.01 0.09 0.16 0.32 0.74 1.83 

N 3303 

The table shows summary statistics for our full S&P 500 data set. All figures are in percentage values. We 
use log returns, the factor risk rows represent 10-trading-day rolling window variances of the respective log 
returns. The SVIX is by definition a measure for risk-neutral volatility. We use its squared version to make 
it consistent with our remaining risk measures, which are expressed in variance terms, and because SVIX2 

represents a lower bound for the expected equity risk premium, according to Martin (2017). QSkew (QKurt) 
denote the risk-neutral skewness and kurtosis measures. All quantities refer to the daily time-interval, beside 
the SVIX2 , which is annualized due to its definition. The data set spans the period 2004-01-05 to 2017-07-18. 

In order to compare our results for purely forward-looking inputs with density predictions based 

on backward-looking data, we also obtain time series information. First, as we are interested in 

predicting the density of S&P 500 returns, we get daily S&P 500 closing prices from Bloomberg. 

Furthermore, we collect daily return time series for the size, value and momentum factor from 

Kenneth French’s website and treat the S&P 500 as a measure for the market factor. To obtain a 

time-varying physical measure for factor risk, we compute the variance of factor returns over rolling 

10-trading-day windows for each factor separately. We use Overnight Index Swap (OIS) rates as 

our measure for the risk-free rate, which we source from Bloomberg. We obtain all of these time 

series data for the same time frame as we have option data available. 

We merge risk-neutral moment, return and physical risk time series that we gather and match 

them with subsequent S&P 500 returns. We drop days for which one of our inputs it not observed. 

Table 1 contains summary statistics of our data set. We split this full data set into a training and 

a validation subset. The training set consists of the first 80% of observations, while the last 20% 

of observations form the validation set. The estimation that we laid out in section 2.1, including 

the hyper-parameter selection, is only based on the training data set, such that the validation set 

is completely untouched before we evaluate a predictor’s performance on it. 
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4 The Forward-Looking Return Density 

4.1 Using purely forward-looking information 

We start our analysis by inspecting the predictive information content of risk-neutral measures with 

respect to the complete daily return distribution. In particular, we check whether restricting the 

predictor variables to purely forward-looking measures comes along with a reduction in prediction 

performance. We measure performance of a density predictor via the average log-likelihood of 

the return observations {rt+1}t=1,...,T , given the density estimator p̂(·) and the predictive variables 

{Xt}t=1,...,T : 
TX1 
log p̂(rt+1|Xt) (4)

T 
t=1 

Intuitively, a conditional density estimator will reduce the likelihood of some potential returns and 

increase the likelihood of other returns based on some observations of Xt. If Xt is informative 

about the future return and if the density estimator is well specified, the ex post realizations of the 

returns will be more likely to show up in the regions with increased likelihood, thus leading to an 

increase in the average log-likelihood. 

As the average log-likelihood is a relative performance measure between competing model specifi-

cations, we compare the Mixture Density Network estimator to a benchmark density estimator. In 

the spirit of Welch and Goyal (2008), who use the unconditional mean of the in-sample data set as 

benchmark for in- and out-of-sample mean predictions, we use the smoothed empirical in-sample 

return density as our benchmark. For smoothing, we apply a Gaussian kernel density estimator and 

select the bandwidth parameter via cross-validation, as suggested by Härdle (1991). We estimate 

three MDN densities, which differ in their input variables. The first MDN uses purely forward-

looking information, i.e. the risk-free rate, the SVIX, risk-neutral skewness and kurtosis. The 

second MDN is based on purely backward-looking information, which is past S&P 500 and FF3 

factor returns and volatilities. Finally, we consider a MDN specification that uses both types of 

information as input variables. In all cases, including the benchmark kernel density, we fit the es-

timator to the training data set. We then calculate the average log-likelihoods of the fitted density 

estimators for the training (in-sample) and the validation (out-of-sample) data set separately. As 

fitting a MDN employs a local optimization routine, the final conditional estimator may depend on 

the random starting values of the optimization. To address this concern, we fit each estimator 100 

times with different starting values and calculate the average performance across all fits. We also 

calculate the standard deviation of the individual performance evaluations to get a sense for the 

stability of the estimator with respect to the starting values. 

Panel a of table 2 contains the result of our performance evaluation. Throughout our estimations, 

the MDN estimator showed a higher average log-likelihood than the benchmark method, both 

in-sample and out-of-sample. In relative terms, the average log-likelihood of the forward-looking 

estimator is 4.7% higher than the benchmark in-sample and 4.6% higher out-of-sample. The sim-

ilar performance increase in the in- and out-of-sample set is a first hint that the forward-looking 
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estimator is generalizing well. The standard deviation of the log-likelihood due to different starting 

values is low, indicating that the neural network fitting is not easily trapped in a local optimum, 

but instead converges to a robust estimator. Using purely backward-looking information not only 

comes along with a lower log-likelihood, but also only reaches a 0.9% performance increase against 

the unconditional benchmark in the out-of-sample set, after a 4.0% increase in the in-sample set. 

This decrease of the performance spread is a sign for over-fitting in the backward-looking estimator. 

Furthermore, adding backward-looking information to the forward-looking MDN does not appear 

to improve the estimator sustainably. The performance slightly increases in-sample, but does nearly 

not change out-of-sample, leading to a decrease in the performance spread against the bechmark 

between the in- and out-of-sample data set. It thus seems like the past return and risk information 

only introduces a slight tendency of over-fitting into the estimator. Our results show that a purely 

foreward-looking MDN estimator of the conditional return density improves on the unconditional 

return density and is most favorable with respect to performance and generalization. Figure 1 shows 

time series charts of the S&P 500 price development along with the expected physical moments of 

our forward-looking density estimator. 

We continue by asking whether the MDN estimator is consistent with the data from a statistical 

point of view. To this purpose, we apply the tests of Berkowitz (2001) and Knüppel (2015). The 

null hypothesis of these tests is that the observations of a random variable are drawn from a given 

density estimator. Panel b of table 2 contains p-values for this null hypothesis for the in-sample and 

out-of-sample data set, separately. To obtain the p-values for the out-of-sample data set, we use the 

density estimator that was trained on the in-sample data set. In general, the findings of the two tests 

are strongly aligned. The tests reveal that the unconditional kernel density estimator appears to be 

inappropriate, as it is strongly rejected out-of-sample and even in-sample by the Berkowitz (2001) 

test. The forward-looking estimator shows high p-values and we cannot reject the null, that this 

estimator describes the true conditional density of returns. For the backward-looking estimator, 

in-sample p-values are high, but the estimator is very strongly rejected out-of-sample by both 

tests. Again, this is a clear sign of the over-fitting behaviour of the backward-looking estimator. 

The estimator that uses both, backward- and forward-looking information, is not rejected by either 

test. Beside the Berkowitz (2001) test of the in-sample data set, the p-values are considerably lower 

than for the forward-looking estimator, though. 

At first sight, it appears puzzling that the benchmark estimator is rejected in-sample by the 

Berkowitz (2001) test. The p-value of the forward-looking estimator is low, too. This finding 

can be explained by the structure of the Berkowitz (2001) test, which not only checks whether 

the distribution matches, but also if there is autocorrelation in the conditional probabilities. If 

we disable the autocorrelation check, the p-value of the benchmark rises to 0.111, the forward-

looking estimator’s p-value even increases to 0.805 in the in-sample data set. Autocorrelation in 

the conditional probabilities can be induced by autocorrelation in the returns, if the estimator does 

not account for that. As neither the benchmark nor the forward-looking estimator conditions on 

past return data, they cannot correct for return autocorrelation. In contrast, the backward-looking 
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Table 2: Performance and validity of MDN conditional density estimates 

(a) Average log-likelihood 

Model In-Sample Out-of-Sample 

Benchmark 3.1774 3.4318 

Forward-looking 
Backward-looking 
All information 

3.3327 (0.0056) 
3.3156 (0.0056) 
3.3524 (0.0082) 

3.5968 (0.0094) 
3.4704 (0.0096) 
3.5984 (0.0141) 

N 2642 661 

(b) Density test p-values 

Model 
Berkowitz (2001) 

In-Sample Out-of-Sample 
Knüppel (2015) 

In-Sample Out-of-Sample 

Benchmark 0.000 0.000 0.466 0.001 

Forward-looking 
Backward-looking 
All information 

0.066 
0.767 
0.537 

0.81 
0.000 
0.549 

0.7033 
0.681 
0.605 

0.974 
0.000 
0.386 

N 2642 661 2642 661 

Panel a of this table shows the average log likelihood of S&P 500 return observations for differ-
ent conditional density estimators over 100 estimation runs with different starting values in the 
optimization. We call the unconditional kernel density estimator on the in-sample data set Bench-
mark. We estimate three conditional MDN density estimators, which differ in their input data. 
The forward-looking estimator is trained solely on risk-neutral information, the backward-looking 
estimator conditions on past returns and physical risk measures only. We also train an all infor-
mation estimator, which uses both input variables sets. Standard errors of the neural network 
log-likelihood estimates due to random starting values of the neural network optimization are given 
in parentheses in panel a. Panel b shows p-values of the null hypothesis that the density estimator 
correctly specifies the return density. 

estimator, which makes use of past return data, shows a high p-value. The exploitation of re-

turn autocorrelation is dangerous though, as can be seen from the out-of-sample p-values. Here, 

the forward-looking estimator has a very high p-value, while the backward-looking estimator is 

strongly rejected. The reason for this observation is that the autocorrelation does not persist in the 

out-of-sample data set. Again, the result is due to the over-fitting behavior of the backward-looking 

estimator, which does not show up in the forward-looking estimator. 

4.2 Trading on the conditional return distribution 

If the forward-looking MDN estimator is informative about the future return distribution, as our 

previous results suggest, it should be possible to derive profitable trading strategies based on the 
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Figure 1: S&P 500 price development and expected P moments 

(a) S&P 500 Price 

(b) Expected Mean 

(c) Expected Standard Deviation 

(d) Expected Skewness 

(e) Expected Kurtosis 

Panel a shows the price development of the S&P 500 between January 2004 and July 2017. Panels b through 
e show one week rolling window averages of the MDN-implied forward-looking mean, standard deviation, 
skewness and kurtosis expectation. 
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density forecast. In this section, we present two simple trading schemes that exploit information 

about the conditional physical mean and volatility, that the MDN implicitly predict. Essentially, 

both trading strategies use the moment prediction as a signal to increase or decrease a market 

position. 

For our first strategy, we obtain the daily conditional one-day-ahead mean expectation m̂ 1,t+1 as Z ∞ 

m̂ 1,t+1 = E[rt+1|Xt] = u p̂(u|Xt) du. (5) 
−∞ 

Here, p̂(·) denotes the MDN estimator and Xt is a vector of all forward-looking variables that we 

observe at time t. Each day, we invest a fraction of wealth into the S&P 500 at its closing price and 
m̂ 1,t+1hold that position for one day. The fraction of wealth that we invest is defined as wt = ,σ(m̂1,t+1) 

where σ(m̂1,t+1) represents the standard deviation of the mean estimate. Note, that the weights 

are determined by the expected mean itself. Any other denominator beside the standard deviation 

could also be used and would only scale the returns of our trading strategy. The weight definition 

that we use can lead to negative position weights, in which case we initiate a short position in 

the S&P 500. If the weight exceeds 1, we assume that the position is leveraged accordingly. We 

compare the strategy returns to a simple buy-and-hold strategy’s returns. 

Table 3 gives an overview of this simple mean trading strategy. On average, the market timing 

strategy is invested with 80.7% of total wealth, with a standard deviation of 100%. Although the 

average fraction of wealth invested is lower than for the buy-and-hold strategy, the market timing 

strategy manages to realize an average yearly excess return of 16.4%, which is 9.2% higher than 

the average return of the buy-and-hold strategy. However, this higher average excess return comes 

along with an increased volatility of annualized 25.5%. Still, using the MDN mean forecast as a 

signal to time the market increases the Sharpe ratio of the buy-and-hold strategy of 0.388 by more 

than 78% to 0.694. The results for the full data set are confirmed by looking at the out-of-sample 

data set only. Although the market volatility and thus the potential for market timing has been 

significantly lower in the out-of-sample set than in the full data set, our market timing strategy still 

increases the Sharpe ratio of the buy-and-hold strategy from 0.647 to 0.743, an increase of nearly 

15%. This increase results from a 1.5% higher annual excess return for the market timing strategy 

with a volatility increase of only 0.59%. In summary, timing the market based on the MDN’s mean 

return forecast appears to be a beneficial and robust trading strategy. 

We proceed with our second trading strategy, which makes use of the implicit volatility forecast 

of the MDN. Bakshi and Kapadia (2003) describe a negative variance risk premium, that can be 

earned by shorting options. We therefore base our volatility trading strategy on shorting at-the-

money (ATM) straddles. A straddle consists of a Call and a Put option with the same strike and 

maturity. On expiration, the position earns a negative return, if the price of the underlying barely 

changed. On the other hand, if the price of the underlying moved strongly, the position will earn a 

positive return. On average, ATM straddles have significantly negative returns, which is consistent 

with a negative variance risk premium. However, it should be possible to time straddle returns, if 
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Table 3: Mean trading summary statistics 

Full data set Out-of-sample 
Strategy Buy-and-Hold MDN Buy-and-hold MDN 

Mean return 8.48 (5.11) 17.67 (7.02) 8.43 (7.89) 9.94 (8.25) 
Mean excess return 7.18 (5.11) 16.38 (7.03) 8.28 (7.9) 9.78 (8.26) 
Excess return volatility 18.52 25.45 12.79 13.38 
Sharpe Ratio 0.388 0.694 0.647 0.743 

N 3303 3303 661 661 

The table shows annualized daily expected return, excess return, excess return volatility and Sharpe Ratio 
of the conditional mean trading strategy in the S&P 500, compared with the buy-and-hold strategy. The 
numbers in parentheses are standard errors of the average return estimates. The full data set covers January 
2004 to July 2018. The out-of-sample data set covers the last 20% of the full data set and thus starts in 
November 2014. 

a robust volatility forecast is available. 

To this purpose, we calculate the conditional one-day-ahead second moment m̂ 2,t+1 on a daily basis 

as Z ∞ 
2 2 ˆm̂ 2,t+1 = E[rt+1|Xt] = u p(u|Xt) du (6) 

−∞ q 
and construct the volatility forecast σ̂t+1 = m̂ 2,t+1 − m̂ 1

2 
,t+1. For each day, we select the strike 

that is closest to the S&P 500 price and the option series with the shortest maturity larger than 

6 days. Thus, the combined position’s delta exposure is approximately 0. At the selected strike 

and maturity, we initiate a straddle at the CBOE’s reported end-of-day mid price. After one day, 

we close the position at their end-of-day mid price. Unconditionally, we would short the straddle 

position. However, if we predict the S&P 500’s standard deviation to rise, we reduce the short 

position, or even go long the straddle. On the other hand, if we predict a lower standard deviation 

for the next day than for today, we increase the short position. More precisely, the position weight 

is defined as 

Δm̂2,t+1 = m̂ 2,t+1 − m̂ 2,t 
Δm̂2,t+1 

wt = −1 + ,
σ(Δ ̂m2,t) 

where σ(Δ ̂m2,t) is the standard deviation of the daily change in the standard deviation forecast. If 

our volatility forecast is informative about actual future volatility, we expect this straddle timing 

to be beneficial for two reasons. First, a higher volatility expectation increases the probability 

for larger returns, i.e. high volatility realizations, in the underlying. Since a straddle essentially 

represents a bet on volatility and a large return realization increases the expected pay-off, such a 

high volatility realization directly increases the straddle’s price. Second, as Bakshi and Kapadia 

(2003) showed, higher realized volatility comes along with an increase in the variance risk premium, 
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Table 4: Volatility trading summary statistics 

Full data set Out-of-sample 
Strategy Buy-and-Hold MDN Buy-and-hold MDN 

Mean return 523.86 (53.9) 1392.02 (79.03) 753.23 (144.12) 1464.58 (168.16) 
Mean excess return 525.15 (53.9) 1393.29 (79.02) 753.61 (144.13) 1464.97 (168.17) 
Excess return volatility 195.01 285.92 233.24 272.15 
Sharpe Ratio 2.69 4.87 3.23 5.38 
N 3299 3299 660 660 

The table shows annualized daily expected return, excess return, excess return volatility and Sharpe Ratio 
of the conditional standard deviation trading strategy in S&P 500 straddles, compared with the always short 
strategy. The numbers in parentheses are standard errors of the average return estimates. The full data set 
covers January 2004 to July 2018. The out-of-sample data set covers the last 20% of the full data set and 
thus starts in November 2014. 

which would translate into an increased straddle price. Together, straddle prices should rise if 

volatility increases. 

Table 4 compares the returns of the fix always-short strategy and our straddle timing strategy. As is 

known in the literature, average returns to shorting options in general, and straddles in particular, 

are sizable. Constant shorting of straddles earns an average log excess return of 525% per year.8 

This high average return is put into perspective by the standard deviation of 195%, leading to a 

Sharpe ratio of 2.69. By using the MDN estimator’s volatility forecast, the Sharpe ratio can be 

increased by more than 80% to 4.87. Out-of-sample, the volatility forecast increases the Sharpe 

ratio of 3.23 by 66% to 5.38. 

Taken together, our results show that the MDN estimator can be used to time the market. This 

market timing becomes possible due to the predicting capabilities of our forward-looking estimator 

for the future mean and volatility of S&P 500 returns. In both cases, the results for the out-of-

sample set strongly support the findings for the full data set. This confirms our previous findings 

that the MDN is not over-fitting the training data and generates a robust forward-looking density 

predictor. 

4.3 Determinants of Index Return Densities 

In the previous sections, we’ve established the Mixture Density Network as a flexible and robust 

predictor for the S&P 500 return distribution. The MDN bases its predictions on moments of the 

risk-neutral distribution. As a result, we can express the conditional return distribution, represented 

by its conditional moments, as a function of the risk-neutral moments. We further ask, whether all 

of these risk-neutral moments matter for the density prediction. To this end, we apply an adjusted 

form of the test of Patton and Timmermann (2010) to allow statistical inference about the impact 

8We calculate returns with respect to the initial price of the straddle. Sometimes, returns are also calculated with 
respect to the underlying price, which technically makes average returns appear lower. 

17 



of a predictor variable on the conditional return distribution. 

We start our analysis by estimating the MDN on the complete data set. Let xi be the i-th predictor 

variable of the MDN, in our case the i-th risk-neutral moment, and X 0 = (x1, ..., xi−1, xi+1, ..., xN )
| 

be a vector of the remaining input variables. As is it not essential for this analysis, we dropped the 

time index for ease of notation. We obtain the 10% (90%) percentile of the observed value range 
low high low high of xi, xi (xi ), and discretize the interval [xi , xi ] into 100 data points with equal step size 

(n)
x , n ∈ [1, 100]. For each discretized data point, we calculate the MDN-implied conditional l-thi 

centralized and normalized moment for l ∈ [1, 2, 3, 4], i.e. mean, variance, skewness and kurtosis: 

(n) (n)
m̂ = E(r 1|(x , X 0)), (7)1,i i 

(n) (n) (n)
m̂ = E((r − m̂ )2|(x , X 0)), (8)2,i 1,i i 

(n) (n)
E((r − m̂ )3|(x , X 0))(n) 1,i i 

m̂ 3,i = � 
(n) 
�1.5 , (9) 

m̂ 2,i 
(n) (n)

E((r − m̂ )4|(x , X 0))(n) 1,i i 
m̂ 4,i = � 

(n) 
�2 (10) 

m̂ 2,i 

In that, we set the elements of the vector X 0 to their unconditional median estimates. Following 

Patton and Timmermann (2010), a test for the impact of xi on m̂ l can now be built on this 

empirical representation of the functional relationship between the i-th predictor variable and the 
(u) (n)

l-th conditional return moment. We identify the indices u and d that satisfy m̂ = maxn m̂l,i l,i 
(d) (n)

and m̂ = minn m̂ , that is the indices on the discretized range of {xi} for which we observed l,i l,i 

the lowest and the highest conditional moment estimate. If xi does not predict the l-th conditional 

moment, this lowest and highest conditional moment estimate should be equal, which leads us to 

the null hypothesis 
(u) (d)

H0 : Δ̂ 
l,i = m̂ l,i − m̂ l,i = 0. (11) 

We can quantify the likelihood of this null hypothesis via bootstrapping. We apply the stationary 

bootstrap of Politis and Romano (1994) and re-sample the training data B = 1000 times. For each 

re-sampled data set, we re-fit the MDN and obtain the bootstrapped moment samples along the 
(n,b)

discretized range of xi, m̂ l,i , b ∈ {1, ..., B}. For each bootstrap, we calculate the test statistic 
(b) (u,b) (d,b)

Δ̂ = m̂ − m̂ and eventually estimate the p-value for H0 asl,i l,i l,i 

(b) (b)
Jl,i = Δ̂ 

l,i − Δ̂ 
l,i 

BX10 1h ip̂ = (b) ,l,i B Jj >Δ̂ 
j 

b=1 

iwhere 1h 
(b)

> ̂  is an indicator function that is 1 if the condition in brackets is fulfilled and 0 
J Δjj 

otherwise. 
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Table 5: Impact of predicting variable on the conditional return density 

Variable Mean Variance Skewness Kurtosis 

Riskfree rate 0.416 0.037** 0.286 0.288 
SVIX2 0.000*** 0.000*** 0.000*** 0.004*** 
QSkew 0.231 0.117 0.000*** 0.000*** 
QKurt 0.052* 0.165 0.007*** 0.001*** 

The table shows p-values for the null hypothesis that the predicting variable in the first column is not 
informative about the moment of the column label. We use stationary bootstrapping with 1000 iterations 
and the test of Patton and Timmermann (2010) to obtain these estimates. If the null hypothesis is rejected 
at the 10% level, we mark the entry with a star, two and three stars mark rejection at the 5% and 1% level. 

Table 5 shows our estimated p-values for H0 for each input and the first four moments of the 

forward-looking return density. All of our forward-looking input variables are informative about 

the conditional return density at the 5% significance level. In particular, SVIX2 helps predict 

the mean, standard deviation and higher moments of the return distribution. In all cases, the 

null hypothesis of no influence is very strongly rejected. Risk-neutral skewness and kurtosis are 

especially relevant for predicting their physical counter-parts. The evidence for an impact of these 

variables on the conditional mean and volatility is comparably weak and only significant at the 10% 

level. Finally, the riskfree rate only helps to pin down volatility expectations, which is significant 

at the 5% level. Surprisingly, we cannot reject the null that the riskfree rate is uninformative about 

the S&P 500 return. Our tests reveal that especially option-implied variables are robust predictors 

for the subsequent return distribution. However, these tests do not tell us about the shape of the 

predicting relationships, which is in principle unconstrained. We will now take a detailed look at 

these relationships, as they are estimated by the MDN. 

In order to qualitatively and quantitatively inspect the impact of a forward-looking variables on the 

return density prediction, we make use of our empirical representations of the conditional moments 
(n) (n,b)

along the input range, m̂ l,i , and their respective bootstrap samples m̂ . We follow Davison l,i 

and Hinkley (1997) in constructing 90% confidence intervals for the predicting relationships that 
(n,b) (n,b) (n) (n,0.05)

the MDN identifies. For that, we first calculate the differences δ = m̂ − m̂ . Let δl,i l,i l,i l,i 
n,(0.95) (n,b)

(δ ) be the empirical 5% (95%) percentile of δ . The bootstrapped confidence interval forl,i l,i 
(n) (n) (n,0.95) (n) (n,0.05)

m̂ is then [m̂ − δ , m̂ − δ ].l,i l,i l,i l,i l,i 
(n)

Figure 2 plots m̂ l,i for the input-moment relationships that we identified as significant at the 1% 

level in our previous tests. We start our inspection with the only forward-looking variable that 

predicts S&P 500 returns in our set-up, the SVIX2 . Panel a shows how the annualized conditional 

day-ahead return expectation changes, as the SVIX2 changes. Under certain conditions, Martin 

(2017) shows that the SVIX2 constitutes a lower bound for the equity risk premium. In line with 

this finding, our expected return rises with an increase in SVIX2 and a linear relationship is well 

possible. For high values of SVIX2 though, it appears like the lower bound is not tight, at least 

on the daily horizon. For example, an annualized SVIX2 of 0.07 leads to an annualized day-ahead 
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Figure 2: Conditional S&P 500 moment by risk-neutral moment 

(a) Conditional mean by SVIX2 (b) Conditional variance by SVIX2 

(c) Conditional skewness by SVIX2 (d) Conditional skewness by QSkew 

(e) Conditional excess kurtosis by QSkew (f) Conditional excess kurtosis by QKurt 

This figure shows selected predicting relationships between a forward-looking input variable and a conditional 
physical moment. Each panel’s title indicates what it shows: A title of X by Y would mean that the MDN 
moment forecast of X is plotted on the vertical axis, and conditioned on Y, which is plotted on the horizontal 
axis. All other input variables beside Y are set to their unconditional median. The conditional mean and 
variance forecasts are annualized. 
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mean expectation well above 40%, if all other variables are at their unconditional medians. It 

is important to note that we use the SVIX2 at the 30-day horizon to form expectations about 

the day-ahead return. If there exists a downward-sloping term structure in the SVIX, the lower 

bound relationship might still be tight. Calculating backwards, an annualized day-ahead return 

expectation of 40% would imply a value of the SVIX at the one-day horizon of 63.2%, if the lower 

bound is tight. 

In essence, the SVIX2 is a measure for risk-neutral variance expectations. Several studies (Chernov, 

2007; Busch et al., 2011; Bekaert and Hoerova, 2014) document a strong relationship between risk-

neutral variance expectations and subsequent variance realizations. Panel b of figure 2 shows the 

MDN-implied volatility forecast as a function of the SVIX2 . Note, that the MDN is not constrained 

to a linear link between risk-neutral and physical variance, but instead retrieves the relationship 

from the data. Nevertheless, the MDN also models an approximately linear relationship, but 

only if the SVIX is above 17% (SVIX2 > 0.03). For lower values of the SVIX though, there 

appears to exist a non-linearity, which causes higher physical variance expectations compared to a 

general linear link. At the same time, the 90% confidence bands become very dense at this point, 

indicating that the estimator is relatively certain about the shape of the relationship for low SVIX 

values. The relationship allows the following interpretation: An increase of the SVIX from low 

to intermediate levels is primarily driven by an increase in the variance risk premium, as physical 

variance expectations are not rising strongly. Further increases in the SVIX are then driven by 

increases in physical variance expectations. 

We now turn to the impact of option-implied variables on physical expectations of higher moments 

of the return density. Panels c and d of figure 2 show, how skewness expectations change with the 

SVIX2 and risk-neutral skewness, panels e and f illustrate the response of conditional kurtosis to 

changes in risk-neutral skewness and kurtosis. The MDN estimates strongly non-linear responses of 

conditional higher moments to changes in the forward-looking inputs. For example, an increase in 

SVIX2 from 0.015 (corresponds to a SVIX of 12.2%) to 0.03 (corresponds to a SVIX of 17.3%) leads 

to a corresponding increase in physical skewness from -0.62 to nearly 0. However, further increases 

in the SVIX2 have nearly no significant impact on conditional skewness expectations. This finding 

is consistent with the notion that risk hides in the left tail in times of low market volatility. In times 

of higher risk-neutral volatility expectations, the return distribution is not significantly left skewed. 

A similar finding exists for the impact of risk-neutral skewness. Here, an increase in risk-neutral 

skewness also increases physical skewness expectations, but only up to a risk-neutral skewness 

of about -2. Similarly, for low values of risk-neutral skewness, conditional kurtosis is high and 

the return distribution becomes less heavy-tailed as it becomes less left skewed. Again, the effect 

disappears at a risk-neutral skewness of about -2 and expected return kurtosis stays nearly constant 

for larger risk-neutral skewness values. The MDN identifies a surprising relationship between risk-

neutral and physical return kurtosis. As risk-neutral kurtosis increases, physical kurtosis drops 

until it reaches the normal distribution’s kurtosis and stays roughly constant beyond this point. 

In summary, the MDN identifies a range of non-linearities in the relationship of risk-neutral and 
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physical moments. The forward-looking return distribution appears to be closer to the normal 

distribution in crisis times and more strongly left skewed in calm times. At the same time, strong 

market fears about sudden crashes, as signaled by low risk-neutral skewness expectations, appear 

justified by a more heavy-tailed and left skewed physical return distribution. Our tests show that 

the MDN identifies relationships between risk-neutral and physical moments that are statistically 

robust and economically relevant. 

5 Robustness 

5.1 Conditional Density Estimation Method 

In this study, we present a forward-looking P density estimator that is based on a neural network. 

However, the forward-looking feature is introduced by basing our forecasts purely on risk-neutral 

information and independent of the use of a Mixture Density Network as conditional density es-

timator. We therefore inspect in this section, whether more traditional density estimators can 

also be used to form valid P densities, and whether the MDN does indeed perform better than 

these alternatives. To this purpose, we perform an out-of-sample horse race between the MDN and 

popular parametric, non-parametric and machine learning techniques. We compare these methods 

with respect to their average conditional log likelihood, as defined in eq. 4, as well as their root 

mean squared prediction error for the mean and volatility: vuut XT 

T 
t=t ∗+1 

1 
Mean RMSE = (rt − E(rt|Xt−1))2 , (12) 

vuut XT 

T 
t=t ∗+1 

1 
σ RMSE = (|rt − E(rt|Xt−1)| − σ(rt|Xt−1))2 , (13) 

where E(rt|Xt−1) denotes the conditional mean expectation and σ(rt|Xt−1) the conditional volatil-

ity expectation of a density estimator. All methods are trained on a training data set {(rt, 
Xt−1)}t∈[1,t ∗], such that we obtain out-of-sample performance figures based on the validation data 

set {(rt, Xt−1)}t∈[t ∗+1,T ]. As before, the validation data set consists of the last 20% of our total 

available data. Finally, we test whether a conditional density estimator can be rejected statistically 

by applying the distribution tests of Berkowitz (2001) and Knüppel (2015). 

We consider six alternative density estimators in our performance evaluations. First, as described 

in section 4.1, we use a Gaussian kernel density estimator as unconditional benchmark. We further 

estimate a parametric model, where we assume that returns are conditionally normally distributed 

and conditional mean and variance are linear in the forward-looking predictor variables. We inspect 

three different non-parametric estimator. The Conditional Kernel Density Estimator (CKDE) is 

closely related to our unconditional benchmark. It first forms an estimate of the joint distribution of 

rt and Xt−1 and then obtains a conditional density estimate by building the marginal distribution at 
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Table 6: Out-of-sample performance of conditional density estimators 

Model Avg. log L Mean RMSE σ RMSE Berkowitz (2001) Knüppel (2015) 

Benchmark 
Linear 

3.4318 
2.7125 

0.8049 
0.8789 

0.708 
1.9254 

0.000 
0.000 

0.001 
0.000 

CKDE 
NKDE 
LSCDE 

3.2231 
2.9564 
3.0777 

0.8051 
1.2522 
0.8041 

0.9914 
0.8617 
1.2172 

0.000 
0.000 
0.000 

0.000 
0.000 
0.000 

MDN 
KMN 

3.5968 
3.5854 

0.8045 
0.8042 

0.5284 
0.5582 

0.81 
0.767 

0.951 
0.778 

This table compares the out-of-sample performance for a range of forward-looking conditional density es-
timators for the S&P 500. Linear represents a model that makes the mean and standard deviation of a 
normal distribution linearly dependent on the forward-looking variables. The remaining estimators are: 
Conditional Kernel Density Estimation (CKDE), Neighborhood Kernel Density Estimation (NKDE), Least-
Squares Conditional Density Estimation (LSCDE), Mixture Density Network (MDN) and Kernel Mixture 
Network (KMN). The third and the forth column report the root mean squared errors for the mean and 
standard deviation prediction. For the methods that involve an optimization (LSCDE, MDN, KMN), we 
report the error of the average estimator of 100 estimation runs with different starting values. 

a given Xt−1. Related to this approach, the Neighborhood Conditional Density Estimator (NKDE) 

differs by only considering observations whose input measure values are close to Xt−1 when forming 

the density estimate. The least-squares conditional density estimator (LSCDE) turns the kernel 

density estimation into a regression task by reducing the number of kernels, fixing their positions 

and only determining their weight for a given estimate. Finally, we consider another neural network 

based approach, the Kernel Mixture Network (KMN). A detailed description of all methods and 

how we perform estimation can be found in appendix A. 

Table 6 shows the results of our horse race. The two neural network approaches show the highest 

average log likelihood and lowest volatility prediction errors. As is well known, returns are nearly 

not predictable at the daily horizon, but still the 0.8045 (0.8042) RMSE of the MDN (KMN) mean 

prediction corresponds to an out-of-sample R2 of 0.1% (0.17%). We pick the MDN over the KMN 

in our main analysis due to its slightly higher average conditional log likelihood and lower volatility 

forecasting error. The linear model shows the lowest out-of-sample performance of all analyzed 

methods. Its unfavorable performance compared to the unconditional benchmark is a sign for 

over-fitting in this set-up. At the same time, the non-parametric methods also underperform the 

unconditional benchmark. One reason might lie in the size of our training set. Nonparametric 

methods typically require large amounts of data to build an expressive estimator. Our training 

data set contains 2642 data points, which might not be enough for these approaches. Finally, no 

density estimator beside the neural network estimators passes the Berkowitz (2001) and Knüppel 

(2015) tests. Put differently, we can reject the null hypothesis that returns are sampled from 

the respective conditional densities with almost certainty. Only the MDN and the KMN build 

conditional densities for which we cannot reject this null hypothesis. 
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Table 7: Euro Stoxx 50 out-of-sample performance of conditional density estimators 

Model Avg. log L Mean RMSE σ RMSE Berkowitz (2001) Knüppel (2015) 

Benchmark 
Linear 

2.9957 
2.7309 

1.2615 
1.2657 

1.0686 
1.6516 

0.000 
0.000 

0.067 
0.000 

CKDE 
NKDE 
LSCDE 

2.8856 
2.6432 
2.7906 

1.2611 
1.7439 
1.2609 

1.2321 
1.2161 
1.4234 

0.000 
0.000 
0.000 

0.000 
0.000 
0.000 

MDN 
KMN 

3.0924 
3.0883 

1.2627 
1.2608 

0.8297 
0.8635 

0.434 
0.888 

0.966 
0.901 

This table compares the out-of-sample performance for a range of forward-looking conditional density esti-
mators for the Euro Stoxx 50. Linear represents a model that makes the mean and standard deviation of 
a normal distribution linearly dependent on the forward-looking variables. The remaining estimators are: 
Conditional Kernel Density Estimation (CKDE), Neighborhood Kernel Density Estimation (NKDE), Least-
Squares Conditional Density Estimation (LSCDE), Mixture Density Network (MDN) and Kernel Mixture 
Network (KMN). The third and the forth column report the root mean squared errors for the mean and 
standard deviation prediction. For the methods that involve an optimization (LSCDE, MDN, KMN), we 
report the error of the average estimator of 100 estimation runs with different starting values. 

It seems like the neural network approaches in general, and the MDN in particular, represent a 

bridge between the parametric and non-parametric world. They are comparable to nonparametric 

approaches in their flexibility, but their parametric structure enables us to form expressive density 

estimators based on relatively small training data sets. Our results suggest that neural network 

approaches are superior to standard alternatives and in our tests, they were the only approaches 

that produced a valid forward-looking density estimator. 

5.2 International Evidence 

It is thinkable that unknown characteristics in the relationship of the S&P 500 and its associated 

options work in favor of the MDN. For this reason, we repeat the analysis of section 5.1 for the 

Euro Stoxx 50. The Euro Stoxx 50 represents the leading equity index for the euro area and highly 

liquid options on the index are traded at the Eurex. 

Table 7 contains the results of the performance evaluation for the Euro Stoxx 50. Throughout all 

methods and performance figures, it appears like the density of Euro Stoxx 50 returns is harder 

to predict than the density of the S&P 500. However, in our validation data set, daily S&P 500 

returns had an average volatility of 0.8%, while the volatility of daily Euro Stoxx 50 returns was 

at 1.26%. Relative to the benchmark method, the MDN performs very similar as for the S&P 500: 

The average conditional log likelihood is 3.2% higher than the benchmark, compared to 4.8% for 

the S&P 500. The Mean RMSE grows by 0.1%, compared to a decrease of 0.05% in the S&P 500. 

Finally, the RMSE of the volatility forecast is 22.4% below the benchmark, compared to a decrease 

of 25.4% in the S&P 500. In relative terms, the ordering of the different methods with respect to 

their performance is very similar to the S&P 500 application. The results of the Berkowitz (2001) 
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Table 8: Out-of-sample MDN performance with and without Noise Regularization 

Noise Regularization Yes No 

Avg. log L 3.5936 (0.0094) 3.5968 (0.0094) 
Mean RMSE 0.8045 (0.0012) 0.8044 (0.0012) 
Mean MAE 0.5566 (0.0017) 0.5566 (0.0017) 
σ RMSE 0.5327 (0.0069) 0.5284 (0.0075) 
σ MAE 0.4271 (0.0094) 0.4209 (0.0102) 

The table shows the effect of noise regularization on out-of-sample performance figures of the MDN estimator. 

and Knüppel (2015) tests also draw the same picture as for the S&P 500: The densities of all 

methods beside the neural network based approached are rejected. 

Overall, the results of the Euro Stoxx 50 exercise confirm our previous findings. Note, that our 

analysis does not state that the mechanics between forward-looking variables and returns are the 

same for the S&P 500 and the Euro Stoxx 50. Instead, it shows that the MDN is flexible enough 

to capture general and stable relationships between these variables in both markets. 

5.3 Over-Fitting 

A central concern when working with neural network approaches is over-fitting. Neural networks 

are highly flexible with respect to the approximated functional relationship in the training data. It 

can therefore happen that the trained model traces input-output relationships that existed in the 

training data only due to randomness. The generalization capabilities of such a model would be 

severely reduced. 

Over-fitting in neural network is mainly driven by the size of the network and expresses itself in a 

good in-sample, but bad out-of-sample performance. Our estimation methodology is designed to ad-

dress the over-fitting issue.9 Still, ensuring that over-fitting does not appear in our forward-looking 

density estimator is of first order importance. Rothfuss et al. (2019b) propose noise regularization 

to prevent over-fitting in Mixture Density Networks. In particular, they propose to add small 

random noise terms to the input and return data during the training phase. Intuitively, the noise 

slightly blurs the training data, thus making it impossible for the neural network to identify the 

small random pseudo relationships in the training data that lead to over-fitting. At the same time, 

fundamental relationships between the inputs and the returns are unaffected as they still hold in 

expectation. More formally, Rothfuss et al. (2019b) show that noise regularization introduces a 

curvature penalty term into the objective function of the estimator and thus introduces a tendency 

to smooth the conditional density estimate. 

We re-estimate our forward-looking density estimator with noise regularization to check whether 

9We determine the network size during the hyper-parameter search. In that, different parts of the training data set 
are treated as validation set, that is not used for model fitting. Over-fitting increases the error in these validation sets. 
The algorithm chooses the network size such that the error in the validation sets is minimized, thus counteracting 
over-fitting. 
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this additional shield against over-fitting improves the out-of-sample performance. We treat the 

size of the noise that is added to the training data as a hyper-parameter, which is determined 

in the hyper-parameter search phase of our training algorithm. Table 8 compares the out-of-

sample performance of the MDN estimator with and without noise regularization. None of the 

performance figures changes notably. In both estimations, the variation in the performance figures 

due to different starting values is low, thus indicating stable convergence of the estimation. Together 

with the observation from table 2 that the performance increase of the MDN against the benchmark 

is nearly the same in the in-sample and the out-of-sample data set, we conclude that over-fitting is 

highly unlikely for our conditional density estimator. 

Conclusion 

In this study, we presented a forecasting method for the full distribution of returns that is based 

on Mixture Density Networks. Our estimator is forward-looking as it is purely based on option-

implied, risk-neutral expectations about the future, which where measured in a model-free way. 

The MDN places very little constraints on the statistical return distribution and is agnostic about 

the stochastic discount factor, that links the risk-neutral and physical return distribution. The 

approach can therefore be considered as model-free. 

We showed that the forward-looking estimator generalizes predicting relationships better than a 

backward-looking estimator, which is based on past return information. It also outperforms a 

number of alternative parametric and nonparametric forward-looking return distribution estima-

tors. While the out-of-sample conditional densities of the backward-looking estimator and the 

forward-looking alternatives are rejected in our statistical tests, this is not the case for the condi-

tional forward-looking return distribution. It is therefore well possible that the MDN accurately 

recovers the true physical return distribution. The MDN uncovers significant nonlinear relation-

ships between risk-neutral and physical moments. Our results indicate that an exploitation of 

these nonlinearities in combination with the adaptive smoothness and continuity constraints of our 

estimation approach is key in forecasting the return distribution. 

The inclusion of other types of forward-looking information like analyst forecast (Ulrich et al., 2019) 

or text measures (Engle et al., 2019) may improve the performance of the estimator even further. 

Furthermore, while we restrict our analysis to the inspection of equity index returns, the method 

can easily be translated to other asset classes with associated options. 
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Aurélien Géron. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools 

and Techniques to Build Intelligent Systems. O’Reilly Media, Sebastopol, CA, 2017. 
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A Alternative Physical Density Estimators 

In this appendix, we give present the alternative density estimators that we use in our robustness 

tests. A large range of conditional density estimators are known to the literature. On a high level, 

one can distinguish between parametric (Shumway and Stoffer, 2017) and non-parametric methods 

(Li and Racine, 2007). Recently, a third class of modeling approaches emerged which is based on 

machine-learning techniques (Bishop, 2006; Ambrogioni et al., 2017). Our favored MDN approach 

also belongs to this class. In essence, these methods are parametric, but they are often so flexible 

that they can approximate a very large class of alternative parametric models without requiring 

exogenous information about which exact model to approximate. In a simulation study, Rothfuss 

et al. (2019b) show the superiority of these methods compared to non-parametric density estimators 

for distributions that are relevant to financial applications. 

In the following, we will give an overview of the methods that we employ in our analysis. To fix 

notation, let rt stand for the log return of an asset’s price at time t. Let Xt−1 = (Xi,t−1)i∈{1,...,N } 

stand for a set of predictor variables that can be observed in t − 1. We are now interested in the 

conditional density p(rt|Xt−1) of rt. 

A.1 Parametric Density 

A first approach to specifying p(rt|Xt−1) is to pose a parametric structure on the evolution of the 

asset price and thus return. The well-known class of ARMA-GARCH models (Bollerslev, 1986) is 

a natural candidate for this task, however, it is by construction backward-looking as it conditions 

on past return data. Engle and Patton (2007) and Sharma et al. (1996) investigate such time 

series models that are enriched with exogenous predictor variables. We follow their intuition, but 

shut down the backward-looking channel by dropping past return information from the model. 

More precisely, we assume that log-returns are conditionally normally distributed, with mean and 

variance that are linear in the forward-looking input variables: 

rt = α + β Xt−1 + �t, �t ∼ N(0, σ2),t 

σ2 = a + bXt−1 + νt.t 

Here, Xt is the vector of forward-looking variables and log-returns are distributed according to 

rt ∼ N(α + β Xt−1, a + bXt−1). We estimate the parameters in a two-pass estimation. In a first 

step, we regress the observed returns in the training set on Xt−1 via OLS, thus obtaining initial 

estimates for α and β. We square the residuals and regress these squared residuals on Xt−1 again, 

which provides us with OLS estimates for a and b. In the second estimation step, we use the 

previous parameter estimates as starting values for a joint maximum likelihood estimation. 
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A.2 Non-Parametric Density 

Three kernel-based methods represent the non-parametric approach in our analysis. First, we use 

the kernel density estimator to estimate the unconditional distributions of (rt, Xt−1)
| jointly and 

Xt−1 alone and form the ratio between these two estimates to obtain the conditional distribution 

of rt. Putting more weight on the training data points that are closest to the current (rt, Xt−1)
| 

observation leads to neighborhood kernel density estimation. Finally, least-squared conditional 

density estimation relaxes the weight constraints that are imposed upon the estimator by the 

previous methods. 

Conditional Kernel Density Estimator 

Given a set of training data points {xk}k∈[1,M ] the unconditional kernel density estimator for an 

potential subsequent observation x reads as follows (Rosenblatt, 1956; Parzen, 1962): 

M � �X1 x − xk 
p̂(x) = K (14)

Mh h 
k=1 

Kernel density estimation (KDE) can be understood as placing a simple density function K(·) into 
each data point xk and forming an equally weighted mixture of the M densities. The difference 

between x and the training data point xk is scaled by the bandwidth parameter h. In the case of 

multivariate variable x ∈ RJ , J > 1, the density can be estimated as the product of marginal kernel 

density estimates: ! 
J J M (j)Y Y X (j) − xkp̂(x) = p̂(x(j)) = 

1 
K

x 
(15)

h(j)Mh(j) 
j=1 j=1 k=1 

In that, x(j) denotes the j-th element of the column vector x and h(j) is the bandwidth corresponding 

to the j-th dimension. One popular choice of K(·) is the Gaussian kernel 

1 − z 2 

K(z) = √ e 2 . (16)
2π 

Other common choices of K(·) are the Epanechnikov and exponential kernels. Provided a continuous 

kernel function, the estimated PDF in (15) is continuous. Beyond the appropriate choice of K(·), 
a central challenge is the selection of the bandwidth parameter h which controls the smoothing of 

the estimated PDF. We determine h by minimizing the Integrated Mean Squared Error (IMSE) 

using a cross-validation approach, as recommended by Li and Racine (2007). 

The non-parametric KDE approach can be extended to the conditional case (Conditional KDE; 

CKDE). Unconditional KDE can be used to estimate both the joint density p̂(rt, Xt−1) and the 

marginal density p̂(Xt−1). Then, the conditional density estimate follows as the density ratio 

p̂(rt, Xt−1) 
p̂(rt|Xt−1) = (17) 

p̂(Xt−1) 
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where both the enumerator and denominator are the sums of Kernel functions as in equation (15). 

Neighborhood Conditional Kernel Density Estimation 

Similar to kernel density estimation, neighborhood kernel density estimation (NKDE) employs 

standard kernel density estimation in a local �-neighborhood around a query point x (Sugiyama 

and Takeuchi, 2010). The method uses kernels in the training data points as well, however, rather 

than using all past observations, NKDE only considers a local subset of the training samples 

{xk}k∈Kx,� , where Kx,� contains all sample indices that fulfill ||xk − x||2 ≤ �. 

In order to obtain a conditional density estimate, we again build unconditional density estimates 

for p̂(rt, Xt−1) and p̂(Xt−1) and apply equation (17). Again, we use a Gaussian kernel function 

and select both, the bandwidth hyper-parameter h and the neighborhood hyper-parameter � via 

cross-validation. 

Least-Squares Conditional Density Estimation 

The Least-Squares Conditional Density Estimation (LSCDE) approach of Sugiyama and Takeuchi 

(2010) estimates the conditional density as a linear combination of kernel functions K(·) 

p̂α(rt|Xt−1) ∝ αT K((rt, Xt−1)
|) (18) 

Here, K((rt, Xt−1)
|) = (K1((rt, Xt−1)

|), ..., KM ((rt, Xt−1)
|))T are kernel functions. The main 

difference between LSCDE and the previous kernel methods is the direct estimation of the weights α 

via regression. Furthermore, the kernel functions are not necessarily bound to the past observations. 

In principle, any number of kernel functions, that is located anywhere in the domain of (rt, Xt−1)
| 

is possible. Practically, Sugiyama and Takeuchi (2010) advise picking randomly a number of past 

observations at which kernels are located. This number is typically much smaller than the amount 

of observations, thus making the estimation of α more robust. The parameters α ∈ RM are then 

obtained by minimizing the integrated squared error Z Z 
J(α) = (p̂α(rt|Xt−1) − p(rt|Xt−1))

2 p(Xt−1)dXt−1drt. (19) 

Sugiyama and Takeuchi (2010) derive the closed-form solution for α for the case of Gaussian kernels. 

After having obtained α∗ = arg minα J(α), the conditional density of rt can be computed as follows: 

(α∗)T K((rt, Xt−1)
|) 

p̂α(rt|Xt−1) = R (20)
(α∗)T K((rt, Xt−1)|)dy 

The denominator in equation (20) is traceable and can be computed analytically. Hence, neither 

numerical optimization nor numerical integration is needed for obtaining conditional density es-

timates with LSCDE. However, three hyper-parameters need to be determined: the bandwidth 

parameter of the Gaussian kernels, the number of kernel functions to use and a regularization pa-

rameter that can be used in the estimation of α∗ . As before, we estimate these hyper-parameters 
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via cross-validation. 

A.3 Kernel Mixture Network 

Beside the Mixture Density Network, we consider one further neural network density estimator, the 

Kernel Mixture Network. While MDNs resemble a purely parametric conditional density model, 

the Kernel Mixture Network (KMN), combines both non-parametric and parametric elements (Am-

brogioni et al., 2017). Similar to MDNs, a mixture density model of p̂(rt) is combined with a neural 

network which takes the conditional variable Xt−1 as an input. However, the neural network only 

controls the weights of the mixture components while the component centers and scales are fixed 

w.r.t. to Xt−1. Figuratively, one can imagine the neural network as choosing between a very large 

amount of pre-existing kernel functions to build up the final combined density function. As common 

for non-parametric density estimation, the kernels are placed in each of the training samples or a 

subset of the samples. For each of the kernel centers, one or multiple bandwidth parameters σm are 

chosen. As for MDNs, we employ Gaussians as mixture components, wherein the scale parameter 

directly coincides with the standard deviation. 

Let M be the number of kernel centers µk and S the number of different kernel scales σs. The 

KMN conditional density estimate reads as follows: 

XM SX 
p̂(rt|Xt−1) = wk,s(Xt−1; θ)N (rt|µk, σ

2) (21)s 
k=1 s=1 

In order to form a valid density, the weights wk,s must resemble a multinomial distribution. Hence, 

the output non-linearity of the neural network is chosen as a softmax function. Ambrogioni et al. 

(2017) propose to choose the kernel centers µk by sub-sampling the training data by recursively 

removing each point ri, i < t that is closer than a constant δ to any of its predecessor points. This 

can be seen as a naive form of clustering which depends on the ordering of the dataset. Instead, 

we use a well-established clustering method such as K-means for selecting the kernel centers. The 

scales of the Gaussian kernels can either be fixed or jointly trained with the neural network weights. 

In practice, considering the scales as trainable parameters consistently improves the performance. 

Overall, the KMN model is more restrictive than MDN as the locations and scales of the mixture 

components are fixed during inference and cannot be controlled by the neural network. 

35 



B Additional Results 

Table 9: Trading based on the backward-looking density estimator 

(a) Mean trading summary statistics 

Full data set Out-of-sample 
Strategy Buy-and-Hold Backward-looking Buy-and-hold Backward-looking 

Mean return 8.48 (5.11) 34.03 (11.02) 8.43 (7.89) 11.91 (14.65) 
Mean excess return 7.18 (5.11) 33.16 (11.03) 8.28 (7.9) 11.59 (14.67) 
Excess return volatility 18.52 39.94 12.79 23.77 
Sharpe Ratio 0.388 0.852 0.647 0.501 

N 3303 3303 661 661 

(b) Volatility trading summary statistics 

Full data set Out-of-sample 
Strategy Buy-and-Hold Backward-looking Buy-and-hold Backward-looking 

Mean return 
Mean excess return 
Excess return volatility 
Sharpe Ratio 
N 

523.86 (53.9) 886.51 (87.17) 
525.15 (53.9) 887.78 (87.17) 

195.01 315.39 
2.69 2.81 
3299 3299 

753.23 (144.12) 1160.43 (304.51) 
753.61 (144.13) 1160.82 (304.51) 

233.24 492.8 
3.23 2.36 
660 660 

The table shows annualized daily expected return, excess return, excess return volatility and Sharpe Ratio 
of the conditional mean and volatility trading strategy in the S&P 500, compared with the buy-and-hold 
strategy. The forecasts that are used for the strategies come from the backward-looking MDN estimator. 
The numbers in parentheses are standard errors of the average return estimates. The full data set covers 
January 2004 to July 2018. The out-of-sample data set covers the last 20% of the full data set and thus 
starts in November 2014. 
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Table 10: Trading based on the all information density estimator 

(a) Mean trading summary statistics 

Full data set Out-of-sample 
Strategy Buy-and-Hold All information Buy-and-hold All information 

Mean return 8.48 (5.11) 30.7 (7.1) 8.43 (7.89) 11.65 (12.04) 
Mean excess return 7.18 (5.11) 29.88 (7.11) 8.28 (7.9) 11.49 (12.07) 
Excess return volatility 18.52 25.75 12.79 19.56 
Sharpe Ratio 0.388 1.193 0.647 0.596 

N 3303 3303 661 661 

(b) Volatility trading summary statistics 

Full data set Out-of-sample 
Strategy Buy-and-Hold All information Buy-and-hold All information 

Mean return 523.86 (53.9) 778.85 (87.02) 753.23 (144.12) 1366.67 (282.83) 
Mean excess return 525.15 (53.9) 780.13 (87.01) 753.61 (144.13) 1367.06 (282.83) 
Excess return volatility 195.01 314.83 233.24 457.72 
Sharpe Ratio 2.69 2.48 3.23 2.99 
N 3299 3299 660 660 

The table shows annualized daily expected return, excess return, excess return volatility and Sharpe Ratio 
of the conditional mean and volatility trading strategy in the S&P 500, compared with the buy-and-hold 
strategy. The forecasts that are used for the strategies come from the MDN estimator with both, backward-
and forward-looking information. The numbers in parentheses are standard errors of the average return 
estimates. The full data set covers January 2004 to July 2018. The out-of-sample data set covers the last 
20% of the full data set and thus starts in November 2014. 
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